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Schematic description of the Brillouin-scattering process.
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Dispersion curve of the Brillouin-scattering cross sections
for the 0.2 GHz PT-mode phonon domains in GaSe. The
theoretical curves are obtained from Eq. (10.13) with I'=0
meV (dash-dotted line), I'=30 meV (dashed line), I'=60 meV
(solid line) and I'=90 meV (dotted line). The vertical arrow
indicates the position of the n = 1 direct-exciton energy
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Dispersion curve of the Brillouin-scattering cross sections

for the 0.8 GHz PT-mode phonon domains in GaS. The

theoretical curves are obtained from Eqs. (10.9) [solid

line] and (10.13) [dashed line], respectively. The lifetime-
broadening energy of I'=200 meV is taken into account in the
calculation of the direct-gap resonance term Ry . The

vertical arrows indicate the p051t10ns of the indirect~gap (Eg )
and n = 1 direct-exciton energy (EX L

Theoretical line shapes of R in the neighborhood of the
fundamental absorption edge along with the experimental
data for GaSe. The theoretical curves are obtained

from Eq. (10.13) with I'=40 meV (dashed line), I'=60 meV
(solid line) and T'=90 meV (dotted line). The corresponding
nondispersive term (R;) is also shown in the figure by
s0lid line. The vertical arrow indicates the position

of the n = 1 direct—-exciton energy (Exl) L I I I
Theoretical line shapes of R in the neighborhood of the
fundamental absorption edge along with the experimental

data for GaS. The theoretical curves are obtained from

Eq. (10.9) with T'=200 meV (solid line) and from Eq. (10.13)
with T'=0 meV (dash-dotted line), I'=200 meV (dashed line)

and T'=300 meV (dotted line), where I' is the direct-exciton
lifetime-broadening energy. The corresponding nondispersive
term (RQ) is also shown in the figure by dolid line. The
Vertlcal arrows indicate the positions of the indirect-gap

(Eg ) and n = 1 direct-exciton energy (Exl)

(a) Phase diagram of the system Zn-Te [10].
(b) Phase diagram of the CdTe-ZnTe pseudobinary system
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(a) Temperature profile of vertical Bridgman furnace.
(b) Schematic diagram of the THM furnace and its
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ABSTRACT

RESONANT BRILLOUIN SCATTERING
IN II-VI, II-V AND DOI-VI SEMICONDUCTORS

by

Sadao Adachi

The present &ork deals with investigations of resonant Brillouin
scattering in II-VI, III-V and III-VI semiconducting compounds by making
use of the acoustoelectrically amplified phonon domain. This domain
is formed in the piezoelectric semiconductor CdS upon the application of
high electric fields, and propagates with the velocity of sound in the
carrier drift direction. The intense phonon domains generated in CdS
produce strong Brillouin-scattering signals with a reasonable S/N ratio
and thus enable us the use of a non-coherent light source instead sf a
laser. This technique also enables us to discuss accurate resonance
behaviors in a region close to the fundamental absorption edge of the
semiconductors. In order to obtain the intense phonon domains in the weak
piezoelectric semiconductors such as ZnSe, ZnTe, GaP, GaSe and Ga$S, we
have used the amplified acoustical~domain injection method in which the

]



phonon domain excited in CdS is injected into the other end-bonded
semiconductors through the thin indium layer with a high transmission
efficiency. A series of experiments have been performed to establish
the Brillouin-scattering mechanism in (a) the direct-gap, II-VI semi~
conductors ZnSe, ZnTe, anCdl-xTe and CdS, (b) the indirect~gap, III-V
semiconductor GaP, and (c) the layer-type (indirect-gap), III-VI semi-
conductors GaSe and GaS.

The spectral dependence of the Brillouin-scattering cross sections
in the II-VI semiconductors has shown resonant enhancement and cancellation
in the region‘near the fundamental absorption edge, and new maxima have
also been found in the dispersion curves very close to the ground-state
exciton-energy regions. The Brillouin-scattering cross section is found
to depend strongly on the lifetime-broadening effect of the intermediate
electronic states near the resonance region. The spectral dependence of
the Brillouin-scattering cross sections has shown a good agreement with
the theoretical analysis based upon Loudon’s light-scattering theory,
assuming the virtual Wannier-Mott exciton transition, when the lifetime-
broadening éffect is taken into account.

The resonance data of Brillouin scattering have also been analyzed
with a theoretical description based on the quasi-static approximation.
This analysis indicates that for the allowed-scattering configuration
the Brillouin-scattering efficiency can be predicted by the first derivative
of the dielectric constant with respect to the incident-photon energy. .

The theoretical calculation has been performed by numerically differentiating
the experimental data of the dielectric constant. The resonance behaviors

of the Brillouin-scattering cross sections have been well interpreted by |
the quasi-static approximation when the nondispersive contribution ig

properly taken into account. Resonant forbidden Brillouin scattering by
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the slow-TA phonon domain in CdS has been observedbnear the fundamental
absorption edge. The data are in good agreement with a dielectric theory
based on the second derivative of the dielectric constant with respect to
the incident-photon energy. Although mechanism of the forbidden scattering
obéerved here has not yet been completely explained, it may be pointed out
that the strong longitudinal electric field associated with the piezo-
electrically active slow-TA phonon domain is one of the causes.

In order to investigate some of the lifetime-broadening effects on the
spectral dependence of the Brillouin-scattering cross sections, we have
used two kinds of ZnTe and ZnSe single crystals and made the Brillouin-
scattering measurements at room temperature and low temperature (77 -K). It
has been found that the lifetime-broadening énergy does not depend strongly
on the temperatures but on the kinds of the crystals. The lifetime-
broadening energy of the high-quality ZnTe (ZnSe) determined from the
Brillouin-sc#ttering measurements is T = 26 meV (44 meV) at 77 K, which isz
very large compared with the value of T = 2 meV (3 meV) obtained from
reflectance spectrum. The results are interpreted in terms that the
lifetime broadening is caused mainly by an interaction of the intermediate
electronic states with the high-intensity phonon domains and the crystalline
imperfections.

From a macroscopical point of view, the Brillouin-scattering cross
section is proportional to the square of the corresponding photoelastic
constant which can be obtained independently from the piezobirefringence
experiment. ' The dispersion curves of the photoelastic constants, Py = Py
and Py for ZnSe and ZnTe and Peg [%(p11 - plz)], Py and Pay for Cds,
have been determined from the present data by introducing the piezo-
birefringence analysis, where the lifetime-broadening effect is also taken

into consideration as in the case of the Brillouin-scattering analysis.



In addition, we have reported a new method to analyze the piezobirefringence
coefficient in an opaque region in which the stressfinduced'changes in

both the real'(AEl) and imaginary part (Aez) of the dielectric constant

are properly taken into account, New coefficients, which determine the
fractional contributions of Ael and AE:2 to the piezobirefringence
coefficient, have been derived from an analytical point of view. The
experimental data on Si [Chandrasekhar ef al.] -and ZnSe [present work]

have been analyzed by using the present model, Good agreement between

the experiment and calculation has be;n found. The present method provides
a guiding principle for analyzing the piezobirefringence coefficient in an
opaque region.

It is shown that the Brillouin-scattering efficiency is expressed by
the first derivative of the dielectric constant with respect to the incident-
light wavelength (or equivalently to the band-gap energy) which is the same
as the expression for the first-derivative modulation spectroscopy. A
detalled discussion is given on resonant Brillouin scattering In connection
with the first—derivativé modulation spectroscopy such as thermoreflectance,
piezoreflectance and wavelength-modulation speetroscopy. A comparison of
the Brillouin-scattering efficiencies derived experimentally with the
first~derivative modulation spectra shows that they agree quige well with
each other and also with the theoretical curves of the Brillouin-scattering
efficiency when the lifetime broadening is taken into account in the
Brillouin-scattering analysis.

Resonant Brillouin scattering in the indirect-gap, I1I-V semiconductor
GaP by the TA phonons has been étudied at room temperature in the region of
the indirect absorption edge by making use of the 'acoustical~domain injection

method. The spectral dependence of the Brillouin-scattering cross sections

has shown a monotonic decrease (resomant cancellation) as the incident-photon



energy extends beyond.the indirect-energy gap. The experimental dispersion
curves have been well interpreted by a theoretical model of the indirect-

gap resonance including an additional dielectric theory of the direct-gap
resonance. The spectral dependence of the photoelastic constants, lpll - p12|
and lp4hl, has also been determined as a by-product of the Brillouin-scattering
data.

Resonant Brillouin scattering in the layer—-type (indirect-gap), III-VI
semiconductors GaSe and GaS by the pure-TA phonon domains has been investigated
at room temperature by making use of the acoustical-domain injection method.
The measured spectral dependence of the Brillouin-scattering cross sections
has shown resonant cancellation for both GaSe and GaS in the region of the
fundamental absorption edges. The experimental data have shown a good
agreement with the theoretical analyses based on the quasi-static approximation
and Loudon’s light-scattering theory. The resonant cancellation has been
successfully interpreted by taking into account the direct-gap and indirect-
gap resonance processes for GaSe and GaS, respectively. It has also been
found that the Brillouin-scattering efficiency depends strongly on the
lifetime-broadening effect of the intermediate-—electronic states, as similar
to the case for the direct-gap, II-VI semiconductros. Moreover, such analyses
have clearly indicated that the nonresonant electronic transition is dominant
in the Brillouin-scattering process even in the region near the fundamental

absorption edge.



CHAPTER 1

INTRODUCTION

Inelastic light scattering, namely Brillouin and Raman scattering, is a
long-established phenomenon. Following the appearance of Maxwell’s equation,
Rayleighl calculated in 1899 the scattering of light produced by a dielectric
sphere with dimensions small compared to the wavelength of light and obtained
the celebrated result that the intensity of the scattering varies as the
reciprocal fourth power of the wavelength of exciting light (A4—law). In 1922,
Brillouin2 presented the foundations of the inelastic-light-scattering process
by long-wavelength elastic sound waves. He predicted a Doppler shift of the
light scattered by the elastic sound waves with a doublet called a Brillouin

doublet at the light frequencies v, + Av, where (§: scattering angle)

0

and where vO is the frequency of the incident light wave, n is the refractive
index of the medium, v is the sound velocity and ¢ is the velocity of light
in vacuum. In 1923, Smekal3 developed the theory of light scattering by a
system with two quantized energy levels. His theory contained the essential
characteristics of the phenomena discovered by Raman4 and, independently, by

Landsberg and Mandelstam5 in 1928,

The line width and frequency shift of the Brillouin doublets can provide



the lifetime and velocity of the scattering sound waves, respectively. The
Brillouin doublets were first found experimentally by Gross6win 1930 and later
confirmed by Meyer and Ramm7 in 1932. The method of experimentation had

become particularly useful since the advent of lasers in 1960 whose high
spectral purity, coherence, collimation, power and directivity make them ideal
light sources in light-scattering experiments. Such advantages of the laser,
thus, quickly made the old mercury arcs obsolete as sources for light-scattering
spectroscopy.

A large part of the research effort in light scattering was devoted to
the study of excitations in fluids until about 1940. In the 1940’s emphasis
shifted to systematic investigations of single crystals in order to obtain
information for the semi-empirical treatment of their crystal dynamics.
Recently, a large part of the research effort in Brillouin and Raman scattering
has also been devoted to the study of the properties of the low-frequency
elementary excitations of solids.8 A large group of crystal elementary excitations
have been observed by such light-scattering spectroscopy. This group includes
acoustical and optical phonons, surface and bulk polaritons, plasmons, magnons
as well as electronic and vibrational exeitations of isolated ions in crystals.
More recently, copsiderable theoretical and experimental interest has been
focused on resonant light scattering. Resonant light scattering has been found
to be intimately related to the optical spectra of the crystal.

The resonant-Raman measurement has first been performed by Leite and Porto9
in 1966 for CdS using the discrete lines of Ar+ laser which cover the photon-
energy range between 2.38 and 2.73 eV. Later, in 1970, Ralston et aZ.lO have
confirmed the resonaﬁce behavior in CdS and also established the existence of
an antiresonance of the Raman-scattering cross sections for TO phonons immediately
below the fundamental absorption edge. Such a structure is now understood as

a cancellation between the contributions of the band edge and of higher



transitions; these contfibutions must thus have opposite signs. The recent
availability of cw dye lasers has given considerable impetus to study of resonant
Raman scattering, and as a‘matter of fact a lot of experiments on resonant
Raman scattering have been performed up to date in various semiconductors.8

The resonant-Brillouin measurement, on the other hand, has first been -
performed by Pinell in 1972 for CdS from thermal phonons using a high-resoclution
Fabry-Perot interferometer. The resonance condition has been achieved by
thermally tuning the fundamental absorption edge of this material through
the incident radiation at 514.5 nm. The experimental Brillouin-scattering
intensity has shown resonant enhancement near the intrinsic absorption edge
and found to be roughly proportional to the square of the absorption coefficient,
while a cancellation as observed in resonant Raman scattering has not been
found.

The interaction of phonons with free carriers in semiconductors are

the subject of many Brillouin-scattering studies. Hutson, McFee and White12

and Hutson and Whitel3’14

have demonstrated that in piezoelectric semiconductors
acoustical waves could be amplified by carriers with drift velocity exceeding
the sound velocity. When the high drift fields are applied to piezoelectric
semiconductors, the intense packets of acoustical waves (domains) are observed
to travel along the sample at the sound velocity. These acoustical domains
consist of amplified thermal phonons in a narrow band of frequency range

between 0.1 and 6.0 GHz, and have an energy density a factor of the order of

109 above the thermal equilibrium value., Zucker and Zemon15 have been first

to examine the spectrum of these domains in CdS by means of Brillouin-scattering
technique. Many subsequent Brillouin-scattering studies have been performed

to study the generation and amplification mechanisms and dynamical characteristics
of the acoustoelectrical domains in various piezoelectric semiconductors such

16,17’ dS18,19 20,21

as GaAs C and ZnO , and revealed that the domain-frequency



distribution in these materials initially peaks and downshifts as the domain
propagates through the sample probably due to an anharmonic parametric
c:onvers:i.on.zz—24

Brillouin-scattering intensity is expected to be resonantly enhanced
when the incident or scattered light approaches the electriionic transitions
in the medium. Resonant Brillouin scattering by the acoustoelectrical domains
has first been reported in GaAs by Garrod and Bray25 in 1972. Thermal Brillouin
scattering is much weaker, so laser sources are generally used with inter-
ferometric spectral analysis. They have used a particularly simple, but
versatile, apparatus, because the intense acoustoelectrical domains provide
strong Brillouin~scattering signals with a reasonable S/N ratio and permit
the use of a conventional light source instead of a laser. They have found
clear resonant enhancement and cancellation of the Brillouin-scattering cross
sections in the region near the fundamental absorption edge. Subsequently,
similar resonance behaviors have been observed in CdS from the acoustoelectrical

6,27 and, independently, by Gelbart and

domains by Hamaguchi and coworkers2
Many.28 Resonant Brillouin scattering has also been performed from the acousto-
electrical domains in CdS and ZnO by Berkowicz and Price29 and Berkowicz and
Skettrup30 and in CdSe by Yamamoto et aZ.31 The experimental data have also
clearly shown resonant enhancement and cancellation in the region near the
fundamental absorption edges. Such studies are restricted to piezoelectric
semiconductors in which the acoustoelectrical instability can occur by the
application of a high electric field and as a result produce the traveling
acoustoelectrical domains consisting of piezoelectrically active transeverse-
acoustical phonons (T2-mode phonons).

The overall objective of the present work is to analyze the resonant-
Brillouin-scattering mechanisms in various semiconductors such as II-VI (ZnSe,

ZnTe, ZnXCd XTe), III-V (GaP) and III-VI compounds (GaSe and GaS). Our first

1-



objective is, thus, to ﬁeasure accurately theAspectral dependence of the
Brillouin-scattering cross sections in such semiconductors. In order to do
this, we make use of the acoustoelectrical domains instead of thermal phonons.
This permits us the use of a conventional light source, e.g. xenon flash tube,
instead of a laser and, thus, enable us to obtain the accurate experimental
data.27 The CdS single crystal is known to have the wurtzite-type crystal
structure and to be strong piezoelectric semiconductor. The acoustoelectrical
domains themselves were investigated in detail by many workers.32 It is
necessary to develop new technique for measuring resonant Brillouin scattering
in non-piezoelectric or weak piezoelectric semiconductors such as ZnSe, ZnTe,
GaP, GaSe and GaS. We introduce an acoustical-domain injection method33’34
developed recently in our laboratory. This method enables us to inject the
intense acoustoelectrical domains amplified in CdS into the other end-bonded
semiconductors (ZnSe, ZnTe, etc.) through the thin indium layer with a high
transmission efficiency.

In Chapter 1I, we review the resonant-light-scattering theories derived
from microscopical and phenomenological aspects and indicate how it should

35,36 has first

be applied within the context of our experiments. Loudon
obtained the quantum-mechanical expression for resomant light scattering based
on the 3rd-order time-dependent perturbations, where the intermediate electronic
excitations of the crystal involved in the calculation are assumed to be

free electron-hole pair states. The expression for the case in which the
intermediate electronic states are Wannier-Mott excitons has been given by
Ganguly and Birman.37 Benedek and Fritsch38 have constructed the Brillouin-
scattering theory from phenomenological aspect. This theory predicts the
intensity, polarization and spectral distribution of the scattered light as

a function of the incident and scattered directions in the crystal. Based on

these theories, we obtain the Brillouin-scattering cross sections for each



acoustical-mode phonon (i.e., transverse- and longitudinal-mode phonons) in
the zincblende-type (ZnSe, ZnTe, etc.) and wurtzite-type crystal (CdS). We also
calculate the matrix elements of the deformation-potential scattering for both
types of crystals and discuss the intermediate-electronic-transition processes
which play an important role in the resonant-Brillouin-scattering process.
From a macroscopical point of view,38 the Brillouin-scattering cross section
is proportional to the square of the photoelastic constant which can be obtained
independently from the piezobirefringence experiment. In order to determine
the photoelastic constant from the Brillouin-scattering data (Chapter VI),
we also present here the outline of the intrinsic-piezobirefringence theory.
Chapter III deals with the sample constraction, experimental procedure
and methodology. Brillouin scattering from acoustoelectrically or piezo-
electrically driven sound waves is easily observed using conventional light
sources, and the angular dependence‘establishes either the sound velocity or
frequency if one is known. Apparatus of this kind has first been used by
Garrod and Bray25 to study resonant Brillouin scattering in GaAs by the acousto-
electrical domains. In this Chapter, we also review the theory of acousto-
electrical amplification and obtain the relation between the incident and
scattering angles for the sake of the Brillouin-scattering measurements. The
theoretical analysis and application of the acoustical-domain injection method
are also presented in this Chapter.
In Chapter IV, we present the experimental data of resomnant Brillouin
scattering in II-VI semiconductors ZnSe, ZnTe, ZnXCdl_xTe and CdS. For the

zincblende—-type crystals such as ZnSe, ZnTe and ZnXCd Te, the Brillouin-

1-x
scattering measurements are performed by the Tl- (slow TA) and T2-mode (fast
TA) acoustical phonons using the acoustical-domain injection method. TFor the

wurtzite-type, piezoelectric semiconductor CdS, we perform the Brillouin-

scattering measurements by using the acoustoelectrically amplified T2-mode



(slow TA) phonon domains. When the traveling domain reaches the anode end of
the specimen, part of the acoustical flux is reflected. It is well known16’29
that the reflection is usually accompanied by mode conversion. - The piezo-
electrically inacitive pure-transverse TA phonon (Tl-mode phonon) and pure-
longitudinal PL phonon domains can be obtained by the mode conversion upon
partial reflection of the T2-mode domains at the anode-end surface.39’40
Thus, we also perform the Brillouin-scattering measurements in CdS by using
these mode—converted phonon domains. The experimental data are compared with
the theoretical prediction based upon Loudon’s light-scattering theory assuming
the free electron-hole pairs or Wannier~Mott excitons as the intermediate
electronic states.

The qualitative features of resonant light scattering can be predicted
from an expression based on the quasi-static approximation.41 In this
approximation, the phonons are assumed to act through the electron-phonon
interactions like static perturbations of the electronic band structure of
the crystal, which cause a change in the dielectric constant € of the crystal.
The dielectric theory of resonant light scattering shows that for the allowed
scattering the two-band term of the first-order scattering efficiency (Brillouin
or Raman tensor) is proportional to the first derivative of € with respect to
the incident-photon energy while for the forbidden scattering proportional to
the second derivative of € with respect to the incident-photon energy. In
Chapter V, we discuss resonant Brillouin scattering in more detail from a view
point of the quasi-static approximation. The resomance data presented in
Chapter IV are reanalyzed by the quasi-static approximation. The resonance
forbidden data observed in CdS are alos presented and analyzed in this Chapter.
In order to obtain theoretical predictions, we calculate the derivative of €
with respect to the photon energy by numerical differentiation of the experimental

optical constants. A comparison of theoretical curves between the quasi-static



approximation and Loudon’s light-scattering theory are also made in this Chapter.
Chapter VI deals with the determination of the photoelastic comstants in
II-VI semiconductors ZnSe, ZnTe and CdS from the the Brillouin-scattering data.
The Brillouin-scattering cross section is known to be proportional to the square
of the corresponding photoelastic constant.38 This constant can be obtained
independently from the stress-induced birefringence (piezobirefringence)
measurements. The investigation of the piezobirefringence in solids is an
old topic of crystal optics.42 We obtain the microscopical expression of
the photoelastic constants and compare it with the experimental data. We also
discuss the lifetime-broadening effect of the electronic states on the spectral
dependence of the photoelastic constants. We report a new method to analyze
the piezobirefringence coefficient in an opaque region in which the stress-
induced changes in both the real (Ael) and imaginary part (Aez) of the
dielectric constant are properly taken into account. New coefficients, which

determine the fractional contributions of Ae. and Aez to the piezobirefringence

1
coefficient, are derived from an analytical point of view. This method provides
a guiding principle for analyzing the piezobirefringence coefficient in an
opaque region.

In Chapter VII, we report on a detailed study of the lifetime-broadening
effect of the intermediate electronic states on resonant Brillouin scattering
in ZnTe and ZnSe. In order to investigate some temperature effects on the
lifetime broadening, we measure resonant Brillouin scattering at room temperature
and low temperature (77 K). Moreover, we use two kinds of ZnTe and ZnSe single
crystals to study some effects of the crystalline imperfections on the spectral
dependence of the Brillouin-scattering cross sections. We show that the lifetime-
broadening energy does not depend strongly on the temperature but on the kinds
of the crystals.

In Chapter VII, a discussion is given on resonant Brillouin scattering



in connection with the first—derivative modulation spectroscopy such as
thermoreflectance, piezoreflectance and wavelength-derivative modulation
spectroscopy. It is shown that the Brillouin-scattering efficiency is
expressed by the first derivative of the dielectric constant with respect

to the incident-light wavelength or equivalently to the band-gap energy,

which is the same as the expression for the first-derivative modulation
spectroscopy.AB’44 The light-scattering experiment yields more information
than its conventional modulation counterpart. A measurement of the spectral
dependence of the scattering efficiency yields the energies of critical points
in a manner similar to more conventional modulation experiments. The spectro-
meter trace in which the scattered signal appears also yields the frequency

of the corresponding excitation, without counterpart in the conventional
modulation experiment. An absolute scattering intensity yields the tensorial
constants, e.g., deformation potential, which represent the interaction of the
elementary excitation with the electronic transitions. In this Chapter, a
detailed survey is given of a relation between the expressions for resonant
Brillouin scattering based upon Loudon’s light-scattering theory and the
quasi-static approximation and also of a comparison of them with the first-—
derivative modulation spectroscopy. We try to make a comparison of the
Brillouin-scattering efficiencies derived experimentally with the first-
derivative modulation spectra obtained in some semiconductors.

Chapter IX deals with the resonance phenomena of the Brillouin-scattering
cross sections in the III-V semiconductor GaP by the transverse-—acoustical
phonons in the region of the indirect-energy gap by making use of the acoustical-
domain injection method. The GaP crystal is a more suitable material to study
some of the indirect-gap resonance behaviors, since the energy separation
between the indirect and direct gaps in this material is relatively large

(the lowest indirect-gap energy is about 0.5 eV lower than the lowest direct-



gap one).45 If this separation is small, the indirect-gap resonance should
be masked off by the much stronger direct-gap one. We formulate a theory
of resonant Brillouin scattering at the indrirect gap of semiconductors and
compare it with the experimental data. It has been shown by Dixon46 that
the GaP crystal is exceptionally good material for use in light deflectors
and modulators. In this Chapter, we also determine the spectral dependence

of the photoelastic constants, - Plzl and [p44|, as a by-product of the

lpq;
Brillouin-scattering data.

In Chapter X, we present the experimental data of resonant Brillouin
scattéring in III-VI semiconductors GaSe and GaS obtained by making use of
the acoustical~domain injection method. These semiconductors are layer-type
compounds which present a strong anisotropic behavior of their physical
properties due to the singularity of the c¢rystal structures and have an
indirect gap below the lowest direct gap.47 The top of its valence band
lies at I point and the bottom of the conduction band at M point. Relative
minima of the conduction band at T point are situated a few tens of meV for
GaSe and about 0.4 eV for GaS above the minima at M point. The experimental
data are compared with the theoretical prediétions based on the quasi-static
approximation and‘Loudon’s light-scattering theory including the indirect-
and direct-gap resonances. The resonance processes are determined by the
aid of group theory. The nonresonant electronic transitions are also found
to be dominant in the Brillouin-scattering process.

Finally, in Chapter XI, the conclusions obtained in the present work

are summarized.

In Appendix, we present the methodology and growth technique of the
traveling heater method (THM) which is used in the present work to obtain

high—-quality ZnTe and anCd XTe single crystals.
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CHAPTER II

THEORETICAL BACKGROUND

2.1 INTRODUCTION

A common feature of theoretical expressions for the Brillouin-scattering
efficiency of a substance is the presence of terms which either diverge or
become relatively large when the frequency of the exciting radiation is equal
to an allowed optical-transition frequency of the substance. This predicted
increase in the intensity of the scattered light, known as the resonant-
Brillouin effect, is very familiar in the realm of Brillouin scattering from
fluids. The quantum-mechanical expression of the first-order Brillouin and
Raman scattering in solids has first been obtained by Loudon.35 It has been
pointed out that the most important Brillouin (Raman) scattering mechanism is
always one in which the radiation interacts indirectly with the lattice via
the free electron-hole pairs, where the electron-lattice interaction is treated
by the deformation-potential approximation. The form of the first- and second-
order Brillouin-scattering efficiency for the case in which the intermediate
electron-hole pair states are Wannier-Mott excitons has been given by Ganguly
and Birman.37 Martin48 has also treated the first-order Raman effect including
the excitonic interaction in the hydrogenic approximation vZa numerical
calculations by use of the Green’s-function formulation. It has been found
that the excitonic interaction may increase the strength of the Brillouin

(Raman) scattering resonances compared with the free electron-hole pair model



proposed by Loudon35 without greatly altering the resonance shape.

It can be easily understood from a macroscopical point of view41 that
the light-scattering phenomenon results from a change in the dielectric constant
of a crystal arising from thermal vibrations of the constitutional lattices.
This treatment is known to as dielectric theory of light scattering (quasi-
static approximation). In the quasi-static approximation, the phonons are
assumed to act (through the electron-phonon interactions) like static
perturbations of the electronic band structure of the crystal, which causes
a change in the dielectric constant of the crystal. The quasi-static
approximation shows that the first-order scattering efficiency is proportional
to the first derivative of the dielectric constant with respect to the incident-
photon energy. The experimental Raman-scattering data in some semiconductors
have recently been well interpreted in terms of this theoretical model.49_61

From a phenomenological point of view, the Brillouin-scattering cross
section is proportional to the square of the photoelastic (elasto-optic) constant
which can be obtained independently from the intrinsic piezobirefringence
experiment. Benedek and Fritsch38 have first obtained an accurate expression
of Brillouin scattering in cubic crystals by incorporating the photoelastic
constants. Such an analysis has been extended to the case of anisotropic media
by Nelson et aZ.62 and Hamaguchi63 by taking into account the birefringence and
internal reflection. Loudon35 has also derived microscopical expressions for
the photoelastic constants as by-products of his calculation of the first-
order Brillouin effect.

In Section 2.2, we present the quantum-mechanical expression of resonant
Brillouin scattering‘obtained from 3rd-order time-dependent perturbation
calculations. ' The 3rd-order perturbation mechanism is known to be correspond
to the case for the first-order direct-gap resonance process. The indirect-

gap resomance process, on the other hand, can be interpreted by a 5th-order



perturbation mechanism..Details of the indirect-gap resonance process will be
discussed elsewhere (Chapter IX). Section 2.2 also presents the selection
roles of deformation—-potential scattering (Section 2.2.2) and the macroscopical
expressions of resonant Brillouin scattering based upon Benedek-Fritsch’s
theory (Section 2.2.3). 1In Section 2.3, we present the generalized expression
of the photoelastic constant derived from the intrinsic biezobirefringence
theory.64 We will determine in Chapter VI the spectral dependence of the
photoelastic constants in various semiconductors from the Brillouin-scattering

data by introducing the piezobirefringence analysis.

2.2 RESONANT BRILLOUIN SCATTERING

2.2.1 Time-Dependent Perturbation Calceulation
The collective excitations of semiconductors and insulators which
participate in inelastic light scattering are lattice vibrations (acoustical
and optical phonons) and plasma waves (plasmons) of the electron-gas of small-
gap or doped semiconductors. They also include coupled photon-electronic
excitation modes (polaritons) and coupled phonon-plasmon modes. In this
subsection, we shall discuss first-order Brillouin-scattering process involving
the acoustical phonons as elementary excitations.
The perturbation picture of the first-order Brillouin-scattering process
is indicated in Fig. 2-1 (a) and consists of:
i) transmission of the incident photon wy into the crystal,
ii) annihilation of the photon with creation of an electron-hole pair
wia HER)’
iii) scattering of the electron-hole pair accompanied by creation (Stokes)
or annihilation (anti-Stokes) of a phonon (vZa HEL)’

iv) annihilation of the scattered electron-hole pair and creation of the
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Perturbation theory and polariton pictures of
one-phonon Brillouin scattering. Single wavy
lines: photons; double wavy lines: polaritons;

straight solid lines: excitons; dashed lines:
phonons.



scattered photon Wy (wia HER)’

v) transmission of the photon wy out of the crystal.
When the incident-photon energy approaches the exciton resonance, we have to
take into account the excitonic polariton states in the Brillouin-scattering
process.65 This polariton picture of the first-order Brillouin-scattering
process is indicated in Fig. 2-1 (b). Brenig, Zeyher and Birman66 have reported
a theoretical analysis of resonant Brillouin scattering in crystals exhibiting
spatial dispersion which included excitonic polaritons as the intermediate
states in the Brillouin-scattering process. Their result predicts a multiplet
of the Brillouin spectrum near the exciton resonance with line separations
and efficiencies, depending strongly on the incident-photon energy because of
the polariton dispersion. In the following, we consider the first-order
Brillouin-scattering process and that the virtual intermediate state is assumed
to be Wannier-Mott exciton?7 and the polariton picture is not introduced in the
calculations for simplicity. We perform a canonical transformation67 to remove
the lowest-order interaction terms in the Hamiltonian.

0 . . . .
Let H( ) denotes the unperturbed Hamiltonian; then it can be written as

) _
H =H +H +H 2.1)
with
H =1 EAKaIKaAK (2.2)
€ K
H =71 Aw b+ b (2.3)
L nE nE g mé
- T -
Hy = L ﬁwxcxecxe s wX = (e¢/n)|x] . (2.4)

xe
Here, aiK and a)g are the creation-annihilation operators for the excitons
having inner quantum-number A and wave vector K formed from conduction ¢ and
valence band v, and EXK denotes the exciton energy. b+g and b £ are the creation-

n

annihilation operators for the phonons having an energy quantum‘ﬁwng, where
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ﬁ and E stand for the wave vector and unit polarization vector, respectively,
and the system considered here is that a crystal has two ion§ per unit cell of
mass Mland MZ' C;e and cXe are the creation-annihilation operators for the
photons having an energy momentum‘ﬁwx, where ; and e stand for the wave vector
and unit polarization vector, respectively, c¢ is the velocity of light in

vacuum, and n is the refractive index. The commutation relations for the

creation-annihilation operators are

T s 99T =
[aAK(c,v)’ a)\’K,(c 1 = 6A)\’6KK’(SCC’6VV’ _(2.5a)
b, b1 =8 , ., (2.5b)
ng> m’g m’ &%
[e. , e, ,1=6_,8 (2.5¢)
Xe, X’e’ XX’ ee’ .
Note that 3y and aIK satisfy approximately the commutation relations for bosons,

but this is immaterial as far as we confine ourselves to the electronic states
in which the total number of excitons is zero or unity.

Next, we consider the perturbation Hamiltonians for the exciton-radiation
(HeR) and exciton —phonon (HeL) interactions, as are depicted in Fig. 2-1 (a).

The perturbed Hamiltonian terms can be given by

RGO RGP I

eL eR 4 _ (2.62)
(2) (2) 2) (2)
B¢ =&H +H + A (2.6b)
eL(l) eL(z) eR

The specific forms of the interaction terms are given as follows:
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coupling parameters. The coupling parameters of Eqs. (2.7) and (2.8) contain
the momentum matrix elements and the matrix elements of deformation-potential
scattering, respectively. The matrix elements of deformation-potential
scattering will be calculated in detail in Section 2.2.3. The perturbation
terms (2.8a) and (2.8b) will give Stokes process. To get anti-Stokes, we have
to include terms with the annihilation operator of the phonons "bnE" in HeL
instead of the creation operator b:E.

We shall perform a canonical transformation to remove the lowest-order
interaction terms in the Hamiltonian. The transformation is generally given

by67

§ = 5 & , 2.9)



where Q being any operator. The unitary transformation is the special case

where S+ = -S, Then, it is readily shown that
[s , Ql
n, ©
d=q+2 —5— (2.10)
n=1 )

where Sn is defined by the recurrence relation

s =1Is, Is ;> Q1 (5, =5 . (2.11)

The total Hamiltonian is taken from Eqs. (2.1) and (2.6) as

1) (2)

H = H(o) + H( + H (2.12)

The transformated Hamiltonian ﬁ is, thus,

_ -is_ iS
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where S is chosen such that
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If the eigenstates of H are represented by ]m>, etc, it is obvious from

Eq.(2.14) that

i<m|[S, H(O)]ln> i<m|SH(0) - H(o)sln>

i{<m|s[n><an(O)|n> - <m|H(O)|m><m|S|n>}



= i<m|[S|n>(E_ - E )
S TACAS , (2.16)
where
£ = <af#® |n> , (2.17a)
E = <n]H(0)]n> . (2.17b)
Therefore, it is obvious that
1
<m|S|n> = %%Jﬁ—ﬁ—@ . (2.18)
n m
Using Eqs. (2.6a) and (2.18), we obtain
1 > k]
S=—],?(Q+Q + P + P?) N (2.19)
where
.i_
f  (eviK)a,_(c,v)c
Q=-3 X X4 o+, (2.20a)
cvAK AK Xe 2
xe
f* (cviK)a, (c,v)c
=z X M X5 e, (2.20b)
cvAK AK xe > X
Xe
t +
_ 8n£(cv)\K)a)\K(c,v)bnE .
P z R 6K _ s (2.20c)
cvAK AK ng il
ng
g*_(cviK)a (c,v)b-r
s ng AK né
P X - 6K . (2.20d)
cvAK AR wnE 2N .

ng

It can be found from Eq. (2.15) that —-%[S, [s, Héi)

(1)

lowest—-order commutator that contributes to the first-order Brillouin-scattering

+ Héﬁ)]] is the

effect. This commutator can be written as

2)
L

(2) _l s s s s (2)
+ 0’11 =510+ Q +P+P°, [Q+Q + P+ P, A

€] 6N

1 ( (2)
- i[ss [Sa He + HeR ]]



= %{[(Q +Q +P+P)Q+Q +P+ P’)(Héi)(l)+ HéIZ{))

> > (2) (2) s X
- Q+Q>+P+P )(HeL(1)+ HeR Y(Q+Q +P +P)]

, sy (72D (2) , >
- @Q+2Q +P+P)(HeL(l)+HeR)(Q+Q + P+ P)

* (Héiil)+ Héﬁ))(Q +Q +P+P)Q+Q +P+P)}. (2.21)

To select terms that contribute to the first-order Brillouin-~scattering process
from Eq. (2.21), we have to take into account the following conditions:
i) we reject process that contain aAK|0> (because aXKIO> =0,
ii) processes must return to the electronic ground state,

ii) processes must involve two photons and one phonon.

Thus, we obtain six terms Q’ H(Z)P Q’ H(Z) Q’, QH(Z)P QH(Z) Q, P’Héé)q’ and
L 1)
P H(Z)Q corresponding to the various time orderings of the absorption of the

incident photon, the emission of the phonon and the emission of the scattered
photon accompanied by three virtual excitonic transitions. Figure 2-2 shows

the Feynman diagrams which describe the 3rd-order perturbation calculation of
first-order Brillouin scattering by lattice vibrations involving intermediate

exciton states; (a) Q’ H(z) P, () Q H(Z)Q , (<) QH( )P, (d) QH(Z) Q, (e)
(l)

(2)Q and (f) P’ H(z)

2.2.2 Brillouin-Scattering Cross Section
Suppose that one photon w; has been destroyed, and a photon ws and

phonon wq have been created is given by [Fig. 2-2]

h nx . ~ "eR eL(l) eR eL(l) eR
+ P’ H(Z)Q)I i>|? IR
(21T)3a 2
=TT IR G e w) [T 80 - xg - Sy - wg - e, (2.22)

nx
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FIG. 2-2. Diagrams of six possible orderings of the interactions
contributing to the first-order Brillouin-scattering
process.



where |i> and ff> are the initial and final states of the system, respectively,
a is a constant containing various physical parameters, and V is the crystal
volume. R.S is the frequency-dependent Brillouin temsor. This tensor is

i
represented by considering six terms of the first-order Brillouin-scattering

’ (2) f 11 .
process Q HeR P, etc., as follows:

i i

S - S o~
AR S Pog"ga’00 . “op"Baao
is® i’ s’ q Va,B (wB to + wq)(wa + ws) (wB - w, * wq)(wa - wi)

s i~ s 1 -
= P-_P_E
POBPBa 00 0B Ba a0

+
(wB + ws + mq)(wa + wq) (u)B - wi + wq)(wu + wq)

+

- s i = s L1
“OBPBaPuo + “OBPBaPao ]
(w6 + Wy = wi)(ma + ws) (wB + ws - wi)gwa - wi) ’

+

(2.23)

where P and Z are the momentum matrix element and the matrix element of deformation-—
potential scattering, respectively, the subscript 0 indicates the electronic

ground state and the subscripts o and B the intermediate electronic states, and
‘ﬁwa and‘ﬁwB are the optical energy gaps for the incident and scattered lights,
respectively. The superscripts i and s of P indicate the components in the
polarization directions of incident and scattered lights, respectively.

One can easily find that the second term on .the right-hand side of Eq. (2.23)

has the strongest divergence when ﬁwi is close to the band-gap energy<ﬁwu, i.e.,

the second term is the most importance in the first-order Brillouin-scattering
process. Thus, we now write the Brillouin tensor in the following form:

s - i
POB%BaPuO

Ris(_wi’ wS’ d)q) x o= a’B (U)B — wi ¥ U)q) (U.)u _ U)i) . (2.24)

[

<

The electronic transitions involved in the calculation of the Brillouin-scattering
process may be conveniently described by a diagram of the type shown in Fig. 2-3

(a). The time order of the three electronic transitions shown in the figure is



(a) direct (b) indirect

FIG. 2-3.

Schematic diagrams of (a) direct-gap and (b)
indirect-gap first-order Brillouin-~scattering
processes. W4 and Wg are the angular frequencies
of the incident and scattered lights, respectively
The numbers indicate the order of the electronic

transitions.



the same as that for the case of Eq. (2.24). Similar diagram can be drawn for
Brillouin scattering involving indirect-gap resonance process [see Fig. 2-3 (b)].
This type of process may be interpreted by the 5th-order perturbation calculation.
One of the time orders of the electronic transitions is also shown in Fig., 2-3
(b) by the numbers [see Chapter IX].

The Brillouin-scattering cross section derived by Loudon has the following
form:

e Y4 2

4ime 2pv2

w
- 1 - 2
op = ( o, | Ris( W, 5 ws, wq) I , (2.25)

where p is the density of crystal, v is the sound velocity, and ¢ and wq are
the energy density and angular frequency of the acoustical phonons, respectively.
The energy density ® can be replaced by kBT in the case of Brillouin scattering
by thermal phonons, where kB is the Boltzman constant and T is the absolute
temperature.

Let us now assume that the virtual intermediate electronic states are free
electron-hole pairs. It is usually a good approximation to assume that the

>
band edge in semiconductors is parabolic (spherical) in k-space, i.e.,

> 2
= + .
ma(k) wgu(o) Hk™/2u s (2.26a)
@) = (0) + Bx2/2 (2.26b)
B gB u ,l .
. . . . -1 -1 -1
where U is the reduced effective mass being given by u = = mz + mﬁ , and

is assumed to be equal for the |a> and |B> pair states for simplicity. Then,

with the prescription

k“dk , (2.27)

<[k
~ ™M
~~

N

=

N’

N

o

Eq. (2.24) can be written as



2 s o i m Kdk

2 TO0RTRa ad 2 2 i
Ak hk

W, t———w, )W +=—-w.)

Weg o~y T Wy Ty

(2.28)

where the P- and E-matrix elements are assumed to be independent of k.
Performing the integration, we finally obtain the expression of Ris in the
case where the intermediate electronic states are assumed to be the free

electron—-hole pairs as27

S - i
P. 5 P Aw
Ris = 2 2 Z ( if )3/2 W 0? ga ag W [(wgB - UL)s)2 tan-l( W —Bw )6
2m)" o,B8 g8 8o q eB s
3 1, Mgy oy
- - 2 - 2
(wga wi) tan " ( wga =y )] s (2.29)

where ’flAwgOc and‘ﬁAwgB are the combined widths of the conduction and valence

bands, which are given by

- - 2
Doy, = Do g = ik /v . (2.30)

The conservation of energy in the Brillouin-scattering process can be written
as
w, —w =+t w . (2.31)

The plus and minus signs correspond to the Stokes and anti-Stokes processes,
respectively. 1In Eq. (2.29), we used the condition of the Stokes process

laci - b .
by replacing wi wq v ws

Next, we obtain Ris assuming that the virtual intermediate electronic states
. . 3 . s

are the Wannier-Mott exciton states. / The phenomenon of the excitons in crystals
has been a subject of considerable interest for many years and has been summarized

in general by Knox,68 and in particular with respect to the group II-VI compounds
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by Reynolds et aZ.69 It can be considered that the excitonic transitions play
an important role in the Brillouin-scattering process, because the Coulomb
interaction is always present between the electrons and hole;. The exciton
state is expanded in terms of the Bloch functions for the perfect periodic
lattice. The wave function of the exciton will be a linear combination of
conduction—(wc,ke) and valence-band wave function (wv,kh)' Since the electron-
hole interaction is weak (Wannier-Mott exciton), only the lowest conduction band
and highest valence band need be included in the expansion of the eigenstate Y,
so that

¥(E,T) = : o c&e,ﬁh)wg,ke(?e)wv’khﬁh) : (2.32)

e

Only small ranges of ﬁ about the two extrema contribute appreciably to the sum.
Periodicity requires that the exciton wave vector K is a good quantum number

and that

K=k +% (2.33
=k +i . .33)

> >
The Fourier transform of C(ke,kh) may be written as

N

JBED = D e (KD ¢ D, (2.34)

@K’
where B is the volume of a unit cell, N is the number of such cells in the

> - .
crystal, and R and r are the center-of-mass coordinate and relative position,

respectively, being given by

> > > -1 > -> >
= * * * * = -
R (mere + mhrh)(me + mh) , r=r, T, . (2.35)

Equation (2.34) represents the wave function of the exciton’s over-all motion
in the crystal. The effective-mass approximation gives Eq. (2.34) as a
solution of the Schrodinger-like equationm,

2

>
G+ 38 -B) +E (B +8 -3 - T+ ]e=E0% |, (2.36)
glr




> > . , > > - > . > >
where p, P are the momenta conjugate to r, R; and P.> Py are i times ke, kh
(wave vectors at the band extrema). € is the dielectric constant. E and @

can be found by solving this equation. The energy of the exciton state is

given by

B = By T E | , (2.37)

where
= E k_o E k—o 2 38
Eg = c( =0) - v( =0) (2.38)

is the band~gap energy at K = 0. The two-particle wave equation, Eq. (2.36),
can be expressed as a sum of two separate terms if it is written in a coordinate
system of the center—of-mass coordinate ﬁ (translational part) and the electron-
hole separation coordinate ; (rotational part). The translational part can

be written as

ﬁZ

2 = >
- oM VR @R(R) = EKQR(R) , (2.39)

which describes just the motion of a free particle with a mass

M = mg + m};'; . (2.40)

This equation gives that
B, = BK /M, K = || , (2.41)

and

0, (B) = exp (D) . (2.42)

The rotational part, on the other hand, can be written as

2 2
- (Lyv?o =
H elr

1o,® =B, ® . (249

Equation (2.43) is similar to that for the hydrogenic problem, but with the
electron charge replaced by e/Ve and the free electron mass m replaced by

the reduced exciton mass U. Consequently, the eigen values of Eq. (2.43) can



be given as an analogy of the hydrogenic problem as

E =-% D=1, 2, e, (2.44)
n n2

where G is the exciton Rydberg (binding) energy given by

¢ =136 (Y iz [ev] . (2.45)
2h'e 0 ¢
The exciton Bohr radius is now given by
2 m °
ax =25 _053e2 [A] . (2.46)
0 ue2 u

The eigenvalue of Eq. (2.36) is, thus,

2.2
- 32K _ G
E = EK + En = “u 2 . (2.47)
n .
The exciton state can, thus, be written from Eq. (2.37) as
2.2
D _ 1K G
Eexn = Eg + oM ) . (2.48)

It is clear from Eq. (2.43) that ¢n(;) is a hydrogenic wave function with

substituted for m. (electron mass) and £ for €. (dielectric constant of

0 0
vacuum). Since ¢n(¥) is a smooth function extending over a large region of
the solid, it is usualiy called "envelope function'. Because ¢n(;) describes
the rotational motion of the exciton, it is characterized by three quantum
numbers n (principal quantum number), 7 (azimuthal quantum number) and m (
magnetic quantum number). However, it has been shown by Elliott70 that only
the s-rotational state (7 = 0) is important for the optically created excitons.
It is, therefore, sufficient for us to label the envelope function only with
one quantum number 7. For the simple case of two spherical bands of masses

mz and mﬁ, the envelope function of the n-th exciton state ¢n(0) can now be

written as



v |
2 0 _ 2 1
l6, @] = 33" 4, ]" =5 (2.49)

ﬂao* n

where V0 is the volume of the unit cell. A discrete series of lines, therefore,

can be predicted at energy

n 1K G
'Eex = Eg + M nz , (2.50)

with intensity falling like n_3. As the absorption edge is approached, the
infinite number of lines will overlap so that it may be considered as a
contunuum. In the true continuum where hv - Eg > 0, one obtains for the

envelope function of the continuum exciton

2 e >
0O = T im0 2.51)
where
o = |6/ @i/ |2 (2.52)

The continuum-exciton state corresponds to positive energy solutions of the
hydrogen-like equation (2.43). The energy of the continuum-exciton states

may be written as

B =B 4+ e 4 (2.53)

In the continuum, the rotational energy is much larger than the Coulomb
interaction energy, and therefore the excitons behave like free particles
with an effective mass U. The exciton spectrum, thus, consists of a seriés
of discrete parabolic bands below Eg at X = 0, which merges into a continuum
at higher energies, as is depicted in Fig. 2-4.

