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Preface 

Statistical manifolds have been studied in terms of information geometry, 
which is investigation of manifolds with dualistic structures and its applicaｭ
tions. Dualistic structures appear in not only statistical inference but also 
many other engineering applications. Consideration of statistical submanｭ

ifolds is very convenient for above studies. In this paper , we investigate 
particular statistical su bmanifolds: conformally f�t statistical su bmanifolds 
and doubly autoparallel statistical submanifolds. 
A convex function on an affine domain generates the Riemannian metric. 
The domain with the metric is called a Hessian domain. The function also 
generates the d ual a伍ne connection and decides the dually f�t structure of 

the domain. Thus the Hessian domain is a f�t statistical manifold. For a 
Riemannian metric h and a function 仇 we call eﾘ h a conformal transformaｭ
tion of h. Moreover considering deformation of a伍ne connections, Okamoto , 
Amari and Takeuchi 五rsttreated the concept ofα-conformal equivalence with 
respect to sequential estimation theory. An α-conformally equivalent statisｭ

tical manifold to a f�t statistical manifold is said to be αーconformally f�t. 

As α= 1 ，トconformally f�t statistical manifolds can be realized in the a伍ne

space of codimension one. However existence of 1-conformally f�t statistical 

submanifold was noも known. Then we shall prove that a level surface of the 

function is a l-conformally fiat statistical submanifold. 
1 t is known that there exist the canonical divergences of a fiat statistical 
manifold and of a l-conformally fiat statistical manifold. Divergences are 

pseudo-distance treated first in information theory and statistics. In this 
paper we consider a foliation de五ned by level surfaces and its orthogonal 
foliation , and investigate divergences restricted to leaves of these foliations. 
Next we give the decomposition of the divergence of a Hessian domain with 
respect to orthogonal foliations. On a f�t statistical manifold , Nagaoka 
and Amari gave a decomposition of the divergence known as the extended 
Pythagorean theorem, considering autoparallel submanifolds. We obtain a 
decomposition different from their one , and show the application to gradient 
systems. 
Finally we study dually fiat structures on symmetric cones ぉsociatedwith 
Jordan algebras. A symmetric cone has the characteristic function , which 
generates the canonical dually fiat structure on it. We give an interpretation 
of connections , a geometrical concept, in terms of Jordan algebras and show 
relation with doubly autoparallel submanifolds and Jordan subalgebras. VVe 
can solve semide五niteprogramming (SDP) , convex programming on a cone of 
positive definite symmetric matrices , without iterations of Newton-method , 
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if its feasible region is doubly autoparallel submanifold of the cone. Then it 

is useful for convex programming on symmetric cones to know conditions for 
doubly autoparallelism of submanifolds. 

Acknowledgement 

1
i
1
i
η
L
η

ノ

u
η
J
U
η
L

円
六U

Introduction 
1.1 Backgrounds and motivations 

1. 2 Overview. 
1. 2.1 Statistical manifolds 
1.2.2 Conformal fiatness of level surfaces 
1.2.3 Divergences.................. 

1.2.4 Autoparallel submanifolds of symmetric cones 

Contents 

1 

I would like to express sincere thanks to Professor Takao Fujii for his guidｭ
ance on control systems theory. I am thankful to Dr. Atsumi Ohara for 
his advice on information geometric approach to control systems theory and 

convex programming. I would like to thank Professor Hirohiko Shima in Yaｭ
maguchi University, who gave me valuable comments on Jordan algebras and 
Hessian manifolds related information geometry. I also would like to thank 

Dr. Takashi Kurose in Fukuoka University, who discussed with me dualistic 

5
F
O
F
b

円
。

ρ
0
7

Preliminary 
2.1 Statistical manifolds 

2.2 Statistical submanifolds 
2 .3 α-conformal fiatness 

2.4 Hessian domains 

2.5 Legendre transform . 

2 

structures of statistical manifolds. 

1 am thankful to Professor Satoru Fujishige and Professor Yoshimasa 
Nakamura, who are members of my dissertation committee. They read this 
dissertation and gave me valuable suggestions before its completion. 
Professor Nobuhide Suda in Hosei University invited me to study mathｭ

ematical control systems theory. I would like to give him my special thanks. 
This dissertation could not be completed without him. I am grateful very 

much to Dr. Takashi Shimomura and Dr. Taro Tsujino , who advised and 
encouraged me in seminars. 

9

9
9

9
2

2
3

3

4

 

1
4
1

ム

1
i
1

ム

1
1

Dualistic structures on level surfaces 

3.1 1-conformal fiatness of level surfaces . 

3.1.1 Theorems 
3.1.2 Statistical manifolds and affine di百'erential geometry . 

3.1.3 Realization of 1-conformal fiatness 
αーconformal equivalence of level surfaces . . . . . . 

3.2.1α-connections on statistical manifolds . . . . 
3.2.2αーconnections and α-conformal equivalence 

3.2.3 Realization of α-equivalence 

3 

Finally I would like to express appreciation to Ms. Tokiko N akagawa, 
Ms. Kyoko Nakamura and all the members of Fujii laboratory at Graduate 
School of Engineering Science of Osaka University. 

3.2 

円t

ワ
t

ウ
t
Q
υ
1
i
1
A

1
i
1
i
1
i
1

ょ
っ
&
つ
ん

Divergences of statistical manifolds 

4.1 Foliations by level surfaces . 
4.1.1 Dual-projectively fiat connections 

4.1.2 Foliations by level surfaces . 

Decomposition of divergences 
4.2.1 Divergences and orthogonal foliations . 

4 

4.2 

111 



lV CONTENT8 

4.2.2 Projection by the rninimum divergence 
4.3 Gradient fiow and divergences . 

2~3 

24 

5 Dualistic strustures on symmetric cones 

5.1 Jordan a抱ebras and dual connections . . . . . . . . . . . 
5.1.1 Jordan algebras . . . 

5.1.2 8ymmetric cones associated with Jordan algebras 
5.1.3 Dual connections and Jordan algebras 

5.2 Doubly autoparallel submanifolds 

5.2.1 On dual connections 
5.2.2 On α-connections 

Q
d
Q
d
Q
d
1

よ
内
ベ
U

ぷ
U
F
O
Q
o

q
ム
つ
臼
つ
u
q
u
q
u

円
べu
q
u

円
J

Chapter 1 

Introduction 

6 Concl usions 41 

References 1.1 Backgrounds and motivations 

8tatistical manifolds have been studied in terms of information geometry. 
Dualistic structures of statistical manifolds play irnportant roles on staｭ
tistical inference , control systems theory, convex programmingう and so on 

([A][OA][08A]). Especially a dually fiat structure is a Hessian structure , 
whose metric is led by the second order differentiation of a convex function. 
Information geometry and theory of Hessian structure were studied 五rst inｭ

dependently, but now relation with them are pointed out: for example it 
becomes known that a Hessian structure gives geornetry of an exponential 
family ([8H]). However they have not been studied deeply. Thus we shall 

investigate statistical manifolds using theory of Hessian structures. 

Applications of the dually fiat structures of s山manifolds are in [FA][08A] 
Embedding curvatures of non-fiat statistical submanifolds are related with 

various estimators in statistics. From a differential geornetrical point of view , 
non-fiat statistical manifolds are studied in [K1 ][K2][Mz], but we see few 閃
sults on them a邸s statistical su bmanif，お'o ldswithout dual日ly fia抗tstructures. Then 

we treat non-flat dualistic structures on submanifolds, especially on level surｭ
faces of Hessian domains , and obtain properties of fiat statistical manifolds. 
8ymmetric cones are typical Hessian domains , since characteristic funcｭ
tions of syrnmetric cones generate the canonical dually fiat structure on it. 
We describe dual a伍ne connections on symmetric cones in terrns of the J orｭ

dan algebra. 8hima gave correspondence between Jordan algebras and affine 
connections on symmetric spaces with Hessian structure ([81][83]). Ohara 
presented a relation between a Jordan algebra and the dual connection espeｭ
cially on a cone of positive definite symrnetric matrices ([0]). [81][83] make 

use of vector fields induced by Lie algebras , and [0] treats of vector fields 

1 



2 CHAPTER 1. INTRODUCTION 

along the canonica1 a伍ne coordinates. In this paper, we shall generalize the 
result in [0] to other symmetric cones. 

Convex programming, e.g. , semidefinite programming (SDP) is usefu1 for 
sy山m and control theory, and so on ([F][O]). We can solve SDP without 
iterations of Newton-method , if its feasib1e region is doubly autoparallel subｭ
manifold of the cone. Then we see doub1y autoparalle1 submanifolds of symｭ

meもnc cones. 

1.2 Overview 

1.2.1 Statistical manifolds 

First we give foundations and notations of statistical manifolds. In Chapter 

2, there are definitions of statistica1 manifolds, statistical submanifolds ， α­
conformal fiatness , Hessian domains, dual statistical manifolds , and Legendre 
transform. 

1.2.2 Conformal flatness of level surfaces 

We study l-conformal f�tness and αーconformal equi valence of level surfaces 
in f�t statistical manifo1ds in Chapter 3. Let 伊 be a convex function on a 
domain D in an affine space A n+l. Denoting by D the cano~ica1 fia~ a伍ne
connection on A n+l , we can consider a Hessian domain (D, D ， ク = Ddtp) a 
fiat statistical manifold. 
In Section 3.1 , we show that , if g is positive definite ヲ η-dimensiona1 leve1 
surfaces of ψare 1-conformally fiat statistical Sl山nanifolds of (D , D , g) , and 
that a 1-conformally f�t statistical manifold with a Riemannian metric can 

be locally realized as a statistical submanifold of a fiat statistical manifold. 

In Section 3.2, we give a procedure to realize a statistical manifold , which 
isαーconformally equivalent to a manifold with anα-connection ， as a statisｭ

tical su bmanifold. 

