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ABSTRACT

     RESONANT BRILLOUIN SCATTER!NG
                 'IN I!-VI, III-V AND UI--•VI SEiVIICONDUCTORS

     by

Sadao Adaehi

                1.                                                        '     The present work deals with Å}nvestigations of resonant Brillouin

seattering in IT-VT, II!-V and !r!-VI semiconducting eornpounds by maktng

use of the aeoustoelectrtcally amplified phonon domain. This domain

                              'is formed in the piezoelectric semiconductor CdS upon the applieation of

                                       '                       'high electrie fields, and propagates with the velocity ef sound in the
                                                           '             'carrier drift direction. The intense phonon domains generated in CdS

                              '  '          'produee strong Brilloutp-scattering signals with a reasonable S/N ratio

                                         'and thus enable us the use o g a non--coherent light source instead of a

                                   'laser. This technique also enables us to discuss accurate resonance .
       '                                             'behaviors in a region close to the fundarnental absorption edge of the

                                                    ''semic6nductors. !n order to obtain the intense phonon domains in the weak

      '                                             '              'ptezoelectric semiconductors such as ZnSe, Zn Te, GaP, GaSe and GaS, we '
                              '        'have used the amplified aeoustical-domain injection method in whieh the

                                                        '            tt                                           '               '



                             • oo

                         '           '                                                 tt                                  '                                                    '               tt t tt                                                         'phonon dornain excited in CdS Å}s injected into the othe F end-bonded

           '            t/seniconductors through the t"ln inaium layer with a high.transmission

               tt tt ttt tt ttefficiency. A series of expdriments have been performed to establish

                                                     t tt                                                           '                                                         '                  'the Brulouin--scattering meehantsm in (a). the direct' eag, rrTVI sernl'

                              '                   '                                                                  '                'conduetors ZnSe, ZnIre, ZnxCdl-xTe and CdS, (b) the indirect-gap, III-•V

                                         '             '                      '                                   '            '       tttsemiconductor GaP, and (c) the layer-type (indirect-gap), .;IrTVI .selr}.i-

conductors GaSe and GaS.. .• . . , ..•. .'  • '•'  , . '.
                         '                                                               '                            '                                 '                                                                  '                           tt                                        '              '         '' The spectral dependence of the BrUlouin-scattering cross sections

                      '                                           '                                     'in the H-V: Femiconduetors has shown resonant enhancemenF and caneellation

                                                               '                                            tt                                    ttin th g region near the fundamental absorption .edge,. and new mgiima have

          t tt                                                               '                        ttalso been feund in the dispersion curves very close to the ground Tstate
                                                          '                           'exciton-energy regions. The Briliouin--scattering cross seetion is found
                                                              tt                                                  '                                                              '                                                                  '        'to depend strongly on the 1ifetime-broadeni,ng effect of the tntermediate

                       '                      1ttt telectronic states near the resonance region. The spectr gl dependence of

                '                                             '  tt                                                           'the Brillouin-scattering eross sections has shown a good agreement with
                                  '   t ttt tt tthe theoretical analysis based upon Loudon's light•-scatteriag theory,

                            '                      '         '                                      '                tt                               'assundng the virtual Wannier-Mott exciton transition, .wh.gn the .lifetirbe-

          '                                                             '                                                     '                      tt tt tbroadening effect is taken into aceount. ... .. . .'  . ''  .•'  1•

                                                         tt t                                                ', The resonance data of Brillouin scattering have also been analyzed .. ..'

with a theoretical description based on the quasi-static approximation.'' • •
                             '               '      tt                             '                                                               '          'l]his analysis indicates that foF the allowed-seattering configuration

        t tt tt t                     '              'the Brillouin--scattering efficiency can be predicted by the first derivative

of the dielectric constant wtth respect to the incident-photon energy./' '  '

                                                     tt t                                                  '                                   '                                          'The theoretical calculation has been performed by numericaliy differentiating

                                            tt                           'the expeTirnental data of the dielectric constant. The respnapce behaviors,

of the Brillouin--scattering cross sections have been well interpreted by
                                         '                                                                    '                                   '                                 'the quasi-statie approxirnation when the nondispersive contribution is

                                                            '                                                    '                                            'properly taken into account. Resonant forbidden Brillouin scattering by
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                                              '              '        tt t t tt tt t                         '         'the slow-TA phonon domain Sn CdS has been observed near the fundamental
                                    '                                                                     ttt
absorption edge. The data are in good agreement with a dieiectric theory
                '                                                                  '                                       'based on the second derivative of the dielectrie constant with respect to

                    ttth g incident-photon energy. Although mechanism of the forbidden scattering

observed here has not yet been completely explained, it may be pointed out'

that the strong longitudinal electric field assoeiated with the piezo-
       '                                                     'eiectrically active slow-TA phonon domain is one of the causes.
                              '
     In order to investigate sorne of the lifetime-broadening effects on the
                              '                                                               '        'spectral dependence of the BriUouin-scattering eross sections, we have

                                                        'used two kinds of ZnTe and ZnSe single crystals an g made the Brillouin-

                       ttscattering measurements at room temperature and low temperature (77 K). rt

                                                               '                                    tthas been found that the lifetime-br gadening energy does not depend strongly

on the temperatures but on the kinds of the crystals. The lifetime-

broadening energy of the high--quality ZnTe (ZnSe) determined from the

            ' '•'•11 Fl,/.Brillouin-scattering measur.e. ments is r == 26 meV (44 meV) at 77 K, which Å}s"

                                                               ttvery large compared with the value of r cr 2 rneV (3 rneV) obtained from

reflectance spectrum. The results are interpreted in terms that the
                                                                      '             'iifetirne broadening is caused mainly by an interaction of the intermediate
                                                                      '                   '                                                           '                                                                     'electronic states with the high-intensity phonon domains and the crystalline

imperfections.
                                                                  '                   '     From a macroscopical point of view, the Brillouin--scattering cross

section is proportional to the square of the corresponding photoelastic '

         'consitant vahich can be obtained independently from the piezobirefringence
             '                                                                   '
expgriment. Ttie dispersion curves of the photgelastic constants, pll - Pi2

and p44 for ZnSe .and ZnTe and p66 [Y2(pn -- p12)], p44 and p31 for CdS,

have been detemined from the present data by introducing the piezo-.

                                           'birefringence analysis, where the lifetime-broadening effect is also taken
                                     '                                                               '                     '                          'into eonsideration as in the case of the Brillouin-seattering analysis. '



                          •, •em
                            '                             ttt t
                          '

       tt tt                ttIn addition, we have reported a new method to analyze the piezobirefrtngence

coggficiept .in an opaq.ue region in which the stress: tpduced changes in . .

both the real (Ael) and imaginary part <Ae2) of the dieleetrie eonstant

                                                       '               '        '
.are  prop'erly Faken into acc9unt. New coefficidntsr whÅ}ch dgtermine Fhe .

                 'fraetio pal contributions of Ael and Ac2 to the piezobirefringence ' .

    '                               'coeffici .ent, have been derived from an analyt ieal pgint of view. The
 t

experimental daga on Si [Chandrasekhar et aZ.] and ZnSe [present work]

         tt t t        '   'have been analyzed by using the present model.. Good agreement between

the experiment and calculatton has been found. lhe present met Pod provides

                                               tt     'gpagUqi2i:egglii\CIPIe fOr analYZing th.e piezobirefringence coefficifnt in an

     It is shown that ttie BriXlouin-scattering efficiency is expressed by
tt
the first derivative of the dielectric constant with respect to the incident-

              '             'light wavelength (or equivalently to the band-g.ap energy) whieh is the same

     ttas the expression for the ftrst--derivative modulation spectroscopy. A

                                    '             '         'detaÅ}led discussion is given on resonant Brillouin seattering in eonnection

           t tt                                                                       '                                               'with the first-derivative ruodulation speetroscopy such as thermorefleetance,

                                '                                                             '                                          '                                                                   'piezoreflectance ap4 wavelength-modulation speetroscopy. A comparÅ}son of

the Brillouin--scattering effieieneies derived experimentally with the

                                                         'first-derivative modulation speetra shows that they agree quÅ}te well with

                                         '                                     'each other and also with the theoretical curves of the Brtllouin-scatterÅ}ng

ii::i.::.:I.::e,:,Il:,i:fi:il:i.?roade"i"g is .trlren fnto acfount Å}. .,th. . .

                                                    '1' 1.Resonant Br"louin seattering ip the indirect-gap, Irl-V semiconductor

                              'GaP by the TA phonons has been studied at room temperature in the region of
                                                                      '      '                                                   ttthe indirect absorption edge by making use oÅí the 'acoustical-domain injectÅ}on

                                                             '                               '                                          'mgthod. The spectral dependence of the Brillouin--scattering cross seetions

                     'has shown a rnonotonic decrease (resonant cancellation) as the incident-photon
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energy extends beyond the indirect-ene.rgy gap. [I]he experimental dispersion

curves have been well interpreted by a theoretical model of the indirect-

gap resonanee including an additional dielectric theory of the direct-gap

resonance. The spectral dependence of the photoelastic eonstants, lpn - p121

and Ip44I, has also been detemined as a by-product of the Brillouin-seattering

data.
              '
     Resonant Brillouin scattering in the layer-type (indireet-gap), III-VI

serniconductors GaSe and GaS by the pure-TA phonon domains has been investigated

at roorn temperature by rnaking use oÅí the acoustical-domain injection method.

The measured speetrai dependence of the Brillouin-scattering cross sections

has shown resonant cancellation for both GaSe and GaS in the region of the

fundamental absorption edges. ]he experimental data have shown a good

agreement with the theoretical analyses based on the quasi-static approximation

and Loudon's light-scattering theory. The resonant cancellation has been

successfully interpreted by taking into account the direct-gap and indirect-

gap resonance processes for GaSe and GaS, respectively. It has also been

fo'und that the Brillouin-seattering efficiency depends strongly on the

lifetime-broadening effect of the intennediate-electronic states, as simÅ}lar

to the case for the direct-gap, II-VI semiconductros. Mareover, such analyses

have clearly indicated that the nonresonant eleetronic transition is dominant

in the Brillouin-scattering process even Å}n the region near the fundamental

absorption edge.
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 CHAPTER I

INTRODUCTION

     Inelastic light scattering, namely Bri!louin and Raman scattering, is a
               '
long-established phenornenon. Following the appearance of Maxwell's equation,

        1Rayleigh caleulated in 1899 the scattering of iight produced by a dielectric

sphere with dimensions small compared to the wavelength of light and obtaÅ}ned

the celebrated result that the intensity of the scattering varies as the

reciprocal fourth power of the wavelength of exciting light (X4-law). In 1922,

         2Brillouin presented the foundations of the inelastic--light-scattering process

by long-wavelength elastie sound waves. He predicted a Doppler shift of the

light scattered by the elastic sound waves with a doublet called a Bril!ouin

doublet at the light frequencies vo Å} Av, where (e: saattering angle)

                    <)'t=2nXsin (2) ,
                     o

and where Vo is the frequeney of the ineident light wave, n is the refractive

index of the medium, v is the sound veloeity and c is the velocity of light

in vacuum. rn 1923, Srneka13 developed the theory of light scattering by a

system with two quantized energy levels. His theory contained the essential

                                                  4eharacteristics of the phenomena discovered by Raman and, independent!y, by

                       5Landsberg and Mandelstam in 1928.

     The line width and frequency shift of the Brillouin doublets can provide
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the lifetime and velocity of the scattering sound waves, respectively. The

Brillouin doublets were first found experimenta!!y by Gross6 in lg3o and !ater

                            7confirmed by Meyer and Ramm in 1932. The method of experimentation had

become particularly useful since the advent of lasers in 1960 whose high

spectral purity, coherence, collimatÅ}on, power and directÅ}vity make them ideal

light sources in iight-scattering experÅ}ments. Such advantages of the laser,

thus, quickly made the old mercury arcs obso!ete as sources for light-scattering

                                                                       'speetroscopy.
         '                '
     A large part of the research effort in Ught scattering was devoted to

the study of excitations in fluids until about 1940. In the 1940's emphasis

                          'shifted to systematie investigations of single crystals in order to obtain

information for the semi-empirical treatment of their crystal dynamics.
                                                           '
Recently, a large part of the research effort Å}n Brillouin and Raman scattering

has also been devoted to the study of the properties of the low-frequency

                                  8elementary excitations ef solids. A large group of crystal elementary excitations
                  'have been observed by sueh light-scattering spectroscopy. This group includes
                                                                            '
acoustical and optica! phonons, surface and bulk polaritons, plasmons, magnons

as well as electronic and vibrational exeitations of isolated ions in erystals.

More recently, considerable theoretical and experimental interest has been

focused on resonant light scattering. Resonant light scattering has been found

to be intimately related to the optical spectra of the crystal.

                                                                                9     The resonant-Raman measurement has first been performed by Leite and Porto

in 1966 for CdS using the diserete lines of Ar+ laser which cover the photon-

energy range between 2.38 and 2.73 ev. Later, in 1970, Ralston et aZ.10 have

confirmed the resonanee behavior in CdS and also established the existence of

an antiresonance of the Rama'n-scattering cross sections for TO phonons imnediately

below the fundamental absorption edge. Such a struature is now understood as

a cancellation between the eontributions of the band gdge and of higher
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transitions; these contributions must thus have opposite signs. The recent

availability of cw dye lasers has given considerable impetus to study of resonant

                          'Raman scattering, and as a matter of fact a lot of experiments on resonant

                                                                        8Raman scattering have been performed up to date in various semiconductors.

     The resonant-Bril!ouin measurement, on the other hand, has first been -

performed by pinqll in lg72 for cds from thermal phonons using a high-resolution

Fabry-Perot Å}nterferometer. The resonarice condition has been achieved by

thermally tuning the fundamental absorption edge of this material through

the incident radiation at 514.5 nm. The experimental Brillouin-scattering

intensity has shown resonant enhancement near the intrinsic absorption edge

and found to be roughly proporti6nal to the square of the absorption coefficient,

while a cancellation as observed in resonant Raman scattering has not been

found.

     The interaction of phonons with free carriers in seniconduetors are

                                                                        12the subject of many Brillouin-seattering studies. Hutson, McFee and VJhite

and Hutson and whitei3'14 have demonstrated that in piezoelectric semiconductors

acoustical waves could be amplified by carriers with drift velocity exceeding

the sound veloeity. wtien the high drift fields are applied to piezoelectric

semiconductors, the intense packets of acoustical waves (domains) are observed

to travel along the sample at the sound velocity. These acoustical domains

consist of amplified thermal phonons in a narrow band of frequency range

between O.1 and 6.0 GHz, and have an energy density a factor of the order. of

io9 above the thermai equilibrium vaiue, zucker and zemoni5 have been first

to examine the spectrum of these domains in CdS by means of Brillouin-scattering

technique. )tany subsequent Brillouin-seattering studies have been performed

to study the generatÅ}on and amplification meehanisms and dynamical characteristtcs

of the acoustoelectrical domains in various piezoelectric semiconductors such

as GaAs16'17, cds18'19 and zno20'21, and revealed that the domain-frequeney
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distribution in these materials initially peaks and downshifts as the domain

                                                                          'propagates through the sample probably due to an anharmonic parametric

       . 22--24
conversxon.

     Brillouinrscattering intensity is expected to be resonantly enhanced

when the incident or scattered light approaches the eleetriionie transitions

in the medium. Resonant Brillouin seattering by the acoustoelectrica! domains

has first been reported in GaAs by Garrod and Bray25 in lg72. Thermal Briuouih

scattering is much weaker, so laser sources are generally used with inter-

ferometric spectral analysis. [Vhey have used a particularly simple, but

versatile, apparatus, because the intense acoustoelectrical domains provide

strong Brillouin-scattering signals with a reasonable SIN ratio and perrnit

the use of a conventional light source instead of a laser. !Vhey have found

clear resonant enhancement and caneellation of the Brillouin-scattering cross

secti'ons in the region near the fundamental absorption edge. Subsequently,

similar resonance behaviors have been observed in CdS from the acoustoelectrical

domains by Hamaguehi and coworkers26'27 and, independentiy, by Geibart and

     28         Resonant Brillouin scattertng has also been performed from the acousto--hony.

electrica'l domains in cds and zno by Berkowicz and price29 and Berkowicz and '

                                        31        30           and in. CdSe'by Yamamoto et al.                                            The experimental data have alsoSkettrup

elearly shown resonant enhancement and caneellation in the regÅ}on near the

fundamental absorption edges. Such studies are restricted to piezoelectric

semiconductors in which the acoustoelectrical in$tability can occur by the
 '

applÅ}cation of a high electric field and as a result produce the traveling

acoustoelectrical domains eonsisting of piezoelectrically active transeverse-

acoustical phonons (T2-mode phonons).

     The overall objective of the present work is to analyze the resonant-

Brillouin-scattering mechanisms in various semieonductors such as II-VI (ZnSe,

ZnTe, ZnxCdl-xTe), III-V (GaP) and III-VI compounds (GaSe and GaS). Our first
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objeetive is, thus, to measure accurately the speetral dependenee of the

Brillouin-seattering cross sections in such seniconductors. !n order to do

this, we make use of the acoustoelectrical domains instead of thermal phonons.

This permits us the use of a conventional light source, e.g. xenon flash tube,

instead of a laser and, thus, enable us to obtain the accurate experimental

     27data.         The CdS.single crystal is known to have the wurtzite-type erystal

                                                               'strueture and to be strong piezoelectric semiconductor. The acoustoelectricaZ
                                                        '                                                             32domains themselves were investigated in detail by many workers.                                                                 It is

necessary to develop new technique for measuring resonant Brillouin scattering
  '
in non-piezoelectric or weak piezoelectric semiconductors such as ZnSa, ZnTe,

                                                                    33,34GaP, GaSe and GaS. We introduce an acoustical-domain injection method

developed recently in our laboratory. This method enables us to inject the

intense acoustoeleetrical domains amplified in CdS into the other end-bonded

semieonductors (ZnSe, ZnTe, etc.) through the thin indium layer with a high

transmission efficiency.

     In Chapter II, we review the resonant-light-scattering theories derived

from microscopical and phenomenological aspects and indicate how it should

be applied within the context of our experiments.' Loudon35'36 has first

obtained the quantum-mechanical expression for resonant light scattering based

on the 3rd-order time-dependent perturbations, where the intermediate electronic

excitations of the crystal involved in the calculation are assumed to be

free electron-hole pair states. [Vhe expression for the case in whieh the-

intermediate electronic states are Wannier-Mott excitons has been given by

                  37                                        38Ganguly and Birman.                                           have constructed the Brillouin-                      Benedek and Fritsch

seattering theory from phenomenological as.pect. This theory predicts the

intensity, polarization and spectral distribution of the scattered light as
                                                          '
a function of the incident and seattered directions in the crystai. Based on

these theories, we obtain the Brillouin-scattering cross sections for each
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acoustical-mode phonon (i.e., transverse- and longitudinal-mode phonons) in
                                  '
the zincblende-type (ZnSe, ZnTe, etc.) and wurtzite-type crystal (CdS). We also

caZculate the matrix elements of the deformation--potential scattering for both

types of crysta!s and discuss the intermediate-electronie-transition processes

which play an important role in the resonant-Brillouin-scattering process.

                                  38 •From a macroscopicai point of view,                                     the Brillouin-scattering cross section

is proportional to the square of the photoelastic constant which can be obtained

independently from the piezobirefringence experiment. In order to determine
                                     '            ttthe photoelastic constant from the BrÅ}11ouin-seattering data (Chapter Vr),

we also present here the outline of the intrinsic-piezobirefringence theory.

     Chapter III dea!s with the sample constraetion, experinental procedure
                                                          '
and methodology. Brillouin scattering from acoustoelectrically or piezo-

       'electrically driven sound waves is easily observed using conventional light

sources, and the angular dependence establishes either the sound velocity or
                                  '
frequency if one is known. Apparatus of this kind has first been used by

Garrod and Bray25 to study resonant Brillouin scattering in GaAs by the aeousto-

                                              '
electrical domains. In this Chapter, we also revÅ}ew the theory of acousto-

electrical amplification and obtain the relation between the incident and

seattering angles for the sake of the Brillouin-scattering measurements. [I]he

theoretical analysis and application of the aeoustical-domain injection method

           'are also presented in this Chapter.

     In Chapter IV, we present the experimental data of resonant Brillouin

scattering in Xl-V! semiconductors ZnSe, ZnTe, ZnxCdl-xTe and CdS. For the

                                                                     'zincblende-type erystals such as ZnSe, ZnTe and ZnxCdl-xTe, the Brillouin'-

scattering rneasurements are performed by the Tl- (slow TA) and T2-mode (fast

TA) aeoustical phonons using the acoustical-domain injection method. For the

wurtzite--type, piezoelectric semiconductor CdS,, we perform the Brillouin--

scattering measurements by using the acoustoelectrically amplified T2-mode
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(slow TA) phonon domains. When the traveling domain reaches the anode end of

the specimen, part of the acoustical flux is reflected. it is well known16'29

that the reflection is usually accornpanied by mode conversion. The piezo-

electrica"y inacitive pure-transverse TA phonon (Tl-mode phonon) and pure-

longitudinal PL phonon domains can be obtained by the mode conversion upon

                                                                 39,40partial reflection of the T2-mode domains at the anode-end surface.

Thus, we also perform the Brillouin-scattering measurements in CdS by using

these mode--converted phonon domains. The experimental data are compared with

the theoretieal prediction based upon Loudon's light-scattering theory assuming

the free electron-hole pairs or Wannier-Mott excitons as the intermediate

electronic states.

     The qualitative features of resonant light scattering can be predicted

                                                         41from an expression based on the quasi-static approximation.                                                             In this

approximation, the phonons are assumed to act through the electron-phonon

interaetions like static perturbations of the electronic band structure of

the crystal, which cause a change in the dielectric constant e of the crystal.

The dielectric theory of resonant light scattering shows that for the allowed

                                                                          'scattering the two-band term of the first-order scattering efficiency (Bril!ouin

or Raman tensor) is proportional to the first derivative of e with respect to

the ineident-photon energy while for the Åíorbidden scattering proportional to

the second derivative of e with respect to the incident-photon energy. rn

Chapter V, we discuss resonant Brillouin scattering in more detail from a.view

point of the quasi-static approximation. [I]he resonanae data presented in

                                                  'Chapter IV are reanalyzed by the quasi-static approximation. The resonance
                     '
forbidden data observed in CdS are alos presented and analyzed in this Chapter.

In order to obtain theoretieal predictions, we calculate the derivative of e

with respect to the photon energy by numerical differentiation of the experimental

optical constants. A cornparison of theQretical curves between the quasi-static
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approximation and Loudon's light-scattering theory are also made in this Chapter.

     Chapter V! deals with the determination of the photoelastic constants in

II-VX semiconductors ZnSe, ZnTe and CdS from the the Brillouin--scattering data.

The Brillouin-scattering cross section is known to be' Proportional to the square

of the eorresponding photoeiastic constant.38 This constant can be obtained

independent!y from the stress-induced birefringence (piezobirefringence)

measurements. The Å}nvestigation of the piezobirefringence in so!ids is an

                           42old topic of crystal optics. We obtain the mtcroscopical expression of

the photoelastic constants and compare it with the experimental data. We also

discuss the lifetime-broadening effect of the electronic states on the spectral

dependence of the photoelastie constants. We report a new rnethod to analyze

                     'the piezobirefringence eoefficient in an opaque region in which the stress-

induced changes in both the real (Ael) and irnaginary part (AE2) of the

diele'ctric constant are properly talcen into account. New coefficients, which

 'determine the fractional eontributions of Ael and Ae2 to the piezobirefringence

coefficient, are derived from an analytical point of view. [I]his method provides

a guiding principle for analyzing the piezobirefrlngence ooefficient in an

opaque region.

     In Chapter V!1, we report on a detailed study of the lifetime-broadening

effect of the intermediate electronic states on resonant Brillouin scattering

in Znre and ZnSe. In order to investigate some temperature effects on the

lifetime broadening, we measure resonant Brillouin scattering at room temperature
 '
and low temperature (77 K). Moreover, we use two kinds of ZnTe and ZnSe single

crystals to study some effects of the erystalline imperfections on the spectral

dependence of the Brillouin-scattering cross sections. We show that the lifetime-

broadening energy does not depend strongly on the temperature but on the kinds

of the crystals.

     In Chapter VI[[, a discussion is given on resonant Brillouin scattering
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in connection with the first-derivative modulation spectroscopy such as

thermorefleetance, piezoreflectance and wavelength-derivative modulation

spectroscopy. It is shown that the Brillouin-scattering efficiency is

expressed by the fÅ}rst derivative of the dielectric constant viith respect

to the incident-light wavelength or equivalently to the band-gap energy,

which is the same as the expression for the first-derivative modulation

             43,44                    The light-scattering experiment yields more informationspectroscopy.

than its conventional modulation counterpart. A measurement of the spectral

dependence of the scattering efficiency yields the energies of critical points

in a manner similar to Tnore conventional modulation experiments. The spectro-

meter trace in which the scattered signql appears also yields the frequency

of the corresponding excitation, without counterpart in the conventional

modulation experiment. An absolute scattering intensity yields the tensorial

constants, e.g.. deformation potential, which represent the interaction of the

elementary excitation with the electronic transitions. In this Chapter. a

detailed survey is given of a relation between the expressions for resonant

Brillouin seattering based upon Loudon's light-scattering theory and the

quasi-static approximation and also of a comparisbn of them with the first-

derivative Tnodulation speetroscopy. We try to make a comparison of the

Brillouin-seattering efficiencies derived experiinentally with the first-

derivative modulation spectra obtained in some semiconduetors.

     Chapter IX deals with the resonance Phenornena of the Brillouin-scattering

cross sections in the rll-V semiconductor GaP by the transverse-acoustical

phonons in the region of the indirect-energy gap by making use of the acoustical-

domain injection method. The GaP crystal is a more suitable material to study

some of the indirect-gap resonance behaviors, since the energy separation

between the indirect and direct gaps in this material is relatively large

(the lowest indirect-gap energy is about e.5 eV lower than the lowest direct-



                                      -10-

gap one).45 If this separation is small, the indirect-gap resonance should

be masked off by the much stronger direct-gap one. We formulate a theory
                      'of resonant Brillouin scattering at the indrirect gap of semiconductors and

cornpare it with the exberimenta! data. it has been shown by Dixon46 that

  '
the GaP crystal is exceptionaUy good material for use in light deflectors

and modulators. In this Chapter, we also determine the spectral dependence
        '                                                                  '       tt               'of the phgtoelastic constants, lpll - pnl and ip441, as a by--product of the

                           'Brillouin-scattering data. ' '  ' '  ''
     In Chapter X, we present the experimental data of resonant Brillouin

scattering in III-VI semiconductors GaSe and GaS obtained by rnaking use of

the acousticaZ-domain injection method. These sendconductors are layer-type
                                                          'compounds which present a strong anisotropic behavior of the' ir physical
                                                                 '
properties due to the singularity of the crystal structures and have an

                                        47indirect gap beZow the lowest direct gap.                                            The top of its valence band
                'lies at r point and the bottom of the conduction band at M point. Relative

minima of the conduction band at r point are situated a few tens of meV for

              'GaSe and about O.4 eV for GaS above the minima at M point. The experimental

data are compared with the theoretical predictions based on the quasi-static

                                                             'approximation and Loudon's light-scattering theory including the indirect-

and direct-gap resenances. [ghe resonance processes are determined by the

                          '                                     'aid of group theory. The nonresonant electronic transitions are also found

to be dominant in the Brillouin-scattering process.

     Finally, in Chapter XI, nhe eonclusions obtaine<l in the present work

                '                        ttare smnarized.

     In Appendix, we present the methodology and growth technique of the

                                                   'traveling heater method (THM) whieh is used in the present work to obtain
     '
high-quality ZnTe and ZnxCdl..xTe single crystals.
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       CHAPTER II

   '

THEORETICAL BACKGROUND

                               2.1 INTRODUCTION

     A common feature of theoretical expressions for the Brillouin-scattering

efficiency of a substance is the presenee of terms which either diverge or

become relatively large when the frequency of the exciting radiation is equal

to an allowed optical-transition frequency of the substanee. This predÅ}cted

increase in the intensity of the scattered light, known as the resonant-

Brillouin effect, ls very familiar in the realm of Brillouin scattering from

fiuids. The quantum-mechanieal expression of the first-order BrUlouin and

                                                              35Raman scattering in solids has first been obtained by Loudon.                                                                  It has been

pointed out that the most important Briliouin (Raman) scattering mechanism is

always one in which the radiation interacts indirectly with the lattice via

the free electron-hole pairs, where the eleetron-lattiee interaction is treated

by the deformation-potential approximation. The form of the first- and second-
                                        '
order Brillouin-scattering efficiency for the case in whieh the intermediate

electron-hole pair states are Wannier-Mott exeitons has been given by Ganguly

and BirTnan.37 Martin48 has also treated the first-order Raman effeet including

the excitonic interaction in the hydrogenic approximation via numerical

calculations by use of the Green's-function formulatton. It has been found

that the excitonic interaetion may increase the strength of the Brillouin

(Raman) seattering resonances compared with the free electron-hole pair model
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                   35                     without greatly altering the resonance shape.proposed by Loudon
                                                                    41     It can be easily understood from a macroscopical point of view                                                                       that

the light-scattering phenomenon results from a change in the dielectric constant

of a crystal arising from thermal vibrations of the constitutional lattices.

This treatment is known to as dielectric theory of light scattering (quasi-

static approximation). In the quasi-static approximation, the phonons are

assumed to act (through the eleetron-phonon interactions) like static

perturbations of the electronic band structure of the crystal, which causes

a change in the dielectric constant of the crystal. The quasi-static

approximation shows that the first-order scattering efficiency is proportional

to the first derivative of the dielectric constant with respect to the incident-

photon energy. The experimental Raman-scattering data in some senieonduetors
                                                                        49-61have recently been well interpreted in terms of this theoretical model.

     -From a phenomenological point of view, the Brillouin-scattering cross

section is proportional to the square of the photoelastic (elasto-optic) constant

which can be obtained independently from the intrinsic piezobirefringence

                                 38experiment. Benedek and Fritsch                                    have first obtained an accurate expression

of Brillouin scattering in cubic crystals by incorporating the photo.elastic

constants. Such an analysis has been extended to the case of anisotropic media

                62                                 63by Nelson et aZ.                                    by taking into account the birefringence and                   and Hamaguchi

                             35internal reflection. Loudon has also derived microscopical expressions for

the photoelastic constants as by-products of his calculation of the first-

order Brillouin effect.

     In Section 2.2, we present the quantum-mechanical expression of resonant

Brillouin scatterÅ}ng obtained frorn 3rd-order time-dependent perturbation

calculations. The 3rd-order perturbation mechanism is known to be correspond

to the case for the first-order direct-gap resonance process. The indirect-

gap resonanee process, on the other hand, can be interpreted by a 5th-order
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perturbatÅ}on mechanism. Details of the tndÅ}rect-gap resonance process. will be

discussed elsewhere (Chapter IX). Section 2.2 also presents the selection

roles of deformation-potential scattering (Section 2.2.2) and the macroscopical

expressions of resonant Brillouin scattering based upon Benedek-Fritsch's

theory (Section 2.2.3). In SectÅ}on 2.3, we present the generalized expression

of the photoelastic constant derived from the intrinsic biezobirefringence

       64           We will determine in Chapter VI the spectral dependence of thetheory.
                                          '
photoelastic constants in various seniconductors from the Brillouin--scattering

                                                                   'data by introducing the piezobirefringence analysis.

                    2.2 RESONANT BRZLLOUIN SCATTERING

2.2.1 Time-Dependent Pe?tu?bation CaZeuZation

     The collective excitations of semieonductors and insulators which

participate in inelastic light scattering are lattice vibrations (aeoustieal

and optical phonons) and plasrna waves (plasmons) of the electron-gas of small-

gap or doped semiconductors. They also include coupled photon-electronic

excitation modes (polaritons) and coupled phonon-Plasmon modes. In this

subsection, we shall discuss first-order Brillouin-scattering process involving

the acoustical phonons as elementary excitations.

     The perturbation picture of the first-order BrilLlouin-scattering process

is indicated in Fig. 2-l (a) and consists of:

   i) transnission of the incident photon tui into the crystal,

                                                                     '  ii) annihilation of the photon with creation of an electron-hole pair

      (via HER),

  M) scattering of the electron-hole pair accompanied by creation (Stokes)

                                                                   '      or annihilation (anti-Stokes) of a phonon (Via EEL),

  iv) annihilation of the scattered electron-hole pair and creation of the
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(a) PERTURBATIONPICTURE

PHOTON

H ER
HEu.'p' H'

oNoN

       HER

CRYSTAL PHOTON

(b) POLARITONPICTURE

PHOTON

   "t
..'  PHONON

CRYSTAL

PHOTON

FIG, 2-1.   Perturbation theory and polariton pietures of
one-phonon Brillouin scattering. Single wavy
lines; photons; double w,avy lines: polaritons;
straight solid lines: excitons; dashed lines:
phonons.
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      scattered photon als (Vta HER),

   v) transmission of the photon tu out of the crystal.
                                 s
When the incÅ}dent-photon energy approaches the exciton resonanCe, we have to

take into account the excitonic polariton states in the Brillouin-seattering

        65process. This polariton picture of the first-order Brillouin-scattering
                                                              66process is indicated in Fig. 2-1 (b). Brenig, Zeyher and Birman have reported

a theoretical analysis of resonant Brillouin scattering in crystals exhibiting

spatial dispersion which included excitonic polaritons as the intermediate

states in the Brillouin-scattering process. Their result predicts a multÅ}plet

of the Brillouin speetrum near the exciton resonance with line separations

and efficiencies, depending strongly on the incident-photon energy because of

the polariton dispersion. In the following, we consideT the fÅ}rst-order

Brillouin-scattering process and that the virtual intermediate state is assumed

                         37                         , and the polariton picture is not introduced in theto be Wannier-Mott exciton
                                                                 67calculations for simplicity. We perform a canonieal transformation to remove
                                               '
the lowest-order interaetion terms in the Hamiitonian.