The Brillouin tensor RiS in the case where the intermediate electronic
states are assumed to be the Wannier exciton states becomes, using Eqs. (2.24),

(2.49) — (2.53),
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FIG. 2-4. Energy of the exciton bands for the
Wannier-Mott excitons as a function of
exciton momentum K. The discrete "hydro-
genic" states merge into the continuum
states for E > E,. The point O represents
the energy of the unexcited crystal.
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s i N |¢n(0)|
Ris =2 Pogfaafao 1V X 2 2
— R* - - R% -
o,B (mgB R*/n ws)(mgu R*/n mi)
2
[¢, (0|
+—2— | Pax > k 5 Y, (2.54)
(2m) Ak Ak
(wgB + 7 ws)(wgu + 7 wi)
where w 0 Ega/h and wgB = Egu/h, R* = G/, and we have converted the summation

of k for the continuum-exciton states into an integral using Eq. (2.27).

71
Performing the integration, we finally obtain

s - i
PosZ8ar a0 1 1 1 ,

L ( -
o, B wgB - wga * mq Wa0*3 o wga-R*/nz—wi-iTgD/zﬁ wgB—R*/nz—wS—ifﬁD/Zﬁ

R, =1
is

. 2
b A 21312, 20,0112 <[1 ~ exp (= 4T R% y1/24-1
4T 4 wga—wi—ifaclzh

2
- [1 - exp-(- ——ﬁr—%—-— )1/2]'1> } . (2.55)
w -w =il'"" /2
g8 s

In the calculation, we have assumed that [1 - exp(-2ma)] has no poles and

the integration has been carried out by using the residue theorem. The first
and second terms in the right-hand side of Eq. (2.55) correspond to the n-th
discrete~exciton and unbound continuum-exciton contributions, respectively.

It is well known that the excitonic transitions play a momentous role in the
optical properties such as emission and absorption of photons in the band-edge
region. They are affected strongly by a damping effect, i.e., a lifetime

broadening. Such a damping effect has been introduced in Eq. (2.55) in a



phenomenological manner by replacing w by w + il'/2h, where FiD and TGC are
the damping energies in the electronic state |a> for the n-th discrete- and
continuum-exciton states, respectively.

Figure 2-5 shows a typical example of the calculated line shapes of Ris
[Eq. (2.55)] based on the simple two-band model (wga = wgB) with four different
damping parameters, I' = 0, 0.0ZEg, 0.04Eg and 0'06Eg’39 where we have made the

following assumption in the calculations:
'=T_ =T (2.56)

When the exciton states have an infinite lifetime (I" = 0), the calculated line

shape shows a divergence at the ground-state discrete-—exciton energy EX (n = 1).

1
The damping parameter broadens the resonance feature and decreases the Brillouin-
scattering efficiency. Thus, a maximum of the Brillouin-scattering efficiency
appears near the ground-state exciton energy. It is obvious that such a
maximum shifts toward lower-energy side with increasing damping parameter.
These results clearly suggest that the Brillouin-scattering efficiency depends
strongly on the damping of the excited electronic states especially in the
resonance—energy region. Details of the damping effect on resonant Brillouin
scattering will be discussed in Chapter VII.

Figure 2-6 shows a typical example of the spectral dependence of the

Brillouin-scattering cross section O calculated from Eqs. (2.25) and (2.55).

B

The vertical arrows indicate the positions of the E0 and EO + AO (spin-orbit

splitting) gaps. The numerical parameters used are corresponding to those of
ZnSe [see Chapter IV]. It has been taken into account the damping energy of

= 0.024E0 in the cglculation. The curve has also been calculated by taking
into account the higher-gap contribution (i.e., nondispersive contribution)

arising from such as the El’ El + Al and E2 gaps. The strong peaks appearing

near the Eo—gap region are due to the discrete-exciton resonance contribution.
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FIG. 2-5. Theoretical line shapes of Ryg [Eq. (2.55)] based on the

simple two-band model with taking account of four different
damping parameters.
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FIG. 2-6. Typical example of the spectral dependence of the Brillouin-

scattering cross section Op calculated from Egs. (2.25) and
(2.55). The vertical arrows indicate the positions of the Eg
and Eg+Ag (spin-orbit splitting) gaps.



The resonance peak of the E. + AO gap can also be clearly found in the figure.

0
Moreover, the Brillouin-scattering cross section has narrow and sharp minima
(dips) in the region below and near the EO gap. This phenomenon is usually
called "resonant cancellation (or antiresonance)", which is corresponding to
a cancellation of the resonant and nonresonant contributions, as will be
discussed in more detail in Chapter IV.

The Wannier-Mott exciton model [Eq. (2.55)] may increase the Brillouin-
scattering efficiency compared with the free electron-~hole pair model [Eq.
(2.29)] without greatly altering the resonance shape. If R* is very small (

i.e., the exciton interaction is very small), Eqs. (2.49) and (2.51) can be

approximated as
2
[o,@]7 ~ 0o @®@=>0) (2.57)

2
[ O ~ (2.58)

2

In this limit, the contribution of the discrete exciton term becomes very
small compared with that of the continuum exciton term, and therefore Eq. (2.55)

agrees explicitly with Loudon’s formulation of Eq. (2.29).

2.2.3 Deformation-Potential Scattering

The intermediate electronic states produced by the incident radiatiom
interact with the acoustical phonons viag deformation-potential interaction,
resulting in a change in their electronic states. The transitions of the
intermediate electronic states are determined by the transformation properties
of the electronic states in crystals and the relevant acoustical phonon modes.
Such a selection rule of the deformation-potential scattering determines the
electronic transition process (two- or three-band process) which plays a
dominant role in the resonant Brillouin-scattering process. The excitation of

a phonon produces a displacement of the atoms of the lattice, and this displace-



ment perturbs the periodic potential acting on the electroms, leading to the
electron-lattice interaction energy HEL' The electron-lattice interaction

. . . . 2
is linear in the component u of the relative displacement (Bir & Plkus),7

and a matrix element of HEL is written as
< H o> =5 u/a 2.
Bl EL I : Ba / ’ (2.59)

where a is the lattice constant, included to give a conventional normalization,
and |0> and |B> are the electronic states. The deformation potential EB& is
a matrix element of the derivative of the perturbed periodic potential with
respect to u. The coupling parameters of Eqs. (2.8a) and (2.8b), thus, contain

the following deformation potential:
8] 2D |o> = <] %g— la> (2.60)
i

1)

where. ¢ is the equilibrium periodic-lattice potential and Z is the x, y or
z component of Z. The deformation potential contained in the coupling parameters

of Eq. (2.8c), on the other hand, can be expressed by the following form:

(2.61)

3

.. 2
5 oo - <8l 5 o>
]
(2)

eL
2)
phonon operators and linear in exciton operators.(which creates two phonons

because the electron-lattice interaction Hamiltonian H is bilinear in

simultaneously and creates or annihilates an exciton). Now, let us calculate

the matrix element Z, having a form of Eq. (2.60) in the cases of [A] zincblende-

E5a
type crystal and [B] wurtzite-type crystal. We, however, do not calculate EBu
having a form of Eq. (2.61) because the electron-lattice interaction Hamiltonian

2@

eL(z)
mentioned in Section 2.2.1.

does not act on the first—order Brillouin-scattering process, as already

[A] Zincblende-Type Crystal



The wave functions df the conduction (wC) and valence band (wv) for the

zincblende-type crystals at k= 0 are given by73

b = | st > (2.62)
bys = &> = I—g, > - (%)%] 224 - (XYY > (2.63a)
Yyp = B> = I%, %> = (%)%I (X+iv)+ > (2.63b)
by = l6> = [-‘}, %> = (%)%] Zh + (XHDE >, (2.63c)

where 4 and ¥ indicate spin-up and spin~down, respectively, and X, Y and Z
are the valence-band wave functions which transform as atomic p functions
under the operations of the group of the tetrahedron and S is the conduction-
band wave function which transforms as an atomic ¢ function under the same
operations. The wave functions for the valence-band states are taken in the
, mJ) representations. The subscripts A, B and C of Eq. (2.63) indicate
the T8’ F8 and T7 valence bands, respectively. In the zincblende-type crystals,
the A and B valence bands are degenerate at K = 0, and the magnitude of the
splitting between the A (B) and C valence bands is denoted usually by Aso (
spin-orbit splitting energy) [see Fig. 2-8].

In order to calculate Eq. (2.59), we use the orbital~strain Hamiltonian

derived by Pikus and Bir74’75

as the electron-lattice interaction Hamiltonian.
This seems to be reasonable for the interaction between the electrons and
acoustical phonons (Brillouin scattering). In the polar semiconductors, however,
the deformation-potential type of electron-lattice interaction is augment for

the case of the longitudinal optical (L0) phonon by an interaction HEL due to

the electric field associated with this phonon (Raman scattering). The matrix

element of HEL (Frohlich interaction) can be given by76’77
. 2T, >
F _ o de 1 1 .% 10 % iqr
<8l H |o> = EI_Z_I ( " ~—€0 Y2 (—5 )% <Bl e lo> (2.64)



where E and w_. are the wave vector and angular frequency of LO phonon,

LO

>
respectively, and 80 is the static dielectric constant. If we let q = O,

then the matrix element mecomes diagonal in the electronic states [|a> and

[8>1.

The orbital-strain Hamiltonian Hec and Hev can be written as74’75

= a°
Hec a (eXX + eyy + ezz) (2.65)

for the conduction band at E = 0, and

1

2
H = -a (e + e + ezz) - 3b[(Lx -3

2
+ c.p.
ev XX yy L )exx c-p-]

6d
- —;{[Lx’ Ly]exy + c.p.} (2.66)

for the valence bands at K = 0. 1In Eqs. (2.65) and (2.66), the parameters a’
and a are the hydrostatic-pressure deformation potentials for the conduction
and valence bands, respectively, and b and d are the uniaxial-deformation
potentials appropriate to strains of tetragonal and rhombohedral symmetry,
respectively. eij is the component of the strain tensor. Li is the orbital-

angular momentum operator, being given by78

s [0.1 0 s f0-1 0 100
L =-—>l10 1), L =—|i o0-i] , 1 =5]0 0 of , (2.672)
v2lo 1 o Y Blo i of % 0 0-1
and
2 0 0
2o ?24y1%2+10%2=4%l0 2 0 i (2.67b)
x y 2 0 0 2

11 ”"

c.p." in the right-hand side of Eq. (2.66) denotes cyclic permutations with
respect to the indices, x, y and z, and the quantity in the square bracket

indicates the symmetrized product:

=1
L, L) =% @I +LL) . (2.68)
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The sound waves produce a displacement u(;, t) at r, which can be given
by the following plane~wave form:
uy (F, ©) = myuy expli(ar - wt)], (2.69)

>
where T is a unit vector in the direction of the polarization of the sound
wave, and the subscript I represents the component of the direction x, y or z.

N
The strain components eij(r, t) are related to the elastic displacements

[u(Z, £)] in the dedium by '°
1 Bui ou,
eij =3 ( -a—]i + _lari ) . (2.70)

The non-vanishing components of the strain temsor can, thus, be obtained from

Eq. (2.70). As will be mentioned later [Chapter IV], we have measured the
spectral dependence of the Brillouin-scattering cross sections from the T1-

and T2-mode acoustical phonons in the zincblende-type crystals. The corresponding
non-vanishing strain components obtained from Eq. (2.70) are as follows.

Tl-mode acoustical phonons:

e and e withe = - e (2.71)
XX vy yy
T2-mode acoustical phonons:
e and e with e = e R (2.72)
yz ZX vz zZX

where the Tl- and T2-mode acoustical phonons propagate in the [liO] and
[001] directions, respectively, with shear polarization parallel to the
[110] direction.

The orbital~strain Hamiltonians [Egqs. (2.65) and (2.66)], hence, become

H =
cc 0 (2.73a)

2 1.2 2 1.2
- 3b[(LX - 3L )eXX+ (Ly - 3L )eyy] (2.73b)

H
ev

for the Tl-mode acoustical phonons, and
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H =20 (2.74a)
ec

6
-—d {[Ly, Lz]eyz + [LZ, Lx]e } (2.74b)

ev /§ zX

jas]
1

for the T2-mode acoustical phonons. It is obvious from Eq. (2.73a) and (2.74a)
that the deformation-potential scattering of electrons in the conduction bands
disappears for both the Tl- and T2-mode acoustical phonons. The wave functions

of the p-like valence bands [Eq. (2.63)] can now be written in the matrix

.o T
(%)% { 2% [1]a + [o]s } (2.75a)
0 0

representation as

4> =
1
B> = - | o]o (2.75b)
0
0 1
|c> = (%);2 {27% []]a - [O]B P, (2.75¢)
0 0

where o and B indicate spin-up and spin-down, respectively. Substituting Egs.
(2.73b), (2.74b) and (2.75) ianto Eq. (2.59), one can find the deformation-

potential scattering of holes in the valence bands. We obtain the following

results:71

“an = g T Zc = O

R

Epp = 3%

(2.76)

_ _ L

Bop = 62b

pc = 0

for the Tl-mode acoustical phonons, and

E =F%_ =158 =0

AA  TBB ~cc

pp = ¢



_ _ S (2.77)
Ecp = d/2

s o x

Epe = 6°d/2

for the T2-mode acoustical phonons. It is clear from Eq. (2.76) and (2.77)
that the intraband deformation-potential scattering is forbidden for both

the Tl- and T2—que acoustical phonons (i.e., the diagonal components are
zero). Figure 2-7 shows the schematic diagrams of the electronic transitions

involving (a) & (b) ECB and (c) EAC which play a role in the first-order

BA®

Brillouin-scattering process. for example, means that the excited holes

“Ba’
in the A valence band (A excitons) are scattered by the deformation potential
b (or d) to the B valence band (B excitons), corresponding to the matrix

element EBA' Note that the matrix element EB@ has the symmetry property:

EBa = EuB s (2.78)

since it is the matrix element of a real operator.

[B] Wurtzite-Type Crystal

Next, we obtain the matrix element = in the case of the wurtzite-type

ga

80,81 It has been pointed out by

crystals based on the quasi-cubic model.
Hopfield81 that the direct-band gap of wurtzite (at k = 0) can be obtained
from that of zincblende by the action of a small hexagonal crystal field.
Under the spin-orbit interaction, represented by the matrix element ASO and
that of the crystal field represented by AC, the energy differences of the

split valence bands (correspond to the A, B and C valence bands) are given

by [see Fig. 2-8]81

BA EgB gA

Aso + A Aso + A 2 2
= 5 € _\/¢( €Yy -3 AL, s (2.79a)




FIG. 2-7. Schematic diagrams of the deformation-potential-scattering
processes for the zincblende~type crystal. a) Z_,; b) E__;
) E BA CB
Epct

a) b) c)

/PT-\C




Eca = Ege ™ Ega
By + b, \/ASO+ACZ )
= 3 + ( )y© - 3 ASOAC s (2.
Bop = Bgc ™ Egp
A+ A
_ S0 2 2
=2 \/( 2 ) 3 AsoAc @.

The corresponding wave functions of the three split valence bands are

|A> : S+f (2.
|B> : apS_t + oS v (2.
Je> . acS_t - gyt R (2.

where + and ¥ represent spin-up and spin-down, respectively, and S+, S_

79b)

79¢)

80a)

80b)

80c)

and

S, are defined by using the p-like basis functions SX, Sy and Sz as follows:

0
S = (8 + 1iSs )/21/2 2.81
+_' X 1y s ( . a)
S = (s_ - is )/2% (2.81b)
_ = x i . , .
S0 = Sz . (2.81c)
The admixture coefficients aB and aC are
- 1 3 2,-%
O = (1 + 2(2 A EBA) ] R (2.82a)
s0
_ 1 3 2.-%
Oy = [1+ 2(2 -5 ECA) ] 5 (2.82b)
s0
2 2
oy + oy = 1 . (2.82¢c)
The wave function of the conduction band is s-like in character:
1 |s> (2.83)



It has been shown that the orbital-strain Hamiltonian He for the s-like

+ . 82
conduction band of wurtzite crystals at k = 0 is given by

Hec = dlezz + dZ(exx + eyy) , (2.84)

and for the p-like valence bands by

2 2 2 2
= + +
Hev (Cl C3Lz )ezz + (CZ+C4LZ )(exx+eyy) + CS(L_ e, LZ e )

le +[L , L] ) s (2.85)

+ C6([Lz’ Ly -z 2’ =%z

where the coefficients Ci and di are the deformation potentials, eij is the

component of the strain tensor with e, = e - e + 2ie and e = e + ie ,
T XX vy -~ xy +z XZ yz

and Li is the orbital-strain momentum operator having the same form as Eq. (2.67)
and L, = Gjﬁ)@xiJLy.
The non—-vanishing strain components of the wurtzite-type crystals are
also obtained from Eq. (2.70) as
Tl-mode acoustical phonons:
e (2.86)
Xy
T2-mode acoustical phonons:
e ande withe =e . (2.87)
.ZX yz zX vz
where the Tl-mode acoustical phonons in the wurtzite-type crystals propagate
in the direction perpendicular to the c-axis with shear polarization parallel
to the c—axis and the T2-mode acoustical phonons propagate in the direction
perpendicular to the c-axis with shear polarization perpendicular to the c-axis,

and the z-axis is parallel to the c¢-axis of the crystals.

The orbital-strain Hamiltonians [Eqs. (2.84) and (2.85)], hence, become

Hec =0 (2.88a)

H
ev

2 2
c (@ e, +1 %) (2.88b)



for the Tl-mode acoustical phonons, and

H =0 (2.89a)
ec

5]
|

) (2.89b)

+z

oo = CelIL,, Lde  + L, L Je

for the T2-mode acoustical phonons. It is obvious from Egqs. (2.88a) and

(2.89b) that the deformation-potential scattering of electrons in the conduction
bands disappear for both the Tl- and T2-mode acoustical phonons, as similar

to the case for the zincblende-type crystals. The wave functions of the p-like

valence bands [Eq. (2.80)] can be written in the matrix representation as

1
0]& (2.90a)
0.

2> =
0 0
B> = a O]u +a 1]8 (2.90b)
Bls ¢lo
> =0 Ola - o 1R (2.90c)
¢l Blo

Substituting Eqs. (2.88b), (2.89b) and (2.90) into Eq. (2.59), one can find
the deformation-potential scattering of holes in the valence bands of the

wurtzite-type crystals. We finally obtain the following results:

Epn = Epp = e = O
= = q.C
B
A B (2.91)
:CB =0
Zac = %Cs

for the Tl-mode acoustical phonons,39 and

AA  7"BB CC

=
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.1, (2.92)
“CB 276

z =L

Eac = 2 %%

for the T2-mode acoustical phonons.27 It can be found from Eqs. (2.91) and
(2.92) that the intraband deformation-potential scattering is forbidden for
both the Tl- and T2-mode acoustical phonons (i.e., Eua = 0).

The matrix elements of the deformation-potential scattering for longitudinal
acoustical phonons in the wurtzite- or zincblende-type crystals can also be
obtained by the same procedure as mentioned above. Now, we consider the case
of the pure-longitudinal (PL) acoustical phonons in the wurtzite-type crystals
(propagating in the direction perpendicular to the c-axis). From Eq. (2.70),
the atomic displacement of the PL acoustical phonon produces the non-vanishing

strain component e The orbital-strain Hamiltonians of Eqs. (2.84) and

(2.85), thus, become

Hec = d2exx (2.93a)

(C2+C L 2)eXx + CS(L_2e++Lzze_) . (2.93b)

H 47z

ev
Substituting Egs. (2.90) and (2.93) into Eq. (2.59), we obtain the following

matrix elements:

Egp = 4y - (C2 + CA)

= _=d, - (C, +a 2C )

“gg = %2 2 7% Yy

. =d. - (Cc.+a’c)

~CC 2 2 C "4 (2.94)
Epa = %505

Ecg = %S5

= = a,a,.C .

“AC BC 4



It is interesting to point out that the intraband deformation-potential
scattering [Eaa] is allowed for the PL acoustical phonons (in addition to

the interband ones [EBa])’ in contrast to those for the transverse acoustical
phonons.

In order to determine the Brillouin-scattering process, we have to take
into account the selection rules of the optical transitions (dipole transitions)
in addition to those of the deformation-potential scattering. Let us now
consider the selection rules of the optical transitions by the aid of group
theory. The zincblende-type crystal has a 7d point-group structure. It is well
known that at k= 0 the conduction band has F6 symmetry and the A, B and C

valence bands have T ', and F7 symmetries, respectively.83 The polarization

8° '8
> > 5 >
vector E l_(x, ¥, z) of the point group 7d belongs to TS symmetry. The optical

transitions between the conduction and valence bands can be given by the direct

product

FS - T6 (A, B excitons): F8 X T6 = T3 + F4 + T5 (2.95a)

T, » T6 (C exciton): T (2.95b)

7 X F6 = PZ +T

7 5 '

It is clear from Egq. (2.95) that the transitions contain the representation

of ﬁ'i_(g, ;, Z) [i.e., I'_]. The wurtzite-type crystal, on the other hand,

5

has a C6v point-group structure. At the center of the Brillouin zomne (ﬁ = 0),

the conduction band has F7 symmetry and the A, B and C valence bands have Fg,
F7 and T7 symmetries, respectively.83 The polarization vectors E_l_g and

> -
E ” ¢ of the point group » belong to FS and Tl symmetries, respectively.

6

The direct products can be given by

F9 - F7 (A exciton): Tg X T7 = F5 + F6 (2.96a)

T7 > T7 (B exciton): T7 X T7 = Tl + I, +T (2.96b)

F7 > T7 (C exciton): T7 x F7

]
—
=
+
|
N
+
=
(9}

(2.96¢)
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. R > > > >
The transitions I'. - I', contain the representations of both E l_c and E ” a,

7 7
but the tramsition Fg > F7 contains only the representation pf E_l_g. it
means that for E I ¢ the optical transition between the conduction and A
valence band is forbidden and for E_l_g all the optical transitions are
possible. In Fig. 2-8, we show such selection rules of the optical transitioms
along with the band models of the zincblende- and wurtzite—type crystals at
>

k = 0, where (a): zincblende (AS0 = 0), (b): zincblende (Aso % 0) and (c¢):

wurtzite (A 0, A ¢ 0).

2.2.4 Macroscopical Theory

Brillouin scattering in cubic crystals has been analyzed in detail from-
a macroscopical point of view by Benedek and Fritsh.38 The theory predicted
the intensity, polarization and spectral distribution of the scattered light
as a function of the incident and scattered directions in the crystals.
Nelson et aZ.62 and Hamaguchi63 have extended such analyses to the case of
anisotropic media in which the birefringence effect is properly taken into
account. In the following, we obtain expressions of the Brillouin-scattering
intensities in the case of [A] zincblende-type crystal and [B] wurtzite-type

crystal, based on Benedek-Fritsh’s theory.

[A] Zincblende-Type Crystal

The electric field of the incident light in a medium is

EGE, £) = B exp[i(k.T - w,t)] (2.97)
0 0 0
with
1k, | = nuwy/ 2.98
ol = nwo c , (2.98)
where KO and wo are the wave vector and angular frequency of the light wave,

respectively. The light wave passing through the medium produces an oscillating

3 . . . > > . >
dipole moment per unit volume or polarization P(r, t) at each point r. The
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FIG. 2-8. Selection rules of the optical transitions along with the band

models of the zincblende- and wurtzite-type crystals at ¥ = 0.
(a) zincblende (Ag,=0); (b) zincblende (ASO+0); (c) wurtzite (
Dgot0, 8c30).



polarization at each point in the medium is
> > >
B(r, ) = [ <> + sa(r, ©) 1 E@, ©) . (2.99)

where ¢ is the polarizability tensor which is decomposed into its time average
>
part <o> plus the time-space fluctuations da(r, t) produced by the acoustical
>
phonons. The electric field dE’ scattered to the field point R by the oscillating

polarization within a volume ld;| <« A3 [A: wavelength of light] is now given by

N Tﬁ_}* X (—fﬁ—? x 3B @®, t)/5t°%)

e lar|1 , (2.100)
c IR - r]

where IR-r is the unit vector of R-r and t’ is the retarded time, being given

by
ﬁ-)
¢ = ¢ - alRz] cr . (2.101)
In Eq. (2.101), n is the refractive index of the medium and c¢ is the velocity
of light in vacuum. If the frequency of the acoustical phonon is small compared
with that of light, we can regard 8o of Eq. (2.99) as a weak function of the

time and write

0B (E, t)/ot? = -wozf?(?, £) X (2.102)

The oscillating moments of Eq. (2.99) radiate or scatter electromagnetic
energy in all directions. Substituting Egqs. (2.99) and (2.102) into Eq. (2.100)
and carrying out the integration over the illuminated volume V at the retarded
- -
time t’, we find that if R > r,
> >
exp[l(kOR - wot) N

%0 )2 :
c R k

E® ©) = =

x [1, x ?(?,t’)exp[-i(iig- wot)]|d¥|] . (2.103)



wWhere

> > > > >
I, = Iﬁ_; ®R>»>r) , k = nw Ik/c s (2.104)

k s 0

and we have used the approximation that
|R-F|=|R®| : (2.105)

The fluctuation of the polarization temsor of Eq. (2.103) [Eq. (2.99)] can

be expressed in terms of its spatial Fourier component:

sa@, ) = (57 5 | |ad|so" @explildf £ w, @c1}. (2.106)
H
In Eq. (2.106), ZH/IEI is the wavelength of the fluctuation, wu(a) is the
frequency of the fluctuation corresponding to this wavelength. The index u
denotes the possibility of a number of branches in the dispersion relation
connecting E and wu(a). The wave vector of the fluctuation which produces
the light scattering in the direction Tk is that which satisfies the implicit
equation:
a=k-k. (2.107)

where

+o (@11 . (2.108)

Substituting Eq. (2.106) into Eq. (2.103), we obtain

> w 3/2 > >
E (R, t) = —(7?)2 ig%%ﬁ—— z exp i{kR - lwy * wu(q)]t}
T ox (T x GH@EYI (2.109)

where we have replaced 8o by 8e/4m [e: dielectric constant tensor].
The total power dIS(E, ﬁ) in all frequencies scattered into a solid angle dQ2

>
at the field point R is proportional to the mean square field strength:



> > c T 2..2
dI_(q, R) = 2= <|Es(q, t)] R0 (2.110)

The fluctuation in the dielectric constant appearing in Eq. (2.109) results
from the fact that this constant depends on the state of the strain of the
solid. The strains themselves fluctuate at each point because of the pasage
of the sound waves. The elastic strains are connected with the elastic
displacements through Eq. (2.70). In general, for small strains, the change
in the dielectric tensor component Geij(g, t) is a linear function of the

.
elastic-strain components ekl(r, t), i.e.,

se, . (x, t)
3] -

>
- =2 P,y 8 (T,
Eiiejj K1 ijk17kl

t) s (2.111)
where pijkl is the component of the photoelastic tensor. Each tensor for the

zincblende-type crystals has the following form:

dielectric constant tensor: [g]

€11 0 0
[el= |0 ¢, O . eyt (2.112)
0 0 €ll
strain tensor: [eJ
(211 212 °3
[e] = €1 ©9  ©y5 (2.113)
%31 %32 ®33
photoelastic constant tensor: [p]
b1y Py 3 0 0 0]
Pip P13 Ppp 0 0O 0
] - |F12 P2 Pu ¢ 00 110
0 0 0 p, O 0
0 0 0 0 p, O
I 0 0 0 0 0 P4 ]




In Eq. (2.112), n is the refractive index ofthe crystal. Note that the strain
[e] is the symmetric tensor.

We may write Geij(¥, t) using Eqs. (2.112) — (2.114) as

> -> >
Eij(rs t) = [leeij (r9 t) + (pll_plz_pzil})(sljeii(r’ t)

> 2
+p12(§ezz(r, t)Gij] X €11 . (2.115)
N
The elastic-strain components ekl(;’ t) are functions of the position vector r
Using the Fourier transformation of ekl(¥’ t) into ekl(g, t), we obtain the

fluctuation of the electric displacement in the crystal:

c 2
11

604, ©) = 6" (@, O = @, oldl g1, (2.116)

where

>U _ U7 SUT (T >U3 > _ _
4 pM[TT (Iq IE) + (T IE)Iq] + Plz(" Iq)IE + %(pll Pis 2p44)

), 1 ) (2.117)

E'771

- - >
@, d ), d
In Eq. (2.117), %U is the unit vector in the direction of the polarization
of the sound wave, ?q is the unit vector in the direction of propagation of
the sound wave, with components (fé)z along the cube axes, 7 = x, y, 2.
>
IZ (L= %, vy or z) is the unit vector along the cube axis. The direction
ZH . . . . : > > U

of £ is determined by the relative directions of q, EO and T . We note that

> >
in the Brillouin-scattering experiments one observes notCleut the vector EU

. . pall
which is related to 7 by

=1 «<d xthH (2.118)

>
where Ik is the. unit vector of scattered light.

From Eqs. (2.109), (2.110) and (2.116), we finally obtain the Brillouin-

scattering intensity of light scattered into the internal solid angle {2 during



the éptical—path length b as

2 4
Tfu g B2

A =1 2
= DVU

sHapbp (2.119)

dIS(Q) =1

where IO is the incident-light intensity and AO is the wavelength of the light
in vacuum. The summation in Eq. (2.119) indicates that one must include
contributions from the three different acoustical phonon modes, i.e., those
from two transverse phonon modes and one longitudinal phonon mode. o¥ is the

energy density of the acoustical phonons. The thermal-phonon occupation number

nu(a) is given by

> ->
nu(Q) =1/( exp(’ﬁwu(q)/kBT) -11] . (2.120)

In the case of‘ﬁwu(a) <« kBT’ Eq. (2.120) can be written in good approximation

as

o, @ = kBT/'ﬁwu @ . (2.121)

Thus, the energy density o of Eq. (2.119) can be replaced by kBT in the case
of Brillouin scattering by thermal phonons [@u = nu(a)ﬁwu(a) = kBT]. It should
be noted here that the internal solid angle  is not equal to the external solid
angle Q> due to the fact that the refractive index in the medium is different

from that in vacuum. Assuming small cone angles, one obtains63

cosed
dQ = ——————— 4@’ , (2.122)

m/n2 sinze
d
where ed is the external scattering angle. The scattering cross section is now

nze 4 6
& ! a2 %0%Y
= z 2 ]‘E I

A
A /—_
0 H zpvu n n2 - sinzed

where OB is defined as the Brillouin-scattering intensity per unit path length

o]

B s (2.123)



per unit external solid angle. Next, we evaluate the Brillouin-scattering
cross sections in the zincblende-type crystals for two special phonon modes
(a) Tl-mode acoustical phonons and (b) T2-mode acoustical phonons by the

aid of the above results.

(a) T1-Mode Acoustical Phonons:

The Tl—mode‘phonons propagate in the [110] direction with shear polarization
parallel to the [110] direction. We adopt the configuration that the incident-
light polarization is parallel to the [110] direction [see Fig. 3-1 (a)].

> > >
The vectors m, I and I_, thus, become
q E

T = /3, V3, 0) , (2.124a)
Tq = (1/v2, -1/¥2, 0) , (2.124b)
TE = (1/v2, 1/V2, 0) . (2.124¢)

Substituting Eq. (2.124) into Egs. (2.117) and (2.118), one obtains ZTl as

—>T]__;L_ _ >

=350y plz)Iq (2.125)
and ETl as

—»T]__l _ s

£ = 2(p11 plz)cosei IS R (2.126)

N
where ei’ is the incident angle incide the specimen, and the vector Is stands
>
for the unit vector lying in the scattering plane. The scalar product of IS
> ] 3 V
and IE is given by

i .7 =0 2.127
s E_ 3 (- )

which means that the scattered-light polarization is explicitly perpendicular
to the incident-light polarization. Substituting Eq. (2.126) into Eq. (2.123),

we obtain



ﬂzs 4 ® - 2 cosed
- 11 )cosGi’Ilsl] ——, (2.128)

1
= — [5(p,,-P
B 4 C,.-C 2'V¥117 %12
Ao 11 712 ‘o /nz_sinzed

T1
g

where Cij is the component of the elastic stiffness tensor which has the same

form as Eq. (2.114). 1In Eq. (2.128), we used the following relation:

vpy = 1€y, = ¢ /2007 (2.129)

(b) T2-Mode Acoustical Phonons:

The T2-mode phonons propagate in the [001] direction with shear polarization
parallel to the [110] direction. We adopt the configuration that the incident-
light polarization is parallel to the [110] direction [see Fig. 3-1(b)].

The vectors %, Tq and TE are, thus, written as

T = /2, 1/v2, 0) , (2.130a)
Tq = (0, 0, 1) , (2.130b)
TE = (1/v2, 1/¥2, 0) . (2.130c)

Substituting Eq. (2.130) into Eq. (2.117) and (2.118), one obtains ZTZ as

+T2

T =, 'fq , (2.131)
and ETZ as

2 pyc088,” T ) (2.132)

The scattered-light polarization is also explicitly perpendicular to the

incident-light polarization, because

T -1 =0
RIS ) (2.133)

Substituting Eq. (2.132) into Eq. (2.123), we obtain



2 4
T e T2 cosf
oy = —2 2 p, coso T |17 —— (2.134)

[p
B 4 2C 44
AO 44 nVnz—sinzed

where 644 is the component of the elastic stiffness temsor, and we used the

following relation:

Vig = (€00 X (2.135)
[B] Wurtziie—Type Crystal

The macroscopical theory of Brillouin scattering in the wurtzite-type
crystals offers the closest analogy with that in the zincblende-type crystal
[A}]. One must, however, take into account the anisotropic nature of the optical
properties (i.e., birefringence effect) in these crystals, since the scattered
and incident lights have sometimes different polarizations. For the wurtzite—
type crystals, the dielectric constant tensor [e], strain tensor [e] and

photoelastic constant tensor [p] can be written as

e, O 0
el=| o0 e, o0 , (2.136)

0 0 &g,

with

11" no2 and 533 = ne2 R (2.137)

11 %12 ©13
[e] = € €  ©53 . (2.138)

€31 %32 ©33

and



Py; Py Pz O 0 0
Pjp P3Pz O 0 0
P P P 0 Y 0
p1= | Ot ¥ . (2.139)
0 0 0 Py 0 0
0 0 0 0 p, O
0 0 0 0 0 b
with
P, = 1 (P,q - P.,) (2.140)
66 2 ‘P11~ P12 : :

In Eq. (2.137), n and n, are the refractive indices for the ordinary and
extraordinary rays, respectively. If the birefringence effect is taken into
account, the wave vectors EO [Eq. (2.98)1, ﬁs [Eq. (2.104)] and ﬁ [Eq. (2.108)]

appeared in [A] become63

n.w
> _ 7iQ >
kO =2 Ik s (2.141)
0
> ndwo >
k=1 , (2.142)
T- gy re @13 (2.143
=T W T M k ’ 149

where o, and ny are the refractive indices for the polarization of the incident

> .
and scattered lights, respectively, and Ik is the unit vector in the direction
0

>
of the incident-light wave vector ko.
Carrying out the same procedures as [4], we obtain the fluctuation of

the electric displacement in the wurtzite-type crystals:

2

8@, ©) = 6”@, 0F) = - J@ olqE T . @

where
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+ @A), a1, (2.145)

In Egs. (2.144) and (2.145), the notations used are the same as those appeared

in [4]. ?Z [t =1, 2, 3 (x, vy, 2)] and Tm [m=1, 2, 3 (x, v, 2)] are unit

1° OX2 and OX3 defined in the text of Nye,42
where OX3 (z) is parallel to the c¢-axis of the crystal. EO is the dielectric

constant tensor in the absence of strain. The vector E“, which determines

vectors along the cube axes O0X

the polarization of the scattered light, is given by the same form as Eq. (2.118).

We finally obtain the Brillouin-scattering cross section in the wurtzite-type

-

crystals as

4
T e U cost
o - w1y o w2 %4 (2.146)
B 4 2 —
>\O u 2pv n 2—sin29
H R d

In the following, we evaluate the Brillouin-scattering cross sections in the
wurtzite-type crystals for three special phonon modes (a) Tl-mode acoustical
phonons, (b) T2-mode acoustical phonons and (c) PL-mode acoustical phonons by

the aid of the above results.

(a) T1-Mode Acoustical Phonons:

The Tl-mode phonons propagate in the direction perpendicular to the c-axis



with shear polarization perpendicular to the c-axis. We adopt . the configuration
that the incident-light polarization is perpendicular to the c-axis and parallel

> > >
to the shear polarization [see Fig. 3-4 (a)l. The vectors T, Iq and IE’ thus,

become
—->
T = (0, 1, 0) s (2.147a)
¥q = (1, 0, 0) s (2.147b)
TE = (0, 1, 0) . (2.147¢)

Substituting Eq. (2.147) into Eqs. (2.145) and (2.118), one obtains %Tl as
Tl _ l _ > >
T =3 oy - EDST, (2.148)

>
where Ixz is the unit vector lying in the 0X1—0X3 plane. Thus,

2
nglZ B (Pll'Plz) 3 5 IT lz

2 2(c¢
20vry

(2.149)

where the sound velocity v of this phonon mode is given by the same form

T1
as Eq. (2.129). The elastic stiffness tensor [C] has the similar form as

Eq. (2.139). The Brillouin-scattering cross section can be obtained by
substituting Eq. (2.149) into Eq. (2.146). It is clear from Eq. (2.148) that

the scattered-light polarization is explicitly perpendicular to the incident-

light polarizatiom.

(b) T2-Mode Acoustical Phonons:

The T2-mode phonons propagate in the direction perpendicular to the c-axis
with shear polarization parallel to the c-axis. We adopt the configuration
that the incident-light polarization is parallel to the c¢-axis [see Fig. 3-4 (b)}

> > >
The wvectors T, Iq and IE are, thus, written as

T = (0, 0, 1) , (2.150a)
Tq = (0, 1, 0) , (2.150b)
T = (0, 0, 1) } (2.150¢)



It is clear from Eq. (2.150) that

o E U > > - .
[ Iq 0, Iq IE 0 and (7 )Z(Iq)Z(IE)Z 0 R (2.151)

so that Eq. (2.145) can be reduced to as

€
> 3.2 =
2o p,, (271 : (2.152)
11 4
Then, one obtains
B2, (3203 w1 (2.153)
= Pyy 811 ) k q e ? *

where ?l? is the unit vector perpendicular to the e-axis. It can be found from
Eq. (2.153) that the scattered-light polarization is perpendicular to the
incident~light polarization. One can finally obtain
12722 P S35 4 e 2
= a4 ox1 T

2 2C €

(2.154)
s 11 kb Ule

PViro

The sound velocity v, is given by the same form as Eq. (2.135). The Brillouin-

T2
scattering cross section can be obtained by substituting Eq. (2.154) into Eq.

(2.146).

(c) PL-Mode Acoustical Phonons:

The PL-mode (pure longitudinal) phonons propagate in the direction
perpendicular to the c-axis with acoustical polarization perpendicular to the
c-axis. We adopt the configuration that the incident-light polarization is

parallel to the c-axis [see Fig. 3-4 (c)]. The vectors %, Tq and TE’ thus,

become
N
T = (1, 0, 0) s (2.155a)
->
Iq = (1, 0, 0) , (2.155b)
>
1, = (0, 0, 0) . (2.155¢)



Thus, Eq. (2.145) can be reduced to as

€
2PL _ 33 22
£ =py €1y I , (2.156)

where I“c is the unit vector parallel to the c¢-axis. It can be seen from
Eq. (2.156) that the polarization vector of the light does not change after

being the Brillouin-scattering process. Finally, one obtains

PL, 2 P €
12__15 - 52k ¢ E§§.)4 |f”c 12 . (2.157)
20, 1 fn

In Eq. (2.157), we used the following relation:

V.

%
oL = ¢ clllp ) . (2.158)

The Brillouin-scattering cross section can also be obtained by substituting

Eq. (2.157) into Eq. (2.146).

2.3 PIEZOBIREFRINGENCE THEORY

2.3.1 Dielectric Constant

In this sub;ection, we shall discuss theoretical expressions of the
frequency~dependent dielectric constant. First, we cosider the dielectric
theory from a classical point of view84 in which the N atoms in a volﬁme v
are represented by N damped harmonic oscillators. We present an electron of
mass m and charge (-e) from the valence band in the form of the classical

oscillator, whose natural frequency w, is equal to difference between the

(0]
energies of the electron in the valence band and in the conduction band. The
presence of an electromagnetic wave having electric field E = EO exp (-iwt),

polarized in the x-direction, produces forced oscillations. The equation of

motion of an oscillator is



m(X + X + wOZX) = (-e)E; exp (-iwt) s (2.159)

where the dots indicate time derivatives and X is the displacement of the
charge from its equilibrium position. T is the phenomenological damping constant.
The solution of Eq. (2.159) is given by

(—e)E0 exp (-int)
X =

5 (2.160)
2 .
mw, - o - iTw)
The electric field E in a medium is described by the electric displacement
vector D. The relation between the electric field and electric displacement

is given by
B=E+7 , (2.161)

where P is the polarization of the medium and is equal to the density of the
electric dipoles induced by the electric field. The polarization can be

assumed in the linear approximation as [see Eq. (2.99)]
P =of , (2.162)

where o is the polarizability (susceptibility) tensor. We can find from

Egs. (2.161) and (2.162) that

D=(1+o)E=c¢kE . (2.163)
where € is the second-rank dielectric constant tensor [see, e.g., Egs. (2.112)
and (2.136)]. The polarization is equal to N(-e)X. Thus, the frequency—

dependent dielectric constant can be written from Eq. (2.160) as

Ne2
cew) =1+ 3 3 . (2.164)
m(wO - w - ilw) :

The classical result (2.164) refers to a single atomic transition frequency.

The polarizability of a solid of atoms having many excitation frequencies



wo. is calculated by dividing the N harmonic oscillators into fractioms
n :

(Ni/N) which have frequency w.., and damping parameter Fi. The dielectric

0i

constant is, then, given by a sum of terms like those in Eq. (2.164), one for

each group of oscillators,

2
N.e
e =142 £ , (2.165)

X 2 2 .
i m(wOi -w - 1Tiw)

where
N,

z ( )=1 . (2.166)
i
When w is close to one of wi, the corresponding term in the summation is
dominant, and the remaining contributions can often be neglected.

A quantum theory of the dielectric constant can be obtained by calculating
the electric—dipole-moment operator form quantum-mechanical concepts. Consider

a system described in the Schrodinger representation by a wave function Y (t)

which satisfies [time-dependent Schrodinger equation]

oY (t)

H)¥Y(t) ='ih 5t

(2.167)

Here, H(t) is the total time—dependent Hamiltonian of the system, being given
by

H(t) = H, + HED(t) . (2.168)

0

HO is the Hamiltonian of the system in the absence of the electromagnetic

radiation, and HED(t) is the Hamiltonian of the electric-dipole interaction

written as (dipole approximation)

Hy (6) = - 2 er, E(t) = ME(t) (2.169)
- J
J
where
.
M=-1I erj (2.170)

j



is the electric-dipole-moment operator. The summation is over all particles

in a unit volume. The electric field is now given by

% = %—EO[ exp(iwt) + exp(-iwt) 1 . (2.171)

Thus, at time t, when the wave function is ¥(t), the electric dipole moment is

M(t) Y& (e)MY (£)dv (2.172a)

or equivalently

M(t)

<¥{m|y> . (2.172b)

Let us suppose that w is close to a single transition of frequency wo

between two states ¢m and ¢n having energies«hwm and—ﬁwn. The remaining energy
levels are ignored for the present, and the gemneral form of the wave function

is then
Y(t) = am(t)¢mexp(-immt) + an(t)¢nexp(—iwnt) . (2.173)

The time-dependent coefficients am(t) and an(t) must be obtained by solutions

of the following equations:
am<¢m|HED|¢m> + an<¢m]HEDl¢n>exp(—ﬂuot) = #ha_ (2.174)
and
am<¢n|HED]¢m>exp(iwot) + an<¢n|HED|¢n> = ihd (2.175)
Substituting Eq. (2.173) into Eq. (2.172), we obtain
M(t) = aka < |M|¢ >exp(-iwt) + aka <b_|M|¢ >exp(iwgt) C(2.176)

The electric dipole moment given by Eq. (2.176) is a real quantity as expected

physically. The second derivative of Eq. (2.176) with respect to "t" gives



. . g %5 — 1 aka )< N -
M(t) 1w0[(aman + axa 1w0aman) ¢m|M[¢n exp ( 1w0t)

- Q% *3 1 * < > .
(anam + a*a + 1w0anam) ¢n|M|¢m exp(lwot)]

(2w021<¢m|M1¢n>]2cos w)(la|? - a ) - 0, M(E) (2.177)

The applied electric field is assumed to be sufficiently weak that the
atomic populations suffer a negligible disturbance from their thermal
equilibrium values, so that in Eq. (2.177) |an|2 can be neglected and [am|2

set equal to unity. Thus, we obtain
M(e) + w 2M(E) = 20 2|<¢_|M|¢ >|? cos wr . (2.178)
0 0 m n

The quantity M(t) now represents the dipole moment per atom at time, and

the macroscopical polarization of the solid is simply
P(t) = NM(t)/ V . (2.179)

The differential equation (2.178) is easily solved, and the resulting dielectric
constant obtained from comparison of Eq. (2.179) with Egs. (2.162) and (2.163)
is

2
Nl<o_[1l_>] 20,

ve h 2 2 °
0 wo -w

c(w) =1+ (2.180)

It is obvious from comparison of Eq. (2.180) with Eq. (2.164)4that the
quantum-mechanical expression is very similar to the classical one if the
phenomenoclogical damping parameter I' is taken into account in Eq. (2.180).
The quantum—mechanichl expression for the dielectric constant of a solid

having many transition frequencies w can also be obtained by a generalization

0i

of the method used for a single transition w The result is written as

0



2
N 209510y Mo,
Ve(fh i w .2 - wz
0i

e(w) = 1+ (2.181)

In the following, we shall obtain the model dielectric constants in
semiconductors based on simplified models of the iInterband transitions.
First, we consider the contribution of the free electron-hole pairs or direct
band-to-band transitions to the dielectric comstant. It is a good approximation
to assume that the band edge in semiconductors such as II-VI compounds is
. - g
parabolic in k-space, e.g.,

2.2

> > Ak
H k) = E (k) + —— 2.182
w ) = & () + 350, (2.182)

where Y is the reduced effective mass given in Eq. (2.26). We obtain the

real part of the dielectric constant as an analogy to Eq. (2.164) or (2.180):

2

81e lp &) |2

z > R
- iTwlw )

3m%h k [wg(ﬁ)z -

ai(w) -1 = , (2.183)

where P(E) is the i—dependent momentum matrix element. Substituting Eq. (2.182)

into Eq. (2.183) and converting the summation of k into an integral, we finally

obtain
B 1= f(x) (2.184)
&1 =0 P ’ )
where )
_ 3 3
£(xg) = x 2. a-nF-a+x? (2.185)
_2 3/2  -3/2.2
C0 =3 3/2 w) wg P , (2.186)
%) = w/ wg . (2.187)

To obtain Eq. (2.184), we separated the real and imaginary parts and carried

out the integration. Equation (2.184) is, thus, only valid in the region of



non absorption (i.e., x < 1). Moreover, for simplicity, we assumed that the
> Iy
matrix element P is k-independent quantity.
It is well known that the contribution of the EO gap to the imaginary

part of the dielectric constant can be written as

1
fw=c Lt w-0)% (2.188)
2 0 2 g
w
where C0 is given by Eq. (2.186). The real part of the dielectric constant

can also be calculated from Eq. (2.188) by using the following Kramers-Kronig

relations:
[ w’ez(w’)
el(w) =1+ S I a— dw’ N (2.189a)
0 (w,) -
2 € (w )
ez(w) = - 2 dw? . (2.189b)
0 (w’)

Substituting Eq. (2.188) into Eq. (2.189a), we obtain the same result as Eq.
(2.185).85_87 It is noting that the result (2.185) is based on the simple

band model but not on the complex band structure connecting with overlapping

of bands. If we consider crystals having the band structures given in Fig. 2-8,

the contributions from the three valence bands must be included. In such a case,

we obtain

€ (w) -1=3 C . f(x..) s (2.190)
i=a,B,c b O
where
2 3/2 -3/2 .12
oy =5 (3/21u) W |<c|p]i>| , (2.191)
X); = w/ mgi . (2.192)

In Eq. (2.191), I<c|P|i>|2 is the squared p-matrix element corresponding to

the dipole transition between the i-valence band (i = A, B or C) and conduction



band, and ® i is the energy difference between the i-valence and conduction
band (i.e., band-gap energy). For the zincblende-type crystals [see Fig. 2-8(b)],

Eq. (2.190) becomes

w
F _ W 1,0 .3/2 w
g W) - 1=Cy [E()+5 (=) ()1, (2.193)
0 os 0s
where
_4 -3/2 2
COZ =3 (3/2 u) W P , (2.194)
vﬁwo = EO , (2.195a)
—ﬁwos = EO + AO (2.195b)
In Eq. (2.193), we assumed that
.12 2 .
|<e|P|i>]“ =P° (i =4, Bor C) . (2.196)

Next, we consider the contribution from the Wannier-Mott exciton transitions.
For the discrete exciton transitions, the imaginary part of the dielectric
constant is given by 68,88
D f? bt 2., n
€,(E) =2 —5 i¢n(0)[ S(E_, - E) (2.197)
i=A,B,C E~ i=1

where ¢n(0) is the envelope function of the n-th exciton state given by Eq.
(2.49), EZX is the n~th exciton energy given by Eq. (2.50), and f? is the
strength parameter proportional to the squared p-matrix element |<c]Pli>r2.
The imaginary part of the dielectric constant is directly related to the

absorption coefficient

An(E)
=
€,(E) o “(E) > (2.198)
where o is the absorption coefficient, A is the wavelength of light, and n is

the refractive index. The Kramers-Kronig transformation of Eq. (2.197) gives



—70 —

D © 1
€P(E) -1 =2 P{z o, (2.199)
1 1=A,B,c T p=1 n3[(EZX)2 - £

2 - D
where, for simplicity, we replaced ZEZX nSf? ]¢n(0)l T 1 by Fi'

If there is a continuum of states, the imaginary part of the dielectric

, . 68,88
constant 1is written as

Hh
Nll—‘ a

eg(E) =3

2 k
Z o, (0)|° p(E)S(E. - E) ; E>E , , (2.200)
i=A,B,c EX k ¥ ex gt

where ¢k(0) is the envelope function of the continuum exciton state given by
Eq. (2.51), sz is the energy of the continuum exciton state given by Eq. (2.53),
f? is the strength parameter proportional to the squared p-matrix element and

%
(E - Egi) 2, and p(E) is the density-of-states function

1 U % %
P(E) =——= (= )*(E-E ) . (2.201)
2ﬂ2 -ﬁ2 gi

The real part of the dielectric constant can be obtained by substituting Eq.