1.2.3 Divergences 

We construct dual foliations: :F defined by n-dimensional level surfaces and 

Fム orthogonal to :F, and discuss divergences on leaves of the fo1iations. 
Projective transform is dilation of surfaces in an a伍ne space. In Su bsecｭ
tion 4. 1.1, we see that the dual connection D' of D has projective change inもo
a fiat connection ぅ that is, D is dual-projectively fiat , where D is the induced 
a伍ne connection on a leve1 surface. Next , we show that dua1-projectively 
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equiva1ent affine connections can be 1ed on a leaf of a foliation :F in Subsecｭ

tio凶 2. 1. In addition we show that a 1eaf of :Fよ is a .D '-geodesic, where .D' 
is the d ua1 connection of D. 

We also discuss divergences on leaves of the foliations :F and :F j_ in Section 

4.2. Nagaoka and Amari first studied divergences of f�t statistical manifo1ds 

in view of statistics ([A][AN]). Kurose defined the canonica1 divergences of 

l-conformally f�t statistica1 manifolds ([K2]). We show that , for M ε :F， 

Kurose's divergence of a l-conforrr叫1y f�t statistica1 Sl山nanifold (M , D , g) 
is the restriction of Nagaoka and Amari's divergence of (D , D , g) in Subsecｭ
tion 4.2.1. We give the decomposition of the divergence of (D, D , g) with 
respect to orthogonal foliations :F and :F j_ in Subsection 4.2.2. Next we see 

that the projection of a point in D to M along a 1eaf of :Fム is given by minｭ
imization of the divergence. Last in Chapter 4, we give a gradient system 
using the divergence. Gradient systems are important to study relation with 

information geometry and integrable dynamical systems ([FA][N]) 

1.2.4 Autoparallel submanifolds of symmetric cones 

In Chapter 5, we describe dua1istic structures of symmetric cones and of 
autoparallel submanifolds. We give notation and formulas on J ordan algebrぉ

in Subsection 5.1.1. Next, we introduce dually f�t structures on symmetric 
cones associated with simple Euclidean Jordan algebras in Subsection 5.1.2 

We derive a re1ation between the dual connections and mutations of Jordan 

algebras in Subsection 5.1.3. For some condition, we prove that submanifolds 
of symmetric cones are doubly autoparallel if and only if their tangent spaces 

are Jordan subalgebras, in Subsection 5.2.1. Finally for the same condition , 
we show that submanifolds are autoparallel with respect toα-connections 

also if and on1y if their tangent spaces are Jordan subalgebras, in Subsection 
5.2.2. 

In the last chapter , we note conclusions. 
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2.1 Statistical manifolds 

For a torsion-free a伍ne connection '¥1 and a pseudo-Riemannian metric h on 
a manifold N , the triple (N， マ，h) is called a statistical manifold if '¥1 h is 
symmetric. If the curvature tensor R of '¥1 vanishes , (N, '\1, h) is said to be 
flat. 

For a statistical manifold (N， マ ， h) う let マ， be an affine connection on N 

such that 

Xh(Y, Z) = h( '\1x Y , Z) + 九(Y， '\1 ~Z) for X , Y , Z ε X(N) ， 

where X(N) is the 制 ofall tangent vector fields on N. The affine connection 
マ， is torsion free , and '¥1' h symmetric. Then '¥1' is called the dual connection 
of マ， the triple (N， マ'， h) the dual statistical manifold of (N， マ?九)， and 
(マ?マ'， h) the dualistic structure on N. The curvature tensor of マ， vanishes 

if and only if one of '¥1 does , and then ('\1, '\1', h) is called the d ually flat 
structure. 

2.2 Statistical submanifolds 

For a pseudo-Riemannian manifold (N , h) and a s山manifold N of N , we 
call (N， マ ，h) a statistical Sl山nanifold of (N ， 九) if (N , '\1 , h) is a statistical 
manifold , where '¥1 is an a伍ne connection on N and h the induced pseudoｭ

Riemannian metric for h. Let マ be an affine connection on N. We denote 

by TpN EB 九Nよ the orthogonal decomposition of Tpﾑ with respect to 人
where 九N and TpN are the set of all tangent vectors at X on N and on N , 
respectively. If ('¥1 x Y)p is the 九N-component of ('¥1 x Y)p for X , Y ε X(N) 

5 



6 CHAPTER 2. PRELIMINARY 2.5. LEGENDRE TRANSFORM 7 

and an arbitrary x in N , we call (N， マヲ h) the statistical Sl巾nanifoldrealized 

in (Nうマ う h).
If (N ， マ， h) is a statistical manifold for a Riemannian metric h and a 

Sl山nanifold N of N , (N, \7, h) is a statistical manifold for the above ind 1悶d

connection ¥7 and the induced metric h ([A][Vo]). For a pse凶0-Riemannian 
metric 九 ， (N， マ?九) is a statistical manifold if h is non-degenerate. Then we 
often call a statistical su bmanifold realized in a statistical manifold (N ， マ ， 17， )，

simply, a sもatistical Sl山nanifold of (N ， マ，九)

Let (N， マ" h) be the d ual statistical manifold of (N， マ ， h). If (N S， マS，hS) 
and (NS , \7ペゲ) are statistical submanifolds of (N， マ ， h) and (N , \7', h) , reｭ
spectivel}ヘ (NS ， マペ hS ) is the dual statistical manifold of (NS ， マ S ，hS) 

2.5 Legendre transform 

Let A~+1 and {xi ， ・・・， X~+1} be the dual affine space of Aη十 1 and the dual 
a伍ne coordinate system of {x人. , Xn+l} , respectively. We define the graｭ
dient mapping '� from 0 to A~+l by 

ー θψ
x; 0 L ニーで一一‘
L dx1' 

、
h
E
1
5

〆

T
1
ム

今
L

，
，
l
E
、
、

and a fiat a伍ne connection D' on 0 by 

ん (DkY) = D*xら (Y) for X , Y ε X(O) ， 

九(X ，Y) 

h(マxY， Z)

er/J h(X, Y) , 

川口問)一 i干t子2砂仰叫(伊問Z幻)川九伏
午{附川ω州仰川川(伏閃仰川X幻X)h川九

where D*X'�* (Y) is covariant de山抗ive along '� induced by the canonical fiat 

a伍ne connection D本 on A~+l' Then (0 , D' , g) is the dual statistical manifold 
I 車 _ a午伊フ f 

of (ρO ， D ， gω). We 則 xi - X只いi円o L戸= 一一 T百he叩n {ιz引九1"'" X仏;Lい1叶1+1} 
θXl 

coordinate system with respect to D' , i.e. う D'dx~ = O. Remark that a straight 
line with respect to an a伍ne coordinate {X1 ， ・，Xn+1} (resp. {x~ ，...， X~+l} ) 

is a D-(resp. D勺 geodesic ， where we call a geodesic relative to D (resp. 
D') a D-(resp. D勺 geodesic
If '� is invertible う wecan de五ne a function on 0* = '�(0) called the Legendre 

transform 伊本 of <p by 

2.3α-conformal flatness 

For αεR， statistical manifolds (N， マう h) and (N, \7, h) are said to be α­
conformally equivalent if there exists a function ゆ on N such that 

〆 oi= -2ン14 一伊
for X , Y， Z ε X (N). A statistical manifold (N， マ，h) is called α-conforπ叫ly

fiat if (N， マ，h) is locally α-conformally equivalent to a fl.at statistical manｭ
ifold. Statistical manifolds (N， マヲ九) and (N， マ?九) areα-conformally equivｭ
alent if and only if the dual statistical manifolds (N,\7', h) and (N,\7', h) 
are (-α)-conformally equivalent. Especially, a statistical manifold (N, \7, h) 
is 1-conformally fl.at if and only if the dual statistical manifold (Nうマ '， h) is 

( -1 )-conformally ftat ([K2]) 

The triple (0* , D' , g' 二 D'd<p*) is a ftat statistical manifold. 

2.4 Hessian domains 

Let D and {X1 ， ・・ , xn+l} be the canoniω ftat a担ne connection and the 
canonical affine coordinate system on A n+l , i.e. , Ddxi = O. If the Hessian 

bdv=Tff竺---:;dxidxj is non-degenerate for a function <p ∞ a domain 0 
τθxtθxJ 

in An+l?we call (Q ， D? タ =Dd伊) a Hessian domain 
A Hessian domain (0 , D , 9 = Ddψ) is a fl.at statistical manifold. Conｭ

versely, a ftat statistical manifold is locally a Hessian domain ([A][S2]). 



Chapter 3 

Dualistic structures on level 

surfaces 

3.1 1-conformal flatness of level surfaces 

We give two theorems of level surfaces in Subsection 3.1.1 and prove them 
in Subsection 3.1.2 and 3.1.3. 

3.1.1 Theorems 

We obtain the next theorems. 