     Let ff(O) denotes the unperturbed Hamiltonian; then it can be written as

                (o)               H =ffe+HL+ffR (2•1)
with

               H =Z E ata                                                                 (2.2)                e xK XK xK xK

               UL=ig'6oongbntgbnE (2•3)

               HR=l. 6alxC:eCxe ' alx= (C/")IXI . (2•4)

                                                                 '                      '       t       xK and axK are Phe creation-annihilation operators for the excitonsHere, a

                                            "having inner quantum-nurnber X and wave vector K formed frorn eonduetion c and

valence band v, and ExK denotes the exciton energy. bnt c and bng are the ereation-

                                                                              'annihilation operators for the phonons having an energy quantum 6ed                                                                    where                                                                ng'
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                             '  S and g stand for the wave vector and unit polarization vector, respectively,

and the system considered here is thet a crystal has two ions per unit cell of

                 t                c and c are the ereation-annihilation operators for themass M and M            2'      1                 Xe                        Xe
                                           ++photons having an energy momentum 6tu x, where x and e stand for the wave vector

and unit polarization vector, respectively, c is the velocity of light in

vaÅëuum, and n is the refractive index. The coi!miutatton relations for the

creation-annihilation operators are

                                 '
           [aAK(C,V), aS,K,(C',V')] = 6AA,6KK,6ec,6vv, .(2.5a)

           Ibng, bnt,g,] = 6nn, cg, (2•5b)

           [c ,ct, ,] =6 ,6 , . (2.5c)
                 Xe                          XX             Xe                              ee

                  tNote that axK and axK satisfy approximately the commutation relations for bosons,
     ;
but this is immaterial as far as we confine ourselves to the electronic states

in which the total number of excitons is zero or unity.

     Next, we consider the perturbation Haniltonians for the exciton-radiation

(fleR) and exCiton-phonon (ffeL) interactions, as are depicted in Fig. 2-1 (a).

The perturbed Hamiltonian terms can be given by

                 (1)                        (1)                              (1)               H =H                           + ff                                      , (2.6a)                       eL                              eR
                                               '
               ff(2) - HSIo + HSI,) + ll:ft) . (2•6b)

                          '

The specific iorms of the interaction terms are given as follows:

 Hgk) = gvxKx {fx.(c'vXK)a:K(c,v)cx.6K,x + fi.(cvXK)axK(c,v)cx.6K,.x}

                                              +e.c., (2.7a)
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 flER) --• g.xK {Fx.(cvXK,c'v'A'K')a:K(e,v)aA,K,(c'}v')cx.6K-K,,x

        c)v'MK) '        Xe

              + F<e(evXK,c'v'X'K')aAK(e,v)a:,K,(c',v')cxe6K-K,,-x} + c•c•, (2•7b)

and

 HSi) = 5.xK{gng(C" K)a:K(C,V)bXe6K.-n + g"'g(cvXK)aAK(g,v)b;E6K,n} , (2•8a)

                                                '
 HSZ)(o = Z.IK Gng(C"XK,C'"'X'K')a:K(C,")ax,K, (e',v')b;g6K-K,,-n (2•8b)

          c'v'X)K'
          nC

 HgZ)(2) = Z.xK {dng,n'g'(C"XK)a:K(c,V)bXgbnt,g,6K,.-(n+n,)

          ngn'g'

                                             tt                   + d:E,n,g,(C"XK)axK(C,")bngbn,g,6K,n+n,} , (2-8C)

Where fxe' f lle' Fxe' F*xe' gng' g:g ' Gng' G:e' dng,n'g, a"d d:c,n'g' are

coupling parameters. The coupling parameters of-Eqs. (2.7) and (2.8) contain

the momentum matrix elements and the matrix elements of deformation-potential

scattering, respectively. The matrix elements of deformation-potential

seattering will be calculated in detaU in Section 2.2.3. The perturbation

terms (2.8a) and (2.8b) will give Stokes process. To get anti-Stokes, we have

po include terms with the annihilation operator of the phonons "bng" in HeL

                                   tinstead of the creation operator b                                   ng'

     VJe shall perform a canonical transformation to remove the lowest-order

interaction terms in the Hamiltonian. The transformation is generally given
  67by

                     N -S S                                       , (2.9)                     Q=e Qe
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where Q being any operator. The unitary transformation is the speeial ease

where St = -S. Then, it is readily shown that

                                                                '                           [s , Q]
               ?i =Q+ 3: ".! , (2.io)
                       n=1 '
where S is defined by the recurrence relation
       n
                                                           '
                    Sn=[S' [S.-1' Q]l (Sl=S) ' (2•11)
     The total Hamiltonian is taken from Eqs. (2.1) and (2.6) as

               e= H(O) + ll(1) + ff(2) .                                                                  (2.12)

The transformated Hamiltonian 2t is, thus,

        tv = e-iSff .iS

                                                                  '          = H - i[s, u] - i[s, [s, e]] + t[s[s, [s, ff]]] + •••• , (2.13)

where S is chosen such that

                        (o)                               (1)                  i[S, ff ].=H . (2.14)
                                                  '
Then
f\ - H(O) + flgZl,) + HSZI,) + H5ft) - ;[s, H(i)] - i[s, HSI,) + Hgft)]

       - i[s, egzl,)] - i}[s, [s• H(o]] - t[s, [$• ffgza) + ff5ft)]]

       -i[s, [s, ff5Zl,)]]+•••• ' . (2.is)

rf the eigenstates of H(O) are represented by lm>, etc, it is obvious from

Eq.(2.14) that. -
      '
   i<ml[S, U(O)]ln> = i<mlsfl(O) - H(O)sln>

                    = i{<mlsln><niH(O)ln> - <mlff(O)lm><mlsln>}
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                   = i<mlSln>(En - Em)

                   =<mle(i)In> ,

where

                   Em = <mlH (O) lm> ,

                   En = <n]El (O) ln> .

            '

Therefore, it is obvious that '
                ' <mlsln> = l. Si;l-ZZi{>Å}iii .

                               nm

Using Eqs. (2.6a) and (2.18), we obtain

                     s=l (Q + Q' +p+ p')
                        i
where
           q=- g.xK Scg-E(EMiC"Xll)alxKtilgxi)C 6K,x

                 Xe

           Q, - z..A. !i'lgLSSIIIZIi(C"XKiilxl}(IX,,ViC 6,,-x

                Xe
           p = - E..xK gng(C"Xlil::K-(illdiIlb:c 6K,-n

                 ng

                                      t           p, = z g:g(C"XK)axK(C,")bng 6
                                          K,n                               - soo                           E                cvXK                            XK                                   nC
                ng

     It ean be found from Eq. (2.15) that - ;l[S,

lowest-order comnutator that contributes to the

effect. This commutator can be written as

 - }[s• [s, flgZlo+ uEll)]] - ili[Q + Q' +p+p'•

    }

+ c.c.,

m c.c.)

 '

      '

      .

      (2) [s, ll
      eL        (1)
first-order

[Q + q' +p

         (2.16)

         (2.17a)

         (2.17b)

         (2.18)

         (2.19)

         (2.20a)

         (2.20b)

         (2.20c)

         (2.20d)

   (2)      ]] is the+ ff
   eR

 Brillouin-scattering

                     '
                (2)        (2) + ?" ffeL(o+ UeR ]]
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     - i{[(Q + Q, + p + p,)(Q + Q, + p + p,) (H5Z)(1)+ Hgil))

             '            - (Q + Q, +p + p,)(ffEZ)a)+ Hgll))(Q + Q, +p + p,)]

            - (q + Q, +p+ p,)(ff5Zll)+ Hgk))(Q + Q, +p+ p,)

                        (2)                (2)                          )(Q + Q' +P+ P') (Q + Q' +P+ P')} .                                                                   (2.21)            + (H                    + ff                eL                       eR                  (1)

To select terms that contribute to the ftrst-order Brillouin-scattering process

from Eq. (2.21), we have to take into account the following eonditions:

      t) we reject proaess that contain aAKIO> (because axKIO> = O),

     ii) processes must return to the electronic ground state,

     itt) processes must involve two photons and one phonon.

ih,;:•R)ge.gb.Ig'g';.:ll.Ee:::s,:gHiili.g.2'S.il•ig:,'g.i:i'g; :#iZl•g.)g;,il.giZ:',#:d

incident photon, the enission of the phonon and the emission of the scattered

photon accompanied by three virtual excitQnic transitions. Figure 2-2 shows

the Feynman diagrams whieh describe the 3rd-order perturbation calculation of

first-order Brillouin scattering by lattice vibrations involving intermediate

iiSi,i:g,S:#ge7i,(.:),.!,Xi'P• (b) Q'llgil'Q'• (c) Qllgk)p• (d) QHgR,)Q, (e)

2.2.2 BntZZouin-Seatteor}ing Cmoss Seetion

' Suppose that one photon coi has been destroyed, and a photon tus and

                                                35phonon coq have been created is gÅ}ven by [Fig. 2-2]

     w = iiÅÄ/ i, I.<fl (-Q•Hgll)p + Q•ffgZl,)Q• + QflEll)p + Qff5il,)Q + p•HEil)Q•

              '
                       + p' llSR) Q) l i> l2 ' 6 (cDi - al. - {Dq)

       = (2e)3" ix l Ri.(-tui, tu., coq) l2'6(xi - x. - n)6(dii - tu. - tuq) , (2•22)
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where li> and if> are the initial and final states of the system, respectively,

a is a constant containing various physical parameters, and V is the crystal

volume. R. is the frequeney-dependent Brillouin tensor. This tensor is
          xs
 represented by considering six terms of the first-order Brillouin--scattering

process Q'Hgll)p, etc., as foiiows: '

                                            --                              • pS :. pl . pS= ?1
                                                                OB-Bct orO      R,.(-tu,, co., tu,) - eg,B[ (.B + ed,02 k:)7g. + al.) + (toB - tu, + to,) (to. - tu,)

                                                    '
                                 PS Pi= PS Pi=
                                                           OB Bct-ctO                                  OB Ba"oro
                        + (Ck)B + tus + tuq)(coct + coq) + ((DB - toi + (Dq) (Oct + tuq)

                                        --                                 = pS pl = pS p=
                                                          -oB Bct ao                                 -OB Bct ao                        + (toB + tus - coi)(tuct + tus) + (tuB + tos -- tui) (tuct - tui) ] '

                                                                 '

                                                                      (2.23)

where P and E are the momentum matrix eZement and the matrix element of deformation-

potential scattering, respectively, the subseript O indicates the electronic

ground state and the subscripts ct and B the intermediate electronÅ}c states, and

•IIialor and ftu B are the optical energy gaps for the incident and scattered lights,

respectively. The superscripts i and s of P indicate the components in the

polarization directions of incident and scattered lights, respectively.

     One can eas"y find that the second term on.the right-hand side of Eq. (2.23)

has the strongest divergence when boi is close to the band-gap energy 6coor, i.e.,

the second term is the most importance in the first-order Brillouin-scattering

process. Thus, we now write the Brillouin tensor in the following form:
                 '                                             .                                      pS :. pl '
       Ris(-tui,cos,(i)q)blil;gi,B-([tiE-:-asil91}:ii:g'[lfll-:-aiis-3-cD.+coq)(,,,ct-,,)i) • (2•24)

The electronic transitions involved in the calculation of the Brillouin-scattertng

process may be conveniently descrlbed by a diagram of the type shown in Fig. 2-3

(a). The time order of the three electronic transitions shown in the figure is
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FIG. 2-3.   Schematic diagrams of (a) direct-gap and (b)
indirect-gap first-order Brillouin-scattering
proeesses. coi and oos are the angular frequencies
of the incident and scattered lights, respectively
The numbers indicate the order of the electronic
transitions.
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the same as that for the case of Eq. (2.24). Similar diagram can be drawn for

BrUlouÅ}n scattering involving indirect-gap resonance process [see Fig. 2-3 (b)].

[I]his type of process may be interpreted by the 5th-order perturbation calculation

One of the time orders of the electronic transitions is also shown in Fig. 2-3

(b) by the numbers [see Chapter IX].

     The Brillouin--scattering cross section derived by Loudon has the following

             UB =(h:c )4 2pQ.2 [llt/ 1 Ris(-tui' cos, tuq) l2 , (2•25)

where p is the density of erystai, v is the sound velocity, and Åë and to are
                                                                     q
the energy density and angular frequency of the acoustical phonons, respectively.

The energy density Åë can be replaced by kBT in the case of Brillouin scattering

by thermal phonons, where kB is the Boltzman constant and T is the absolute
                                       '
tempe,rature.
                               '
     Let us now assume that the virtual tntermediate electronic states are free
                                                           '
electron-hole pairs. It is usuaUy a good approximation to assume that the

                                                      +band edge Å}n seniconductors is parabolic (spherical) in k-spaee, i.e.,

                  co (?)=tu (o)+6k212v , (2.26a)
                   ct                          gor .
                  alB(il) = `"gB(O) +6k2!2Li , (2•26b)
                                               '                        '                                           '
                                                    -1                                                           -1                                                                  -1where v is the redueed effective mass being given by v = m: + mhk , and

is assumed to be equal for the lct> and IB> pair states for simplicity. Then,

with the prescrtption

                  i>'E --. (2:)2SlkM k2dk , (2.27)

                                     o

Eq. (2.24) can be written as

.
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                        '

          2s i km k2dk
  RiS " (2ir)2 P03EBctPorO o (cDgB +'h2kp2 . cDi + coq)(togor +"h2kp2 -,tui) ' (2'28)

      '
          '       '
where the P- and :'-matrix elements are assumed to be inde.pendent of k.

Performing the integration, we finally obtain the expression of Ris in the

ease where the intermediate electronic states are assumed to be the free

                 .27electron-hole pa-rs as

                                                                   '    Ris = (,il)2 li,B ('it' )312 ed,i8E:'iillll&lil ,,, [("',B - cD.)-i2 tan-i( asli2tSIS}llligco-B.. )'Z"2

                                                     '

                                              Aco                      - (cogor ' coi)-i2 tan-1( aigst;-iigas:I- .i )-i2] , (2.2g)

wherehAtu and'EAes                       are the combined widths of the conduction and valence         gor gB
bands, which are given by

                  Acogor=AedgB=Iik.2!2P ' . (2•30)

The conservation of energy in the Brillouin-scatterÅ}ng process can be wrÅ}tten

as
                  tu.-tu =Å}to . (2.31)                    IS                                q

                                  '
The plus and minus signs eorrespond to the Stokes and antÅ}-Stokes process'es,

respectively. In Eq. (2•29), we used the condition of the Stokes process

by replacing tui - co q bY ess'

     Next, we obtain Ris assuming that the virtual intermediate electronic states

are the vifannier-Mott exciton states.37 The phenomenon of the excitons in crystals

has been a subjeet of considerable interest for many years and has been summarÅ}zed

                   68in general by Knox, and in particular with respect to the group II-VI compounds
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                  69                      It can be considered that the excitonic transitions playby Reynolds et aZ.

an important role in the Brillouin-scattering process, because the Coulomb

interaction is always present between the electrons and holes. The exciton

state ts expanded in terrns of the Bloch functions for the perfect periodic

lattice. [rhe wave function of the exciton will be a lineaic combination of

                                                      ). Sinee the electron-                 ) and valenee-band wave function (Pconduction- (V             c,ke v,kh
hole interaction is weak (Wannier-Mott exciton), only the lowest conduetion band

and highest valence band need be included in the expansion of the eigenstate Y,

so that

                             +-> -+ ->             +ÅÄ           Y(re'rh) = le,kh C(ke'kh)iprkc,ke(re)Qv,kh(rh) ' (2•32)

                             '                    +Only small ranges of k about the two extrema contribute appreeiably to the sum.

                                                +Periodicity requires that the exciton wave vector K is a good quantum number

and that

                      ÅÄÅÄ +                      K= k.+kh ' (2•33)
The Fourier transform of C(ile,ith) may be written as

                    OK,.(k,EF) == (BN)--i2 exP (irt) Åë.(:) , (2'34)

where B is the volume of a unit cell, N is the number of such cells in the

             +ÅÄ •crystal, and R and r are the center-of-mass coordinate and relative position,

respectively, being given by

       k- (mgr. + mh*:h) (mg + mfi)-1, ;- :. - :h . (2.3s)

Equation (2.34) represents the wave function of the exciton's over-aU motion

in the erystal. The effective-mass approximation gives Eq. (2.34) as a

solution of the Schr6dinger-like equation,

                                            2•     [He(3 ' >2iF - 5e) ' Hh(-5 + -i2"P - Sh) - ,i :l ]O"EÅë , (2'36)
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      +" ++ ÅÄÅÄ +ÅÄwhere p, P are the momerita conjugate to r, R; and pe, ph are"fi timeS ke, kh

(wave vectors at the band extrema). e is the dielectric constant. E and Åë

can be found by solving this equation. The energy of the exeiton state is

given by

                E ==E +E , (2.37)                 ex                      g

where

                             ++                     E =E (k=O) -E (k=O) (2.38)                      gc v
                         +is the band--gap energy at k = O. The two-particle wave equation, Eq. (2.36),

can be expressed as a sum of two separate terms if Å}t is written in a coordinate

                                       +system of the center-of-mass coordinate R (translational part) and the eleetron-

                          "hole separation coordinate r (rotational part). The trans!ational part can

be written as

                    2'                -tzi VR20R(k)=EKÅëR(k) , (2.3g)

which describes just the motion of a free particle with a mass

                   M- mg+mi: . (2.4o)
                                               'This eguation gives that

                   EK -- s2K2!2M , K= Iftl, (2.41)

and

                   ÅëR(k)=exp (ird) . (2.42)

The rotational part, on the other hand, can be written as

                      22                 ["' (tl:ii) Vr2- ,iE?l ] Åën (;) ; EnOn(Et) ' , (2•43)

Equation (2.43) is similar to that for the hydrogenie problem, but pifith the

electron charge replaced by elVTe and the free electron mass m replaeed by

the reduced exeiton mass p. Consequently, the eigen values of Eq. (2.43) can
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be given as an analogy of the hydrogenic problem as

  '
                                                            '                  E.=-"EII' , n=l, 2, '''' ', (2•44)
                        n
                                              '
where G is the exeiton Rydberg (binding) energy given by

                      G= U;42 == 13.6 (Ililr) t [ev] • (2•4s)

                         2he Oe

The exciton Bohr radius is now given by

                          fi2e Mo o
                     ao*= 2=O•53e(-ir) [A] . (2.46)
                          Ve

The eigenvalue of Eq. (2.36) is, thus,

                                    22                                  JfiK G '                     E=EK+En= 2M'-7 ' (2•47)
                                          n-

The exciton state can, thus, be written from Eq. (2.37) as

                      D 62K2 G
                     Eexn=Eg+ 2M -E ' (2•48)
                                        n
                     '
     It is clear from Eq. (2.43) that Åë (;) is a hydrogenie wave funetion with
                                      n
  substituted for mo (electron mass) and e for eo (dielectric constant of

                  +vacuum). Since Åën(r) is a smooth function extending over a large region of

the solid, it is usually called "envelope function". Because Åë (EF) describes
                                                             n
the rotational motion of the exciton, it is characterized by three quantum

numbers n (principal quantum nm!iber), Z (azimuthal quantum number) and m (

                                                              70magnetic quantum number). However, it has been shown by Elliott                                                                 that only

the s-rotational state (Z = O) is important for the optically ereated excitons,

It is, therefore, su.fficient for us to label the envelope function only with

one quantum number n. For the simple case of two spherical bands of masses

m: and mi*i, the envelope function of the n-th exciton state Åën(O) can now be

                                                                 '  .wrltten as
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                                              '
               IÅën(O)12 = .. V.03.3 = lÅë1(O)12 11lrt ' ('2'49)

                            o
                                                                '
         is the volume of the unit cell. A discrete series of lines, therefore,where V       o
          '                      'ean be predicted at energy

                              22                 'E2x=Eg+621i -glt7 , (2'50)
                                                '                              -3                                . As the absorption edge is approached, thewith intensity falling like n

infinite number of lines will overlap so that it may be considered as a.
                    '
contunuum. In the true continuum where hv - E g > O, one obtains for the

envelope function of the continuum exctton

                               Tor               lok(o)l2 =N ll:.Ifth (..) , (2.sl)

where

                     or = IGI(h2k212u)l>2 (2•52)

The continuum-exciton state corresponds to positive energy solutions of the

hydrogen-like equation (2.43). The energy of the continuum-exciton states

may be written as

                             22                                    22                El;. == Eg+h2ii +'h2: (2'53)

In the continuum, the rotational energy is much larger than the Coulomb

interaction energy, and therefore the excitons behave like free particles
                                                                          '
with an effective mass v. The exeiton spectrum, thus, eonststs of a series

                                        +of discrete parabolÅ}c bands below E at K = O, which merges into a eontinuum
                                    g
at higher energies, as is depicted in Fig. 2-4.

     The Brillouin tensor R. in the case 'where the intermediate electronic
                            -S                                                '
states are assumed to be the Wannier exciton states becomes, using Eqs. (2.24),

(2.49) - (2.53),
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and we have converted the summation

 integral using Eq. (2.27).

71

1 1
    mb      1 2Yl -iTin

+ il.i7 ( ii2tL )312(4-2Rrk)112 (ll - exp-(- .   24T R*

ed
gB-R*ln2-oos-irgD/2f

        orc          !2h  -al -ir
gct i

)1/2]-1

)l12]-1
) } .

)

- [1 - exp-(-
  24rr Rk

tu
gB-ed,-irBC126 (2.55)

In the calculation, we have assumed that [1 - exp(-2mx)] has no poles and

the integration has been carried out by using the residue theorem. The first

and second terms in the right-hand side of Eq. (2.55) correspond to the n-th

discrete-exeiton and unbound continuum-exciton eontributions, respective!y.

It is well known that the excitonic transitions play a momentous role in the

optical properties such as enission and absorption of photons in the band-edge
            '
region. They are affected strongly by a damping effect, i.e., a lifetime

broadening. Such a damping effeet has been introduced in Eq. (2.55) in a
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             '                                          '
                                                          mb                                                                  aCphenomenologtcal manner by replacing al by tu + tr1215, where r                                                             and r are
                                                          n
the damping energies in the electronic state lct> for the n-gh discrete- and

continuum-exciton states, respectively.

     Figure 2-5 shows a typical example of the calculated line shapes of R.
                                                                        zs
[Eq. (2.55)] based on the simple two-band model (ed = to                                                        ) with four different                                                      gB                                                 gct

                                                                          '                                                    39damping parameters, r = O, O.02E , O.04E and O.06E ,                                                      where we have made the
                               gg                                                  g
following assumption in the calculations:

                     r= rD=rC (2.s6)
                         n•
                                                                      '
When the exciton states have an infinite lifetime (r = O), the calculated line

shape shows a divergence at the ground-state discrete-exciton energy Exl (n = 1).

The damping parameter broadens the resonance feature and decreases the Brillouin-

scattering efficiency. Thus, a maximum of the Brillouin-scattering efficiency

appears near the ground-state exeiton energy. Xt is obvious that such a

maximum shifts toward lower-energy side with inereasing damping parameter.

These results clearly suggest that the Brillouin-scattering efficiency depends

strongly on the damping of the excited electronic states especially in the

resonance-energy region. Details of the damping effect on resonant Brillouin

scattering will b.e diseussed in Chapter VII.

     Figure 2-6 shows a typical example of the spectral dependence of the

BriUouin-scattering cross section uB calculated from Eqs. (2.25) and (2.55).

The vertical arrows indicate the positions of the Eo and Eo + Ao (spin-orbit

splitting) gaps. The numerical parameters used are corresponding to those of

ZnSe [see Chapter IV]. It has been taken into account the damping energy of

r = O.024Eo in the calculation. The curve has also been ca!culated by taking

into aceount the higher-gap contribution (i.e., nondispersive eontribution)

arising from such as the Ei, El + Al and E2 gaps. The strong peaks appearing

near the Eo-gap region are due to the diserete-exeiton resonance eontTibution.
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The resonanee peak of the Eo + Ao gap can also be clearly found in the figure.

Moreover, the Brillouin-scattering cross section has narrow and sharp minima

(dips) in the region below and near the Eo gap. This phenomenon is usually

called "resonant caneellation (or antiresonance)", which is corresponding to

a cancellati6n of the resonant and nonresonant contributions, as wiU be

            'discussed tn more detail in Chapter IV.

     The Wannier-Mott exciton model [Eq. (2.55)] may increase the Brillouin-

                                        '
scattering efficiency compared with the free electron-hole pair model [Eq.

(2.29)] without greatly altering the resonanee shape. If Rrk is very small (

i.e., the exciton interaction is very small), Eqs. (2.49) and (2.51) can be

approximated as

                         2                   lo.(o)I .- o (Rk+o) , (2.s7)
                      '
                         21                   IÅëk(o)I                                                                  (2.58)                            N-                               N'

In this limit, the contribution of the discrete exciton term becomes very

small compared with that of the continuum exciton term, and therefore Eq. (2.55)
                          '
agrees explicltly with Loudon's formulation of Eq'. (2.29).

2.2.3 Defoi?mation-PotentaaZ Seatteving

     The intermediate electronic states produced by the incident radiation

interact with the acoustical phonons via deformation-potential tnteraction,

                                                                       '
resulting in a change in their electronic states. The transitions of the

intermediate electronic states are determined by the transformation properties

of the e!eetronic states in crystals and the relevant aeoustical phonon modes.

Such a selection rule of the deforrnation-potential scattering determines the

electronie transition process (two- or three-band process) which plays a

                                                                      'dominant ro!e in the resonant BrÅ}11ouin-scattering process. The excitation of

a phonon produces a displacement of the atoms of the lattice, and this displace-
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ment perturbs the periodie, potential acting on the electrons, leading to the

                                      . The electron-latttee interactionelectron-lattice interaction energy ff                                    EL L
                                                                      72is linear in the component u of the relative displacement (Bir & Pikus),

and a matrix element of HEL is written as

                                              '
                      <BI HEL Ict>." EBctu/a , (2.sg)

where a is the lattice constant, included to give a conventional norrnalization,'

and 1ct> and IB> are the electronic states. The deformation potential :'Bct is

     '
a matrix element of the derivative of the perturbed periodic potential with

respect to u. The coupling parameters of Eqs. (2.8a) and (2.8b), thus, contain
                                                                          '
the following deformation potential:

                     <Bl :-(i) lor>-<Bl g[Il. Ior> , (2.6o)
                                          1
where• Åë is the equilibriurn periodic-lattice potential and :'(i) is the x, y ot

z component of E. The deformation potential contained in the coupling parameters

of Eq. (2.8e), on the other hand, can be expressed by the following form:

             '                     `Bl :'(`j) lor> = `Bl e[lii[l.. Ict> , • (2'6i)

                                           -j

because the electron-lattice interaction Hamiltonian 17(2) is bilinear in
                                                    eL                                                      (2)
phonon operators and linear in exciton operators,(which ereates two phonons

simultaneously and creates or annihilates an exeiton). Now, let us calculate

                      having a form of Eq. (2.60) in the cases of [A] zincblende-the matrix element :'                    3or

type crystal and [B] wurtzite-type crystal. We, however, do not calculate :'                                                                          Bor
                                                                    '
having a form of Eq. (2.61) beeause the electron-!attice interaction Haniltonian

 (2)HeL does not act on the first-order Brillouin-scattering process, as already
   (2)
mentioned in Section 2.2.1.

[A] ZinehZende-Type CTystaZ
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    The wave functions of the conduction (iPc) and valence band (iPv) fgr the

                            ÅÄ 73zincblende-type crystals at k = O are given by

                                                                '                ipc =I S"> (2.62)
                ipvA = IA> = lg, il> - (2i)>21 2z+ - (x+iy)g > (2.63a)

                iljvB =IB> = lg, -l}> = ({l)-i21 (x+iy)+> (2.63b)

                Vvc = IC> = [}, t> = (})!:21 z+ + (x+iy)+ >, (2.63c)

where + and " indicate spin-up and spin--down, respectively, and X, Y and Z

are the valence-band wave functtons which transform as atomic p functions

under the operations of the group of the tetrahedron and S is the conduction-

band wave function which transforms as an atomtc s function under the same

operations. The wave functions for the valence-band states are taken in the
                                          '(cT, n?u) representations. The subscripts A, B and C of Eq. (2.63) indicate

the rs, rs and r7 valence bands, respectively. In the ztncblende-type crystals,

                                             -the A and B valence bands are degenerate at k = O, and the magnitude of the

splitting between the A (B) and C valence bands is denoted usually by Aso (
                                                  '
spin-orbit splitting energy) [see Fig. 2-8].

     In order to calculate Eq. (2.59), we use the orbital-strain Hamiltonian

                         74,75derived by Pikus and Bir as the electron-lattice interaction Harniitonian.

This seems to be reasonable for the interaction between the electrons and

                                                                           'aeoustical phonons (Brillouin scattering). !n the polar seniconductors, however

the deforrnation-potential type of electron-lattiee interaction is augment for

                                                                     Fthe case of the longitudinal optical (LO) phonon by an interaction H                                                                        due to                                                                     eL
the electric field associated with this phonon (Raman scattering). The matrix

element of HgL (Fr6hlich interaction) can be given by76,77

   <B] flgL ]ct>=zq h/E(t-t)-i2(2M5valLO )-i2 <Bl .ir. I., ,. (2.64)

'
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      +where q and toLo are the wave vector and qngular frequency of LO phonon,

                                                                 ÅÄrespectiveZy, and eo is the static dielectric constant.. If we let q " O,

then the matrix element mecomes diagonal in the electronic states [lct> and

IB>].

                                                               74,75                                              can be written as     The orbital-strain Hamiltonian ff and fl
                                    ec ev

                  U=a' (e +e +e) (2.65)                             xx yy zz                    ec
                         '                        '
                          ÅÄfor the conduction band at k = O, and

       Hev " -a (ex. + eyy + e.z) - 3bl(L.2 - l; L2)ex. + c.p.]

                    - SLt{[L ,L ]e                                     +c.p.} (2.66)
                               y xy                       f3X .
                                  'for the valence bands at it = O. rn Eqs. (2.65) and (2.66), the parameters a'

and a are the hydrostatic-pressure deformation potentials for the conduction

and valence bands, respectively, and b and d are the uniaxial-deformation

potentials appropriate to strains bf tetragonal and rhombohedral syrmetry,

respectively. eij is the component of the strain tensor. Li• is the orbital-

        . 78angular momentum operator, being given by '

      L.-illi[i'i gl • L,-iz[l -l. -g] •, L.-hk i-i] • (2•67a)

                                                                 '
and

              L2=L.2+Ly2+L.2 ='fi2[it gt i] (2 67b)

"c.p." in the right-hand side of Eq. (2.66) denotes cyclic permutations with

respect to the indices, x, y and z, and the quantity in the square bracket

        'indicates the syrmetrized product:

             [Lx' Ly]=ll' (L.Ly+LyL.) ' (2•68)
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                       - +ÅÄ     The sound waves produce a displacement u(r, t) at r, which can be given

by the following plane-wave form:

                                                             '                 + ÅÄ+               uz(r, t) = Tzuo expli(qr- ck)t)], (2.69)
                                                                    '
      +where T is a' unit vector in the direction of the polarization of the sound

wave, and the subscript Z represents the component of the direction x, y or z.

                         +The strain components e..(r, t) are related to the elastic displacements
                      -J
                          79   ÅÄ[u(r, t)] in the'dedium by

                        Bu Bu               eij =S( erl. +-5i.liJ.) ' ' (2•7o)
                                                    '
The non-vanishing components of the strain tensor can, thus, be obtained from

Eq. (2.70). As will be mentioned later [Chapter IV], we have measured the

spectral dependence of the Brillouin-scattering cross sections from the Tl-
              'and T2-mode acoustical phonons in the zincblende-type crystals. The corresponding

non-vanishing strain components obtained from Eq. (2.70) are as follows.

Tl-mode acoustical phonons:

               e ande withe =-e (2.71)                xx yy xx                                        yy

T2-rnode acoustical phonons:
                                                                     '              e ande withe =e , (2.72)               yz zx yz zx
where the Tl- and T2-mode acoustical phonons propagate in the [110] and

[OOII directions, respectively, with shear polarization parallel to the

[110] direction.

     The orbital--strain Hamiltonians [Eqs. (2.65) and (2.66)], hence, become

           ff =O (2.73a)             ec
           ll.. = - 3b[(L.2 - liL2)e..+ (Ly2 - i} L2)eyy] (2.73b)

for the Tl-mode acoustical phonons, and
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            H=O (2.74a)             ec •                                                      '
                                                          '            H =--g-d{[L ,L ]e + [L,L ]e } (2.74b)
             ev f3 yz yz zx zx
for the T2-mode acoustical phonons. !t is obvious from Eq. (2.73a) and (2.74a)

that the deformation-potential scattering of eleetrons in the conduetion bands

disappears for both the Tl- and T2-mode acoustical phonons. The wave functions

of the p-2ike valence bands [Eq. (2.63)] can now be written in the matrix
                                                                       '
representation as

               tA. ,. (g)e2Y { 2-i2 kO]. . [s!]B } (2.7s.)

               IB' =- [oltll or (2'75b)

               lc> - (g)'2 { 2-'2 [/,]a - [5]B } , (2.7sc)

                         '                                                              'where or and B indicate spin-up and spin-down, respectively. Substituttng Eqs.