(2.200) into Eq. (2.189). If the function of Eq. (2.51) is assumed to be

Toexp (Ta) _ 2mal ~
sinh (mo) 1 - exp(-2ma)

2ma, ’ (2.202)
: . . 89
the Kramers—-Kronig transformation gives

E,
e - 1=12 ¥ (AL

I S -+ S
A BC i ic Ez 1n 3 ) (2.203)
T4 D>

., — E
gi

C - . . .
where Fi is thestrength—-parameter constant having similar physical meanings

as F? of Eq. (2.199) and Ei is the ground-state exciton energy. In the limit

1
G » 0, we also obtain

C
F E
C i il
eS(w) - 1=2Z —375 5755 f(x) (2.204)
1 i=A,B,C G3/2Egi1/2h2 i ’



where the dispersive term f(xi) has the same form as Eq. (2.190). This result
reflects that if the exciton interaction is very small (G -+ 0) the continuum
exciton transitions behave like free electron-hole characteristics, as similar
to the case discussed in Section 2.2.2.

Finally, we obtain the real part of the model dielectric constant of solids

in the following form:

el(E) = €§(E) + ell)(E) + ei(E) + € (2.205)

1w >

where ei(E), g?(E) and Si(E) are given by Egqs. (2.190), (2.199) and (2.203)

for (2.204)], respectively, and ¢ is the background dielectric constant

Joo

arising from the higher—-gap transitions such as the E E.+A. and E_, transitions.

1’7171 2
F? and Fg can be directly determined by fitting

the expression (2.205) to the experimental data of refractive indices (El = nz).

The strength parameters COi’
The imaginary part of the dielectric constant is proportional to the absorption
coefficient ¢ according to the relation (2.198). This part is also related to

reflectance R through the Kramers-Kronig transformation. Therefore, it is also

possible to determine the strength parameters from the absorption or reflectance

0 . . . : . D
measurement.69’9 It is noting that the discrete-—exciton term €1 shows sharp
. . . . , c
dispersion compared with the continuum exciton €. or the free electron-hole

1

pair term eF It is also clear from a comparison of Eq. (2.190) with Eq. (2.204)

1
that the free electron-hole pair term is very similar to the continuum-exciton
term. It is, thus, practical to include the free electron-hole pair term (or
vice versa the continuum—exciton term) into the continuum-exciton term (the

free electron-hole term) by introducing an extra parameter C in the strength

constant, i.e.,

e (B) = a?(n) + cs_‘{(E) +e (2.206)

1o °



2.3.2 Photoelastic Constant

In Section 2.2.4, we showed from a macroscopical point of view that the
Brillouin-scattering intensity can be expressed in terms of the corresponding
photoelastic constant of the crystal. The numerical values of the photoelastic
constants can be independently determined from the intrinsic-piezobirefringence
measurements. The purpose of this subsection is to obtain the basic expression
of the photoelastic constant from microscopical aspect. It is well known
that uniaxial stress splits the degenerate valence band at kK = 0 of the
zincblende-type crystal into two bands. The effect of such splitting could
be investigated in suitable optical experiments. For example, Thomas91 has
measured the splitting of the exciton line in CdTe from the reflectance
measurement. Such a measurement enables us to obtain information about the
deformation potential because the splitting is strongly connected with this
potential.72 It is also obvious that the splitting of the valence band under
the uniaxial stress would lead to the birefringence of the crystal. The piezo-
birefringence, which is an o0ld topic of crystal optics, could be described
phenomenologically by the photoelastic constants or piezo-optical coefficients.4
The sound wave propagating in a crystal, on the other hand, produces the
dynamical elastiq strain through the elastic displacements of compositional
atoms [see Eq. (2.70)]. This strain produces the fluctuation in the dielectric
constant of the crystal. The fluctuation in the dielectric constant is a linear
function of the elastic strain connected with the photoelastic constant, as
expressed by Eq. (2.111). Thus, the Brillouin-scattering phenomena are thought
to be described by a phenomenological formalism analogous to that of the
intrinsic piezobireffingence phenomena. In Fig. 2-9, we show a schematic of
(a) the Brillouin-scattering and (b) intrinsic-piezobirefringence measurement.
Note that the change in the dielectric constant is arising from the dynamical

strain for the Brillouin-scattering experiment while this is arising from the
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FIG. 2-9. Schematic representations of (a) Brillouin~scattering and (b) intrinsic-piezobirefringence
measurement. The conservation of momentum (wavevector) is indicated in (a). 04 and Dg are

the incident and scattering angles, respectively. ¢ is the dielectric constant of the
crystal.
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static strain produced by applying a uniaxial stress for the intrinsic-
piezobirefringence experiment.

When a uniaxial stress is applied to a crystal having diamond or zincblende
structure the crystal becomes birefringent. The intrimsic piezobirefringence
is usually measured with linearly polarized light which propagates along a
direction perpendicular to that of the applied stress.64 Two linearly polarized
waves with the amplitudes E“ (parallel to the stress directiom) and Fl_(
perpendicular to the stress direction) will propagate through the crystal.
The components of the electric vectors of these waves, as a function of the

position x in the crystal, can be written as

E“ (x) EO exp[i(ZTrn“x /A - wt) ] exp(—21Tk”x /)\) s (2.207a)

EJ_(X) EO exp[i(2nnJ3</l - wt)] exp(—2ﬂkJ3(/A) R (2.207b)

where E0 is the amplitude of the incident wave, and w and A are the angular
frequency and wavelength in vacuum, respectively. nﬁ = n!l+ ik” (?I.= l_+

i%l? is the complex refractive index for light polarized parallel (perpendicular)
to the stress axis (n is the real refractive index and k is the attenuation
index, also called the extinction coefficient). Equation (2.207) represents

a wave traveling in x-direction with velocity c/n (c: light velocity in vacuum)
which is attenuated by exp(-2mkx/A). In the intrinsic-piezobirefringence
experiments, one measures the phase difference between the components of the

light polarized parallel and perpendicular to the stress axis. The phase

difference per unit path length (d) is given by

A
) - . .
5 ﬁ(nll nl) /A (2.208)

In a region where the absorption is small (i.e., £, = 0), the difference of

2

the refractive indices (nll_ él? can be written as



2 2 1l 1
- €, ~ € Ae
M= (np-ny) = Ejl i -1 LAY , (2.209)
” _l_ n||+nJ_ 0 2n

N
=]
]
o

where o is the real refractive index in the absence of the applied stress.

The photoelastic constant pijkl is defined by the equation:42

DSy, = -

iy -~ (2.210)
I %% w

Piik1%k1 ’
where ( %-)ij is the reciprocal of the dielectric constant tensor. The strain
[e] and stress [X] tensors are related by a fourth-rank compliance tensor [S]:
eij =3z Sijklxkl s (2.211)
kl
where S has the same tensor form as Eq. (2.114) or (2.139). The piezo-optical

constant Ty is also defined by the following equation:

jk1
1 - Aei.
ACE gy e T Mgt (2.212)
ii733 k1l
The piezobirefringence coefficient o defined by Yu and Cardona92 can now be
given from Eq. (2.210) by
o = =-1I

€,.€..P... 5
X mn 1133 ijkl klmn

(2.213)

In Egs. (2.210), (2.212) and (2.213), sij is the real part of the component
of dielectric constant tensor. If the piezobirefringence measurement is.

carried out in an opaque region (i.e., £, = 0), we must take into account

2
the contributions both from the real and imaginary parts of the dielectric
constant. Details of such a case will be presented in Chapter VI.

Now, we show the effects of [001] and [110] stress for the zincblende-type

crystal. For the [001] stress, the strain tensor is written from Egs. (2.113)

and (2.211) as



12
- : 2.21
lelggy =| 0 81X © (2.214)
0 0 s, X

Substituting Eq. (2.214) into Eq. (2.210) or (2.212), we obtain

2
Beppory = 7 €11 (Prg T Ppp) By 7 810X (2.2152)
or
Ae T A G (2.215b)
[001] 11 V11 12
For the [110)] stress, the strain tensor becomes
(sll+slz)x/2 sMX/l; 0
[e]110 = SMX/A (s11+512)x/2 0 . (2.216)
0 0 512X
We can, thus, obtain
Ae --¢ % 8 X (2.217a)
[110] 11 Y447 44
or
Ae =-¢e %n x (2.217b)
[110] 11 44
64

Note that the result (2.217) is the same as for the [111] stress.
For the wurtzite-type crystal, the analysis is identical to that for
the zincblende-type crystal. However, it becomes more difficult compared with
that for the zincblende-type crystal because of the optically anisotropic
nature of this material. We now show a typical example of such analyses which
corresponds to the éeometric configuration for the determination of the
photoelastic constant Pgo* In this case, the uniaxial stress is applied in
plane perpendicular to the c-axis. If we choose the coordinate system such

that the x-axis is parallel to the direction of the applied stress, the strain



tensor becomes
[el], =| 0 83,X 0 . ’ (2.218)

From Eqs. (2.210) and (2.218), we finally obtain

- - - - - 2
Bej, = 7 e1€p(Pyy T Pyp) (Bqy = S1p)X = = €9y PggSeek o (2-219)
where
1
Pes = 2 P11~ P12) > (2.2202)
S66 =2 (Sll - le) . (2.220b)
To first order in stress, the change in el(w) can be expressed by39
Bel 881 351
[Ae; W] =75~ X = ;_ Com O + 55 g ) (2.221)
i=A,B,C i gl
where M = |<[p|>]2 is the squared p-matrix element and the summation indicates

that contributions from the three valence bands must be included. The first
and second terms on the right-hand side of Eq. (2.221) correspond to the
contributions from the first-order change in the équared p—matrix elements
and interband transition energies, respectively. To calculate the changes

in Mi and wgi’ we can use the orbital-strain Hamiltonian Eq. (2.66) or (2.85)
as a Hamiltonian for the stress effect on the electronic band structure of
the crystal.

By way of example, let us calculate the changes in wgi and Mi in the case
of the zincblende-type crystal for the [00l] stress direction. As already
shown in Fig. 2-8, without spin-orbit splitting the valence band edge at k=0
in the zincblende-type crystal is a six-fold degenerate multiplet with orbital
symmetry rlS' The spin-orbit interaction lifts this degeneracy into a four-

fold multiplet (FS) and a two-fold multiplet (T7). The spin-orbit Hamiltonian
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is

Ho=3m L0 , (2.222)

where L is the orbital-angular momentum operator given by Eq. (2.67) and O

is the Pauli-spin matrices78
o, = [0 1] - [O 'i] , O, =[1 0] . (2.223)
1 0 i 0 0 -1
The total Hamiltonian is, thus,
H=H +H . (2.224)

Substituting Eq. (2.214) into Eq. (2.66), we obtain

n, == B -2en 0 ’-inh (2.225)

where
(SEH = a (Sll + Zslz)X N (2.226a)
8Eq, =2b (5, — S,,)X . (2.226b)

From Eqs. (2.224), (2.225) and (2.75), the Hamiltonian matrix for the valence

bands becomes75

|B> [a> |c>
1 1
3085 238001 0 0
- i, 1 V2
Izl - 0 oo™t 26Ep01 2 %001 - (2.227)
V2 2
0 298001 = e 0By
The diagonalization of Eq. (2.227) gives
|B>> |a?> |c2>
B 0 0
Il &l =| o A 0 , (2.228)

0 0 c



where the eigenvalues are

1 1 1 2 9 2.%
= - = - = = = .22
A 3 ASO 6EH+ A AE001+ 2[[\50 +_ASO<SE001+ 4(cSEOOl) ] , (2.229a)
B=- %Aso- By~ %‘5E001 ’ (2.2290)
= - i l - l 2 _9_ 2 lé
€= =20 -6E+ 78E = SIA_“HA_ SE .+ 7(8E 1) "] . (2.229¢)

Assuming 6E001 <« Aso’ the changes in the band-gap energies to first order

in stress are given from Eq. (2.228) by

-1 _1
BE, = -3 A +OE - ZOE ., (2.230a)
AE . = —2pA +8E +%sE (2.230b)
gB 3 Tso H 2 001 ? :
2
AEgC = 5 ASO + SEH . (2.230(!)

The eigenvectors of Eq. (2.227) to first order in stress can be expressed as

SE

|A*> = |a> + — 001 lc> R (2.231a)
V2B

|B*> = [B> , (2.231b)
SE

[c>> = o> + —99L [ . (2.231c)
/iASO

The squared p-matrix element M is given by
> >y 2
M = [<cle-p|i>| , (2.232)

>
where e is the unit polarization vector of the electric field of the incident

>
radiation and p is the linear momentum operator

> il
5> —
P 1

v . _ (2.233)

¢> is the conduction-band wave function which transforms as an atomic s function



under the operations of the group of the tetrahedron [see Eq. (2.62)]. The
changes in the squared p-matrix elements can be obtained from Eq..(2.232) by
replacing |i> by the perturbed wave function |a’>, |B’> or |C*> of Eq.

(2.231). The strain-dependent p-matrix elements are now written as

Il (e) = |<c}p” |A’>|2= I<cl% |A’>|2 = % P2[1+(6E001/ASO)], (2.234a)
INCE |<c|pl]A’>|2= <c|] B ar>|? = 2 p?11-2(8E o, /A_)1, (2.234b)
s (® = |<c|p”|B’>|2= I<c| % IB°>j2=0 , (2.234c)
My (o) = I<clpl|B’>|2= <c] B mo>)% = 197, (2.234d)
Mg (@) = |<c1p”lc’>|2= |<c|’ﬁ;g—z lc>>]? = % P2[1—2(6E001/A )1, (2.234e)
M_LC (e) = |<c]p_LIC’>| |<c| 1ax lc’>|2 = % P2[1+(6E001/ASO)], (2.234fF)

where.subscripts Iland‘l_indicate light polarized parallel (z) and perpendicular

(x) to the stress axis [00l]. 1In Eq. (2.234), we used the following relation:
|<c¢l lx+>| |< f| |Y‘I‘>| I< ‘r[ IZ¢>| (2.235)

with similar expressions for spin down. This relation has already been shown
from symmetry considerations.94 Using Eq. (2.63), the zero-strain p-matrix

elements are also written from Eq. (2.232) as

493

2 _2

M,,(0) = | <c| 137 [A>]° = 3P , (2.236a)

M, (0) = [<c] B av|? =192 , (2.236b)
49 2

M, (0) = |<e] 157 B> =0 . (2.236¢)

M) = [<c| B p>? = 152 , (2.236d)
19 2_1.2

M, (0) = |<c] 57 fe> | = 3P , (2.236e)



My (0) = 1<c|'§%§ lo>]? = 1 ¢ ) (2.236f)

From Eqs. (2.234) and (2.236), we obtain the stress-induced changes in the

squared p-matrix elements as follows:

52
AMA = ( AM“A - J__A ) =P (6E001/ASO) N (2.237a)
AMB = ( AM”B - AMJ_B ) =0 s (2.237b)
_ __ p2
AMC = ( AM”C - AMJEI) = P (GEOOI/ASO) . (2.237¢)

The change in the real part of the dielectric constant can, thus, be obtained
by substituting Egqs. (2.230) and (2.237) into Eq. (2.221). The photoelastic

constant, pll - can be expressed from Eq. (2.215a) in terms of the

plzs

stress—induced change Ael as

- A
- p.. = £100%] , (2.238)

12 2
€11 (513 ~ 592X

P11

For the [110] or [111] stress direction, the analysis is almost identical to
that for the stress along [001]. The piezobirefringence analysis for the
wurtzite-type crystal is also identical to that for the zincblende-type
crystal. 1In Section 6.2, we will obtain concrete expressions of the photo-
elastic constants for both the zincblende~ and wurtzite-type crystals in terms

of the model dielectric constants presentéd in this Section.



CHAPTER 111

EXPERIMENTAL PROCEDURE AND TECHNIQUE

3.1 INTRODUCTION

The objective of the present study is to measure the spectral dependence
of the Brillouin-scattering cross sections in various semiconductors. During
the past ten years inelastic-light-scattering spectroscopy has developed into
one of the most powerful and most widely used optical techniques for the
study of the properties of the elementary excitations in solids.8 This has
been, to some extent, a consequence of the availability of lasers as excitation
sources and of improved spectrometers and associated electronics for recording
weak light scattering signals. In piezoelectric semiconductors, where the
interaction of phonons with free carriers is particularly strong, Hutson, McFee
and White12 demonstrated that acoustical waves could be amplified by carriers
with drift velocity exceeding the sound velocity. When high drift fields are
applied, intense packets of acoustical waves (doﬁains) are observed to travel
along the sample at the sound velocity. It is possible to amplify a selected
group of such phonons by a factor of the order of 109 above their thermal
equilibrium value.18 Zucker and Zemon15 were first to examine the spectrum of
these phonon domains in CdS by means of the Brillouin-scattering technique.

The acoustical-phonon domains have first been used by Garrod and Bray25 to
investigate resonance phenomena of Brillouin scattering in GaAs, where the

intense acoustical-phonon domains provide strong scattering signals and thus



permit the use of a continuous light source monochromized by a conventional
monochromator instead of a laser. This technique has also been extended by
us to semiconductors with weak piezoelectricity such as ZnSe,95 ZnTe71 and
ZnXCdl_xTe96 by applying the acoustical-domain injection method.

In Section 3.2, we present some of the physical properties of the materials
used in the present study and the sample-~-preparation method. Next, in Section
3.3, we discuss the details of the Brillouin-scattering technique. 1In this
Section, we also review the theory of acoustoelectrical amplification and
present the acoustical-domain injection technique. Moreover, we describe

briefly the experimental arrangement used in the present study.

3.2 MATERIAL AND SAMPLE PREPARATION

3.2.1 Material
A1l measurements reported in the present study were carried out on bulk,

single crystals, ZnSe, ZnTe, Zn_Cd Te, CdS, GaP, GaSe and GaS. The ZnSe
X X

1-
crystals were provided from the Matsushita Electric Industrial Company.* The

CdS crystals used were ultra-high purity (UHP) grade and purchased from the

Eagle Picher Company. The GaP crystals were provided from the Sumitomo

Electric Industries, Ltd.* The GaS crystals were provided from Tohoku University.*
The ZnTe, ZnXCdl_xTe and GaSe crystals were grown by the Bridgman method or the
traveling heater method (THM)97 in our laboratory. In Appendix, we will describe
the method of THM used in the present study. In Table 3-1 are listed the crystal

structure, conduction-band minima, growth method, electrical resistivity and

conduction type for each material. ©Note that the layered structure of III-VI

*The author is grateful to Dr. M. Fukai for providing the ZnSe crystals, to
Mr. K. Matsumoto and Dr. T. Suzuki for providing the GaP crystals, and to
Dr. Y. Sasaki and Prof. Y. Nishina for providing the GaS crystals.



Table 3-1.

Some physical

and electrical properties of the materials

used in the present study.

Material Crystal Conduction~Band Crystal-Growth Resistivity Conduction Remarks
Structure Structure Method (Recm) Type
107 —-109 as—grown
ZnSe zincblende ' (direct) Melt Growth
vl Zn-treat.
Melt Growth v 20 P
ZnTe zincblende I' (direct)
THM % 50 D
ZnXCdl_xTe zincblende T (direct) THM v 50 1.0>x>0.5
cds wurtzite T (direct) Melt Growth N30
GaP zincbiende X (indirect) Czochralski +
GaSe layer type M (indirect) Bridgman 3><102’\f3><103
Gas layer type M (indirect) Bridgman ¥

+Provided from the Sumitomo Electric Industries.

+
'+Provided from Tohoku University.



compounds, GaSe and GaS,.gives rise to a strong anisotropy in their physical
properties due to the singularity of the crystal structure.47 Such an
anisotropic nature will be discussed in detail in Chapter X. 1In order to
study some.effects of the crystalline imperfections on the spectral dependence
of the Brilloﬁin—scattering cross sections, we have used two kinds of ZnTe and
ZnSe single crystals. For ZnTe one is the single crystal grown by the
conventional Bridgman method and the other is that grown by the THM. The THM
belongs to the solution growth and is a suitable for the growth of perfect
crystals. Two kinds of samples for ZnSe, on the other hand, were prepared;
one is the as-grown sample grown by a melt-growth technique and the other is
that purified in liquid Zn.98 We made this purification at 1000°C for about
30 hours, where the crystals were sealed in evacuated quartz tube with Zn metal
(6-N grade). The Zn-purification is known to be effective particularly in
removing Zn vacancies and noble-metal impurities such as Cu and Ag.98 The
ability of this purification technique will be manifested from the photo-

luminescence measurements [see Chapter VII].

3.2.2 Sample Preparation

All the samples used were cut in the form of parallelepipeds with dimensions
of about 0.6 x 1.5 x 5.0 mm. The crystal orientation of all the samples was
determined by means of the X~-ray Laue back-reflection method or from the
cleavage properties of the crystals. They were mechanically polished, chemically

etched at room temperature in a HC1l : HNO, = 1 : 1 mixture (ZnSe, ZnTe, ZnXCd Te

3 1-x
and GaP) and a dilute HC1 (CdS), and polished breafly with Syton X30 (Monsanto).
The optical-flat surfaces of the layer-type compounds GaSe and GaS were obtained
by cleavage with a razor blade and used for the measurements without any additional

surface treatment after this step, where the surfaces are perpendicular to the

c-axis (i.e., c-planes).
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The Brillouin-scattering measurements were carried out by using the
acoustical-phonon domains amplified in the piezoelectric semiconductor CdS.
Indium electrical contacts were made by vacuum evaporation 6nto the ends
of the CdS samples. In order to obtain a strong phonon flux in semiconductors
with weak piezoelectricity such as ZnSe, ZnTe and GaP, the acoustical-phonon
domains amplified in CdS have been transmitted into such semiconductors through
the end-bonded surfaces by making use of the acoustical-domain injection method.
33,34 Indium layers were deposited for this method by vacuum evaporation onto
the end-surfaces of CdS and specimens, and they were bonded by heating the
evaporated indium layers. Figure 3-1 shows a schematic drawing of the samples
used for the acoustical-domain injection method (zincblende-type crystals).

The intense acoustical-phonon domain was produced by applying a pulse voltage
across the CdS specimen, where the rod axis of CdS was perpendicular to the
c—axi;, and the acoustical-phonon domain traveling along the rod axis was
excited in CdS with atomic displacement parallel to the ¢-axis (T2-mode). The
indium layer made in such a way provided a high-~transmission efficiency of the
acoustical-phonon domain from CdS into the specimens especially for lower-
frequency phonon domains. By way of example, we obtained transmission efficiency
up to 90 Z for ZnSe atV0.2 GHz phonon frequency. Details of this technique will
be presented in the following subsection [Section 3.3.4]7.

In order to clarify some temperature effecté on the spectral dependence
of the Brillouin-scattering cross sections, we have carried out the Brillouin-
scattering experiments at room temperature and low temperature (77 K). For
measurements at 77 K, a sample was mounted on a cover glass, as shown in Fig.

3-2, and was immersed in liquid nitrogen contained in a glass Dewer.

3.3 BRILLOUIN-SCATTERING TECHNIQUE



3.3.1 Experimental Arrangement
The experimental arrangement is divided into four blocks in the following
and each examined in tern. Figure 3-3 shows a schematic diagram of the experimental

arrangement used in the Brillouin-scattering experiments.

(1) Light Source and Monochromator

Resonant-light-scattering measurements taken with a few discrete laser lines
may sometimes miss sharp structure between discrete points. This can be avoided
by using a discrete laser line and tuning the band-gap energy with an external
perturbation, e.g., temperature and uniaxial stress. Using this method, Pinell
has first reported resonance phenomena of the Brillouin-scattering cross sections
in CdS, where the fundamental absorption edge of this material is thermally
tuned through the incident radiation at 514.5 nm (Ar+ laser). The intense
acoustical-phonon domains, however, permit us the use of a continuous non-
coherent light source instead of a laser. In the present study, we used a
xenon flash lamp (SUNPAK, GT PRO 4011) as a light source instead of a tunable
dye laser. This light source enabled us to measure resonant Brillouin scattering
in the wide spectral range from infrared to ultraviolet region (1.0 — 4.0 eV).
The monochromator was a JASCO, CT-50S, single pass instrument. This was
calibrated with the emission lines from a mercury arc and He-Ne laser line

(632.8 nm).

(2) Optical Table and Sample Holder

The sample was mounted on a goniometer stage fitted with a rotatable table
(CHUO PRECISION INDUSTRY CO. LTD) which served to determine the angle of
incidence of the light. A photomultiplier tube for detecting the scattered
light was attached to a rotating arm which was used to select the desired
scattering angle. The glass Dewer used for measurements at 77 K was also placed

on the rotatable table, where the goniometer stage was removed from this table.
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(3) Domain Generating System

Synchronization of optical and electronic pulses were necessary to measure
scattering from the traveling domain when the pulsed light source was at its
peak intensity. The domain was generated by the application to the CdS sample
of a pulse of about 1000 V and several usec duration depending on the sample
length. The high-voltage pulses were obtained from a Velonex, Model 350, high-
power pulse generator. A photo-diode and delayed trigger equipment in Fig. 3-3

were used for this synchronization system.

(4) Detector and Display

The incident light dispersed by the monochromator was focused by lenses,
Ll and L2, and polarized by a Gran-Thompson prism. The size of light spot
at the surface of the specimens was about 0.5 mm in diameter. The scattered
light was detected by a photomultiplier tube (RCA 7265) with a Polaroid HN32
analyzer, and displayed on a strage oscilloscope (Tektronics 7623A). The intense
acoustical-phonon domains provided strong Brillouin-scattering signals, and

thus we measured these signals without the use of conventional photon counting

or phase-sensitive detection system.

3.3.2 Growth Mechanism of Acoustical-Phonon Domain

In this subsection, we review the small-signal theory of acoustoelectrical
amplification.l4 The increased interest in the physical phenomena due to
interaction between free carriers and acoustical waves in solids was triggered
off by the experimental results reported by Hutson, McFee and White (1961)12
on acoustoelectrical amplificatiin in CdS. They observed substantial
amplification of ultrasonic waves in photoconductive CdS, produced by applying
a dc electric field in the direction of wave propagation. The amplification
was found to be so large that sound waves could be amplified from thermal

equilibrium amplitudes to values in the non-linear region within distance of
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less than a centimeter. The large amplitude acoustical waves had a strong
influence on the current-voltage characteristics of the crysﬁals and gave rise
to non-uniform electric field distributions, and in some cases to current
instabilities. These non-linear effects were investigated by a number of
different experimental methods such as field probing, microwave transmission
and Brillouin-scattering techniques.32 Such an acoustoelectrical effect has

been found in many piezoelectric semiconductors such as CdS,gg—101 CdSe,loz’103

’104,105 Zn0,106’107 ZnS,lOS GaAs,log’llO GaSb,lll InSb,llz Te113 and Se.ll4

CdTe
The linear theory of acoustoelectrical amplification in piezoelectric

semiconductors14 is in satisfactory agreement only for small signals. When

a sound wave propagates in a piezoelectric crystal, it will be accompanied by

a piezoelectric field which in tern acts on the mobile charge carriers that are

present. Let us assume that the acoustical waves produce a piezoelectric

potential U, in the absence of free carriers. If free carriers are present,

0

U0 is decreased due to screening effect. The degree of screening depends on

the ratio between the wave vector 3 (’3] = q) of the sound wave and Debye

screening length

)% , (3.1)

where € is the dielectric constant and n., is the free carrier concentration.

0

The piezoelectric potential can now be given by
U = U (L)1 + (a1 )] (3.2)
0'hp Ly : :

1f As = 27/q is long compared with L_, the screening is strong while the free

D

carrier effects become negligible when AS is small compared with LD.
The small-signal expressions for the acoustical dispersion and amplification
(attenuation) were first derived by White.14 We assume that non-local transport

effects can be neglected, i.e., that the following condition is satisfied:



ql < 1 , (3.3)

where 7 is the free carrier mean free path. This condition enables us treatment
of the electron-sound wave (acoustoelectrical) interaction from a classical
point. of Qiew. The energy and momentum may be transferred from the mobile
charge carriers to the sound waves when the drift velocity exceeds the sound
velocity by the épplication of a sufficiently high electric field. The acousto-

electrical interaction may, thus, be proportional to the drift parameter

s (3.4)

where Vg = UE is the drift velocity [u: carrier mobility, E: external electric
field] and Vg is the sound velocity. The condition qZ » 1, on the other hand,
requires much complicated quantum-mechanical descriptions. The experimental
data showed that in CdS, as in other piezoelectric semiconductors, the free
carrier mean free path was normally very short. We can, therefore, safely
consider that the condition (3.3) is satisfactorily fulfilled. Then, with

the condition (3.3) one can use a classical macroscopical description. The

basic equations of state describing a piezoelectric crystal are

~3
i

CS - ek s (3.5a)

=)
il

eS + eE , (3.5b)

where C is the elastic stiffness constant at constant electric field, S is the
strain [given by the same expression as Eq. (2.70)], e is the piezoelectric
constant, E is the electric field, T is the stress and D is the electric
displacement. Normally, the quantities in Eq. (3.5) are tensors, but they

may be considered scaler if there is only one piezoelectric constant coupling

an electric field in the x-direction to an sound wave traveling in the x-direction.

Equation (3.5) is supplemented by the wave equation, Poisson’s equation, charge-



continuity equation and expression for the current density (J):

2 2
S T .
p 3—2 = 3-'2‘ s (3.6a)
ot X
g_g = -e(m - ny) , (3.6b)
%§-= e %% . (3.6¢)
J = neuE + eD 3 , (3.6d)

9x

where p is the density of crystal, n is the total free carrier concentration,

n, is the thermal equilibrium concentration and D is the diffusion constant.

0

In the small signal theory, the electric field wmay be written as

E = E0 + E1 expl[i(qx - wt)] . (3.7)

where EO is the field due to an applied dc voltage and E1 is the sinusoidal

field due to the sound wave traveling in a piezoelectric medium. The atomic

displacement (u) of the sound wave is of the form [see Eq. (2.69)]:
u(x, t) = u exp[i(qx - wt)] . (3.8)

Using Eq. (3.5a) for the stress, the wave equation in an elastic medium becomes

2 2

3 u 3T 37u oFE
p(—F5)===C(—F)-e (= . (3.9)
at2 ox sz ox
From Egqs. (3.5) — (3.9), one can calculate the electronic dispersion and

amplification (attenuation) of the sound waves. The final results for the
sound velocity vy and the amplification coefficient o due to the acoustoelectrical

interaction can be written as



c, ¢, W
L 2 T(w'l'mD)
vo= (21 + 51 - = 1} (3.10)
s 2 c . W |2
Y+ (5t
“p
and
5 Wy
o= K —< > , (3.11)
2 c 2 w 2
Yo+ () A+ )
c D

where K2 is the electromechanical coupling constant and wc and w, are the

conductivity and diffusion frequencies, respectively, defined as

n_ eyl
w =220 (3.12)
[} [ €
and
_ccy 1
‘”D=(p)D ] (3.13)

In Eq. (3.12), o is the electrical conductivity. The acoustoelectrical

amplification occurs when the drift velocity v, exceeds the sound velocity

d

v while the attenuation accurs when \£ is slower than v (When Y is negative,

the attenuation is negative, that is, the traveling wave grows in amplitude
instead of diminishing). The numerical value of o as a function of w has a

maximum at w equal to
= (o )® 3.14)
w = (o, . (3.
. . 2 . 32
The electromechanical coupling constant K can be written as
K" = — . (3.15)

In the case of the plane acoustical waves propagating in crystals of practical

dimensions only the longitudinal piezoelectric fields are of importance for the



acoustoelectrical coupling. The waves having a non-zero longitudinal field
component are termed '"piezoelectrically active" waves. Examples of piezo-
electrically active waves are longitudinal waves propagating-along the c-axis
in the wurtzite-type crystals [CdS, CdSe, ZnO, etc.] and shear waves propagating
perpendicular to the c-axis in the wurtzite-type crystals with atomic
displacement along the c-axis (i.e., T2-mode phonons).32 The T2-mode phonons
in the zincblende-type crystals are also piezoelectrically active waves (i.e.,
propagating in the [110] direction with shear polarization parallel to the [001]
direction.115 Since the quantities in Eq. (3.15) are normally tensors, K2
depends strongly on the propagation direction of the sound waves (i.e., K2 has
strong inisotropy) and it has a maximum value in the direction of propagation
of the piezoelectrically active waves. Table 3-2 shows the electromechanical
coupling constants K2 for the piezoelectrically active shear waves in various

I1-VI and III-V semiconductors. In this case, Eq. (3.15) can be written using

the tensor components as

e
11744
for the wurtzite-type crystals, and

K2, = ;%‘i— (3.16b)
11744
for the zineblende-type crystals. The materials stated in Table 3-2 are
classified into two categories; the strong piezoelectriecs [II-VI compounds
(wurtzite)] and weak piezoelectrics [II-VI compounds (zincblende) and III-V
compounds (wurtzite)}. The stars (*) indicate the materials exhibiting the
acoustoelectrical instabilities.
Next, we consider the build-up of acoustical-phonon domains from the

thermal background in piezoelectric semiconductors as a result of the application

of an external voltage pulse. It suffices here to consider only the piezo-



Table 3-2. Electromechanical coupling constants for various
II-VI and III-V semiconductors.

Material Kiz
cds” 3.70 x 1072 &P
case” 1.80 x 1072 &P
00" 1.11 x 1071 P
ZnSe 6.75 x 10°* P
ZnTe 2.89 x 10°* P
Zns” 6.33 x 105 P
cdre” 6.70 x 10°* P
GaAs” 3.79 x 1073 ¢
Insb” 1.01 x 1073 ¢
InAs 462 x 107% ©
Gasb * 3.55 x 1072 ©

8Calculated from Ref. 128.
bCalculated from Ref. 129,
Ccalculated from Ref. 130.

*
Materials exhibiting the acoustoelectrical instabilities.



electrically active shear waves in a narrow bandwidth near the frequency of
maximum gain [see Eq. (3.14)], propagating with velocity vy toward the anode
(in n-type material). Upon application of a current, the energy density ¢

in a coordinate system moving with the flux, grows at a rate

prid R uOQO . (3.17)

where an is the net gain, i.e., the difference between the acoustoelectrical
gain o and non-electronic attenuation coefficient 1/Tp and @O is the acoustical
energy density at thermal equilibrium. From Eq. (3.11), the gain a is given

by the following form:

v

- 4 _
o =0, ( v 1) . (3.18)
s
The term ao¢0 is obtained from detailed balance arguments; for uo = uac + éL‘,
p
d®/dt = 0 as required for vy = 0 and ¢ = @O. Integrating Eq. (3.17), we
obtain the amplified acoustical-energy density
B(r) = o(e) - 9 =8 L+ M explat) ~11] , (3.19)
with
o
-0 _ 1
A=y =C(o, +7 )/ocn . (3.20)
n P

Equation (3.19) represents that the acoustical flux grows exponentially from
thermal background. The Brilloﬁin—scattering studies of the acoustical-phonon
domains showed that the amplified-phonon frequency distribution initially
peaks near W [Eq. (3.14)] and downshifts as the domain propagates through

18,116 Yamada

the crystals probably due to anharmonic parametric conversion.
et aZ.18 reported that in CdS the growth rate and frequency dependence of the

acoustical-phonon domains were all found to be consistent with the small-signal

theory when the domain intensity was in the weak-flux regime (less than about



10_3 J/cm3). In the subsequent stages of growth (i.e., in the strong-flux
regime), however, many interesting non-linear effects were found by them in
contrast to the small-signal theory. In the latter subsection (Section

3.3.4), we will present the data of attenuation coefficients of the acoustical-
phonon domains as a function of phonon frequency. These data also reveal

the presence of non-linear phonon-phonon interactions.

3.3.3 Incident and Scattering Angles
First, we consider the Brillouin-scattering process in an isotropic medium.
The conservation of energy and momentum can be written as [see, e.g., Egs.

(2.31) and (2.107)]
w, ~w_ =& wq s (3.21)

K, -k =+4q

s (3.22)

where mq and 3 are the angular frequency and i—vector of the acoustical phonon,
respectively. The angular frequency and k-vector can be connected by the

following equations:
I, w = ﬁ-!ﬁ | and W o= ]3} , (3.23)

where n is the refractive index, ¢ is the velocity of light and vy is the

> >
sound velocity. Since the conditions vy € ¢ and c:lkiI > v ]q! are normally

s

fulfilled, one obtains

> >
w, =, and ]ki[ = lkS] . (3.24)
Equations (3.21) — (3.24) lead to the condition that
> A - >
Ik |sin 6, = [q/2 (3.25)

or
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2nvS n
f = Ao sin Gi , (3.26)

where 61 is the angle between the incident-optical beam and the normal to

the acoustical ﬁ—vector 3 (i.e., incident angle), f = mq/Zﬂ and AO is the
wavelength of light in vacuum. It is noting from Eq. (3.24) that the scattering
angle és becomes equal to the incident angle §i (§S is the angle between the
scattered-optical beam and the normal to the acoustical i—vector 3). Note,
additionally, that the angles éi and §s are the internal angles in the medium.

Using Snell’s law
sin Gi = n sin é . (3.27)
one can rewrite Eq. (3.26) as

f= T—S- sin 6, s (3.28)

where Gi is the incident angle outside the scattering medium [see Fig. 2-9 (a)].
Finally, from Eq. (3.28) one obtains the external incident angle ei and scattering

angle Ss as follows:

8, = es = sin (557 . (3.29)

Next, we consider the Brillouin-scattering process in an anisotropic

63,117 In this case, we must take into account the dichroism of aniso-

medium.
tropic material because the scattered and incident lights have usually different
polarizations. Let us denote n, and n_ as the refractive indices of the
incident and scattered lights, respectively. In direct analogy to the case of

the isotropic material, one write Eq. (3.23) as

wy 2’frni .
[k, | = T s (3.30a)

i A
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N w 'w, + 0w w, 2T
fk l =S, =17 94, ~ 4 = 5 S . (3.30b)
s c s c s c s 0
Considering the energy and momentum conservation, one finds
0, R n .
f = vy [ 3 sin ei + 3 sin GS i . (3.31a)
0 0
n, R n R
X cos 8., = 2 cos B . (3.31b)
A i A s
0 0
From Eq. (3.31), we obtain
A Ao VSZ 2 2
sin 0, = 70 [ £+ 5 (ni -n ) ] , (3.32a)
A
0
2
A v
. A 0 s 2 2
sin Gd = on v [ - 3 (n.” - n_ ") 1] s (3.32b)
s fA
0
Using Snell’s law
sin €, = n, sin @, and sin 8 =n_  sin é s (3.33)
i i i s 5 s
we finally obtain
2
A v
6. =sin {2 [f+—2_@?-n%H1} (3.34a)
i 2v 2 i
£
0
2
A v
8 =sint{-21f-"2_@?2-a2%H71y . (3.34b)
s 2v 2 s
fAO

Table 3-3 lists the experimental configurations for the Brillouin-scattering

measurements carried out in the present study. The schematic diagrams of the

Brillouin-~scattering measurements for the wurtzite-type crystal CdS are shown

in Fig. 3-4. The T2-mode acoustical-phonon domain [Fig. 3-4 (b)] is obtained

by the acoustoelectrical amplification [see Section 3.3.3], while the T1-



Table 3-3.

Experimental configurations for the Brillouin-scattering measurements used in the present study.

tortsl oo voae JeeEIEl Aol el e, Seattrst O o
{' T1-mode Tq]l [110] || [110] 1/l (1101 11 1
fnse T2-mode | [oo1] | 1110] | 11107 13 1
T1-mode Il 11301 Il 11101 || (2101 11 I
anite { T2-mode I roo11 Il [110] II [110] J.TE I
Zn Cd,_Te T2-mode | too1] | 11101 || 11101 11 1
T1l-mode | e-axis | e-axis | c-axis 1 —fE (ka_Z) M 'I‘S
cds T2-mode | c-axis | e~axis | e-axis -J—-fE (_fk—!—g) A !
PL-mode | c-axis | c-axis || c-axis Il —fE(_fk|| 2) M
T1-mode | r1io) || 11101 | 1101 11 I
o { T2-mode | Too1] | (1101 Il 11101 _{_TE I
GaSe Tl-mode | c-axis | c-axis | e~axis 1 TE ('fk_]_g) I
Gas T1l-mode | c-axis | c-axis | e-axis 1 _fE (—fkj_z) 1

I: Injected domain

M: Mode-converted domain

A: Acoustoelectrically amplified domain
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{(a) Ti-mode N
€, (1c)
©c-axis @ ANGDE
CdS =
g, (Lo
(b) T2-mode
' C-AXIS &, (1)
\}\ﬁi (e
(c) PL-mode
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CATHODE
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FIG. 3-4. Schematic diagrams of the Brillouin-
scattering measurements for the wurtzite-
type crystal CdS. (a) Tl-mode phonon domain;
(b) T2-mode phonon domain; (c) PL-mode phonon
domain. Ei and Es are the incident and scat-
tered light polarizations, respectively.
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[Fig. 3~4 (a)] and PL-mode phonon domain [Fig. 3-4 (c)] are obtained by mode
conversion upon partial reflection of the T2-mode phonon dom?ins. We can
calculate the incident and scattering angles for the zincblende-type crystals
from Eq. (3.29). While those for the wurtzite-type crystals may be calculated
from Eq. (3.34). The scattered and incident lights have almost the same
polarizations for the case of the Tl- and PL-mode phonons [see Table 3-3], i.e.,
n, = nS ~ no for the Tl-mode phonons and ni = nS = ne for the PL-mode phonons
(where o, and ne are the refractive indices for the ordinary and extraordinary
rays, respectively). The calculated aﬁgles for the Tl- and PL-mode phonons,
thus, accord well with those of derived by assuming an isotropic medium. This
arises from the fact that if the scattering medium is almost isotropic, we

have n, = n and in this case Eq. (3.34) can be reduced to the simple isotropic
form (3.29). However, the incident and scattering angles for the T2-mode phonons
must be calculated by exactly taking into account the anisotropic nature of the

refractive indices (because n, =mn, and n_ = no).

3.3.4 Acoustical-Domain Injection Method
In this subsection, we describe an outline of the acoustical-domain injection

method.33’34

Using this method, it is possible to extend studies of resonant
Brillouin scattering in various semiconductors with weak piezoelectricity. This
technique also enables us the investigation of the propagation behaviors such
as lattice attenuation and phase velocity of the high-frequency phonons in many
. . . R 118-120 R
materials by means of Brillouin scattering. Ando et al. have first
demonstrated an availability of this method by injecting the acoustical-phonon

33,34 have derived

domains from CdS inte ZnSe. Subsequently, Yamabe et al.
injection (transmission) efficiency from theoretical aspects and compared it
with the experimental data. Good agreement between the calculation and experiment

has been found in various systems such as CdS-ZnSe, CdS-ZnTe and CdS-GaP.