Theorem 3.1. Let M be α simply connected n-dimensionαl level surflαce 
of r.p 0ηαη(η + l)-dimensionαl H essian domαin (D , D , g = Ddr.p) ωith α 

Riemαnnzaη metric g, and suppose thαtη 三 2. 1f ωe consider (D , D ， ク)αβαt

stαtistical manifold, (M , D , g) is α l-coηJormally fiαt stαtistical submαnifold 
of (D , D) g) ， ωhere ωe denote by D αηd g. the connection αnd the Riemαnnzan 
metric on M induced by D αηdg 

Theorem 3.2. Aηαァbitrary l-coη.formally βαt stαtistical mαnifold of 

dim η 三 2 1μith α Riemαηηiαη metric cαη be locαlly アealized αsα submαnifold

of αβαt statistical mαηifold of dim(η+ 1) 

3.1.2 Statistical manifolds and affine di釘'erential geomｭ

etry 

For a real number c, we call a subset M := {p εn I r.p(p) = c} is called a level 
surface of 伊 on D. We study a level surface M of 伊 on an (η+ 1 )-dimensional 

9 



10 CHAPTER 3. DUALISTIC STRUCTURES ON LEVEL SURFACES 3.1. 1-CONFORMAL FLATNESS OF LEVEL SURFACES 11 

Hessian domain (n , D, g) , using affine differential geometry and the concept 
of statistical submanifolds. A level surface M of cp is an n-dimensional subｭ

manifold of n if and only if dcpp i 0 for all p εAイ. Henceforward , we suppose 
thatη ミ 2 ， that g is a Riemannian metric, and that dcpp i 0 for all p εM 
Let E be the gradient vector field on n defined by 

Since 9 is non-degenerate , so is gE. Then (x , E) is called a non-degenerate 
immersion. Moreover, the immersion (x , E) has the following property 

Lemma 3.4. Aηα:ffine immersion (x , E) is equiaffine, i. e. , 

g(X , E) = dcρ (X) for X E x(n). 
TE = 0 on ]lイ.

Since g is positive de~nite and dcpp i 0 for all p ε JvI ， ゆ(E) does not vanish 
on M and a vector Ep is vertical to 九M with respect to g, where 九JvI is 

the set of all tangent vectors at p on M. We set 

Proof. We have 

TE = (dlog I dcp(E) I)(X) (3.6) 

E= -d伊(止)-lE ー

j
'
1
i
 

n
t
u
 

'
'
'
l‘‘
、

by [HS]. Calculating the right-hand side of (3.6) , we have 

on 1¥!I. Then the vector field E is transversal to M , and so is E. 
Let x be a canonical immersion of M into n. For D and an a伍ne lmmerｭ

sion (x , E) , we can define the induced a伍ne connection DE , the fundamental 
form gE , the shape operator SE and the transversal connection form ァE on 
λ;J by 

TE = d伊(止)一 1X(dcp(E))

Thus , we obtain 

Y

E

 

X

X

 

D
-
D
 

DfY + gE(X , Y)E 
SE(X) + TE(X)E for X , Y ε X(M) 

(3.2) 

(3.3) 

DxE ニ -D x ( dcp ( E) -1 E) 
-X(dcp(左)一 1)止 -d伊(E)-lDxE 

dcp(E(2 X(dψ(企))Ë -dcp(企)-l{SE(X)+ TE(X)E} 

-d伊(Ë)-lSE(X).We ~enote by (M , D , g) the statistical s山manifold of (n, D , g) , considering 
(n, D , g) a statistical manifold. Then the next holds 

Hence SE = -dcp(ﾋ)-lSE and TE = 0 hold 口

Lemma 3.3. A stαtisticαl submanifold (M , D , g) coincides with αmαη2-
fold (M , DE , gE) induced by αηα:ffine immersion (x , E)) i. e.) 

D = DE , 9 = gE on ルf

Proof. Let DE be the i吋uced a伍ne connection , gE the fundamental 
form , SE the shape operator, and TE the transversal connection form , for ﾏ) 
and E. Since Ep and Ep are vertical to 九M for p ε M with respect to 9, 
D = DE = DE holds. From (3.2) and DxY = D~Y + gË(X , Y)E , we have 

It is known that the structure induced by a non-degenerate equiaffine 
immersion is the statistical manifold structure. Conversely, Kurose proved 
the next proposition. 

Proposition 3.5. ([K2]) A simply connected stαtiぬcal manifold cαη be 

realized in A附1 by αηoη-degenerαte eqωαffine immersion if and only ザ it is 
1-conformally βαt. Such αη immersion is uniquely determined up to αffine 
trαηsformαtions of A n+l 

gE = -dcp(止)-lgE (3.4) Proposition 3.5 can be proved by projective fiatness of the dual connection 

of a given connection ([DNV]). Finally, let us show Theorem 3.1 
By [HS] we know that 

口

Proof of Theorem 3.1. By Lemma 3.4 and Proposition 3.5 a statistiｭ
cal manifold (]I;f, DE, gE) is l-conformally fiat. Thus Theorem 3.1 holds by 
Lemma 3.3. 口

gE = -dcp(企)-lg ・

From (3.4) and (3.5) 9 = gE holds 

(3.5) 
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3.1.3 Realization of 1-conformal fiatness 

Let (N， マう h) be a 1-conformally fiat statistical manifold of dim n 三 2 with 
a Riemannian metric h. By Proposiもion 3.5 (N, \7, h) can be realized by a 
non-degenerate equia伍ne immersion. We denote by (x , E) a non-degenerate 
equiaffine immersion into A n+l which realizes (Nヲマ ， h). Then we can imｭ
merse (N， マぅ九) into a fiat statistical manifold as the next lemma 

Lemma 3.6. For α simply connected opeη subset U of N and a small 
ε> 0 ， ωe define α function 伊 on U = Uqεu{x(q) EB (ーム ε) . Eq} by 

ψ(p) = e-t for p = x(po) +tEpo' Po εUぅ tε(ーム ε). 

Theη (U， \7, h) is α stαtistical submαnifold of αβαt stαtiめcαlmαηifold

(U ， D う Dd伊)
Proof. For X , Y ε X(U) ， we have 

and 

d伊(X) = 0, dcp(E) = -1 , 

(Dxdcp)(Y) X(dcp(Y)) -dψ(DxY) 

-dcp(マxY + 九(Xう Y)E)

-h(X, Y)dψ(E) 

h(X, Y) 

Thus, (U， マ ， h) is a submanifold of (U , D , Ddψ) 

We also denote by E a vector 五eld on U whose value is Epo 
x(po) + tEpo ・ On x(U) we have 

E(dψ(E)) ニ 1 ， DEE = 0, 

and 

(DEdψ)(E) = E(dcp(E)) -dψ(DEE) = 1. 

at p = 

Thus (Dd伊)x(po) is positive definite for Po ε U. From continuity of a function 

cp , Ddcp is a Riemannian metric on U for a small ε. Hence (U , D , Ddψ) is a 
fiat statistical manifold. 口

3 . 2 αーconformal equivalence of level surfaces 

In this section, we treat α-connections of fiat statistical manifolds. We conｭ
siderα-conformal equivalence of induced connections on level surfaces by the 

α-connections . Moreover we give a procedure to realize a statistical manifold , 
which isα-conformally equivalent to a manifold with anα-connection う as a 
statistical submanifold. 
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3.2.1αーconnections on statistical manifolds 

Let N be a manifold with a dually fiat structure (マ?マ13 九). For a real number 
α ， an a伍ne connection defined by 

マ(α):=it2マ+午マl

is called anα-connection of (N， マうん). The triple (N， マ(α) ぅ九) is also a statisｭ
tical manifold , and V(一α) the dual connection of \7 (α) The 1-connection, the 
( -1 )-connection and the O-connection coincide with マ，マ， and Levi-Civita 

connection of (N, h) , respectively. An α-connection is not always fiat ([A]). 

3.2.2α-connections and α-conformal equivalence 

We relate anα-connection of a fiat statistical manifold with anα-conformal 
equivalence of its statistical submanifold. The next Lemma holds. 

Lemma 3.7. Let (N, \7, h) be αβαt stαtistical manifold, and (M, D , g) α 

l-conformally βαt statistical sωmanifold realized iη (Nうマ ， h). Let Mo be α 
simply connected open set of M. lf (Mo , D , g) is l-conformally equivαlent to α 

βαt stαtistical manifold (Mo , D, g) , (Mo, D(α) ， g) is α-coηformαlly equivαlent 
to (Mo ヲ D(α)?5)pωhere D(α ) the induced connectioηoη Mo by aηα-connectioη 
マ(α) of (N， マ3h)3md b(α)αηα-coηηection of (Mo , D, g) 
proof. Let D' and D' be the dual connection of D and D , respectively. 
Since D(α) is ind uced by マ(α) ヲ

1+α 
D(α)=-TD+-TD1on Mo (3.7) 

holds. For l-(resp. (-l)-)conformal equivalence of (D ,g) and (D ,g) (resp 
of (D' , g) and (D' , g)) , there exists a function ゆ on Mo such that 

g(X, Y) 
g(DxYう Z)

g(D'xY, Z) 

eφg(X， Y) , (3.8) 

g(DxY, Z) -dゆ (Z)g(X ， Y) , and (3.9) 

g(D~ Y , Z) + dcþ(X)g(Y, Z) + dゆ(Y)g(X ，Z) (3.10) 

for X , Y, Z ε X(Mo). From (3.9) and (3.10) , it follows that 

1+α= 1-α -
g((~ ~ ~ D + TD')xY, Z) 

1+α1-α" _ _ _, 1 +α 
g((-~ ~D+TD')xY， Z)- -~ -dゆ(Z)g(X，Y) 

+子同州



14 CHAPTER 3. DUALISTIC STRUCTURES ON LEVEL SURFACES 

By (3.7) and the definition of anα-connection of (Mo ぅ D ， g) ，

(",)_. _, ,_(",L. _, 1 +α 
g(DYjy， Z)=g(DYJYFZ)--fdゆ(Z)g(X ，Y) 

+L22{州)山

holds. This implies Lemma 3.7. Cコ

3.2.3 Realization of a-equivalence 

We call (N, '\1， 九) a statistical manifold with anα-connection if there exists a 
fiat statistical manifold (N， マ ，h) such that マ coincides with anα-connection 

of (N, '\1, h). In this section ぅ we give a procedure to realize a statistical 
manifold う which isα-conformally equivalent to a statistical manifold with an 

α-connection ， in another statistical manifold as a statistical submanifold of 
codimension one. 

For a statistical manifold which isα-conformally equivalent to a statistical 
manifold with anα-connection う we obtain the next theorem. 