(2.73b), (2.74b) and (2.75) into Eq. (2.59), one can find the deformation-

potential scattering of holes in the valence bands. We obtain the following

        71results:

                :'AA = :'BB = :'cc "O

                      zl                = =32b                -BA                                                                  (2.76)
                      zl                = =62b                -CB

                " =o                -AC

for the Tl-rnode acoustical phonons, and

                EAA = :'BB = :'cc =O

                = =d                -BA
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                :'cB = d12>2 (2•77)
                :'Ac = 6!'2d/2

for the T2rmode acoustical phonons. It is clear from Eq. (2.76) and (2.77)
                     '
that the intraband deformation--potential scatterÅ}ng is forbidden for both

the Tl- and T2-mode acoustical phonons (i.e., the diagonal components are

zero). Figure 2-7 shows the schematic dÅ}agrams of the electronic transitions

inVO!Ving (a) :'BA, (b) :'cB and (c) :'Ac which play a role in the first-order

Brillouin-seattering process. :' BA, for example, means that the excited holes

in the A valence band (A excitons) are seattered by the deformation potential

b (or d) to the B valence band (B excitons), corresponding to the Tnatrix

element :'              Note that the matrix element P                                                has the symmetry property:         BA'                                            -Bct

                          :' B.=E.B , (2.7s)

since it is the matrix element of a real operator.

[B] "u?tzite-tZ'ype CveystaZ

     Next, we obtain the matrix element :'                                             in the case of the wurtzite-type                                          Ba
                                                  '                                         80,81crystals based on the quasi-cubic model.                                                It has been pointed out by

                                       wurtzite (at k = O) can be obtainedHopfield                    direct-band gap                the                                     of           that
                               'from that of zincblende by the action of a small hexagonal crystal field.

Under the spin-orbit interaction, represented by the matrix eleTnent A and
                                                                      so
that of the crystal field represented by A , the energy differences of the
                                           c
split valence bands (correspond to the A, B and C valenee bands) are given
                                         '                 81by [see Fig. 2-8]

             E =E -E              BA                    gB                          gA

                   A +A A +A                    S02 C ( S02 C)2 23 AsoAc , (2.79a)



FIG. 2-7.
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  Schematic diagrams of the deforrnation-potential-scatteri.ng
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E =E CA

      A

   :E
      ghgC

   +A
so 2 c+  A +A( S0 2 c )2 - ZA A

3 so c '
(2.79b)

    =E -EE             gB       gC CB

.= 2
A +A( S0

2
c)2- .2. A A

3 so a .
(2.79c)

The corresponding wave functions of the three split valence bands

                IA> : s#

                s                B> : ct S++ or S+                                co                       B-

                lc> : ctcS.+ - ctBSo+ ,

                       '

where t and + represent spin-up and spin-down, respeetively, and

So are defined by ustng the p-like basis functions Sx, S y and Sz

          '                                     -i2                    s+ = (s. + isy)12 ,

                                     !i.                   S - (S - iS )/2 ,
                    -xy
                   s=s .                    Oz

The admixture coefficients or                               and or                                      are                             BC

                orB = [1 + ;i(2 - A3 EBA)2]-!i2 ,

                                  so

                ac = [1 + llL(2 - A3 EcA)2]-!'2 ,

                                  so

                  22                aB +ac =1 .

T"he wave function of the conduction band is s-like in character:

                   iPc: ls> .

are

  (2.

  (2.

  (2.

s +s

as

80a)

80b)

80c)

 S and

follows:

(2.81a)

(2.81b)

(2.81c)

(2.82a)

(2.82b)

(2.82c)

(2.83)
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      It has been shown that the orbital-strain Hamiltonian H for the s-like
                                                           e
                  '                                       ÅÄ 82conduction band of wurtzite crystals at k == O is given                                                     by

              Hec= dle.. + d2 (ex. + eyy) , . (2.s4)
                                                     '

and for the p-like valence bands by

              ffev = (Ci+C3L.2)e.z + (C2+c4Lz2)(exx+eyy) + cs(L-2e++L.2e-)

                                                           '

                           + C6([L., L+]e.. + [Lz, L-]e+z) , (2.85)

                     '  '
where the coefficients C. and d. are the deformation potentials, e.. is the
                                                                lj                       1-
component of the strain tensor with eÅ} = exx - e yy Å} 2iexy and eÅ}z " exz Å} ieyz,

and L. is the orbital-strain momentum operator having the same form as Eq. (2.67)
     i
and LÅ} " (11iliii)(L. Å} iLy)•

     The non-vanishing strain components oÅí the wurtzite-type crystals are
     '        '
also obtained from Eq. (2.70) as '
         '
Tl-mode acoustical phonons:
                                                                  '                     e '(2.86)            • xy
T2-mode aeoustical phonons:

                     e ande withe --e , (2.87)                      zx                      . yz                                       zx                                            yz
where the Tl-mode acoustical phonons in the wurtzite-type crystals propagate

in the direction perpendicular to the e-axis with shear polarization parallel

to the c-axis and the T2-mode acoustical phonons propagate in the direction

perpendi.cular to the e-axis with shear polarization perpendicular to the e-axis,

and the z-axis is parallel to the e-axis of the crystals.
                                             '
     The orbital-strain Hamiltonians [Eqs. (2.84) and (2.85)], hence, become

                 H=O (2.88a)                  ec

                 u.." cs (L-2e++L.2e-) (2.ssb)



                                       -45-

for the Tl-mode acoustidal phonons, and

                 H=O (2.89a)                  ec
                                                                '
                 Hev = C6([L., L+]e-z + [L., L-]e+.) (2.sgb)

       '     '                              'for the T2-mode acoustÅ}cal phonons. It is obvious from Eqs. (2.88a) and

(2.89b) that the.deformation--potential scattering of electrons in the conduction

bands disappear for both the Tl- and T2-mode acoustical phonons, as similar

to the case for the zincblende-type crystals. The wave functions of the p-like

valence bands [Eq. (2.80)] can be written in the rnatrix representation as

                    IA' =[6o]or (2.goa)

                    IB> = orB [i]or + ctc [10o]B (2.gob)

                    ic>=orc [2]a-orB [iOo]B (2.goc)

Substituting Eqs. (2.88b), (2.89b) and (2.90) into Eq. (2.59), one ean find

the deformation-potential scattering of holes in the valence bands of the

wurtzite-type crystals. We finally obtain the fo!lowing results:

                    :'AA = :'BB = :'cc =O

                    = =orc                    -BA                            B5                                                                     (2.91)

                    " =o                    -CB

                    :'AC = ctcCs

 'for the n-mode acoustical phonons,39 and

                    :- =:- -:- -o                     M                           BB                                  cc

                    Ml                    =BA = E' ctcC6
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                                                                   (2.92)                    "1                    H =-C                          26                    -CB

                    nl                    H =- orC                          2 B6                    -AC

for the T2-mode acoustical phonons.27 It can be found ' from Eqs. (2.gl) and

(2.92) that the intraband deformation-potential scattering is forbidden for

both the Tl- and T2-mode acoustieal phonons (i.e., :' ctct == O).

     The matrix elements of the deformation-potential scattering for longitudinal

acoustical phonons in the wurtzite- or zincblende-type crystals can also be
             '
obtained by the same procedure as mentioned above. Now, we consider the case

of the pure-longitudinal (PL) acoustical phonons in the wurtzite-type erystals

(propagating in the direction perpendieular to the e-axis).' From Eq. (2.70),

the atomic displaeement of the PL acoustical phonon produces the non-vanishing

strain component exx. The orbital-strain Hamiltonians of Eqs. (2.84) and

(2.85), thus, become

                                              '              Hec=d2ex. (2.93a)
                                                           '
              H.. = (C2-H 4L.2)e.. + cs(L-2e++L.2e-) • (2.g3b)

Substituting Eqs. (2.90) and (2.93) into Eq. (2.59), we obtain the following

matrix elements:

                :'M = d2 - (C2 + C4)

                EBB = d2 - (c2 + ctB2c4)

                :'cc = d2 - (C2 + orc2c4)

                                                                  (2.94)

                = =orc                -BA                      B5

                = =orc                #CB                      C5

                :' AC = ctBctcC4 t
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It is interesting to point out that the intraband deformation-potential

scattering [:' ctct] is al!owed for the PL acoustical phonons (in addition to

the interband ones [:' Bct]), in contrast to those for the transverse acoustÅ}cal

phonons.

     In order to deternine the Brillouin-scattering process, we have to take

into account the selection rules of the optical transitions (dipole transitions)

in addition to those of the deformation-potential scattering. Let us now

consider the selection rules of the optical transitions by the aid of group

theory. The zincblende-type crystal has a Td point-group structure. It is well

              +known that at k = O the conduction band has r6 syrmietry and the A, B and C

                                                           83valence bands have rs, rs and r7 symmetries, respectively.                                                               The polarization

vector IE J- (E<, i}, IE) of the point group Td belongs to rs symrnetry• The optica!

transitions between the conduction and valence bands can be given by the direct

product

               rs .- r6 (A, B excitons): rs Å~ r6 = r3 + r4 + rs (2.gsa)

               r7 . r6 (C exciton): r7 Å~ r6 = r2 + Ps . (2.9 5b)

It is clear from Eq. (2.95) that the transitions contain the representation

of i} Å} (k, il;, Z) [i.e., rs]. The wurtzite-type crystal, on the other hand,

                           '                                                                        +has a C6v point-group structure. At the center of the Brillouin zone (k = O),

the conduction band has r7 symmetry and the A, B and C valence bands have rg,

r7 and r7 symmetries, respectively.83 The polarization vectors iE .L3 and'

fi ll 3 of the point group C6v belong to rs and rl symmetries, respectively.

The direct products can be given by

                rg +r7 (A exciton): rg Å~r7 = rs + r6 (2.g6a)
                                         '                                                                            '                r7 ÅÄ r7 (B exciton): r7 Å~ r7 = rl + T2 + rs (2.96b)

                r7 " r7 (c exciton): r7 Å~ r7 = rl + r2 + rs . (2.g6e)
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The transitions r7 -' r7 contain the representations of both l} ll- 3 and ifi [l 2},

                        'but the transition rg + r7 contains only the representation -of SL3. It

means that for iE ll 3 the optical transition between the conduction and A

valence band is forbidden and for S -L3 all the optical transitions are

possible. In Fig. 2-8, we show such selection rules of the optical transitions

along with the band models of the zincbiende- and wurtzite-type crystals at

+k = O, where (a): zincblende (Aso = O), (b): zincblende (Aso + O) and (e):

                                            '                     + o).              +O,Awurtzite (A
           so                    c     '

2.2.4 MaeToseopieal Theory

     Brillouin seattering in cubic crysta!s has been analyzed in detail from'

                                                  38a macroscopical point of view by Benedek and Fritsh. The theory predicted

the intensity, polarization and spectral distribution of the scattered 4ight

as a function of the incident and scattered directions in the crystals.

     '                            63             62Nelson et aZ.                               have extended such analyses to the case of                and Hamaguchi

anisotropic media in which the birefringence effect is properly taken into

account. In the following, we obtain expressions of the Brillouin-scattering

intensities in the case of [A] zineblende-type crystal and [B] wurtzite-type

erystal, based on Benedek-Fritsh's theory.

                      '

[A] Zineblende-Type C?ystaZ

     The electric fie!d of the incident light in a medium is

                                        '               ÅÄ+                         ÅÄ                                 ÅÄ+                E(r, t) == Eoexp[i(kor-")ot)] (2.97)

with

                    11oi=ntoolc , (2•gs)
                                                                  '      "where ko and coo are the wave vector and angular frequency of the light wave,

respectively. The light wave passing through the medium produces an oscillating

                                            ++ +dipole moment per unit volume or polarization P(r, t) at each point r. The
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polarization at each point in the medium is

                                                      '                ÅÄ+ + +ÅÄ                P(r, t) =[ <ct> + 6ct(r, t) ]E(r, t) ,' (2.99)

where a is the polarizability tensor which is decomposed into its time average

                                           +part <ct> plus the time-space fluctuations 6or(r, t) produced by the acoustical

                             -7 +phonons. .The electric field dE' scattered to the field point R by the oscillating

polarization within a volume ld:1 << X3 [x: wavelength og light] is now given by

             ,E,(ft, ,) =[ilk-EF Å~ (Etk:ilii l2i'ik' t')/Dt'2) ]drl] , (2.ioo)

           is the unit vector of R-r and t' is the retarded time. being gÅ}venwhere I       R-r
                                                          '
by
                    t, .. t- gLlliil . -(2.ioi)
                               c

In Eq. (2.101), n is the refractive index of the mediuTn and c is the ve!ocity

of light in vacuum. If the frequeney of the acoustical phonon is small compared
                                              '
with that of light, we can regard 6ct of Eq. (2.99) as a weak function of the
                                                           '
time and write

                  a2f (IF, t)IDt2 = -cDo2il;(l :, t) . (2•lo2)

                     '

The oscillating moments of Eq. (2.99) radiate or scatter electromagnetie

energy in aU directions. Substituting Eqs. (2.99) and (2.102) into Eq. (2.100)

and earrying out the integration over the illuminated volume V at the retarded

                        + "-time t', we find that if R >> r,

                              ++     s.(k, ,) . -( Sl.go )2 eXP[i(koRR - alot) rk

                         '
                          Å~ [rk Å~ .g i(r,ts)..p [-i(2.; . .o,)]ld;1] , (2.lo3)
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where

      tk cr rk-? (k >> :) , k.-ntoork!c •, (2.lo4)
                                                             '
and we have used the approximation that

         '
     '            ' 1fi -rl cr Ikl . (2.ios)
The fluctuation of the poiarization tensor of Eq. (2.103) [Eq. (2.99)] can

be expressed in terms of its spatial Fourier component:
                '          6a(;, t,) = ( t. )3i2 :S ldql6ctU(q)exp{Å}[qt. Å} tup(E)t']}. (2.io6)

In Eq. (2.106), 2Tr/lal is the wavelength of the fluctuation, tov(q) is the

frequency of the fluctuation corresponding to this wavelength. The index v

denotes the possibi!ity of a number of branches in the dispersion relation
                      '           ÅÄÅÄconnecting q and tuv(q). The wave vector of the fluctuation which produces

                                     "the light scattering in the direction Ik is that which satisfies the implicit

     .equatlon:

                  +++                  q=k-- ko , (2.107)

                     k-e[tuoÅ}cop(q)]rk . (2.los)

Substituting Eq. (2.106) into Eq. (2.103), we obtain

           E. (k, t) --(ll;t)2 (2zlRi2 z exp i{rt - [ooo Å} tov(()]t}

                                    l.i

                           X rk X [rk x (6eV (6)fio)] , (2.log)

where we have replaced 6or by 6e/4TF [e: dielectric constant tensor].

                    ++The total power dl (q, R) Å}n all frequencies scattered into a solid angle dst
                  s
                   +at the field point R is proportional to the mean square field strength:
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                      '

           dl.(q, k) --g}.T <li. ((, t)l2>R2dst . (2.no)

The fluetuation in the dielectric constant appearing in Eq. (2.I09) results

from the fact that this constant depends on the state of the strain of the

solid. The strains 'themselves fluctuate at each point because of the pasage

of the sound waves. The elastic strains are conneeted with the elastic

disPlacements through Eq. (2.70). !n general, for small strains, the change

                                       +in the dielectric tensor component 6e..(r, t) is a linear function of the
                                    IJ
elastic-strain components ekl(;, t), i.e.,

                        +                   6e..(r,                           t)
                 -ik•iejj =:IPijk!ekl(;, t) , (2.111)

where pijkl is the component of the photoelastic tensor. Each tensor for the

zincblende-type crystals has the following form:

dielectric constant tensor: [e]

                          eO                           11

                   [e]= O e                                 11

                           oo

strain tensor: [e.]

                          ell e12

                   [e]= e21 e22

                          e31 e32

photoelastic constant tensor: [p]

                          Pll P12

                          P12 Pn

                          P12 P12
                   [P] =
                           oo

                           oo

                           oo

e

e

e

e

P

p

o

o

11

 13

 23

 33
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 12
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o

o

o

'

o

o

o

P44

o

o
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o

o

o

o

P44

o
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o
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o
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(2.113)

(2.114)
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In Eq. (2.l12), n is the Tefractive index ofthe crystal. Note that the strain

[e] is the symnetric tensor.

     IJe may write 66..(IF, t) using Eqs. (2.1!2) - (2.114) as
                    =]

         Eij(:, t) -- [p44eij(IF, t) + (piipi2-p44)6ijeii(IF, t)

                              'tpi2(iezz(l t)6ij] x sii2 • (2.iis)

                                  ÅÄ+The elastic-stratn components ekl(r, t) are functions of the position veetor r

                                        ++Using the Fourier transforrnation of ekl(r, t) into ekl(q, t), we obtain the

fluctuation of the electrie displaeement in the crystal:

                                       2
                                    e         6SV(6, t) . 6eV(6, t)fio - ii .V(Åë t)lqHEoEIV , (2.ii6)
                                                                  '

where

          EV - p44[lrT"!(rq•IE) + (RP•lliE)rqj + pi2(RU'Eliq)rE + i(piipi2-2p44)

                                '(1;P)l(Etq)z(rE)zrl . (2.n7)

In Eq. (2.117), rlA is the unit vector in the direction of the polarization

                   +of the sound wave, I is the unit vector in the direction of propagation of
                    q
                                  "the sound wave, with components (Iq)z along the cube axes, Z = x, y, z.

+Iz (Z= x, y oT z) is the unit vector along the cube axis. The direction

oftV is determined by the relative directlons of q, io and RV. we note that

in the Brillouin-scattering experiments one observes not') g'Ubut the veetor lgV

whieh is related to EU by

                         gV=tkX(rkXtV) , (2.118)
                                             '                          '
      ÅÄwhere Ik is the unit vector of scattered light.

     From Eqs. (2.109), (2.110) and (2.116), we finally obtain the Brillouin-

scattering intensity of light scattered into the internal so!id angle 9 during
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the 6ptical-path !ength b as

             di.(st)-io "ii4ii4 zi3u.i iXt S:iÅëVdstb , ' ' (2iig)

                                                     '
where Io is the incident-light intensity and Xo is the wavelength of the light

in vacuum. The summation in Eq. (2.119) indicates that one must include

contributions from the three different acoustical phonon modes, i.e., those

from two transverse phonon modes and one longitudinal phonon mode. ÅëP is the

::?}gyi!e;;:.:Ig::yf the acoustical phonons. The thermal-phonon occupation number

                np (ll) = V[ exp (6tuv (E) /kBT) -1] • (2•120)

In the case of'Vituv(q) K kBT, Eq. (2.120) ean be written in good approximation

                                                                            'as
     '
         '                      "+                   np(q) -rv kBT/6cov(q) . (2.121)

Thus, the energy density Oli of Eq. (2.119) can be replaced by kBT in the ease

of Brillouin scattering by thermal phonons [ÅëP = nv(ll>15tuv(q) E kBT]. It should

be noted here that the internal solid angle 9 is not equal to the external solid

angle st' due to the fact that the refractive index in the medium is different

                                                           63from that tn vacuum. Assuming small cone angless one obtains

                            cose                                d                    dst= dst' , (2.122)
                            22                         nn - sin e                                     d

where ed is the exte .rna! scattering angle. The scattering cross section is now

                                                               '          24    oB=TTAiti :2pÅë.iJu2 lgii12.iOIe.di.2ed , (2'i23)

where UB is defined as the Brillouin-scattering intensity per unit path length
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per unit external solid angle. Next, we evaluate the Bri!louin-scattering

cross seetions in the zineblende-type crystals for two special phonon modes

(a) T!-mode acoustical phonons and (b) T2-mode acoustieal phondns by the

aid of the above results.

            '
(a) Tl-Mode AeousticaZ Phonons:

     The Tl-mode phonons propagate in the [110] direction with shear polarization

parallel to the [110] direction. We adopt the configuration that the incident-
                                                     'iight polarization is parallel to the [110] direction lsee Fig. 3-1 (a)].

           ++ +The vectors T, I q and IE, thus, become

                     ?- (ilh, Vh, o) , (2.i24a)
                    i= (1/E, -11v!2, o) , (2.124b)
                     q
                    rE=(11E, 11E, o) . (2.124c)

Substituting Eq. (2.124) into Eqs. (2.n7) and (2.lls), one obtains ETI as

                  ETI={l(pll-p12)iq (2•125)

    "Tl    g asand

                                                            '                  gTi =t(pn - pi2)cosei' it. , (2.i26)

                                                                  +where ei' is the incident angle incide the specimen, and the vector Is stands

                                                                        +for the unit vector lying in the scattering plane. The scalar product of I
                                                                         s
    +       is given byand I     E
                    ++                     I.'IE =O , (2.127)
which means that the scattered-light polarization is explicitly perpendicular

to the incident-light polarization. SubstitutÅ}ng Eq. (2.126) into Eq. (2.123),

we obtain
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                     24                                                            cose                               Tl                    rr e               c'B= xit cu-Oci2 [}(piipi2)cOSei'lrsl]2..l2ili ii8i. .ed' (2'i28)

where C.. is the component of the elastic stiffness tensor whieh has the same
       IJ
form as Eq. (2.114). Zn Eq. (2.128), we used the following relation:

                                      -i2                 VTI = [(Cll - C12)/2P] • (2.129)

rh) T2-Mode Acoustieal Phonons:

     The T2-mode phonons propagate in the [OOI] direction with shear polaTization

parallel to the [110] direction. We adopt the configuration that the incident-

light polarization is parallel to the [110] direction [see Fig. 3-1(b)].

The vectors ;, 3i and t                        are, thus, written as                qE

    ' r- (1/lt, 11!i, O) , (2.130a)
                                                                 '                   i=(O, O, 1) , (2.130b)
                    q
                   EliE=(ilh, i!E, o) . (2.i3oc)

                                                                 -epT2Substituting Eq. (2.130) into Eq. (2.!17) and (2.118), one obtains C as

                 '
                    ET2 =" p44 11q , (2'131)

and ST2 as

                    gT2-p44cosei, il, . (2.132)

The scattered-light polarization is also explicitly perpendicular to the

ineident-light polarization, because

                      ++                       I.'IE =O • (2.133)
Substituting Eq. (2.132) into Eq. (2.123), we obtain



                                     -57-

                                                 '       uB =' T2iit4 22Ii [p44cosOi'IEIsl]2 . 2ile.di".2ed ' (2'134)

                                '
          is the component of the elastic stiffness tensor, and we used thewhere C       44

following relation:
                                '               {TT2=(c441p )-i2 . (2.13s)

[B] Wurtzate-Type Cor7ystaZ

     The macroscopical theory of Brillouin scattering in the wurtztte-type

crystals offers the closest analogy with that in the zincblende-type crystal

[Al. One must, however, take into account the anisotropic nature of the optical

properties (i.e., birefringence effect) in these crystals, since the scattered

and inctdent lights have sometimes different polarizations. For the wurtzite-

type crystals, the dielectric constant tensor [a], strain tensor [e] and

photoelastic constant tensor [p] can be written as

with

[E] =

e =n2
 11 o

   [e] =

eo 11

 oe       11

 ooe
 and e =        33

ee           e       12 11

ee           e       22 21

e31 e32 e

o

o

3

n
q

13

23

33

2

)-

,

'

(2.136)

(2.137)

(2.138)

and
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                          Pll P12 P13 O O O

                          P12 Pll P13 O O O

                          P31 P31 P33 O O O
                 [p] =
                           O O O P44 O O
                           O O O O P44 O
                           O O O O O P66

with
                             1                       P66 =i (Pll - Pi2) '

In Eq. (2.137), n and n are the refractive indices for
                 oe                     '
extraordinary rays, respectively. If the birefringence
                         '                 'account, the wave vectors Ro [Eq. (2.98)], it. [Eq. (2.104)]

appeared' in [A] become63

              '     • k=nitooi
                Ock '                           o

               + ndtuo ÅÄ
               ksac Ik '

                k= ltt [coo Å} osu(q)] tk '

where n. and n                are the refractÅ}ve indices for the       ld
                                       ÅÄ-and scattered lights, respectively, and Ik is the unit
                                 .o
of the incident-light wave vector ko.

     Carrying out the same procedures as [A], we obtain the
                /
the electric displacement in the wurtzite-type crystals:

                   'e            6sv(q, ,) - 6.v(q, t)fio - 1,1 .V((, t)I(llfioiE

where

'
(2.139)

                 (2.140)

      the ordinary and

    'effect is taken into
        '             +         and k [Eq. (2.108)]

                 (2.141)

                 (2.142)

                 (2.143)

polarization of the incident

     vector in the direction

         fluctuation of

        1.1             , (2.144)
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                             '       '           tt                                                          '       EV = .Pi4ig [eorP(eo;V'rE) + (ÅíolV'EIE)eoliq] - iPi4i: iszz2(}U)zdq)z(rE)zEtz

           '                          '                                                 t ttt
          '              + : [i p.i(e..21gn2) (rP)z(Elq)z](rE)zEl. + ( PiiiPi2 - p44 )

                '

              Å~ [(I'l"i)1(rq)2(iliE)2Elil ' (RV)2(ilq)1(EIE)lilil ' (iSli)2(iliq)1(EliE);2

                      ++              + (ilrl't)1(Iq)2(IE)11t2] ' (2'145)

In Eqs. (2.144) and (2.145), the notations used are the same as those appeared

         +"in [A]. Iz [Z = 1, 2, 3 (x, y, z)] and Im [m = 1, 2, 3 (x, y,'z)] are unit

                                                                         42vectors along the cube axes OXI, OX2 and OX3 defined in the text of Nye,

where OX3 (z) is parallel to the e-axis of the crystal. so is the dielectric

constant tensor in the absence of strain. The vector eV, which determines

the Polarization of the scattered light, is given by the same form as Eq. (2.118)

                                                                                  'We finally obtain the Brillouin-scattering cross 'section in the wurtzite-type
                                                                               -
                              'crystals as

                    24              aB= Trxiti : 2plli2 iZ;Vi2 .dJ.Ill iil:iiigi... ed ' (2'i46)

                                                                          '
In the following, we evaluate the Brillouin-scattering eross sections tn the

wurtzite-type erystals for three special phonon modes (a) Tl-mode acoustical

phonons, (b) T2-mode acoustical phonons and (c) PL-mode acoustical phonons by

the aid of the above results.

(a) Tl-Mode,AcoustaeaZ Phonons:

     The Tl-mode phonons propagate in the direction perpendicular to the c-axis

.
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with shear polarization perpendicular to the e-axis. We adopt the configuration

that the incident-light polarization is perpendicular to the e-axis and parallel

                                                         ÅÄ+ "to the shear polarization [see Fig. 3-4 (a)]. Irhe vectors ", lq and IE, thus,

become

                         r= (O, 1, O) , (2.147a)
                        r == (1, O, O) , (2.147b)
                         q

                        +•                                          . (2.147c)                        IE = (O, 1, O)
                                                                  ->•T!Substituting Eq. (2.147) into Eqs. (2.145) and (2.118), one obtains g as

                    gTl=ll• (pu-p12)(ilk)3r.. , (2.14s)

      ÅÄwhere Ixz is the unit vector lying in the OXI-OX3 plane. Thus,

                                     2                   iipilllll-i:122 -- iP(lciMIP-:ii) dk)32 1t..l2 , (2.14g)

where the sound velocity vTl of this phonon mode is given by the same form

as Eq. (2.129). The elastic stiffness tensor [C] has the similar form as

Eq. (2.139). The Brillouin-scattering cross section can be obtained by

substituting Eq. (2.149) into Eq. (2.146). It is elear from Eq. (2.148) that

the scattered-light polarization is explicitly perpendicular to the incident-

light polarization.

(h) T2-Mode AeoustieaZ Phonons:

     The T2-mode phonons propagate in the direction perpendicular to the e-axis

with shear polarization parallel to the e-axis. We adopt the configuration

that the incident-light polarization iS parallel to the e-axis [see Fig. 3-4 (b)]

            ++ +The vectors TT, I q and IE are, thus, written as

                          ÅÄ                          T= (O, O, 1) , (2.150a)
                         +                         I=(O, 1, O) , (2.150b)                         -e.q

                         rE=(o, o, 1) . (2.lsoc)
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It is clear from Eq. (2.150) that

                               '
                                        ÅÄ+        llr.llfq = o, rq•iliE =o and (riV)z(iq)l(IE)z=O , . (2•151)

so that Eq. (2.145) can be reduced to as

            '                                  e                      tT2=p44(eii )2 Eiq ' (2'l52)

Then, one obtains

                                                    '
                              e                  gT2 == p44(,i: )2 IEIkÅ~tql ri. , •' (2•is3)

      +where I ]Le is the unit vector perpendicular to the e-axis. It can be found from

Eq. (2.153) that the scattered-light polarization is perpendicular to the

ineident-1Å}ght polarization. One can finally obtain

                         2             evTki=:2i4(:ii )4 tkxtql2 lrÅ}e]2 ' (2•is4)

The sound velocity vT2 is given by the same form as Eq. (2.135). The Brillouin-

scattering cross section can be obtained by substituting Eq. (2.154) into Eq. '

(2.l46).

re) PL-Mode AeoustieaZ Phonons;
                                             '               '
     The PL-mode (pure longitudinal) phonons propagate in the direction

perpendicular to the e-axis with acoustical polarization perpendicular to the

e-axis. We adopt the configuration that the incÅ}dent-light polarÅ}zation is

                                                      +•+ +parallel to the e-axis [see Fig. 3-4 (c)]. The vectors x, Iq and IE, thus,

                         ÅÄ                         T= (1, O, O) , (2.15Sa)
                        +                         I=(1, O, O) , (2.155b)                          q
                                                                  '                        +                         IE=(O, O, O) • (2.155c)
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Thus, Eq. (2.145) can be reduced to as

        . gPL-p31(:i; )2 Elr". , ' (2.ls6)

where I "e is the unit vector parallel to the e-axis. It can be seen from

Eq. (2.156) that the polarization vector of the light does not change after

being the Brillouin-scattering process. Finally, one obtains

                Iiliil:iill-l: i= 2Pc3i!(ee3ii )4 111H. I2 • (2•is7)

                                         '

In Eq. (2.157), we used the follovifing re!ation:

                                     >2                      "PL =( Cll/P) • ' (2.158)

The Brillouin-scattering cross section can also be obtained by substituting
    '
Eq. (•2.157) into Eq. (2.146).

                     2.3 PIEZOBIREFRINGENCE THEORY

2.3.1 DieZeetrie Constant

     In this subsection, we shall discuss theoretical expressions of the

frequency--dependent dielectric constant. First, we cosider the dielectric

                                    84 'theory from a classical point of view                                       in which the N atoms in a volume V
                                                             .
are represented by N damped harmonic oscillators. We present an electron of

mass m and charge (-e) from the valence band in the form of the classical

oscillator, whose natural frequency tuo is equal to difference between the

                   'energies of the electron in the valence band and in the conduetion band. The

presence of an electromagnetic wave having electric field E : Eo exp(-Å}tot),

polarized in the c-direction, produces foreed oscillations. The equation of

motion of an oscillator is



                                       -63-

                                                                   '

               m(k + rSt'+ tuo2x) = (-e)Eo exp (-int) , (2•isg)

where the dots indicate time derivatives and X is the displacement of the

charge from its equilibrium position. r is the phenomenological damping constant

The solution of Eq. (2.159) is given by .

                                  (-e)Eo exp(-icDt)
                              X= 22 . (2.160)
                                  m(toO - tu -                                               irto)
                 '

The electric field IE in a medium is described by the electric displacement

vector 6. The relation between the electric field and electric displacement

is given by '
                       S-S--P , (2.161)
where S is the polarization of the medium and is equal to the density of the

electric dipoles induced by the electric field. The polarization can be

assumed in the linear approximation as [see Eq. (2.99)]

                        S= ct fi , (2.162)
    '

where or is the polarizability (susceptibility) tensor. We can find from

Eqs. (2.l61) and (2.162) that

                       + +"                       D= (1+or)E=eE , (2.163)
where e is the second-rank dielectric constant tensor [see, e.g., Eqs. (2.112)

and (2.136>]. The polarization is equal to N(-e)X. Thus, the frequency-

dependent dielectric constant can be written from Eq. (2.160) as

                                            2'                                          Ne                       e(tu) =i+ .(alo2 - .2 - ir.) • . (2•i64)

The classieal result (2.164) refers to a single atomic transition frequency.

The polarizability of a solid of atoms having many excitation frequeneies
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tu oi is calculated by dividing the N harmonic oscillators into fractions

(NilN) which have frequency tuoi and damping parameter r,i. The dielectric

constant is, then, given by a sum of t'erms like those in Eq. (2.164), dne for

each group of oscillators,

                                        N e2
                                         i                     e(to) ='1+X 2 2 , (2.165)
                               i m(edoi - to - irito)

where
                              N.                          z(-iGL)-1 . (2.166)
                          i                                   '
                                                                   '                                        'When tu is close to one of to., the corresponding term in the summation is
                          i
dominant, and the remaining contributions can often be neglected.