Acoustical wave propagating in an elastic medium can be written in terms of
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the stress Tij and strain S, .. We start from the two basic equations [see

k1
Eqs. (2.70) and (3.9)]:

0 (—=)=2—r , (3.35)

k

Ti3 = Cigabia T Ciga EX (3.36)

where r, is the j-component (j = x, vy or z) of the orthogonal coordinates, uy

Lt

is the i-component (i = x, y or z) of atomic displacement and Cijkl is the
component of the elastic stiffness constant tensor. These equations can be

written by introducing the atomic-displacement velocity as

Wi g
b = o Ty , (3.37)
3
3 vy

ot Tij = Cijxa aTl : (3.38)

Now, we introduce the following complex acoustical Poynting vector:121

3 o=-Lnt err , (3.39)
ac 2.4 3 i3
ij

where fi is the unit vector of the i-direction in the orthogonal coordinate
system and v? stands for the complex conjugate of vj. The acoustical-power
propagation can be estimated by solving Eqs. (3.37) — (3.39). Next, we consider
the boundary condition of the acoustical waves at ianterface of the two different
materials (i.e., at the bonded surface). If we assume that the interface is
rigidly bonded so that there exists no slipping, the boundary condition can be

given by

(3.40)
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where the suffices s and d stand for the bonded two media. This equation means
that the atomic-displacement velocity vy is continuous across the boundary
surface. If we also assume that the external traction force is continuous

across the boundary surface, the boundary condition for the stress can be written

as

[T, 1 [al)l=1IT

ki s i ]d-[ n ] R (3.41)
where [ n ] is the unit vector normal to the boundary surface.

Yamabe et al.33 proceeded numerical calculations to obtain the transmission
efficiency in the following steps; (i) Equations (3.37) and (3.38) are solved
by using the boundary conditions (3.40) and (3.41). (dii) The acoustical Poynting
vector is evaluated from Eq. (3.39). (dii) The transmission efficiency is finally
obtained by calculating the ratio of the transmitted and incident Poynting
vectors.

In Fig. 3-5, we plotted theoretical transmission efficiencies of the
quasi-transverse (T2-mode) phonons for the CdS-ZnSe and CdS-ZnTe systems as a
function of propagation direction ©. It is found from the figure that the
transmission efficiency has appreciably high value for both the CdS-ZnSe and
CdS-ZnTe systems. Figure 3-6 shows an example of the oscilloscope display of
the Brillouin-scattering signal by the injected acoustical-phonon domain
obtained from the CdS-ZnSe system (upper trace).‘ The current waveforﬁ
exhibiting the acoustoelectrical instability is also shown in the lower trace

(CdS). The Brillouin-scattering signal P. is produced by the injected forward-

1

traveling domain, while the signal P, is produced by the reflected backward-

2
traveling domain at-the end-surface of ZnSe. Experimentally, we obtained the
transmission efficiency up to 90 7 at lower-phonon frequency. It was found

that the efficiency depends strongly on the acoustical-phonon frequency, i.e.,

it decreases with increasing acoustical-phonon frequency. It seems this is
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FIG. 3-5. Theoretical transmission efficiencies of the

quasi-transverse (T2-mode) phonon domains for
the CdS-ZnSe and CdS-ZnTe systems as a function
of propagation direction ©.
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FIG. 3-6.

2US

Oscilloscope display of the Brillouin-
scattering signal by the injected acoustical-
phonon domain obtained from the CdS-ZnSe
system (upper trace). The current waveform
exhibiting the acoustoelectrical instability
is also shown in the lower trace.
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due to that the indium layer between the bonded materials acts like low-pass
filter for the acoustical-phonon transmission [see Fig. 3-1]. Indeed, it is
possible to consider that the phonon-domain transmissibn becomes difficult
when the wavelength of the phonon domain beyonds the thickness of the indium
layer (note that higher-frequency phonons have shorter wavelengths). Such
an effect of the'indium layer was not taken into account in the theoretical
analysis for simplicity.

We have mentioned above that the intense acoustical-phonon domains produced
in CdS can be injected into different materials by making use of the acoustical-
domain injection method. As a typical example of the applications of this method,
we present lattice-attenuation data obtained in the CdS-ZnSe and CdS-ZnTe systems.

122,123

The lattice attenuation is an old topic of the crystal dynamics. Zucker

et aZ.lZ4 have first measured the lattice attenuation of amplified phonon domains

in CdS by using the Brillouin-scattering technique.

The frequency dependence of the lattice loss ¢, can be written simply as

L

op =W (3.42)
for Landau-Rumer loss (thh » 1), and
2
o, W (3.43)

<« 1), where Tth is the relaxation time of thermal

phonons. Figure 3-7 shows the frequency dependence of the attenuation coef-

for Akhieser loss (thh

ficient of the acoustical-phonon domains propagating in ZnSe in the [001]

direction with shear polarization parallel to the [110] direction (T2-mode

phonons).34 The observed frequency dependence is of the form of o fl'45.

The frequency dependence of the attenuation coefficient for the T2-mode

phonon domains in ZnTe is shown in Fig. 3-8.125 The open and solid circles

are the data in the weak— and strong-flux regimes, respectively. The experimental

frequency dependence shows fl'2 in the weak-flux regime and fo'3 in the strong-



—110—

T I 1] LN T 1 I T I §
[~ ZnSe ]
B :3()()0*( ‘fL¢4ES N
—~ 200} —
£ ' o
2 i / i
@ e}
- 4
100} 4 _
g i / 1
= i o i
<t / ]
& 50 0 _
'—-
-
< - A
1 l 1 L 1 1 I i l 1
20 05 1.0 50

FREQUENCY ( GHz )

FIG. 3-7. Frequency dependence of the attenuation coef-
) ficient for the acoustical-phonon domains in ZnSe
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flux regime. The present experimental conditions should satisfy the Akhieser-
loss process (i.e., thh <« 1). Our experimental data, however, depart from
the Akhieser-loss process. The deviation from the Akhieser loss has also been

18,124,126 , o 118,127 __ . .. 16

reported in semiconductors such as CdS,

Such deviations can be interpreted in terms of non-linear phonon-phonon inter-
s 1 . .

actions, as pointed out by Palik and Bray. 6 The difference of £ in the weak-

and strong-flux regimes supports the possibility of the non-linear phonon-phonon

interactions in ZnTe.
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CHAPTER 1V

RESONANT BRILLOUIN SCATTERING
IN ZnSe, ZnTe, ZnXCdI_XTe AND CdS

4.1 INTRODUCTION

In recent years theoretical and experimental investigations on the
subject of resonant light scattering in semiconductors have been carried out
extensively by many workers.8 The majority of the experimental studies have
been concentrated on dispersion of the scattering cross sections when the
incident-photon energy approaches dielectric singularities of the semiconductors.
The acoustoelectrically amplified phonon domains have recently been used to
investigate resonance phenomena of Brillouin scattering in piezoelectric

semiconductors such as GaAs,25 CdS,26_30 Zn029’30

and CdSe,31 where the intense
acoustical-phonon domains provide strong scattering signals and thus permit
us the use of a continuous light source monochromized by a conventional mono-
chromator instead of a laser, as mentioned previously (Chapter III).

The spectral dependence of the Brillouin-scattering cross sections in
such semiconductors has shown resonant enhancement and cancellation (anti-
resonance) in the region near the fundamental absorptionredge. The observed
dispersion curves have been interpreted satisfactorily in terms of the resonant-
light-scattering theory developed by Loudon.35’36 However, resonance behaviors

in the neighborhood of the excitonic structure of the absorption edge have

not yet been discussed in detail because of the experimental difficulty due
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to the strong absorption coefficients in that wavelength region.

In this Chapter, we investigate resonant Brillouin scattering in II-VI
semiconductors (ZnSe,gS ZnTe,71 ZnXCdl_xTe96’125’131 and Cd§39) by using
the acoustoelectrically amplified phonon domains with exciting light wavelengths
including a region sufficiently close to the fundamental absorption edge to
clarify resonance behaviors near the MO critical points. For instance, previous
work by Ando et dZ.lzo is limited to the wavelength range of 475 — 620 nm
(room temperature), and thus only a weak resonant enhancement is observed.

We performed the Brillouin-scattering measurements in the wavelength ranges

of 465 — 640 nm (room temperature) and 450 — 640 nm (77 K) which include a
region sufficiently close to the fundamental absorption edge of ZnSe. We
improved our experimental setup and used high-quality ZnSe, which enabled

us to discuss the resonance behaviors at a region very close to the fundamental
absorption edge.

In Section 4.2, we present some physical properties of the II-VI group of
semiconductors ZnSe, ZnTe, CdTe and CdS, such as the electronic band structure
and crystallographical properties of these materials. 1In Section 4.3, we
present the experimental results and compare them with the theoretical model
based upon Loudon’s light-scattering theory. The obtained spectral dependence
of the Brillouin-scattering cross sections shows a new maximum at a photon
energy very close to the ground-state exciton enérgy (i.e., in the resonant
enhancement region). We show for the first time that the Brillouin-scattering
efficiency depends strongly on a lifetime-broadening effect of the intermediate
electronic states. The importance of the lifetime-broadening effect on
resonant light scattéring has been pointed out by Loudon36 but not yet discussed
up to date from an experimental point of view. The observed maximum in the

spectral dependence of the Brillouin-scattering cross sections is well interpreted

by including this broadening effect.
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4.2 PROPERTIES OF ZnSe, ZnTe, anCdl_XTe AND CdS

4.2.1 Crystal Structure

The crystallography of the II-VI compounds is somewhat complicated
by their propensity to crystallize in a variety of polymorphic modificatioms.
132 The principal structure types are cubic zincblende (sphalerite) and
hexagonal wurtzite in which the atoms are tetrahedrally bond in network
arrangements related to those of the group IV semiconductors. All of the
II-VI compounds, and in paticular ZnSe, ZnTe and CdTe, form crystals with
the zincblende arrangement. The II-VI compounds, in paticular CdS, CdSe
and Zn0O, also crystallize in the wurtzite arrangement. Figure 4-1 shows
the arrangements of group-II metal atoms (small solid circles) and group-VI
non-metal atoms (large open circles) in (a) zincblende and (b) wurtzite form.
The zincblende structure is based on the cubic space group Ts — F43m. There
are four molecules (AIIBVI) in a unit cell. The wurtzite structure is
based on the hexagonal space group Cgv —>P63mc and there are two molecules
in the hexagonal unit cell. The lattice parameters for the zincblende (ZnSe,
ZnTe and CdTe) and wurtzite structure (CdS) are summarized in Table 4-1.

The separation between layers along the hexagonal stacking axis is c¢/N,
where N is the number of layers in the repeating unit.

An important aspect of the zincblende arrangement is the absence of a
center of symmetry or inversion. The AII — BVI layers have unique orientations
along the <111> directions. As a result, the zincblende crystals are poiar,
and opposed (111) [A-face] and (111) face [B-face] and opposed [111] and
[111] directions may have different physical and chemical properties. This
is known to be the crystallographical polarity. The crystallographical
polarity, vice versa, enables us to identify the (111) and (111) faces by

133

the simple chemical etching test. The wurtzite arrangement does not have

a center of symmetry and there is a polar axis parallel to [001] (c-axis).
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(b) WURTZITE

(@) ZINCBLENDE

Arrangements of group-II metal atoms (small solid circles) and group-VI

non-metal atoms (large open circles) in (a) zincblende and (b) wurtzite
The zincblende structure is based on the cubic space group F&3m.
me.
3

FIG. 4-1.
The wurtzite structure is based on the hexagonal space group P6

form.
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Table 4-1. Lattice parameters of AIIBVI compounds with the zincblende

(ZnSe, ZnTe and CdTe) and wurtzite structure (CdS).

o o [+] - o -]
Material a [A] c [A] d(a-A) [A] d(A-B) [A] ¢/N [A]
znse @) 5.6687 —_— 4.01 2.45 —_—
znTe P 6.1037 _— 4.32 2.64 -
care ‘) 6.481 _ 4.58 2.80 —
cas (@ 4.1367 6.7161 — — 3.358
(a) Reference 180. (b) Reference 181.
(c) Reference 182. (d) Reference 183,

As in the zincblende, the AII and BVI ions of opposite polarity can be
visualized as forming a network of permanent dipole moments. However, in
the wurtzite the moments do not balance but create a single polar axis.
Consequently, in addition to being piezoelectric, the wurtzite-type crystals
are pyroelectric.

Crystals grown from combinations of II-VI compounds may be substitutional
solid solutions or a mixture of zincblende and wurtzite modifications.134_139
The relative concentration of the participants determines the band-gap energy
[see, e.g., Fig. 4-16], which plays a significant role in the Brillouin-

scattering process through the intraband and interband electronic transitions.

4.2.2 Electronic Band Structure
The zincblende lattice has the tramnslational symmetry of the face-centered
cubic lattice [Fig. 4-1 (a)]. The Brilloﬁin zone for the reciprocal lattice
can be taken to be the truncated octahedron shown in Fig. 4-2. The points
and lines of special symmetry are indicated in the figure with their conventional

labels. The lattice of the wurtzite crystals consists of two interpenetrating
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(a) WURTZITE

(b) ZINCBLENDE

FIG. 4-2. The Brillouin zones for (a) wurtzite and (b) zincblende lattices with
lines and points of special symmetry.
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hexagonal close-packed iattices; one containing the cation (BVI), the other
anion (AII) [Fig. 4-1 (b)]. The Brillouin zone for the reciprocal hexagonal
lattice is shown in Fig. 4-2 along with lines and points of special symmetry.
This Brillouin zone is the same as for the hexagonal close-packed lattice.
The lowest energy gap in II-VI compounds such as ZnSe and CdS is a
direct and occurs in the center of the Brillouin zone, i.e., at i =0 (T
point). The nature of energy transitions at different points in §¥space
is reasonably well identified in most of the II-VI compounds.140 However,
the knowledge of band structure away from the principal symmetry points still
tends to be more of a qualitative than a quantitative nature. The majority
of the knowledge of electronic band structure in the II-VI compounds have
been derived theoretically from the semi-empirical pseudopotential method.
141,142 This method has become an important tool both for the investigation
of electronic band structures of solids and for understanding the behaviors
of electrons in crystals. The semi-empirical pseudopotential studies of

141,142

Cohen and Bergstresser have included II-VI compounds with the zincblende

and wurtzite structures. Figure 4-3 illustrates the band structures of

ZnSe and ZnTe determined by Walter et aZ.l43 and of CdS by Bergstresser and

142 . . P
Cohen. These band structures are calculated using the semi-empirical
potential method which involves adjusting pseudopotential form factors to
achieve good agreement with experimental results for the principal optical

transitions. The irreducible representations indicated are those for the

double group (ZnSe and ZnTe) and for the single group (CdS).

4.2.3 Crystallographical Properties

As mentioned in Section 4.2.1, the II-VI compounds crystallizing in
the tetrahedrally coordinated cubic zincblende and hexagonal wurtzite
structures are the simplest crystals lacking a center of symmetry and, hence,

capable of exhibiting piezoelectric and related effects depending on polar
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symmetry. The elastic éompliance, elastic stiffness, piezoelectric and static
dielectric constants of the zincblende ZnSe, ZnTe and CdTe and wurtzite CdS
are listed in Table 4-2. The crystal densities calculated using the lattice
constants of Table 4-~1 are also listed in this table. It has been found by

Berlincourt et aZ.lzg

that the piezoelectric constant for the wurtzite-type
crystal CdS nearly satisfies the symmetry requirements of the cubic zincblende
type, but has much higher magnitude. It seems that the stronger piezo-
electricity and the preference for the wurtzite structure are both direct
consequences of increasing ionicity of the bond. The temperature dependence
of elastic constants together with the pressure dependence provide useful
information in the study of the anharmonic effect of crystals. Lee144’145

has measured the temperature and pressure dependence of the elastic constants
of ZnSe and ZnTe by means of ultrasonic pulse-echo method, and found that

the constants change almost linearly with temperature and pressure. The static
dielectric constants have also been found to have linearly varying temperature

146

dependence. The calculated crystal densities agree well with those

measured values [e.g., 5.264 g/cm3 for ZnSe and 5.633 g/cm3 for ZnTe obtained
by the weight-volume methodl44].

Figure 4-4 shows the phonon dispersion relations for (a) ZnSe and (b)
ZnTe at room temperature taken from Refs. 147 and 148, respectively. Research
on the dynamics of perfect lattices has aroused considerable interest
especially in compounds having zincblende or diamond crystal structure. This
development is the outcome of many experimental results, particularly neutron-
and Raman-scattering data for phonon dispersion relatiomns. In fact, the
phonon dispersion relations for ZnSe and ZnTe given in Fig. 4-4 were obtained
from the second-order Raman-scattering spectra and neutron-scattering data,

respectively. The first-order Raman-scattering measurements give only

. rs > K 3 . ]
information about phonon states with k = 0 (I'). This severe limitation can
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Table 4-2. Elastic, piezoelectric, dielectric constants and crystal
density of the zincblende ZnSe, ZnTe and CdTe and wurtzite
CdS at room temperature (25°C). S in 10-11 m2/N; C in 1010
N/m2; e in C/m2; and g in g/cm3.

Material
ZnSe ZnTe CdTe Ccds
s, 2.26@ 2.40@ 4.5 2.069(®
5., -0.85 -0.87 1.5 -0.999
5,4 2.27 3.21 5.0 6.649
545 — _ — 1.697
51 _ — — 0.581
See S— —_ — 6.136
¢, 8.10® 7.13@® 5.351 () 9.07@
¢y, 4.88 4.07 3.681 5.81
c,, 4.41 3.12 1.994 1.50
Cys _— S— 9.38
¢, — — — 5.10
66 @ @ w7
el 0.049 0.028 0.0335
ey _ ~0.244(@
ess —_— S— _ (+)0.440
el — — — -0.210
eil/eo 9.25() 10.10%® 11.00¢® 9.35(2)
e3a/e, — — — 10.33
g 5.262 (D 5.636% 5.849(d) 4.8199

(a) Reference 129.
(b) Reference 91.
(c) Reference 146.
(d) Calculated using the lattice constants listed in Table 4-1.
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be overcome by using thé second-order Raman spectra; Two phonons with Kl + EZ =
0 are then produced and the complete phonon spectrum becomes accessible.

Figure 4-5 also shows the phonon dispersion relations for the wurtzite-type
crystal CdS along directions I'-K, I'“M and I'-A [see Fig. 4-2 (a)].149 Such
phonon dispefsion curves, vice versa, enable us to identify the measured

Raman— and Brillouin scattering spectra. The various components of the

Raman (Brillouin) tensor can be calculated from the phonon dispersion data
obtained with neutron scattering by the use of lattice dynamical models (

shell model) which include nonlinear interactions. This procedure has -been

successfully used for the alkali halideslso and for MgO.151

4.3 EXPERIMENTAL RESULTS AND DISCUSSION

4.8.1 InSe

The spectral dependence of the Brillouin-scattering cross sections for
0.2 GHz Tl-mode phonon domains measured at room temperature is shown in Fig.
4—-6. The measurements were carried out by making use of the acoustical-
domain injection method. The vertical arrow in the figure indicates the
position of the band gap Eg' The Brillouin-scattering cross section OB is

deduced from the following equation:

I
s

T

= oBb dQs s (4.1)
where Is and It are the scattered-light and transmitted-light intensities,
respectively, b is the light-path length and dQS is the solid angle in which
the light is scattered. The Brillouin-scattering cross section shows a
narrow and deep minimum at around 495 nm. Such an antiresonance behavior

25 S’26--30 Zno29,30

has also been found in GaAs, Cd and CdSe.31 In addition,

we can find a new maximum in the dispersion curve very close to the fundamental
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absorption edge. Such a feature has not been clearly found in the previous
work of Ando et aZ.120

The spectral dependence of the Brillouin-scattering cross sections for
0.2 GHz T2-mode phonon domains measured at room temperature is shown in
Fig. 4-7. The resonance feature observed here is essentially the same as
that for the case of the scattering by the Tl-mode phonon domains, but the
cancellation point shifts slightly and occurs at 490 nm. As will be mentioned
in Chapter VI, the resonant cancellation can be interpreted macroscopically
in terms of the appropriate photoelastic constant passing through zero (
isotropic point) while undergoing a reversal in sign (here we have to note
that the Brillouin-scattering cross section is proportional to the square
of the photoelastic constant). We can find a good agreement between the
cancellation points obtained from the Brillouin-scattering measurements and
those predicted from the piezobirefringence data (isotropic points) of Yu
and Cardona.92

The resonant cancellation can be explained by the following equation:95
3 (4.2)

where Ris is the‘resonant contribution given by Eq. (2.29) or (2.55), arising

from the MO critical point, and RO

from the other, far—off critical points in the band structure. The resonant

is a nonresonant contribution arising

contribution Ris is opposite in sign to the nonresonant contribution R0 in

the longer-wavelength region (apart from the fundamental absorption edge).

The cancellation, therefore, occurs at a wavelength when ]Ris + ROI becomes
zero. As well shali see later, such a sign reversal relation does not hold
in the region very close to the fundamental absorption edge when the lifetime-
broadening effect is taken into account [see Figs. 4-10 and 4-11]. Kiefer

et aZ.57 have measured the resonance of Raman scattering in ZnSe by TO(T),

TA + TO(X), 2TA(X) and 2LO(X) phonons in the vicinity of the E. gap, and

0
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found that the spectral.dependence shows clear resonant enhancement but non
existence of resonant cancellation in the photon-energy region of 2.3 — 2.7
eV [see Fig. 4-12}. Such a considerably large difference in the experimental
resonance ‘data between Brillouin and Raman scattering can not be successfully
understood aﬁ present.

Figures 4-8 and 4-9 show the spectral dependence of the Brillouin-
scattering cross sections for 0.2 GHz Tl- and T2-mode phonon domains measured
at 77 K, respectively. The vertical arrows indicate the positions of the
band gap Eg. It is clear from the figures that the experimental data taken
at 77 K show the same resonance behaviors as those taken at room temperature,
except a shift of the resonance curves toward shorter-wavelength side. The
resonant cancellation, thus, occurs at about 480 and 474 nm for the Tl- and
T2-mode phonons, respectively.

The intermediate electronic states produced by the incident radiation
interact with the acoustical phonons via a deformation potential, resulting
in a change in their electronic states. The transitions of the intermediate
states are determined by the symmetry properties of the electronic states
and relevant phonon modes in crystals, as mentioned in Section 2.2.3. Such
a selection rule of the deformation-potential scattering determines the
electronic transition process (two- or three-band process) which plays a
significant role in the Brillouin-scattering process. From Egqs. (2.76) and

(2.77), the non-zero matrix element =, can be given by

o
- A
Epp = 3%b = -2.08 eV s (4.3a)
o %
B = 62b = -2.94 eV s (4.3b)
for the Tl-mode phonons, and
EBA =d = -3.81 eV s (4.43a)
L
B, =4d/2% = ~-2.69 eV s (4.4b)

CB
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e _
Eoa = 6%d/2 = -4.67 eV s (4.4c)

where the numerical values of the shear deformation potentials b and d are

obtained from the data of Langer et aZ.152
The theoretical dispersion curves obtained from Loudon’s theory [Eq.

(2.29)] and Wannier-Mott exciton theory [Eq. (2.55)] are shown in Figs. 4-6

and 4-7 by dotted and dashed lines, respectively. The numerical values used

in the calculations are listed in Table 4~3. The p-matrix elements are

assumed to be PaO = POB since the detailed wvalues are not yet well known at

present. The curve calculated from Eq. (2.55) shows a better fit to the

experimental data compared with that calculated from Eq. (2.29) except in

the region very close to the exciton energy (band-edge region), where the

theoretical dispersion shows a divergence at that region. To remove this

disagreement, we consider in Eq. (2.55) the lifetime-broadening (damping)

effect for the intermediate exciton states. It is well known that the

excitonic transitions play an important role in the optical properties such

as absorption and emission of photons in the band-edge region, because the

Coulomb interaction is always present between the electrons and holes. They

are affected strongly by the lifetime-broadening effect especially at higher

temperatures caused by the relatively strong coupling to LO phonons (thermal

broadening). When the lifetime-broadening effect is taken into account,

the theoretical dispersion curve exhibits a peak near the band-edge region

and thus the fit shows an excellent agreement with the experimental data as

shown by the solid line (Figs. 4-6 and 4-7). The best-fitting values of

the broadening energy are determined to be I' = 64 and 56 meV for the Tl- and

T2-mode phonons, respectively, where they are the values in the assumption

of Eq. (2.56). 1In Figs. 4-8 and 4-9, we show the theoretical curves calculated

from Eq. (2.55) with I' = 0 (dashed 1line) and T + 0 (solid line). The best-

fitting values of the broadening energy at 77 K are determined to be I = 64



Table 4-3. Numerical values used to calculate the spectral dependence of the Brillouin-scattering
cross sections.

Material
ZnSe ZnTe Zn0.8Cd0.2Te ZnO‘SCdO.STe‘ . Cds
* A% * k% * * £l
hw, (eV] 2.6 2 9.808"°P 2.25"3, 2.379"7¢ 2.10% 1.80"4 2.4527¢
%* £33 * %k * * *
fw g V] 2.68 2 9.808" P 2,25 9 379""C 2.10"4 1.807d 2.466 ¢
3 *K E3 x% *
fu [eV] 309 2 3,218" 3,18%2, 3.300""C —_— _ 2.525°¢
B, [eV] 5.0 4.5 4.2 3.6
tiwp [eV) 5.0 4.5 4.2 3.6
i [ev] 5.0 4.5 — —
BR* [meV] 19 10 10 10 28
o
agt [ A] 51 45 45 45 28
u 0.11 0.12 0.12 0.12 0.18

* Room temperature
*% 77 K.

aReference 184,
Reference 186.
Reference 187.

bReference 185
Estimated from Fig. 4-16.

—-€£e1—
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and 56 meV for the Tl- and T2-mode phonons (solid lines), respectively,
Figures 4-10 and 4-11 show the theoretical line shapes of the Brillouin-
tensor term Ris for the Tl- and T2-mode phonons, respectively, calculated
from Eq. (2.55) in the vicinity of the excitonic structure with different
broadening energies. The experimental data (OB16 « |RiS + ROI) measured at
room temperature and 77 K are plotted in the figures by taking into account
the corresponding nondispersive terms RO which are also shown in the figures

by dash-dotted lines. The vertical arrows in the figures indicate the positions

of the lowest discrete-exciton state Ex When the exciton states have an

1
infinite lifetime (' = 0), the theoretical curve (Ris) shows a divergence near
the band-edge region. The broadening effect depresses the resonance feature,
and the Brillouin-scattering efficiency decreases with increasing broadening
energy I'. Consequently, the peak of the Brillouin-scattering efficiency
appears in the resonant—enhancement region. The broadening energies determined
in the present work do not depend on the temperatures, as clearly seen in
Figs. 4~10 and 4-11. 1In general, the broadening energy can be expressed by

153

a sum

(my=r~, + FT(T) s (4.5)

0
where FO is independent of the temperature T, arising mainly from the impurity
damping, and TT(T) is contributions from acoustical phonons, proportional

to [exp(thO/kBT) - l]—1 (here'ﬁwLO is a LO phonon energy). Thus, I'(T) decreases
with decreasing T. In the present case, the amplified acoustical-phonon domains
have an energy density a factor of the order of lO9 above the thermal equilib-
rium value,18 and thus the acoustical-phonon contribution has an appreciable
value to contribute to the lifetime broadening. We can, therefore, expect
specific effects of the high-density acoustical phonons on the lifetime

153

broadening, as also suggested by Segall. Details will be discussed in

Chapter VII.
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FIG. 4-11.
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It should be noted here that the theoretical line shapes of RiS (solid
lines) predict resonant cancellation at two different wavelengths [e.g., at
495 and 470 nm for the Tl-mode phonons (room temperature), see Fig. 4-10]
according to the relation given by Eq. (4.2). Such a feature has been found
clearly in the present experiments as shown in Figs. (4-6) — (4-9). The
theoretical curve, further, predicts that a strong scattering signal should
be observed at wavelengths near the ground-state exciton region (due to sharp
peaks appeared in Figs. 4-10 and 4-11). We were, however, unable to find
such a scattering signal because of the strong absorption coefficients in
the exciton—energy region. In spite of such difficulty in experiments, we
believe that measurements should be possible if sufficiently thin samples
are prepared and a continuously tunable dye laser is used in the Brillouin-
scattering measurements. When the incident-photon energy approaches the
exciton resomnance, we have to take into account the excitonic polariton States

65,154,155 Brenig, Zeyer and Birman66

in the Brillouin-scattering process.
have reported a theoretical analysis of resonant Brillouin scattering in

crystals exhibiting spatial dispersion which included exciton polaritons

as the intermediate states in the Brillouin-scattering process. Their result
predicts a multiplet of the Brillouin spectrum near the exciton resonance

with line separations and efficiencies, depending strongly on the incident-

light energy because of the polariton dispersion. Recently, the first experimental
observation of the effects predicted by Brenig et aZ.66 has been reported by

158,159 g ice and Cummins'®® have observed

Winterling and Koteles in CdS.
resonant dispersion of the Brillouin shift in CdS with a high-resolution
triple-pass Fabry-Perot interferometer. Winterling et aZ.l6l have observed
resonant Brillouin scattering by TA phonons near the A exciton of CdS in a
162,163

usually forbidden backscattering configuration. Yu and Evangelisti

have also studied resonant Brillouin scattering by exciton polaritons in CdS
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and obtained a good agreement between theory and experiment. More recently,
such Brillouin—scéttering spectra of exciton polaritons have been measured
in CdSe by Herman and Yu164 and in ZnTe by Oka and Cardona.165

In Fig. 4-12, we show a comparison of the resonance behavior of the
Brillouin-scattering cross sections for fast-TA (T2-mode) phonons with that
of the Raman-scattering cross sections for TO(I') phonons in ZnSe obtained
at room temperature. The Raman—scattering data are obtained from Kiefer et

57

al The vertical arrows in the figure indicate the band-gap energy Eg

and lowest discrete—exciton energy EX It is noting that the spectral

1
dependence of the Raman-scattering cross sections shows non existence of
cancellation in the region below Eg’ in contrast to the Brillouin-scattering
data. The resonant cancellation of the Raman-scattering intensity is found

10,166 58,167

in various wurtzite-type semiconductors such as CdS, Zn0 and ZnS.

168,169 The Raman-scattering intensity shows a maximum near the band-gap
energy, while the maximum in our Brillouin-scattering data appears below

that of the Raman-scattering data. However, as mentioned above, our theoretical
prediction indicates that maximum of the Brillouin-scattering intensity should
be observed at the photon-energy region of Exl (Eg), as similar to that of

the Raman-scattering data. Such a expectation can be clearly seen in Fig. 2-6
in which the calculated Brillouin-scattering cross section shows a strong

peak at the band edge in addition to the experimentally observed peak (below

the band-gap energy).

4.3.2 InTe

The spectral dependence of the Brillouin-scattering cross sections for
0.2 GHz Tl-mode phonon domains measured at room temperature is shown in
Fig. 4-13. The Brillouin-scattering measurements were carried out by making
use of the acoustical-domain injection method. We used here ZnTe single

crystals grown by the traveling heater method (THM).97 It is found from



—140—

Tl-mode

-3
10 [

( arb. units)

Exciton Theory

—-—T= O meV
—TI'= 30 meV

10 1 ] | 1 1 L
550 560 570 580 590 600 610 620

WAVELENGTH ( nm )

FIG. 4-13. Calculated dispersion curves of the Brillouin-scattering cross
sections in ZnTe obtained from Eqs. (2.29) [dotted line] and
(2.55) [exciton theory] along with the experimental data for
0.2 GHz Tl-mode phonons at room temperature.
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(2.55) [exciton theory] along with the experimental data for
0.2 GHz T2-mode phonons at room temperature.
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the figure that the Brillouin-scattering cross section shows clear resonant
enhancement and cancellation as the incident-light wavelength approaches close
to the fundamental absorption edge (= 551 nm). The cancell;tion point is
found to be 568.5 nm. The spectral dependence of the Brillouin-scattering
cross sections for 0.2 GHz T2-mode phonon domains measured at room temperature
is shown in Fig. 4-14. The resonance features observed for the T2-mode phonons
are found to be almost the same as that for the Tl-mode phonons, where for
this mode the resonant cancellation occurs at 569 nm. We also found that

the experimental curves for both the Tl- and T2-mode phonons are almost
independent of their phonon frequencies, where the signals of specular phonon
frequencies were picked up by varying incident and scattering angles according
to Eq. (3.29). Similar features have also been found in GaAs25 and CdS.27

One of the most important features found here is that the Brillouin-scattering
cross section exhibits a maximum at a photon energy very close to the band
edge of ZnTe, as similar to that observed in ZnSe.

The theoretical dispersion curves obtained from Loudon’s theory [Eq.
(2.29)] are shown in Figs. 4-13 and 4-14 by dotted lines (I = 0). The curves
obtained from the Wannier-Mott exciton theory [Eq. (2.55)] are also shown
in the figures with three different broadening energies, I' = 0 (dash-dotted
lines); I = 30 meV (solid lines); and T = 40 meV (dashed lines). The numerical
values used in the calculations are listed in Taﬁle 4-3. The non-zero matrix
element EBa for the deformation-potential scattering by the Tl-mode phonons
can be obtained as [see Eq. (2.76)]

EBA = -3.08 eV and ECB = -4.36 eV s (4.6)
and by the T2~mode phonons as [see Eq. (2.77)]

Ega T -4.61 eV fop = -3.26 eV and Eoa = -5.64 eV , (4.7)

where the numerical values are estimated from the deformation potentials as
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170 One finds that the Loudon’s model

reported by Kaplyanskiirand Suslina.
shows a poor agreement with the experimental data at longer wavelength region
for both the Tl- and T2-mode phonons. The Wannier—-Mott exciton model, on

the other hand, shows a quite good agreement with the experimental data when
we take into account the lifetime-broadening energy of I' = 30 meV for both
the Tl- and T2-mode phonons (solid lines).

In Fig. 4-15, we show a comparison of the resonance behavior of the
Brillouin-scattering cross sections for fast~-TA (T2-mode) phonons with that
of the Raman-scattering cross sections for TO(I') phonons in ZnTe obtained
at room temperature. The vertical arrows indicate the band-gap energy E

and lowest discrete~exciton energy EX The Raman-scattering data are

1
obtained from Schmidt et aZ.56 They measured the resonance of the first-
and second-order Raman—-scattering spectra in ZnTe in the region of the EO
edge using tunable cw dye lasers and ion lasers. The phonon frequencies
assigned by them agree well with those of the phonon-dispersion data presented
in Fig. 4-4 (b) [e.g., 179 cm_l for the TO(I') phonons]. 1In contrast to the
Brillouin-scattering data, the Raman—-scattering cross section does not show
any evidence of resonant cancellation in the region below Eg’ as similar to
that for the case of ZnSe (Fig. 4-12). It can also be seen that the Raman-—
scattering intensity resonates at a photon-energy region higher than the
Brillouin resonance, and consequently the resonance maximum occurs at a

region beyond the band gap. When incident-photon energy is close to one

of the resonance energies, i.e. [see, e.g., Eq. (2.24)],

+
we wgB wq (4.8a)

wy wgu , (4.8b)

the scattered light resonates strongly. This means that the resonance

maximum occurs at an energy wq higher than the band-gap energy. The TA(T)
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TO(I') phonons in ZnTe obtained at room temperature. The Raman-scattering data are
from Ref. 56.
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and TO(I') phonon energiés are estimated from Fig. 4-4 (b) to be 1.3 X lO—7
(0.2 GHz) and 0.022 eV (179 cm—l), respectively. In Fig. 4-15, we show the
position of the resonance enmergy represented by Eq. (4.8a) for the TO(T)
phonons by the vertical dashed line. It is obvious from the figure that
the resonance-energy shift for the Raman-scattering data agrees well with

this simple estimation.

4.3.3 Zn Cd, Te
r  I-x

Resonance-Raman (Brillouin) effect has been intensively studied in several
element and binary-compound semiconductors. There are, however, few reports
. . . . . 171-173
on resonant light scattering in ternary compounds (solid solutions).
In solid solutions, the relative concentration of the participants determines
the band-gap energy which usually falls within the range of the band-gap
energies of the two pure compounds. The band-gap energy plays a significant
role in resonance features through the intraband and interband electronic
transitions. It is well known that the solid solutions can be divided into
those having a one-mode type behavior and those having a two-mode type behavior
. . 174 > R
in Raman scattering. In the one-mode system, the k = 0 optical mode
frequencies vary continuously with concentration from the frequency characteristic
of one end member to that of the other end member. In the two-mode system,
for each allowed optical mode two bands are observed with frequencies in the
vicinity of those of the pure crystals. We report here the first observation

of resonant Brillouin scattering in ZnXCd XTe solid solutions investigated

1-

at room temperature by making use of the acoustical-domain injection method.

The ZnXCd XTé solid solutions used were grown by the traveling heater method

1-
(see Appendix).

The variation of the lowest gap E, with composition x for the ZnXCd Te

0 1-x
175

s0lid solutions is expressed by a trinomial of the type



—146—

Eo(x) =a+bx + cx2 N (4.9)

where the parameter c, which is the so-called bowing paramefer, determines
the deviation from linearity. This parameter is given by a sum of the
intrinsic bowing Ci arising from the virtual crystal approximation and
extrinsic bowing c, originating in the aperiodicity of the crystal potential.
The relation (4.9) is well known for the semiconductor-alloy systems. Several
recent studies of the reflectance spectra of the ZnTe — CdTe system have

135,137,139
+ . > 3

revealed peaks such as EO’ E0+AO, El’ E1+A1,e1 and ey Al Such

an analysis has also been recently performed by using the low-field electro-

reflectance technique.138 Figure 4-16 shows the lowest band gap E, as a

0
function of x for the ZnTe — CdTe system. The spin—orbit splitting band
E0+AO is also shown in the figure. We used the bowing parameter c = 0.33 eV
to calculate the lowest band gap Eo(x). This value is determined from the
fit of reflectance data to Eq. (4.9).137

Figures 4-17 and 4-18 show the spectral dependence of the Brillouin-
scattering cross sections for 0.2 GHz T2-mode phonons in anCdl—xTe solid
solutions with x = 0.8 and 0.5, respectively. The phase velocity of the
sound waves, vy = (C44/p)%, which propagated in the [001] direction with
shear polarization parallel to the [110] direction, was found to decrease
as molar composition x decreases as follows: 2.50X105, 2.29><105 and 2.00
XlO5 cm/sec for x = 1.0, 0.8 and 0.5, respectively. The spectral dependence
shows clear resonance phenomena in the region near the band edge. They are
found to be very similar to those of the pure binary compounds such as ZnSe
and ZnTe. The data-exhibit deep minima (cancellation) in the Brillouin-
scattering efficiencies occuring at about 610 and 714 nm for x = 0.8 and 0.5,
respectively.

The theoretical curves obtained from Egqs. (2.29) [free electron-hole

pair model] and (2.55) [Wannier-Mott exciton model] are shown in the figures
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FIG. 4-16. Lowest band gap Ep as a function of the

molar composition x for Zn,Cdy_,Te solid
solutions at room temperature. The spin-
orbit splitting band Eg+Ay is also shown
in the figure.
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Dispersion curve of the Brillouin-scattering cross sections in
Zng g Cdg ,Te for 0.2 GHz T2-mode phonons measured at room
temperature. The theoretical curves are obtained from Eq. (2.55)
with I'=0 meV (dotted line) and I'=34 meV (solid line) and from
Eq. (2.29) with T=0 meV (dashed line).
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Dispersion curve of the Brillouin-scattering cross sections in
Zng, 5Cdg, 5Te for 0.2 GHz T2-mode phonons measured at room
temperature. The theoretical curves are obtained from Eq. (2.55)
with I'=0 meV (dotted line) and I'=29 meV (solid line) and from
Eq. (2.29) with =0 meV (dashed line).
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by dashed (I' = 0) and détted lines (I' = 0), respectively. The theoretical
curves obtained from Eq. (2.55) with taking into account the lifetime broadening
effect are also shown in the figures by solid lines. The numerical values

used in the calculations are listed in Table 4-3. We neglected contributions
from the C valence band in the calculations because of the large value of Aso
(spin-orbit splitting energy) in the full range of x [see Fig. 4-16]. The

solid lines exhibit a good agreement with the experimental data, as shown in
Figs. 4-17 and 4-18. The best-fitting broadening energies are determined

to be T = 34 and 29 meV for x = 0.8 and 0.5, respectively.

B

Figure 4-19 shows OBZ versus incident-light wavelength for several ZnXCdl_xTe
solid solutions with different composition x. As clearly seen in the figure,
the resonance curve shifts toward longer-wavelength side as molar composition
X decreases. This arises from the shift of the band-gap energies of ZnXCdl_xTe
solid solutions with the change of the molar composition x. It is most
interesting to point out that all the measured specimens show scattering maxima
near the fundamental absorption edges. The maxima are well interpreted in

terms of the lifetime-broadening effect of the intermediate electronic states,

as discussed before.

4.3.4 cds

The amplified acoustical-phonon domains in CdS have an intensity a factor
of the order of lO9 above thermal equilibrium value, which are easily
achieved in the frequency range from 0.1 to 6.0 GHz.18 The phonon-frequency
range is most suitable for the Brillouin-scattering measurements. The
acoustical-phonon domains consist of transverse phonons (T2-mode), polarized
along the ¢-axis and propagating in a narrow angle along the current direction
(l_g). When the domain reaches the anode end of the specimen, part of the

acoustical flux is reflected. The reflection is usually accompanied by mode

. 1 . . . .
conversion. 6 The piezoelectrically inactive TA-phonon (Tl-mode phonon) and
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pure-longitudinal (PL) phonon domains can, thus, be obtained by the mode
conversion upon partial reflection of the T2-mode domains at the anode-end
surface.

Figure 4-20 shows the spectral dependence of the Brillouin-scattering
cross sections for 0.2 GHz Tl-mode phonon domains measured at room temperature.
The Tl-mode domain was obtained by the mode conversion upon partial reflection
of the T2-mode domains [see Fig. 3-4 (a)]. The identification of this domain
was made by taking account of the selection rules of the light polarizations.39
It should be noted that in anisotropic crystals such as CdS the absorption
coefficient of the scattered light may be different from that of the incident
light if the incident and scattered lights have different polarizations,

e.g., for the T2-mode phonons. 1In such a case, we have to take account of

the dichroism correction for the scattering efficiency.27 In the present case,
the polarization of the scattered light is rotated by about 90° with respect
to that of the incident light [see Table 3-3]. However, both the polarizations
are almost perpendicular to the c-axis, and thus we need not take into account
the dichroism correction for the scattering efficiency by the Tl-mode phonon
domains.39 The Brillouin-scattering cross section can, thus, be deduced

from the same equation as Eq. (4.1). As seen in Fig. 4-20, the experimental
data show resonant cancellation and enhancement in the region near the
fundamental absorption edge. The Brillouin-scattering efficiency exhibits

a maximum in the resonant-enhancement region, i.e., at wavelength close to

522 pm. This maximum has an asymmetric shape with respect to the light
wavelength.

The theoretical>dispersion curves for the Brillouin-scattering efficiency
were calculated using Eq. (2.55). The band parameters used are listed in
Table 4-3. The values of the matrix element = for the deformation-potential

Bo.

scattering were calculated from Eq. (2.91). The results are listed in Table
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FIG. 4-20. Dispersion curve of the Brillouin-scattering cross sections in
CdS for 0.2 GHz Tl-mode phonons measured at room temperature.
The theoretical curves are obtained from Eq. (2.55) with T'=0 meV
(dashed 1line) and I'=68 meV (solid line).
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Table 4-4. Non-zero matrix elements Zgy for the deformation—-potential
scattering of CdS (in eV). The numerical values are
estimated from the deformation potentials as reported
by Langer et al. (Ref. 152). '

- cds
“Ba
T1l-mode T2-mode PL-mode
= -1.1 -0.8 1.6
BA
= —_ -0.9 2.9
CB
= - -1.2 3.2
9% 1.0
= —_ —_— -1.1
AA
= —— — -1.0
BB
= —_ — 1.5
cc

4-4 along with those for the cases of the T2-mode [Eq. (2.92)] and PL-mode phonons
[Eq. (2.94)]. The admixture coefficients O (= 0.75) and O (=0.67) were
calculated from Eq. (2.82). We used the values of the p-matrix elements reported
by Thomas and Hopfield.80 As mentioned previously, the theoretical curve with

I' = 0 (dashed line) shows a divergence at the fundamental absorption edge. It
shows a poor fit with the experimental data especially in the resonant-enhancement
region. The curve with T = 68 meV (solid line), on the other hand, shows an
excellent agreement between the calculation and experimental data. Gutsche

and Voigt176 have measured lifetime-broadening energies for the excitonic
transitions from the absorption spectra. The obtained values for the A, B and

C excitons were ' = 37.1, 30.3 and 73.5 meV (J_ g), respectively. Bleil and

Gay177

have also measured lifetime-broadening energy for the A exciton emission
as I' = 70 meV which is very close to our value (68 meV). Therefore, we can

conclude that the lifetime-broadening energy I' = 68 meV determined here is thought
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FIG. 4-21. Line shape of Ris [Eq. (2.55)] in the neighborhood of

the excitonic structure along with the experimental data
(CdS: Tl-mode). The corresponding nondispersive term
(-Rg) is also shown by dashed line.



—156—

to be reasonable for the resonant-Brillouin-scattering process.

The line shape of the Brillouin-tensor term RiS calculated from Eq. (2.55)
[T = 68 meV] in the vicinity of the excitonic structure aloﬁg with the
experimental data (OB%) is shown in Fig. 4~21. The corresponding non-

dispersive term R, is also shown in the figure by dashed line. The vertical

0

arrows indicate the positions of the band-gap energies EgA’ EgB and EgC'

The resonant cancellation can be well understood from the figure by the aid

of the relation (4.2). Moreover, a good agreement between the exciton model
Eq. (2.55) and experiment can be easily found in the figure. It should be
noted here that the line shape of Ris is very similar to that of the first-
derivative modulation spectroscopy such as thermoreflectance, piezoreflectance
and wavelength—derivative modulation spectroscopy.43’44 Indeed, we will
analyze in Chapter VIII the resonant-Brillouin-scattering process as a form
of the first-derivative modulation spectroscopy and find that they are very
analogous to each other from a phenomenological point of view.