Theorem 3.8. A stαtistical mani]old 0] dim n 三 2ωith α Riemαηη叩η

metric} ωhich is α-coηformally equivalent to α stαtistical mani]old with αη 

α-coηηection ]or η。η-zero αεR} cαη be locαlly realized αsα submαni]old 0] 
α stαtistical mαnifold 0] dim(η+ 1)ωth αηα-coηηectzoη. 

For the proof of Theorem 3.8, we show the next lemma. 

Lemma 3.9. For noルzero αεR} let (M , D(α) ， g) be αηα-con]ormαlly 
equzvαlent statisticαl mani]old to (M, [J(α) ， g) ， ωheθT陀e tJ(Q例α吋) is αηα-cωOηηect“zon η 

0]αけβ山

]or αηαアbitr問αT旬y ß 巴 R， ωhere DLC the Levi-Civitα connection 0] (M , g) 
Then (M , D(ß) ヲ g) is ß-cor，ρrmαlly eqωυαlent to (Mヲ [J (ß) ぅ g). 
proof. First, we show that (M , D LC , g) is O-confor町刈ly equivalent to 

(M , [J(O) , g). Recall that the O-connection [J(O) is the Levi-Ci吋aconnection 
Setting by D(α)1 the dual connection of D(α) ， we have (-α)-conformal equivｭ
alence of (M, D(α )1 ぅ g) and (M, Ï)(一 α) ，g) from a fact described in Subsection 
3.2.1. Thus we obtain that 

1 = 1_ ¥ 1 g([J~)y， Z) ニ g( (~[J(α)+-D(ーα))xY, Z) 
2 . 2 

か(D';)Y，Z) - 午ω(Z)g(X ，Y) 

3.2.α-CONFORlvIAL EQUIVALENCE OF LEVEL SURFACES 

午{ ω州川川(伏閃附川X幻均)g
+吋g岬Fγμ川Y，口問'， Z刈Z幻) 一122 ゅ( 川 , Y) 

+lt2{ゆ川Y，Z) + dゆ(Y)g(X ，Z)} } 

ペD(hjD(α)fMZ)-jゅ(Z)g川)

→{尚(X)g川十ω(Y)g(X，Z)} 

同CY， Z) 一初(Z)gm)+j{ゆ川

15 

for a certain function ゆ on Mo c M. This implies O-conformal equivalence 
of (M , DLc , g) and (M , ﾏ)(O) , g) 

By definitions of [J(α) and Ï) (ß) , [J(゚) = ﾏ)(O) + (!_ (tJ(α) -ﾏ)(O)) holds. Hence 
α 

it follows that 

g(D~)Y， Z) = g((DLC 十色 (D(Iα:) -DLC))x Y, Z) 
a 

竺ニ立g(D~Cy， Z) キ色g(D同Y、 Z)
αα 

三72{以内)y， Z)+jω(Z)g(X ，Y) 

-jw川Y， Z) + ゆ(Y)g(X ，Z)}} 

4{g附~Z)+ 午ゆ(Z)g(X，Y) 

一平{仰)g(Y，Z) + ゆ(Y)g(X ， Z)}} 

g( (j)(叫;附-州、M勾、半ミザdCÞ(Z)g川、

一千{ゆlcþ(X)g(Y， Z) ゆlcþC山Z

州)Y， Z) 十干dや Z'河川
1 -I 

--TW(X)g(Y， Z)+ ゆ(Y)g(X ， Z)} 

This implies Lemma 3.9. 

Finally, we shall prove Theorem 3.8. 

口
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proof of Theorem 3.8. We use same notations in Lemma 3.9. Let M' 

be a manifold of dim n ど 2 ， and g, g Riemannian metrices. By Lemma 
3.9, (M , D(l) , g) is 1-conformally equivalent to a fiat statistical manifold 
(M, j)(l)) g). By Theorem 3.2, (Mぅ D(l) ， g) can be locally realized as a subｭ
manifold of a fiat statistical manifold of dim(η+ 1). Suppose that (Mo , D(l) , g) 
is realized in a fiat statistical manifold (N， マ?九) for a simply connected open 

set Mo C A1. Let D~~~ be the induced connection on Mo by anαーconn似lOn
マ(α) of (N， マ ， h). By Lemma 3.7, (Mぅ D;aJ)isα-conformally equivaｭ
lent to (M, j)(α)J)Moreover?D;:;=DLC+α (D(l) -DLC) holds by (3.7) 
Considering the de白ütion of D(l) , we have D(α) = DLC + α(D(l) 一 DLC )
Thus D~~~ coincides with D(α) Hence (M, D(α) ， g) , which is αーconformally
equivalent to a statistical manifold with anα-connection ， can be realized in 

(N， マ(α) ，h) as a submanifold of codimension one 口

Chapter 4 

Divergences of statistical 

rnanifolds 

4.1 Foliations by level surfaces 

In this section, we describe dual-projective fiatness of an affine connection D 
on a level surface M and projectively fiatness of the dual-connection D' of 
D. Moreover , we construct 七he orthogonal foliations by level surfaces. 

4.1.1 Dual-projectively flat connections 

Let (N, h) be a pseudo-Riemannian manifold. Torsion free a缶ne connections 

V and V on N are projectively equivalent if there exists a 1-form κsuch that 

マxy = マxy + κ(X)y + κ(y)X 

for X , Yε X(N). An a伍ne connection V is called projectively fiat if ¥1 is 
locally projectively equivalent to a fiat af五ne connection. Torsion free affine 

connections V and マ on N are dual-projectively equivalent if there exists a 

1-form κsuch that 

h(マxY，Z) = h(マxY， Z) - κ(Z) 九(X ，Y) 

for X , Y, Z ε X (N). An affine connection マ is called dual-projectively fiat 

if マ is locally dual-projectively equivalent to a fiat affine connection ([1]). 

Recall that a statistical manifold (N， マ ， h) is 1-conformally fiat if and 

only if the dual statistical manifold (N， マ" h) is ( -1 )-conforπ叫ly fiat. Moreｭ
over , Kurose showed that , by Proposition 9.1 in [NSi], a statistical manifold 
(N， マ" h) is (-1 )-conformally fiat if and only if ¥1' is a projectively fiat conョ

nection with symmetric Ricci tensor, and that 

17 
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Proposition 4.1. ([K2])A statistical mαnifold (N， マ，h) is 1-coηformally 
βαt if αηd only ザ the dual connection 'ﾇ' is α projectively fiα t connection ωith 
symmetric Ricci tensor. 

On projective fl.atness , Ivanov described the next proposition in Section 
2 of [1]. 

Proposition 4.2. ([I])A stα tiぬcal manifold (N， マ，h) is 1-coηformally 
βαt if and only if 'ﾇ is α dual-projectively fiαt connection with symmetric 
Ricci teηsor. 

For a level surface of a Hessian domain , we obtain the next corollary of 
Theorem 3.1 by Proposition 4.1 and 4.2. 

Corollary 4.3. Let M be α simply connected ルdimeηs20ηαl level surflαce 
of <p on αη(η + l)-dimensionαl Hessiαη domαin (D, D ， タ= Dd<p) ωith α 
Riemαnntαn metric ιαηd suppose thαt 九三 2. Let (M , D , g) be α stαt凶tcαJ

submαnífolds of (n, D ぅ g) αnd D' the dual connection of D. Then
J 
D is α 

dual-prりectively flat connection with symmetr兤 Ricci tensor αnd D' is α 

projectively βαt conηectioηωith symmetァic Ricci teηsor. 

4.1.2 Foliations by level surfaces 

VVe denote by :F and :Fム afoliation on Do de五ned by level surfaces of 伊 and a 
foliation by the gradient fl.ow Eう respectively. 1n this section we relate these 

orthogonal f?liations with the dualistic structure (D , D' , g) 
Let M ,1\1 be tW9 leaves of :F, and (1I1， D ， g) ，(1I1 ぅ D ，g) the statis七ical

s山manifolds of (n, D , g). We denote by E the vector 五eld on no defined by 
(3.1) , and by ", Z the restriction of Z to M , M , respectively. Non-degenerate 
a節目 immersions (x , E) , (久 E) realize (M ,D ,g) , (M ,D ,g) in An+ l, where 
x , i are canonical immersions of M , M into n, respectively. 
Then i is said もo be the conormal immersion for x. 1n fact , denoting by 

(α ， b) a pairing ofαεA~+l and b εAπ+1?we have 

\[, (p) , Yp) = 0 for ち ε 九M， \"(p) , Ep) = 1 

for p ε M ， considering 九An+1 with A n+1. Moreover, " satisfies that 

(九 (Y) ，E) = 0, ¥L* (Y ), X) = -g(Y, X) 

and 

D;';以Y)= はD'x Y) -g'(X , Y) [, 
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for X , Y ε X(M) ， where D' is the dual connection of D and g' the second 
fundamental form. Since g is non-degenerate , an immersion [, : M → A~+l 一

{O} is a centro-affine hypersurface. Similarly a conormal immersion Z : 1\ケ→
A~+l -{O} for i is also a cent時affine hypersu巾ce ([NP]). 
We set (計 )(p) = e入(p) for p ε M and the function 入 on M such that 

eﾀ(p) [， (p) ε Z(必). vVe define a mapping 7f : M →必 by

Z0 7f =e入/.，.