     A quantum theory of the dielectric constant can be obtained by calculating

the electric-dipole-moment operator form quantum-mechanical concepts. Consider

                                         'a system described in the Schrb'dinger representation by a wave function Y(t)

which satisfies [time-dependent Schr6dinger equation]

                                  ay(t) •                    H(t)Y(t) ='ifi at '                                                                  (2.167)

                                                                           '
Here, H(t) is the total time-dependent Hamiltonian of the system, being given

                    H(t)=Ho+HED(t) • (2•168)

ffo is the Haniltonian of the system in the absence of the electromagnetie

                                                              'radiation, and llED(t) is the Hamiltonian of the ele'ctric-dipole interaction

written aS (dipole approximation)

                                  ++ -+                        (t) =-Z er.'E(t) =ME(t) , (2.i69)                    H                     ED                               •J                               J

where

                                  +                         M=-Z er. (2.170)                               •J                               J
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is the electric-dipole-ihoment operator. The summation is over all particles

in a unit volume. The electric field is now given by

            E=} fio[ exp (itut) + exp (-ialt) ] . ' (2.17o

         '
Thus, at time t, when the wave function is Y(t), the electric dipole moment is

                ' M(t)=SYrk(t)MY(t)dV ', (2.172a)

                                                        'or equivalently
                '                   '                                                     '                      M(t)-<YIMIY> . (2.172b)

     Let us suppose that to is close to a single transition of frequency ed                                                                       o
between two states Om and thn having energies .llroom and 6ton. The remaining energy

levels are ignored for the present, and the general form of the wave function

is then

             Y(t)'-- a (t)Åë exp(-ias t) + a (t)Åë exp(-ito t) . (2.173)
                    mm                                 mn                                            nn

The time-dependent coefficients a (t) and a (t) must be obtained by solutions
                                mn
of the following equations:

                                               '
         a.<Åë.IHEDIÅë.> + a.`Åë.IHEDIÅë.'exp(-i")ot) = irhh. (2.174)

and

                                            '
         am<Åën1ffEDlÅëm>exP(iedot) + an<OnlHEDlÅën> = i/hSn                                                                  (2.175)

                                                                       '

Substituting Eq. (2.173) into Eq. (2.172), we obtain

                                                              '   M(t) = athan<O.IMIÅë.>exp(-ituot) + a:a.<Åë.IMIOm>exp(Å}eeot) • (2•176)

                                        '
The electric dipole moment given by Eq. (2.176) is a real quantity as expected

physically. The second derivative of Eq. (2.176) with respeet to "t" gives
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  M(t) = -ituo[(a;:a. + afii. - ituoafia.)<OmlMIO.>exp(-ituot)

                                                      '
               - (afiam + a:am + ituoa:am)<thnlMlÅëm>exp(inot)]

       = (2tuo21<O.IMIÅë.>l2eos cot)(la.12 "- la.12) - tuo2M(t) • (2•177)

                                              '                                                      '

     The applied electric field is assumed to be sufficiently weak that the
   '
atomic populations suffer a negligible disturbanee from their thermal

equilibrium values, so that in Eq. (2.177) lani2 can be neglected and [am12

set equal to unity. Thus, we obtain

              iit(t) + tuo2M(t) = 2edo21`Åë.IMIO.>l2 cos cot • (2•178)

                                                          '
The quantity M(t) now represents the dipole moment per atom at time, and

the macroscopical polarization of the solid is simply

                   P(t)=N)((t)!V . (2.179)

The differential equation (2.178) is easily solved, and the resulting dielectric

constant obtained from comparison of Eq. (2.179) with Eqs. (2.162) and (2.163)

is

                          NI<ÅëmlMlÅën>12 2tuo

               e(tu)=1+ ves ' 2 2 • (2.180)
                                 o to --al                                          o •'
                                                                 '
It is obvious from comparison of Eq. (2.180) with Eq. (2.164) that the

quantum-mechanical expression is very sinilar to the classical one if the

phenomenological damping parameter r is taken into aeeount in Eq. (2.180).

The quantum-mechanical expression for the dielectric eonstant of a solid

having many transition frequeneies tuoi ean also be obtained by a generalization

of the method used for a single transition tuo. The result is written as
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               E(to) .1+ veNth z 2tuo"<:mlMlli>12 . (2.lsl)

                            oi tu                                          - to                                      oi
'

                                                                '

     In the following, we shall obtain the model dielectrie constants in

semiconductors based on simplified models of the interband transitions.

First, we consider the contribution of the free e' lectron-hole pairs or direct

                                                                'band-to-band transitions to the dielectric constant. It is a good approximation

to assume that the band edge in semiconductors such as !I-VI compounds is

             •parabolic in k-space, e.g.,

                                      22                   6ck'g (il) = Eg (k) +621i , (2'182)

where v is the reduced effective mass given in Eq. (2.26). We obtain the

rea! part Qf the dielectric constant as an analogy to Eq. (2.164) or (2.180):

              sl(.)-!=8T:2zg2 22 . , (2.ls3)
                                     (k) - tu -                                                       (k)                                                 iral]tu                                  [tu                                k                           3m :ri
                                    gg

where P(i!) is the i-dependent momentum matrix element. Substituting Eq. (2.182)

into Eq. (2,183) and converting the summation of lk into an integral, we finally

obtain

               F              EI -1" Co f(xo) , (2.ls4)
where
                                                                          '                    f(xo) -- x'2[2 - (1 - x)>2 - (1 + x)>2] , (2.185)

                                        '
                        co =g (312 v)3/2 wg-312p2 , (2.is6)

                        Xo=to1 alg • (2•187)

To obtain Eq. (2.184), we separated the real and imaginary parts and carried
                                 '
out the integration. Equation (2.184) is, thus, only valid in the region of
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            '
non absorption (i.e., x < 1). Moreover, for simplicity, we assumed that the

matrix element P is i-independent quantity.

                                                          '                                                                '
     It is well known that the contribution of the Eo gap to the imaginary

part of the dielectric eonstant can be written as
                              '                                                 '                                                                '                 eg (co) = co tilt (co - tug)!i2 , (2.iss)

                          '                                                                    '
where Co is given by Eq. (2.186). The real part of the dielectric constant

can also be calculated from Eq. (2.188) by ustng the following Kramers-Kronig
     '
relations:

                 ei(co) =i+ ;Soco(:ll;(:'i2 ded' ', (2•isga)

                 e2(tu) =- 3'L Soco (.,i;(:12 dtu'. • (2•isgb)

Substituting Eq. (2.188) into Eq. (2.189a), we obtain the same result as Eq.

        85-87(2.185).               It is noting that the result (2.185) is based on the simple

band model but not on the complex band structure connecting with overlapping

of bands. If we consider crystals having the band structures given in Fig. 2-8,

the contributions. from the three valenee bands must be included. In such a case,

we obtain

                  ei(co) -1=Z Coif(xoi) , (2.lgo)
                             i=A,B,C

where

                  coi =g (312u)3!2 tugi312 l<elpii>12 , (2.igi)

                             '
                  Xoi=co/ cogi • (2.192)
In Eq. (2.lgl), I<clpli>12 is the squared p-matrix element corresponding to

the dipo!e transition between the i-valence band (i = A, B or C) and conduction
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band, and co . is the energy difference between the i-valence and conduction

band (i.e., band-gap energy). For the zincblende-type crystals [see Fig. 2-8(b)]

Eq. (2.190) becomes

           ei(al) -i= co. [f( Iill )+:(.tuO )3/2 f( .tu )] , (2.ig3)

                                 O os os

where

                    co. =g (312 v) tuo-312 p2 , (2.ig4)

                    Jhtuo=Eo , (2•195a)

                   'Yial..=Eo+Ao ' (2•195b)
            '
In Eq. (2.193), we assumed that
                     '

                      l<clpli>l2-p2 a=A,Bor c) . (2.ig6)

     Next, we consider the contribution from the Wannier-Mott exciton transitions

For the discrete exciton transitions, the imaginary part of the dielectric
    'constant is given by 68,88

                              D'                             f co           Eg (E) =z i2 z IÅë. (o) l26 (Eg. - E) , (2.ig7)
                                 i=l                    i=A,B,                          CE

where Åën(O) is the envelope function of the n-th exciton state given by Eq.

(2.49), Egx is the n-th exeiton energy given by Eq. (2.50), and f2. is the

strength parameter proportional to the squared p-matrix element l<cl?1Å}>l2.

The imaginary part of the dielectric constant is directly related to the

absorption coefficient

                           Xn (E)                  e2(E)= 2iT ct(E) , (2.198)

where ct is the absorption coefficient, X is the wavelength of light, and n Å}s

the refractive index. The KramersTKronig transformation of Eq. (2.197) gives

'

.
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                         '           e2(E) -i" i..A,B,c Y{'l { itl.i .3[(En l2 - E2].} ' (2'i99)

                                            ex
                                                                      '

where, for simplicity, we replaced 2Egx n3f?. IÅën(o)12T-1 by F2..

constl:tt2.:r:rl.itgnCZ:6tt5?ggM Of States' the imaginary part of the dieiectric

          '                            fc
           e;(E) = Zi.A,B,c E; jl IOk(O)I2 p(E)6(Eli. - E) ; E > Egi , (2.2oo)

where Åëk(O) is the envelope function of the continuum exciton state given by

             k             ex is tl}e energy of the continuum exciton state given by Eq. (2.53)Eq. (2.51), E

f9 is the strength parameter proportional to the squared p-matrix element and
 i
         M>2
(E - Egi) , and P(E) is the density-of-states function

              P(E) = 2,1,2 (tfilti )ts (E M Egi)ij ' (2'201)

The real part of the dielectric constant can be obtained by substituting Eq.

(2.200) into Eq. (2.189). If the function of Eq. (2.51) is assumed to be

            ww11'[lnh•[ligi]=1-gTxctp(-2Tor)cr2Tct ,                                                                  (2.202)

                                      89the Kramers-Kronig transformation gives

                                       E E2
               eCl(E)-1=Z FCi ( 4iGliln -' ) ,                                                                  (2.203)
                          i=A,B,C E E.-E                                                 gl

                                                      '
where FCi is thestren'gth-parameter constant having similar physical meanings

    Das F. of Eq. (2.199) and E.                            is the ground-state exciton energy. In the limit    1 -1GÅÄ O, we also obtain

                                     FCE .
               e2(`D) 'i= Zi=A,B,c G3/IEiiv262 f(xi) , ' (2•2o4)

                                        gi

'
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                              .) has the same Åíorm as Eq. (2.190). This resultwhere the dispersive term f(x
                              i
reflects that if the exeiton interaction is very sma!1 (G " O) the continuum

exciton transitions behave like free electron-hole characteristics, as simi!at

to the case discussed in Section 2.2.2.

     Finally, we obtain the real part of the rnodel dielectric constant of solids

in the following fomn:

                  sl(E) = ei(E) + el](E) + eS(E) + el. , (2.2os)

       FD Cwhere el(E), el(E) and El(E) are given by Eqs. (2.190), (2.199) and (2.203)

[or (2.204)], respectively, and el. is the background dielectric constant

arising from the higher-gap transitions such as the El, El+Al and E2 transitions•

                               DCThe strength parameters Coi, Fi and Fi can be directly determined by fitting

the expression (2.205) to the experimental data of refractive indices (el = n2).

The imaginary part of the dielectric constant is proportional to the absorption

coefficient or according to the relation (2.198). This part is also related to

reflectance R through the Kramers-Kronig transformation. Therefore, it is also
    'possible to determine the strength parameters from the absorption or reflectance

measurement.69'90 it is noting that the discrete-exciton term e2 shows sharp

dispersion compared with the continuum exeiton e: or the free electron-hole

           F               It is also clear from a comparison of Eq. (2.190) with Eq. (2.204)pair term e           1'

that the free electron-hole pair term is very similar to the continuum-exciton

term. It is, thus, practical to include the free electron•-hole pair term' (or

viee ve"sa the continuum-exciton term) into the eontinuum-exetton term (the

free electron-hole term) by introducing an extra parameter C in the strength

constant, i.e.,

                  61(E) == 62(E) +Cgfi(E) +sl. . (2.2o6)
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2.3.2 PhotoeZastie Constant

     In Section 2.2.4, we showed from a maeroscopical point of view that the

                                     ttBriUouin-scattering intensity can be expressed in tems of the corresponding

photoelastic constant of the crystal. The numerical va!ues of the photoelastic

constants can be independently determined from the intrinsic-piezobirefringence

measurements. The purpose of thÅ}s subsection is to obtain the basic expression

of the photoelastic constant from nicroscopical aspect. !t is well known

                                                         ÅÄthat uniaxial stress splits the degenerate valence band at k = O of the

     'zincblende-type crystal into two bands. The effect of such splitting could

                                                                   91                                                                      hasbe investigated in suitable optical experiments. For example, Thomas

measured the splitting of the exciton line in CdTe from the reflectance
                    'measurement. Such a measurernent enables us to obtain information about the

deformation potential because the splitting is strongly connected with this

          72              It is also obvious that the splitting of the valence band underpotential.

              'the uniaxial stress would lead to the birefringence of the crystal. The piezo-

birefringence, whieh is an old topic of crystal optics, could be described

                                                                             42phenomenologically by the photoelastic constants or piezo-optical coeffieients.

The sound wave propagating in a crystal, on the other hand, produces the

dynamical elastic strain through the elastic displacements of compositional

atoms [see Eq. (2.70)]. This strain produces the fluctuation in the dielectric

constant of the crystal. The fluctuation in the dielectric constant is a linear

function of the elastic strain connected with the photoelasttc constant, as

                                                                'expressed by Eq. (2.111). Thus, the Brillouin-scattering phenomena are thought

                    'to be described by a phenomenological formalism analogous to that of the

intrinsic piezobirefringence phenomena. In Fig. 2-9, we show a schematic of

(a) the BrUlouin-scattering and (b) intrinsic-ptezobitefringence measurement.

Note that the change in the dielectric constant is arising from the dynamical
                                                              '
strain for the Brillouin-scattering experiment while this is arising from the
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static strain produced by applying a uniaxial stress for the intrinsic-

piezobirefringence experiment.

     Vifhen a uniaxial stress is applied to a crystal having diamond or zincblende

structure the crystal becomes birefringent. The intrinsic piezobirefringence

is usually measured with linearly polarized light which propagates along a

                                                    64dÅ}rection perpendicular to that of the applied stress.                                                        Two linearly polarized
                                                             'waves with the amplitudes E il (parallel to the stress direction) and EL-L(

perpendicular to the stress direction) will propagate through the crystal.

The components of the electric veetors of these waves, as a function of the

position x in the crystal, can be written as

                E" (x) = Eo exp[i(2Tn"x/X - tut)] exp(-2Trkllx/X) , (2.207a)

                El (x) = Eo exp[i(2TrnÅ}x IX - tot)] exp(-2Trk.tx lA) ,' (2.207b)

                        '
where Eo is the amplitude of the incident wave, and tD and X are the angular

                                                  de *frequency and wavelength in vacuum, respectively. n H == Rl+ ik" (ni= ni+
                        'ik LL) is the complex refractive index for !ight polarized parallel (perpendicular)

to the stress axis (n is the real refractive index and k is the attenuation

index, also called the extinction coefficient). Equation (2.207) represents

a wave traveling in x-direction with velocity c/n (c: light velocity in vacuum)

which is attenuated by exp(-2rkx/X). !n the inttinsic-piezobirefringence
                                                                  '
experiments, one measures the phase difference between the corap'onents of the

light polarized parallel and perpendicular to the stress axis. The phase

difference per unit path length (d) is given by

                2= 2T(nlr nÅ})/X • '(2.2os)

 In a region where the absorption is small (i.e., E2 cr O), the difference of

 the refractive indiees (nll- nÅ}) can be written as
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                                              '
                        '                                                              '                          22H                                    e -eJ- Ae
      A" =- (pll-"Å})=Il-I;-i"IIY-1+ni = i2noii 2ni ' ' (2'209)

               '                                                               '
where no is the real refractive index in the absence of the app!ied stress.

                                                            42The photoelastlc constant pijkl is defined by the equation:

                          - Ae..              A(' e )ij == E:I.:IEililieji.j = El pijklekl , (2•2!o)

                'where ( ! ).. is the reciproeal of the dielectric constant tensor. The strain
           i]        e
[e] and styess [X] tensors are related by a fourth-rank compliance tensor [Si:

              eij=ll SijklXkl , (2.211)
where S has the same tensor form as Eq. (2.114) or (2.139). The ptezo-optical

ConStant zijkl is also defined by the following equation:

                          - Ae..              A( g )ij =gl. F}il-i,jj = {1 TijklXkl •                                                                     (2.212)

                                                               92The piezobirefringence coefficient or defined by Yu and Cardona can now be

given from Eq. (2.210) by

                          AE..
                     ct=f' =-E eiiejjpijklSklnn . (2.213)
                                  rm

In Eqs. (2.210), (2.212) and (2.213), eij is the real part of the component

of dielectrie constant tensor. If the piezobirefringence measurement is

carried out in an opaque region (i.e., e2 = O), we must take into account

the contributions both from the real and imaginary parts of the dielectric

constant. Details of such a case will be presented in Chapter VI.

     Now, we show the effects of [OOI] and [110] stress for the zincblende-type

crystal. For the [OOI] stress, the strain tensor is written from Eqs. (2.113)

and (2.211) as '
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                     S12X O O

            [e]ool= O s12x o • (2.214)
                     '                                                          '                       o osx.                                11

Substituting Eq. (2.214) into Eq. (2.210) or (2.212), we obtain

            AE[oou =- el12(Pll - P12) (Sn - S12)X . ' (2.215a)

                                                           '

or
                                    '                          2            Ae[ool] "- ell (Tll- T[12)X • (2.215b)
                          '   '
For the [110] stress, the strain tensor becomes

                                      x14 o                            )X/2 S                     (s                        +s                                    44                          12                      11
           [e]11o= S44X/4 (Sn+S12)X/2 O • (2.216)
                          O O S12X

     ttWe can, thus, obtain

                                2                  Ae[11o] =- ell P44S44X (2.217a)
                                                                      '                                                                        '
or
                      '                                2                  Ae[11o]=-ell Tr44X •• (2.217b)
                      '
                '                                                               64Note that the result (2.217) is the same as for the [111] stress.
                                               '
     For the wurtzite-type crystal, the analysis is identical to that for

the zincblende-type crystal. However, it becomes more difficult compared with

that for the zincblende-type crystal beeause of the optically anisotropic

nature of this material. We now show a typical example of such analyses which

corresponds to the g" eometric configuration for the determination of the

photoelastic constant p66. In this case, the uniaxial stress is applied in

plane perpendicular to the e-axis. If we choose the coordinate system such

that the x-axis is parallel to the direction of the applied stress, the strain
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tensor becomes

                         SllX OO .
               [e]ie= O SI2X O •' (2.21s)
                          o osx                                    31

From Eqs. (2.210) and (2.218), we finally obtain

                                                            2             AeLL. = - elle22(Pn - P12)(Sll - S12)X = - en P66S66X , (2•219)

                 '
                                                       '
where
                                                                   '                     1              P66 =i (Pll-P12) , (2.220a)
              S66 =2 (Su-S12) • (2.220b)
     To first order in stress, the change in el(cD) can be expressed by39

                                                ae                                      ae                    SE        [Aei(tu)] == axi X = Zi.A,B,c ( aMii AMi + D{DÅ}iAcogi ) , (2•22i)

                  2where M = l<Ipl>l is the squared p-matrix element and the summation indicates

that contributions from the three valence bands must be included. The first

and second terms on the right-hand side of Eq. (2.221) correspond to the

contributions from the first-order ehange in the squared p-matrix elements

and interband transitÅ}on energies, respectively. To calculate the changes

in M. and tu ., we can use the orbital-strain Hamiltonian Eq. (2.66) or (2.85)
    1gl
as a Hamiltonian for the stress effect on the electronÅ}c band structure of

the crystal.

     By way of exainple, let us calculate the changes in tugi and Mi in the case

of the zincblende-type crystal for the [OOI] stress direction. As already
    '                '                                                                           "shown in Fig. 2-8, without spin-orbit splitting the valence band edge at k = O

in the zineblende-type crystal is a six-fold degenerate multiplet with orbital

symmetry rls• The spin-orbit interaction lifts this degeneracy into a four-

fold multiplet (rs) and a two-fold multiplet (r7). The spin-orbit Hamiltonian
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is93

              Eso=AilllO L'u' , .
                                                        '

where L is the orbital-angular momentum operator given by Eq. (2.

                      . 78is the Pauii-spin matrlces

    ux=[: oi] ' uy=[2. -oi]' Uz"[t -Oi] '

The total Hamiltonian is, thus,

               H=e +H .                    ev so

     Substituting Eq. (2.214) into Eq. (2.66), we obtain

        ' e.s, =- EH -g 6Eool(L.2 - ilt L2) ,

                                 'where

                     6EH =a (Sll + 2S12)X ,

                   6Eool =2b (Sll - S12)X •

From Eqs. (2.224), (2.225) and (2.75), the Hamiltonian matrix for

             75bands becomes

                      IB> IA> ic>
    '              ll7A..'6EH' ilitSEool O O
   11 fl li " O `gfiAso-6EH+ `ll6Eooi '!L:l6Eooi

                      o +eg6Eool -a23..-6EH

The diagonalization .of Eq. (2.227) gives

    ' IB,.                               IA,.                                         Ic,>

                  •BO                                         o

            ll HII-o A o ,
                          '                      o o c

   (2.222)

67) and u

   (2.223)

   (2.224)

   (2.225)

   (2.226a)

   (2.226b)

 the valence

   . (2.227)

  (2.228)
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where the eigenvalues are

    A = '- 2; Aso-6EH+ t AEool+ ll'[A..2+A.o6Eool+ 7(6Eool)2]-i2 , (2•229a)

                                                                '
    B = - !A - E - rfI E                              , (2.229b)          3 so                 H 2 OOI

    C = - gA..-6EH+ :21`SEool- ;i'IA..2+A..6Eool+ 2(6Eool)2]!i2 . (2.22gc)

ASsuming 6Eool << Aso, the changes in the band-gap energies to first order

in stress are given from Eq. (2.228) by

            AE =-!A + 6E -! 6E                                               , (2.230a)              gA 3 so H                                        OOI                                    2

            AEgB =- gi A.. + 6EH + li 6Eooi , (2.23ob)

            AEgc =g A..+6EH • (2.23oe)

The eigenveetors of Eq. (2.227) to first order in stress ean be expressed as

             EA,.=]A>+6EOOi lc> , (2.23ia)
                          ,12A
                             so

             IB,> == IB> , (2.231b)
                          6E                            OOI IA> . (2.231c)             ic'> = Ic> +
                          f2A
                             so

     The squared p-matrix element M is given by
                                                                          '

             M- l<clll';li>I2 , (2.232)
      +where e is the unit polarization vector of the electric field of the inÅëident

              +radiation and p is the linear mornentum operator

             + -fi             PÅÄ T•V• . (2.233)
le> is the conduction-band wave function which transforms as an atomie s function
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under the operations of the group of the tetrahedron [see Eq. (2.62)]. The

ehanges in the squared p-matrix elements can be obtained from Eq. (2.232) by

replacing li> by the perturbed wave function IA'>, IB'> or iC'> of Eq.

(2.231). The strain-dependent p-matrix elements are now written as

         MITA (e) = 1<clp"IA'>12== 1<cl'{•Igz IA'>l2 cr g p2[i+(6E..i/A..)], (2.234a)

         M-l,A (e) = l<clpilA'>I2= I<cl tl•lgx IA'>12 or il; p2[i-2(6Eooi/A..)], (2.234b)

         MltB (e) = l<clptlIB'>l2- l<cl tl.lleez IB'>l2 -o , . (2.234c)

         MIB (e) = I<clp-LIB'>l2- ]<cl [ll.Igx IB'>l2 - ll p2 , (2.234d)

         Mtlc (e) = i<clplllc'>I2= l<c1"ll.Igz lc'>l2 or il; p2[i-2(6Eooi/A..)], (2•234e)

         M-bc (e) = l<clp-i-lc'>l2= l<cl"il.igx lc'>l2 t2i• p2[i+(6EooiiA..)], (2•234f)

where subscripts Il andÅ} indicate light polarized parallel (z) and perpendicular

(ar) to the stress axis [OOI]. In Eq. (2.234), we used the fo!lowing relation:

  '
      p2 - l<.+l ll.gx Ix+>l2 - I<.+1 tll.gy ly">12 == l<ctl e.gz lz+>I2 (2.23s)

with similar expressions for spin down. This relation has already been shown

                            94                                Vsing Eq. (2.63), the zero-strain p-matrixfrom symmetry considerations.

elements are also written from Eq. (2.232) as

         MzA(o) = l<cl il.lgz IA>l2 =g p2 , (2.236a)
                                                           '
         }fxA(o) - l<cl "ll. gx IA>I2--t p2 , ' (2.236b)

                   -
         MzB (o) = 1<el ll. gz lB> l2 =o , • (2.236c)
                                                         '
         MkB(o) = 1<cl ill. gx IB>l2=ilt• p2 , (2.236d)

         Mzc(o) == l<cl e.gz lc>l2=il; p2 , (2.236e)
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                                                       '        tvfxc(o) - l<cl ill.Iaax lc>l2 = il;• p2 .• (2.236f)

From Eqs. (2.234) and (2.236), we obtain the stress-induced changes in the

squared p-matrix elements as follows:

         AMA =( AMIIA - AMu,A)= P2(6Eool/A..) , (2•237a)

                                                                 '
         AMB =( A)C IIB - A}{ Å}B)-O . , (2.237b)

         ANc =( A)IIIc - AMIc) :- P2(6Eool/A..) • (2•237c)

The change in the real part of the dielectric constant can, thus, be obtained

by substituting Eqs. (2.230) and (2.237) into Eq. (2.221). The photoe!astic

COnStant, pn - P12, can be expressed from Eq. (2.215a) in terms of the

stress-induced change AEI as

                             - AE[ool]
             Pll-Pl2=en2(sll-s12)x ' (2'238)

For the [110] or [111] stress direction, the analysis is alTnost identical to

that for the stress along [OOI]. The piezobirefringence analysis for the

wurtzite-type crystal is also identical to that for the zincblende-type

crystal. In Section 6.2, we will ebtain concrete expressions of the photo-

elastic constants for both the zineblende- and wurtzite-type crystals in terms

of the model dielectric constants presented in this Section.
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               CHAPTER III

EXPERIMENTAL PROCEDURE AND TECHNIQUE

                            3.! INTRODUCTXON

     The objective of the present study is to measure the spectral dependence

of the Bri!louin-scattering cross sections in various seniconductors. During

the past ten years inelastic-!ight-scattering speetroscopy has developed into

one of the most powerfuZ and most widely used optical techniques for the

study of the properties of the elementary excitations in solids.8 This has

        'been, to some extent, a consequence of the availability of lasers as excitation

sources and of improved spectrometers and associated electronics for recording

weak light scattering signals. In piezoelectric seniconductors, where the

interaction of phonons with free carriers is partieularly strong, Hutson, McFee

         12and wtiite            demonstrated that acoustical waves could be amplified by carriers
        '
with drift velocity exceeding the sound velocity. When high drift fields are

                                                                   ,applied, intense packets of acoustical waves (domains) are observed to travel
                                              '
a!ong the sample at the sound veloeity. It is possible to amplify a seleeted

group of such phonons by a factor of the order of lo9 above their thermai

                 18                                     15equilibrium value.                     Zucker and Zemon                                       were first to examine the speetrum of

these phonon domains in CdS by means of the Brillouin-scattering technique.

                                                                   25The acoustical-phonon domains have first been used by Garrod and Bray to

investigate resonance phenomena of Brillouin scattering in GaAs, where the

intense acoustical-phonon domains provide strong scattering signals and thus
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permit the use of a continuous light source monochromized by a conventional

monochromator instead of a laser. This technique has also been extended by

us to semiqonductors with weak piezoelectricity such as znse,95 znTe71 and

          96             by applying the acoustical-domain injection method.ZnxCdl-xTe

     In Seetion 3.2, we present some of the physical properties of the materials

used in the present study and the sample-preparation rnethod. Next, in Section

3.3, we discuss the details of the Brillouin-scattering technique. In this

Section, we also review the theory of acoustoeleetrical amplification and

present the acoustical-domain injection technique. Moreover, we describe

brief!y the experirnental arrangement used in the present study.

                  3.2 MATERIAL AND SAMPLE PREPARATION

3.2.1 Matepial

     All measurements reported in the present study were carried out on bulk,

single crystals, ZnSe, ZnTe, ZnxCdl-xTe, CdS, GaP, GaSe and GaS. The ZnSe

                                                                        *crystals were provided from the Matsushita Electric Industrial Company. The

CdS crystals used were ultra-high purity (UHP) grade and purehased from the

Eagle Picher Company. The GaP crystals were provided from the Sumitomo

                          ft kElectric Industries, Ltd. The GaS crystals were provided from Tohoku University.

The ZnTe, ZnxCdl-xTe and GaSe crystals were grown by the Bridgrnan method or the

                              97traveling heater method (TII)6)                                 in our laboratory. In Appendix, we will,describe

the method of TH]vr used in the present study. In Table 3-1 are listed the crystal

structure, eonduction-band minima, growth method, electrical resistivity and

eonduction type for each material. Note that the layered structure of rll-V!

*[I]he author is gratefui to Dr. M. Fukai for providing the ZnSe crystals, to
 Mr. K. Matsumoto and Dr. T. Suzuki for providing the GaP crystals, and to
 Dr. Y. Sasaki and Prof. Y. Nishina for providing the GaS crystals. -



Table 3-1. Somephysical and electrical properties of the rnaterials used in the present study.

Material Crystal
Structure

Conduction-Band
Structure

Crystal--Growth
Method

Resistivity
  (st ' cm)

Conduction
Type

Remarks

   ZnSe

   ZnTe

ZnxCdl-xTe

   CdS

   GaP

   GaSe

   GaS

zincblende

zincblende

zincblende

     .wurtz-te

zincbiende

layer type

layer type

r

r

r

r

X

M

M

(direct)

(direet)

(direet)

(direet)

Qndirect)

(indirect)

(indirect)

 Melt Growth

 Melt Growth{
    THM

    THM

 Melt Growth

  Czochralski

  Bridgman

  Bridgman

   79 10 - 10i os'1

    N 20

    os 50

    N 50

    N 30

    23     N 3Å~103Å~10

n

n

P

P

p

n

P

as-grown

Zn-treat.

1.0>x>O.5

    t

    +t

t

tt
Provided

Provided

from

from

the Sumitomo Electric

Tohoku University.

Industries.

`

oo
pt
L
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compounds, GaSe and GaS, gives rise to a strong anisotropy in their physical

                                                            47properties due to the singularity of the crystal structure.                                                                Such an
                                                        '
anisotropic nature will be discussed in detail in Chapter X. In order to

study some-effects of the crystalline imperfections on the speetral dependence

of the Brillouin-scattering cross sections, we have used two kinds of ZnTe and

ZnSe single eryst.als. For ZnTe one is the single crystal grown by the
                                      'conventional Bridgman inethod and the other is that grown by the THM. The THIyl

belongs to the solution growth and is a suitable for the growth of perfect

crystals. Two kinds of samples for ZnSe, on the other hand, were prepared;

one is the as-grown sample grown by a melt-growth technique and the other is

                            98that purified in liquid Zn. We made this purification at 1000eC for about

30 hours, where the crystals were sealed in evacuated quartz tube with Zn metal

(6-N grade). The Zn-purification is known to be effeetive particularly in

removing zn vacancies and noble-metal impurities such as cu and Ag.98 The

ability of this purification technique will be manifested from the photo-

1uminescence measurements [see Chapter V!Il.

3.2.2 SampZe Prepavation

     All the samples used were cut in the form of parallelepipeds with dimensions

of about O.6 Å~ 1.5 Å~ 5.0 irrrn. The crystal orientation of all the sampies was

determined by means of the X-ray Laue back-reflection method or from the

cleavage properties of the crystals. They were mechanically polished, chemieally
                                                                           '
etched at rooTn temperature in a HCI : HN03 = 1 : 1 mixture (ZnSe, ZnTe, ZnxCdl-xTe

and GaP) and a dilute HCI (CdS), and polished breafly with Syton X30 (Monsanto).

The optical-flat surfaces of the layer-type compounds GaSe and GaS were obtained
               '
by cleavage with a razor blade and used for the measurements without any additional

suTface treatment after this step, where the surfaces are perpendicular to the

e-axis (i.e., c-planes).
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(a)Tl-mode
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FIG . 3-1.   Schematic drawing of the sarnples used for the
acoustical-domain injection method (zineblende-
type crystals). The acoustical-phonon domains
can be produced by applying a pulse voltage
across the CdS specimen. '
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FIG. 3-2.   Sehematic drawing of the sample used for
the Brillouin-scattering measurements at
liquid-nitrogen temperature. The sample
was mounted on a eover glass and iTnrnersed
in liquid nitrogen contained in a glass
Dewer.
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     The Brillouin-scattering measurements were carried out by using the

acoustical-phonon domains amplified in the piezoelectrig semiconductor CdS.

Indium eleetrical contacts were made by vacuum evaporation onto the ends

of the CdS samples. !n order to obtaÅ}n a strong phonon flux in senieonductors

with weak piezoelectricity such as ZnSe, ZnTe and GaP, the acoustical-phonon

domains ampiified in CdS have been transmitted into such seniconductors through

the end•-bonded surfaces by making use of the acoustical-domain tnjection method.
                                                                              '                                                                             '                                                                             '33,34       Indium layers were deposited for this method by vacuum evaporation onto

the end-surfaces of CdS and specimens, and they were bonded by heating the

evaporated indium layers. Figure 3-1 shows a schematic drawing of the samples

used for the acoustical-domain injection method (zincblende-type crystals).

The intense acoustical-phonon dornain was produced by applying a pulse voltage

across the CdS specimen, where the rod axis of CdS was perpendicular to the

e-axis, and the acoustical-phonon domain traveling along the rod axis was

excited in CdS with atonic displacement parallel to the c-axis (T2-mode). The

indium layer made in such a way provided a high-transmission efficiency of the

acoustieal-phonon domain from CdS into the specimens especially for lower-

frequency phonon domains. By way of example, we obtained transmission efficiency

up to 90 7. for ZnSe at O.2 GHz phonon frequency. Details of this teehnique will

be presented in the following subsection [Section 3.3.4].