The spectral dependence of the Brillouin-scattering cross sections for
the acoustoelectrically amplified T2-mode phonon domains in CdS measured at
room temperature is shown in Fig. 4-22. The phonon frequency is selected
to be 0.5 GHz. The incident and scattering angles related to the appropriate
phonon frequency were obtained from Eq. (3.34) using the data of refractive
indices reported in Ref. 178. In the case of thé T2-mode phonons, the
absorption coefficient of the scattered light is different from that of the
incident light because the scattered and incident light have different
polarizations (J_g and ||E , see Fig. 3-4). Hence, in order to deduce the
Brillouin-scattering cross section, we have to take a dichroism correction
of the absorption of light into account. This was first made by Ando and

Hamaguchi.27 They obtained the following relation near the fundamental

absorption edge:
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FIG. 4-22. Dispersion curve of the Brillouin-scattering cross sections in
CdS for 0.5 GHz T2-mode phonons measured at room temperature.
The theoretical curve is obtained from Eq. (2.55) with T'=0 meV.
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E§_= chQS exp (- asb ,
Io 0Li - 0Lsns/ni cos@S
g b
X{l—exp[-(oti—otsn—)—-,\—]} ) (4.10)

i cosO;
i

where ai and aS are the absorption coefficients for the incident and scattered

lights, respectively, and IO is the incident-light intensity. n., D, éi and

63 are defined in Section 3.3.3. The data shown in Fig. 4-22 are obtained

from this dichroism correction using the absorption data of Dutton.179
The theoretical dispersion of the Brillouin-scattering efficiency was

calculated using Eq. (2.55). The numerical values used are listed in Tables

4-3 and 4-4. We used the p-matrix elements reported by Thomas and Hopfield.80

The matrix element EBA for the T2-mode phonons must be replaced by EAB’

because for the E /] z polarization of incident light the dipole transition

between the A valence band and conduction band is forbidden but that between

the B valence band and conduction band is allowed [see Fig. 2-8]. By this

replacement the matrix elements of Eq. (2.55) become

PSBEBAPj\o M PEAEABPIiSO , (4.11)

where the superscripts i and s of P indicate the components in the polarization

directions of incident and scattered lights, respectively. It means that

the intermediate electronic states produced by the incident radiation must

be |B> states but not be |A> states. However, the numerical value of EB@

is not affected by this replacement because of the symmetry property of

this element [see Eq. (2.78)]. We were not able to find a maximum of the

Brillouin-scattering efficiency in the experimental dispersion curve, because

the dichroism correction introduced large ambiguity in the region very close

to the fundamental absorption edge. We took into account in the calculation
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the lifetime-broadening energy of I' = 68 meV which was the same value as
that determined for the Tl-mode phonons. As seen in Fig. 4-22, the theoretical
curve shows a good agreement with the experimental data. The cancellation
point is found to be almost the same as that observed for the Tl-mode phonons.
Figure 4-23 shows the spectral dependence of the Brillouin-scattering
cross sections for 1.2 GHz PL-mode phonon domains measured at room temperature.
The PL-mode domain was obtained by the mode conversion upon partial reflection
of the T2-mode domains [see Fig. 3-4 (c)]. The identification of this domain

1
was made by measuring the sound velocity; (Cll/p)/2 = 4.35X105 cm/sec.

VpL
This velocity differs entirely from that of the reflected T2-mode domains
[VTz = (C44/O)% ~ .1.80><105 cm/sec]. The experimental data show clear resonant
enhancement in the region near the fundamental absorption edge. However,
one can not find an existence of resonant cancellation in the measured photon-
energy range.

The theoretical curve obtained from Eq. (2.55) is shown in the figure
by solid line. The numerical values used are listed in Tables 4-3 and 4-4.
The matrix element EBA of Table 4-~4 must be replaced by EAB because of the

same reason as the case for the T2-mode phonons [see Eq. (4.11)]. Moreover,

the resonant contribution from the intraband-scattering term [ E ] becomes

AA
zero, i.e.,

s - i

Poa“aafao =

0 . (4.12)

This arises from the fact that the dipole transitions are forbidden between
the A valence band and conduction band for the E H Z polarizations of the
incident and scattered lights [see Table 3-3]. 1In order to calculate the
theoretical curve, we took into account the lifetime~broadening energy of

I' = 68 meV. From the best-fit procedure using Eq. (4.2), we find cancellation
point at wavelength of A = 750 nm. The same conclusion will be obtained

from the quasi-static analysis, as presented in the next Chapter. The solid
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FIG. 4-23. Dispersion curve of the Brillouin-~scattering cross

sections in CdS for 1.2 GHz PL-mode phonons measured
at room temperature. The theoretical curve is obtained
from Eq. (2.55) with I'=68 meV.
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line in the figure is calculated by taking into account the nonresonant
term [corresponding to the occurrence of the resonant cancellation at
A = 750 nm]. It is clear from the figure that the calculation and

experiment are in quite good agreement.
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CHAPTER V

QUASI-STATIC ANALYSIS OF RESONANT BRILLOUIN
SCATTERING IN ZnSe, ZnTe AND CdS

5.1 INTRODUCTION

Resonant light scattering in semiconductors has attracted increasing
attention recently, since it has been found to be intimately related to the
optical spectra of the crystals. It has been demonstrated that the qualitative
features of resonant Raman scattering can be predicted from an expression
based on the quasi-static approximation.49_6l In this approximation, the
phonons are assumed to act through the electron-phonon interactions like static
perturbations of the electronic band structure of the crystal, which cause
a change in the dielectric constant € of the crystal. The dielectric theory
of resonant light scattering shows that the two-band term of the first-order
scattering efficiency (Raman tensor) is proportional to the first derivative
of ¢ with respect to the band-gap energy. The experimental dispersiomn of
resonant Raman scattering has been well explained by the derivative of a model

49-54,56,57 35,58-61 have also indicated that

description of €. Recent works
the dispersion of resonant Raman scattering shows a good agreement with the
derivatives of € obtained from optical measurements.

The conditions under which the quasi-static approximation is valid are

found to be for the two-band process a341

| E - b, | > ﬁwq , (5.1)

go
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and for the three-band process as

| E - fw, | » ﬁwq , (5.2a)

go

| Eyg =~ By | > w . (5.2b)

The Brillouin—scattering process usually satisfies this condition, since ﬁwq
is sufficiently émaller than ﬁwi.

In this Chapter, we analyze the Brillouin-scattering data [ZnSe(T1-,
T2-mode), ZnTe(Tl-, T2-mode) and CdS(Tl-, T2-, PL-mode and forbidden Brillouin
data)] from a view point of the gquasi-static approximation.188 Such an
analysis has not yet been carried out until now in the field of resonant
Brillouin scattering. The Brillouin-scattering cross section for the first-
order allowed configuration can be shown to be proportional to the square of
the first derivative of € with respect to the band-gap energy or equivalently
to the incident-photon energy. The dispersion in the dielectric constant
of Ge and III-V compounds64 can be well interpreted with the parabolic band
model (band-to-band contribution). In a polar crystals such as II-VI compounds,
an additiomal excitonic contribution has to be cqnsidered.56 This excitonic
contribution may be taken into account automatically when we use the
experimentally obtained € for the calculations of the quasi-static approximation.

In Section 5.2, we review the quasi-static approximation for the first-
order allowed and forbidden Brillouin scattering to analyze the experimental
data. In Section 5.3, we report the analyses of the Brillouin—scatteriné data
for the allowed configuration based on the quasi-static approximation. The
first derivatives of the experimentally obtained € with respect to the photon
energy are calculated by numerical differentiation, and compared it with
the Brillouin-scattering data. Moreover, resonant forbidden Brillouin

scattering by the TA-phonon domains in CdS are observed for the first time
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189,190 The results are

in the region near the fundamental absorption edge.
interpreted with a dielectric theory (quasi-static approximation) based on

the second derivative of the dielectric constant.

5.2 QUASI-STATIC APPROXIMATION

5.2.1 Allowed Brillouin scattering
The dielectric theory of light scattering enables us to expand the
dielectric constant €(w,u) with respect to the displacements Ups Ugyroroee R
in the following form:
e(w )=€(U)O)+3Lu +.:_I‘_—a.2._§._ U+ cceses (53)
e ’ ou, "1 2 3u,ou, "1"2 . :
1 1772
The various derivatives in Eq. (5.3) define the first- and second—order Raman

tensor. The first-order Raman (Brillouin) intensity I can now be given by

4 4 e 2 2
Ivw !gli <u, %> , (5.4)

where <u12>% is the zero-point vibration amplitude of the phonon under
consideration. Equation (5.4) indicate that Brillouin scattering may be

induced by the modulation of the dielectric constant in the mediam. In the
quasi-static approximation, the phonons are assumed to act as static perturbations
of the electronic band structure of the crystal. The perturbation causes the

following change in the dielectric constant vZa the changes in the interband

transition energy Ega and oscillator strength an (first-order changes):

3¢ (E) el (B)
Bepn(B) = § [ g AB, + —2—— A ], (5.5)
g0 Ban

where the subscripts m and n are the directions of the incident and scattering
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fields, respectively, and E = hw is the incident-photon energy. The summation

indicates that contributions from all the possible interband transitions should

be included. From a relation188

aegn as;‘n 9 aeﬁn aFian
= + , (5.6)
Bul aEga Bul BFG Bul
mn

we find that the Brillouin-scattering intensity is proportional to the square
of the change in the dielectric constant (Ae). Gemerally, the contribution
from the change in Ega is much more dispersive than that from the change in

a 58
o

F In addition, the contribution from the change in an is a negligible
quantity compared with that from the change in Ega' We can, therefore, write

Eq. (5.5) in good approximation by the following form:

a o

de_ (E) aemn(E)

oy o _m
Aemn(E) é aEga AEgu ( g 3E AEga ) . 5.7)

The quantity AEgu is referred to as a deformation potential, and the replacement
of Begn/Bqu by —(BSgn/BE) in Eq. (5.7), strictly speaking, requires the
addition of a less dispersive term which is omitted since it can be lumped
into a background contribution [see Eq. (5.10)].

The above result is valid only for the two-band process in light scattering
The usual type of three-band term, due to coupling across a spin-orbit sprit
gap (cubic crystal), is proportional to the difference €+ - € , where €+
and € are the contributions of the spin-orbit split EO/EO+A0 or El/El+Ali

band transitions to € [see Sectiom 2.3.1]. The Raman-tensor component can,

thus, be written a560
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) 4, — > . (5.8)

for the EO/EO+AO gap resonance, and

11 1 9 5 23 et-e” 5 Yy
Ris=zm ¢ - s, 41,07 r 93,00 &,
2v3 %1 V3 1 : 0
+ + - u
B EE GBS 0
2/3 ’ /3 1 > 0

for the El/E1+A1 gap resonance. In Egs. (5.8) and (5.9), a, is the cubic

is the zero-point vibrational amplitude of the corresponding
5 5 . .

0, dl,O and d3’0 are defined in Refs.

53 and 191. The first and second terms in the brackets of Eqs. (5.8) and

lattice constant, Uy

phonons. The deformation potentials d

(5.9) correspond to the contributions from the two~ and three-band processes,
respectively. In Section 5.3, we try to fit the experimental data of the
Brillouin-scattering cross sections in ZnSe, ZnTe and CdS with the calculated
curves from the quasi-static approximation by using the experimental data

of the dielectric constants; It is difficult to separate the experimental
dielectric constant € into two different components €+ and € . Therefore,
for simplicity, we use the following expression as the quasi-static analysis
[Eo (MO) gap resonance]:188

de

_ mn 2
op = A ( @w B ) s (5.10)

where A is a constant proportional to the deformation potential and occupation
number of the corresponding phonons. The constant B represents a nonresonant

contribution arising from the higher-gap transitions such as the E E +A1

1’71

and E2 transitions. This expression assumes that only one type of EO (MO)

gap resonance, i.e. only the two-band contribution, is taken into account

for the Brillouin-scattering process. The resonance line shapes can, thus,
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be predicted from Eq. (5.10) if the spectral dependence of the dielectric

constant € is known.
mn

5.2.2 Forbidden Brillouin Scattering
There have been a number of resonant-Raman-scattering experiments in

. .o 52, s
solids by LO phonons in a forbidden scattering configuration. 53,58,60,167,

192-196 Only Zi|l gs (parallel-parallel configuration) is characteristic

of this forbidden scattering (intraband Frohlich interaction), where Zi and

Zs are the incident and scattered photon polarizations, respectively.

Recently, resonant forbidden Brillouin scattering has been reported by slow-TA

161,162,189 Winterling et aZ,161 have pointed out

(T2-mode) phonons in CdS.
that resonant forbidden TA scattering in analogy to the forbidden LO scattering
should take place in piezoelectric semiconductors such as CdS, since the
piezoelectrically active TA phonon also has a longitudinal electric field.
Impurity states or surface electric fields also modify the selection rules
because they break the translational and point symmetry (which should lead

to broad structure of scattering line since the phonon momentum is not fixed).8

The Hamiltonian for the intraband Frohlich interaction has the following

form [see Eq. (2.64)]:76

CF R
- iqr
HF =" s (5.11)
lq]
with
_ s 1 \1/4, 4To (1/2
Cp = oy (- ) YD , (5.12)
Zm 10
1 1 * 1/2
a= (-2 (5 , (5.13)
@ 0 LO

where CF is the Frohlich coupling constant and o is the polaron constant.

The Raman-resonance behavior for the Frohlich coupling mechanism near a
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three-dimensional critical point has been theoretically treated by Zeyher

et at. 12>

For isotropic bands near the I' point, the Raman tensor is diagonal
so that a contribution of this coupling mechanism to Raman scattering is
observed only for the parallel-parallel configuration. By the aid of third-

order perturbation calculation, Zeyher et aql. arrive to a result for the diagonal

component of the Raman tensor which can be written as follows:

qC 2 _ 1
Ry = —5 2 (s -5 @, 7% onn®
121w
WA= 1 W —wHy 1
3
x [(——)% - (2——10,%, (5.14)
LO Lo
with
= * * * = * *
S, =m, /(me +m %), Sy = W /(me +m %) s (5.15)

Where'hw0 is the Eo—gap energy and me* and mh* are the electron and hole
effective mass. The square bracket of Eq. (5.14) can now be written by using

the dielectric theory as

Wo=w 3 WA —UHD, L3

0 " y5_ (0 _10,%, =[(1)2_32_(21]“*)—3/2 3, de |3
P

YITCE )T - (5.16)

(¢

w @ Lo

LO LO

The derivative of Eq. (5.16) can also be written in good approximation as

2
[8ﬂw2(2m*) 3/2;%12 1 . %_( gi' 3 ='JE(2m*)3/2 %f'%(wo_w)_3/2

P (4m) w

2
=42 . (5.17)

dw

Using Eq. (5.17), we finally obtain the Raman tensor as
qC 2

-k T e oy dE

Rp = 87 = G780 T3 . (5.18)

dw
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Thus, within the spirit of the dielectric theory the Frohlich-interaction-induced
LO (and TA) strengths, as forbidden effects, should be proportional to the

square of the second derivative of € with respect to the incident-photon energy.

5.3 ANALYSIS AND DISCUSSION

5.3.1 ZnSe

Figure 5-1 shows the dispersion of the Brillouin-scattering cross sections
for ZnSe obtained at room temperature by 0.2 GHz Tl-mode (slow TA) phonons
[same as Fig. 4-6], i.e., the transverse acoustical phonons propagating in
the [110] direction with shear polarization parallel to the [110] direction.

The solid line is calculated from Eq. (5.10) by differentiating the data

of refractive indices reported in Refs. 197 and 198. The best-fitting value

of B (in eV-l) is given in Table 5-1. The corresponding cancellation point

is also given in the table. We are not able to determine the value of A

because the absolute scattering intensities were not measured in our experiments.
The calculated curve is, thus, fitted to the experimental data at the
corresponding cancellation point by adjusting multiplicative constants (

vertical shifts in the log-plot of this figure). The resonant cancellation

can be explained by the sign-opposite relation between the first-derivative

term g% and constant term B [i.e., ( %%»+ B) = 0]}.

Figure 5-2 shows the dispersion of the Brillouin-scattering cross sections
for ZnSe obtained at room temperature by 0.2 GHz T2-mode (fast TA) phonons
[same as Fig. 4-7], i.e., the transverse acoustical phonons propagating in
the [001] direction with shear polarization parallel to the [110] direction.

In this case, the resonant cancellation shifts slightly to higher photon-energy

side and occurs at 2.531 eV [see Table 5-1]. It is clear that the calculated

curve shows a good agreement with the experimental data. The measurements
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by dirrerentiating the data of refractive indices reported in
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for ZnSe [as-grown] measured at room temperature by 0.2 GHz
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The corresponding cancellation points are

Constant B resulting from the fit to the experimental Billouin-scattering

Table 5-1.
cross sections with Eq. (5.10).
also shown in this table.
ZnSe ZnTe Ccds
Mode 71 T2 1 T2 il 12 PL
B [ev 1] -2.82 -3.20 -5.65 -5.58 -2.75 =2.53% -0.9
Cancellation 2.505 2.531 2.181  2.179 2.210  2.195  1.65%k
Point [eV]
L.
=
T

*#0Obtained from the dielectric constant for the ordinary ray.

#*%Estimated from the fit of Eq. (5.10) to the experimental data.
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made at 77 K for both the Tl- and T2-mode phonons also showed essentially
similar resonance behaviors to those at room temperature except the shift
of resonance curves to higher photon-energy region due to the shift of the

band-gap energy [see Figs. 4-8 and 4-9].

5.3.2 ZnTe

Figures 5-3 'and 5-4 show the dispersion of the Brillouin-scattering
cross sections for ZnTe obtained at room temperature by 0.2 GHz Tl- and T2-
mode phonons, respectively [same as Figs. 4-13 and 4-14]. The solid lines
in the figures are calculated from Eq. (5.10) by differentiating the data of
refractive indices reported in Refs. 197, 199 and 200. Our data indicate
that the resonant cancellation for the Tl- and T2-mode phonons occurs at
almost the same photon energy (v 2.18 eV), and thus the nondispersive back-
ground contribution B is almost equal for both the phonon modes [see Table
5-1}. It is obvious from Figs. 5-3 and 5-4 that the cancellation based on
the quasi-static approximation shows a quite good agreement with the experimental
data. Schmidt et aZ.56 have studied first- and second-order Raman scattering
in ZnTe and also analyzed with a model based on the quasi-static approximation
by using the model dielectric constant (which inciudes not only the band-to-
band contribution but also the excitonic contribution). They have obtained

a good agreement between the calculation and experiment.

5.3.83 cds
[41 Allowed Brillouin Scattering
Figure 5-5 shows the photon-energy derivatives of the dielectric constants
for the ordinary (solid line) and extraordinary ray (dashed 1line) of CdS (
in eV—l). The calculated curves have been obtained by differentiating the
data of Ref. 178. The photon-energy derivative of the dielectric constant

for the ordinary ray shows steep increase as the photon energy approaches
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FIG. 5-3. Dispersion curve of the Brillouin-scattering cross sections for
ZnTe measured at room temperature by 0.2 GHz Tl-mode phonons. The
solid line is calculated from Eq. (5.10) by differentiating the
data of refractive indices reported in Refs. 197, 199 and 200.
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ZnTe measured at room temperature by 0.2 GHz T2-mode phonons. The
solid line is calculated from Eq. (5.10) by differentiating the
data of refractive indices reported in Refs. 197, 199 and 200.
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the fundamental absorption edge, compared with that for the extraordinary

ray. This is due to the fact that the lowest direct-gap tramnsition (EgA)

is forbidden for the E|| ¢ polarization, and the dielectric constant for

the E_l_Z polarization, thus, increases steeply as the photon energy approaches
the lowest direct-gap energy (EgA=2.452 eV).

Figure 5-6 shows the dispersion of the Brillouin-scattering cross sections
for CdS obtained at room temperature by 0.2 GHz Tl-mode (fast TA) phonons
[same as Fig. 4-20], i.e., the transverse acoustical phonons propagating in
the direction perpendicular to the c¢-axis. The solid line is calculated from
Eq. (5.10) by differentiating the data of refractive indices reported in Ref.
178 [see Fig. 5-5]. The dielectric constant for the ordinary ray (E‘l_g)
has been used in the calculation because the Brillouin-scattering configurations
for the Tl-mode phonons are gi.l_g and Zs_l_g [see Fig. 3-4 (a)], where Zi
and gé are the unit vectors in polarization directions of the incident and
scattered light, respectively. It is found from Fig. 5-6 that our experimental
dispersion is in a quite good agreement with the expression of Eq. (5.10).

The dispersion of the Brillouin-scattering cross sections for the
acoustoelectrically amplified T2-mode (slow TA) phonons in CdS obtained at
room temperature is shown in Fig. 5~7. The T2-mode phonon domains propagate
in the direction perpendicular to the c-axis with shear polarization parallel
to the c—- axis (piezoelectrically active phonons). In this case, we can not
exactly calculate the theoretical dispersion curve from Eq. (5.10) by using
one of the dielectric constants (i.e., ordinary or extraordinary ray), since
the incident and scattered light have different polarizatioms (Zill ¢ and
N N .
es_i_e). For the purpose of comparison, the solid and dashed lines have been
calculated by using the dielectric constants for the ordinary and extraordinary
rays, respectively. As clearly seen in the figure, both the calculated curves

show a reasonable fit in the whole region investigated, but we find a poor
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The calculated curves are obtained by differen-
tiating the data of dielectric constants reported
in Ref. 178.
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FIG. 5-6. Dispersion curve of the Brillouin-scattering
cross sections for CdS measured at room temperature
by 0.2 GHz Tl-mode phonons. The solid line is
calculated from Eq. (5.10) by differentiating the
data of refractive indices (ordinary ray) reported
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agreement in the region‘near the fundamental absorption edge.

Figure 5-8 shows the dispersion of the Brillouin~scattering cross sections
for CdS obtained at room temperature by 1.2 GHz PL-mode (pure LA) phonons
[same as Fig. 4-23], i.e., the pure-longitudinal acoustical phonons propagating
in the direction perpendicular to the c-axis. The PL-mode phonon domains
were obtained by the mode conversion upon partial reflection of the T2-mode
phonon domains at the end-surface, as in the case for the Tl-mode phonon domains.
One can find that our data indicate an absence of the apparent cancellation
in the measured photon—energy region 2.05 — 2.39 eV. We were not able to
observe any scattering signal in the photon energy below 2.05 eV because of
weak scattering intensities in this region. However, the solid line, which
is best fitted to our data with Eq. (5.10), predicts an existence of the
cancellation point at v 1.65 eV [see Table 5-1]. In the calculation, we have
used the dielectric constant for the extraordinary ray according to the
experimental scattering configurations (gill & and Zsll g). The dashed line
is also calculated with B = 0 (i.e., an assumption of the absence of anti-
resonance) which is in poor agreement with our data compared with the solid
line (B + 0). Therefore, we can expect the presence of weak resonant
cancellation at ~ 1.65 eV, though it has not yet been verified by the measurements

at present.

[B] PForbidden Brillouin Scattering

We present here experimental results of resomant forbidden Brillouin
scattering in CdS by the acoustoelectriéally amplified phonon domains (slow
TA phonons) in several scattering configurations (parallel-parallel and
parallel-perpendicular configurations). The experimental data show a resonance
feature only in the region near the fundamental absorption edge, which is

found to fit to the second derivative of € with respect to the incident-photon
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energy, in direct contrast to the first derivative of € for the allowed
Brillouin scattering.

When the a—dependent Frohlich interaction is assumed to be the forbidden
Brillouin-scattering mechanism, the following expression has been found to
hold for the free electron-hole pairs as the intermediate electronic states
[see Eq. (5.18)]:

2
o =& d  |<nil | B, [ 0> ()%, (5.19)

B dE
where A’ is a constant, q and n are the wave vector and occupation number of

the slow-TA phonons, respectively, E_ is the longitudinal electric field

F
associated with the slow-TA phonomns, and E is the incideqt—photon energy.
The above equation has been used by Winterling et aZ.lél to explain the
resonant-Brillouin-scattering date by TA phonons near the A exciton of CdS
in the forbidden configuration. They have considered that this effect is
attributed to electron-phonon piezoelectric couplingzo1 and is equivalent to
the Frohlich-interaction-induced forbiddem LO scattering [Eq. (5.18)]. It
should be noted that Eq. (5.19) remains approximately valid for excitonic

transitions, provided that one uses for € the experimental data which includes

exciton effects. In addition, the longitudinal electric field EF in the

acoustical phonon domain was estimated to be approximately 3 X 106 V/cm.202

Figure 5-9 shows the first and second derivatives of the dielectric
constant for the ordinary ray of CdS with respect to the photon energy. The
curves have been obtained by numerically differentiating the data of Ref. 178.
It is clear from the figure that the second derivative (solid line) gives
stronger dispersion than the first derivative (dashed line) especially in the
region near the band edge.

The resonance behavior of forbidden scattering by the slow-TA phonon

domains measured at room temperature is shown in Fig. 5-10. The allowed TA
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scattering is only observable for Zi‘l_Zs (parallel-perpendicular configuration,
see Section 2.2.4). The solid and open circles were taken ip parallel-

parallel configuration with Zi(ZS)|| ¢ and Zi(ég) 1_2; respectively. In

contrast to the data for the allowed TA scattering (Fig. 5-7), the forbidden
signal was not observed in the photon-energy region far from the fundamental
absorption edge. The solid and dash-dotted lines are obtained from Eq. (5.19)
[Eq. (5.18)] by differentiating the dielectric constants for the extraordinary
and ordinary fays, respectively. The theoretical curves obtained from

the first derivatives dEI]/dE (d333/dE) and d?l!dE (dall/dE) are also shown

in this figuré by dashed and dotted lines, respectively. These curves correspond
to the allowed Brillouin-scattering mechanism induced by the strain associated
with the acoustical phonons. As clearly seen in Fig. 5-10, the second derivative
shows a quite‘gdod agreement with the experimental data.

Figure 5-11 shows the resonance behavior of parallel-perpendicular (
forbidden) scattering by the slow-TA phonon domains measured at room temperature.
The inset indicates the experimental configurations. The allowed scattering
component is involvea in this configuration, but it is small enough to be
neglected because of the small scattering angles (v 1°). The solid and dashed
lines are obt;ined by differentiating the dielectric constant for the ordinary
ray according to the experimental configurations_(gi_i_g and gs is almost
perpendicular to the c-axis). For the purpose of comparison, we also show
in the figure the line shape of the Brillouin-tensor term Ris obtained in
Section 4.3.4. One can easily find in Fig. 5-11 that the second derivative
shows a quite good agreement with the experimental data.

Forbidden Raman scattering by LO phonons for a parallel-perpendicular

6 They have

configuration has also been found in ZnTe by Schmidt et aZ.5
explained this effect in terms of depolarization induced by internal strain.

Although the forbidden-scattering mechanism observed here has not yet been
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completely explained, it may be pointed out that the strong longitudinal field
associated with the slow-TA phonon domain is ome of the causes. A full
understanding of our results will require further experimental and theoretical

work to be done in this area.

5.8.4 Comparison of Brillouin Tensor Ris with Photon~Energy Derivative

of the Dielectric Constant
Next, we compare the Brillouin-tensor term RiS with the photon-energy
derivative of the dielectric constant. In the above, we obtained the photon-
energy derivatives by numerically differentiating the experimental data of
the dielectric constants. It is well known that the photon-energy derivative
of the dielectric constant can be obtained directly from the modulation
spectroscopy such as electroreflectance, electroabsorption, thermoreflectance,

43,44

piezoreflectance and wavelength-derivative spectroscopy. Indeed, in a
technique of the thermoreflectance spectroscopy the effect of a temperature
change on the optical properties of materials comes from a shift of the

band~gap energy (and a change of the broadening parameter). This band-gap

shift produces a change of the dielectric constant through the expression

of Eq. (5.7). Thus, resopant Brillouin scattering is very analogous
phenomenologically to the modulation spectroscopy. From this fact, the spectral
dependence of the Brillouin-scattering cross sectios can be considered to
contain information about the (first-derivative) modulation spectrum, which

is verified by the following analyses.

Figure 5-12 (a) shows the dielectric constant €. for ZnSe as a function

1
of photon energy at room temperature taken from the data of Ref. 185. The
first derivative of El with respect to the photon energy, obtained by
numerical differentiation, is shown in Fig. 5-12 (b). Figure 5-12 (c) shows

the theoretical line shapes of the Brillouin-tensor term Ris (so0lid and dashed

lines) and corresponding dispersionless term R0 (dashed line) along with the
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spectrum (from Ref. 184).
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experimental data [Fig. 4-~11]. The resonant term RiS is calculated from

Eq. (2.55) with the lifetime-broadening energies of I' = 0 (dotted line) and

56 meV (solid line). We can recognize that the line shape of the Brillouin-
tensor term RiS (solid line) is similar to that of Fig. 5-12 (b). The
thermoreflectance spectrum of ZnSe at room temperaturel84 is shown in Fig.

5-12 (d). The significant feature found is that the thermoreflectance spectrum

is very similar to the line shape of RiS especially near the E_, and E0+A

0 0

transition regions.

Figures 5-13 (a) and (b) show the dielectric constant el (E_l_g) for
CdS at room temperature and its first derivative with respect to the photon
energy, respectively. The dielectric constant is obtained from Ref. 203.
Figure 5-13 (c) shows the theoretical line shapes of the Brillouin-tensor
term Ris (solid and dotted lines) and corresponding dispersionless term RO
(dashed 1line) along with the experimental data [Fig. 4-20]. The resonant
term RiS is calculated from Eq. (2.55) with the lifetime-broadening energies
of ' = 0 (dotted line) and 68 meV (solid line). The experimental data shows
a quite good agreement with the theoretical line shape of Ris when the lifetime-
broadening effect is taken into account in the calculation. The thermo-
reflectance spectrum of CdS (E‘i_z) at room temperature204 is shown in Fig.
5-13 (d). The peaks in the spectrum denoted by A, B and C can not be
distinguished in the 1line shape of RiS [Fig. 5-13 (c¢)], where only the shoulder
arising from the B and C excitons can be recognized in the figure. 1In the
calculation of Ris’ we took into account the lifetime-broadening energy of
I' = 68 meV to fit it to the experimental data. This energy is larger than
the splitting energies of the three valence bands between the A — B (14 meV)
and B — C bands (59 meV). Therefore, such a structureless featufe appeared
in the line shape of Ris is the result of broadening of the resonance energies

(A, B and C excitons). Figure 5-13 clearly indicates that the spectra strongly
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resemble line shapes obtained in the first derivative of € resonant term

l’
Ris and thermoreflectance. We can, therefore, conclude from the analyses
of the quasi-static approximation that the Brillouin-scattering spectroscopy

is quite equivalent to the first-derivative modulation spectroscopy.
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CHAPTER VI

DETERMINATION OF PHOTOELASTIC CONSTANT
IN ZnSe, ZnTe AND CdS

6.1 INTRODUCTION

In this Chapter, we shall obtain the spectral dependence of the photo-
elastic constants in ZnSe, ZnTe and CdS from the Brillouin-scattering data
by introducing the intrinsic-piezobirefringence analysis. From a macroscopical
point of view, the Brillouin-scattering cross section is known to be proportional
to the square of the corresponding photoelastic constant [see Section 2.2.4].
Such constant can be obtained independently from the stress-induced birefringence
(piezobirefringence) measurement. The investigation of the piezobirefringence
in solids is an old topic of crystal optics.42 The application of a uniaxial
stress to a solid produces a change in its crystal symmetry and lattice parameters
which results in significant changes in its properties. An optically isotropic
semiconductor usually becomes birefringent under the action of a uniaxial
stress.

The piezobirefringence data have been reported in a variety of crystals

such as Ge,75 Si,75 GaAs,75’205 GaP,206’207 Ale,208 GaSb,209 InAs,209 InSb,209

2
InP, 07 ZnS,210 ZnSe,92’211 ZnTe,92 CdTe,gz’212 CuCl,213 CuBr,213 CuI,213

21 -
4 C S,30’92 ZnO30 and diamond.215 These data have been obtained

CdSe, d
accurately only in the region of transparency because of experimental reasons
(i.e., transmission of light). Materials whose lowest gap is direct, or with

a direct gap only slightly above the lowest one (e.g., Ge), have a strong
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dispersion of the photoelastic constants in the region near this gap. The
dispersion near an indirect gap far removed from a direct gap (e.g., Si and

GaP) is found to be very weak. The sign of the photoelastic constant is,

in materials with the lowest direct gaps larger than "~ 0.7 eV, negative

for long wavelengths and reverses sign when approaching the direct edge.
Materials with small direct gaps (e.g., InSb), on the other hand, do not exhibit
this sign reversal. The sign of the photoelastic constants in such materials

is positive at long wavelengths and also near the direct edge. The cancellation
in the Brillouin-scattering cross section arises from the sign reversal of

the photoelastic constant (i.e., occurs at an isotropic point). The isotropic
point is known to be independent on the applied stress.

A usual technique employed consists of transmitting a beam of monochro-
mized light through the sample perpendicular to the stress direction. The
plane of polarization of the light is at 45° to the stress direction, and
the ratio of the intensities of transmitted light polarized parallel and
perpendicular to the incident beam is related to the stress—induced phase
difference and therefore to the corresponding photoelastic constant [see
Eq. (2.208)]. Another method to measure the photoelastic constants employs
the diffraction of light traversing the sample by ultrasonic waves (Dixon-
Cohen method).216 Both methods are basically limited to the transparency
region of the material, and can be used with success only below or near the
fundamental absorption edge.

Recently, Chandrasekhar et. aZ.217 have developed a new method to measure
stress—-induced birefringence in an opaque region of the material which employs
the Raman~scattering technique as a probe. Using this new method, they have
neasured the magnitudes of the piezo-optical (photoelastic) constants in Si

(0.5 — 3.38 eV)218 and GaP (1.0 — 2.6 eV)ZO7 above the fundamental absorption

edges.



—194—

In Section 6.2, we obtain theoretical expression of the photoelastic
constants by using the model dielectric constants. A compa;ison of the
theoretical expression with the experimental data is presented in Section 6.3.
In Section 6.4, we present a new method to analyze the piezobirefringence
effect in a opaque region of the material, where the stress-induced changes
in both the real and imaginary parts of the dielectric constant are properly
taken into account by introducing new fractiomal coefficients.219 The piezo-
birefringence data reported up to date were analyzed by considering only the
stress—-induced change in the real part of the dielectric constant. Using
the present method, it should be possible to extend the piezobirefringence

analysis in a large number of opaque materials.

6.2 THEORETICAL EXPRESSION

6.2.1 Zincblende-Type Crystal

In Section 2.3, we have obtained the basic expression of the photoelastic
constants. Using this results, we shall obtain here the concrete expression
of the photoelastic constants in terms of the model dielectric constants.

The spectral dependence of the dielectric constants in Ge and III-V
compounds can be well interpreted with the parabolic band model.64 In this
model, the real par£ of the dielectric constant below the fundamental absorption
edge is the sum of the contribution of the EO/E0+AO edge plus a constant term
€, which corresponds to the effect of the average gap (i.e., contribution

from the higher gaps such as the E E1+Al and E2 gaps). Under the assumption

1’

of parabolic bands, the model dielectric constant can be written from Eqgs.

(2.193) and (2.206) as

1 %032 [ w
S(— ey 1+ . 6D

_ w
e @) =y [ £C )+
0 os os
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Figure 6-1 compares the result of our model (6.1) to the experimental data

of ZnTe. The experimental data are taken from Sliker and Jost.191 The solid
line is a fit of Eq. (6.1) to the data. The numerical values used are as
follows: hwo = 2.25 eV, hwos = 3.18 eV, COZ = 13.20 and g_=3.05. It is

clear from the figure that the calculation shows a considerably good agreement
with the experimental data. It seems that our model should be in much better
agreement with the experimental data if the exciton modification of the
interband absorption edge is taken into account. However, it is difficult

to evaluate this effect from the fit procedure between the model dielectric
constant and experimental data. A differential effect of the piezobirefringence,
as we shall see below, is much more dispersive than El near the E0 edge, and

a separation of the excitonic and interband contributions becomes to be

possible. If we include the contribution of the ground state of the E. exciton

0
[see Eq. (2.199)]:
FD FD
A A 1
5 2 -2 7 3 . (6.2)
E ~ E h W - W
ex x1
we can write the real part of € below EO as:
w® 1, “o .3/2 ®
8l(w)=Coz[f(w—)+§(“w—) f(w—)]
0 os 0s
Py 1
+ = + € , (6.3)
2 2 2 3 .
h % -w
x1

where EXl =~hwx1 is the ground-state energy of the E0 exciton.

Substituting Eqs. (2.230) and(2.237) into Eq. (2.221) and using the

model dielectric constant of Eq. (6.3), we obtain the expression of the

photoelastic constant Pyq in the following form:71

P12
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FIG. 6-1. Dielectric constant of ZnTe at room temperature in the

region of transparency (from Ref. 191). The solid line
is a fit of Eq. (6.1) to the data.
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E W

_c w o ow Y0 32,
so 0 os os
11
¢ 3x 2 g g
ex Xex x1 1 x1 3 1
+ { + == - ( )] i}
2 1- 2,2 A 1 2 E 1+A 1- 2
£11 ( Xex ) so _Xex x so Xexs
+D ., (6.4)
where
- - 2
gx) = [2- (I+) % - 1x) °1/x > (6.5)
o 3. .y3/22 -5/2
C = ( 5 Iy ) P bwo R (6.6a)
3
Cox = = b/ Ey (6.6b)

In Eqs. (6.4) — (6.6), b is the shear deformation potential of Pikus and Bir

[see Sectionm 2.3.2)], and

X . = hw/EXl s X

ox s = *hw/(Exl + A ) . (6.7)

ex 50

The strength parameter Fi can be replaced by (4ﬂNfl), where N and fl are the

number of molecules per unit volume and the oscillator strength per molecule

of the excitons, respectively. The first and second terms inEq. (6.4) correspond

to the contributions from the band-to-band and ground-state EO/EO-l-A0 exciton

transitions, respectively. Since the contributions of the higher gaps (El,

E1+Al and EZ) are generally less dispersive than those of the E. and EO+-A0

0

gaps, we include such contributions in Eq. (6.4) as a nondispersive term D.
The photoelastic constant Py, can alsc be obtained by proceeding the

analysis almost identical to the case of Py - The orbital-strain

P12°
Hamiltonian matrix can be given by the same form as Eq. (2.227) if we replace

the energy shift SE [Eq. (2.226b)] by

001

6E110 = (d//§)SMX s (6.8)
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where d is the shear deformation potential. The stress-induced changes in
energy gaps and squared-p matrix elements, required for the evaluation of

Eq. (2.221), are then given by the same equations as Egqs. (2.230) and (2.237),
respectively, except a replacement of 6E001 by 6E110 in the equations. Finally,
we obtain the photoelastic constant P which has the same form as Eq. (6.4)

but the following changes of Eq. (6.6) must be required:

_ 1,3 ,3/22 -5/2
C = 4( 5 | y'op dwo R (6.9a)
- _ FD 3
CeX =-3 Ad/4EXl . (6.9b)

The sign reversal of the piezobirefringence may be understood in terms
of cancellation between the EO/E0+A0 gap contributions and contributions from
the higher gaps. The contributions from the higher-lying gaps have been

09 with the Penn model (a simple model

treated quite successfully by Yu et aZ.2
of an insulator in which an average isotropic gap at the edge of a spherical
Brillouin zone is assumed). It is known that for the zincblende-type materials
the imaginary part of € has a strong peak (E2 transition) in the neighborhood
of which most of the optical density of states is concentrated. In order to
explain this effect, Penn220 suggested the model of the non-physical spherical
Brillouin zone with an isotropic gap (Penn gap) at its boundaries. The usual
complex energy bands of the material are then replaced by those of a free
electron with the Penn gap wg at the boundary of the spherical Brillouin zone.
This gap should occur in the vicinity of the E2 (MZ) optical structure. In the
Penn model, the long-wavelength dielectric constant £(0) of a solid is given by

) =140 (22 =4 ()2 (6.10)
v wg wg ? *

where wp is the plasma frequency of the valence electrons and DV is a parameter
introduced by Van Vechten22l to take into account the effect of d~like core

electrons. Equation (6.10) yields two contributions to the change in £(0)
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due to the stress X; one arises from the change in plasma frequency and the

other from the change in the Penn gap, i.e.,

2 dInmp av dIanré!
av dx dv dx

1 de0) _ 1 de(0) dv _

e(0) dX e(0) dav ax ), (6.11)

where V is the volume of a crystal. The first term in the bracket of Eq. (6.11)

9

should not exist for a pure shear stress. Yu et aZ.20 obtained the following

Penn-gap change contribution in tensor form:

1
€(0)

<
e

Ae(0) = 5 , (6.12)

< <
where € and e are the dielectric and strain tensors, respectively. Using

Eq. (6.12), we obtain the nondispersive component of the photoelastic constant:

— l —
D=5 50 for p ;Py, (6.13)
11
-1 5
D=—5 7€ for by . (6.14)
€11

Figure 6-2 shows a typical example of the theoretical line shapes of
the photoelastic constant calculated from Eq. (6,4) with three different
broadening parameters; I = 0 (dashed line), O.OZEO (solid line) and 0.03E0
(dotted line). The lifetime-broadening effect has been introduced in Eq. (6.4)
in a phenomenological manner by replacing w by w+il'/2h. When the electronic
states have an infinite lifetime (I = 0), the calculated line shape shows
a divergence at the band-edge region. The lifetime broadening suppresses
this divergent feature and as a result a complex structure appears in the

vicinity of the band edge E It is clear that this structure is very similar

0"

to that for the Brillouin-tensor term R_S [see, e.g., Fig. 4-10].
i

6.2.2 Wurtzite-Type Crystal

The piezobirefringence analysis for the wurtzite-type crystal is almost
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identical to that for tﬁe zincblende~type crystal. The stress—induced changes

in the band—~gap energies and squared-p matrix elements can be obtained by

solving the eigenvalue problems as similar to those discussed in Section 2.3.2.
Since the wurtzite-type crystal is already birefringent before stress is applied,
it is only possible to observe accurately the birefringence induced by the

stress along parallel and perpendicular to the c¢-axis. The linear combinations
of the photoelastic constants may, of course, be determined from the piezo-
birefringence experiment by properly selecting the experimental cooxrdinate
systems.92 We now express the component of dielectric temsor by taking into

account the exciton effect in the following form:

o.
€19 = F e (® +eyy, s (6.15)
where
a o ® 1
& (@) = F.,Lz
ij ijj 5 3 - 2,2 2
1n [(Ega G/n™)"-E7]
E 11 B a2
*05 76 2 ‘g‘z—z] . (610
E Ega -B

Here o labels the three valence bands A, B and C,'F‘;j is the strength

parameter related to the squared-p matrix element, and G is the exciton

Rydberg constant. Cij and 8ijw are adjustable parameters which can be
determined by fitting the experimental data of refractive indices with Eq.
(6.15). The first and second terms in the right-hand side of Eq. (6.16)
correspond to the contributions from the discrete excitons and the unbound
continuum excitons plus band-to-band transitions, respectively. The expression
(6.16) has been used by Berkowic289 to explain his piezobirefringence data

of CdS and ZnO. It should be noted that the second term of Eq. (6.16) has

very similar spectral dependence to that of the band-to-band contribution,

i.e., to that appeared in Eq. (6.1) [see Sectionm 2.3.1]. The parameter Cij is
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then introduced in Eq. (6.16) in order to account for both the continuum
excitons and band-to-band transitions by the common expression, i.e., by
the second term of Eq. (6.16).

One can obtain the orbital-strain Hamiltonian matrix from Egqs. (2.80)
and (2.85). The stress—induced change in the band-gap energies may be
calculated by diagonalizing this Hamiltonian matrix. The stress-induced
change in the strength parameters may also be calculated in a manner mentioned
in Section 2.3.2 by using the perturbed wave functions. The piezobirefringence
can only be measured accurately when the axes of the stress-induced change
in the dielectric temsor coincide with those of the dielectric comnstant at
zero stress (natural birefringence), i.e., when the stress is applied along
a principal axis. We shall, therefore, consider first the case corresponding
to the photoelastic constant Peo* As mentioned in Section 2.3.2, the
experimental coordinate system for the determination of Pge satisfies this
requirement (the x-axis is parallel to the direction of the applied stress).
In this case, we can use the orbital-strain Hamiltonian of Eq. (2.88b) instead
of Eq. (2.85). Using the quasi-cubic model for the unperturbed bands, the
stress—-induced changes in the band-gap energies and strength parameters are

obtained as follows (first order in stress):

AEgA =0 EgA(X) - EgA(o)'] =0 , (6.17a)
AEgB = [ EgB(X) - EgB(O) l1=0 |, (6.17b)
AEgC =] EgC(X) - EgC(O) l1=0 |, (6.17¢)
and o 2 o 2
- AR -4 B 4 C -
MEIF(0) = [AFL - 0F) 1/EE (0) = 4( Bt B 05 (1yS 1)K -
(6.18a)
B ,_B _ B _, B B 4 _
AFXy/FXX(O) = [AFxx AFyy]/FXX(O) = By, 05(511 slz)x R

(6.18b)



—203—

c ,.C C C C __ 4
AR JFL(0) = [AF[ - AFC1/F (0) = - g (

C X,
ca ° :

5117512
(6.18c)

. . . o _ O 0
where C5 is the shear deformation potential, AFii Fii(X) Fii(O) and EBA and

ECA are given by Eq. (2.79). The photoelastic constant can be written from

Eq. (2.210) as

1 se,, 1 + 6kl

= 1]
p_=- . (6.19)
mn €ii€jj Bekl 2

The factor (1 + 6k1)/2 appears because the off-diagonal components of the
strain tensor contribute twice to the sum (2.210). Substituting Egs. (6.17)
and (6.18) into Eq. (2.221), we finally obtain the expression of the photo-

elastic constant Pge in the following form:39

1

p66 = . 5 ( D66 + C5F66 ) N (6.20)
11

where
2 A B 2 A C
OLB gxx B eXx OLC EXx B Exx
F66 = 2[ E + B 1 . (6.21)
BA CA

In Eq. (6.20), D6 is the nondispersive contribution arising from the higher-

6
lying gap transitionms. In accordance with the previous discussion, we can
introduce the lifetime-broadening effect in the calculation of the photoelastic
constant by replacing E of Eq. (6.16) by E + i(T'/2).

We next proceed to calculate the photoelastic constant p44 in a similar
way. From experimental aspect, this constant can not be measured accurately
because the axes of the stress-induced change in the dielectric temnsor do not
coincide with those of the dielectric constant at zero stress, in contrast
to the case of Peee Yu and Cardona92 have determined the spectral dependence
of P66 and the linear combinations of the photoelastic constants. Recently,

however, Berkowicz and Skettrup30 have obtained the spectral dependence of

both Pus and Peee. In the case of Puys they have used the coordinate system
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with the stress direction forming an angle 45° with the c-axis to yield the
shear strain component exz. We can now use the orbital—stre%in Hamiltonian
of Eq. (2.89b) instead of Eq. (2.85). From this Hamiltonian, we obtain the
following stress-induced changes in the band-gap energies and strength

parameters (first order in stress):

EgA =1 EgA(X) - EgA(o) =0, (6.22a)
Ep = [ B - E (0 1=0, (6.22b)
B~ [E X -E 0 1=0 , (6.22¢)
and
a 2 o2
a0 =te (B , (6.23a)
V2 BA cA
o 2
AFiz/Fix(O) --2 06%( EC— - % ) , (6.23b)
V2 a, BA CB
a 2
C C 1 T 1
AF. JF (0) === C,——=(— +=—) R (6.23c)
¥z XX Vi © cz Bca  Ecp
where C6 is the shear deformation potential, and
2_B 2._C
_ Op Fzz(o) 3 g FZZ(O) L
Telas Vet e - : (6.26)
Zuc FXX(O) ZaB FXX(O)
Substituting Eqs. (6.22) and (6.23) into Eq. (2.221), we obtain
Pae T Tes (%t R ) (6.25)
11733
where N 9 EB ) EC
T C A XX B A XX
B === g (en -—5) +2— (e -2
44 2/3 EBA XX o 2 ECA XX o 2
B C
1 Eix Eix
+'—(—2——§)] (6.26)
CB o a
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In Eq. (6.25), is the nondispersive contribution arising from the higher-

Pas
lying gap transitions.