We denote by D' an a伍ne connection on M defined by 

む(D'x Y) 二 DL(X)7「本 (Y) for X , Y ξ X(M) ， 

and by 9 a Riemannian metric on M such that 

g(X , Y) = eÀg(X , Y) 

Theorem 4.4. For αffiη e connections D' , D' on η MJ ωωe hαve 
(ωiリ) D' α η d D' α ア陀epアrOJ戸;セ白e白cti1ωU ε句quωtυ叩αle ηntι . 
(ii) (M , D' , g) and (M , D' , g) α陀 ( -l)-coηformally equivalent 

(4.1) 

Proof. By definition of 7f, [y is the connection on Nf induced by eÀ
[, 

Since D' is induced by [" from a property of centro-affi.ne hypersurfaces , it 
follows (cf.[NP]) that 

D'xY = D'xY + d入 (X)Y+ d入 (Y)X. (4.2) 

Thus (i) holds 

Statistical manifolds (M , D' , gω) and (M , D' , 9引) a訂re b句y d白e五nitio∞n (ト一 1り)-
C∞O 口ぱfおor口m口m凶l砂y equivalent if they satisfy (μ4.1け) and (μ4.2幻). Thus (ii) holds 口

We denote by D an affi.ne connection on M defined by 

ゎ(DxY) = D?T・ (X) 7f*(Y) for X， Y ε X(M). 

From duality of D and D' , D is もhe d ual connection of D' on ]1イ Then the 

next theorem holds. 

Theorem 4.5. For affine connections D , D on MJ ωe hαve 

(i) D αηdD αre dual-projectively equivαlent 
(ii) (AI ,D ,g) and (M， D ， g) αre 1-conformally eq'l比四lent



20 CHAPTER 4. DIVERGENCES OF STATISTICAL MANIFOLDS 

Proof. We have 

g(DxY, Z) = g(DxY, Z) -d入 (Z)g(X ，Y) (4.3) 

which is equivalent (4.2) ([K2]). Affine connections D and tJ are by defi叫ion
dual-projectively equivalent if g(DxY, Z) = g(DxY, Z) - κ(Z)g(X ， Y) for 
some 1-form κ([1]). Thus (i) holds 
Statistical manifolds (M , D , g) and (lvI , D , g) are 1-conformally equivalent 
if they satisfy (4.1) and (4.3). Thus (ii) holds 口

For :Fヘ we have: 

Proposition 4.6. Every leaf of the foliαtioηFム 2S α D'-geodesic 0η .0 0 
uηder α certαzn pαrametrizαtioη. 

Proof. It su伍ces to see that any integral curve of E is a D'-geodesic. To 
see it, we consider the fiow 

(区立、
dt' 'dt J 

(4.4) 

寸jθψ ーー θθ
The i-th coordinate of E is glJ :_~.;， where gij = g(一一一) and (gtJ) is θxj ' .. H'-L'- ::fIJ -::f ¥ 蛉i ' 蛉j 

ー・ ~θ24フ Iθψ 
the inverse matrix of (gij). Since gij = 一一一-: and x 一一一勺 we have 

IJ ・ tJ θxiåxj '-"LL'-L ""i -δxt 

gij戸=一記 The白I山伽伽州Tý(4.4) is 山e白I
dt 

dx~ , 
dt -t  

Thus , for an initial point x' (0) = {x~ (0) , • • • , X~+l (O)}ε .00 ， the in teg凶
curve of the 日ow (4.4) is described by 

x~(t) = etx~(O). 

Hence the integral curve of E is a straight line with respect to an a白ne

coordinate {x~ ， • • . , X~+l}' and the image of the integ凶 curve is a D' -geodesic 
on .00 under a certain parametrization . 口

1n [A] orthogonal foliations is constructed only by fiat Sl山nanifolds ， and 

we extended to the case of 1-conformally fiat statistical submanifolds. From 

the proof of Proposition 4.6 , we can obtain a leaf of :F上 by a dilation of a 
position vector of a point in .0* = Z(D). 

Corollary 4.7. For p εLε :F1. ωe have 

Z(L) = {etZ(p) I t εR} 内 Q十
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4.2 Decomposition of divergences 

We give decomposition of divergences of fiat statistical manifolds by a proｭ

cedure di百'erent from Nagaoka and Amari's one. 

An original reason for our investigation of divergences is that divergences 

are canonical contrast functions , which generate statistical manifolds. On 
contrast functions and minimum contrast leaves , see [Eg][Mm]. Divergences 
Oぱf c∞onflおor口m町m叫ly一p戸ro吋je伐ctiv刊ely 白a抗t statistical mani凶iflお01凶ds are described i凶n [Mz] l 
8h山ima studied the Riemannian foliations on Hessian domains deeply ([82]) 

4.2.1 Divergences and orthogonal foliations 

First we de五ne divergences of statistical manifolds. 

Definition 4.8. ([A]) The divergence p of a fiat statistical manifold 
(.0, D , g) is defined by 

p(p, q) = 伊(p) + ザ (~(q)) + 乞ピ(p)x:(q) for p, q E .0, 

where cpホ is the Legendre transform ofψ 

Definition 4.9. ([K2]) Let (N， マ，h) be a 1-conformally fiat statistical 
manifold realized by a non-degenerate affine immersion (υ? と) into Aπ+13and 
ωthe conormal immersion for v. Then the divergence Pconf of (N， マ ， h) is 
defined by 

ρc吋 (p ， q) = (ω (q) ， v(p) -v(q)) for p, q εN 

The definition of Pc吋 is independent of the choice of a realization of (N , V , h) 

Let N be a manifold , and P a function on NxN. For X11 . . . ， Xi ， 九" yj E 
X(N) , we define a function p[X1 ... Xi I Y1 ... Yj] on N by 

p[X1" , X i I Y1 ・・・ Yj] = (X1, 0) ・・・ (Xi ， 0)(0, Y1 ) ・・・ (0，巧 )p (p , p) f 0 r p ε N. 

We call ρa contrast function if 

(i) p vanishes on the diagonalset of N x N , 

(ii)ρ[XI]= ρ[ IX] = 0, and 

(iii) h is a pseudo-Riemannian metric on N , set as 九 (X ，Y) = 一ρ[XIY]' X , Y ξ 
X(N) 
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For instance, the square of a Riemannian metric function is a contrast funcｭ
tion ([Eg]). 
It is known that an arbitrary statistical manifold is induced by a contrast 
function ([Mm]). These divergences are contrast functions of a ftat statistical 

manifold and of a 1-conformally ftat statistical manifold. 

For M ε F， we denote by Pconf the divergence of (lVI , D , g) induced 
by a non-degenerate equia伍ne immersion (x , E) by Definition 4.9. Since 
(M , D , g) is a submanifold of (0." D , 9 = Ddrp) , we can define the divergence 
Psub of (M , D , g) by the restriction of the divergence of (0., D , g) defined by 
De白山ion 4.8 , i.e. , Psub(P , q) = p(p , q). Then we obtain 

Theorem 4.10. For α 1-conformally fiαt statisticαl sωmanifold (lVI , D , g) 
of (0., D ， の ， two divergences Pc吋仰dρsub coincide eαch other 

For p εD and q ξ M ， we set p(p, q) = (í(q) , x(p) -x(q)) , where � is 七he

conormal immersion for x. The function p(p ， ・) is called the a缶ne distance 
function for (x , E) from p. For the proof of Theorem 4.10 , we describe the 
divergence P by the a伍ne distance function 戸.

Lemma 4.11. we hωe 

p(p, q) = t.p (p) 一伊(q) + 戸(p ，q) for p ε 0.， q ε M. 

Proof. Since t.p*(�(q)) = -L xi(q)X~(q) -t.p(q) , it follows that 

p(p , q) = t.p (p) 一 ψ (q) + L x~(q)(ピ (p) _ xt(q)) (4.5) 

Equations 乞 x~(q)(XZ(p) -XZ(q)) = (í(q) , x(p) -x(q)) = 戸(p ，q) imply Lemma 

4.11. 口

Proof of Theorem 4.10. For p, q ε M ， ψ (p) = 伊 (q) holds. Since 

Psub(P , q) = p(p , q) and Pconf(P , q) = 戸(p ， q) ， by Lemma 4.11 we have 

Pω(p ， q) = Pconj(P , q). 

口

Let us denote both Psub and Pconj by the same notation p. 
We can apply Lemma 4.11 to a point q ε 0.0 ・ For a point r ε 0. such 

that dt.pr = 0, x~ (γ) = 0 holds , and thus we have ザ (í(ァ)) = -t.p(ァ) by the 
definition of the Legendre transform. Hence we have by Definition 4.8: 
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Corollary 4.12. For p, r ε 0. such thα t dt.pr = 0，山e hαυe 

P (p , r) = rp (p) -t.p ( ァ)

4.2.2 Projection by the minimum divergence 

We shall describe the decomposition of the divergence of a ftat statistical 
manifold (D , ÏJ , g) with respect to orthogonal foliations F and F上.

Theorem 4.13. Let (M , D , g) be α 1-coηformally βαt statisticαl submanー

ザold of αη(η + l)-dimensionαl Hessiαη domαtη ( 0.， D , 9 = Ddcp) ， ωhere M 
zs αη n-dimensioηαl level surface of 伊Jαnd let p, q ε M， r E 0.,. 1f αtαηgent 

vector αt q, of the D' -geodesic through q αηd r , is vertical to 九Mωith respect 

to g ， 切e hαω 

p(p, r) = μP (p , q) + P ( q, r) , ( 4.6) 

whe内 ï is the gradient mαpping of t.p defined by (1) iη section 2 αηd ï(ァ) = 

μï( q) ， μεR 

Proof. Recall that � is the restriction of � to M , and using x~ = xi 0 � and 
Definition 4.8 , we have 

ρ(p ， q) + p(q , r) 
t.p (p) -t.p (ァ)+乞(x~ (γ) -x~( q)) (ピ(q) _ X t (p)) + 乞 x~(r) (ピ (p) ーがか))

rp (p) -t.p ( r) + (� ( ァ) -� ( q ) , x ( q) -x (p)) + (� ( r ) , x (p) -x (ァ))

By Lemma 4.11 , p(p , r) = 伊(p) - 伊 (r) + (ï(ァ)，x(p) -x(ァ)) holds. Thus we 

p(p ， ア) = P (p , q) + P ( q, r) + (Z ( r) -Z ( q ) , x (p) -x ( q) ) . 