     In order to clarify some temperature effects on the spectral dependence

of the Brillouin-seattering cross sections, we have carrted out the Brillouin-

seattering experiments at room temperature and low temperature (77 K). For

measurements at 77 K, a sample was mounted on a cover glass, as shown in Fig.

3-2, and was immerse'd in liquid nitrogen contained in a glass Dewer.

                  3.3 BRIL:L,OUIN-SCATTERING TECHNXQUE
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3.3.1 Expe?imentaZAopveahgement
                                                                    '
     The experimental arrangement is divided into four bloeks in the following

and each examined in tern. Figure 3-3 shows a schematie diagram ef the experimental

arrangemeng used in the Brillouin-scattering emperiments.

  '             '
rl) 0ight Soztor?ce and Monoehor)omato?

     Resonant-light-scattering measurements taken with a few discrete laser lines

may sometimes miss sharp structure between diserete points. This can be avoided
                '
by usÅ}ng a discrete laser 1Å}ne and tuning the band-gap energy with an external
                                                                '                                                                           11perturbation, e.g., ternperature and uniaxial stress. Using this method, Pine

has first reported resonance phenornena of the Bri!louÅ}n-scattering cross sections

in CdS, where the fundamental absorption edge of this Tnaterial is thermally

tuned through the incident radiation at 514.5 nm (Ar+ laser). The intense

acoustical-phonon domains, however, permit us the use of a continuous non-

coherent light source instead of a laser. Xn the present study, we used a

xenon flash lamp (SUN?AK, GT PRO 4011) as a !ight source instead of a tunable

dye laser. This light source enabled us to measure resonant Brillouin scattering
     '
in the wide spectral range from infrared to ultraviolet region (1.0 - 4.0 eV).

                                                'The monochromator was a JASCO, CT-50S, single pass instrument. This was

calibrated with the emission lines from a mercury arc and He-Ne laser line

(632.8 nm).

(2] CiptieaZ TtxhZe and SmpZe EoZde"

     The sample was mounted on a goniometer stage fitted with a rotatable table

(CHUO PRECISION INDUSTRY CO. LTD) which served to determine the angle of

incidence of the light. A photomuitiplier tube for detecting the scattered
                                         '
light was attaehed to a rotating arm which was used to select the desired

seattering angle. The glass Dewer used for measurements at 77 K was also placed

on the rotatable table, where the goniometer stage was removed from this table.
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(3) Domain Genepating System

     Synchronization of optical and electronic pulses were necessary to measure

scatteTing from the traveling domain when the pulsed light source was at its

peak intensity. The domain was generated by the application to the CdS sample

of a pulse of about 1000 V and several vsec duration depending on the sample

                       'length. The high-voltage pulses were obtained from a Velonex, Model 350, high-

power pulse generator. A photo-diode and delayed trigger equÅ}pment in Fig. 3-3

were used for this synchronization system.

 (4) Deteeto? and DispZay

     The incident light dispersed by the monochromator was foeused by lenses,

Ll and L2, and polarized by a Gran•-Thompson prism. The size of light spot

at the surface of the specimens was about O.5 imn in diameter. The scattered

light was detected by a photomultiplier tube (RCA 7265) with a Polaroid HN32

analyzer, and dtsplayed on a strage oscilloscope (Tektronics 7623A). The intense

acoustical--phonon domains provided strong Brillouin-scattering signals, and

thus we measured these signals without the use of conventional photon counting

or phase-sensitive detection system.

3.3.2 Gvowth Mechanisn7 of AeousticaZ-Phonon Domain

     ln this subsection, we review the small-signal theory of acoustoelectrical

              14amplification.                  The inereased lnterest in the physical phenomena due to

interaction between free carriers and acoustieal waves in solids was triggered

                                                                        12off by the experimental results reported by Hutson, McFee and White (1961)

on acoustoelectrical arnplificatiin in CdS. They observed substantial

amplifieation of ultrasonic waves in photoconductive CdS, produced by applying

a dc electric field in the direction of wave propagatton. The amplification

was found to be so large that sound waves eou!d be amplified frorn thermal

equilibrium amplitudes to values in the non-iinear region within distance of
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less than a centÅ}meter. The large amplitude acoustical waves had a strong

influence on the current-voltage characteristics of the crystals and gave rise
                                                          -                                                                 '                 '                                      'to non-uniform electric field distributions, and in some eases to current

instabUities. These non-linear effects were investiga-ted by a number of

different experimental methods such as field probing, microwave transmission

                                   32and Brillouin-scattering techniques. Such an acoustoelectrical effect has
                                                          99-101                                                                      102,103.been found in many piezoelectrie seniconductors sueh as CdS,                                                                 CdSe,
cdTe,104,105 zno,106,107 zns,108 GaAs,109,llO Gasb,111 Insb,112 Tel13 and se.114

     '
     The linear theory of acoustoelectrical amplification in piezoelectric

              14semiconductors                 is in satisfactory agreement only for small signals. When

a sound wave propagates in a piezoelectric crystal, it will be aecompanied by

a piezoelectric Eield which in tern acts on the mobile charge carriers that are

present. Let us assume that the acoustical waves produce a piezoelectric

                                         'potential Uo in the absence of free carriers. If free carriers are present,.
              '
Uo is decreased due to screening effect. The degree of screening depends on

the ratto between the wave vector ( (llll = q) of the sound wave and Debye

screening length

                      LD =( ellBT )-i. , (3.o
                      •en                                o
where e is the dielectric constant and no is the free carrier concentration.

The piezoelectric potential can now be given by

                                                       '
                  u=uo(qLD)21[1+(qlb)2] . (3.2)
                                                           '
                                                       '
If Xs = 2Tlq is long compared with LD, the screening is strong while the free

carrier effects become negligible when Xs is small compared with LD•

     The sma11-signal expressions for the acoustical dispersion and amplification

                                         Z4(attenuation) were first derived by White.                                            We assume that non-local transport

effects can be neglected, i.e., that the following condition is satisfied:
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                            qZ <<1 , (3.3)
                                           '
where Z is the free carrier mean free path. This condition enables us treatment
                                                             '
of the electron-sound wave (acoustoeledtrieal) interaction from a classical

         '
point, of view. The energy and momentum may be transferred from the mobile

charge carriers to the sound waves when the drift velocity exeeeds the sound

velocity by the application of a sufficiently high eleetric field. The acousto-

electrical interaction may, thus, be proportional to the drift parameter
                                                     '
                                Vd '                        y=1-- , (3.4)                                vs

where vd = yE is the drift velocity [u: carrier mobility, E: external electric

field] and v is the sound velocity. The condition ql >> 1, on the other hand,
            s
requires much complicated quantum-mechanical descriptions. The experimental

data showed that in CdS, as in other piezoelectric semiconductors, the free

carrier mean free path was normally very short. We can, therefore, safely

consider that the condition (3.3) is satisfactorily fulfilled. Then, with

the gondition (3.3) one can use a classical macroscopical deseription. The

basic equations of state describing a piezoelectric crystal are

                    T= CS-eE , (3.5a)
                    D= eS+EE , (3.5b)
where C is the elastic stiffness constant at constant electric field, S is the
                      '
strain [given by the same expression as Eq. (2.70)], e is the piezoelectric

constant, E is the electric field, T is the stress and D is the electric

displacement. Normally, the quantities in Eq. (3.5) are tensors, but they
                                         '
may be considered scaler if there is only one piezoeleetric constant coupling

an electric field in the x-direction to an sound wave traveling in the x-direction,

Equation (3.5) is supplemented by the wave equation, Poisson's equation, eharge-
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continuity equation and expression for the current density (J):

                        22 •                             aT .                       es                     P 2= 2 , ' •(3.6a)                             Bx                       st

                            '                        gl/ÅÄ -- -e(n-no) ,. ' (3.6b)

                         '

                        aJ sn .                        "5i.T =e "511 , (3.6c)

                                       an                         J=nevE+eD -isTt , (3.6d)

where p is the density of crystal, n is the total free carrier concentration,

no is the thermal equiiibrium concentration and D is the diffusion constant.

Xn the small signal theory, the electrÅ}c field may be written as

                                                                 '
                   E= Eo +El exp[i(qx- tut)] , (3.7)

                                              'where Eo is the field due to an applied dc voltage and El is the sinusoidal

field due to the sound wave traveling in a piezoelectric medium. The atomic

displacement (u) of the sound wave is of the form [see Eq. (2.69)]:

                   u(x, t) =u exp[i(qx - cot)] . (3.8)
                      '

Using Eq. (3.5a) for the stress, the wave equation in an elastic medium beeomes

                 , ( ]i: ) = .gÅÄ/ = , ( gi; ) - . ( .g+/ ) . . (3.g)

     From Eqs. (3.5) - (3.9), one can calculate the electronic dispersion and

                                            'amplification (attenuation) of the sound waves. The final results for the

sound velocity v and the amplifieation coefficient ct due to the aeoustoelectrical
               s
interaction can be written as
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                                  to tu                          2 i(f't'
         v. =(g )!i2{i +!lli ii-y2 .(;lt. .il.i; )2 ]} (3'iO)

and

                            tu y          or=K2 2 tu. ; es2 2 ' (3'11)
                  Y +(T) (1+..)
                                    cD

where K2 is the electromechanical coupling constant and coc and tuD are the

conductivity and diffusion frequencies, respectively, defined as

                       o noep                  coc EE=e (3•12)
and

                  a), -- (g)S . (3.i3)

In Eq. (3.12), o is the electrical conductivity. The acoustoelectrical

amplification occurs when the drift velocity vd exceeds the sound velocity

vs while the attenuation aceurs when vd is slower. than vs. (Pifhen y is negatÅ}ve

      'the attenuation is negative, that is, the traveling wave grows in amplitude

instead of diminishing). The numerical value of ct as a function of co has a

maximum at co equa! to

                  al.=(tu."ID )-i2 ' (3'l4)

                                                               32                                             2     The electromechanical coupling constant K can be written as

                         2-                    2e                   K=ETt • (3.!5)
In the case of the plane acoustical waves propagating in crystals of practical

dimensions only the longitudinal piezoelectric fields are of importance for the

'
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acoustoelectrical coupling. The waves having a non-zero longitudinal field
                        'component are termed "piezoelectrically active" waves. Examples ef piezo-

electrically active waves are longitudinal waves propagating along the e-axis

in the wurtzite-type crysta!s [CdS, CdSe, ZnO, etc.] and shear waves propagating

perpendicular to the e-axis in the wurtzite-type crystals with atomic

                                                    32displacement along the e-axis (i.e., T2-mode phonons).                                                        The T2-mode phonons

in the zincblende-type crystals are a!so piezoeleetrieally active waves (i.e.,

                               'propagating in the [110] direction with shear polarization parallel to the [OOI]

                                                                   'direction.1i5 since the quantities in Eq. (3.is) are norrnany tensors, K2

depends strongly on the propagation direction of the sound waves (i.e., K2 has

strong inisotropy) and it has a maximum value in the direction of propagation
                      '
of the piezoeleetrically active waves. Table 3-2 shows the electromechanical

coupling constants K2 for the piezoe!ectrically active shear waves in various

                                              'II-V! and IU-V seniconductors. In this case, Eq. (3.15) can be written using
     ,               '
the tensor comPonents as

                    2 e15
                     2=ec (3•16a)                   BC[i
                             44                          11

for the wurtzite-type crystals, and

                    2' e14 •                     2=ec . (3•16b)                   '(ii
                             44                          11

for the zincblende-type erystals. The materials stated in Table 3-2 are

classified into two categories; the strong piezoelectrics [II-VI compounds

(wurtzite)] and weak piezoelectrics [II-VI compounds (zincblende) and III-V

compounds (wurtzite)]. The stars (*) indicate the rnateria!s exhibiting the
                   -                                           '
acoustoelectrical instabilities.

     Next, we consider the build-up of acoustical-phonon domains from the

    'thermal background in piezoelectric semiconductors as a result Qf the application

of an external voltage pulse. It suffices here to consider only the piezo-
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,

Table 3-2. Eleetromechanical coupling constants
II-Vr and I!I-V semieonduetors.

for various

Material K2
 T2

CdS
rk

cdSe

   *ZnO

ZnSe

ZnTe
   rk
ZnS

CdTe

GaAs

InSb

InAs

GaSb

*

`k

*

*

rk

         -2 a,b3.70 Å~ 10

         -2 a,b1.80 Å~ 10

         -1 a,b1.11 Å~ 10

         -4 b6.75 Å~ 10

2.89

6.33

6.70

3.79

    -4 bÅ~ 10

    -3 bÅ~ 10

    -4 bÅ~ 10

    -3 cÅ~ 10

         -3 c1.01 Å~ 10

         -4 c4.62 Å~ 10

         -3 c3.55 Å~ 10

a Calculated froin Ref
b Calculated from Ref
c Calculated from Ref

. 128.

. 129.

. 130.

*
Materials exhibiting the acoustoelectrical instabilities,
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electrieally active shear waves in a narrow bandwidth near the frequency of

maximum gain [see Eq. (3•14)], propagating with velocity vs toward the anode

(in n•-type rnaterial). Upon application of a current, the energy density O

in a coordinate system moving with the flux, grows at a rate

                 2ÅÄ/=ct.o+ctooo , (3. w)
       '
where orn is the net gain, i.e., the difference between the acoustoelectrical

gain or and non-electrOnic attenuation coefficient 1/Tp and Oo is the acoustical

energy density at thermal equilibrium. From Eq. (3.11), the gain or is given

by the following fovai:

                           Vd                 ct=ct (--1) . (3.18)                      ac                           v                            s•
                                                                        1The term ctoÅëo is obtained from detailed balance arguments; for oro = ctac + r ,
                                                                        P
dfpldt = O as required for vd = O and O = Åëo. Integrating Eq. (3.17), we

obtain the amplified acoustical-energy density

            A            Åë(t) E tp (t) - Åëo = Åëo (1 + A)[ e'xp (ct.t) - i ] , (3• 19)

with
                   A=Yt -- (. +-L )!. . (3.2o)
                       or ac T n                •n P
Equation (3.19) represents that the acoustical flux grows exponentially from

                               'therrnal background. The Brillouin-scattertng studies of the acoustical-phonon

domains showed that the amplified-phonon frequency distribution initially

peaks near tu [Eq. (3.14)] and downshifts as the domain propagates through
            m
the crystals probabl-y due to anharmonic parametric conversion.18'116 yamada

et az.18 reported that in cds the growth rate and frequency dependence of the

           'aeoustical-phonon doinains were all found to be consistent with the small-signal

theory when the domain intensity was in the weak-flux regÅ}me (less than about
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io-3 J/cm3). in the subsequent stages of growth (i.e., in the strong-flux

regime), however, many interesting non-linear effects were found by them in

contrast to the small-signal theory. In the latter subsection (Seetion

3.3•4), we will present the data of attenuation coefficients of the acoustical-

phonon domains as a function of phonon frequency. These data also reveal

the presence of non-linear phonon-phonon interactions.

3.3.3 Xneident and SeatteTing AngZes
                '
     First, we consider the Brillouin-scattering process in an isotropic medium,

The conservation of energy and momentum can be written as [see, e.g., Eqs.

(2.31) and (2.I07)]

                    edÅ}'tus "Å} tuq , (3•21)

                    ++ +                    ki-k. =Å}q , (3.22)

            +ÅÄwhere tu and q are the angular frequency and k-vector of the acoustical phonon,
       q
                                       +respectively. The angular frequency and k-vector can be connected by the

following equations:

            toi= fi ikil, tu. =X!R.l and 'toq= v. )61 ,• (3•23)

where n is the refractive index, c is the velocity of light and v is the
                                                               s
sound veloaity. since the conditions vs << c and cIlil >> vs ]ql are normany

fulfilled, one obtain$

                 edi = tu. and llil tlg.l • (3•24)

Equations (3.21) - (3.24) lead to the condition that

                    Ililsin 6i=lql/2 • (3•2s)

or
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                        2nv
                    f= ASsin 6i , (3.26)
                          o'                                                         '                                                                '
      Awhere e. is the angle between the ineident-optical beam and the norTnal to
       i
              ++the acoustical k-vector q (i.e., incident angle), f = (Dq/2Tr and Xo is the

wavelength of light in vacuum. It is noting from Eq. (3.24) that the scattering

angle es becomes equal to the incident angle ei (es is the angle between the

                                                                              '                                                      ++ •scattered-optical beam and the normal to the acoustical k-vector q). Note, '

                             AAadditionally, that the angles ei and es are the internal angles in the medium.
     '
Using Sne!1's law

                                     A                      sin e.=nsin e. , (3,27)                           -1

one can rewrite Eq. (3.26) as

                          2v
                      f:xS sin ei • , (3,28)
                            o
where e. is the incident angle outside the seattering medium [see Fig. 2-9 (a)].
       -
                                                                             'Finally, from Eq. (3.28) one obtains the external incident angle Oi and scattering

angle Os as follows:

                                    fx                  ei=e. -- sin-1(2.0) . (3.2g)
                                      s

     Next, we consider the Brillouin-scattering process in an anisotropic

mediurn.63'l17 In this case, we must take into account the diehroism of aniso-

tropic material because the scattered and incident lights have usually different
           '
polarizations. Let us denote n. and n as the refractive indices of the
                              -S
ineident and scattered lights, respectively. In direct analogy to the case of

the isotropic material, one write Eq. (3.23) as

            '                             co. 2rrn `                       lftil=mt ni= xi , (3.3oa)
                                       o-
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                at tu +tu tu. 2Tn         lk.l = 'E? n. = JLES n. = 'EIL n. = AoS • (3•3ob)

Considering the energy and momentum eonservation, one finds

                       nn              fa v. [3il; sin 6i+xg sin 6.] , (3.31a)
                           '

              nn              3il; eos 6i=Ng cos 6s . (3.3ib)

From Eq. (3.31), we obtain

                     X .2
           sin 6i= 2n?.vs [f+ fxS2 (ni2 -ns2) ] , (3.32a)
                                   o

                     x v2
           sin 6d= 2.l.. [f- fxS2 (ni2-ns2) ] , (3.32b)
                                   o

Using Snell's law

                            AA           sin e.=n. sin O. and sine =n sine , (3.33)                111 SS                                                        s

we finally obtain

                             A v2
               ei = sin-i{ 2.0 [f+ S2 (ni2 - n.2) ]} ,                                                                      (3.34a)
                               s fX                                         o

                             X v2,
               e. =sin-i { 2.0. [f- f: 2 (ni2 - n.2) ]} . (3.34b)

                                         o

     Table 3-3 lists the experimental configurations for the Brillouin-scattering

measurements carried out in the present study. The schematic diagrams of the

Brillouin-scatte'ring measurements for the wurtzite-type crystal CdS are shouTn

in Fig. 3-4. The T2-mode acoustical-phonon domain [Fig. 3-4 (b)] is obtained

by the acoustoelectrical amplifieation [see Section 3.3.3], while the Tl-



Table 3-3. Experimental configurations for the Brillouin-scattering measurementsused in the present study.

}laterial PhononMode Acoustieal
            "Propagation; X

Acoustieal
             ÅÄPolarization; T

lncident Light+
Polarization; I              E

Scattered LighS
Polarization; I              k

Domain

ZnSe

   ZnTe

Zn Cd       Te  x 1-x

CdS

GaP

GaSe

GaS

t{ Tl-mode

  T2-mode

  Tl-mode
( T2-mode

  T2-mode

  Tl-mode

  T2-mode

  PL-mode

  Tl-mode{
  T2-rnode

  Tl-rnode

  Tl-mode

rqll [i-io]

  ll [ooi]

  ll [i-io]

  11 [ooi]

  ll [ooi]

  ie-axts

  iC-axis

   l c-axis

  II [iio]

  ll [ooi]

  lc-axis

  Å}c-axis

+T II [110]

11 mo]

ll [no]

Il [iio]

11 [no]

Å}c-axts

ll c-axÅ}s

 1 c-axis

ll [no]

II [uo]

iC-axis

J-c-axis

"! Ell [no]

 ll [no]

 ll [no]

 Il [uo]

 11 [iio]

 lc-axis

 Il e-axis

 li       .   c-axls

 ll ["o]

 ll [no]

 lc-axis

 Å}c--axis

rk Å} iE

  Å}iE

  Å}r,

  Å}iE

  -Lllf,

  Å}tE

  lS,
   ll li,

   -L EI,

  lt,
   Å} r,

  Å}t
      E

(r,Å}

(r,i

(t, 1 1

(f,1

(r,l

+c)

ÅÄ
c)

•e)

"c)

•c)

r

I

I

1

T

M

A

M

1[

I

r

I

I:

M;

A:

Injected dornain ]

Mode-converted domain

Acoustoelectrically amplified dornain

1
p'
oN1
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  Schematie diagrarns of the Brillouin-
seattering measurements for the wurtzite-
type erystal CdS. (a) Tl-mode phonon domain;
(b) T2-mode phonon dornain; (c) PL-mode phonon
domain. ai and as are the incident and scat-
tered light polarizations, respectively.
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[Fig. 3-4 (a)] and PL-mode phonon domain [Fig. 3-4 (c)] are obtained by mode

conversion upon partial reflection of the T2-mode phonon domains. We can

calculate the incident and scattering angles for the zincblende-type crys.tals

from Eq. (3.29). While those for the murtzite-type crystals may be calculated

from Eq. (3.34). The scattered and incident lights have almost the same

polarizations for the case of the Tl- and PL-mode phonons [see Table 3-3], i.e.,

n. !n bl n for the Tl-mode phonons and n. =n =n for the PL-mode phonons
                                         lse      so -
(where n and n are the refractive indiees for the ordinary and extraordinary
        oe
rays, respectively). The calculated angles for the Tl- and PL-mode phonons,

thus, accord well with those of derived by assming an isotropie medium. This

arises from the fact that if the scattering medium is almost isotropic, we

have n. = n and in this case Eq. (3.34) can be reduced to the simple isotropic
      -S
form (3.29). However, the incident and scattering angles for the T2-rnode phonons

must be calculated by exactly taking into account the anisotropic nature of the

refraetive indiees (because n.=n and n !n ).
                            Ie so
3.3.4 AeoustieaZ-Domain Jng'ection Method

     In this subsection, we describe an outline of the acoustical-domain injection

method.33'34 using this method, it is possible to extend studies of resonant

Brillouin scattering in various seniconduetors with weak piezoelectricity. This

technique also enables us the investigation of the propagation behaviors such

as lattice attenuation and phase velocity of the high-frequency phonons in many

                                                      118-120materials by means of Brillouin scattering. Ando et aZ.                                                              have first

demDnstrated an availability of this method by injecting the acoustical-phonon

domains from cds inte znse. subsequentiy, yamabe et az.33'34 have derived

injection (transmission) efficiency from theoretical aspects and compared it
                                                                        '
with the experimental data. Good agreement between the calculation and experiment

has been found in various systems such as CdS-ZnSe, CdS-ZnTe and CdS-GaP.

     Acoustical wave propagating in an elastic medium can be written in terms of
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the stress Tij and strain Skl. We start from the two basic equations [see

Eqs. (2.70) and (3.9)]:

                           2.                          D u.                      p( Bt2- )= g.j Tij , (3.3s)

                                             Bu                     Tij =CijklSkl=Cijkl B.l , (3•36) ,

                                                                   '
where rj is the j-component (j = x, y or z) of the orthogonal coordinates, ui
                                                        '
                                                                     is theis the i-component (i = x, y or z) of atomic displacement and C                                                                ij kl

component of the elastic stiffness constant tensoT. These equations can be

written by introducing the atomic-displacement velocity as

                         evÅ}D '                       Pat -- er. Tij , (3•37)
                                 J

                                        Dv                        .eHT =c k                                                                      (3.38)                                   ijkl Brl '                         Bt ij

                                                                     121Now, we introduce the following complex acoustical Poynting vector:

                                                  '                     iF..='liZti "J"• Tij , (3•39)
                                ij

where r. is the unit vector of the i-direction in the orthogonal coordinate
       i
system and v6 stands for the complex conjugate of v.. The acoustical-power            JJpropagation can be estimated by solving Eqs. (3.37) - (3.39). Next, we consider

the boundary condition of the acoustical waves at interfaee of the two different

materials (i.e., at the bonded surface). !f we assume that the interface is

rigidly bonded so that there exists no slipping, the boundary condition ean be

given bY

                           [Vi ].=[Vi ]d , (3.40)
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where the suffices s and d stand for the bonded two Tnedia. This equation means

                    'that the atomic-displacement velocity vi is continuous across the boundary

surface. If we also assume that the external traction force is continuous

across the boundary surface, the boundary condition for the stress can be written

as

                  [Tkj ].'[n]=[Tij ]d•[n] , (3.41)

where [ n ] is the unit vector normal to the boundary surface.

     yamabe et az.33 proceeded nuinerical calculations to obtain the transmission

efficiency in the following steps; (i) Equations (3.37) and (3.38) are solved

by using the boundary conditions (3.40) and (3.41). (ii) The acoustical Poynting

vector is evaluated from Eq. (3.39). (!tif) The transrnission effieieney is finally

obtained by calculating the ratio of the transmitted and incident Poynting

vectors.

     In Fig. 3-5, we plotted theoretical transnission efficiencies of the

quasi-transverse (T2-mode) phonons for the CdS-ZnSe and CdS-ZnTe systems as a

function of propagation direction e. It is found from the figure that the

       'transmission efficiency has appreciably high value for both the CdS-ZnSe and

CdS-ZnTe systems. Figure 3-6 shows an example of the oscilloscope display of

the Brillouin-scattering signal by the injected aeoustical-phonon domain

                                                                   hobtained from the CdS-ZnSe system (upper trace). The current waveform

exhibiting the acoustoelectrical instability is also shown in the lower trace

(CdS). [I]he Brillouin-scattering signal Pl is produced by the injected forward-

traveling domain, while the signal P2 is produced by the reflected backward-

traveling domain at the end-surface of ZnSe. Experimentally, we obtained the

transmission efficiency up to 90 % at lower-phonon frequency. !t was found

that the efficiency depends strongly on the acoustical-phonon frequency, i.e.,

it decreases with increasing acoustical-phonon' frequency. It seems this is
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phonon domain obtained frpm the CdS-ZnSe
system (upper trace). The current waveform
exhibiting the aeoustoelectrical instability
is also shown in the lower trace.
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                          "

due to that the indium layer between the bonded materials acts like low-pass

filter for the acoustical-phonon transmission lsee Fig. 3-1]. Indeed, it is

                                                       'possible to consider that the phonon-dornain transnission becomes difficult

when the wavelength of the phonon dornain beyonds the thickness of the indium

layer (note that higher-frequency phonons have shorter wavelengths). Sueh

an effect of the indium layer was not taken into account in the theoretical

analysis for sirnplicity.

     We have mentioned above that the intense acoustical-phonon domains produced

in CdS can be injected into different materials by making use of the acoustical-

domain injection rnethod. As a typical example of the applications of this method,

we present lattice-attenuation data obtained in the CdS-ZnSe and CdS--ZnTe systems.

The !attice attenuation is an old topic of the crystal dynamics.122'123 zucker

      124et aZ.          have first measured the lattice attenuation of amplified phonon domains

in CdS by using the Brillouin-scattering technique.

     The frequency dependence of the latttce loss orL can be written simply as

                        orL ct ed (3.42)
                             >> 1), andfor Landau-Rumer loss (a)T                          th

                              2                        ctL ct co (3.43)
for Akhieser loss (turth << 1), where Tth is the relaxation time of thermal

                                                                         '
phonons. Figure 3-7 shows the frequeney dependence of the attenuation coef-

ficient of the acoustical-phonon domains propagating in ZnSe in the [OOI]

direction with shear polarization parallel to the [110] direction (T2-mode

         34                                                                         1.45phonons).             The observed frequency dependence is of the form of orL ct f •

The frequency dependence of the attenuation coefficient for the T2-mode

                                             125phonon domains in ZnTe is shown in Fig. 3-8.                                                  The open and solid circles
                                                         '
are the data in the weak- and strong-flux regimes, respectively. The experimental

                             1.2                                                              O.3frequency dependence shows f                                 in the weak-flux regime and f                                                                  in the strong-
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flux regime. The present experimental conditions should satisfy the Akhieser-

loss proeess (i.e., alTth << 1). Our experirnental data, however, depart from

the Akhieser-loss process. [I]he deviation from the Akhieser loss has also been

reported in semiconductors such as cds,18'124'126 znsel18,127 and GaAs.16

Such deviations can be interpreted in terms of non-linear phonon-phonon inter-

actions, as pointed out by palik and Bray.16 The difference of fn in the weak-

and strong-flux regimes supports the possibility of the non-linear phonon-phonon

interactions in ZnTe.
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CHAPTER IV

  RESONANT BRILLOUIN SCATTERING
               '
IN ZnSe, ZnTe, ZnxCd}-xTe AND CdS

4.1 INTRODUCTION

     In recent years theoretical and experimental investigations on the

subject of resonant light scattering in semiconductors have been carried out

                           8extensively by many workers. [IJhe majority of the experimental studies have

been eoncentrated on dispersion of the scattering cToss seetions when the

ineident-photon energy approaches dielectric singularities of the semiconductors.

The acoustoelectrically amplified phonon domains have recently been used to

investigate resonance phenomena of Brillouin scattering in piezoelectric

semiconductors such as GaAs,25 cds,26-30 zno29'30'  and cdse,3i where the intense

acoustical-phonon domains provide strong scattering signals and thus permit

us the use of a continuous light source monochromized by a conventional mono-

chromator instead of a laser, as mentioned previously (Chapter III).

     The spectral dependence of the Brillouin-scattering cross sections im

sueh semiconductors has shown resonant enhancement and canÅëellation (anti-

resonanee) in the region near the fundamental absorption.edge. The observed

dispersion curves have been interpreted satisfactorily in terms of the resonant-

                                          35,36light-scattering theory developed by Loudon.                                                 However, resonanee behaviors

in the neighborhood of the excitonic structure of the absorption edge have

not yet been discussed in detail because of the experimental difficulty due
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to the strong absorption coefficients in that wave!ength region.

     In this Chapter, we investigate resonant Brillouin.scattering in ll-Vl

semiconductors (znse,95 znTe,71 znxcdl-xTe96'125'131 and cds39) by using

the acoustoelectrically amplified phonon domains with e.xciting light waveZengths

including a region sufficiently elose to the fundamental absorption edge to

                                       critical points. For instance, previousclarify resonance behaviors near the M                                     o
work by Ando et dZ.120 is linited to the wavelength range of 47s - 620 rm

(room temperature), and thus only a weak resonant enhancement is observed.

We performed the Brillouin-scattering measurements in the wavelength ranges

of 465 he 640 nm (room temperature) and 450 - 640 nm (77 K) which include a

                         'region sufficiently close to the fundamental absorption edge of ZnSe. We
                                                          'improved our experimentai setup and used high-quality ZnSe, which enabled

us to discuss the resonance behaviors at a region very close to the 'fundamental

absorption edge.

     Zn Section 4.2, we present some physical properties of the I:-VI group of

seniconduetors ZnSe, ZnTe, CdTe and CdS, such as the electronic band structure
                                              '                                                          '
and crystallographical properties of these materials. In Section 4.3, we

present the experimental results and compare them with the theoretical model

                                            'based upon Loudon's light-seattering theory. The obtained spectral dependence

of the Brillouin-scattering cross sections shows a new maximum at a photon
                                            tt
energy very close to the ground-state exciton energy (i.e., in the resonant

enhancement region). We show for the first time that the Brillouin-scattering

efficiency depends strongly on a lifetime-broadening effect of the intermediate

electronic states. The importance of the lifetime-broadening effect on

resonant light scatt' ering has been pointed out by Loudon36 but not yet discussed.

up to date from an experimental point of view. The observed maximum in the

spectral dependence of the Brillouin-scattering cross sections is well interpreted

by including this broadening effect.
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        4.2 PROPERTIES OF ZnSe, ZnTe, ZnxCdl-xTe AND CdS

4.2.1 C?ystaZ Struetzur)e

     The erystal!ography of the II-VI compounds is somewhat complicated

by their propensity to crystallize in a variety of polynorphic modifications.

132     The principal structure types are cubic zincblende (sphalerite) and

hexagonal wurtzite in which the atoms are tetrahedrally bond in network

arrangements related to those of the group !V semiconductors. All of the

                      'II-VI compounds, and in paticular ZnSe, ZnTe and CdTe, form crystals with

the zincblende arrangement. The II--VI compounds, in paticular CdS, CdSe

and ZnO, also erystallize in the wurtzite arrangement. Mgure 4-1 shows

the arrangements of group-II metal atoms (sma!1 solid circles) and group-VI

non-metal atoms (large open circles) in (a) zincblende and (b) wwrtzite form.

                                                          2-The zincblende structure is based on the cubic space group Td - F43m. There

are four molecu!es (AiiBVi) in a unit cell. The wurtzite strueture is

                                   4                                      - ?6 mc and there are two moleculesbased on the hexagonal space group C                                   6v                                          3
in the hexagonal unit cell. The lattice parameters for the zincblende (ZnSe,

ZnTe and CdTe) and wurtzite structure (CdS) are summarized in Table 4-1.

The separation between layers along the hexagonal stacking axis is c/N,

where N is the number of layers in the repeating unit.

     An important aspect of the zincblende arrangement is the absence of a

                                            VI                                      II                                               layers have unique orientationscenter of syimnetry or inversion. The A                                         -B
                                                                       '
along the <111> directions. As a result, the zincblende crystals are polar,
                                             'and opposed (111) [A-face] and (-1-1-1) face [B-face] and opposed [111] and

 ["i'1'-1] directions may have different physical and chemical properties. This

is known to be the crystallographieal polarity. The crystallographieal

polarity, vice vevsa, enables us to identify the (111) and (111) faces by

                                133                                     The wurtzite arrangement does not havethe simple chemical etching test.

a center of symetry and there is a polar axis parallel to [OOI] (c-axis).
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                                     VI                                  II                                        eompounds with the zincblendeTable 4-1. Lattice parameters of A B
            (ZnSe, ZnTe and CdTe) and wurtzÅ}te strueture (CdS).