The photoelastic constant P3; may also be derived in the same way as
was done to the case of P and Phyc However, this constant can not be determined
from the piezobirefringence experiment because of the limitation of the
experimental coordinate system. The Brillouin-scattering technique enables us
to determine the photoelastic constant p31 from the intensity measurements
of corresponding Brillouin component.222 The macroscopical theory of Brillouin
scattering gives intensity of the PL-mode phonon component in terms of P3l
[see Section 2.2.4]. As already mentioned in Section 2.2.3, the PL-mode
phonon produces the non-vanishing strain component e . Therefore, we can
use the orbital-strain Hamiltonians of Egs. (2.93a) and (2.93b) instead of
Eqs. (2.84) and (2.85). From these Hamiltonian matrices, the stress—induced
changes in the band-gap energies and strength parameters become to first order

in the stress:

AEgA = [ (C2 - dz) + C4 1 e x , (6.27a)
i _ 2
AEgB = [ (C2 dz) + ap C4‘] e x , (6.27b)
_ _ 2
AEgC = [ (C2 d2) + aC 04 1 exx R (6.27¢)
and
AFﬁz/F:z(O) =0 , (6.28a)
2
B ,. B %g '
AF, IF, (0) = - 2C, = , (6.28b)
CB
2
c ,C e
AFZZ/FZZ(O) =42 C4 N (6.28¢c)

CB
Substituting Egqs. (6.27) and (6.28) into Eq. (2.221), we obtain the expression

of the photoelastic constant p31 in the following form:
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1 (3)

- () -
Py = 3 [ D31 + C4F31 + (C2 dZ)F31 1 ’ (6.29)
€33
where
2B 2C A B C
o, € _=—a,€ og Je J€
(A) B "zz C "zz 2z 2 zz 2 ZZ
F&™ = _gf 1+ 1 + o + o 1, (6.30)
31 ECB BEgA B aEgB C aEgC
(B) Bejz aezz 3822
F31 = ( 3E + 38 T 3E ) . (6.31)
gA gB gC
In Eq. (6.28), D31 is the nondispersive contribution arising from the higher-

lying gap transitions.

6.3 COMPARISON OF THEORY WITH EXPERIMENTAL DATA

The macroscopical theory of Brillouin scattering presented in Section
2.2.4 gives intensities of the Brillouin-scattering cross sections in terms

of the photoelastic constants:

0g(T1) = (pyq - 1312)2 , (6.32a)

05(T2) = p442 , (6.32b)
for the zincblende-type crystals, and

05 (TD) = p,,° , (6.33a)

0,(12) «p,,° : (6.33b)

Og(PL) & P32 ’ (6.33¢)

for the wurtzite~type crystals. We shall obtain here the spectral dependence
of the photoelastic.constants from the present data by introducing the intrinsic~

piezobirefringence analyses.

6.3.1 ZnSe

Figures 6-3 and 6~4 show the spectral dependence of the photoelastic
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The theoretical curves are obtained from Eq.

(6.4)

with I'=0 meV (dashed line) and I'=60 meV (solid line). The piezo-
birefringence data of Yu and Cardona (Ref. 92) are also shown by
solid circles.
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constants Pyq ~ and Phs for ZnSe, respectively, obtained at room temperature.

P12
The theoretical curves have been calculated from Eq. (6.4) with I' = 0 (dashed
line) and T + 0 (solid line). The numerical values used are listed in Table
6~1. The constants C and Cex are deduced from the experimental data of

the intrinsic-piezobirefringence measurements reported by Yu and Cardona.92 The
piezobirefringence data of Yu and Cardona are also shown in the figures by

the filled circles. As clearly seen in the figures, the data obtained from

the Brillouin-scattering measurements show a quite good agreement with the
piezobirefringence data. The theoretical curve (I' = 0) shows a poor fit

with the experimental data in the region near the fundamental absorption edge.
Such a feature is improved by taking into account the lifetime-broadening
effect. This effect has not yet been considered in the previous piezo-
birefringence analyses because of the experimental difficulty in the region

of the photon energies sufficiently close to the fundamental absorption edge
(where there exists strong absorption of light in thick samples used to avoid

a destruction with the applied uniaxial stress). The best-fitting values
of the broadening energy are determined to be I' = 68 and 60 meV for Py; T Py
and p44, respectively. These values agree reasonably with those derived in
the analysis of the Brillouin-scattering cross sections [see Section 4.3].
The piezobirefringence coefficients of ZnSe have been measured at liquid
nitrogen temperature by Dubenskii et aZ.le Cooling the samples make it
possible to study piezobirefringence close to the absorption edge since the

edge becomes sharper at 77 K. Comparing their data with ours, we found that

the long-wavelength photoelastic constants do not vary much with temperatures.

6.3.2 ZnTe
Figures 6~5 and 6-6 show the spectral dependence of the photoelastic
constants Py; ~ Pys and Puy for ZnTe, respectively, obtained at room temperature.

The theoretical curves have been calculated from Eq. (6.4) with I' = 0 (dashed



Numerical values used to calculate spectral dependence of the photoelastic

Table 6-1.
constants pll - P12 and p44 for ZnSe and ZnTe.
ZnSe ZnTe
P11 7 P12 Puy Pi; ~ Ppp P,
¢ 1.42 9.157107% 1.02 1.29x10"%
¢, @ 3.9uq0” 5.26x107 2.27x107 5.59x107
p® 1 49x107t -1.35x10% -8.65x1072 -3.70x1072 .
ell(w) Reference 189 Reference 189 %
B, [eV] 2.68 2.25
A, [ev] 0.41 0.93

(a) Reference 92.

(b) Estimated from our experimental data.
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line) and T + 0 (solid line). The numerical values used are listed in Table

6-1. The theoretical curve (solid line) shows a quite good agreement with

the experimental data especially near the fundamental absorption edge when

we take into account the lifetime~broadening energy of I' = 30 133 meV. This value
agrees exactly with those derived in the analysis of the Brillouin-scattering

cross sections. The sign of Pyp and Py is negative in the region far

P12
from the band edge and becomes positive when the wavelength approaches the
band gap. Yu and Cardona92 have reported the spectral dependence of the

hotoelastic constants p - p and from the piezobirefringence measurements.
P 11 Pag P &

12
However, they have not measured the value of p44 in the positive-sign region
(i.e., near the band-edge region). Our experimental data, on the other hand,

clearly indicates an existence of that p passes through zero while undergoing
44 &

a reversal in sign.

6.3.3 0dS

The spectral dependence of the photoelastic constant Peo obtained at
room temperature is shown in Fig. 6-7. The theoretical curves have been
calculated from Eq. (6.20) with [ = 0 (dashed 1in¢) and T + 0 (solid 1line).
The numerical values used are listed in Table 6~2. The piezobirefringence
data of Yu and Cardona92 and Berkowicz and Skettrup30 are also shown in the
figure by filled and open triangles, respectively. The best-fitting broadening
energy is determined to be ' = 68 meV as shown by solid line. This energy
agrees well with that taken into account in the Brillouin-scattering analysis.
It is clear from the figure that our data show a quite good agreement with
the piezobirefringence data.

Figure 6-8 shows the spectral dependence of the photoelastic constant
Py obtained at room temperature. The solid line has been calculated from
Eqg. (6.25) by taking into account the lifetime-broadening energy of I = 68 meV.

The numerical values used are listed in Table 6-2. The piezobirefringence
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Skettrup (Ref. 30) are also shown by solid and open triangles,
respectively.

(6.20)
The piezo-
birefringence data of Yu and Cardona (Ref. 92) and Berkowicz and
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Table 6-2. Numerical values used to calculate spectral dependence
of the photoelastic constants Pee. Pus and P31 for Cds.
s

Symbol Numerical value
(a)
E 2.452 eV
gA
g (@ 2.466 eV
gB
g (@ 2.525 eV
gC
=, ® 0.0131, 0
XX z2
P, » ® 0.0073, 0.0083
XX ZZ
¥, §¢ ) 0.0041, 0.0087
XX ZZ
G(b) 28 meV
(c) _
C2 4.5 eV
(c)
C4 2.9 eV
CS(C) -1.5 eV
(c) _
C6 2.4 eV

(a) Reference 187.
(b) Reference 80.
(c) Reference 152.
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data of Berkowicz and Skettrup30 are also shown in the figure by open circles.
It is well known that the piezoelectrically active (T2-mode) phonon domains
produce high longitudinal electric field. This electric field may induce

the electro-optic effect of crystals. In.such a case, the photoelastic constant

[Eq. (6.33b)] is given by 223

Py = Pi, 7t (p44)ind , (6.34)

where PZA is the Pockels photoelastic constant arising from the elasto-optic

effect and (p44) is the indirect photoelastic constant arising from the

ind

electro-optic effect. is given by

P44 ind

€15%51
11

(P44)ind = - (6.35)

where ¢ and € are the piezoelectric, Pockels electro-optic and

15° Fs1 11
dielectric constants, respectively. Hamaguchi et aZ.223 have estimated that

the value of (p44)

ind in CdS is about 18 % of the Pockels photoelastic constant

pz4. In Fig. 6-8, we find a quite good agreement between the present data
and piezobirefringence data. This fact suggests that Brillouin scattering
is mainly governed by the elasto-optic effect, i.é., it means that in Eq.
(6.34) Puy = pZA' It is obvious from Figs. 6-7 and 6-8 that the isotropic
point occurs at the same wavelengths for both p66 and Pus within the experimental
accuracy. There is nothing in theory which indicates that the isotropic point
should be positioned at the same wavelengths for both sy and Peee However,
30

one can expect such a fact on the basis of the quasi-cubic model. When

the crystal~field parameter AC = 0 and (p44) 0, then Peg = Phye The

ind ~
crystal-field parameter Ac for CdS is about 0.027 eV which is thought to be
considerably small. From this fact, one should expect the isotropic points

to be nearly common to p44 and p66'

The spectral dependence of the photoelastic constant Pay obtained at
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room temperature is shoﬁn in Fig. 6-9. The solid line has been calculated
from Eq. (6.29) by taking into account the lifetime-broadening energy of T =
68 meV., Note that the energy derivative term of Baiz/aEgA does not contribute
to p3l, because Fiz = 0 [see Table 6-2]. Absolute values of this constant

are given in the figure; they were determined by normalizing our data to the
absolute one measured by Dixon (Dixon-Cohen method)46 at a light wavelength

of 632.8 nm (|p3ll = 0.041 at this wavelength). Tell et aZ.ZZZ have also
determined the spectral dependence of the off-diagonal photoelastic components
P, and Py in the wavelength range of 530 — 630 nm by means of the Raman-

Nath method. We found that our data show a quite good agreement with the data

of Tell et al.

6.4 PIEZOBIREFRINGENCE IN AN OPAQUE REGION

In the previous subsection, we have presented the spectral dependence
of the photoelastic constants in various semiconductors in the region below
the lowest direct gap determined from the Brillouin-scattering data by
introducing the intrinsic-piezobirefringence analysis. We have, however,
disregarded the contribution from the imaginary part of the dielectric constant
to the photoelastic constant assuming that the contribution is negligibly
small compared with that from the real part of the dielectric constant in the
photon-energy region of transparency. Recently, Chandrasekhar et aZ.207 have
developed a new method to measure the stress~induced birefringence in an
opaque region which employs the Raman-scattering technique as a probe. Using
this new method, they have measured the magnitudes of the piezo-optical
(photoelastic) constants in Si (0.5 — 3.38 eV)218 and GaP (1.0 — 2.6 eV)207

above the fundamental absorption edge. In their analysis, the contribution

from the imaginary part of the dielectric counstant has also been neglected,
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although they have pointed out that its contribution should be taken into
account in order to discuss the spectral dependence of the piezo-optical
constants in the region above 3.0 eV in Si.

Let us now present here a new method to analyze the piezobirefringence
effect in the opaque region of solids, where the stress-induced changes in
both the real and imaginary parts of the dielectric constant are properly
taken into account by introducing new fractional coefficients.219 We will

218

apply the present model to the analysis of the experimental data of Si

and ZnSe (present work).

6.4.1 Model

The photoelastic constant or piezo-optical constant is exactly reiated
to the difference of refractive indices (n” —?l? through [see Eqs. (2.208)
and (2.209)]

- en =1 3 - -~
An = n” ?l. 5 1 (S11 Slz)(P1l plz)X R (6.36a)
M =ny-n;=-%n3(m. -1.)X (6.36b)
Il 20 Y11 12 * :
for the [001] stress direction, and
An =n;-n, = - 1 n 35 X (6.37a)
""" 7 2 "o "a4Pss ’ =
- .1 3
An = n“ n, = 5 0 W44X s (6.37b)

for the [110] stress direction. We note here that Egqs. (2.215) and (2.217)

are only valid when the optical absorption is small, i.e., €, = 0. The

optical constants n and k of Eq. (2.207) are real and positive numbers and
can be determined by optical measurements. They are related to the dielectric

constant (¢ = €, + isz) by the following equations:

1

al =n -k N (6.38a)

€

It
g
L3

2 (6.38b)
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Resolving these equations in n and k, we obtain

(. +e, )% +¢ 1
ns= [ —2 2 1z, (6.39a)
2
1
(Elz + 622)6 LTS
k= 12 (6.39b)
2

The change in the refractive index /n can now be given by (first order in

stress)
dn 3y de
bn=gx X =00 &) gx X+ B(eps ep) 5x X
= ar(al, £,) bey + Bi(el, €,) Aez , (6.40)
with
2 2.%
+ (e, +€,7)*
_9n _ 1 Cl 1 2 =% 2.-%
% T Be, "4l 72+ (" + 6,071, (6.41a)
2 2. %
e, + (e, +e,)% 4 N
—on _1 .71 1 2 -% 2 2.-%
S 7% (e} +¢,97%,] (6.41b)

The first and second terms of Eq. (6.40) are contributions from the stress-
induced changes in the real and imaginary parts of the dielectric constant,
respectively. The coefficients o and Bi are functions of photon energy,
and their sign and relative magnitude determine the fractional contributions
of Asl and Aez to the piezobirefringence effect.

The change in the real part of the dielectric constant with the applied
stress can be given by the expression (2.221). The stress~induced change in

the imaginary part of the dielectric constant Aez is also give by replacing

£ of Eq. (2.221) by €,s f.e.,
382 382 382
[Ae,w)] ==X =12 (= M, + 55— Mo ., ) . (6.42)
2 X i=A,B,C BMi i awgi gi

The photoelastic (piezo—optic) constant can be obtained by substituting Eq.
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(6.40) into Eq. (6.36) [Eq. (6.37)].

6.4.2 Results and Analysis

First, we consider the contribution from the imaginary part of the
dielectric constant to the piezo-optical constant of Si in the region of
the El transition (Vv 3.3 eV) where the sample is opaque. Figure 6-10 shows
the spectral dependence of the fractional coefficients ar and Bi for Si,
calculated from experimental values of the optical constants reported by

4 A low-energy region (below 3.0 eV), which contains

Philipp and Ehrenreich.22
the fundamental absorption edge, is dominated by ar. The o dominance in this
region makes it easy to analyze the piezobirefringence effect using a
conventional technique which employs transmission of light through the sample.64
The fractional coefficient Bi increases at the photon energies above 3.0 eV,

and rising Bi and falling o produce a crossover at about 4.1 eV. 1In this
regidn, the piezobirefringence analysis becomes very difficult, because the
fractions of the contributions from Ael and Aez should be exactly taken into
account. Figure 6-11 shows the changes in the dielectric constants Ael and

A€2 as a function of photon energy. In order to calculate Ael and Aez, we

have used the following approximations:

Bel 381 351
.AEl = X X = B—Eg_ AEg - BT AEg N (6.43a)
9e o oe
2.2 .- 2
A€2 e X = BEg AEg B °E AEg s (6.43b)

where Eg is the El—gap energy and E is the photon energy. We have calculated

Ael and Aez by numerically differentiating the experimental data of Philipp

and Ehrenreich.224 The obtained results are shown in Fig. 6~11 by solid (Ael)

and dashed line (Aez). The changes in the dielectric properties under strain

225

have also been calculated by Tsay et al. in terms of a full band-structure

approach to estimate the Brillouin-scattering efficiencies of Ge and Si.
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. 2 .
Now, we compare our theoretical model with the data of Si. 18 Figure 6-12

shows the theoretical curve calculated from Eq. (6.40) along with the
experimental data [Fig. 7 of Ref. 218]. The filled circles are plotted

on the scale indicated in the figure, while the open circles are replots

of the same values on an expanded scale (4X). The theoretical curve was
calculated using the fractional coefficients and the changes in the dielectric
constant given in Figs. 6~10 and 6-11, respectively. The data below 1.5 eV
are obtained from Ref. 64 (conventional method) and those above 1.5 eV from
Ref, 218 (new method). It is evident from Fig. 6-12 that the experiment

and calculation are in quite good agreement.

Chandrasekhar et aZ.le

have also reported the experimental value at

E = 3.38 eV, where it is plotted on a reduced scale (i%x . Due to the lack
of points at intermediate photon energies they have not been able to infer
the sign of the effect at E = 3.38 eV. They have suggested that in the
photon-energy region close to the critical point real transitions occur and
the exact linewidth, including the imaginary part of the stress-induced
dielectric constant, is required for an accurate description of the piezo-
birefringence phenomena. By virtue of the present model, we can estimate
the sign of the data ath = 3.38 eV to be negative because the signs of ar
and Bi are positive in this photon-energy region but those of Ael and A€2
are negative.

Next, we consider the contribution from the imaginary part of the dielectric
constant to the piezobirefringence coefficient in ZnSe determined from the
Brillouin-scattering measurements. Figure 6-13 shows the spectral dependence
of the fractional coéfficients o and Bi for ZnSe, calculated from experimental

90

values of the optical constants reported by Aven et aZ.l The stress-induced

changes in the dielectric constant Ae. and Aez as a function of wavelength

1
for the case of the [001] stress direction are shown in Fig. 6-14 by solid (Asl)
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and dashed line (Aez). ‘In the calculations, we have replaced w of Eq. (2.221)
by w + i (T'/A) and calculated real and imaginary parts of this equation. It

is important to point out that the change in the imaginary part (Aez) has
considerably large value in the region very close to the fundamental absorption
edge (2.68 eV =~ 463 nm). However, the fractional coefficient Bi is very

small, compared with ar, in the photon-energy region. It is clear from this
fact that the contribution from the imaginary part of the dielectric constant
to the piezobirefringence effect is much smaller than that from the real part
of the dielectric constant, and therefore we can disregard the imaginary-part
contribution in the region below and near the lowest direct gap in a good
approximation. From these considerations, the photoelastic constant P11 T~ P12
becomes proportional to urAEl [see Eqs. (6.36a) and (6.40)1. We have,
therefore, fitted our experimental data of pll - pl2 to the calculated curve

(solid line) by taking into account the constant term which arises from the

higher—gap contributions (E E1+A1 and E, transitions), where we have assumed

l’

that ar is nondispersive in the measured wavelength region [see Fig. 6-13].

2

It is clear from the figure that the calculated curve shows an excellent
agreement with the experimental data. From these discussions, we conclude that
the photoelastic constants in the region of transparency can be safely determined
only by the stress-induced change in the real part of the dielectric constant,
and therefore our previous results (Section 6.3) can be used without any
modification.

It can be found from Figs. 6~10 and 6-13 that the spectral dependence of
the fractional coefficients o and Bi is very similar to that of the modulation
spectroscopy proposed by Seraphin and Bottka (Seraphin coefficients).226
The Seraphin coefficients, which are obtained by differentiating Frenel’s
formula, are functions of photon energy, and their sign and relative magnitude

determine the fractional contributions of Ae. and Aez to the modulation spectro—

1
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scopy. In Chapter VIII, we will survey a relation between resonant Brillouin
scattering (piezobirefringence) and the first—derivative modulation spectro-
scopy such as thermoreflectance, piezoreflectance and wavelength~derivative
spectroscopy, and will compare the experimental Brillouin spectra with the
first-derivative modulation spectra obtained in some semiconductors. The
results will clearly suggest a close relationship between them.

Finally, we have obtained a generalized expression of the piezobirefringence
effect by taking into account both the stress—induced changes in the real (Ael)
and imaginary part (Aez) of the dielectric constant. The coefficients o,
and Bi’ which are functions of photon energy, have been calculated from an
analytical point of view. Such coefficients determine the fractional contributions
of Ael and A€2 to the piezobirefringence response. The present model has been
demonstrated for Si and ZnSe in the photon-energy regions of opaque (El edge)
and of transparency (E0 edge), respectively. Good agreement between the
experiment and calculation has been found. When the present method is adopted,
it is possible to extend the piezobirefringence analysis in a large number of

opaque materials.
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CHAPTER VII

EFFECT OF LIFETIME BROADENING
ON RESONANT BRILLOUIN SCATTERING IN ZnSe AND ZnTe

7.1 INTRODUCTION

The purpose of this Chapter is to report some effects of the lifetime
broadening on resonant Brillouin scattering. It is well known from the
earlier work that the excitons play an important role on the optical properties,
at least at low temperatures, in the spectral region of the fundamental
absorption edge.69 The investigations were mainly concerned with the energy
states of the excitons which were found to be of the Wannier-Mott type [see
Section 2.2.2]. From numerous investigations, it is known that in semi-
conductors the optical spectra near the fundamental absorption edge are
strongly influenced by exciton-phonon or electron-phonon interactions. Below
the edge, this interaction determines the line shape of the exciton spectrum.
Furthermore, the interaction of electrons and excitons with phonons may cause
additional structures near the edge. Toyozawa227 suggested that when the
exciton-phonon coupling is weak and the exciton effective mass is small,
the exciton absorption band is of a Lorentzian shape, provided that the
temperature T is not too high. The half-value width (broadening) was given
by the level broadening of the optically produced exciton due to'phonon
scattering, so that it was proportional to T except at low temperatures.

He also obtained that if the coupling is strong, or the exciton effective



—232—

mass is large, or the temperature is very high, the absorption band is
expected to be of a Gaussian shape and the half-value width is proportional
to T%. The optical properties of various interacting exciton-phonon systems
have been explained within the framework of the Toyozawa’s theory.

In this Chapter, we report on a study of the lifetime-broadening (
referred to as damping hereafter) effect of the intermediate electronic states
on resonant Brillouin scattering in ZnTe and ZnSe. The light-scattering
efficiency derived by Loudon35 contains various band parameters. The optical
absorption spectra are also specified by these parameters. Indeed, Pinel1
has discussed a relationship between the Brillouin-scattering cross section
and absorption, and tried to explain the resonant-Brillouin data (Brillouin
scattering by thermal LA phonons in CdS) from this aspect. The optical-
absorption data reveal that samples of ZnSe, as in other II-VI compounds,lgS’228
should be selected and prepared carefully in order to minimize extrinsic
absorption arising from native or foreign defects. It is well known that
optical spectra in semiconductors are affected strongly by the damping (

e.g., absorption, reflection and emission of the exciton 1ines).43’44’153’176’

177 Such a damping can be represented by a sum of the temperature dependent
and independent parts;153 the former arises from the thermal vibrations of
the lattice and the later from the crystalline imperfections. From the

153,176,177 it was found that the value of

analyses of the optical spectra,
the damping energy increases with increasing the lattice temperature. This
fact easily suggests an importance of the temperature-dependent part (i.e.,
the damping induced by lattice vibrations) in the damping process. From
these facts, it is éxpected that the Brillouin-scattering cross section is
also affected by the damping effect of the intermediate electronic states.

This is the motivation of the present study.

In order to investigate the temperature dependence of the damping energy,
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we have measured resonant Brillouin scattering at room temperature and low
temperature (77 K). Moreover, we have used two kinds of ZnTe and ZnSe single
crystals to study some effects of the crystalline imperfections on the

spectral dependence of the Brillouin-scattering cross sections.229 For ZnTe,
one is the single crystal grown by the conventional melt-grown method and

the other is that grown by the traveling heater method (THM, see Appendix). ZnTe
has a high melting point (v 1298°C),230 and is usually prepared from non-
stoichiometric melts or by vapor phase transport method. The high-temperature
growth from non-stoichiometric melt is, in general, suffered from a contamination
from silica. The crystals grown from the vapor phase, on the other hand,

often contain numerous dislocations and inclusions. In contrast to the above
methods, the THM belongs to the solution growth and is suitable for the growth

231,232 Two kinds of samples for ZnSe were prepared; one

of perfect crystals.
is the as-grown sample grown by a melt-growth technique and the other is that
purified in liquid Zn.98 We made this purification at 1000°C for about 30
hours, where the crystals were sealed in evaquated quartz tube with Zn metal
(6N grade). The Zn-purification is known to be efffective particularly in
removing Zn vacancies and noble-metal impurities such as Cu and Ag. The
ability of this purification technique was already manifested from optical
and electrical properties of the purified crystals.98’185’233—235
The results obtained here have shown that the damping of the intermediate
electronic states does not depend on the temperatures but strongly on the
crystalline imperfections. The damping energy of high-quality ZnTe (ZnSe)
determined from resonant Brillouin scattering is T = 26 meV (44 meV) at 77 K,
which is very large compared with the value of I' ® 2 meV (3 meV) obtained
from reflectance spectrum.236 We propose here for the explanation of this

difference the domain-induced damping of the intermediate electronic states

arising from an interaction of the states with the high-intensity acoustical
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phonon domains.

7.2 LIFETIME-~BROADENING EFFECT

When the frequency of radiation approaches one of the resonance
frequencies of a solid, we must take into account the finite lifetime of
the excited states. The finite lifetime of the states is a consequence
of the spontaneous transition of the quantum system from higher states to
lower ones. A calculation of the optical process, e.g. electric susceptivility,
based on a fully quantum-mechanical theory may automatically include spontaneous-—
transition effects. However, a good approximation to the rigorous result can
be obtained in a comparatively simple way by a phenomenological inclusion

of spontaneous—transition damping in the theory, i.e., by replacing

L
w > w+ i s (7.1)

where w is the frequency of radiation and I is the phenomenological damping
energy [see, ¢.g., Eq. (2.55)]. The probability that the quantum system at

the time t is still in the excited state is given by

W(t) = [exp-( Tt/ ) ] . (7.2)

The quantity TO =‘ﬁF_l is called the lifetime of the excited state. This
quantity determines the broadening of the resonance energy according to the

well known uncertainty relation:

AE~TO =4 . (7.3)

Equation (7.3) follows that the resonance energy is broadened by an amount

At very low temperatures, the line shape of absorption and emission of
the excitons results from interactions with acoustical phonons. But, because

of the relatively strong coupling to the LO phonons, one would expect this
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coupling to influence the exciton line width at moderately low temperatures.237
The thermal-broadening mechanism is represented schematically in Fig. 7-1.
The discrete—-exciton bands are depicted by the solid parabolas and the
hatched area is for the continuum—-exciton bands. The dotted curves represent
the dispersion curves for the low-lying polariton modes. The lifetime
broadening is a consequence of the scattering of an exciton (excited electronic
state) associated with the annihilation of a phonon of wave vector E and
energy ﬁwq. All energetically accessible states are permissible final states.

In general, the damping energy can be expressed by a sum of three

independent contributions:l53

r(r = I‘O + Fac(T) + TLO(T) . (7.4)

In Eq. (7.4), TO is an independent part of temperature T arising from the
foreign and/or native defects, TaC(T) is a contribution from acoustical
phonons, proportional to the occupation number of acoustical phonons (
proportional to T for the thermal phonons), and FLO(T) is a contribution

from LO phonons given gy

A

[ exp (ﬁwLO/kBT) —bl ] ?

r. (T =

L0 (7.5)

where A is a constant taken to be independent of temperature and<ﬁwL0 is

the LO phonon energy. The damping energy I'(T), thus, always decreases

as the temperature is lowered because of the temperature-dependent parts
of FaC(T) and FLO(T). An information about the shape of the exciton peak
can be obtained by emission, absorption and reflectance measurements.

A series of such studies has been carried out on ZnSe,236 ZnTe,236 CdTe236

176
and CdS 7 for temperatures from about 2 K up to those where the exciton

induced structure disappears. Figure 7-2 shows the experimentally

determined widths of the ground-state (n = 1) exciton lines for ZnTe and
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Thermal-broadening mechanism. The discrete-
exciton bands are depicted by the solid parabolas
and the hatched area is for the continuum-exciton
bands. The dotted curves represent the dispersion
curves for the low-lying polariton modes. The
lifetime broadening is a consequence of the scat-
tering of an exciton associated with the annihila-
tion of a phonon of energy'ﬁwq.
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7ZnSe as a function of temperature T.236 The line widths are obtained from
the reflectance data by introducing the Kramers-Kronig analysis for a range
of temperatures. The widths of these curves as a function of temperature
exhibit the same behavior, namely a relatively constant value (FO) from
low T up to T = 60 K (ZnTe) or to 80 K (ZnSe) at which temperature the
contribution TLO(T) becomes discernable. Gutsche and Voigt176 have also
obtained a similar result regarding the width for the n = 1 peak of the
B exciton of CdS on the basis of direct absorption measurements on thin

as—-grown platelets.

7.3 EXPERIMENTAL RESULTS AND DISCUSSION

7.3.1 Heat-Treatment Effect

.Aven and WOOdbury98 have reported a method of the purification of II-VI
compounds by firing treatment in molten group-II metals, and obtained
segregation coefficients by a radioactive tracer technique using isotopes

Cu64 and Aglza. Since then, this method has been frequently used in order

to eliminate impurities and to reduce resistivities of the semic:onductors.238_241
This method consists in heating the crystals to be purified in contact with
a molten metal in which the particular impurity to be extracted is readily
soluble: the logical choice for the solvent metal being Zn for ZnSe, ZnTe
and ZnS, and Cd for CdS.

It is the purpose of this.subject to clarify purification effects
in ZnSe by the heat treatment in molten Zn by using the photoluminescence
technique.242 ZnSe single crystals used were grown by the melt-growth
technique. They were not intentionally doped with impurities, but contained

copper residue impurity of less than 10 ppm. Prior to the heat treatment in

molten Zn, ZnSe single crystals were mechanically and chemically polished
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along the (110) crystal‘plane and etched at room temperature in a mixture
of 1 part HC1l and 1 part HN03. The heat-treated samples were once more
polished and etched slightly in the same manner mentioned above. A Hg lamp
with a Toshiba UV-DI1A filter was used as a exciting light source for the
photoluminescence measurements. The emission spectra were obtained with

a modified Shimazu UV-200 monochromator and a Hamamatsu TV R-136 photo-
multiplier tube.

Figure 7-3 shows the photoluminescence spectra of the as-grown sample
(dashed line) and the same sample heat—treated in molten Zn (solid line)
measured at 77 K. The as-grown sample shows a broad emission band and
a weak edge emission. The broad emission band is thought to be a result
of the overlapping of three individual characteristic emission bands;

Cu-G, Cu-R and SAL. Stringfellow and Bube243 described the copper emission
bands by a multivalent—copper-impurity model in which Cu+2 and Cu+ ions
substituting for Zn site in ZnSe were responsible for the green and red
emission bands. The Cu~G (green) and Cu-R (red) emission bands correspond
to these copper-multivalent-luminescence bands.244_246 The heat-treated
sample gives a strong edge emission and a yellow-orange emission band known
to as the self activated luminescence (SAL)247_249 peaking at about 590 nm.
The SAL center is essentially an associated center of an impurity-vacancy
pair which consists of a Zn vacancy and a halogen atom substituting for

an adjacent Se site. The nature of the SAL center has been successfully.
explained in terms of a localized molecular model and the one-dimensional
configurational coordinate model.247 It is interesting to point out that
the Cu~G and Cu-R emission bands disappear by the heat treatment of ZnSe

in molten Zn. The disappearance of these emission bands is thought to be
caused by the effect of the Zn-extraction. Recently, Yamaguchi and Shigematsu

235 . - .
have carried out similar measurements to clarify effects of the copper
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residual impurity from luminescence properties of ZnSe, and to clarify
purification effect of this material by the heat treatment in molten Zn.
They have concluded that the heat treatment in molten Zn can effectively
remove the copper residual impurity from ZnSe.

Figure 7-4 shows the edge emission spectrum of the heat-treated ZnSe
at 77 K. It is well known that the noble-metal impurities such as Cu and
Ag suppress near-band-edge emission. 1In fact, our as~grown sample does
not show any clear edge—emission structure, as shown in Fig. 7-3. The
near-edge emission spectrum of Fig. 7-4 exhibits the series of 5 lines

located just to the long-wavelength side of the absorption edge (441.6 nm);

I : 444 nm (2.793 eV)

A0 : 458 nm  (2.707 eV)

Al 1 463 om (2.678 eV)

A2 : 469 nm  (2.644 eV)

B : 476 nm (2.605 eV) .
The sharp emission line I is located at 2.793 eV (444 am). This value is
close to that determined by Hite et aZ.185 from reflectance measurements

and therefore corresponds to the annihiration of the discrete exciton

250 . .
(n = 1). The A series and B line are thought to be due to free electron-—
acceptor (or donor—acceptor) pair transitions. The separation energy between
A-series lines is approximately 0.03 eV which is in good agreement with

the LO phonon energy reported in the literature.ZSl’252

The A-series lines,
thus, result from the LO phonon interactions (LO-phonon replica).

In addition, we have fabricated light-emitting MS (metal-semiconductor)
diodes from the heat—treated ZnSe single crystals with gold-Schottky and
indium-ohmic contacts. The as-grown ZnSe crystals usually show very high

resistivity — normally 107 Y lO9 {3-cm at room temperature — probably due

to residual-impurity defects and Zn vacancies produced during crystal growth.
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ZnSe measured at 77 K.
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The Zn—extraction allows us this semiconductor with about 1 Q-cm n~-type
resistivity and a room temperature electron mobility of about 500 cmz/V-sec
which is believed to be close to the intrinsic mobility for this semiconductor.
Figure 7-5 shows the electroluminescence (EL) spectra from the forward and
reverse biased MS diodes at 77 K. 1In the forward bias (solid line), the diode
exhibits an EL spectrum very similar to the photoluminescence spectrum shown
in Fig. 7-3. The spectrum clearly exhibits a blue emission band consisting

of two peaks at 444 and 458 nm and a deep emission band SAL peaking at about
590 nm. In the reverse bias (dashed line), on the other hand, the diode
exhibits only a broad emission band. - This notable difference in the emission
spectra suggests that the emission mechanism in the forward bias is thought

to be due to a minority carrier (hole) injection from gold contact into ZnSe

253,254 and that in the reverse bias is thought to be due to an

substrate,
impact-ionization excitation. The threshold voltages for the EL emission
are found to be about 2.0 and 20 eV in the forward and reverse biases,
respectively. This fact satisfactorily supports the emission mechanisms
stated above. A similar difference in the emission mechanisms between forward-
and reverse—biased gold-ZnSe diodes has also been reported by Bouley et aZ.254
They have observed a blue emission (462 nm) similar to that seen in their
photoluminescence spectrum from a forward-biased diode, while observed a
broad emission band from a reverse-biased diode which differs quitely from the
photoluminescence spectrum.

It is concluded from such drastic changes in the optical and electrical
properties of the heat-treated samples that the treatment in molten Zn can
effectively remove a wide spectrum of metallic impurities and lattice defects

such as Zn vacancies from this semiconductor. The high purity of ZnSe crystals

can, thus, be obtained by treating the Zn-extraction techmique.
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7.3.2 Resonant Brillouin Scattering

Next, we discuss some effects of the crystalline imperfections and
temperatures on the spectral dependence of the Brillouin-scattering cross
sections. Figure 7-6 shows resonance behaviors of the Brillouin-scattering
cross sections in ZnTe for 0.2 GHz fast-TA (T2-mode) phonon domains measured
at room temperature [filled triangles (melt-grown crystal) and open circles
(THM crystals)] and 77 K [filled circles (THM crystals)]. The vertical arrows
in the figure indicate the positions of wavelength corresponding to the band-
gap energies (Eg at room temperature and 77 K). The resonant cancellation
observed here occurs at 569 and 545 nm at room temperature and 77 K, respectively.
One finds in Fig. 7-6 that the resonant enhancement for the crystal grown
by the THM is stronger than that for the crystal grown from the melt. 1In
addition, one finds that the resonant enhancement for the THM crystal increases
with decreasing the temperature from room temperature to 77 K, which seems
to be coincide with that the intrinsic absorption edge becomes sharper at
lower temperatures.

" The theoretical curves of the Brillouin-scattering cross sections,
calculated from Eqs. (2.25) and (2.55) by taking into account the various
damping energies, are shown in Fig. 7-6. They are fitted to the experimental
data at the corresponding cancellation points by adjusting multiplicative
constants (i.e., vertical shifts in the log-plot of this figure). The numerical
values used to calculate the resonant-Brillouin term Ris are listed in Table
4-3. The best-fitting values of the damping energy are determined to be
I' = 60 meV for the melt-grown crystal (room temperature), I' = 30 meV for the
THM crystal (room temperature) and T = 26 meV for the THM crystal (77 K).

In order to make these resonance features clear, we show in Fig. 7-7
the line shapes of the resonant-Brillouin term Ris in the region near the

fundamental absorption edge along with the experimental data. The data points
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Dispersion of the Brillouin-scattering cross sections in ZnTe
by 0.2 GHz fast-TA phonon domains measured at room temperature |
filled triangles (melt-grown crystal) and open circles (THM crystal)l
and at 77 K [filled circles (THM crystal)]. The theoretical curves
are calculated from Eq. (2.55) with I'=0 meV (dashed lines: room
temperature and 77 K), I'=30 meV (solid line: room temperature), T'=60
meV (dotted line: room temperature) and I'=26 meV (solid line: 77 K).
The vertical arrows indicate the position of wavelengths corresponding
to the band-gap energies at room temperature and 77 K.
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shown in the figure are obtained by calculating the square roots of OB
(Fig. 7-6), and they are plotted to fit to RiS by taking account of the

%
corresponding nondispersive term R0 (0% = IRis + RO]). The vertical arrows

B
in the figure indicate the positions of wavelength corresponding to the n =1
exciton states (Exl). It is apparent from Fig. 7-7 that the damping energies
do not depend strongly on the temperatures but on the kinds of the crystals.
The contribution FaC(T) of Eq. (7.4) is usually smaller than FLO(T) especially
in the temperature region higher than about 60 K. In the present case, the
amplified acoustical-phonon domains have an energy density a factor of the
order of 109 above the thermal equilibrium value,18 and thus PaC(T) has an
appreciable value to contribute to the damping of the intermediate electronic
states. Therefore, we can expect specific effects of the high-intensity
phonon domains on the damping of the intermediate electronic states, as also
suggested by Segall.l53 We found that the Brillouin-scattering intensities
obtained at room temperature and 77 K are almost same at the wavelength of
He-Ne laser (632.8 nm). This means that the densities of the acoustical-
phonon domains are almost same at the two different temperatures. Considering
this fact, Fac(T) becomes independent of temperatures in the range from 77 K
to room temperature. The obtained value of T = 26 meV for the THM crystal
at 77 K is much larger than that determined from_reflectance measurements
of ZnTe at 77 K (I' =~ 2 meV, see Fig. 7-2). Because of the temperature-—
independent nature of I', we suspect that the damping energy determined here
arises mainly from the Fac contribution induced by the intense acoustical-
phonon domains.

In Figs. 7-8 and 7-9, we present the line shapes of the resonant-Brillouin
term RiS for ZnSe along with the experimental data taken at room temperature

and 77 K (fast-TA phonon domains), respectively. The corresponding nonresonant

term RO is also shown in the figures by dash-dotted lines. The open and filled
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circles are taken for_cr&stals from the as-grown and heat-treated ZnSe,
respectively. The numerical values used to calculate the resonant-Brillouin
term Ris are listed in Table 4~3. The vertical arrows in the figures indicate
the positions of wavelength corresponding to the n = 1 exciton states. THe
data taken at liquid-nitrogen temperature shows the same resonance behaviors
as that taken at room temperature, except a shift of the resonance curve
in wavelength due to the shift of resonance energy followed by the shift of
the band~gap energy. It is clearly seen from the figures that the resonant
enhancement for the heat-treated ZnSe (filled circles) in much stronger than
that for the as-grown ZnSe (open circles) both at room temperature and 77 K.
The experimental dispersion shows a good agreement with the theoretical curves
with ' = 56 meV (as-grown ZnSe) and 44 meV (heat-treated ZnSe) [room temperature
and also 77 K], indicating that the damping energy does not depend on the
temperatures but on the kinds of the crystals. The value of T = 44 meV for
the heat-treated ZnSe is much larger than that obtained from reflectance
measurements of ZnSe at 77 K (I' © 3 meV, see Fig. 7-2). Such a result agrees
with that obtained for ZnTe as mentioned above. Thus, we consider that the
main contribution to the damping process comes from an interaction of the
intermediate electronic states with the intense acoustical-phonon domains.
Since little attention has been payed on the effect of damping on resonant
light scattering, it is difficult for us to discuss extensively concerning
this problem by comparing with other published works so far. Recently,
Klochikhin et al.l72 have studied resonant Raman scattering in ZnXCdl_xTe
solid solutions by LO phonons mnear EO gap. They obtained the temperature
dependence of the Raman-scattering cross sections in the range 77 — 300 K,
and found that the resonance curves depend on the damping of the intermediate
electronic (exciton) states. The data of the temperature dependence of the

exciton lifetime deduced from the Raman-scattering spectra were compared with
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those obtained from reflectance measurements. The comparison showed a good
agreement with each other, and the temperature dependence wea explained

by the same expression as Eq. (7.4). More recently, Trommer and Cardona60
have studied resonant Raman scattering in GaAs in the vicinity of EO/E0+-AO
and El/E1+A1 critical points. They found that Raman scattering taken at

80 K by LO phonons near E0+A0 critical point required a damping of T =

wLO: LO phonon energy). Measurements taken at liquid-helium

temperature showed exactly the same resonance behaviors as that taken at 80 K.

0.3th0 (€3

On the other hand, the resonance curve at room temperature required a fit

with a damping of T = 0'45ﬁui0' These data suggest that T'(T) is almost

constant in the temperature range from low T to about 80 K, while at temperatures
higher than 80 K the FLO contribution becomes discernible. It is evident for

the above two studies that the Fac contribution is negligibly small [because

the occupation number of thermal acoustical phonons is very small compared

with the intense acoustical-phonon domains].

In summary, we have determined the damping energies of the intermediate
electronic states for ZnTe and ZnSe from the Brillouin-scattering measurements,
and found that it does not depend strongly on the temperatures but on the
kinds of the crystals. We consider that the damping of the intermediate
electronic states arises mainly from the contribution due to the high-intensity
acoustical-phonon domains (i.e., from an interaction of the intermediate
electronic states with the intense acoustical-phonon domains). It is well
known that the intense acoustical-phonon domains can produce an exponential
broadening on the intrinsic absorption edge of semiconductors.255 We believe
that the effects of %he intense phonon domains on the damping of the electronic
states should be revealed by measuring optical spectra such as reflection,
absorption and emission of the exciton lines during the presence of the intence
phonon domains (i.e., by measuring the destruction of the exciton spectrum

during the presence of the intense phonon domains).
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CHAPTER VIII

RESONANT BRILLOUIN SCATTERING
AS A FORM OF MODULATION SPECTROSCOPY

8.1 INTRODUCTION

The attention of many researchers has recently been drawn to the study
on optical properties of solids by means of reflectance and absorption

43,44 The common feature of all modulation techniques of optical

modulation.
spectroscopy is the measurement of the derivative of some optical properties
with respect to some parameters such as electric field, temperature, stress,
wavelength and magnetic field. The various modulation parameters define

a whole family of (reflectance) modulation techniques such as electroreflectance
thermoreflectance, piezoreflectance, wavelength-derivative spectroscopy and
magnetoreflectance. The modulated reflectance techniques better define the
spectral contrast of structure than do static reflectance techniques. A

rather featureless reflectance spectrum is replaced by a modulation trace

rich in structure compressed into narrow regioms of photon energy. The
modulation-spectroscopy techniques have, therefore, been widely adopted in
precision investigations of the optical properties of solids. The main task

in the first investigations of the modulation spectroscopy has been to

determine more accurately the energies of electronic transitions at critical

points of the band structure. Structure in the real and imaginary parts of

the dielectric constant is well known to be intimately related to the presence
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of critical points in the optical energy versus k-vector relation. These
critical points have played a mojor role on studies of the band structure.
The modulation spectroscopy greatly enhances the structure énd hence makes
it possible to resolve critical points much more clearly than in the normal
static methods.

The electroreflectance spectroscopy is probably the easiest of all
modulation techniques from the experimental point of view.256 However, the
electroreflectance spectra in general are strongly dependent on the magnitude
of the modulating field and on experimental conditions and the modulating
field destroys translational invariance of solids along its direction, so
the determination of material parameters from these spectra is a difficult
and uncertain process. The stress modulation preserves the translational
invariance. The thermal modulation occupies a hybrid positon: the thermal
expansion preserves the tramnslational invariance while the electron-phonon
interaction does not. Consequently, research effort has tended to concentrate
on first—-derivative techniques such as thermoreflectance, piezoreflectance
and wavelength-derivative spectroscopy in which experimental spectra are
broader but can be analyzed in relatively simple terms.

Resonant light scattering in semiconductors has recently attracted
increasing attention, since it has been found to be intimately related to
the optical properties of semiconductors. Light scattering is known to be
a kind of modulation spectroscopy (i.e., the optical constants of a solid
are modulated by phonons).41 The inelastic-light-scattering experiments
yield more information than its conventional modulation counterpart. A
measurement of the sbectral dependence of the Brillouin- (Raman-) scattering
intensities yields the. energies of critical points in a manner similar to
more conventional modulation experiments. The spectrometer analysis yields

the frequency and sound velocity (acoustical phonon) of the corresponding
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(a) LIGHT SCATTERING

(b) MODULATION SPECTROSCOPY
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FIG. 8-1. Schematic representations of the measurement
techniques for (a) inelastic light scattering
and (b) modulation spectroscopy (reflectance).
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excitation, without counterpart in the conventional modulation experiment.
An absolute determination of the Brillouin~ (Raman)- scattering intensity
yields the deformation potential, which is the temsorial comstant and
represents the interaction of the elementary excitation (phonon) with the
electronic transitions (electron-phonon interaction) [see Fig. 8-1].

In this Chapter, a discussion is given on resonant Brillouin scattering
in connection with first-derivative modulation spectroscopy such as thermo-
reflectance, piezoreflectance and wavelength-derivative spctroscopy.257
In Section 8.2, a detailed survey is given of a relation between the expressions
for resonant Brillouin scattering based upon Loudon’s light-scattering theory
and the quasi-static approximation and also of a comparison of them with
the first-derivative modulation spectroscopy. In Section 8.3, we compare
the experimentally derived Brillouin-scattering efficiencies with the
first-derivative modulation spectra in some semiconductors (ZnSe, ZnTe and
GaAs). It will be demonstrated there that a good agreement between them
may be obtained when the lifetime~broadening effect is taken into account

in the resonant-Brillouin-scattering analysis.