From Corollary 4.7 the trajectory Cε 0.， of the D' -geodesic , through q, r and 
vertical to TqM , satisfies that 

{etZ(q) I t εR} n 0.* c Z(C). 

Thus there exists a real number μsuch that Z( r) = μZ(q) . Since p(p , q) = 
(Z(q) , x(p) -x(q)) , we obtain 

(Z ( r) -Z ( q ) , x (p) -x ( q )) = (μ - l)p(p , q). 
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Thus , we obta匤 Theorem 4.13. 口

By th﨎 decomposit卲n we can obta匤 the project卲n of a point 匤 0
0 
to 

Mε F along a leaf of Fよ.

Corollary 4.14. Let lvl be αηαrbitrary leα:f 01 F and r in 00 = {p ε 
o I dcpp =1= O}. Then the unique mirη~zrrけmz
t仇ηt白θT内se白ct“w叩η po仇tηnt 0ザIf LムTα仰ηd lvI ， ωhere Lr is the leα:f 01 F J.. including r. 
Proof. Let q be the intersection of Lr and λ1. S匤ce both q and r are in 
Lr' there exists a positive number μwhích sat﨎fies (4.6). From positivity of 
divergences the point q is the unique minim坥er of a function p( ・， γ).口

Vje denote by p' the divergence of the dual statistical manifold (0, jう '， g) of 
(0 , D , g). Then p(p , q) = p'(q,p) holds. Theぱore ， on the same assumption 
of Theorem 4.13 , it follows that 

p' ( r , p) = p' ( r , q) + μρ'(q ， p) 

Recalling that divergences are contrast functions , and virtue of Corollary 
4.14 , we can call leaves of Fム minimum contrast leaves with respect to the 
dual divergence ρ， ([Eg]). 

4.3 Gradient fl.ow and divergences 

We give examples of the gradient fiow along geodesics relative to the dual 
connection. 

On dynamical systems constrained to fiat submanifolds , Fujiwara and 
Amari showed the following theorem and its applications to engineering. 

Theorem 4.15.([FA ,Theorem 2]) Le~ N = {p( I と ε 三 cRπ} be α 
subma'!_Lifo_ld _embedded in αβαtmαnifold N with respect to a duαlistic strucｭ
t:y,re (V，マペ h) ， αηd (V ，マ" h L the induced dωlistic structure 0η N. 1f N is 
マーαutopαrallel， then for r 巴 N the gr，αdient fioω 

dE，1 θ 
一二一九13-p(P53T)dt -8E, j r-¥r-� 

coηverges to α unique stαtioηαry point independent of the initiαl poiηtαloηg 

α マ， -geodesic， ωhere f, = ( E, 1, . . . ，とη) is α マーαがηe coordinαte such thαt 
δθ 

Vx二j = 0 for X ε X(N) ， hij = h(一一L[九ìj ] = [hij ]-l , and p is the 九 θf，i' θf，j J' L'v J - l'V1) 
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divergence of (N ， マ ， h). Then the stαtionary point q ε 111 is the unique one 

such that 

ρ (p ， r) = p(p , q) + P ( q, r). 

A マ-autoparallel statistical submanifold of a fiat statistical manifold 

(N , V , h) is fi~t ， _a~d its divergence coincides with the restriction of the diｭ
vergence of (N, V , h) ([A]). These facts imply Theorem 4.15 
We shall investigate a dynamical system constra匤ed to a 1-conformally 

fiat statistical S1.山nanifolds. Let (M , D , g) be a 1-conformally fiat statistical 
su bmanifold of an (η+ l)-dimensional Hessian domain (0, D う 9 = Ddψ) , 
where 111 is anη-dimensional level surface of cp. For an a伍ne coordinate 

system {x 1,..., Xη+1} on 0 , we consider {X1 ， ・ ， Xれ} an a伍ne coordinate 

system on M + {p ε M I X~+l (p) > O}. Let r be a fixed point such 
もhat x~(r) = 0 for i = 1 ，・・" n and x~十l(γ) > O. We consider p(- ， ア) as a 
function on M+ of variables x 1 ， ・. . ,xn and denoもe by p(Px , r) its value at 

θθ 
pε M+ ， where p is the divergence of (0 う D ，g). Vle set gij = g(一一) for 

JθXi' θx) 

i , j = 1γ ・ 1ηand (gij) = (gij)-1 on M+ , and then we obtain: 

Proposition 4.16. The 9ァαdient fioω 

22f=-gij主ρ(Px ，r) 
dt '" 8 

(4.7) 

coηverges to the intersection of L，.. αηd M , independent of the initiαl point 
following α D' -geodesic， ωhere Lr is the leaf of Fよ including r 
Proof. Let q be the intersection of L ,.. and M , and μ もhe positive number 

such that Z(r) ニ μt:(q). By Theorem 4)3, p(p , r) = μp(p ， q) + p(q , r) holds. 
Thus the gradient fiow (4.7) is equivalent to 

空 -μgij主p(Px ，q) 
dt r J 8x 

(4.8) 

11+1 

Since p(Px , q) ニエバ(q)(ど (p) -x1(q)) and x~(q) ニ o for i - 1 ，"'， η ， we 
�=l  

have 

~ ~~n+1 

5ρ(Px ， q (4.9) 

considering x九+1 a function of variables x l，. ・. , Xn. The Riemannian metｭ
ric 9 is the fundamental form for the affine immersion (x , E) which realize 

L_.-ｭ

.~司 .i:.... y.. 門
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θθ 
gij = (i(-) , D θ 一) for '=' .' '=' .;ε X(l\1+). 
J \ ~ \ /l石τθxj I ~~~ 8Xi' θxJ 

is projectively ftat by Corollary 4.3. The center for the projective transform 

is the origin with respect to a coordinate system {x~ ， ・・・ ， x~} by the proof 
of Theorem 4.4. Thus the trajectory of the fiow (4.11) becomes a geodesics 

with respect to D'. Hence the fiow (4.7) converges to q independent of the 
initial point following a D'-geodesic. 口

(Jvf , D , g). Since i is a conormal immersion for x , we have 

九月2~n+1

Using x~ = xi 0 Z and D_Q 二一二 (0 ・・・。ニニー)， we obtain 
五7θxj ¥ ~ ， , ~， δxi 8xj J 

'
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( 4.10) 

From (4.9) and (4.10) , the ftow (4.8) is described by 

fθ2Xn+l dxi . ， 8xπ+1 
一一一一-叫+l(q)~~_ ，;n+lθx1θxJ dt θxj ・

~~n+1 

Setting Xi = ヰア， we have 
axゐ

dX. 
ーユ=一仰い1(q) (X~+l)-l Xi ・
dt 

(4.11 ) 

Since the function X~+1 converges to X~+l (q) as Xl • 0, i.e. , X i • o for 
2 - 1 ，"'， ηand X~+l (p) > 0, Xi is monotone decreasing as t →+∞ Thus 

dX. 
the ftow (4.11) is asymptotic to the ftow ー-"μXi ， i.e ., Xi = Ceーペ

dt 
where C is a constant number, as t →+∞ Hence the fiow (4.11) converges 

to q, which satisfies that x~(q) = 0 for i = 1, . . . ，民 along a straight line with 
同spect to a coordinate system {X 1 , . . . , Xn}. From a property of normal 
vectors of level surfaces of cp and Xn+1 , there exists a positive number Vp for 
pελグ十 such that 

θcp 8伊 θxn+l 8xπ+1 
p(- ・ ・ ・一言)p = (一一・・・て一)

θXl' , 8中 8Xl' '8x川

Then we have 

::l，.，..η十 1 ::l ""η十 1

-Vμ'1' . . . ， x~)p -(ヰア， ，ヰ~)p
ax ‘ ax山

Thus the ftow (4.11) converges to q along a straight line with respect to a 

coordinate system {x~ ， ・・ ・ ， x~} . In other words , the t町 ectory of the fiow 
is on the intersection of M and a plane including the origin with respect 
to a coordinate system {X'1' . . . , x~}. It is known that the intersection of a 
projectively fiat surface and a plane including the center for the projective 

transform is a pseudo-geodesics of the surface ([Ei]). The manifold (M , D' , g) 



Chapter 5 

Dualistic strustures on 

syrnrnetric cones 

5.1 Jordan algebras and dual connections 

In this section, we relate dual connections on symmetric cones with Jordan 
algebras. First we give foundations of Jordan algebras and symmetric cones. 

5.1.1 Jordan algebras 

A vector space V is called a Jordan algebra if a product * defined on V 
satis自es

x * y - y * x , 
x*(x2*y) = x2*(x*y) 

for all x , y ε V by setting x2 ニ Z 本 x. Let V be an n-dimensional J ordan 
algebra over R with an identity elemenも e ， i.e. , x * e = e * x = x. Denoting by 
m(x) the degree of the minimal polynomial of x ε V ， the rank 0ぱfV i店s defi白ned

by ア= max{m(μωZ吋) I x ε V}. An element x ε V is said to be invertible if 
there exists y ε R[x] such that x 本 y = e, where R[X] is polynomials of X 
over R. Since R[x] is an associative algeb叫 y is unique , called the inverse 
of x and denoted by x-1 = ν 
For x in V , let L(x) and P(x) be endomorphisms of V defined by 

L(x)ν = x * y ， νεV 

P(x) = 2L(x)2 -L(x2) 

Following results , about P the quadratic representation of V , are known. 

29 
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Proposition 5.1. ([FK]) (i) Aη element x is invertible ザ αηd only ザ
P(x) is in閃rtible} αηd

P(x)x-1 = x , 
p(X)-l = P(x-1) 

(ii) If x αηdy α問 invertible} 80 is P(x)y αηd 

(P(X)y)-l = P(x-1 )y-l. 