Material
   ea [A]

   o
c [A]         od(A-A) [A]         od(A-B) .[A]

     oc/N [A]

Znse (a)

    (b)
ZnTe

    (c)CdTe

cds(d)

5.6687

6.i037

6.481

4.1367 6.7161

4.01

4.32

4.58

2.45

2.64

2.80

3.358

(a) Reference l80.
(c) Reference 182.

(b) Reference !81.
(d) Reference 183.

                          II                                  VIAs in the zincblende, the A and B                                     ions of opposite polarity can be

visualized as forming a network of permanent dipole moments. However, in

the wurtzite the moments do not balance but create a single polar axis.

Consequently, in addition to being piezoe!ectric, the wurtzite-type crystals

are pyroelectric.
                               '
                                                '     Crystals grown from combinations of II-VI compounds may be substituttonal

                                                                    134-139solid solutions or a mixture of zincblende and wurtzite modifications.

The relative concentration of the partieipants determines the band-gap energy

[see, e.g., Fig. 4-16], which plays a significant role in the Brillouin-

scattering process through the intraband and interband e!eetronic transit'ions.

4.2.2 EZectyonie Band Sti7uetupme

     The zincblende lattice has the translational symmetry of the face-eentered

eubie lattice [Fig. 4-1 (a)]. The Brillouin zone for the reciprocal lattice

can be taken to be the truncated octahedron shown in Fig. 4-2. The points

and lines of speeial symnetry are indicated in the figure with their conventiona!

labels. IIrhe lattice of the wurtzite crystals consists of two interpenetrating
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hexagonal close-packed iattices; one containing the cation (BVI), the other

anion (A!I) [Fig. 4-1 (b)]. The Brillouin zone for the reciprocal hexagonal

                                                                  'lattice is shoim in Fig. 4-2 along with lines and points of special symmetry.

This Brillouin zone is the same as for the hexagonal elose-packed lattice.

     The lowest energy gap in !I-Vr compounds sueh as ZnSe and CdS is a

                                                              +direct and occur$ in the center of the BriUouin zone, i.e., at k=O (r

                                                               +point). The nature of energy transitions at different points in k-space

is reasonably weil identified in most of the ll-vx compounds.140 However,

the knowledge of band structure away from the principal syrmetry points still

tends to be more of a gualitative than a quantitative nature. The majority

of the knowledge of electronic band strueture in the II-VI compounds have

been derÅ}ved theoretically frorn the semi-empirical pseudopotential method.

141,142         This method has become an important tool both for the investÅ}gation

of electronic band structures of solids and for understanding the behaviors

of electrons tn crystals. The semi-eTnpirical pseudopotential studÅ}es of

                      141,i42Cohen and Bergstresser                              have included II-VI compounds with the zincblende

and iiurtztte structures. Figure 4-3 il!ustrates the band structures of

                                        143ZnSe and ZnTe determined by Walter et al.                                           and 'of CdS by Bergstresser and
      142Cohen. These band structures are calculated using the semi-empirical

potential method which involves adjusting pseudopotential form factors to

aehieve good agreement with experimental results for the principal optical

            'transitions. The irreducible representations indicated are those for the

double group (ZnSe and ZnTe) and for the single group (CdS).

4.2.5 CrystaZZogyaphieaZ Rz;operties

     As mentioned in Section 4.2.1, the Ir-VZ compounds crystallizing in

the tetrahedrally coordinated cubic zincblende and hexagonal wurtzite

structures'are the simplest crystals lacking a center of symnetry and, hence,

capable of exhibiting piezoelectric and related effects depending on polar
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 '       '                       '                                                                          .symmetry, The elastic compliance, elastic stiffness, piezoeleetric apd statie

dielectrie eonstants of the zincblende ZnSe, ZnTe and CdTe and wurtzite CdS
                                                     '
are listed tn Table 4-2. The crystal densities calculated using the lattice

constants •of Table 4-l are also iisted in this table. Tt has been found by

Berlincourt bt az.129 that the piezoeleetric constant for the wurtzite-type

                             '
crystal CdS nearly satisfies the symmetry requirements of the cubic zincblende

type, but has much higher magnitude. It seems that the stronger piezo-

electricÅ}ty and the preference for the wurtzite structure are both direct

consequences of increasing ionicity of the bond. The temperature' dependenee

of elastic constants together with the pressure dependence provide useful

information in the study of the anharmonic effect oÅí crystals. Lee144,145

has measured the temperature and pressure dependence of the elastic constants

of ZnSe and ZnTe by means of ultrasonic pulse-echo method, and found that

the constants change almost linearly with temperature and pressure. The static

dielectric constants have also been found to have linearly varying temperature

           146dependenee.               The calculated crystal densities agree well with those

measured values [e.g.. 5.264 glcm3 for znse and s.633 glcm3 for znTe obtained

                          144by the weight-volume method l. '
     Figure 4-4 shows the phonon dispersion relations for (a) ZnSe and (b)

ZnTe at room temperature taken from Refs. 147 and 148, respectively. Research

on the dynamics of perfect lattices has aroused eonsiderable interest

especially in compounds having zincblende or diamond crystal structure. -This

development is the outcome of many experimental results, particularly neutron-

and Raman-scattering data for phonon dispersion relations. Xn fact, the
                                                       ' '
phonon dispersion relations for ZnSe and ZnTe given in Fig. 4-4 were obtained

from the second-order Raman-scattering speetra and neutron-scattering data,

respectively. The first-order Raman-seattering measurements give only
                   '                                    +                                      bl O (r). This severe limitation caninformation about phonon states with k
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Table 4-2. Elastic, piezoelectric, dielectrie constants and
density of the zincblende ZnSe, ZnTe and CdTe and
CdS at room temperature (250C). S in'10-ll m2/N;
N/m2; e in c/m2; and g in g!cm3. '

erystal
 wurtzite
C in lolO

blaterial

ZnSe ZnTe CdTe CdS

s

s

s

s

11

12

44

2.26(a)

-O.85

2.27

    (a)
2.40

-- O.87

3.21

s

s

c

c

c

c

   (b)
4.5

-1.5

5.0

33

13

66

11

l2

44

     (a)
2.069

-O.999

6.649

1.697

-O.581

    (a)8.10

4.88

4.41

    (a)
7.13

4.07

3.12

c

c

     (b)5.351

3.681

l.994

33

13

66
e 14
e 31

o.o4g(a)

6.136
    (a)
9.07

5.81

1.50

9.38

5.10

o.o2s(a)       (a)
O.0335

1.63

e 33

-O.244(a)

  e   15
egileo

(+)o.

 -o.

440

9.2s(C)      (a)
10.10      (c)11.00

210

    (a)
9.35

s
e33/eo

g
     (d)
5.262      (d)

5.636      (d)5.849

10.33

     (d)
4.819

(a)
(b)
(c)
(d)

Reference
Reference
Reference
Calculated

129.
91.
146.
 using the lattice constants listed in Table 4-1.
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                                           '                       '                                                                    ÅÄÅÄbe overcome by using the second-order Raman spectra; Two phonons with kl + k2 r

O are then produced and the complete phonon spectrum becomes accessible.

Figure 4-5 also shows the phonon dispersion relations for the wurtzite-type

                                                               !49crystal CdS along directions r-K, r-M and r-A [see Fig. 4-2 (a)].                                                                    Such

phonon dispersion curves, viee ve"sa, enable us to identify the measured

Raman- and Brillouin scattering spectra. rhe various components of the

Raman (Brillouin) tensor can be calculated from the phonon dispersion data

obtained with neutron scattering by the use of lattice dynamical models (

shell model) which include nonlinear interactions. This procedure has -been

                                       15O                                                      IS1successfully used for the alkali halides                                           and for MgO.

               4.3 EXPERI)([ENTAL RESULTS AND D!SCUSSION

4. 3. 1 ZnSe

     The spectral dependence of the Brillouin-scattering cross sections for

O.2 GHz Tl-mode phonon doTnains measured at room temperature is shown in Fig.

4-6. The measurements were carried out by making use of the acoustieal-

domain injection method. The vertical arrow in the figure indicates the

position Df the band gap E g. The Brillouin--scattering cross section crB is

deduced from the following equation:

               '                          I                          "i:= UBb dS]. , (4.1)

where Is and It are the scattered-light and transmitted-light intensities,

respectively, b is the light-path length and d9s is the solid angle in whieh

the light is scattered. The Brillouin-scattering cross section shows a

narrow and deep minimum at around 495 nm. Such an antiresonanee behavior

has also been found in GaAs,25 cds,26-30 zno29'30 and cdse.31 in addition,

we can find a new maximum in the dispersion curve very close to the fundamental
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                                          'absorption edge. Such a feature has not been ciearly found tn the previous

                   120work of Ando et aZ.
                                                          '                 '
     The spectraZ dependence of the Brillouin-seattering cross sections for

O.2 GHz T2-mode phonon domains measured at room temperature is shown in

Fig. 4-7. The resonance feature observed here is essentially the same as

that for the ease of the scattering by the Tl-mode phonon domains, but the

cancellation point shifts slightly and occurs at 490 nm. As will be mentioned

in Chapter VI, the resonant cancellation can be interpreted macroscopically
     '
in terms of the appropriate photoelastic constant passing through zero (

isotropic point) while undergoing a reversal in sign (here we have to note

that the Brillouin-scattering cross section is proportional to the square

of the photoelastic constant). We can find a good agreement between the

cancellation points obtained from the Brillouin-scattering measurements and

thos6 predicted from the piezobirefringence data (isotropic points) of Yu

            92'and Cardona.

     The resonant cancellation can be explained by the following equation:95

                        oBaIRi.+Ro 12 , <4.2)

where Ris is the .resonant contribution given by Eq. (2.29) or (2.55), arising

from the Mo critical point, and Ro is a nonresonapt contribution arising

from the other, far-off critical points in the band structure. The resonant

contribution Ris is opposite in sign to the nonresonant contribution Ro in

the longer-wavelength region (apart from the fundamental absorption edge).

The cancellation, therefore, oecurs at a wavelength when IRis + Rol becomes

zero. As well shall see later, such a sign reversal relation does not hold

in the region very close to the fundamental absorption edge when the li•fetime-

broadening effect is taken into account [see Figs. 4--10 and 4-l!]. Kiefer

et az.57 have measured the resonance of Rauian scattering in znse by To(r),

TA + TO(X), 2TA(X) and 2LO(X) phonons in the vicinity of the E                                                              gap, and                                                            o
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found that the spectral dependenee shows clear resonant enhancement b.ut non
                    '
existence of resonant caneellation in the photon-energy region of 2.3 - 2.7

eV [see Fig. 4-12]. Such a considerably large difference in the experimental

resonance 'data between Brillouin and Rainan scattering can not be suecessfully

understood at present.

     Figures 4-8.and 4-9 show the spectral dependence of the Brillouin-
                                       '
scattering cross sections for O.2 GHz Tl- and T2-mode phonon domains measured

at 77 K, respectively. The vertical arrows indicate the positions of the

band gap E . It is clear from the figures that the experimental data taken
          g
at 77 K show the same resonance behaviors as those taken at room temperature,

except a shift of the resonance curves toward shorter-wavelength side. The

resonant cancellation, thus, oceurs at about 480 and 474 nm for the Tl- and

T2-mode phonons, respectively.

     The Å}ntermediate electronic states produced by the incident radiation

interact with the acoustical phonons via a deformation potential, resulting

in a change in their electronic states. The transitions of the intermediate

states are determined by the symmetry properties of the electronic states

and relevant phonon modes in crystals, as mentioned in Section 2.2.3. Such

a selection rule of the deformation-potential scattering determines the

electronic transition process (two- or three-band process) which plays a

significant role in the BrUlouin-scattering process. From Eqs. (2.76) and

(2.77), the non-zero matrix element :'                                       can be given by                                    Bor

                               ;IK                        :'BA=32b=m2•08 eV , (4.3a)
                        :'cB = 6'i2`b = -2,94 ev , (4.3b)
                                        '
for the Tl-mode phonons, and

                        :'BA =d=-3•81 eV , (4.4a)
                        :'cB =dl2!i2=-2.69 ev , (4.4b)
                                              '
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                        :' cA = 6>2d/2 = -4•67 eV , (4.4c)

                                                      '
where the numerical values of the shear deformation potentii!s b and d are

                                      152obtained from the data of Langer et aZ.

     The theoretical dispersion curves obtained from Loudon's theory [Eq.

(2.29)] and Wannier-Mott exciton theorY [Eq. (2.55)] are shown in Figs. 4-6

and 4-7 by dotted and dashed lines, respectively. The numerical values used

in the caleulations are listed in Table 4--3. The p--matrix elements are

assumed to be Pcto = PoB since the detailed values are not yet well known at

present. The curve calculated from Eq. (2.55) shows a better fit to the

experimental data compared with that calculated from Eq. (2.29) except in

the region very close to the exciton energy (band-edge regidn), where the

theoretical dispersion shows a divergence at that region. To remove this

disagreement, we consider in Eq. (2.55) the lifetime-broadening (damping)

effect for the intermediate exciton states. rt is well knowri that the

excitonic transitions play an important role in the optical properties such

as absorption and emission of photons in the band-edge region, because the

Coulomb interaction is always present between the electrons and holes. They

are affected strongly by the lifetime-broadening effect especially at higher

temperatures caused by the relatively strong coupling to LO phonons (thermal

broadening). Z"hen the lifetime-broadening effect is taken into account,

the theoretical dispersion curve exhibits a peak near the band--edge region

and thus the fit shows an excellent agreement with the experirnental data as
                                                           '
shown by the solid line (Figs. 4-6 and 4-7). [the best-fitting values of
                                            '
the broadening energy are determined to be r -- 64 and 56 meV for the Tl- and

T2-mode phonons, respectively, where they are the values in the assumption

of Eq. (2.56). In Figs. 4-8 and 4-9, we show the theoretical curves ealculated

from Eq. (2.55) with r = O (dashed line) and r + O (solid !ine). The best-

fitting values of the broadening energy at 77 K are determined to be r = 64



Table 4-3. Numerical values
          .cross sectlons.

used to calculate the spectral dependenee of the Brillouin--scattering

Material

ZnSe ZnTe           Te     CdZn  O.8 O.2           Te     CdZn  O.5 O.5
CdS

      [eV] hoo
   gA
      [eV] -htu
   gB
      [eV] thu)
   gC
      [eV]6AcD
   gh
      [eV]hAtu
   gB
      [eVlhA(D
   gC
 ihRrk [meV]

        o
 aok [ A]

l.t

    *a             **b2.68 , 2.808

    *a             **b2.68 , 2.808
             kkb    *a      , 3.2183.09

5.0

5.0

5.0

19

51

O.11

    lta
2.25 , 2.

    *a2.25 , 2.
    ka3.18 , 3.

379

379

309

rk*c

rk*c

*rkc

    *d2.10

    rkd
2.10

    *d1.80

    xd
1.80

4e5

4.5

4.5

10

45

O.12

     *e2.452

     *e2.466

4.2

4.2

3.6

3.6

10

     rke
2.525

10

45

O.12

45

O.12

28

28

O.18

1

-co
ee
l

 lt

*rk

a
c
e

Room
77 K.

temperature

Referenee
Reference
Reference

184.
186.
187.

b
 Reference 185
d
 Estimated frorn Fig. 4-16.
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                                  'and 56 meV for the Tl- and T2-mode phonons (solid Zines), respectively,

     Figures 4--10 and 4-11 show the theoretical line shapes.of the Brillouin-

tensor term R. for the Tl- and T2-mode phonons, respective!y, caleulated
             IS
from Eq. (2.55) in the vicinity of the excitonic structure with different
broadening energies. !rhe experimental data (uB!i2 oc IRis + Rol) measured at

room temperature and 77 K are plotted in the figures by taking into account

the corresponding nondispersive terms Ro which are also shown in the figures

by dash-dotted lines. The vertical arrows in the figures indicate the positions

                                       . Mien the exciton states have anof the iowest discrete-exciton state E                                     xl
infinite lifetime (r = O), the theoretical curve (R. ) shows a divergence near
                                                 IS
the band-edge region. The broadening effect depresses the resonance feature,

and the Brillouin-scattering efficiency decreases with increasing broadening

energy r. Consequently, the peak of the Brillouin-scattering efficiency

appears in the resonant-enhancement region. The broadening energies determined

in the present work do not depend on the temperatures, as clearly seen in

Figs. 4-!O and 4-ll. rn general, the broadening energy can be expressed by

a sum

                    r(T)=ro+rT(T) , (4.5)
                                                                  '
where ro is independent of the temperature T, arising mainly from the impurity

               (T) is contributions from acousti'cal phonons, proportionaldamping, and r              T
                     -1to [exp(htthLo/kBT) - 1]                        <here 'fic"Lo is a LO phonon energy). Thus, r(T) decreases

with decreasing T. In the present case, the amplified acoustical-phonon domains

have an energy density a factor of the order of lo9 above the thermal equilib-

rium value,18 and thus the acoustical-phonon contribution has an appreciable

value to contribute to the lifetime broadening. We can, therefore, expect

specific effects of the high-density acoustical phonons on the lifetime

                                       153broadening, as also suggested by Segall.                                           Details will be discussed in

Chapter VI:.
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     It should be noted here that the theoretical line shapes of R. (solÅ}d
                                                                -S
lines) predict resonant cancellation at two different wavelengths [e.g.. at

495 and 470 nm for the Tl-mode phonons (room temperature), see Fig. 4-10]

according to the relation given by Eq. (4.2). Such a feature has been found

clearly in the present experiments as shown in Figs. (4-6) - (4-9). The

theoretical curve., further, predicts that a strong scattering signal should

be observed at wavelengths near the ground-state exciton region (due to sharp

peaks appeared in Ftgs. 4-10 and 4-1!). We were, however, unab!e to find

sueh a scattering signal because of the strong absorption coefficients in

the exciton-energy region. In spite of such difficulty in experiments, we

believe that measurements should be possible tf sufficiently thin samples

are prepared and a continuously tunable dye laser is used in the Brillouin-

scattering measurements. When the incident-photon energy approaches the

exeiton resonance, we have to take into account the excitonic polariton states

in the Brittouin-scattertng process.65'154'l55 Brenig, zeyer and Birman66

have reported a theoretical analysis of resonant Brillouin scattering in

crystals exhibiting spatial dispersion whieh included exciton polaritons

as the intermediate states in the Brillouin--scattering process. Their result

predicts a multiplet of the Brillouin speetrum near the exciton resonance

with line separations and efficiencies, depending strongly on the incident-

light energy beeause of the polariton dispersion. Recently, the first experimental

                                                   66observation of the' effects predicted by Brenig et aZ.                                                      has been reported-by
winterling and Koteies in cds.i58'i59 Bruce and curminsi60 have observed

resonant dispersion of the Brillouin shift in CdS with a high-reso!ution

tripie-pass Fabry-perot interferometer. winterttng et az.i6i have observed

resonant Brillouin scattering by TA phonons near the A exciton of CdS in a

                                                                 162,163usually forbidden backscattering configuration. Yu and Evangelisti

have also studied resonant Brillouin scattering by exciton polaritons in Cds
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                       'and obtained a good agreement between theory and experiment. More recently,
                                                      '
such Brillouin-seattering spectra of exciton polaritons have been measured

                                                         !65                       164                           and in ZnTe by Oka and Cardona.in CdSe by Herman and Yu

     In Fig. 4-12, we show a comparison of the resonance behavior of the

Brillouin-scattering cross sections for fast-TA (T2-mode) phonons with that
                                                                  '
of the Rarnan-scattering aross sections for TO(r) phonons in ZnSe obtained

at room tamperature. The Raman-scattering data are obtained from Kiefer et

az.57 The vertical arrows in the figure indicate the band-gap energy E
                                                                     g
and lowest discrete-exciton energy Exl. It is noting that the spectral

dependence of the RaTnan-scattering cross sections shows non existence of

caneellation in the region below E , in contrast to the Brillouin-scattering
                                 g
data. The resonant cancellation of the Rarnan-scattering intensity is found

in various wurtzite-type semieonductors such as cds,10'166 zno58'167 and zns.

168,169         The Raman-seattering intensity shows a rnaximum near the band-gap

energy, while the rnaximum in our Brillouin-scattertng data appears below

that of the Raman-scattering data. However, as mentioned above, our theoretical

prediction indicates that maximum of the Brillouin-scattering intensity should

                                              (E ), as similar to that ofbe observed at the photon--energy region of E                                           xl                                               g
the Raman-scattering data. Such a expGctation can be clearly seen in Fig. 2-6

Å}n which the ealculated Brillouin-seattering cross section shows a strong

peak at the band edge in addition to the experimentally observed peak (below

the band-gap energy).

4. 3. 2 ZnTe

     The spectral dependence of the Brillouin-scattering cross sections for

O.2 GHz Tl-mode phonon domains measured at rooa} temperature is shown in

Fig. 4-13. The Brillouin-scattering measurements were carried out by making

use of the acoustical-domain injection method. VJe used here ZnTe single

                                                  97crystals grown by the traveling heater method (THM).                                                      rt is found from
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the figure that the Brillouin-scattering eross section shows clear resonant

enhancement and eancellation as the incident-light wavelength approaehes close

to the fundamental absorption edge (bl 551 nm). The cancellation point is

found to be 568.5 nm. The spectral dependence of the Brillouin-scattering

cross sections for O.2 GHz T2-mode phonon domains measured at room temperature

is shown in Fig. 4-14. The resonance features observed for the T2-mode phonons

                                                                           'are found to be almost the same as that for the Tl-mode phonons, where for

this mode the resonant cancellation occurs at 569 nm. We also found that

the experimental curves for both the Tl- and T2-mode phonons are almost

independent of their phonon frequencies, where the signals of specular phonon

frequeneies were picked up by varying incident and scattering angles according

                                                           25                                                                      27to Eq. (3.29). Similar features have also been found in GaAs                                                              and CdS.

One of the most important features found here is that the Brillouin-scattering

cross section exhibits a maximum at a photon energy very close to the band

edge of ZnTe, as similar to that observed in ZnSe.

     [Irhe theoretical dispersion curves obtained from Loudon's theory [Eq.

(2.29)] are shown in Figs. 4-13 and 4-14 by dotted lines (r = O). The eurves

obtained from the Wannier-Mott exciton theory [Eq. (2.55)] are a!so shown

in the .figures with three different broadening energies, r = O (dash-dotted

lines); r = 30 meV (solid lines); and r = 40 meV (dashe,d !ines). The numerical
                                              '
values used in the calculations are !isted in Table 4-3. The non-zero matTix

element :'            for the deformation-potential scattering by the Tl-mode phonons         Bor

can be obtained as [see Eq. (2.76)]

         :' BA =-3•08 eV and :' cB = -4•36 eV , (4.6)

and by the T2-mode phonons as [see Eq. (2.77)]

         :' BA " -4• 61 eV , E'bB = -3•26 eV and :' cA = -5.64 eV , (4. 7)

where the numerical values are estimated from the deformation potentials as
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                                     170                                          One finds that the Loudon's modelreported by Kap!yanskii and Suslina.

shows a poor agreement with the experimental data at longer wavelength region

for both the Tl- and T2-mode phonons. The Wannier-Mott exciton model, on

the other hand, shows a quite good agreement with the experimental data when

we take into account the lifetime-broadening energy of r = 30 meV for both

the Tl- and T2-mode phonons (solid lines).
                                             '
     In Fig. 4-i5, we show a comparison of the resonance behavior of the

Brillouin-scattering cross sections for fast-TA (T2-mode) phonons with that

of the Raman-scattering cross sections for TO(r) phonons in ZnTe obtained

at room temperature. The vertical arrows indicate the band-gap energy E
                                                                          g
and lowest discrete-exciton energy Exl. The Ranxan-scattering data are

                             56obtained from Schmidt et aZ.                                 They measured the resonance of the first-

and second-order Raman-scattering spectra in ZnTe in the region of the E                                                                          o

edge using tunable cw dye lasers and ion lasers. The phonon frequencies

assigned by them agree well with those of the phonon-dispersion data presented

                              -1in Fig. 4-4 (b) [e.g., 179 cm                                 for the TO(r) phonons]. In contrast to the

Brillouin-seattering data, the Raman-seattering cross section does not show

any evidence of resonant cancellation in the region below E , as similar to
                                                            g
that for the case of ZnSe (Fig. 4-12). It can also be seen that the Raman-

scattering intensity resonates at a photon-energy region higher than the

Brillouin resonance, and consequently the resonance maximum occurs at a

region beyond the band gap. When incident-photon energy is close to one

of the resonanee energies, i.e. [see, e.g., Eq. (2.24)],

                          U)i"togB+CDq (4•8a)

                          ed.+al , (4.8b)                           1 gct

the seattered light resonates strongly. This means that the resonance

maximum occurs at an energy co higher than the band-gap energy. The TA(r)
                              q
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                       ' -7and TO(r) phonon energies are estimated from Fig. 4-4 (b) to be l.3 Å~ 10

(O.2 GHz) and O.022 eV (i79 cm-1), respectively. In Fig. 4-15, we show the

                                              '
position of the resonance energy represented by Eq. (4.8a) for the TO(r)

phonons by the vertical dashed line. It is obvious from the figure that

the resonance-energy shift for the Raman-scattering data agrees well with

this simple estimation.

4. 3. 3 Znx Cdl-ecTe

     Resonance-Raman (Brillouin) effect has been intensively studied in several

element and binary-compound semiconductors. There are, however, few reports

                                                                  171-173on resonant light scattering in ternary compounds (solid solutions).

In solid solutions, the relative concentration of the participants determines

the band-gap energy which usually falls within the range of the band-gap

energies of the two pure compounds. The band-gap energy plays a significant

role in resonance features through the intraband and interband electronie

transitions. It is well known that the solid solutions can be divided into

those having a one-mode type behavior and those having a two-mode type behavior

                   174 +in Raman scattering. In the one-mode system, the k 2 O optical mode

frequencies vary continuously with concentration frorn the frequency characteristie

of one end member to that of the other end member. In the two-mode system,

for each allowed optical mode two bands are observed with frequencies in the

vicinity of those of the pure crystals. We report here the first observation

of resonant Brillouin scattering in ZnxCdl-xTe solid solutions investigated

at room temperature by making use of the aeoustical-domain injection method.

The ZnxCdl-xTe solid solutions used were grown by the traveling heater method

(see Appendix).

     The variation of the lowest gap Eo with composition x for the ZnxCdl-xTe

                                                     175solid solutions is expressed by a trinomial of the type
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                                         2                     Eo (x) =a+ bx +cx , (4.9)
where the parameter c, which is the so-called bowing parameter, determines

the deviation from linearity. This parameter is given by a sum of the

intrinsic bowing ci arising from the virtual crystal approximation and

extrinsic bowing ce originating in the aperiodicity of the crystal potential.

The relation (4.9) is well known for the semiconductor-alloy systems. Several

recent studies of the reflectance spectra of the ZnTe - CdTe system have

                                                       135,137,139revealed peaks such as Eo, Eo+Ao, El, El+Al,el and el+Al.                                                                    Such

an ana!ysis has also been recently performed by using the low-field electro-

                     138                          Figure 4-!6 shows the lowest band gap Eo as areflectance teehnique.

function of x for the ZnTe - CdTe system. The spin-orbit splitting band
              '
Eo+Ao is also shown in the figure. We used the bowing parameter c = O.33 eV

to calculate the lowest band gap Eo(x). This value is determined from the

                                    137fit of reflectance data to Eq. (4.9).

     Figures 4-17 and 4-18 show the spectral dependence of the Brillouin-

scattering cross seetions for O.2 GHz T2-mode phonons in ZnxCdl-xTe solid

solutions with x = O.8 and O.5, respectively. The phase velocity of the
                        -i2sound waves, vs = (C441P) , which propagated in the [OOI] direction with

shear polarization parallel to the [110] direction, was found to decrease

                                                  55as molar composition x decreases as follows: 2.50Å~10 , 2.29Å~10 and 2.00

Å~lo5 cm/sec for x = 1.o, o.s and o.s, respectively. The spectral dependence

shows clear resonance phenomena in the region near the band edge. They are

found to be very similar to those of the pure binary compounds such as ZnSe

and ZnTe. The data"exhibit deep ninima (cancellation) in the Brillouin-

scattering effieiencies occuring at about 610 and 714 nm for x = O.8 and O.5,

respectively.

                                                            '     The theoretical curves obtained from Eqs. (2.29) [free- electron-hole

pair model] and (2.55) IWannier-Mott exciton model] are shown in the figures
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by dashed (r = O) and dotted lines (r = O), respectively. The theoretical

curves obtained from Eq. (2.55) with taking into account the lifetime broadening

effect are also shown in the figures by solid lines. The numerical values

used in the calculations are listed in Table 4-3. Z"e neglected contributions
                                       '
from the C valence band in the calculations because of the large value of A
                                                                             so
(spin-orbit splitting energy) in the full range of x [see Fig. 4-16]. The

solid lines exhibit a good agreement with the experimental data, as shown in

Figs. 4-17 and 4-!8. The best-fitting broadening energies are determined

to be r = 34 and 29 meV for x = O.8 and O.5, respectively.
                         -i2
                           versus incident-light wavelength for several Zn Cd     Figure 4-19 shows o                                                                                  Te                                                                            x 1-x                        B
solid solutions with different composition x. As clearly seen in the figure,

the resonanee curve shifts toward longer-wavelength side as molar composition

x decreases. This arises from the shift of the band-gap energies of ZnxCdl-xTe

solid solutions with the change of the molar composition x. It is most

interesting to point out that all the measured specimens show scattering maxima

near the fundamental absorption edges. The maxima are well interpreted in

terms of the lifetime-broadening effect of the intermediate electronic states,

as discussed before.

4. 3. 4 CdS

     The amplified acoustical-phonon domains Å}n CdS have an intensity a factor

                  9of the order of 10 above thermal equilibrium value, which are easily

achieved in the frequency range from o.1 to 6.o GHz.18 The phonon-frequency

range is most suitable for the Brillouin-scattering measurements. The

aeoustical-phonon domains consist of transverse phonons (T2-mode), polarized

along the e-axis and propagating tn a narrow angle along the current direetion

(ll-3). VJhen the domain reaches the anode end of the specimen, part of the

aeoustical flux is reflected. [I]he reflection is usually aceompanied by mode

       . 16conversion. The piezoelectrical!y inactive TA-phonon (Tl-mode phonon) and
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    'pure-longitudinal (PL) phonon domains can, thus, be obtained by the mode

eonversion upon partial reflection of the T2-mode domains at the anode-end

surface. -
        '     Figure 4-20 shows the spectral dependence of the Brillouin-scattering

cross sections for O.2 GHz Tl-mode phonon domains measured at room temperature.

The Tl-mode domain was obtained by the mode conversion upon partial reflection

of the T2-.mode domains [see Fig. 3-4 (a)]. The identification of this domain

was made by taking account of the seleetion rules of the light polarizations.39

It shoinld be noted that in anisotropic crystals such as CdS the absorption

coefficient of the scattered light may be different from that of the tncident

light if the incident and scattered lights have different polarÅ}zations,

e.g.. for the T2-mode phonons. In such a case, we have to take account of

                                                      27 -the dichroism correction for the scattering efficiency.                                                         In the present case,

the polarization of the scattered light is rotated by about 900 with respect
                                      '
to that of the incident light [see Tabie 3-3]. However, both the polarÅ}zations

are almost perpendicular to the e-axis, and thus we need not take into account

the dichroism correction for the scattering efficiency by the Tl-mode phonon

        39domains. The BrUlouin-scattering cross section can, thus, be deduced

from the same equation as Eq. (4.1). As seen in Fig. 4-20, the experimental

data show resonant cancellation and enhancement in the region near the

fundamental absorption edge. The Brillouin-scattertng efficiency exhibits

a maximum in the resonant-enhancement region, i.e., at wavelength close to

   '522 nm. This maximum has an asymmetric shape with respect to the light

wavelength.

     The theoretical dispersion curves for the Brillouin-scattering effieiency

were calculated using Eq. (2.55). The band parameters used are listed in

Table 4-3. The values of the matrix element :'                                                for the deformation-potential                                             3or

scattering were calculated from Eq. (2.91). The results are listed in Table
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Table 4-4. Non-zero matrix elements :'Bct for the deformation-potential
            scattering of CdS (in eV). The numerical values are
           estimated from the deformation potentials as reported
           by Langer et aZ. (Ref. i52). '

CdS
=
-Bct

Tl-mode T2-mode PL-rnode

=
-BA

"
-CB

=
-AC

=VM
=
-BB

=
-c9

-1.1

-1.0

-O.8

-O.9

-1.2

 1.6

 2.9

 3.2

-1.1

-1.0

 L5

4-4 along with those for the cases of the T2-mode [Eq. (2.92)] and PL-mode phonons

[Eq. (2.94)]. The admixture coefficients cxB (= O.75) and orc (=O.67) were

calculated from Eq. (2.82). We used the values of the p-matrix elements reported

                      80by Thomas and Hopfield. As mentioned previously, the theoretical curve with

r = O (dashed line) shows a divergence at the fundamental absorption edge. It
                                             '
shows a poor fit with the experimental data especially in the resonant-enhancement

region. The curve with r= 68 meV (solid line), on the other hand, shows an

excellent agreement between the calculation and experimental data. Gutsche

and voigt176 have measured lifetime-broadening energies for the excitonic

                                                                        '                                                  'transitions from the absorption spectra. The obtained values for the A, B and

C exeitons were r = 37.1, 30.3 and 73.5 mev (-L 3), respectively. Bleil and

Gay177 have also measured lifetime-broadening energy for the-A exciton emission

as r F 70 meV which is very close to our value (68 meV). Therefore, we can
                                                   '                                                              'conclude that the lifetime-broadening energy r = 68 meV determined here is thought
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to be reasonable for the resonant-Brillouin-scattering process.