8.2 THEORETICAL DESCRIPTION

In this Section, we shall show that the resonant-Brillouin-scattering
process can be described by a phenomenological formalism analiogous to that
of the first-derivative modulation spectroscopy such as thermoreflectance,

piezoreflectance and wavelength-derivative spectroscopy.lB’44

8.2.1 Resonant Brillouin Scattering
First, we consider two-band contribution to the resonant-Brillouin-
scattering process in which intermediate electronic transitions are necessarily

>
intraband [i.e., ﬁwa(k) =—ﬁw8(ﬁ)]. The energy denominators in Eq. (2.24) may
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be written for the Stokes process as
> > - - > - -1
[, @ - 0 @ @ - o)1 ™ =0 16 - 0™ - @0 - v + o)™
“1p 3 -1 > -1
= 0y {[(wa(k) R A OO R T
- [(w (k) - +w)_1+ (w &) + w, —w)_l]} s
o i a o i q

(8.1)
where we have assumed that wi > wq. The dielectric function of a solid is

known to be given by the following form:43

c@ =L s [<fpl>? % [, - w7+ @0 + 07T . (8.2)

w” o,k

Comparing Eq. (8.1) with Eq. (8.2), we find that the resonant-Brillouin term
R, [Eq. (2.24)] can be written in terms of the frequency-dependent dielectric

1is

constant a(wga,w) based on the dielectric theory as

L1 IE(wg ,wi) - E(wga,wi—wq)] , (8.3)

where A =‘ﬁm2wi2/4ﬁe2wq. Since<ﬁuh_is sufficiently smaller than~ﬁwi (especially

for the case of the Brillouin-scattering process), Eq. (8.3) can be written

to a good approximation as

1’

lim R, AL E E——-e(w yW, )
w0 s o Too ow ga’ i
q

=A% S o 8(wgu’wi) ’ (8.4
g0

where we have neglected an additional term arising from A which results in
a structureless contribution to Eq. (8.4).

Next, we consider tree-band contribution to the resonant-Brillouin-
scattering process in which intermediate electronic transitions are necessarily

interband [i.e.,'ﬁwa(z) =‘ﬁwB(K)]. The energy denominators in Eq. (2.24) may
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be written. for the Stokes process as

[, @) - 0) @0 - 00T = @+ )7 1w -up™

> -1
- (wB(k) -y F wq) 1, (8.5)

where
- >
= - 8.6
A wg (k) W, (k) (8.6)
is the difference of the interband-transition energies (e.g., the spin-orbit

splitting energy for the zincblende-type crystals). Introducing the dielectric

theory into Eq. (8.5), we obtain

lim R, =% (g -€) s (8.7)
wq->0
where €+ and £ are the contributions of the Wy, and wB gaps to the dielectric
constént, respectively.
Consequently, we find that the expression for the Brillouin-scattering
efficiency based on the quantum-mechanical approach has the same form as
that derived from the quasi-static approximation [see Section 5.2.11. The
most dispersive contribution to the resonant-Brillouin process (i.e., two-
band contribution) can, thus, be expressed by the first derivative of ¢
with respect to the incident-light frequency (or equivalently to the band-gap
energy). It is easy to show that Eq. (2.55) can also be expressed by the
same form as Eq. (8.4) or (8.7) when we use dielectric function valid for the

exciton model instead of the free electron-hole pair model.

8.2.2 Modulation Spectroscopy
The reflectivity R of a material is a quantity which can be measured in

a straightforward manner. For normal incidence of light, it has the form



—259—

R =
(n + 1)2 + k2

The reflectivity can also be expressed as a function of the real and imaginary
components of the dielectric constant by substitution of Eq. (6739) into

Eq. (8.8). This gives

1 1
(812 + 822) - [Zel + 2(812 + 522)6]6 + 1
(el + 82 )y + [25l + 2(81 + €2 Y%1° + 1

The effect on reflectivity of the changes Ael and A€2 induced by the modulation

is made explicitly by differentiating Eq. (8.9). The result has the form226

AR _
= a(el, sz)Ael + 8(81, ez)Aez s (8.10)
where
o = Cl[(a1 - l)A+ + EZA_] R (8.11a)
B = CZ[(El - 1)/A+ - €2/A_] s (8.11b)
with

2, . 2% %
V2l(e,” +e,0% 1 el

A =+ , (8.12a)
+ 1
(e + € 2)6
1 2

_ N2 2.-1
¢, =l - D" +e,7] . (8.12b)

_ 2 2 2 2
C2 = 282/[(81 - 1)° + €, ](el + g, ) . (8.12¢)

The fractional coefficients o and B are functions of photon energy, and
their sign and relative magnitude determine the result of the analysis in
the different spectral regions. These coefficients are usually called as
the Seraphin coefficients. Figure 8-2 plots the Seraphin coefficients for

(a) ZnSe, (b) ZnTe and (c) CdS (E_l_g), as calculated from experimental values
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of the optical constants.lgo’lgz’203 The three diagrams are very similar:

A low-energy region, which contains the fundamental absorption edge, is
dominated by o. Raising B and falling o produce a crossover in the region of

3 — 4 eV. We have previously obtained the fractional coefficients o and Bi’
like to the Seraphin coefficients, to analyze the piezobirefringence coefficient
(see Section 6.4)., TFigure 8-3 plots the fractional coefficients ar and Bi in
Eq. (6.40) for (a) ZnSe, (b) ZnTe and (c) CdS (E_l_g), as calculated from

190,192,203 (Note that Fig. 8-3

experimental values of the optical constants.
(a) is the same as Fig. 6-13). The coefficients o, and Bi are found to have

the same physical meanings as the Seraphin coefficients o and B, i.e., they
determine the fractional contributions of the changes Ael and A€2 induced by

the stress (modulation parameters) to the piezobirefringence effect (
modulation-spectroscopy response). It is obvious from a comparison of Fig.

8-2 with Fig. 8-3 that the spectral dependence of o and B (Seraphin coefficients)
is very similar to that of ur and Bi. We find from Fig. 8-2 that in the

region near the fundamental absorption edge of II-VI compounds such as ZnSe

and ZnTe only the first term of Eq. (8.10) is important, and therefore the
behavior of %? is determined predominantly by the nature of the function

Ael(w).

The function Aal(w) with various modulation.parameters can be given

pylt344

Temperature: AT (Thermoreflectance)

oe, OE
- L1 _ g _ 123l
Aey W) = ( 9, T * a7 7 AT

Bal JFE oc
5% 5T O 5, ’ (8:13)

Stress: AX (Piezoreflectance)
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e, OE o€
- 1 g _ 1M
ey ) = ( 9%, oX * oM ox )X
Bel _BEJ 351
® SEO3X AX = ﬁg AEg s (8.14)

Wavelength: Aw (Wavelength modulation)
861
Aal(w) = E Aw R (8.15)

Electric field: AF (Electroreflectance)

2 &
3w2 dw3

Asl(w) = (wzel) , (8.16a)

where

3

@)’ = 252 /8y . (8.16b)

In Eqs. (8.13) — (8.16), Eg is the band-gap energy, I' is the broadening
parameter, M is the squared-p matrix element and u is the interband reduced
mass. The thermoreflectance, piezoreflectance and wavelength-modulation
spectra reflect the first derivative of the unperturbed dielectric constant
(first-derivative modulation spectroscopy). The electroreflectance (low-
field) spectrum, on the other hand, reflects the third derivative of the
unperturbed dielectric constant (third-derivative modulation spectroscopy).
In thermoreflectance spectroscopy, the modulation of temperature results in

a change in €. of the crystal which is induced by a shift of the band-gap

1
energy Eg and by a change of the broadening parameter I'. The contribution

to the reflectance modulation caused by the shift of Eg is usually larger

than that caused by the change of I'. Under this condition, the thermoreflectance
and wavelength-modulation spectroscopy should be equivalent, except for a

scaling factor related to the temperature coefficient of the band-gap energy

BEg/BT. The stress modulation (piezoreflectance) can be represented by the
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same expression as that for the piezobirefringence [see Eq. (2.221)].
Therefore, it can be concluded that such types of modulation spectroscopy
can be described by the first derivative of El with respect>to the band-gap
energy (thermoreflectance or piezoreflectance) or equivalently to the light
wavelength (wavelength-derivative spectroscopy).

Let us now consider the derivative of the dielectric constant with
respect to the interband energy Eg at various types of critical points. The
complex dielectric constant for a critical point of type Mr is known to be
written from simple theory in the following form (without including exciton
4

effect):l8

3
e« i™ g - B , (8.17)

where Eg is the interband energy at the critical point. The lifetime-
broadening effect can be accounted in the expression for phenomenologically
by replacing #w by fw + il', where I' is positive (Lorentzian broadening).

This substitution yields

.+
i

1
e« i™ hw + 4T - B i (8.18)

Introducing the reduced variable x = (hw - Eg)/F, we obtain

L .
PR I i (8.19)

g <«

The separation of the real and imaginary parts leads to the result

e« 17 I% [px) + 10(-x)] , (8.20)
where
2 i1
¢(x) = [x+ " + 1)#1* . (8.21)

The derivative of the dielectric constant € with respect to the interband

energy Eg can be obtained from Eq. (8.20) in the following form:
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%E— « - % sTr7E (R - iF(ex)] s (8.22)
g
where
2 ES E 2
F(x) = [(x" + 1?2 + x]*/(" + 1) . (8.23)

The behaviors of . the derivatives of = (solid lines) and €,y (dashed lines)

with respect to the interband energy Eg represented by Eq. (8.22) are shown

in Fig. 8-4 for the faur types of the critical points M, Ml’ M2 and M3.

It is interesting to point out that the sign of the derivative del/dEg (

s0lid lines) is negative for the M0 and M3 critical points while positive

for the Ml and M2 critical points, and the magnitude of the contribution

from the M2 critical point is considerably large at a low-energy region

(which contains the M, critical point). This fact reasonably explains the

0

possibility of cancellation (isotropic point) in the Brillouin-scattering

process (piezobirefringence), i.e., the M _-gap resonance component should

0

be cancelled mainly by the M_—gap nonresonance component. As mentioned in

2

Section 6.2, the Mz—gap component can also be estimated by using the Penn-gap
model, where the Penn gap lies in the neighborhood of which most of the

optical density of states is concentrated (i.e., near the E_ critical point).

2
Aspnes258 has verified that the electric-field-induced change in the
dielectric constant, determined from low-field electroreflectance measurement,

is shown to be in qualitative agreement with the third derivative of the
unperturbed dielectric constant measured by high-resolution ellipsometry.
He has also verified the relationship of electroreflectance spectra to those
obtained by first-derivative modulation techniques such as thermoreflectance,
piezoreflectance and wavelength~derivative spectroscopy. Similarly, we have

already verified in Chapter V that the spectral dependence of the Brillouin-

scattering cross sections shows a quite good agreement with the numerically
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differentiated first-derivative spectra of the dielectric constant. It is
apparent from the present discussion that resonant Brillouin scattering is
quite equivalent to the first-derivative modulation spectroscopy. In the
next Section, indeed, we try and compare experimentally derived Brillouin-
tensor term Ris with experimental spectra of the first-derivative modulation

spectroscopy in some semiconductors (ZnSe, ZnTe and GaAs).

8.3 EXPERIMENTAL VERIFICATION

Figure 8-5 shows a comparison of the resonant-Brillouin term Ris with
the thermoreflectance modulation spectrum of ZnSe at room temperature. The
Brillouin-scattering data (oBl/2 @« ]Ris + ROI) were obtained from TA-phonon
domains injected from CdS into ZnSe by using the acoustical-domain injection
method. The TA-phonon domains in ZnSe propagate in the [001] direction with
shear polarization parallel to the [110] direction (fast-TA phonons). The
experimentally derived thermoreflectance spectrum is from Matatagui et aZ.lS4
They are fitted by adjusting a multiplicative constant in Ris since the
measured scattering intensities were not absolute values. The square root
of OB contains the nonresonant term RO arising from the dispersionless

contribution to the Brillouin-scattering process. It is reasonable to consider

that the nonresonant contribution RO is not generally equal to that of the

(=)

. AR % .
background component contained in %{. When the spectrum of OBZ is compared

A
with that of 7? measured by the modulation spectroscopy, we have to take into

1
1
account such a nonresonant contribution to UBZ. In the present analyses, we

1
%

B to fit it to the spectrum of AR and adjusted

shifted the zero point of o R

the absolute value by the procedure stated above.
The theoretical line shape of Ris (solid 1line) is calculated from Eq.

(2.55) with the following numerical values: Hw = Hw = 2,68 eV; Hw =
gA gB gC
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o

. = = . = = . " = . % = . % = .
3.09 eV; EaA 3.81 eV; Eop 2.69 eV; Eoa 4.67 eV; AR 19 meV; a, 51 A;
P;O = st; and T = 56 meV, where we have assumed P;O = PgB = const. since

the detailed values are not well known at present. (Note, however, that
Lawaet2259 has developed a semiempirical model to describe the dependence of
the matrix elements on lattice constant, ionicity and d-electron shells in
the cores of various semiconductors). It is believed that the structure
appearing in the neighborhood of 460 nm is the result of the MO critical
point (contribution from the unbound continuum exciton and free electron—hole
pair) plus discrete-exciton interaction [see Fig. 8-9]. It is obvious that
a reasonable fit between the line shape of Ris and the thermoreflectance
spectrum can be obtained.

In Fig. 8-6, we compare the theoretical line shape of RiS (solid line),
fitted with the experimental data (filled circles), with the thermoreflectance
spectrum of ZnTe. The Brillouin-scattering data were obtained from fast-TA

phonon domains at 77 K. The experimentally derived thermoreflectance spectrum

(dashed line) is from Matatagui et aZ.184 The line shape of Ris is calculated
from Eq. (2.55) with the following numerical values:‘ﬁng =AhwgB = 2.379 eV;
- .o = - 5 o= . * = .
<hwgc 3.309 eV, EpA 4.61 eV, Eop 3.26 eV; Eoa 5.64 eVy AR 10 meV;
. _ PO - _ . -
a, 45 A PaO = POB const.; and T 26 meV.

Figure 8-7 shows a comparison of RiS (same as that of Fig. 8-6) with
the piezoreflectance modulation spectrum of ZnTe. The experimentally derived
piezoreflectance spectrum (dashed line) is from Mathieu et aZ.260 As compared
with the thermoreflectance spectroscopy, the uniaxial stress modulation has
an interesting new feature; the stress may lower the symmetry of the crystal
and thus introduce anisotropy in the modulation spectra. The piezoreflectance
spectra of cubic material, for instance, are expected to depend on the

261

polarization of light. We should, thus, regard from a phenomenological

aspect that the piezoreflectance spectroscopy is quite equivalent to the piezo-
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birefringence. An excellent agreement between the line shape of Ris and the
piezoreflectance spectrum is seen in the figure.

Figure 8-8 shows a comparison of RiS (same as that of Fig. 8-6) with
the wavelength-derivative spectroscopy. The experimental wavelength-
derivative spectrum is from Barbier et aZ.26 In the wavelength-derivative
modulation, an external perturbation is not applied to the sample. This
modulation, thus, gives essentially the derivative of the optical constants
and hence its interpretation involves only the theory of those optical constants.
It is obvious from Fig. 8-8 that a reasonable agreement between the line shape
of Ris and the wavelength-derivative spectrum can be obtained.

We have also found that the line shapes of Ris [Figs. (8-5) — (8-8)]
are very similar to the wavelength-modulated reflectance spectra obtained
in semiconductors such as ZnSe, ZnTe and CdS.263n266

Let us now consider the reflectance structure appearing in the vicinity
of the MO critical point [see Figs. (8-5) — (8-8)]. The calculated line
shapes of the first derivatives presented in Fig. 8-4 are based on the simple
model in which only the transition between one—electron energy bands is
taken into account. The exciton effects are known to affect significantly
the one-electron optical constants in the neighborhood of critical points.
Figure 8-9 shows the line shapes of the first derivatives of the model dielectric
constants for the band-to~band transitions [Eq. (2.184)] and discrete-exciton

transitions [Eq. (2.199)] in the vicinity of the M  critical point. 1In the

0
calculations, the damping parameter is properly taken into account in a way
as described previously. It is clear from the figure that only the first
derivative of the dielectric constant for the discrete-exciton transitions
gives sharp negative peak in the region of the ground-state exciton energy

(E The sharp negative peaks observed in the modulation spectra are,

xl)'

therefore, easily understood to be due to the discrete-exciton transitions.
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In Fig. 8-10, we show a comparison of the calculated piezoreflectivity
with the experimentally derived Brillouin-scattering data (GB%) of GaAs.
The Brillouin-scattering data are from Garrod and Bray.25 B& means of the
K-K relations [Eq. (2.189)], the relative reflectivity change can be related

to a change of the absorption coefficient Aa(w):

AR 4 = Aa(w?)dw’
R W2 - o
0

+ Bho(w) , (8.24)

where 4 and B are constants corresponding to the fractional coefficients o
and B of Eq. (8.10), respectively. The first and second terms of Eq. (8.24)
correspond to the contributions of the changes Ael and A€2 to the piezo-
reflectance spectroscopy, respectively. [Note that the absorption coefficient
is directly related to the imaginary part of the dielectric constant through
Eq. (2.198)]. The spectral shape of the stress-induced change in the
absorﬁtion coefficient Au(w) can be calculated by taking account of the rigid
shift of the band-gap energy with stress. Then, the piezoreflectivity can
be obtained from Eq. (8.24). The spectrum shown in the figure is calculated
by Engeler et aZ.267 using this procedure. Good agreement between the
calculation (piezoreflectivity) and experiment (Brillouin scattering) is
clearly seen in the figure.

We have demonstrated in Chapter V that the resonance features of the
Brillouin-scattering efficiencies should be estimated sufficiently from
the numerically calculated spectral dependence of the derivatives of the
optical constants. The results presented in this Chapter, moreover, demonstrate
that the experimental spectra of the first-derivative modulation spectroscopy
are very suitable for the purpose of direct comparison with the resonance

curves of the Brillouin-scattering efficiencies.
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CHAPTER IX

RESONANT BRILLOUIN SCATTERING
IN GaP NEAR THE INDIRECT ABSORPTION EDGE

9.1 INTRODUCTION

Resonance phenomena of the Raman- and Brillouin-scattering intensities
in direct-gap semiconductors have recently received a considerable attention
both theoretically and experimentally. Resonance effect involving indirect

268-273 274,275

or dipole forbidden transitions has also been examined by

several authors. Experimental data of resonant Raman scattering in the

269,270 GaP268,270 and AgBr271 showed very

indirect-gap materials such as Si,
weak or nonresonance feature in the indirect—gap region. Recently, Chiang

et aZ.276 have reported no existence of resonance behavior in the Brillouin-
scattering cross sections of the indirect-gap layer compound GaSe. On the
contraty, we have observed a weak resonant cancellation of the Brillouin-
scattering cross section in the region near the fundamental absorption edge
of the indirect-gap layer compounds GaSe and GaS.277 The resonance behaviors
have been successfully interpreted in terms of the direct- and indirect-gap
resonances for GaSe and GaS, respectively. This difference arises from the
fact that the separation between the indirect- and direct-gap energies in
these materials is relatively small for GaSe (a few tens of meV) but large

for GaS (0.4 eV), and thus for GaSe the indirect-gap resonance should be

masked off by the much stronger direct-gap one. (Details will be discussed
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in the next Chapter).
The GaP crystal is a more suitable material to study some of the indirect-

gap resonance behaviors, since it has three indirect gaps, F; - Xg near 2.25 eV

(room temperature), TZ > X; near 2.48 eV (room temperature) and FZ > Lg near

2.67 eV (78 K), as well as the lowest direct gap Tg - T; near 2.75 eV (room

temperature). This material was in fact the first indirect-gap material

R . 268
examined by resonant-Raman-scattering experiments by Scott et al. Subsequent

resonant-Raman-scattering experiments on GaP have been studied by Bell et aZ.S4

and Weinstein and Cardona53 in the region of the lowest-direct gap E., but

O’
no careful study has yet been undertaken of indirect-gap resonance in this

material. Recently, Valdez278 has observed significant resonant enhancement

v
15

indirect gap, but found no enhancement near the 2.67 eV T;S -> Li (T; - Lg)

of the Raman-scattering efficiency near the 2.25 eV I'_ ~ Xi (FZ > Xg)

o as 2 .
indirect gap. Trommer and Cardona 73 have observed selective resonant

enhancement of the Raman-scattering efficiency in GaAs near the indirect F; >

Lg and FZ 9—X2 gaps. They have also found that the L-point conduction-band

minima lie below those at the X points. Jain and Jayanthi279 have recently
analyzed the experimental data of Trommer and Cardona273 and Klein et aZ.270

by their proposed theoretical model of the indirect-gap resonance, and obtained
a good agreement between the experiment and calculation.

In this Chapter, we shall report the resonance phenomena of the Brillouin-
scattering cross sections in GaP by the transverse acoustical phonons in the
region of the lowest indirect-gap energy by making use of the acoustical-
domain injection method.280 In Section 9.2, we present some physical properties
of this material. fhe indirect~-gap resonance process may be described by the
5th-order perturbation theory, i.e., the perturbation is two orders higher

than that for the direct-gap resonance process [see Section 2.2]. In Section

9.3, we present theories of the indirect-optical transition. and resonant
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Brillouin scattering near an indirect absorption edge of semiconductors. A
comparison of our data with theoretical calculation is made in Section 9.4.
The spectral dependence of the photoelastic constants, lpll - p12| and |p44l,

is also determined as a by-product of the Brillouin-scattering data.

9.2 PROPERTIES OF GaP

9.2.1 Electrowic Band Structure

The III-V compound GaP forms crystal with the zincblende structure as
shown in Fig. 4-1 (a) [solid circles: gallium atoms, open circles: phosphorus
atoms]. The Brillouin zone for GaP is, thus, drawn in Fig. 4-2 (b). The

electronic band structure of GaP has been studied by a number of groups,

including Zallen and Paul,282 Cohen and Bergstresser141 and Walter and Cohen.

283 We show in Fig. 9-1 (a) the electronic band structure of GaP obtained

from Zallen and Paul.282 The states are labeled using the notation for the

irreducible representations of the single group of the zincblende lattice.

The lowest-~lying conduction band is at the X point, 2.25 eV above the valence-

band minimum at the I point. Dean and Thoma5284 have studied the fundamental

absorptiofh edge of GaP at many temperatures between 1.6 and 300 K. The
corresponding transitions are found to be of the allowed indirect type and
involve the creation of free excitons and electron-hole pairs. From the
band-structure calculations, Cohen and Bergstresser141 have predicted a

conduction~band Xl - X3 heteropolar splitting in GaP of about 300 meV. Spitzer

et aZ.285 have observed an infrared absorption band in degenerate material,

which they have attributed to the Xl > X3 transition (310 meV). The next

lowest conduction-band minimum is at the L point, at about 2.67 eV (78 K).286

Dean et aZ.287 have observed an unresolved indirect transition at 2.67 eV,

v

which they have attributed to the TlS

c .,
- X3 transition. However, Kyser and
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Rehn286 have recently studied this indirect-transition band by means of

transverse-electroabsorption measurements, and concluded that the band is
shown to be from Tzs-to L;, contrary to the previous assignment. The lowest
direct gap is at the T point (2.75 eV). Dean et aZ.287 have examined this
direct gap from an experimental aspect. Thompson et aZ.45 have measured

the electroreflectance spectra of a series of GaP-GaAs alloys and determined
the direct interband transition energies such as EO. EO+AO, El’ E1+Al, Ea,

E6+A6, E, and E2+6. Matatagui et aZ.184 have also studied optical properties

of GaP by meéns of the thermoreflectance technique.
9.2.2 Physical Properties

In this subsection, we shall summarize some physical properties of GaP
which are of interest to us in the present work. The lattice dynamics of
GaP crystal has been investigated by Banerjee and Varshni.288 Figure 9-1 (b)
shows the phonon dispersion relations for GaP along directions I'-L and T'-X.
288 The elastic compliance, elastic stiffness and static dielectric constants
of the zincblende GaP crystal are listed in Table 9-1. The deformation
potentials b and d of the T15 valence bands, lattice parameter a and crystal
density g of GaP are also listed in this table. The elastic stiffness
constants were measured by Weil and Groves by means of ultrasonic phase-
comparison method. Yamada et aZ.ng have recently determined the elastic
constants of GaP from the Brillouin-scattering measurements using a Fabry-
Perot interferometer. Their results are in good agreement with those listed
in Table 9-1. The deformation potentials b and d (Pikus-Bir’s notation) are
from Glurdzhidze et aZ.206 determined from the piezobirefringence measurements.
Recently, Humphreys et aZ.zgl have also determined these deformation potentials
to be b = ~1.8 and d = -4.6 eV. Onton and Morgan292 has studied the effect

of a uniaxial stress on bound-exciton lines in GaP and found that the deformation

potentials of the excitons are approximately an order of magnitude smaller
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Elasticcompliance(Si-), elastic stiffness (Cij),
static dielectric conStant (ell), deformation
potentials of the I'i5 valence bands (b and d),
lattice parameter (a) and crystal density (g) of
GaP at room temperature. S in 10-10 mZ/N; ¢ in 1010
N/m2; b and d in eV; a in A; and g in g/cm3.

Symbol Numerical value
a
S11 0.973
a
512 -0.299
a
544 1.419
a
C11 14.12
a
C12 6.253
a
044 7.047
S b
€11/ 10.18
b -1.8¢
d -4.0°¢
a 5.4504d
g 4.130%
a
Reference 289.
bReference 296.
CReference 206.
dReference 297.
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than the corresponding free-hole deformation potentials. The stress-induced

c c
1 and X3

293

coupling between X conduction-band minima in GaP has recently been

studied by Merle et al. by means of the wavelength-modulated transmission
spectroscopy and determined deformation potential of the X conduction band
to be (E3[ = 13 eV.

Figure 9-2 shows the dielectric constant €1 for GaP as a function of
photon energy at room temperature taken from the data of Ref. 294. The solid
line is a fit of Eq. (6.1) to the experimental data. The photon—eﬂergy

derivative of the dielectric constant, del/dE (in eV_l), is also shown in

the figure by dashed line obtained by numerical differentiation.

9.3 THEORY OF LIGHT SCATTERING IN THE INDIRECT ABSORPTION EDGE

9.3.1 Indirect Optical Absorption

The band structure of GaP is schematically drawn in Fig. 9-3 in which
the top of the valence band VB and the direct DCB (I' point) and indirect
ICB minima (X and L points) of the conduction bands are shown. The states
labeled are those for the irreducible representations of the double group
of the zincblende lattice. E;D and Ez denote the lowest indirect— (= 2.25
eV) and direct-gap energies (= 2.75 eV), respectively.

We shall now consider a theory of the indirect optical absorption
neglecting the electron-hole interaction (exciton interaction). The theory
of indirect optical tramnsitions can be developed by considering the

perturbation Hamiltonian:295

(r) _
H =Hp + Hy , (9.1

with

_ +
H_ =1 {ixe(cka)aAK(c,v)c

R L & + f*xe(CVAK)aAK(C’V)CX S }

XeaK’X e K,_X
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Schematic diagram showing the indirect
optical transition and Brillouin-scattering
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ICB are the direct and indirect conduction
bands, respectively.
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+ c.c., (9.2)
H L= X {h E(cv)\K,c’v’)\’K’)aIK(c,v)a)\,K,(c’;v’)b-i-géK_K, _
e CV)\K,C’V’)\’K’ n n s~ N
ng
’ E] E] T E I’
+ hﬁg(chK,c’v A’K )aAK(C’V)aA’K’(C ,V )bniaK-K’,n} , (9.3)

where fxe’ h £ and hﬁg are coupling parameters, and the subscripts c, v,

£x
xe’ n

Ay, K *e**  etc., have similar meanings to those appeared in Section 2.2. HeR

is the electron-radiation perturbation which is linear in both electron (

+ . iys . +
ay and aAK) and photon creation-annihilation operators (cXe and ¢ e)’ and

HeL is the electron-lattice perturbation which is linear in phonon creation-

annihilation operator (b;:E and bﬂE) but bilinear in electron one. The total
Hamiltonian is now taken from Egqs. (2.1) and (9.1) as
g=p5 4 5® : (9.4)
We perform the cannonical transformation of the form [see Section 2.2]
B= et - g - ars, 11, (9.5)

where S is chosen such that

s = 1, g0 - z®) i 9.6)

Using Eq. (2.18), we obtain

s=%(X+X’+Y+Y’) , (9.7)
where ¥
£ (eviK)a,  (c,v)C
x=-3p XMW xe, Lo, (9.8a)
cvAK AK Xe °X
xe
f* (eviK)a, ,(c,v)c
ey X M e, e, (9.8b)
cvAK AK Xxe X

Xe
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A ’ 3 3 ] + 3 3 1‘
ang(chK,c v’A’K )aAK(c’V)aX’K’(C sV )bn€

Y="'Z " S 3
_ 3 - -
evAK,c’v’A’K? (EXK EX’K’) hwni K-K",-n
né
R (9.8¢)
””-l- L] E]
S hﬁg(chK,c v’ A’K )aXK(C’V)aX’K’(C ,V )bﬂi 5 ,
VAR, C’ v K’ Ex ~ Bvr?) ~ 0 K=K7.m
n&
(9.84d)

Substituting Eq. (9.4) into Eq. (9.5), we obtain

. 5(0)

= 7@ _ s, 2Py : (9.9)

s

The lowest-order commutator that contributes to the indirect optical absorption

can, thus, be written as

HID

ifs, BP ] =[x+ x +¥+ 1), 8P

[X+X +Y +7Y%), (HeR + HeL)] . (9.10)

Rejecting the terms which do not contain photon operator and omitting two-—photon

transition processes, one can rewrite Eq. (9.10) as

ID_ > - _ s
H = XHeL + (¥ +Y >HeR HeLX HeR(Y + Y?) . (9.11)

The transition probability per unit time of a process is, thus, given by
we <] #0|1>]? S, - wy) , (9.12)

where li> and ]f> are the initial and final states, respectively. From Eq.
(9.12), we obtain the following expression for a typical process sketched in
Fig. 9~3:
. .
<f)HeLJm <m|HeR]1>

- 2 > >
W | DI l G(Ec(kz) - Ev(kl) - Aw + ﬁwq) s (9.13)
Eg(kl) - hw

> -
where kl and k2 are the wave vectors at the [' and X points, respectively.
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We suppose that the quantity

<E|E  |mo<nlH__|i>
c, =3p — <K | (9.14)
fm EJ(K) - hw

g 1

to a good degree of approximation is regarded as independent of the wave
vectors Kl and iz in the vicinity of the extrema. This is, in fact, a good
approximation for allowed transitions when the energy denominator in Eq. (9.13)
is not too small. Equation (9.13) corresponds to the process in which the
valence electron is scattered to the conduction state (ICB) and a photon of
energy hw and a phonon of momentum E = iz - Kl (and energy ﬁwq) are both
absorbed. <m|HeR]i> is the momentum matrix element between the VB and DCB
extrema located near I' point and separated by Eg(ﬁl), and <f|Hele> is the
matrix element of the phonon-assisted transition from DCB to ICD, where for
GaP they involve the TA, LA, TO and TA + LOF phonons.284 Considering the case
of iﬁdirect—optical transitions between spherical bands and summing over Kl

and Kz of Eq. (9.13) in the Brillouin zone, we obtain the following expression

for the absorption coefficient a(w):

1D 2 D
« C,thw - E 0) + Hhw for Hiw > E 0) - hw
L6 o (0 +4w) o e ©
a(w) (9.15)
D
=0 for iw<E (0) - fw .
‘ g q

The absorption of light begins at Hfw = E;D(O) - ﬁwq, as seen in Eq. (9.15).
Another contribution to the indirect-optical transition is due to the emission
of a phonon and can be obtained using the same procedure, where the only

difference from the above case is the sign of the photon energy.

9.3.2 Resonant Light Scattering
The indirect-gap Brillouin-scattering process is described by a 5th-order

. . 281 . .
time-dependent perturbation, i.e., the perturbation is two orders higher



—289—

than that for the direcf—gap resonance. This process contains in part the
indirect optical transition as discussed in Section 9.3.1. One of such
processes may be explained as follows [see Fig. 9-3]; (i) A photon (wi) incident
on a crystal in the ground state l0> creates a virtual electron-hole pair
state la> in bands DCB and VB. (ii) The electron in the ]a> state is scattered
to ICB by the phonon-assisted transition, forming a new pair state |B> in bands
ICB and VB. (iii) The electron or hole then interacts with an acoustical phonon
via deformation potential, changing its state to a lB’> state. (iv) The electron
in the ]B’> state is scattered to DCB by the phonon-assisted transition, forming
a pair state |a’> in bands DCB and VB. (v) The system returns from [0’> to the
ground state IO> with emission of a scattered photon (ws).

According to Loudon,281 the Brillouin-tensor term arising from such an
indirect—gap resonance process may be given by
<0]HeRIu’><u’]H2L]B’><B’]H2L16>

R, « | z
. > > >
a,B,B8%,a (Ea’(kl’kl) ﬁms)(EB,(kz,kl)—hwq~ﬁws)

X > imHiL|u><aiHeRli> > l
(EB(kz,kl)—ﬁmq;ﬁwi)(Ea(kl,kl)Aﬁwi)

, (9.16)

where the matrix element <]H2LI> represents the phonon-assisted transition
. . . B
through the deformation-potential scattering, <[HeL]> represents the
deformation—-potential scattering arising from an acoustical-phonon interaetion
of the intermediate electronic state, responsible for the Brillouin process,
> > >

and E (k,,k.) = E_(k

a( 1’ 1) ac( 1

the conduction and valence bands in the pair state |o> and so forth. The

) - Euv(ﬁl) is the electronic-energy difference between

matrix element <IH2L|> has already been calculated to explain the direct-gap
resonance data for both the zincblende~ and wurtzite~type crystals [see Section
2.2.37.

Equation (9.16) can be simplified under the following assumption: the
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factor
H E) B
<O|H plor><a’ |, [B2><8” |H , |B><BlH ; |o><ald g |0>

| 9.17)
o,8,87,0° (&, (K )0 ) (B k) hw,)

-> -
is independent of the wave vectors k1 and k2 in the vicinity of the extrema

of the bands, as similar to Eq. (9.14). Such an assumption was found to be
valid for the analysis of the absorption data.zs4 Equation (9.16) is, thus,
reduced to the form:

1D 1 ]

> > (EB,(kz,kl)—ﬁwq~ﬁms)(EB(kz,kl)ﬁﬁquﬁwi)

This expression is similar to that obtained in the case of the forbidden

yellow exciton in Cu20.275 We can, therefore, calculate Eq. (9.18) in the
same way as was done in this Reference. The result is written by the following
equation:
ec, M9 e g > ER0) - fw
1 2 T(w) g q
R, (9.19)

1s
=0 for fw < E;D(O) -,

where a(w) is the absorption coefficient given by Eq. (9.15), I'(w) is the
lifetime-broadening energy of the scattering state, and hw is the photon
energy. It is clear from Eq. (9.19) that the indirect-gap resonance begins

as the incident-photon energy exceeds the energy of E;D(O) -'hwq.

9.4 EXPERIMENTAL RESULTS AND DISCUSSION

9.4.1 Brillouin-Scattering Cross Section
Figures 9-4 and 9-5 show the spectral dependence of the Brillouin-scattering
cross sections in GaP for the Tl- and T2-mode phonons, respectively, measured

at room temperature in the region near the indirect-gap energy. All the data
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points were obtained by‘carrying out a correction for absorption of light.
The phonon frequency was selected to be 0.4 GHz for both phonon modes by
properly setting the incident and scattering angles [see Section 3.3.3]. It
was confirmed that the sound velocity of each mode domain agrees well with

those obtained from the ultrasonic phase-comparison method289 and Brillouin-

scattering technique using a Fabry-Perot interferometer.290

The data of the Brillouin-scattering cross sections show a monotonic
decrease when the incident-photon energy is near resonance with the indirect
gap of GaP. Such a decrease implies a cancellation between the resonant (
indirect gap) and nonresonant (direct gap) contributions in the Brillouin
tensor. However, the resonant cancellation observed here is not complete in
contrast to the case for the direct-gap semiconductors such as ZnSe and ZnTe,
as discussed in Chapter IV. It seems that this is due to the weak resonance
nature in the indirect gap, implying that the resomance is two perturbation
orders higher than for the direct-gap resonance.

it was demonstrated in Chapter V that the resonance behaviors of Brillouin
(Raman) scattering in the direct-gap semiconductors can be predicted from an
expression based on the quasi-static approximation, where in this appriximation
the phonons are assumed to act like static perturbations of the electronic
structure of the crystal through the electron-phonon interaction. This
perturbation causes a change in the dielectric constant of the crystal. The
quasi-static approximation shows that the direct-gap term of the Brillouin-
scattering efficiency is proportional to the first derivative of the dielectric
constant with respect to the incident-photon energy. Accordingly, we can
express the direct—-gap (nonresonant) terms in the Brillouin tensor of GaP as
follows:

RD de

is o« IE 9.20)

and
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R0 (= const.) R (9.21)

where R?s arises from the lowest direct gaps (I point) such as E0 and EO+AO

gaps, R, arises from the higher direct gaps such as El’ E1+Al and E2 gaps,

0
D
and E in Eq. (9.20) is the incident-photon energy. The term Ris and R0 are
I
opposite in sign to the indirect-gap resonance term Riz as suggested to account
for the resonant cancellation.

From Eqs. (9.19) — (9.21), the Brillouin-scattering cross section can

be written as

ID . _D 2
o, « |RiS + R +R0] . 9.22)

In Figs. 9-4 and 9-5, the theoretical curves obtained from Eq. (9.22) are
shown by the solid lines. The indirect—-gap resonance term Riz is obtained
from the absorption data measured by Dean and Thoma5284 using Eq. (9.19)
with neglecting a dependence of I on w. The direct-gap resonance term R?S
is calculated by differentiating the data of dielectric constant reported

in Ref. 294 [see Fig. 9-2]. The constant term R, is adjusted to give best

0

fitting with the experimental data. It has been reported that three types

of the indirect transitions are present in GaP below the direct Fg - Fg

gap; FZ - Xg transition near 2.25 eV (room temperature),zs4 T; > X; transition
near 2.48 eV (room temperature)287 and TY + LS tfansition near 2.67 eV (78 K).

8 6

286 . . . . s
It is obvious that the indirect-gap resonance observed here is arising

from only the FZ > Xg

limited up to 2.30 eV (540 nm). The dashed lines in the figures are also

transition, since the measured photon-energy region is

calculated from Eq. "(9.22) without taking into account the constant term RO.

The solid lines show a quite good agreement with the experimental data. The
best-fitting values of the constant term RO are found to be 8.0 and 14.0 (

in units of eV_l) for the T1- and T2-modes, respectively. These values are

relatively large and opposite in sign to those obtained in the direct-gap
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semiconductors such as ZnSe, ZnTe and CdS [see Chapter V]. Similar results
have also been found in other indirect-gap semiconductors GaSe and GaS [see
next Chapter].

The indirect-gap resonance is sometimes masked off by the strong direct-
gap resonance. In the present study, however, the weak resonant cancellation
has been clearly found in the indirect absorption edge of GaP. This is
presumably accounted for the fact that the separation between the indirect
and direct gaps of this material is considerably large (= 0.5 eV) and thus
the direct-gap resonance is relatively weak in the photon-energy region
near the indirect gap. Equation (9.19) clearly indicates that the indirect-
gap resonance depends on the lifetime broadening of the scattering states,
i.e., the resonance becomes strong with decreasing I'. The effect of the
lifetime broadening on the Brillouin-scattering intensity has been found
by the present auther in the direct-gap semiconductors [Chapter VII]. The
resonance curves of the direct-gap semiconductors have clearly shown that
the lifetime broadening suppresses the direct-gap resonances and consequently
a new resonant cancellation appears in the region very close to the discrete
exciton states. In the present study, unfortunately, we were not able to
determine the value of T from the fit to the experimental data with Eq. (9.22),

1D
since the indirect-gap term Ris in Eq. (9.19) contains the prefactor C (CZ/T)

2

as an adjustable parameter.

9.4.2 Photoelastic Constant

It has been shown by Dixon46 that the GaP crystal is exceptionally good
material for use in light deflectors and modulators. If an acoustical strain
Skl propagates in a crystal the induced change in the dielectric constant is

A(l/e)ij = , where pijkl is the component of the photoelastic tensor.

Pysk1Si
Modulation of the dielectric constant induced by the acoustical strain results

in a diffraction of an incident light beam. It is, therefore, very important
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to investigate the spectral dependence of the photoelastic constant. The
components cof the photoelastic tensor, Py ~ Py and p44, are involved in the
Brillouin-scattering cross section from the Tl- and T2-mode phonons,
respectively. 1In a macroscopical point of view, as discussed in Chapter VI,
the Brillouin-scattering cross section is proportional to the square of the
relevant photoelastic constant. The spectral dependence of the photoelastic
constants can, thus, be easily determined from the Brillouin-scattering data.
Figures 9-6 (a) and (b) show the spectral dependence of Ipll - PlZI and
|p44[, respectively. Absolute values of these constants are given in the
figures; they were determined by normalizing our data to the absolute ones
measured by Dixon46 and Yamada et aZ.290 at a light wavelength of 632.8 nm.
The solid curves in the figures are not theoretical ones but probable curves
of the experimental data. Note that the spectral dependence of the photo-
elastic constants obtained here shows very weak dispersion at light wavelength
longer than 550 nm. This arises from the fact that the photoelastic
constants show no sign reversal in the region below the indirect-gap energy,
namely R?S and RO of Eq. (9.22) have the same sign (i.e., plus), in contrast
to the case for the direct-gap materials such as ZnSe, ZnTe and CdS. Therefore,
we can conclude that the GaP crystal is potentially useful in device application
such as deflectors and modulators of light wavelengths longer than 550 nm.
Recently, Canal et aZ.207 have reported expérimental data of the photo-
elastic constants in GaP in the region below and above the indirect F; -+ Xg
gap obtained from the piezobirefringence measurements employing the Raman-
scattering technique as a probe. Our data show a reasonable agreement with
those reported by Canal et al., but they analyzed their data by taking into
account only the real part of the dielectric constant of the direct gaps
(neglecting the contribution from the imaginary part of the dielectric constant).

We have proposed in Section 6.4 new method of the piezobirefringence analysis
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in an opaque region of materials in which the stress—-induced changes in both
the real and imaginary parts of the dielectric constant are properly taken
into account. Using our proposed model, we have confirmed that their analysis

is thought to be a good degree of approximation.
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CHAPTER X

RESONANT BRILLOUIN SCATTERING
IN THE LAYER-TYPE COMPOUNDS GaSe AND GaS

10.1 INTRODUCTION

The layer~type semiconductors GaSe and GaS are III-VI compounds which
present a strong anisotropic behavior of their physical properties due to the

singularity of the crystal structures.“’298

These compounds have been shown

to have fine structures associated with strong excitonic transitions in the
vicinity of the fundamental absorption edges. In recent years, there have

been extensive studies on resonant light scattering around excitonic transitions
in various semiconductors.8 Resonant Raman scattering around the direct-exciton
299-303

levels in GaSe has already been reported by several authors. Resonant

crystals (0 < x £ 0.23) has also been

302,304

Raman scattering in mixed GaSXSel_x

studied by Chiang, Camassel, Voitchovsky and Shen. The resonance-Raman
spectra in such semiconductors have clearly shown resonant enhancement around
the direct-~excitonic-transition region. Resonant Brillouin scattering in the

. . 276
layer-type compound (GaSe) has first been reported by Chiang, Dumas and Shen.
However, the measured spectral dependence of the Brillouin-scattering cross
section has shown no obvious resonance feature in the region near the direct-
excitonic-transition region. The absence of resonance feature is thought to be

due to that the exciton-acoustical phonon coupling for the electronic states

near the band gap is rather weak so that the nonresonant contribution always
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dominates in the Brillouin-scattering process.
Until now, at least in our knowledge, no attempt has been made on resonant
Brillouin (Raman) scattering in GaS. The absorption edge of GaS is characterized

by the indirect-optical transitions,305-309 in contrast to that of GaSe (

306,307, 310,311 The resonance effect in the direct-

direct-optical transitions).
gap region has been the subject of a number of reports, but the same effect
involving the indirect-energy gap has received little attention. The Ga$S crystal
is thought to be more suitable material to study some of the indirect-gap
resonance effects since the separation between the indirect- and direct-gap

305,307 -
as similar

energies of this material is relatively large (about 0.4 eV),
to that of GaP (Section IX). Therefore, it is interesting to study some of the
resonance effects especially around the indirect-energy gap of GaS.

In this Chapter, we investigate resonant Brillouin scattering in the layer-
type .semiconductors GaSe and GaS by the pure-transverse (PT) acoustical phonons
in the photon-energy ranges of 1.55 — 1.99 eV (GaSe) and 1.70 — 2.59 eV (GaS).
Previous work by Chiang et aZ.276 was limited to the photon-energy range of
1.92 — 2.00 eV in GaSe using a tunable dye laser combined with a 3-path
feedback—-controlled Fabry-Perot interferometer (Brillouin scattering by thermal
quasi-transverse acoustical phonons). We have carried out the resonant-Brillouin-
scattering measurements by using the amplified acoustical-domain injection
method, where the amplified acoustical domains provide strong scattering signals
and thus enable us the use of a non-coherent light source (Xe-flash tube)
instead of a laser. This technique also enables us to discuss accurate resonance
behaviors at a region very close to the fundamental absorption edge.

The crystal structures of GaSe and GaS are reviewed in Section 10.2. The
electronic band structure and lattice dynamics of the layer—type compounds are
also presented in this Section. The experimental method is described in Section

10.3. In Section 10.4, we present the experimental results and compare them
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with the theoretical models based upon the quasi-static approximation and
Loudon’s light-scattering theory. The measured spectral dependence of the
Brillouin~scattering cross sections shows a monotonic decrease (i.e., resonant
cancellation) at photon energies very close to the n = 1 direct-exciton state
for GaSe and beyond the indirect-energy gap for GaS. The resonant cancellation
can be well interpreted by taking into account the direct-gap (direct—-exciton)
and indirect-gap resonance processes for GaSe and GaS, respectively. The
experimental data also show that the Brillouin-scattering efficiency depends
strongly on the lifetime-broadening effect of the intermediate electronic states.
The theoretical description and comparison of it with the experimental data,
moreover, clearly indicate that the nonresonant contribution (nonresonant
electronic transition) dominates in the Brillouin-scattering process for both

GaSe and GaS especially in the region far from the fundamental absorption edges.

10.2 PROPERTIES OF GaSe AND GaS

10.2.1 Crystal Structure and Electronic Energy Band

The basic crystal structure of GaSe and GaS is the hexagonal unit layer
with a point-group symmetry of DSh and two molecules per unit cell.47 The
binding between the layers is of the van der Waals type, whereas it is covalent
within each layer. In GaS, only one way of stacking of adjacent layers exists
and the crystal has a symmetry of point group D6h with two layers (four
molecules) per unit cell. A layer of GaSe is represented in Fig. 10-1 (a),
where one recognizes that each Ga atom has one Ga and three Se neighbours.
The Se atoms have three neighbours only within the same layer. Three different
modifications of GaSe have been reported in the literature,312 as Y, B and €

modifications, respectively. A rhombohedral Y modification with three layers

per unit cell and two hexagonal structures f and €. The f-type structure is



—302—

FIG. 10-1. Crystal structure of the layer—-type compounds.
(a) Perspective view of the one-sandwich arrange-
ment of €-GaSe; (b) Unit cell of B-GaS.
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identical with that of GaS [see Fig. 10-1 (b)]. The e-type structure has a
DSh point-group symmetry with two layers per unit cell. According to Terhell
and Lieth,313 B-type GaSe does not seem to exist as a crystal, although powder
X~ray pictures of iodine-transport grown crystals always indicate B-type
stacking. The y-type structure (point group CSU) is found in pure form in
sublimation-grown needle crystals and is very rare.