(iii) For αllx αηd y} 

P(P(y)x) ニ P(y)P(x)P(y)

For each x ε V we identify a tangent space Tx V with V as the following 

九V3Lui(37)z~MV? どい) = ut εR 
7UU  

where {x l,..., Xn} is the canonical coordinate on V. Let Vx-1 be the d出iι
ferer 
i山ng the identification , we consider Vx-1 maps u ζ V :::: Tx V '"'-' TxI to 
Du.X- 1 ε V. Let VP(x) and VP(X)-l be the differentials at x of maps 
yEV 叶 P(y) εEηd(V) and y εZ 吋 P(y)-l ε Er叫V) ， respectively 
In the same way, we consider VP(x) , VP(x) 一 1 map u E V to V u. P(x) , 
Vu.P (X)-l ε End(V) ， respectively 

Proposition 5.2. The differentials are giveη by 
(i) Vu.X-1 = _P(X)-lU , 
(ii) Vu.P(x) = P(x + u) -P(x) -P(u) = 2P(x , u) , 
where P(x , u) = L(x)L(u) + L(u)L(x) -L(x * u) , 
(iii) Vu.P(X)-l = _P(X)-l(Vu.P(X))P(X)-l. 
Proof. The proof of (i) , (ii) are given in [FK]. Di百érentiating both sides 
of P(x)P(X)-l = Id.(Id. is an identity map) , we obtain 

(Vu. P(x))P(x) 一 1+ P(x)Vu.P(X)-l = O. 

Thus , (iii) follows 口

Proposition 5.3. ([FK]) The next folloω: 

P(P(x)u , P(x)v) = P(x)P(u ， υ )P(x) 
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5.1.2 Symmetric cones associated with J ordan algeｭ

bras 

Let D be a open convex cone on a vector space V. We denote by G the 
identity component of the linear automorphism group of n. If G acts on n 
transitively, n is said to be homogeneous. The dual cone of D is de五ned by 

Q本 = {y E V* I (x ,y) > O ， Vx εD\{O}} ， 

where V本 is the dual vector space of V , ( , ) the pairing on V , n the closure 
of D. If D = D* by identification with V and V* , D is said to be self-dual. A 
cone n is called symmetric if it is homogeneous and self-dual 
A Jordan algebra V is said to be simple if there does not exist non-trivial 
ideal on it , and to be Euclidean (or formally real) if V has a positive definite 
symmetric associative bilinear form. Here a bilinear form ( , ) is called 
associative if (L(x)y , z) 二 (y ，L(x)z) for all x , y, z εV 
Through this section , let V be a simple Euclidean Jordan algebra and D 
be the symmetric cone associated with V , i.e. , D = {X2 I x ε I}. 
Let D be the canonical fiat a伍ne connection on V. We denote by 

{xt ， ス~} and D本 the dual affine coordinate system and the canonical 
f�t a伍ne connection on Vぺ respectively. The characteristic function of n is 

defined by 

ψ(れん e-(x ，y)dy 

γ 

where dy 﨎 the Euclidean measure on V淑. For ψ ニー log !.p， we define the 
n 

gradient mapping & from n to V* by 

定 δψ
x; 0 &二ーでーー• 

dxt 

The image of & corresponds w咜h D* :::: D. Thus & is the restrict卲n of the 
map x 片 x- 1 on n , and the differential 九 is described by _P(X)-1 = Vx-1 

at x εn from Proposition 5.2(i). A Riemannian metric g, defined on n by 

gx(仏 υ) = -((&*)xu , v) = (p(X)-IU , v) 

for x ε n ， u ， v ξV 竺 TxV (where ( , ) is the canon兤al inner product on V) , 
is pos咜ive definite and G-invariant. The map & is an involutive isometry on 

n with respect to g , which has unique fixed point e. 
We de日ne a f�t a伍ne connection D' on D by 

ら (D'x Y) = D~.(x) 九 (Y)
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for X , Y ε X(D) where X(D) is the set of tangent vector fie1ds on D. Here 
we consider that L maps D to D* c V本 and that D;. (X) 九 (Y) is the covariant 
derivative a10ng L induced by D*. 

Xg(Y, Z) = g(DxY, Z) + g(Y, D'x Z) , X , Y , Z ε X(O) 

θ(gjl 0 L- 1 )θ 
LJl(5(gzkOL一 1) 何可)

乞 gJZLrkgsli
k. l.r.s θxr ;::;θXs 

Eご gsl包 8

l.s δXi 8xs 

Remark 5.4. The connection D , D' are torsion-free , and the next f01-
lows: 

Then the trip1e (g , D , D') is called a dualistic structure. In addition , 

Dθ と =0一一
五τθxj

ハ
U

O

一M
J

D
 

Recall (gij)x = (P(x)一切り). Setルμ=(￡)Ahave

(g争)x =州DuP(X)-1ωス)=伊(x附(X)-lV ，w) 

Thus , it follows 

(伊D半芸ιゐ:;-)μ)x =戸= 乞 (例P町P(x)件ωZ刈机)
θν"，' υ…ωνJ ω凶州ε引{引( a~合3告T)九x "'.，(φ詰恭Tけ山)"，} z斗} 

θψf 
h加01凶dおs w泊h附e

with respect tωo D'. Hence D , D' are dually flat affine connections with respect 
to g. The dually flat structure has been studied a1so in terms of statistical 
app1ication [A] 

ロ

Remark 5.5. The Riemannian metric 9 is also given by 

~ 8'2ψ 
= )~一一ーでのt dxJ • Then the pair (D , g) is called Hessian structure and 

f:7δXiδxJ 

(0 , D, g) is a Hessian manifold ([Sl]) 

Corollary 5.7. For u ， υyωe hαve 

咋￡ド -(DuP (め)P(x)

Proof. It follows from Proposition 5.2(iii) and Lemma 5.6. ロ

We represent the connection D' , using the quadratic representation P. 
Through this paper , we do not distinguish TxD from V. 

(D云￡)z= 市)DuP(x) 一

Let us consider relations with the group G and the quadratic representaｭ

もion P. In fact , {P(x) I x εD} c G and D = {P (y) e I y εD} follow ([FK]) 
For y E D, x = y2 , P(ν) transfers an identity e to x. So P(ν) describes the 
map from TeD to TxD induced by the action of G. Therefore , ifαε TeD~ V 
and P(y)αε TxD ~ V , we can consider a 附 u P(y)αis a G-invariant 

yモQ

θA 
Lemma 5.6. Settiη9 u = ( �-;)υ=(よ)x ε V J wehαυε 一

θxi)X' V-δxJ 

vector field on D. 

θ θ θ ー乃
Proof. Since 九(一) - ð~" and �_? -一三...1 gik古?where gz3 

δz;θz;θx~ γ 

g(一一)， we have L* (石) = -L(gik 0 L一 1)会 Thus it follows θθθ 

8Xi' θxJ δz kδxk 

θ

一ωD 
ピ (D:.(会)ら(￡))
にl(DEK川崎平ω 。 L-1) 毛)

5.1.3 Dual connections and Jordan algebras 

First we show an example in the case of P D( k) , the cone of k by k real 
positive definite matrices. The cone P D(k) is associated with Sym(k) a 
Jordan algebra of k by k real symmeも ric matrices ([FK]). So we can introduce 

the dually flat structure (g , D , D') on PD(k) as Section 3. 
It is known that a concrete description of D' at x ε P D(k) is 

(D云￡)z=ィlV ー υ山
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wh…eSetu=(￡)uu=(￡Mvmmeasωrev…… and denote by uv usual matrix product with u and v ([O][OSA]). Note that 
the inverse as Jordan algebra coincide with usual matrix inverse ([FK]). Since 
2L(u)υ=ω + vu and P(y)u = yuy on Sym(k) , we obtain 

咋￡)z=-mu)(川-lU) * 刊-lV)) ， y2=X 
In general, we have 

Theorem 5.8. 。ηαcoηe (D , g, D , D') αssociαted ωith α simple Euｭ
clideaη Jordan α1gebra， the vαlue of the connection D' , which is pull-bαck 
from x to the identity e by the αction of G, is equivαlent to -2 times J ordαn 
product of pull-bαck vectors, thαt 2S, 

P(y) 一l(D斗主)x= -2(P(y) 一 lU)* (P(y) 一 lV) ， ν2=X 
oが oXJ

Proof. From Proposition 5.1 (iii) we have P(ゾ) = P(ν)2 or P(x) = P(ν)2 ， 
and P(x) 一 1 = P(y) -2. By Corollary 5.7 it follows 

P(y)叩与三)x ニ -P(νγl(Ð川刈)p(y)-2V
δ;ì dxJ 

Therefore we have only to show 

P(ν)-l('DuP(X))p(y)-l = 2L(P(ν)-lU) 

By Proposition 5.1 (i) (iii) and Proposition 5.2(ii) , we have 

P(y) -1 (ﾐuP(x) )P(ν)-1 

P(ν)-l(p(X + u) -P(x) -P(u))p(y)-l 
p(p(y-l)(X + u)) -p(p(y-l)X) -p(p(y-l)U) 

P(e + p(y-l)U) -P(ε) _ p(p(y-l )u) 
2(L(e)L(P(y-l)U) + L(p(y-l)u)L(e) -L(e * p(y-1)U)) 
2L(P(ν-l)U). 

Thus the theorem is proved (The similar technique hωbeen used in [F]). ロ

Further, considering a mutαtion of V , we can correspond a connection 
with a Jordan product directly. 

Definition. For f in a Jordan algebra V , we give a product 上f by 

u ムfυ = P(u ,v)f, u ， v 巳 V
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Then (V， ム f) is a Jordan algebra, denoted by Vf and called a mutαtion of V 
with respect to f ([BK]). 