     The line shape of the Brillouin--tensor term Ris calculated from Eq. (2.55)

[r = 68 meV] in the vicinity of the excitonic structure along with the
experimental data (aB>2) is shown in Fig. 4-21. The corresponding non--

dispersive term Ro is also shown in the figure by dashed line. The vertical

arrows indicate the positions of the band-gap energies E gA, E gB and Egc.

The resonant eancellation can be well understood from the figure by the aid

of the relatiQn (4.2). Moreover, a good agreement between the exciton model

Eq. (2.55) and experiment can be easily found in the figure. It should be

noted here that the line shape of R. is very simi!ar to that of the first-
                                  IS
derivative modulation spectroscopy such as thermoreflectance, piezoreflectance

                                                43,44and wavelength-derivative modulation speetroscopy. Xndeed, we will
                                                                  '
analyze in Chapter VIII the resonant-Brillouin-scattering process as a form

of the first-derivative modulation spectroscopy and find that they are very

analogous to each other from a phenomenological point of view.

     [Ihe spectral dependence of the Brillouin-scattering cross seetions for

the acoustoelectrically amplified T2--mode phonon domains in CdS measured at

room temperature is shown in Fig. 4-22. The phonon frequency is selected

to be O.5 GHz. The incident and scattering angles related to the appropriate

phonon frequency were obtained from Eq. (3.34) using the data of refractive

indices reported in Ref. 178. In the case of the T2-mode phonons, the

absorption coefficient of the scattered light is different from that of the

incident light because the scattered and incident light have different

polarizations (j-E} and ll 3 , see Fig. 3-4). Hence, in order to deduce the

          '
Brillouin-scattering cross section, we have to take a dichroism correetion

of the absorption of light into account. This was first made by Ando and

          27Hamaguchi.              They obtained the following relation near the fundamental

absorption edge:
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             it' -., gBg:2.,., exp (- .ggb6 )

                                          s

                                              ns b
                                              -) l}, (4.10)                        Å~ {i- exp[- (ort - orsni eos6.

                                                      i

where ct. and ct are the absorption coeffieients for the incident and scattered

                                                                     Alights, respectively, and Io is the incident-light intensity. ni, ns, ei and

Ae are defined in Section 3.3.3. The data shown in Fig. 4-22 are obtained
 s
                                                                 179from this dichroism correction using the absorption data of Dutton.

     The theoretical dispersion of the Brillouin-seattering efficiency was

calculated using Eq. (2.55). The numerical values used are listed in Tables

                                                                          804-3 and 4-4. We used the p-matrix elements reported by Thomas and Hopfield.

The matrix element :' BA for the T2-mode phonons must be replaeed by :' AB,
because for the S lj 3 polarization of incident light the dipole transition

between the A valence band and conduction band is forbidden but that between

the B valence band and conductÅ}on band is allowed [see Fig. 2-8]. By this

replacement the matrix elernents of Eq. (2.55) beeome

                  P8B:'BAPXo + PSoA:-ABPSo , (4.11)

where the superscripts i and s of P indicate the components in the polarization

directions of incident and scattered lights, respectively. It means that
   'the intermediate electronic states produced by the incident radiation must

be IB> states but not be IA> states. However, the numerical value of E
                                                                     Bor
is not affected by this replacement because of the symmetry property of

this e!ement [see Eq. (2.78)]. We were not able to find a maximum of the

Brillouin-scattering efficiency in the experimental dispersion curve, because

the diehroism correction introduced large ambiguity in the region very close

to the fundarnental absorption edge. We took into account in the calculation
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                                                 '
the lifetime-broadening energy of r = 68 meV which was the same value as

that determined for the Tl-mode phonons. As seen in Fig. 4-22, the theoretical

curve shows a good agreement with the experimental data. The cancellation

point is found to be almost the same as that observed for the Tl-mode phonons.

     Figure 4-23 shows the spectral dependence of the Brillouin-scattering

eross sections for 1.2 GHz PL-mode phonon domains measured at room temperature.

The PL-mode domain was obtained by the rnode conversion upon partial reflection

of the T2-mode domains [see Fig. 3-4 (c)]. The identification of this domain
was made by measuring the sound velocity; vpL = (clllp)-i2 N- 4.3sxlo5 cmlsec.

This velocity differs entirely from that of the refleeted T2-mode domains

[vT2 = (C44/p)-i2 N- 1.80Å~105 cmlsec]. The experimental data show clear resonant

enhaneement in the region near the fundamental absorption edge. However,

one can not find an existence of resonant cancellation in the rneasured photon-

energy range.

     The theoretical curve obtained from Eq. (2.55) is shown in the figure

by soltd line. The numerical values used are listed in Tables 4-3 and 4-4.

The matrix element :' BA of Table 4-4 rnust be replaced by :' AB because of the

same reason as the case for the T2-mode phonons [see Eq. (4.11)]. Moreover,

the resonant contribution from the intraband-scattering term [ :'AA ] becomes

      .zerop l.e., '
                               PgA:'AAPXo = O • (4.12)
                                                                          '
This arises from the fact that the dipole transitions are forbidden between

the A valence band and conduction band for the iE ll 3 polarizations of the

incident and scattered lights [see Table 3-3]. In order to calculate the

theoretical curve, we took into account the lifetime-broadening energy of

r = 68 meV. Frorn the best-fit procedure using Eq. (4.2), we find eancellation
                                                                  '
point at wavelength of X tr 750 nm. The same conclusion will be obtained

from the quasi-static analysis, as presented Å}n the next Chapter. The solid
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  '                       '                                                                'line in the figure is calculated by taking into account the nonresonant

term [corresponding to the oecurrence of the resonant cancellation at

X st 750 nm]. It is clear from the figure that the caZeulation'and

experiment are in quite good agreement.
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                   CHAPTER V

                     '

QUASI--STATIC ANALYSIS OF RESONANT BRILLOUIN

      SCATTERING IN ZnSe, ZnTe AND CdS

                            5.1 INTRODUCT!ON

     Resonant light seattering in semieonductors has attraeted increasing

attention recently, since it has been found to be intimately related to the

optical spectra of the crystals. It has been demonstrated that the qualitative

features of resonant Raman scattering can be predicted from an expression

                                       49-61based' on the quasi-static approximation.                                              In this approximation, the
      '                             'phonons are assumed to aet through the electron-phonon interactions like static

perturbations of the electronic band strueture of the crystal, which cause

a change in the dielectric constant e of the crystal. [Irhe dielectric theory

of resonant ltght scattering shows that the two-band term of the first-order

scattering effieiency (Raman tensor) is proportional to the first derivattve

of E with respect to the band-gap energy. The elcperimental dispersion of

resonant Raman scattering has been well explained by the derivative of a model

description of E.49-54'56'57 Recent works55'58'61 harve also indicated that

the dispersion of resonant Raman scattering shows a good agreement with the

derivatives of e obtained from optieal measurements.

     The condttions under which the quasi-static approxirnation is valid are

                                      41found to be for the two-band process as

                      IEgct-'halil>> Mtug , (5'l)
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and for the three-band process as
 '                      '

                       I Eg. - thCDi l '> 'fiCi'q , (5•2a)

                       I EgB -hedi l" "5tuq ' . (5'2b)

The Brillouin--scattering process usually satisfies this eondition, since''ficD
                                                                             q
is sufficiently smaller than fitu..
                                i
     In this Chapter, we analyze the Brillouin-scattering data [ZnSe(Tl-,

T2-mode), ZnTe(Tl-, T2-mode) and CdS(Tl-, T2-, PL-mode and forbidden Brillouin

                                                            188data)] from a view point of the quasi-static approximation.                                                                 Such an

analysis has not yet been carried out until now in the field of resonant

Brillouin scattering. The Brillouin-seattering cross section for the first-

order allowed configuration can be shown to be proportional to the square of

the first derivative of e with respect to the band-gap energy or equivalently

to the incident-photon energy. The dispersion in the dielectric constant
                         64of Ge and III-V compounds can be well interpreted with the parabolie band

model (band-to-band contribution). In a polar crystals such as II-VI compounds,

an additional excitonie contribution has to be considered.56 [rhis excitonic

contribution may be taken into account automatieally when we use the

experimentally obtained E for the calculations of the quasi-static approximation.

     In Seetion 5.2, we review the quasi-static approximation for the first-

order allowed and forbidden Brillouin seattering to analyze the experimental

data. In Seetion 5.3, we report the analyses of the Brillouin-scattering data

for the allowed eonfiguration based on the quasi-static approximation. The

first derivatives of the experimentally obtained e with respeet to the photon

energy are calculated by numerical differentiation, and compared it with

the Brillouin-scattering data. Moreover, resonant forbidden Brillouin

scattering by the TA-phonon domains in CdS are observed for the first time
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                                                 189,19Oin the region near the fundamental absorption edge.                                                          The results are

interpreted with a dielectric theorY (quasi-static approximation) based on

the second derivative of the dielectric constant.

                        '
                   5.2 QUASI-STATIC APPROXZMATION

5.2.1 AZZotued BniZZouin seattering

     The dielectric theory of light scattering enables us to expand the

dielectric constant e(to,u) with respect to the displacements ul, u2,'''''',

in the folXowing form:

          e(to,u) = E(ed,o) + g:1 ui +} a.lli[l2 ul{i2 + •••••• ' • (s•3)

                                              '
The various derivatives in Eq. (5.3) define the first- and second-order Raman

tensor. The first--order Raman (Brillouin) intensity I can now be given by

                 rrv al4l-3{tllL i2 <ui2> , (s•4)

where <u12>`i2 is the zero-point vibration amplitude of the phonon under

consideration. Equation (5.4) indieate that Bxillouin scattering may be

induced by the modulation of the dielectric constant in the mediam. In the

quasi-static approximation, the phonons are assumed to act as static perturbations

of the electronic band structure of the crystal. The perturbatÅ}on causes the

foilowing change in the dielectric constant via the changes in the interband

transition energy Egct and oscillator strength F•:ln (first-order changes):

              Aemm(E)' == gl [ liiii:.}(E) AEg. + lilmmlp(E) AF :. ] , (s.s)'

                                                              '
where the subscripts m and n are the directions of the incident and scattering
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fieids, respectÅ}vely, and E = 'htu is the incident-photon energy. The sumrnation

indieates that contributÅ}ons from ail the possÅ}ble interband transitions should

                              188be included. From a relation

              aect aeor aE aect aFor .
              Bulli}=bEl:tl 'sl.Sgi +eFgln e. !i , (s•6)
                                    mm

we find that the Brillouin-scattering intensity is proporttonal to the square

of the change in the dielectric constant (Ae). Generally, the contribution

from the change in E is much more dispersive than that frorn the change in
                     gct
 or 58F . In addition, the contribution from the change in For                                                              is a negligible

quantity compared with that frorn the ehange in E . We can, therefore, write
                                                 gct
Eq. (5.5) in good approximation by the following form:

                           eeor (E) ee" (E)
              Aerm(E) N- .Z aEM" AEg. bl -( g DEMr' AEg. ) . (5.7)
                             gor

The quantity AE is referred to as a deformation potential, and the replacement
               gor
of ag)or IDE by -(Beor                       /aE) in Eq. (5.7), strictly speakÅ}ng, requires the
          gor                    rm     rnn

addition of a less dispersive term which is omittgd since it can be lumped

into a background contribution [see Eq. (5.10)].

     The above result is valid only for the two-band process in light scattering

The usual type of three-band term, due to coupling across a spin-orbit sprit

gap (cubic arystal), is proportional to tt{e difference e+ - E-, where E+

                                                                          'and c-  are the contributions of the spin-"orbit split EolEo+Ao or El/El+Al

band transitions to E [see Section 2.3.1]. The Raman-tensor component can,

thus, be written as60

            ROi. '= :.l (- gili "2 9'A-o6- ) do ll6t
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                          + +- u                 :i2/(gi +2Exe, )d, lgg , • . (s.s)

                                                                 '
          /E                 gap resonance, and             +Afor the E            oo         o

             Rl. - 71.t (- ,liF, gC d5,,, + 2,hEi, e':i' d5,,, ) g6'

                           '                 st i}.r ( ,if, gS+ d{,, + 2fi E'Xf- d: ,, ) ll6, , (s .g)

for the El/El+Al gap resonance. In Eqs. (5.8) and (5.9), ao is the cubic

lattice constant, uo is the zero-point vibrational amplitude of the corresponding

                                         55                                                     are defined in Refs.phonons. The deformation potentials d                                        d                                             and d                                     O, 1,O                                                 3,O
53 and 191. The first and second terms in the brackets of Eqs. (5.8) and
                                                                          '
(5.9). correspond to the contributions from the two- and three-band processes,

respectively. In Section 5.3, we try to fit the experimental data of the

                      '                              'Brillouin-seattering cross sections in ZnSe, ZnTe and CdS with the calculated

curves from the quasi-static approximation by using the experimental data
                          '
of the dielectrie constants. It is difficult to separate the experimental
                         '                                                   + --dielectric constant e into two different components e and E . [IIherefore,

for simplicity, we use the following expression as the quasi-static analysis

                        188 '•[Eo (Mo) gap resonance]:

                                  de                         aB=A( dEmn +B )2 , (s.lo)

where A is a constant proportional to the deformation potential and occupation

number of the corresponding phonons. !IJhe constant B represents a nonresonant

contribution arising from the higher-gap transitions such as the El, El+Al

and E2 transitions. This expression assumes that only one type of Eo (Mo)

gap resonance,i.e. only the two-band contribution, is taken into account

for the Brillouin-seattering process. The resonance line shapes can, thus,
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be predicted from Eq. (5.10) if the spectral dependence of the dielectric

                                                     'constante is known. '          mn

5.2.2 FoTbadden B?iZZouin Scatte?ing

     There have been a number of resonant-Raman-scattering experiments in

                                                              52,53,58,60,167,solids by LO phonons in a forbidden scattering configuration.

192-196 only gl II gs (parallel-parallel configuration) is characteristic

                                                                      +of this forbidden scattering (intraband Fr6hlich interaction), where ei and

+e are the incident and scattered photon polarizations, respectively.
 s
Reeently, resonant forbidden Brillouin scattering has been reported by slow-TA

                          161,162,189                                                        161                                       Winterling et aZ.(T2-mode) phonons in CdS.                                                            have pointed out

that resonant forbidden TA seattering in analogy to the forbidden LO seattering

should take place in piezoeleetric semiconductors sueh as CdS, sinee the

piezoelectrically active TA phonon also has a longitudinal electric field.

Impurity states or surfaee electric fields also modify the selection rules

because they break the translational and point symmetry (which should lead

                                                                                8to broad structure of scattering line since the phonon momentum is not fixed).

     The Hamiltonian for the intraband Fr6hlich Interaction has the following

                       76form [see Eq. (2.64)]:

                                    c .->+                               EIF=111Fl eiqr , (s.11)

with

                       CF = i")l,o ( .1 )1!4( 4Iior )112 , (s.12)
                                   2m tu                                       LO

                                            rk                          or '( {l; - Ell') (2i:Lo )1/2 ' (s'13)

                                                       'where CF is the Frb'hlich eoupling constant and ct Å}s the polaron constant.

The Raman--resonance behavior for the Frb'hlieh coupling mechanism near a
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three-dSmensional critical point has been theoretically treated by Zeyher

      155           For isotropic bands near the r point, the Raman tensor is diagonalet aZ.

so that a contribution of this coupling meehanism to Raman scattering is

observed only for the parallel-parallel configuration. By the aid of third-

                                            'order perturbation calculation, Zeyher et al. arriva to a result for the diagonal

                                                                           'component of the Raman tensor whieh can be written as follows:

           RF = ii.Ci2 llli2L (s.'sh)(cDLos3/2(2.rk)-i2

                            . [( coilituo )!i. .- ( CDo-.ooLl:ILo )!i. ]3 (s.14)

with

           Se = Mekl(Me* + Mhrk), Sh = Mh*/(Mede + MhX) , (5'15)

     'where 'hedo is the Eo-gap energy and me* and mh* are the electron and hole

effeetive mass. The square bracket of Eq. (5.14) can now be written by using

the dielectric theory as

  [( tuililli )-i2 -( tuO-lllLIIoLO )!i2 ]3 = [al2iiltt(2m*)-3/2(")Lo)-i2]3( f/ )3 . (s.i6)

                                                              'The derivative of Eq. (5.16) can also be written in good approximation as
                                               '
       [8Tco2(2m*)-3/2111tT]2(4.i)2 } ( {ii/ii )3 = :tt(2mde)3/2 lll2:- 11i(tuo-tu)-312

                                          d2e
                                        bl 2 • (5.17)
                                         dtu

Using Eq. (5.17), we finally obtain the Raman tensor as

                   RF=4g. qil\ (s.-sh) d2; . (s.is)
                                        dtu
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Thus, within the spirit of the dielectric theory the Frb'hlich-interaction-induced

LO (and TA) strengths, as forbidden effects, shouZd be proportional to the

square of the second derivative of e with respect to the incident-photon energy.

                     5.3 ANALYSIS AND DISCUSSION

5. 3. 1 ZnSe

     Figure S-1 'shows the dispersion of the BrÅ}11ouÅ}n-scattering cross sections

for ZnSe obtained at room temperature by O.2 GHz Tl-mode (slow TA) phonons

[same as FÅ}g. 4-6], i.e., the transverse acoustical phonons propagating in

the [ilO] direction with shear polarization parallel to the [110] direction.

The solid line is calculated from Eq. (5.10) by differentiating the data

of refractive indices reported in Refs. 197 and 198. The best-fitting value

of B (in ev-l) is given in Table s-l. rhe eorresponding cancellation point

is also given in the table. We are not able to determine the value of A

because the absolute scattering intensities were not measured in our experiments.

The ' calculated curve is, thus, fttted to the experimental data at the

corresponding cancellation point by adjusting multiplicative constants (

vertical shifts in the log-plot of this figure). The resonant cancellation

ean be explained by the sign-opposite relation between the first-derivative

term {lf/ and constant term B [i.e., ( gl/ + B) = o].

     Figure 5-2 shows the dispersion of the Brillouin-scattering cross sections

for ZnSe obtained at room temperature by O.2 GHz T2--mode (fast TA) phonons

[same as Fig. 4-7], i.e., the transverse acoustical phonons propagating in

the [OOI] direction with shear poZarizatÅ}on parallel to the [110] direction.

In this case, the resonant cancel!ation shifts slightly to higher photon-energy

side and occurs at 2.531 eV [see Table 5-1]. It is clear that the calculated
                                   '
eurve shows a good agreement with the experimental data. The measurements
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Table 5-1. Constant B resulting from
cross sections with Eq. (5
also shown in this table.
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Cancellation
 Point [eV]
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made at 77 K for both the Tl- and T2-mode phonons also showed essentia!ly

similar resonance behaviors to those at room temperature except the shift

of resonance curves to higher photon-energy region due to the shift of the

band-gap energy [see FÅ}gs. 4-8 and 4-9],

5. 3. 2 ZnTe

     Figures 5-3''and 5-4 show the dispersion of the Brillouin-scattering

cross sections for ZnTe obtained at room temperature by O.2 GHz Tl- and T2-

mode phonons, respectively [same as Figs. 4-13 and 4-14]. The solid lines

in the figures are caleulated frorn Eq. (5.IO) by differentiating the data of

refraetive indices reported in Refs. 197, 199 and 200. 0ur data indicate

that the resonant cancellation for the Tl- and T2-mode phonons occurs at

almost the same photon energy (N 2.18 eV), and thus the nondispersive back-

ground contrtbution B is almost equal for both the phonon modes [see Table

5-1]. It is obvious frorn Figs. 5-3 and 5-4 that the eancellation based on

the quasi-statÅ}c approximation shows a quite good agreement with the experimenta!

                    56data. Schmtdt et aZ.                       have studied first- and seeond-order Raman scattering
    '
in ZnTe and also analyzed with a model based on the quasi-static approximation
                                               '
by using the model dielectric constant (which includes not only the band-to-

band contribution but also the excitonie contribution). They have obtained

a good agreement between the calculation and experiment.

5. 3. 3 Cas

[A] AZZowed ByiZZouin Seatte?ing

     Figure 5-5 shows the photon-energy derivatives of the dielectric constants

for the ordinary (solid line) and extraordinary ray (dashed line) of CdS (

in ev'1). The qalculated curves have been obtained by differentiating the

data of Ref. !78. The photon-energy derivative of the dielectric constant

for the ordinary ray shows steep increase as the photon energy approaches
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                     '
 the fundamental absorption edge, compared with that for the extraordinary

                                                                      )ray. This is due to the faet that the lowest direct-gap tra.nsition (E                                                                    gA
is forbidden for the E " 3 polarization, and the dielectric constant for

the El3 polarization, thus, increases steeply as the photon energy approaehes

the lowest direet-gap energy (EgAs2.452 eV),

     Figure 5-6 shows the dispersion of the Brillouin-scattering eross sections

for CdS obtained at room temperature by O.2 GHz Tl-mode (fast TA) phonons

 [same as Fig. 4-20], i.e., the transverse aeoustical phonons propagating in

the direetion perpendicular to the e-axis. The solid line is calculated from

Eq. (5.10) by differentiating the data of refractive indices reported in Ref.

178 [see Fig. 5-5]. The dielectric constant for the ordinary ray (il3)

has been used in the calculation because the Brillouin-scattering configurations

for the Tl-mode phonons are gi Å}3 and il. Å}3 [see Fig. 3--4 (a)], where gi

    ÅÄand es are the unit vectors in polarization directions of the incident and

scattered light, respectively. It is found from Fig. 5-6 that our experimental

dispersion is in a quite good agreement with the expression of Eq. (5.10).

     The dispersion of the Brillouin-seattering cross sections for the

acoustoelectrically amplified T2-mode (slow TA) phonons in CdS obtained at

room temperature is shown in Fig. 5-7. The T2-mode phonon domains propagate

in the direction perpendicular to the e-axis with shear polarization parallel

to the e-• axis (piezoelectrically active phonons). In this case, we can not

exactly calculate the theoretical dispersion curve from Eq. (5.10) by using

one of the dielectric constants (i.e., ordinary or extraordinary ray), since

the incident and scattered light have different polarizations (gi ll 3 and

gs -L3). For the purpose of comparison, the solid and dashed lines have been

calculated by using the dielectric constants for the ordinary and extraordinary

rays, respectively. As clearly seen in the figure, both the calculated curves

show a reasonable fit in the whole region investigated, but we find a poor
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agreement in the region near the fundarnental absorption edge.

     Figure 5-8 shows the dispersion of the Brillouin-scattering cross sections

for CdS obtained at room temperature by 1.2 GHz PL-mode (pure LA) phonons

[sarne as Fig. 4-23], i.e., the pure-longitudinal acoustical phonons propagating

in the direction perpendicular to the c-axis. The PL-mode phonon domains

were obtained by.the mode conversion upon partial reflection of the T2-mode

phonon dornains at the end-surface, as in the case for the Tl-mode phonon domains.

One can find that our data indicate an absence oE the apparent cancellation

in the measured photon-energy region 2.05 - 2.39 eV. We were not able to

observe any scattering signal in the photon energy below 2.05 eV because of

weak scattering intensities in this region. However, the solid line, which

is best fitted to our data with Eg. (5.10), predicts en existence of the

cancellation point at 'b 1.65 eV [see Table 5-1]. In the calculation, we have

used the dielectric constant for the extraordinary ray according to the

experimental scattering configurations (lliH 3 and gs li 3). The dashed line

is also calculated with B = O (i.e., an assumption of the absence of anti-

resonance) which is in poor agTeement with our data compared with the solid

line (B + O). Therefore, we can expect the presence of weak resonant

cancellation at N 1.65 eV, though it has not yet been verified by the measurements

at present.

[B] Po?bidden Br;ilZozain Seatte"ing

                                                                       '     Dge present here experimental results of resonant forbidden Brillouin
                                                             '
scattering in CdS by the acoustoelectrically amplified phonon domains (slow

TA phonons) in several seattering configurations (parallel--parallel and

parallel--perpendicular configurations). The experimental data show a resonance

feature only in the region near the fundamental absorption edge, which is

found to fit to the second derivative of E with respeet to the incident-photon



                                     -182-

energy, in direct contrast to the first derivative of E for the allowed

Brillouin scattering.

              ÅÄ"                         Frohlich interaetion is assumed to be the forbidden     When the g-dependent

Brillouin-scattering mechanism, the following expression has been found to

hold for the free electron-hole pairs as the intermediate electronie states

[see Eq. (5.18)]:

                  oB = A' q2 ]< n+i l EF 1 n >j2 ( ddE2i )2 ,' (s.ig)

                                     tt                                                             '                                                                '                                                                         '                                                                     '
where A' is a constant, q and n are the wave vector and occupation number of

the s!ow-TA phonons, respectively, EF is the longitudinal electric field

associated with the slow-TA phonons, and E is the incident-photon energy.

                                                   161The above equation has been used by Winterling et aZ.                                                       to explain the

                                             'resonant-Brillouin-scattering date by TA phonons near the A exciton of CdS

in the forbidden configuration. They have considered that this effect is

                                                  201attributed to e!ectron-phonon piezoelectric coupling and is equivalent to

the Frb'hlich-interaetion-induced forbidden LO scattering [Eq. (5.18)]. It

should be noted that Eq. (5.19) remains approximately valid for excitonic

transitions, provided that one uses for E the experimental data which includes
                                '
exciton effects. In addition, the longitudinal electric field EF in the
acousticai phonon domain was estimated to be approximately 3 Å~ lo6 vlcm.2d2

     Figure 5-9 shows the first and second derivatives of the dielectric

constant for the ordinary ray of CdS with respect to the photon energy. The

curves have been obtained by numerically differentiating the data of Ref. 178.

It is clear from the figure that the second derivative (solid line) gives

stronger dispersion than the first derivative (dashed line) especially in the

region near the band edge.

     The resonanee behavior of forbidden scattering by the slow-TA phonon

domains measured at room temperature is shown in Fig. 5-10. The allowed TA



-183-

 A
Nl

> Åë

 v

  2
10

ectu 10
vx

N.W

l

CdS
ORDINARY RAY

               --             -t          "-.         '----------

tr -
 /n

' - /

- d2EldE2

-----  dE!dE

- -

.....

T> o
 v

10 hl
   sil

   vw

l

2.20   2.25 Z50 2.35 2.40
PHOTON ENERGY ( eV )

FIG. 5-9.   First (dashed line) and second derivative
(solid line) of the dielectric constant for
the ordinary ray of CdS with respect to the
photon energy. The ealculated curves are
obtained by differentiating the data of
dielectric constants reported in Ref. 178.



-184-

...-..

co
•--

==
 'nLU
v

bm

-2
IO

-3
IO

-410

-510

N

     CdS
        FORBIDDEN
        SLOW--TA
               '

e.e.

  OiN.
      N    e Nx
      eX       ee Å~          e Nx                   NN           eÅ~

o

o

N.,.
  ss    NN       N.-

-e
.e

R.T.

'- N  N.-     Ns       Ns.          -. --
             eoe
••• x,.

Ott'N'<g'

(l(s
.••••..................... Qe e

                   ------        Å~                      ------          Nt,o """"""
             •N•N`)
               x
                •cK9

i,s llc Å~.Å~
i,sic . ~Å~

e

-----e--

o

FIG

2.4

. 5-10.   Resonance
scattermg
measured at

  2.5 2.2 2.l        PHOTON ENERGY (eV)

 behavior of the parallel-parallel (forbidden)
by the slow-TA (T2-mode) phonon domains in CdS
 room temperature (see text).



-185-

hee
•+--

c=
.ss

Lv
v

b-

 -2IO

 -3IO

 -4IO

 -5
IO

CdS
   FORBIDDEN
   SLOW-TA

NNN
ts N

eee"• s

-d---d

N N---N  t-N   ---N    -t-N '-- }' ls
  -. ->- ts

.e
slo

..e.
1

------------t-i---

t
C-AXtS

ti-'r:V- s.

   .--; -ts.
     -":"--N
        -'->'t---?"'---"-t---r.:--.-

                   -------e

e ee
eo

-..-.-
------- ...

---

ld2.ldE2l2

IdEldEl2

IR isl2 (r= 6s mev)

e

R.T.

2.40 2.38 2.56

PHOTON
2.34 2.32

ENERGY(eV)
2.30 2.28

FIG. 5-11.   Resonance behavior of the parallel-perpendicular
scattering by the slow-TA (T2-mode) phonon domains
measured at room temperature. The inset indicates
experimental configurations (see text).

(forbidden)
iri CdS
the



                                     -186-

scattering is only observable for 3i lgs (parallel-perpendieular configuration,

see Seetion 2.2.4). The solid and open circles were taken in parallel-

parauel configuration with gi(g.) ll 3 and gi(g.) 13, respectively. In

                          '                                        'contrast to the data foy the allowed TA scattering (Fig. 5-7), the forbidden

signal was not observed in the photon-energy region far from the fundqmental

                          '             'absorption edge. The solid and dash-dotted lines are obtained from Eq. (5.19)
                     tt                              '[Eq. (5.18)] by differentiating the dielectric constants for the extraordinary

and ordinary Tays, respectively. The theoretical curves obtained from
             '
the first derivatives de ll/dE (de331dE) and deJLIdE (deu/dE) are also shown

             :•in this figurd by dashed and dotted lines, respectively. These curves correspond
                                               'to the allowed Brillouin-scattering mechanism induced by the strain asSociated

with the acoustical phonons. As clearly seen in Fig. 5-IO, the second derivative

shows a quite good agreement with the experimental data.

     Figure 5-11 shows the resonance behavior of parallel-perpendicular (

forbidden) sc gttering by the slow-TA phonon domains measured at room temperature.

The inset indieates tha experimental configurations. [rhe allowed scattering

component is invoZved in this configuration, but it is smal! enough to be

neglected because of the small scattering angles ("V le). The solid and dashed

             .t .Iines are obtained by differentiating'the dielectric constant for the ordinary

ray according to the experimental configurations (2;i iZ and 3s is almost

perpendicular to the c--axis). For the purpose of comparison, we also show

in the figure the line shape of the Brillouin-tensor term R. obtained in
                                                         -S
Section 4.3.4. 0ne ean easily 'find in Fig. 5-11 that the seleond derivative

shows a quite good agreement with the experimental data.

     Forbidden Raman seattering by LO phonons for a parallel-perpendicular

                                                         S6configuration has also been found in ZnTe by Schmidt et aZ.                                                             They have

explained this effect in terms of depolarization induced by internal strain.

Although the forbidden-scattering mechanism observed here has not yet been



                                       -187-

completely explained, it may be pointed out that the strong longitudinal field

associated with the slow-TA phonon domain is one of the causes. A full

understanding of our results will require further experimental and theoretical

work to be done in this area.

                                                       '                                                               '
5.3.4 Compa?ison of BTiZZouin Tenso? Ris zDith Photon-dnergy DeTivative

       of the DieZeet?ic Constant

                                                     with the photon-energy     Next, we compare the BrUlouin-tensor tenn R                                                  is
                                                               '
derivative of the dielectric constant. In the above, we obtained the photon-
                                                               '                                                                    'energy derivatives by numerically differentiating the experimental data of

the die!ectric constants. It is well known that the photon-energy derÅ}vative

of the dielectrie constant can be obtained directly from the modulation

spectroscopy such as electroreflectance, e!ectroabsorption, thermoreflectance,

                                                         43,44piezoreflectance and wavelength-derivative spectroscopy. Indeed, in a

technique of the thermoreflectance spectroscopy the effect of a temperature

change on the optieal properties of materials eomes from a shift of the

band-gap energy (and a change of the broadening parameter). This band-gap
    '
shift produces a change of the dielectrie constant through the expression
                                                  'of Eq. (5.7). Thus, resonant Brillouin scattering is very analogous

phenomenologically to the rnodulation spectroscopy. From this Åíact, the spectral

dependence of the Brillouin-scattering cross seetios can be considered to

contain information about the (first-derivative) modulation spectrum, which

                                                                           'is verified by the following analyses.

     Figure 5-12 (a) shows the dielectrie constant el for ZnSe as a function

of photon energy at room temperature taken from the data of Ref. 185. The
                              '                                             '
first derivative of e                       with respect to the photon energy, obtained by                     1
numerical differentiation, is shown in Fig. 5-12 (b). Figure 5-12 (c) shows
                                       '
the theoretical line shapes of the Brillouin-tensor term R                                                              (solid and dashed                                                           is
        '
lines) and corresponding dispersionless term R                                                 (dashed line) along with the
                                               o
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experimental data [Fig. 4-11]. The resonant term Ris is calculated from

Eq. (2.55) with the lifetime-broadening energies of r = O (dotted line) and

                                                            '56 maV (solid line). We ean recognize that the line shape of the Brillouin-

tensor term R. (solid line) is similar to that of Fig. 5-12 (b). [rhe
             IS
                                                       184                                                           is shown in Fig.thermoreflectance spectrum of ZnSe at room temperature

5-12 (d). The significant feature found is that the therTnoreflectanee spectrum

is very similar to the line shape of Ris especially near the Eo and Eo+Ao

transition regions.

                                                               (Sl3) for     Figures 5-13 (a) and (b) show the dielectrie constant e
                                                             1

CdS at room temperature and its first derivative with respect to the photon

energy, respectively. The dielectric constant is obtained from Ref. 203.