The study of the electronic structure of layer-type compounds has attracted
much attention in the last few years, essentially because of their bidimensional
character. The principal theoretical works on this subject are by Bassani and

Parravicini,314 Kamimura and Nakao,315 Fong and Cohen,316 Schlﬁter,47 Mooser

298 317 ,nd Bordas et aZ.°'® The electronic

and Schluter, Schluter and Cohen
band structures of the layer-type compounds GaSe and GaS have been calculated
by Bassani and Parravicini314 by using the two-dimensional tight-binding approach
in a semi-empirical way. The band structure of GaSe has also been calculated
by Schliiter47 by using the empirical pseudopotential method and considering
interaction between the layers. The energy bands of B-GaSe along the main
symmetry axes calculated on the basis of the empirical pseudopotential method
are shown in Fig. 10-2 (after Schlﬁter).47 Note that differences between the
one-electron energies corresponding to the three modifications are of the
order of the weak interlayer coupling and thus do not influence the main features
of the band structure. Among the three modifications, Y, B and €, B modification
has the highest symmetry.

In £-GaSe with the space group Déh’ the lowest~lying conduction-band
minimum is at the M point (M3), a few tens of meV lower than the lowest-direct
conduction band. The lowest direct gap occurs at the center of the Brillouin
zone (I point), the top of the valence band having the symmetry Fl and the
minimum of the direct conduction band that FA' In B-GaS with the space group

+

4
D6h’ the lowest-lying conduction-band minimum is at the M point (M3), 2.5 eV
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above the valence-band maximum at the I point. The lowest direct gap occurs

at the I point, the top of the valence band having the symmetry F4 and the

+ .
minimum of the direct conduction band that T3. The direct-gap energies of

GaSe and GaS are 2.02 and 2.90 eV, respectively, at room temperature.305’319

10.2.2 Lattice Dynamics

There has béen considerable interest in recent years in the properties
of layer structures particularly in the extent to which their two~dimensional
nature influences these properties. Measufement of the phonon dispersion curves
is known to be a powerful method for obtaining information about the interatomic

forces. The inelastic-neutron-scattering measurements have been performed to

obtain the phonon dispersion relations in GaSe by Brebner e? aZ.320 and Jandl

et aZ.BZl Powell et aZ.322 have recently made the analysis of lattice vibrations

and inelastic-neutron-scattering measurement in GaS. The data of Jandl et al.
321 322 . .

(GaSe) and Powell et al. (GaS) are shown in Fig. 10-3 (a) and (b),

respectively. These results have shown that the interlayer force constants

are very small compared with the intralayer ones. The results have also been

used to calculate the Debye temperature and lattice specific heat of GaSe and

GaS.321’322

The elastic properties of GaSe and GaS have been extensively studied by

means of ultrasonic pulse-echo method,323 inelastic neutron scattering320’322

277,324

and Brillouin scattering. The elastic constants of GaSe and GaS obtained

from these methods are listed in Table 10-1. The use of Brillouin-scattering

technique has recently been developed by many workers who used a Fabry-Perot

324,325

interferometer to determine the elastic constants of GaSe. The five

independent elastic constants, cll’ C12’ C13, C33 and C44, have been deduced

from a best-fit procedure of these constants [see Table 10-1], but there remains

uncertainty to determine the non-diagonal component C On the other hand,

12°
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Ultrasonic Pulse Echo
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[ =" e N =

Present Work

Table 10-1. Elastic constants of GaSe and GaS.
2
( lOll dyn/cm” )
GaSe
sk *kx
B.S. I.N.s."P U.P.E ©
10.5 _— 10.24
€11
.-l-.
. . —— 3.24
C12 . 3.25(3.77)
C12 1.26 —_— —
. . 3.07
033 3.51 3.83
. . 0.70
C44 1.04 1.03
( lOll dyn/cm2 )
GasS
* k%o
B.S. I.N.S.
Cll 15.7 15.5
-'-
iy 3.32 (5.35")
C13 1.50 —
C33 3.58 3.64
C44 0.81 l.33
# w%
sxeBrillouin Scattering +Inelastic Neutron Scattering
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FIG. 10-4. Plot of domain-~transit time versus light-spot

position for GaSe and GaS from the Brillouin-
scattering measurements. The slope of each line
gives the domain velocity consisting of the PT-
mode phonons (see text).
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322 C and C

have determined only the diagonal components Cll’ 33 44

Powell et al.
of GaS from the inelastic~neutron-scattering measurements. We determine

here the non-diagonal elastic constants C., of GaSe and GaS by measuring the

12

sound velocities of the PT-mode phonon domains in these materials by means of
Brillouin scattering, as a by-product of the resonant-Brillouin-scattering
measurements. Figure 10-4 represents the plots of domain-transit time versus
light-spot position for GaSe and Ga$ using a He-Ne laser as a light source.
(The experimental detail is given in the next Section). The slope of each line
gives the domain velocity Vpr consisting of the PT-mode phonons, which is
determined to be 2.56 X 105 cm/sec for GaSe and 3.60 X 105 cm/sec for GaS. The

sound velocity of the PT-mode phonons is given by
- (.. - C.)/201% 10.1
vpp = (€ - €)/201% (10.1)

where p is the mass density (5.135 g/cm3 for GaSe and 3.916 g/cm3 for GaS). It

is clear that the non-diagonal component C can be determined from Eq. (10.1)

12

when the diagonal component Cll is known. We can determine the value of Cl?

by using the previously reported value of C

12°
_ . _ 276 _ . _
C12 = 3,77 with Cll = 10.5 for GaSe and C12 = 5.35 with C11 = 15.5 for

GaS322 in units of 10ll dyn/cm2 [see also Table 10-1]. The value of C

276,324

The results are as follows:

12 (GaSe)

agrees well with that reported previously.

10.3 EXPERIMENTAL PROCEDURE

The GaSe and GaS8 crystals used in this experiment were grown by the
. . 1
Bridgman technique and had e- (Ds,;1 symmetry) and B-type (Dgh symmetry) structures,
respectively.326 In order to obtain a strong phonon flux, the acoustical domains

amplified in CdS were transmitted into the GaSe and GaS samples through the

end-bonded surfaces by making use of the acoustical-domain injection method [see
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Section 3.3.4]. The GaSe and GaS crystals were cut in the form of parallelepipeds
with dimensions of about 0.5 X 1.5 X 5.0 mm, where the optical-flat surfaces

(layer planes) perpendicular to the c-axis were obtained by.cleavage using a

razor blade. Indium layers were deposited by vacuum evaporation onto the
end-surfaces of CdS and layer-type specimens, and they were carefully bonded

by heating the evaporated indium layers so as to give a good contact for the
acoustical-domain injection from CdS into the layer-type specimens. The acoustical
domains injected into the specimens travel in the direction perpendicular to

the c-axis with shear polarization perpendicular to the c¢-axis (PT-mode phonons).
The apparatus used in this experiment is almost the same as those described in

Section 3.3.

10.4 EXPERIMENTAL RESULTS AND DISCUSSION

10.4.1 Optical Absorption
Let us first consider selection rule of the optical transitions (dipole

27 The polarization vectors f.l_g

transitions) by the aid of group theory.3
and E H ¢ of the spece group D;h (e-GaSe) belong to F6 and F4, respectively.
The highest valence and lowest conduction bands of €-GaSe have Tl and I‘4
symmetries, respectively, for the irreducible representation of the single

group.298 The optical transitions between the highest valence and lowest

conduction bands can, thus, be given by the direct product:
r.xr, =T . (10.2)

This representation contains only for the E ||2 polarization. Experimental
data confirs that the light of this polarization is strongly absorbed in GaSe
310,311,328

in the region near and above the fundamental absorption edge.

-+ -
However, there is also an absorption for E i_c in this region, which is only
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. > >
about one to two orders of magnitude weaker than that for E || . This can
be understood if we consider the spin-orbit interaction (spin-orbit coupling).

The spin-orbit coupling results from interband mixing and is known to be

relatively weak.298 The extra representations of the double group, now, go

from Fl to F7 (the highest valence band) and from FA to F8 (the lowest conduction

band), and then the product

T7 X FS = F3 + F4 + F6 (10.3)

> > - >
contains the representations of both E []0 and E4l_c. Similarly, the polarization

5

symmetries, respectively, for the irreducible representation of the single group.

> -> > -> 4 -
vectors E J‘c and E H ¢ of the space group D6h (B-GaS) belong to I'. and Tz

The highest valence and lowest conduction bands of $-GaS have TZ and F; symmetries,

respectively.298 The direct product
- + -

F4 X F3 = FZ (10.4)
contains only the representation of symmetry T; (E H Z)_ The extra represen-
tations of the double group go from TZ to Fg (the highest valence band) and

+ +
from F3 to F8 (the lowest conduction band), and the product
I- x T  =T] +T, +7] (10.5)
8 8 "2 5 1 .

-> > - >

contains the representations of both E || ¢ and E_l_o. In Fig. 10-5, we show
the selection rules of the direct optical transitions at ' point in e€-GaSe
(D;h) and B-GaS (Dgh), obtained in a way described above, based on the irreducible
representation of the single group. Dashed lines indicate the compatibility

. 1 4 .
relation between DSh and DSh symmetries.

GaSe and GaS are known to have indirect-energy gaps at energies below
the lowest direct-energy gaps. The energy separations between the indirect and

direct gaps of these compounds are found to be about 25 meV for GaSe and 0.4 eV
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FIG. 10-6. Optical absorption spectra for the ordinary ray of GaSe and GaS single crystals used

in the present measurements at room temperature.
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for GaS.307 Figure 10-6 shows the optical absorption spectra of GaSe and Ga$
used in the present work in the region of the fundamental abgorption edge.
The spectra have been obtained at room temperature from the ﬁ'l_g polarization
measurements. The behavior of the optical absorption seems to be direct for
GaSe and, at energies below 2.9 eV, indirect for GaS. The optical absorption
of GaSe shows a sharp peak at 2.00 eV which can be explained in terms of
formation of direct excitons (n = 1) due to the Coulomb interaction between the
electron and hole produced in the optical transition near the fundamental
absorption edge.298 In GaSe, however, the characteristic indirect-optical
transitions could not be clearly found in the absorption spectrum which arises
from the fact that the much stronger direct-optical transition should completely
mask off the weaker indirect-optical transition. On the other hand, since the
energy separation between the indirect and direct gaps of GaS is considerably
large, the indirect-optical transition could be clearly fonund in the absorption
spectrum. We can obtain from the figure that the indirect-gap energy of GaS$
is about 2.50 eV which agrees well with the value obtained from the emission

305,307,329

and absorption spectra of this material. It is also important to

note that in both GaSe and GaS the absorption coefficient for E_l_g is much

310,311,328 _, .

weaker than that for E i ¢ at the band-edge region,
optical transition is fully allowed only in the later polarization, as discussed

previously.

10.4.2 Quasi~Static Analysis

Figure 10-7 shows the spectral dependence of the Brillouin-scattering
cross sections in GaSe obtained at room temperature in the region of transparency.
The acoustical-domain frequency has been selected to be 0.2 GHz by properly
setting the incident and scattering angles. All the data points have been
obtained by carrying out a correction for absorption of light. The following

scattering configurations have been used in the present study by taking into
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FIG. 10-7. Spectral dependence of the Brillouin-scattering cross sections by the 0.2 GHz PT-mode
phonon domains in GaSe. The dashed and solid lines are calculated from Eq. (10.6) with
B=20and 1.5 (in eV’l), respectively.
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account the polarization selection rules: Zi.l_g, Z; i_g and Zi_i_zs, where

Zi and gs are the unit vectors in polarization direction of the incident and
scattered lights, respectively. It can be found in the figure that the spectral
dependence of the Brillouin-scattering cross sections shows very weak resonant
enhancement in the region of transparency. The spectral dependence is very
similar to that reported previously in GaSe [Ref. 276]. Such a resonance
feature is in contrast to those found in the direct-gap semiconductors such as
GaAS,25 CdSe,31 CdS,27’30’39 ZnO,30 ZnTe71 and ZnSe,95 where in these direct-gap
semiconductors the spectral dependence of the Brillouin-scattering cross sections
shows clear resonance features (resonant enhancement and cancellation) in the
region near the lowest direct gaps. It should be noted here that the present
data shows a monotonic decrease in the region very close to the fundamental
absorption edge which were not clearly found in the previous work by Chiang

et aZ,276

Figure 10-8 shows the spectral dependence of the Brillouin-scattering
cross sections by the 0.8 GHz PT-mode phonon domains in GaS obtained at room
temperature in the region of transparency. The observed spectral dependence
is essentially the same as that in GaSe. The monotonic decrease of the
Brillouin-scattering cross sections has also been found in GaS in the region
of the fundamental absorption edge (v 2.5 eV).

We have demonstrated in Chapter V that the éualitative features of resonant
Brillouin scattering can be predicted from an expression based on the quasi-
static approximation, where in this approximation the phonons are assumed to
act like static perturbations of the electronic band structure of the crystal.
This perturbation reflects a change in the dielectric constant € of the crystal.
The Brillouin-scattering cross section derived on the basis of the quasi-static
approximation can be written as [same as Eq. (5.10)]

de

_ mn
op =4 (3

+B)? , (10.6)
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where A is a constant, E is the incident-photon energy and B is a nonresonant
term (background contribution) arising from the far-off critical points in the
band structure. The subscripts m and n are the directioms éf the incident and
scattering fields, respectively. In order to obtain Eq. (10.6), we made

the usual approximation:

m o ___m . (10.7)

This relation is obtained by making use of the fact that near resonance the
dielectric constant can be approximated by a function of (E - Eg) only.

Figure 10-9 shows the dielectric constants for the ordinmary ray of GaSe
and GaS as a'function of photon energy at room temperature (dashed lines) taken
from the data of Refs. 310 (GaSe) and 330 (GaS). The photon-energy derivatives
of these constants are also shown in the figure by solid lines. The theoretical
curves calculated from Eq. (10.6) are shown in Figs. 10-7 and 10-8 by dashed
(B = 0) and solid lines (B + 0). The photon-energy derivatives of the dielectric
constant (in eV_l) has been obtained by differentiating the date of Refs. 310
and 330 (GaSe) and 330 (GaS) [see Fig. 10-9]. We have used the data of the
dielectric constants for the ordinary ray (E.l_g) which correspond to the
present Brillouin-scattering configurations (Emn = Ell = i?. The constants A
and B have been adjusted to give the best fitting. The best results can be
obtained by taking into account the nonresonant éontributions of B=1.5 and
2.5 (in units of eV_l) for GaSe and GaS, respectively, as shown in the figures by
solid lines. This fitting procedure deduces an interesting fact that for both
GaSe and GaS the Brillouin-scattering process arises mainly from the
dispersionless contributions due to the nonresonant electronic transitions.
Moreover, the nonresonant term B has a positive sign in contrast to that for
the direct-gap II-VI compounds [see Table 5-1]. Such facts explain reasonably

why the dispersion curves of the Brillouin-scattering intensity in both GaSe
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FIG. 10-9. Dielectric constants of GaSe and GaS at room
The

temperature in the region of transparency.
photon-energy derivatives of the dielectric
constants (in eV‘l) are also shown in the figure

by dashed lines.
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and GaS did not show any clear resonant cancellation (except in the region above
the band-edge region) and enhancement. The quasi-static analysis for the case
of II-VI compounds showed that the resonant contribution was dominant in the
Brillouin—-scattering process and thus the resonant qancellation could be
clearly found in the region below the lowest direct gap. The resonant
cancellation reflected the sign opposite relation between the resonant and non-
resonant contributions [see Chapter V]. The weak resonant enhancement observed
in the present study can be understood from a phenomenological aspect by taking
into account the following fact; In the layer-type semiconductors such as GaSe
and GaS, the absorption coefficient for the E.l_g polarization is much weaker
than that for % I ¢ near the excitonic-transition region which is attributed

to the symmetry of the electronic bands being such that for E Il Z the optical
transitions are fully allowed while for E_l_g>they are allowed only because of
the presence of gpin-orbit coupling. This means that the oscillator strength
for E_l_g is much weaker than that for & ” z. Therefore, we can expect that
the resonance effect near the band-edge region is rather weak so that tne
nonresonant electronic transition is always dominant for the gi_i_g and Z; J_;
scattering configurations. (Note that the Brillouin-scattering intensity is
proportional to the fourth power of the corresponding momentum matrix element).
On the contrary, the strong resonance effect should be expected when we proceed
the Brillouin-scattering measurements in the Zi(gs) H g configuration. The
quasi-static approximation easily supports this expectance because the spectral
dependence of the dielectric constant E“ (833) shows a strong dispersion near
the band-edge region, i.e., the first term in the bracket of Egq. (10.6) gives
considerably large vélue. Unfortunately, however, the incident and scattering
angles for this scattering configuration can not be determined from the usual
procedure of Dixon117 because of the strong anisotropic nature of the refractive

indices in the layer-type compounds.
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As shown in Figs. iO-7 and 10-8, we have observed clear resonant cancellation
of the Brillouin-scattering cross sections in GaSe and GaS at a region very close
to the fundamental absorption edges. The resonant cancellation in GaSe is found
to be well interpreted in terms of the dielectric theory of resonant Brillouin
scattering given by Eq. (10.6), whereas the resonant cancellation in GaS can
not be successfully explained when we use the data of dielectric constant (Ref.
330) which do not show any clear structure or maximum at the fundamental
absorption edge [see Fig. 10-9]. ©Note here that de/dE becomes zero at a maximum
of £(E) and thus the resonant cancellation occurs near the maximum of €(E). The
solid line of Fig. 10-8 does not show a decrease near the fundamental absorption
edge (v 2.50 eV), reflecting the structureless nature of €(E) in the region.

The dielectric constant of GaS reported by Akhundov et aZ.,328 on the other
hand, exhibits a clear maximum at a photon energy of about 2.65 eV, and thus
the observed resonant cancellation can be interpreted by Eq. (10.6). However,
the data of Akhundov et al. show optically positive nature (%l_< 8”) which is

330,331 and GaSe.310’33O

in contrast to those of GaS$ Thus, we need more detailed
measurements on the dielectric constant of GaS for the analysis of the quasi-

static approximation.

10.4.3 Microscopical Analysis

In this subsection, we analyze the Brillouin-scattering data from a micro-
scopical point of view, based upon Loudon’s light-scattering theory.35 The
resonant cancellation observed in both GaSe and GaS will be successfully
interpreted by the proposed theoretical model.

The layer—type compounds GaSe and GaS are known to be indirect-gap semi-
conductors, as mentioned previously. The top of its valence band lies at [I' point
and the bottom of the conduction band at M point. Relative minima of the

conduction band at I point are situated a few tens of meV for GaSe and about
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0.4 eV for GaS above the minima at M point. A common feature of theoretical
expressions for the Brillouin-scattering intensity of a substance is the presence
of terms which either divergence or become relatively large when the frequency
of the exciting radiation is equal to an allowed optical-transition frequency

of the substance. The Brillouin scattering cross sectiom can be given in terms

of the frequency-dependent Brillouin tensor R(-wi,ws,wq) by

2
op | R(—wi,ws,wq) | . (10.8)

For the case of the indirect-gap materials such as GaSe and GaS, we can
separate the Brillouin-tensor term into three independent components [see Chapter

IX]:
R=R + R + R N (10.9)

D D P ;
where.RiS and Ris are the indirect-gap and lowest direct-gap resonance terms,

respectively, and R, is the nonresonant term arising from the far-off critical

0
points in the band structure. The indirect-gap resonance process, which contains
in part the indirect-optical transition, is described theoretically by the 5th-
order time-dependent perturbation [see Chapter IX]. The expression of Riz is
given by the same form as Eq. (9.19). The absorption coefficient can now be

written in terms of the density of states of the indirect-energy gap as305’306

I

aw) « Gho - EgD :!:’ﬁwq)z ) (10.10)

As mentioned in Section 2.2, the direct-gap resonance process is described by
the 3rd-order time-dependent perturbation and is given by the same form as Eq.
(2.55).

Let us now consider the direct-gap Brillouin-scattering process by the aid
of group theory. The direct gap with which the exciton series of interest here

are associated occurs at the center of the Brillouin zone (I' point). The
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Brillouin~scattering process can be deduced from the symmetry properties of
the intermediate electronic states and corresponding acoustical vibrations.
The strain component induced by acoustical phonons is defined by Eq. (2.70).

The PT-mode phonons propagating in GaSe, thus, induce the non-zero strain

component et =e .~ eyy + ZieXy which has the symmetry of Ib (space group
D;h). The initial-intermediate-electronic state can be assumed to have T6

symmetry, since in the present study it is produced by the gi 1_3 (F6) radiation
After being the deformation-potential interaction with the PT-mode phonons, the
intermediate electronic state will have the symmetry given by the following

product:

- -,
Te(e; | @) xTgle)) =T +T, + T, . (10.11)

The right-hand side of Eq. (10.11) contains the representation of symmetry T6’
and as a result the scattered-intermediate-electronic state can produce the
radiation having polarization of gé_i_g (Fé)' The above result possibly
suggests that in the case of GaSe the exciton (electron)-acoustical phonon
interaction is necessarily intraband, i.e., the Brillouin-scattering process
can be described only by the two-band model. The schematic diagram of this
process is represented in Fig. 10-10 (a), where ]O> represents the electronic
ground state and |o> and |B> represent the intermediate electronic states.

The same result can also be obtained in the case of GaS (space group DZh)'

The PT-mode phonons propagating in GaS induce the non-zero strain component of
et =e - eyy + ZieXy which has the symmetry of TZ. The symmetry of the

scattered-intermediate electronic state is, therefore, given by the product

- > > -+ _ - - -
Ts(ei_]_c) x r6(ei) =T +T, +T, R (10.12)

5

Brillouin-scattering process in GaS can also be described only by the two-band

which contains the representation of symmetry T (gs l_g). Thus, the direct-gap
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FIG. 10-10. Schematic description of the Brillouin-scattering process. (a) e-GaSe
(D§h symmetry) and (b) B-GaS (Dgh symmetry). The dashed arrows indicate
photons. The heavy lines indicate the transition processes of virtual
intermediate electronic states via deformation-potential interaction.
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model (i.e., intraband eiectronic transition). The schematic diagram of the
Brillouin-scattering process in the case of the space group Dgh (GaS) is
represented in Fig. 10-10 (b).

Figure 10-11 shows the theoretical curves of the Brillouin-scattering
cross sections in GaSe, calculated from Eq. (10.8), along with the experimental
data. The vertical arrow indicates the position of the n = 1 discrete~exciton
energy (Exl)' The indirect-gap resonance is usually weaker than the direct-gap
one because of the higher perturbation orders of the indirect-gap resonance
process. The energy separation between the indirect and direct gaps of GaSe is
too small (a few tens of meV). It can, therefore, be reasonably considered that
in GaSe the indirect-gap resonance term Rig is negligibly small compared with

D

the direct—-gap resonance term Ri , i.e., the indirect-gap resonance should be

s
masked off by the much stronger direct-gap one. Similar phenomena can alsc be
expected in other optical processes such as absorption and emission of light
[see, e.g., Fig. 10-6]}. From the above fact, we have neglected the indirect-

gap resonance term for GaSe and then calculated theoretical curves using the

following Brillouin tensor instead of Eq. (10.9):
R=R, +R . (10.13)

The numerical values used in the calculations are listed in Table 10-2. The
theoretical curves have been taken into account four different lifetime-broadening
energies; I' = 0 meV (dash-dotted line), I = 30 meV (dashed line), T = 60 meV
(s0lid line) and I' = 90 meV (dotted line). The group-theoretical analysis
discussed before indicated that for both GaSe and GaS the direct~gap resonance
process can be treated only by the two-band model. We have, thus, mode in

Eq. (2.55) that

(10.14)
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Dispersion curve of the Brillouin-scattering cross sections
for the 0.2 GHz PT-mode phonon domains in GaSe. The theoretical
curves are obtained from Eq. (10.13) with I'=0 meV (dash-dotted
line), T'=30 meV (dashed line), I'=60 meV (solid line) and I'=90
meV (dotted line). The vertical arrow indicates the position
of the n = 1 direct-exciton energy (Eyq).
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Table 10-2. -Numerical parameters used to calculate the spectral
dependence of the Brillouin-scattering cross sections.

GaSe GaS
D a b
E [eV] 2.02 2.90
ga
E? [ev] N 2.495¢
g
HR* [meV] 204 67¢
ag* [4] 41.59 14¢
u 0.11¢ 0.3

%pstimated from our experimental data (Fig. 10-6).

bReference 305 and estimated from our experimental data
(Fig. 10-6).

CReference 329 and estimated from our experimental data
(Fig. 10-6).

dReference 336.

eReference 337.
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It is obvious from Fig. 10-11 that the lifetime-broadening effect strongly
broadens resonance features especially near the direct-exciton resonance region

(E_.). The best-fitting value of the lifetime-broadening energy is determined

x1
to be T = 60 meV (solid line).

Figure 10-12 shows the theoretical curves of the Brillouin-scattering
cross sections in GaS, calculated from Eq. (10.8), along with the experimental
data. The vertical arrows in the figure indicate the positions of the indirect-—
gap (E;D) and n = 1 direct-exciton (Exl) energies. The solid and dashed lines
have been calculated from the Brillouin tensors of Eqs. (10.9) and (10.13),
respectively. The numerical values used are listed in Table 10-2. 1In the
calculation of the direct-gap resonance term Rgs’ we have taken into account
the lifetime~broadening energy of I' = 200 meV.332 The dashed line in which the
indirect-gap resonance is not taken into account shows a decrease in the region
near the n = 1 direct-exciton state (Exl) arising from the lifetime broadening
of the exciton states. However, the agreement between the theoretical curve
and experimental data is very poor in the region near the fundamental absorption
edge. As already mentioned in Section 10.4.1, GaS has an indirect-energy gap
below the lowest direct one and this gap sufficiently aparts from the lowest
direct gap. As a result, the absorption spectrum of this material clearly shows
an indirect-gap characteristic at energies belowv2.9 eV. This fact enables us
to consider that the indirect-gap resonance should be occured without maskiﬁg
off by the strong direct-gap resonance as the photon energy approaches and
extends beyond the indirect-energy gap E;D. It should be important to point
out that the indirect-gap resonance expressed by Eq. (9.19) begins as the
incident-photon energy extends beyond the energy of (EéD —‘ﬁwq). One can find
from Fig. 10-12 that the theoretical curve calculated from Eq. (10.9) well

interpretes the measured monotonic decrease of the Brillouin-scattering cross

sections, as shown by solid line. 1In the calculation, we have assumed to account
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ID .
the cancellation that the the indirect-gap resonance term (Ris) has a opposite

sign to the direct-gap (R?s) and nonresonant terms (RO). The monotonic decrease

is, thus, considered to be the result of cancellation betweén the Riz and R?S
(plus RO) terms. Similar resonant cancellation has also been found in the
indirect gap of 51269 from the Raman-scattering measurements as the resonance
with the indirect-energy gap is approached. Unfortunately, we were not able to
determine the value of T'(w) from the fit to the experimental data with Eq. (10.9),

. ID . .
since the' term RiS contains the prefactor C, as an adjustable parameter.

2
Figure‘10;13 shows the theoretical line shapes of the Brillouin tensor R

of GaSe calculated from Eq. (10.13) in the neighborhood of the excitonic structure

with three different broadening energies; I' = 40 meV (dashed line), T = 60 meV

(so0lid 1ine) and T = 90 meV (dotted line). The experimental data (OB% «< IRI)

are plotted in the figure by solid circles. The corresponding nonresonant term

RO is also shown by solid line. The vertical arrow indicates the position of

the n = 1 direct-exciton state EX One can find from the figure that the

1°
calculated curves show sharp peaks at arround 2.00 eV arising from the direct-
exciton resonance. Note that the absorption spectrum [Fig. 10-6] also showed
sharp peak at the same photon energy due to the n = 1 direct-exciton transition.
The resonance behaviors are clearly found to be strongly affected by the lifetime
broadening of the exciton states. The calculation has required a fit to the
experimental data with I' = 60 meV (solid line; sée also Fig. 10-11). The figure
clearly indicates that at photon energies below 1.95 eV the nonresonant
contribution (nonresonant electronic transition) is dominant in the Brillouin-
scattering process; We obtain, for example, that the ratio of each contribution
R?s/RO is about 1/7.5 at photon energy of 1.85 eV. Such a result agrees
reasonably with that obtained from the quasi-static analysis, as mentioned in
Section 10.4.2.

It is interesting to note here that the line shape of R [Fig. 10-13] is
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PHOTON ENERGY ( ev )

Theoretical line shapes of R in the neighborhood of the
fundamental absorption edge along with the experimental
data for GaSe. The theoretical curves are obtained from
Eq. (10.13) with T=40 meV (dashed line), T'=60 meV (solid
line) and T=90 meV (dotted line). The corresponding non-—
dispersive term (Rg) is also shown in the figure by solid
line. The vertical arrow indicates the position of the
n = 1 direct-exciton energy (Eyxj).
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very similar to that of the first-derivative modulation spectroscopy. We have
discussed in Chapter VII that resonant Brillouin scattering is quite equivalent
to the first-derivative modulation spectroscopy such as thermoreflectance,
piezoreflectance and wavelength-derivative spectroscopy. Indeed, the thermo-

333,334 showed a sharp peak due to the n = 1 excitonic

reflectance spectrum of GaSe
structure at a region close to the direct-energy gap, which is very similar to
the line shape of R given in Fig. 10-13.

Figure 10-14 shows the theoretical line shapes of the Brillouin temsor R
of GaS in the neighborhood of the fundamental absorption edge. The solid line
is calculated from Eq. (10.9), where the lifetime-broadening energy of I = 200
meV is taken into account in the calculation of Eq. (2.55). The theoretical
line shapes are also calculated from Eq. (10.13) with three different broadening
energies; I' = 0 meV (dash-dotted line), [' = 200 meV (dashed 1line) and T = 300
meV (dotted line). The experimental data (OBI/2 o« ]Rl) are plotted in the figure

by solid circles. The corresponding nonresonant term R, is also shown by solid

0
line. The vertical arrows indicate the positions of the indirect-gap (E;D)
and n = 1 direct-exciton (Exl) energies. The figure clearly indicates that
the monotonic decrease observed in the region of the indirect-energy gap can
not be successfully interpreted only by the direct-gap resonance process, in
contrast to the case of GaSe. The indirect-gap resonance term R;E, on the
other hand, completely interpretes the observed monotonic decrease, as shown
by solid line. We can also show in the figure that the nonresonant term RO is
always dominant especially at energies below E;D. This result is similar to
the case of GaSe. An examination of analogous data allows one to argue
possibility of the iﬁdirect—gap resonance in GaS. For example, we have
reported in Chapter IX the results of resonant Brillouin scattering in GaP.

The GaP crystal is an indirect-gap semiconductor and is thought to be excellent

material to study some of the indirect-gap resonance effects, since the energy
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( ev )

Theoretical line shapes of R in the neighborhood of the
fundamental absorption edge along with the experimental data
for GaS. The theoretical curves are obtained from Eq. (10.9)
with =200 meV (solid line) and from Eq. (10.13) with T=0 meV
(dash-dotted line), I'=200 meV (dashed line) and T'=300 meV (
dotted line), where I' is the direct-exciton lifetime-broaden-—
ing energy. The corresponding nondispersive term (Rp) is also
shown in the figure by solid line. The vertical arrows indicate
the positions of the indirect-gap (E%D) and n
energy (Eyj).
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separation between the indirect and direct gaps of this material is relatively
large (= 0.5 eV). The measured spectral dependence of the Brillouin-scattering

cross sections in GaP also showed weak resonant cancellation as the incident-

photon energy extends beyond the indirect-energy gap of this material,
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CHAPTER XI

SUMMARY AND CONCLUSION

Resonant Brillouin scattering has been investigated in II-VI, III-V and
ITI~VI semiconductors. The results and conclusions obtained in the present
work are summarized as follows.

Resonant Brillouin scattering in ZnSe and ZnTe has been studied at
roonm temperature and 77 K by making use of the acoustical-domain injection
method. The spectral dependence of the Brillouin-scattering cross sections
in these semiconductors for the Tl- (slow TA) and T2-mode (fast TA) phonons
has shown resonant enhancement and cancellation in the region near the
fundamental absorption edge. The Brillouin-scattering cross section has been
found to depend strongly on the lifetime-broadening effect of the intermediate
electronic states near the resonance region. The resonance~Brillouin effect

has also been studied in ZnXCd XTe solid solutions by making use of the

1~
acoustical-domain injection method. The relative concentration of the partic-~
ipants in solid solutions determines the band-gap energy which usually falls
within the range of the band-gap energies of the two pure compounds. The
band-gap energy plays a significant role in the resonance features through

the intraband and interband electronic transitions. It has been clearly found
that the resonance curve observed shifts toward longer wavelength side as the

molar composition x decreases, originating from the shift of the band-gap

energy with x. The resonance behavior of the Brillouin-scattering cross
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sections in CdS has been measured by using the acoustoelectrically amplified
phonon domains [T2-mode (slow TA)]. The resonance data of Brillouin scattering
by the Tl-mode (fast TA) and PL-mode (pure longitudinal) phonon domains have
also been obtained in CdS by the mode conversion upon partial reflection of

the T2-mode domains at the anode-end surface. The data have shown resonant
enhancement and cancellation for the Tl- and T2-mode phonon domains in the
region near the fundamental absorption edge, while only weak resonant
enhancement has been found for the PL-mode phonon domains in the region below
the intrinsic absorption edge. The experimental data obtained have been
compared with the theoretical prediction based upon Loudon’s light-scattering
theory assuming the free electron-hole pairs or Wannier-Mott excitons as the
intermediate electronic states. It has been found that the Wannier-Mott exciton
model shows a quite good agreement with the present experimental results when
the lifetime-broadening effect is phenomenologically taken into account in

the calculation.

The resonance data of Brillouin scattering in ZnSe, ZnTe and CdS have
been analyzed with a theoretical prediction based on the quasi-static
approximation. This analysis indicates that for the allowed scattering the
Brillouin-scatteing efficiency (Brillouin tensor) is proportional to the first
derivative of the dielectric constant € with respect to the incident-photon
energy while for the forbidden scattering proportional to the second derivative
of € with respect to the incident-photon energy. The theoretical calculation
has been performed by numerically differentiating the experimental data of
the dielectric constant. The resonance behaviors of Brillouin scattering
have been well interpreted by the quasi-static approximation when the non-
dispersive contributions are properly taken into account. This analysis has
also clearly indicated that resonant Brillouin scattering is quite equivalent

to the conventional modulation spectroscopy such as thermoreflectance spectro-
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scopy. Resonance forbidden Brillouin scattering has been observed in CdS
by the T2-mode phonon domains in several scattering configurations (
parallel-parallel and parallel-perpendicular configurations). The data have
been well interpreted with a dielectric theory based omn the second derivative
of € with respect to the incident-photon energy, as expected from the quasi-
static approximation. Although the forbidden-scattering mechanism observed
here has not yet been completely explained, it may be pointed out that the
strong longitudinal field associated with the T2-mode phonon domain is one
of the causes.

From a macroscopical point of view, the Brillouin-scattering cross section
is proportional to the square of the corresponding photoelastic constant which
can be obtained independently from the piezobirefringence experiment. The

spectral dependence of the photoelastic constants, Pyq ~ and p44 for ZnSe

P12
and ZnTe and Pee [%(pll—plz)], Py and Py for CdS, has been determined from
the present data by introducing the piezobirefringence analysis. The photo-—
elastic constant has been found to depend strongly on the lifetime-broadening
effect of the electronic states especially near the band-edge region as in
the Brillouin-scattering efficiency. Moreover, it has been reported a new
method to analyze the piezobirefringence coefficient in an opaque region of
solids. This method takes into account the contributions from the stress-—
induced changes in both the real (Ael) and imaginary part (Aez) of the
dielectric constant. New coefficients, which determine the fractional
contributions of Ael and Aez to the piezobirefringence coefficient, have been
derived from an analytical point of view. The experimental data of Si and
ZnSe have been analyzed by using the present model. Good agreement between
the experiment and calculation has been found. The present method is thought

to provide a guiding principle for amalyzing the piezobirefringence coefficient

in an opaque region.
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The effect of the lifetime broadening on resonant Brillouin scattering
has been studied in more detail by using the acoustical-doméin injection
method. Two kinds of ZnTe and ZnSe single crystals have been used to investigate
some effects of the crystalline imperfections on the spectral dependence
of the Brillouin-scattering cross sections. Moreover, the measurements have
been made at room temperature and low temperature (77 K) to investigate some
temperature effects on the lifetime broadening. It has been found that the
lifetime-broadening energy does not depend strongly on the temperatures but
on the kinds of the crystals. The lifetime-broadening energy of the high-
purity ZnTe (ZnSe) determined from the Brillouin-scattering measurements

26 meV (44 meV) at 77 K, which is very large compared with the value

is T

of T

IR

2 meV (3 meV) obtained from reflectance spectrum. The results are
interpreted in terms that the lifetime broadening is caused mainly by an
interaction of the intermediate electronic states with the high-intensity
phonon domains and crystalline imperfections.

The common feature of 511 modulation techniques of optical spectroscopy
is the measurement of the derivative of some optical properties with respect
to some parameters such as temperature, stress, wavelength, electric field
and magnetic field. Such a modulation spectroscopy yields information about
the structures and properties of optical critical points and profiles of the
exciton lines. A detailed discussion has been given on resonant Brillouin
scattering in comnection with the first-derivative modulation spectroscopy
such as thermoreflectance, piezoreflectance and wavelength-modulation
spectroscopy. It has been shown that the Brillouin-scattering efficiency
is expected by the first derivative of the dielectric constant with respect
to the incident-light wavelength or equivalently to the band-gap energy, which
is the same as the expression for the first-derivative modulation spectroscopy.

A comparison of the Brillouin-scattering efficiencies derived experimentally
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with the first-derivative modulation spectra has shown that they agree quite
well with each other and also with the theoretical curves of the Brillouin-
scattering efficiency when the lifetime-broadening is taken into account in
the Brillouin-scattering analyses. It has been concluded from these results
that the resonant—-Brillouin process can be described by a phenomenological
formalism analogpus to that of the first-derivative modulation spectroscopy.
Resonant Brillouin scattering in III-V semiconductor GaP by the transverse
acoustical phonons has been studied at room temperature in the region of the
indirect absorption edge by making use of the acoustical-domain injection
method. The GaP crystal is a more suitable material to study some of the
indirect-gap resonance behaviors, since the energy separation between the
indirect and direct gaps in this material is relatively large (= 0.5 eV).
The spectral dependence of the Brillouin-scattering cross sections has shown
a monotonic decrease (resonant cancellation) as the incident-photon energy
extends beyond the indirect-gap energy. It has been formulated a theory of
resonant Brillouin scattering at the indirect gap of semiconductors. The
experimental data have been well interpreted by this theoretical model (
indirect~gap resonance) and an additional dielectric theory of the direct-gap
resonance (quasi-static approximation). The spectral dependence of the

photoelastic constants, and [p44[, has also been determined as a

P11 = Pyl
by-product of the Brillouin-scattering data.

The strong anisotropic nature of the layer-type, ITI-VI semiconductors
GaSe and GaS makes it a very interesting subject of investigation from both
theoretical and experimental aspects. Resonant Brillouin scattering in GaSe
and GaS has first been investigated at room temperature by making use of the
acoustical-domain injection method. The GaSe and GaS crystals are well known

to have indirect gaps below the lowest direct gaps; the top of its valence

band lies at I' point and the bottom of the conduction band at M point.
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Relative minima of the conduction band at I are situated a few tens of meV

for GaSe and about 0.4 eV for GaS above the minima at M. The group-theoretical
analysis has indicated that the two-band process (intraband electronic
transition) plays an important role in the direct-gap resonance of the
Brillouin-scattering mechanism by the pure-transverse phonons. The experimental
data obtained have shown clear resonant cancellation for both GaSe and GaS

in the region very close to the fundamental absorption edges. It has been

found that the Brillouin-scattering intensity depends strongly on the
lifetime-broadening effect of the intermediate electronic states. The spectral
dependence of the Brillouin-scattering cross sections has shown a good agreement
with the theoretical predictions based on the quasi-static approximation and
Loudon’s light-scattering theory. The resonant cancellation has been
successfully interpreted by the direct-gap (direct-exciton) and indirect-gap
resonance processes for GaSe and GaS, respectively. Such analyses, moreover,
have clearly indicated that the nonresonant electronic transitions are

dominant in the Brillouin-scattering process even in the region near the

fundamental absorption edges.
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APPENDIX

CRYSTAL GROWTH: TRAVELING HEATER METHOD

A. INTRODUCTION

The most important factor in the characterization of materials is the ability
to prepare structually and chemically pure crystals (i.e., both from the point of
view of natural defects and foreign impurities). Single crystals of fair
perfection have been grown by a variety of techniques from vapor, gaseous phase,
melt and solution. Although growth from the melt is the most common technique
used in crystal growth of elemental materials, this method is not readily
applicable to the higher band-gap II-VI compounds. The high melting temperatures
and non-insignificant pressures developed near the stoichiometric melting points
are important reasons for growth from the vapor phase at considerably lower
temperatures and pressures. Vapor growth, however, has its limitaions with
regard to purity, crystal size and especially the time required for growing
sizable crystals. Moreover, the gaseous and vapor growth should suffer from
local supersaturation and local undercooling. The high-temperature melt growth
should also suffer from uncontrollable temperature fluctuations. The growth
of crystals from solution, in particular from metallic solution, on the other
hand, is much less susceptible to such disturbances. The traveling heater
method (THM) is a kind éf solution growth [1], and is advantageous for the
growth of large single crystals with little contamination and good crystalline

perfection.
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The THM has been applied to obtain high-purity semiconductors such as
III-V (GaSb{2], InSb[2], GaP[3] and GaAs[4]) and II-VI compqunds (CdTe(51],
ZnTe[6] and ZnO[7]). This method has also been found to be advantageous for
the growth of crystals of solid solutions of homogeneous composition, and
has been applied to the growth of a range of solid solutions such as Ga(As,P)
[8], (Ga,In)P [4], (Ga,Al)As [4], (Zn,Hg)Te [8] and Zn(Te,Se) [9]. In the
course of this work, we have grown ZnTe, CdTe and (Zn,Cd)Te single crystals
by the THM from tellurium solution. The methodology and growth technique

are as follows.

B. CRYSTAL GROWTH OF ZnTe, CdTe AND ZnXCd Te

1-x
(a) Phase Diagram of IZn-Te, Cd-Te and Pseudobinary ZnTe-CdTe Systems

fhe knowledge of the phase diagram is of importance for crystal growth
especially from the melt. The phase-diagram study on Zn-Te system has been
carried out by Carides and Fischer [10]. The result obtained is shown in
Fig. A-1 (a). The melting point of stoichiometric ZnTe is about 1298°C.
The phase diagram of the system Cd-Te has been studied by Lorenz [1l1l]. He
has obtained that solid stability reaches a maximum at 1092°C in the vicinity
of the equimolar ratio, but the maximum melting point is not coincident with
the stoichiometric composition. TheII-VI compounds ZnTe and CdTe form a
complete series of solid solutions with cubiec zincblende structure and with
band-gap energies varying from 1.5 to 2.25 eV at room temperature [see Fig.
4-16]. The phase diagram of the Zn-Cd-Te ternary system has been studied by
Steininger et al. [12] and Steininger and Strauss [13]. The ZnTe-CdTe system
shows a typical lens-shaped phase diagram with sublinear variations in
temperature with composition and relatively narrow liquidus-solidus gaps,

as shown in Fig. A-1 (b).
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(b) Source Materials

The elements, Zn (6N from Cominco), Cd (6N from Osaka Asahi Metal) and Te
(6N from Osaka Asahi Metal), are used in shots to limit their surface of contact
with air during the manipulations. Zinc and cadmium are etched in a solution

of 4 7 HNO3 in ethanol and tellurium in a dilute HCI.

(c) Synthesis of Feed Crystals
Polycrystalline ingots of ZnTe, CdTe and anCdl—xTe were prepared by melting
the component elements in evaquated quartz tubes (Bridgman method). A 8 mm I.D.

quartz tube was first cleaned with an aqueous solution of HF, graphitized by

5 —-10_6 Torr

cracking of acetone vapors at 1100°C, and then baked out under 10
for several hours at about 1000°C. The graphitized quartz ampule was filled
by a charge of Zn:Te = 4:6, Cd:Te = 4.7:5.3 or (an,Cdl_X):Te = 4.6:5.4 (in
atomic ratio) and sealed off under 10_'6 Torr. The temperature profile of a
Vertical Bridgman furnace is schematized on Fig. A-2 (a). The direct synthesis
from the elements is often explosive. Therefore, the temperature was increased
slowly over a 48-h period to 1180°C, held constant for 5 h, and then the
ampule was slowly lowered in the steep temperature gradient of about 20 deg/cm

at 2 mm/h. The ingots obtained in all preparation trials consisted of few

grains of single crystals.

(d) Crystal Growth by THM

In the THM, a molten solvent zone is made to move through a solid source
material by the slow movement of the charge material relative to the solution-
zone heater, or vice versa. In this process, the dissolution of feed material
occurs at the recediﬁg liquid-solid interface, and the crystallization of the
dissolved feed occurs at the advancing liquid-solid interface. The schematic
diagram of the THM furnace used and its temperature profile are shown in Fig.

A-2 (b). A 8 mm I.D. quartz tube was cleaned with an aqueous solution of
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—362—

3 —~10_6 Torr for several hours at about 1000°C.

HF and baked our under 10
The quartz tube contained Te ingot (solvent) [6N from Osaka Asahi Metal] and
feed crystal was then sealed off under 10—6 Torr. The single crystals were

grown by the THM with a growth rate of 5 mm/day. The maximum temperature of
the THM furnace was adjusted to be 850, 700 and 700 — 850°C for the growth of

ZnTe, CdTe and anCd xTe, respectively. The solubilities of ZnTe and CdTe

1-
into Te solvent were about 12 and 17 mol 7 at these temperatures, respectively.

The material~transport mechanism in THM can be easily understood by the

following expression [8]:

1 d[A]
£ dt

/A

=L@, - W ;1> (a-1)

eql

where f is the cross section of ingot, [A]Z is the actual concentration in
solid at the receding liquid-solid interface, (A)er and (A)qu are the
equiiibrium concentrations in the solution at the advancing and receding
liquid-solid interfaces, respectively, D is the diffusion constant within

the solution zone, and 7 is the zone length. TFrom this equation, the material
transport is found to be probably due to a diffusion controlled growth, and

to be very sensitive in temperature (solubility) and zone length.

We have obtained the inclusion-free, high-quality single crystals of
ZnTe, CdTe and anCdl—xTe by the THM from tellurium solution. It has been
confirmed that the THM can be taken as a useful method to grow reproducibly
large crystals of II-VI compounds at low growth temperatures with low dislocation
densities. The extraction effect of the tellurium solvent and low growth
temperature should lead to materials of good crystalline perfection. The

crystalline-imperfection effect on resonant Brillouin scattering is discussed

in detail in Chapter VII.
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