Theorem 5.9. The vαlue of the connection D' αt x is equivαlent to -2 
times J ordan product 上x- 1 。ηα mutation 九一 1 ， that is, 

(D合￡)z=-2山一lV
Proof. From Proposition 5.2 , 5.3 and Theorem 5.8 , we have 

(D云会)x -2P(ν){(p(y)-lU) * (P(ν)-lV)} 

-2P(y)P(P(y) 一1民 P(ν)-lv)e
-2P(y)P(p(y)-lU , P(ν)-lV)P(y)P(y)-le 
-2P(u ， υ)x- 1 

-2u 上x-1 V. 

口

It is known that the Levi-Civita connection ¥1 on (D , g) is the mean of 
connections D and D' ([A]) , i.e. , 

マxY=;阿+D~Y) ， X ， Y げρ)

θ1 _， δ 
Since D θ 二三= O. we have ¥1 a 一 = -=-D' 舟~. Thusther削 corollaries

五τθZ1'EZτθxJ 2 お θxj

follow. 

Corollary 5.10. 。ηα cone (D , g, D, D') αssoczαted with α simple Euｭ

clideαη Jordαηα1gebrα， the vαlue of the Levi-Civitαcoηηectioη '1， 1ωlμ1hi化ch i臼S 

p1匂.tlμl-b∞αck f介7ア，崎'07
mηH仇Tη7，1ω』必s 0げf Joγ吋dαη product 0げf pulμl-bωαck 1υ1ectoアSム， t的hαωt i白s，

P(ν)巾LLz= 一 (P(y) 一 1U) 牢 (P(y)刈 y2= X 局‘ n 'T'J

Corollary 5.11. The vαlue of the connection マ αt x is equivaleηt to the 

minus of Jordαn product 上x- 1 。ηα mutation 丸一 1 ， thαt zs, 

~￡)z=-u ふり
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Remark 5.12. If a cone .0 is reducible , in other words, if a Euclidean Jorｭ
dan algebra V is not simple, we can induce the dually fiat structure (g , D , D') 
on .0 from the function ψ ， setting 

ψ=22Wt 

Here, we have a decomposition V = 同③・・・③ Vm ， a direct sum of simple 

Euclidean Jordan algebras Vi, and denote by nil ri the dimension, the rank 
of Vi. Let .oi be the cone associated with vi (then .0 = .01 +・・・+ .om , a 
direct product) and CPi be the characteristic function of .oi ・ Thus the above 

results also hold for a reducible cone .o. 

5.2 Doubly autoparallel submanifolds 

We show relation with Jordan subalgebras and doubly autoparallel submanｭ

ifolds of symmetric cones. 

5.2.1 On dual connections 

Let V , .0 be a Euclidean Jordan algebra, a cone associated with V , respecｭ
tively. For a linear Sl郎pace W in V and p ε V ， we set vV + p = {ω +p I 
ωε W} and M = (W + p) パ.o. If M is not empty, we denote by D , D' the 
dual connections on submanifolds M naturally induced from the connections 
D , D' on .o. By D-fl.atness of .0 and linearity of W , M is a D-autoparallel 
submanifold of .o. Conversely a D-autoparallel submanifold is represented 
by (W + p) パ.0 for some W and p 

Definition. We call 1'11 doubly ωtopαrallel when M is both D-and D'ｭ

au toparallel. 

It is interesting to know conditions for ]\イ to be a doubly autoparallel 

submanifold of.o (On PD(k) they have already been studied in [O][OSA]) 

Lemma 5.13. A submanifold M is doubly autoparallel if and only if 
P(y)-l W is α Jordαη subα1gebra for αllx ξMωhere y2 二 x ， y εQ

P丹Prooω吋O

X(M)い、w叫v油here X(M) is the set of tangent vector fields on M ([A]). We denote 
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by {x 1 ,. .., xm } a D-fl.at a自民 coordinate on M. Identifying W with 九M

for x ε M as L…5.6 , this 叩ion equals to (弘か ε W or 
o 

P(νγl(D云ぉ)x ξ P(y) 一1W. Set u = (百)ω= (ぉ)x εW. By 

Theorem 5.8 , it is equivalent to 

(p(y)-lU) * (p(y)-1V) ε P(ν)-l~V. 

for all 仏 υε W. Thus the lemma holds. 口

When a certain condition holds , a submanifold M is doubly autoparallel 
if and only if its tangent space W is a Jordan subalgebra. 

Theorem 5.14. Let M 二 wn .o， i.e. , p = 0αηd suppose M includes 
e the identity element of V. A submαnifold M is doubly αutopαァαllel ザ αηd

only ザ W is α Jordαη subα19訪問。fV (Then M is αsωcone in .0 associαted 
with W). 
Proof. By Lemma 5.13 , we have only to show that p(y)-l W is a Jordan 
subalgebra for all x ε M if and only if W is a Jordan subalgebra. 
Let P(y) -1 W be a Jordan subalgebra for x ε M. Since e ε 1'11 and P(e) 
is an identity map on .0, P( e) -1 W = W is a J ordan subalgebra. Conversely 
let W be a Jordan subalgebra. Then the manifold M is the cone associated 

with W. The identity component of the linear automorphism group of M is 
described by {P(y) I y E M}. Thus for x ξ M there exists y ε M such that 
P(ν)-1 W = W, y2 = x. Hence P(y)-l W is a Jordan subalgebra 口

も̂ le shall note concerning the Levi-Civita connection マ. The next corolｭ

laries follow by Corollary 5.10, Lemma 5.13. 

Corollary 5.15. A submαnifold M is マーωtoparallel ザ and only if 
P(ν ) -1 W is α Jordαη subα1gebra for αII x εM where y2 ニ x ， y 巴 Q

Corollary 5.16. Let M = W n .0, i.e ・ ， p= 0αηd suppose 九1 includes e 

the identity element of V. A submαnifold lVI is V-αutopαrallel ザ αηd only if 
W is α Jordαη subα1gebrα ofV. 

Remark 5.17. The connections D , D' , V are torsion free. Thus a subｭ
manifold M is autoparallel if and only if ]\イ is totally geodesic for D , D' ， マ?

respectively ([KN]). 

Remark 5.18. There exist doubly autoparallel submanifolds of .0 such 
that they do not include an identity element of V or p 1= O. For example , 
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Corollary 5.20 Let Aイ = W n Sl, i. e. , p = 0αηd suppose lìイ includes e 
the identity element of V. A submαnifold M is α-αutopαrallel ザ αηd only if 
W is α Jordαn subα1gebrα ofV. 

For α= 0, Corollary 5.20 coincides with Corollary 5.16. 
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W is not a Jordan subalgebra of V. But P(y) 一1W (y2 = X ε M = (W+ 
p) n D) equals to W' which is a Jordan subalgebra. Hence M is a doublyｭ
autoparallel submanifold of D. 

5.2.2 On αーconnections

For anαーconnection we see results similar to theorems in the previous subｭ
sec七lOn.

Let D(α) be anα-connection of a cone (D , g, D) associated with a Euｭ
clidean J ordan algebra V. By the de五nition of α-connections in subsection 
3.2.1 , we have 

1+α1-
D(α)=-TD+-TD1. 

Since D θ え= 0, we have D(~) 一二一一D' δ 一) Then we obtain a θ1-αθ 
石τθxj ~，.. ~ ..~. ~ ~ a~' 8xj 2 ~ a~' 8xj' 

θθ 
corollary of Theorem 5.8. We set u = (一) υ= (一一 )X E W as Subsection 

θXi jX ぅ θxj

5.1.3. 

Corollary 5.19 0ηα cone (D, g, D , D') αssociated with α simple Ev,­

clideαη Jordan α1gebra， the value of αηα-coηηection D(α)Jωhich is p v， ll-bα ck 
from x to the identity e by the αctioη of G) is eqωυαlent to (α- 1) times 
Jordαn prodv, ct of pull-bαck vectors, thαt is, 

P(y)叩2JL)z=(α -l)(P(y)-lU) 本 (P(y)刈 y2 = X 
δ~dxJ 

The connections D(ー 1) and D(O) are the dual connection D' and Leviｭ
Civita connection マ， respectively. Thus for α= -1 and α= 0, Corollary 
5.19 coincides with Theorem 5.8 and Corollary 5.10 , respectively. We have 
the next corollary ofTheorem 5.14, using same notations in Subsection 5.2.1. 



Chapter 6 

Conclusions 

We described backgrounds and rnotivations in Chapter 1, and in Chapter 2 
gave foundarnental facts on s七 atistical rnanifolds to be u tilized through this 

dissertation . 

We showed 1-conforrnal fiatness of level surfaces of a fiat statistical rnanｭ

ifold with respecも to the induced connection , by a伍ne differential geornetry 

on Hessian dornains in Chapter 3. We also rnentioned toα-conforrnal equivｭ

alence of level surfaces with the connections induced by α-connections of fiat 

statistical rnanifolds. 

We studied foliations and divergences of a fiat statistical rnanifold in 

Chapter 4, using results in Chapter3 essentially. We gave the decornposition 
of the divergence of a fiat statistical rnanifold frorn orthogonal foliations: one 

by 1-conforrnally fiat subrnanifolds and one by geodesics with respect to the 

dual connection. As applications , we saw the projection of a point in a fiat 
statistical rnanifold to a level surface , i.e. , a 1-conforrnally fiat subrnanifold, 
given by rninirnization of the divergence. Next we gave a gradient systern 

restricted on a level surface , using the divergence. 
In Chapter 5, we investigated dualistic structures of syrnrnetric cones. 
We related Jordan algebras and dual connections of syrnrnetric cones. For 

sorne condition we showed that subrnanifolds of syrnrnetric cones are doubly 

autoparallel if and only if their tangent spaces are Jordan subalgebras. We 

obtained the sarne results in concern toαーconnections.
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