Figure 5-13 (c) shows the theoretical line shapes of the Brillouin-tensor

term Ris (solid and dotted lines) and corresponding dispersionless term Ro

(dashed line) along with the experimental data [Fig. 4-20]. The resonant

term R. is calculated from Eq. (2.55) with the lifetime-broadening energies
      IS
of r= O (dotted line) and 68 meV (solid line). The experimental data shows

a quite good agreement with the theoretieal line shape of Ris when the lifetime-

broadening effect is taken into aecount in the calculation. The thermo-

reflectance spectrum of cds (k ll- I}) at room temperature204 is shown in Fig.

5-13 (d). The peaks in the spectrum denoted by A, B and C can not be
                                                                      '
                                        IFig. 5-13 (c)], where only the shoulderdistinguished in the line shape of R                                     is

arising from the B and C exeitons can be reeognized in the figure. In the

calculation of Ris, we took into aceount the lifetime-broadening energy of

r == 68 meV to fit it to the experimental data. This energy is larger than

the splitting energies of the three valenee bands between the A - B (14 meV)
                                                                 'and B - C bands (59 meV). Therefore, such a structureless feature appeared

in the line shape of Ris is the result of broadening of the resonance energies

(A, B and C excitons). Figure 5-13 clearly indicates that the spectra strongly
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resemble line shapes ob' tained in the first derivative of e                                                           resonant terrn                                                        1'

R. and thennoreflectance. We can, therefore, conclude from the analyses
 IS
of the quasi-static approximation that the Brillouin-scattering spectroscopy

is quite equivalent to the first-derivative modulation spectroscopy.
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                CHAPTER VI

DETERIVIINATION OF PHOTOELASTIC CONSTANT

          IN ZnSe, ZnTe AND CdS

                           6.1 INTRODUCTION

              '
     !n this Chapter, we shall obtain the spectral dependenee of the photo-

eiastic constants in ZnSe, ZnTe and CdS from the BrillouÅ}n-scattering data

by introducing the intrinsic-piezobirefringence analysis. From a macroscopical

point of view, the Brillouin-scattering cross section is known to be proportional

to the square of the corresponding photoelastic constant [see Section 2.2.4].

Such constant can be obtained independently from the stress-Å}nduced birefr•ingence

(piezobirefringence) measurement. The investigation of the piezobirefringence

Å}n solids is an oid topic of crystal optics.42 The application of a uniaxiai

stress to a solid produces a change in its crystal symmetry and lattice parameters

which results in significant ehanges in its properties. An optically isotropic

semieonductor usually beeomes birefringent under the action of a uniaxial

stress.

     !I]he piezobirefringence data have been reported in a variety of crystals

such as Ge,75 si,75 GaAs,75'205 Gap,206'207 Alsb,208 Gasb,209 InAs,209 Insb,209

Inp,207 zns,210 znse,92'211 znTe,92 cdTe,92'212 cucl,213 cuBr,213 cul,213

cdse,214 cds,30,92 zho30 and diamond.215 These data have been obtained

accurately only in the region of transparency because of experimental reasons

(i.e., transmission of light). Materials whose lowest gap is direet, or with

a direct gap only slight!y above the lowest one (e.g., Ge), have a strong
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dispersion of the photoelastic constants in the region near this gap. The

dispersion near an indireet gap far removed from a direct gap (e.g., Si and

GaP) is found to be very weak. The sign of the photoelastic constant is,

in materials with the lowest direct gaps larger than 'X, O.7 eV, negative

for long wavelengths and reverses sign when approaching the direct edge.

Materials with small direet gaps (e.g., InSb), on the other hand, do not exhÅ}bit

this sign reversal. The sign of the photoelastic constants in such materials

is positive at long wavelengths and also near the direct edge. The cancellation

in the Brillouin-scatteriRg cross section arises from the sign reversal of

the photoe!astic constant (i.e., occurs at an isotropic point). The isotropic

point is known to be independent on the applied stress.

     A usual technique employed eonsists of transmitting a beam of monochro-

mized light through the sample perpendicular to the stress direetÅ}on. The

plane of polarization of the light is at 45e to the stress direction, and

the ratio of the intensities of transmitted light polarized parallel and

perpendicular to the incident beam is related to the stress-induced phase

difference and therefore to the corresponding photoelastic constant [see

Eq. (2.208)]. Another method to measure the photbelastic constants ernploys

the diffraction of light traversing the sarnple by ultrasonic waves (Dixon-

              216Cohen method).                  Both methods are basically limited to the transparency

region of the material, and can be used with success only below or near the
                                        'fundamental absorption edge. • •
     Reeently, chandrasekhar et. az.2i7 have deveioped a new method to measure

                                               'stress-indueed birefringence in an opaque region of the material which employs

the Raman-seattering technique as a probe. Using this new method, they have

measured the magnttudes of the piezo-optical (photoelastic) aonstants in Si

               218                                        207(O.5 - 3.38 eV)                  and GaP (1.0 - 2.6 eV)                                           above the fundamental absorption
                                                                      '        '
edges.
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     In Section 6.2., we obtain theoretical expression of the photoelastic

                           'constants by using the model dielectric constants. A compaTison of the

theoretical expressiop with the experimental data is presented in Section 6.3.

In Section 6.4, we present a new method to analyze the piezobirefringence

effect in a opague region of the material, where the stress-induced changes

in both the real and imaginary parts of the dielectric constant are properly

                                                            219taken into account by introducing new fractional eoefficients.                                                                 The piezo-
                                                                       '
birefringence data reported up to date were analyzed by eonsidering only the

stress-induced change in the real part of the dielectric constant. Using

the present method, it should be possible to extend the piezobirefringence

analysis in a large number of opaque materials.

                       6.2 THEORETICAL EXPRESSION

                  '                            '                '
6.2.2 ZinebZende-Type eTystaZ
                                              '
     In Section 2.3, we have obtained the basic expression of the photoelastic

constants. Using this results, we shall obtain here the conerete expression

of the photoelastic constants in terms of the mode! dielectriq constants.

     The spectral dependence of the dielectric constants in Ge and III--V

                                                              64compounds can be well interpreted with the parabolic band model.                                                                  In this
                                                        '
model, the real part of the dielectric eonstant below the fundamental absorption

edge is the sum of the contribution of the EolEo+Ao edge plus a constant term

e. which corresponds to the effect of the average gap (i.e., contribution

from the higher gaps such as the El, El+Al and E2 gaps). Under the assumption

of parabolic bands, the model dielectric constant can be written from Eqs.

(2.193) and (2.206) as

           ei(tu) " co. [ f( iillJ ) + i( .:: )3/2 f( coX. ) ] + e. • (6•z)
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Figure 6--1 compares the result of our model (6.1) to the experimental data

                                                                191of ZnTe. The experimental data are taken from Sliker and Jost.                                                                     The solid

ltne ts a fÅ}t of Eq. (6.1) to the data. The numerical values used are as

follows: licoo = 2.25 eV, hooos = 3.18 eV, Coz= 13.20 and E.=3.05. It is

clear from the figure that the calculation shows a considerably good agreement

with the experimental data. It seems that our model should be in rnuch better

agreement with the experimental data if the exciton modification of the

interband absorption edge is taken into aceount. However, it is difficult

to evaluate this effect from the fit procedure between the model dielectric

constant and experimental data. A differential effect of the piezobirefringence

as we shall see below, is much more dispersive than El near the Eo ddge, and

a separation of the excitonic and interband contributions becomes to be

possible. If we include the contTibution of the ground state of the Eo exciton
           '                          '
[see Eq. (2.199)]:

                       DD                      FF                       AAI                     22"i 22 , (6.2)                  E -E 11i cD -{i)                   ex xl
we can write the real part of e below Eo as:

     tl(bl> = co. [ f( ixil ) + g( .:g )3/2 f( tu:. ) J

                                  FD
                                  AI                               +-                                   2 2 2+ eoo , (6•3).
                                 h co                                          - tu                                       xl .
                                '

where Exl " hcoxl is the ground-state energy of the Eo exciton.

     Substituting Eqs. (2.230) and(2.237) into Eq. (2.221) and using the

model dielectric constant of Eq. (6.3),-we obtain the expression of the

                                                       71photoeiastie constant pn - pl2 in the foZlowing form:

'
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                           E ck)  Pll'Pl2= eCl12' {-g( Igll )+4A.O. [f( IXII )-( ..O. )3/.2f( .il. )]}

           + Cel; { 3-Xexi 2. Xxl [ 1 2- (E EII:ili )3 1 s ]}

             ell (1-Xex) SO 1-Xex Xl SO 1-Xexs

           +D ., (6.4)
where

                  g(x) =[2- a+x)-!i2- (1-x)-!'2 ]lx2 , (6.s)

                    c=-(gm.rk )3/2p2balo-512 ,' (6.6a)

                  C.. ==-31IA? bl Ex13 . (6•6b)

In Eqs. (6.4) - (6.6), b is the shear deformation potential of Ptkus and Bir

[see Section 2.3.2)], and

               Xex = htoIExl ' Xexs "estu/(E.1 + A.o) ' (6'7)

The strength parameter Fll can be replaeed by (4TrNfl), where N and 1 are the

number of molecules per unit volume and the osciZ-lator strength per molecule

of the excitons, respectively. The first and second terms inEq. (6.4) correspond

to the contributions from the band-to-band and ground-state Eo/Eo+Ao exciton

transitions, respectively. Since the contributions of the higher gaps (El,

El+Ai and E2) are generally less dispersive than those of the Eo and Eo+Ao

gaps, we include such contributions in Eq. (6.4) as a nondispersive term D.

     The photoelastic constant p44 can also be obtained by proceeding the

analysis almost identical to the case of pll - p12. The orbital-strain
                                                              '
Hamiltontan matrix can be given by the same forrn as Eg. (2.227) if we replace

                                                               'the energy shift 6Eool [Eq. (2.226b)] by

                         6Ello = (dl v'Ii)S44X , (6.s)
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where d is the shear deformation potential. The stress-induced changes in

energy gaps and squared-p matrix elenents, required for the evaluation of
                                                          tt                         '                          'Eq. (2.221), are then given by the same equations as Eqs. (2.230) and (2.237),

respectively, except a replacement of 6Eool by 6Ello in the equations. Finally,

we obtain the photoelastic constant p44 which has the same form as Eq. (6.4)

but the following changes of Eq. (6.6) must be required:

                       c=- t( g m.k )312p2dtuo-5/2 , (6.ga)

                     Ce. =- 3IIA?d/4E.13 ' (6•9b)
                                      '

     The sign reversal of the piezobirefringence may be understood in terms

of cance!lation between the EolEo+Ao gap contributions and contributions from

the higher gaps. The eontributions from the higher-lying gaps have been

                                      209treated quite successfully by Yu et al.                                         with the Penn model (a simple model

of an insulator in whiah an average isotropic gap at the edge of a spherical

Brillouin zone is assumed). It is known that for the zincblende--type materials

the imaginary part of e has a strong peak (E2 transition) in the neighborhood

                             'of which most of the optical density of states is concentrated. In order to

                        220                            suggested the modei of the non-physical sphericalexplain this effect, Penn

Brillouin zone with an isotropie gap (Penn gap) at its boundaries. The usual
                                 'complex energy bands of the material are then replaced by those of a free
            '                     '                                                             'e!ectron with the Penn gap tD at the boundary of the spherical Brillouin zone.
                           g
This gap should occur in the vicinity of the E2 (M2) optical structure. In the
                                                                    '
Penn model, the long-wavelength die!ectrie constant e(O) of a solid is given by

                  E(o) =i+ D.( lllR )2 cr i+( lllEt )2 , (6.io)

                                 gg
                                                    'where cDp is the plasma freguency of the valence electrons ancl Dv is a parameter

                        221introduced by Van Vechten                            to take into aecount the effect of d-like core

electrons. Equation (6.10) yields two contributions to the ehange in e(O)
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due to the stress X; one arises from the change in plasma frequency and the

other from the change in the Penn gap, i.e.,

        ,,i,, g;(O)-.,i,, 2e(o) gÅÄ/=,(ge/!S3z"tu gl/-ge/IISIg"co gÅÄ/,, ,,..

where V is the volume of a crystal. The first term in the bracket of Eq. (6.11)

                                                     209should not exist' for a pure shear stress. Yu et aZ.                                                         obtained the following
                 '
Penn-gap change contribution in tensor form:

                    .(io) All;(o)-sg ' , ' (6.i2)

      "ewhere E and e are the dielectric and strain tensors, respectively. Using

Eq. (6.12), we obtaÅ}n the nondispersive component of the photoelastic constant:

                          1                    D= 25E(O) for pll-p12 (6.l3)
                         eu
                                   '                    D=e12ge(O) ' for p44 • (6.14)
                          11

     Figure 6-2 shows a typical exarnple of the theoretical line shapes of
    '

the photoelastic constant caleulated from Eq. (6.4) with three different

broadening parameters; r = O (dashed line), O.02Eo (solid line) and O.03Eo

(dotted line). The lifetime-broadening effect has been introduced in Eq. (6.4)

in a phenomenological manner by replacing oo by tk)-+-ir12h. When the electronic

states have an infinite lifetime (r = O), the calculated line shape shows

a divergenee at the band-edge region. The lifetime broadening suppresses

this divergent feature and as a result a complex structure appears in the

vicinity of the band edge Eo. It is clear that this strueture is very similar

to that for the Bril!ouin-tensor term R is [see, e.g., Fig• 4-10].

6.2.2 WuMtgite-Type C?ystaZ

     The piezobirefringence analysis for the wurtzite-type crystal is almost
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identical to that for the zincblende-type crystal. The stress-indueed ehanges

in the band--gap energies and squared-p matrix elements ean be obtained by

solving the eigenvalue prob!ems as simtlar to those discussed in Seetion 2.3.2.

Sinee the wurtzite-type crystal is already birefringent before stress is applied,

it is only possible to observe accurately the birefringence induced by the

stress along parallel and perpendicular to the e-axis. The !inear eombinations

of the photoelastic eonstants may, of course, be determined from the piezo-

birefringence experiment by properly selecting the experimental coordinate

        92systems. We now express the eomponent of dielectric tensor by taking into

account the exciton effect in the following form:

                     e..(E) -E eg.(E) +e.. , (6.15)
                             or -j                     -J                                         -Jco
where

            E!l'ij (E) = F[l'!j [,., l. .3 [ (E -.. lllln2 ) 2-E2 ]

                                ga
                                       E E2                                 +cij 4XGI tt In k9-E2] • (6•16)

                                                 gor

                                                 aHere oc labels the three valence bands A, B and C,' F                                                    is the strength                                                 ij
parameter related to the squared-p matrix element, and G is the exciton

Rydberg constant. C                     and e..                              are adjustable parameters which ean be                  ij ljco
deterrnined by fitting the experimental data of refractive indices with Eq.

(6.15). The first and second terms in the rtght-hand side of Eq. (6.16)

correspond to the contributions from the discrete excitons and the unbound

continuum excÅ}tons plus band-to-band transÅ}tions, respectively. The expression

                                89(6.16) has been used by Berkowicz                                   to explain his piezobirefringenee data
                                    'of CdS and ZnO. It should be noted that the second term of Eq. (6.16) has

very similar spectral dependence to that of the band-to--band contribution,

i.e., to that appeared in Eq. (6.1) [see Seetion 2.3.1]. The parameter C.. is
                                                                       1]



                                     -2O2-

 then introduced in Eq. (6.16) in order to account for both the continuum

excitons and band-to-band transitions by the coimnon expression, i.e., by

 the second term of Eq. (6.16).

       One can obtain the orbital-strain Hamiltonian matrix from Eqs. (2.80)

and (2.85). The stress-induced change in the band-gap energies may be

calculated by diagonalizing this Hamiltonian matrix. The stress-induced

change in the strength parameters may also be calculated in a manner rnentioned

in Section 2.3.2 by using' the perturbed wave functions. The piezobirefringence

can only be measured accurately when the axes of the stress-induced change

in the dielectric tensor coincide with those of the dielectric constant at

zero stress (natural birefringence), i.e., when the stress is applied along
          '
a principal axis. We shall, therefore, eonsider first the case corresponding

                                                                           'to the photoelastic constant p66. As mentioned in Section 2.3.2, the

experimental coordinate system for the determination of p66 satisfies this

requirement (the x-axis is parallel to the direction of the applied stress).

In this case, we can use the orbital-strain Hamiltonian of Eq. (2.88b) instead

of Eq. (2.85). Using the quasi-cubic mode! for the unperturbed bands, the

stress-induced changes in the band-gap energies and strength parameters are

obtained as follows (first order in stress):

                                              '                       AEgA =[ EgA (X) - EgA (O)'] ' O , (6•17a)

                       AEgB =[ EgB(X) - EgB(O) ]=O , (6•17b)

                       AEgc ='[ Egc(X) - Egc(O) ]=O , (6•17C)

        AFA.y/Ft.t.(o) L- [Aiy.A. - AFSy]/FA..(O) = 4( ::A + ::A )Cs(Sn--Si2)X '

                                                                 (6.18a)

       AFIIy/Fll.(o) = [AFII. - AF;y]iFli.(o) = - E:A Cs(S!iSi2)X ,

                                                                 (6.18b)
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        AFIIylFll.(o) = [AF:i. - AFiiy]iF:l.(O) = - E2A Cs(SiiSi2)X. '

                                                                    (6.18c)

where cs is the shear deforrnation potential, AF2.li=F[l.i(x)-F[l.i(O) and EIyx and

EcA are given by Eq. (2.79). The photoelastic constant can be urÅ}tten from

Eq. (2.210) as

                                 BE.. 1+6                 Pmn =- Eiiiejj 'ss.i!e-ii 2ki • (6•ig)

The factor (1 + 6kl)12 appears beeause the off-diagonal components of the

strain tensor contribute twice to the surn (2.210). Substituting Eqs. (6.17)

and (6.18) into Eq. (2.221), we finally obtain the expression of the photo-

                                            39elastic constant p66 in the following form:

                  p66 = 12 ( D66 + csF66 ) ,                                                                     (6.20)

                        ell
where
                                2A B 2A C                                                    -e                                     --C or E                              or E                                              C xx xx                    F66= 2[ B XXEBA XX+ EcA ] '                                                                     (6.21)

In Eq. (6.20), D66 is the nondispersive contribution arising frorn the higher-

lying gap transitions. In accordance with the previous discussion, we ean

introduce the lifetime-broadening effect in the calculation of the photoelastic

 constaRt by replacing E of Eq. (6.l6) by E + i(r12).

     We next proceed to calculate the photoelastic eonstant p44 in a simllar

                                                               '
way. From experimental aspect, this constant can not be measured accurately

 because the axes of the stress-induced change in the dielectric tensor do not

 coincide with those of the dielectric constant at zero stress, in contrast

                                    92 to the case of p66. Yu and Cardona                                       have determined the speetral dependence
                                              '
 of p66 and the linear combinations of the photoelastic constants. Recently,

                                30                                   have obtained the spectral dependence of however, Berkowicz and Skettrup

 both p44 and p66.. In the ease of p44, they have used the coordinate system
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with the stress direetion foming an

 shear strain cornponent e . We can
                       xz
     tt of Eq. (2.89b) instead of Eq. (2.85)

 foilowing stress-indueed changes in

parameters (first order in stress):
                  '

                     EgA = [ EgA(X) - EgA(O) ] =O ,

                     EgB == [ EgB(X) - EgB(O) ] = O ,

                     Egc = [ Egc (X) - Egc (O) ] = O ,

and
                                     or 2 ct 2
                AFIil.!Ft.A.(O) =EHI C6 T ( EiA + E A )

                                         2
                AFI.IFIIx(O) = -E-1 C6 i2( :EA - E:B )

                                    B
                                         2
                AF:l./Fll.(o) = -v,'iii c6 .T2( :gA + EIB )

                                    c

where C6 is the shear deformation potential, and
             T"[2.ctBc22FFI/IIZ((oOl]-'2--[2.ctiFF.l.'Z[oO))]>2

Substituting Eqs. (6.22) and (6.23) into Eg. (2.22i),

                 P44 = eiie33 ( D44 + C6F44 ) ,

where                      2B2C         F44 -m ,T,l7, -[ ::. ( eii. - gi7,l )+ :,B. ( eii. - Z: )

                                                eB E
                                        + EclB ( .X: a

                                                 B

 angle 450 with the e-axis to yield the

now use the orbital-strain Hamiltonian

. From this Hamiltonian, we obtain the
                           '
the band-gap energies and strength

'

'

'

.

we obtain

(6.22a)

(6.22b)

(6.22c)

(6.23a)

(6.23b)

(6.23c)

(6.24)

(6.25)

c

xx   ) ] . (6.26)
2

c
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                  is the nondispersive contribution arising from the higher-In Eq. (6.25), D               44
                                                                     '
lying gap transitions.

     The photoelastic constant p31 may also be derived in the same way as

was done to the ease of p66 and p44. However, this constant can not be determined

from the piezobirefringence experiment because of the limitation of the

experimental coordinate system. The Brillouin-scattering technique enables us

to determine the photoelastic constant p31 from the intensity measurements

of corresponding Brillouin component.222 The macroscopicai theory of Brinouin

scattering gives intensity of the PL-mode phonon component in terms of p31

[see Section 2.2.4]. As already mentioned in Section 2.2.3, the PL-mode
                                                                    '
phonon produces the non-vanishing strain component exx. Therefore, we can

use the orbital-strain Hamiltonians of Eqs. (2.93a) and (2.93b) instead of

Eqs. (2.84) and (2.85). From these Haniltonian matriees, the stress-induced.

changes in the band-gap energies and strength parameters become to first order

in the stress:

                     AEgA =[ (C2 - d2) + C4 ] e.. , (6.27a)

                                            2                     AEgB =[ (C2 - d2) + orB C4 '] e.. . , (6•27b)

                                            2                     AEgc =[ (C2 ' d2) + orc C4] e.. , (6•27c)

and

                     AFi).IFi).(O) =O , (6.28a)
                                            2
                     AF:./Fij.(O)=-2C4 11B , • (6.2sb')
                                          cg

                     AF:.IF:.(O) =+2 C4 11C • (6.28c)
                                          CB

Substituting Eqs. (6.27) and (6.28) into Eq. (2.221), we obtain the expression

of the photoelastic constant p31 Å}n the following form:
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        p31 = 12[D31 + c4FSi) + (c2 - d2)F52) ] , (6.2g)
              e               33
                                                         '                                                                        '
where
       ,s!ii) = -2[ ctB2eiz,i,[l.!c2e:z ] . [ Dail.il . .B2 Dai:.: . .,2 gli.cz ] , (6.5o)

                                                                   '                                    '
       • DEA aEB BeC
       FS?) =( eEZZ + aEZZ + eEZZ ) • ' ' (6.31)
                  gA gB gC- •
In Eq. (6.28)•, D31 is the nondispersive contribution arising from the higher-

lying gap transitions. ' '
                  '          '           '

           6.3 COI![PARISON OF [VHEORY WITH EXPERI)4ENTAL DATA
                      '

     The macroscopical theory of Brillouin scattering presented in Section

2.2.4 gives intensities of the Brillouin-scattering cross sections in terms

of the photoelastic constants:

                                                 2                              UB(Tl) `= (Pll-p12) , (6.32a)

                                          2           . OB(T2) cc P44 ,. (6.32b)
                                   '                                                '
for the zinqblende-type crystals, and

                                          2                              aB(Tl) ct p66 . ,. (6.33a)
                                         2                              ffB(T2) cr p44 , (6.33b)

                              OB(PL) Ct P312 , (6.33e)
                             '
for the wurtzite-type crystals. We shall obtain here the speetral dependence

of the photoelastic"constants from the present data by introducing the intrinsic-

                                  'piezobirefringence analyses.

 6.3.1 ZnSe
                                                                     '
     Figures 6-3 and 6-4 show the spectral dependence of the photoelastic



N'o
 - x
 A  Na-
  s-

a-
 v

8,O

4,O

o

-4.0

-8.0

-i2.0

ZnSe

'

t

l

f

l

'

t

•p l6,O

o

720 680 640 600
 WAVELENGTH ( nm )

560 520

--.

480

-bee o
o

- - -e- -cae- - -- ---
-- ..-

P.B, THEORY
 ----r=

r.
 O meV
68 meV

e YU a CARDONA

440

l

NoN1

FIG . 6-3.   Dispersion of the photoelastic constant pll - P12
The theoretical eurves are obtained from Eq. (6.4)
and r=68 rneV (solid line), The piezobirefringence
Ref. 92) are also shown by solid circles.

 in ZnSe
with r=o
data of

 (room temperature).
 rneV (dashed line)
Yu and Cardona (



-208-

NeO
 -
x
tae

B.O

4.0

ZnSe
'

t

1

t

1

1

l

1

t

o

-4.0

720 680 640
WAVELENGTH

600
 (nm)

560 520 480

pecFoo:.o9ooo

--p d -co
   o

60o- --

-

-l2.0

P.B. THEORY
 ----r

r
=

=

O meV
60meV

eYU a CARDONA

-16.0

-20P

-24.0

FIG. 6-4.   Dispersion
temperature).
with r==o mev
birefringence
solid circles

of the photoelastic constant p44 in ZnSe (roorn
  The theoretical curves are obtained frorn Eq. (6.4)
(dashed line) and r=60 meV (solid line). The piezo-
 data of Yu and Cardona (Ref. 92) are also shown by
'



                                     -209-

COnStantS Pn - P12 and p44 for ZnSe, respectively, obtained at room temperature.

The theoretical curves have been calculated from Eq. (6.4) with r = O (dashed

line) and r i O (solid line). The numerical values used are listed Å}n Table

                                        '
6-1. The constants C and C are deduced from the experimentai data of
                          ex
                                                                       92the intrinsie-piezobirefringenee measurements reported by Yu and Cardona.                                                                           The

piezobirefringenge data of Yu and Cardona are also shown in the figures by

the Silled circles. As clearly seen in the figures, the data obtained from

the BrilZouin-scattering measurements show a quite good agreement with the

piezobirefringence data. The theoretical curve (r = O) shows a poor fit

with the experimental data in the region near the fundamental absorption edge.

Such a feature is improved by taking into account the lifetime-broadening

effect. This effect has not yet been considered in the previous piezo-

birefringence analyses because of the experimental difficulty in the region

of the photon energies suffictently close to the fundamental absorption edge

(where there exists strong absorption of light in thick samples used to avoid

a destruction with the applied uniaxial stress). The best-fitting values

of the broadening energy are detennitned to be r= 68 and 60 meV for pn - P12

and p44, respectively. These values agree reasonably with those derived in

the analysis of the Brillouin-scattering cross sections [see Seetion 4.3].

The piezobirefrÅ}ngence coefficients of ZnSe have been measured at liquid

                                       211nitrogen temperature by Dubenskii et aZ.                                           Cooling the samples make it

possible to study piezobirefringence close to the absorption edge since the

edge becomes sharper at 77 K. Comparing their data with ours, we found that
                     '
the long-wavelength photoelastic constants do not vary much with temperatures.

6. 3. 2 ZnTe

     Figures 6--5 and 6-6 show the spectral dependence of the photoelastic
 '                                                        '                                                                  'constants pll - p12 and p44 for ZnTe, respectively, obtained at room temperature.

The theoretical curves have been calculated from Eq. (6.4) with r = O (dashed
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                                                                    '                        'line) and r + O (solid line). The numerical values used are listed tn Table

6-!. [the theoretical curve (solid line) shows a quite good agreement with

the experimental data especially near the fundamental absorption edge when

we take into account the lifetime-broadening energy of r = 30 rb33 meV. This value

agrees exactly with those derived in the analysis of the Brillouin-scattering

cross sections. [ghe sign of pn - p12 and p44 is negative in the region far
 '
from the band edge and becomes positive when the wavelength approaches the

                        92                           have reported the spectral dependence of theband gap. Yu and Cardona

photoelastic constants pil - p12 and p44 frorn the piezobirefringence measurements.

However, they have not measured the value of p44 in the positive-sign region

(i.e., near the band-edge region). Our experimental data, on the other hand,

clearly tndicates an existence of that p44 passes through zero while undergoing

a reversal in sign.

6.3.3 acZ9

     The spectral dependence of the photoelastie constant p66 obtained at

room temperature is shown in Fig. 6-7. The theoretical curves have been

calculated from Eq. (6.20) with r = O (dashed line) and r + O (solid line).

The numerieal values used are listed in Table 6-2. The piezobirefringence

data of yu and cardona92 and Berkowicz and skettrup30 are aiso shown in the

figure by filled and open triangles, respectively. The best-fitting broadening

energy is determined to be r= 68 meV as shown by solÅ}d line. This energy
                                                                       'agrees well with that taken into aceount in the Brillouin-scattering analysis.

It is c!ear frout the figure that our data show a quite good agreefnent wit,h

the piezobirefringence data. '
     Figure 6-8 shows the speetral dependence of the photoelastic constant

p44 Obtained at room temperature. The solid line has been calculated from

Eq. (6.25) by taking into account the lifetime-broadening energy of T = 68 meV.

     The numerical values used are listed in Tab!e 6-2. [rhe piezobirefringence
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Table 6-2 . Numerieal values used to calculate
  of the photoelastic constants p66,

spectral
P44 and

 dependence
P31 for cds.

Symbol Numerical value

     (a)
  EgA
     (a)
  E   gB
     (a)
  EgC

f, .A (b)
     zz xx
FB , FB (b)
.xx zz
     C (b) c•F ,F     zz xx
    (b)
   G
     (c)
   C2

     (c)
   C4

     (c)
   C5

     (c)
   C6

2.452 eV

2.466 eV

2.525 eV

O.O131, O

O.O073, O.O083

O.O041, O.O087

 28 meV

-4.5 eV

 2.9 eV

-1.5 eV

-2.4 eV

(a)

(b)

(c)

Referenee

Reference

Reference

187.

80.

152.
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                                                      '                                                                 '

                        '30                                  are also shown in the figure by open circles.data of Berkowicz and Skettrup

It is well known that the piezoelectrically active (T2-mode) phonon domains

produce high longitudinal electric field. This electric field may induce

the electro-eptic effect of crystals. In such a ease, the photoelastic constant

[Eq• (6•33b)] is given by 223

                             P44 = PZ4 + (P44) ind , (6.34)

where pZ4 is the Pockels photoelastic constant arising from the elasto-optic

effeet and (p44)ind is the indirect photoelastic constant arising from the

electro-optic effect• (p44)ind iS giVen bY

                                          e15r51
                             (P44)ind =- eii ., (6•35)

                                                     '
               and EWhere els, rsl n are the piezoelectric, Pockels electro-optic and
                                                      223dielectric eonstants, respectively. Hamaguchi et aZ.                                                          have estimated that

the Value of (p44)ind in CdS is about 18 % of the Pockels photoelastic constant

p4k4• In Fig. 6-8, we find a quite good agreement between the present data

and piezobirefringenee data. This fact suggests that Brillouin scattering

is mainly governed by the elasto-optic effect, i.e., it means that in Eq.

(6•34) p44 tr pZ4• It is obvious from Figs• 6-7 and 6-8 that the isotropic

point occurs at the same wavelengths for both p66 and p44 within the experimental

accuracy. There is nothing in theory which indicates that the isotropic point

should be positioned at the same wavelengths for both p44 and p66. However,

                                                                  30one ean expect such a faet on the basis of the quasi-cubic model.                                                                      Ithen

the crystal-field parameter Ac = O and (p44)ind = O, then P66 = P44. The

crystal--field parameter Ac for CdS is about O.027 eV which is thought to be

considerably small. From this fact, one should expect the isotropie points

to be nearly cormon to P44 and P66' '
     The spectral dependence of the photoelastic constant p31 obtained at
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room temperature is shown in Fig. 6--9. The solid line has been calculated

from Eq. (6.29) by taking into account the lifetime-broadening energy of r =

68 meV. Note that the energy derivative term of BeCz!3EgA does not contribute

to P31, because IYSz = O [see Table 6-2]. Absolute values of this constant

                                                                         '
are given in the figure; they were determined by normalizing our data to the

abso!ute one measured by Dixon (Dixon-cohen rnethod)46 at a light wavelength

                                                          222of 632•8 nm (lp311 = O.041 at this wavelength). Tell et aZ.                                                              have also

deterrnined the spectral dependence of the off-diagonal photoelastic components

p12 and P31 in the wavelength range of 530 - 630 nm by means of the Raman-

Nath method. I"e found that our data show a quÅ}te good agreement with the data

of Tell et aZ.

             6.4 PIEZOBIREFR!NGENCE IN AN OPAQUE REGION

     In the prevtous subsection, we have presented the spectral dependenee

of the photoelastic constants in various semiconductors in the region below

the lowest dÅ}rect gap determined Srom the Brillouin-scattering data by
                                                     '
introducing the intrinsic-piezobirefringence analysis. We have, however,

disregarded the contribution from the imaginary part of the dielectric constant

to the photoelastic constant assuming that the contribution is negligibly

small eompared with that from the real part of the dielectric constant in the

photon-energy region of transparency. Recently, chandrasekhar et az.207 have

developed a new method to measure the stress-induced birefringence in an

opaque region which employs the Raman-scattering technique as a probe. Using

this new method, they have measured the magnitudes of the piezo-optical

(photoelastic) constants in si (o.s - 3.3s ev)218 and Gap a.e - 2.6 ev)207

above the fundamental absorption edge. In their analysis, the contribution

from the imaginary part of the dielectric constant has also been neglected,
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a!thbugh they have pointed out that its contribution should be taken into

account in order to discuss the spectral dependence of the piezo-optica!

eonstants in the region above 3.0 eV in Si.

     Let us now present here a new method to analyze the piezobirefringenee

effect in the opaque region of solids, where the stress-induced changes in

both the real and imaginary parts of the dielectric constant are properly

                                      • 219taken into account by introducing new fraetional coefficients.                                                                 We will

                                                                    218apply the present model to the analysis of the experimental data of Si

and ZnSe (present work).

    '
6. 4. 1 ModeZ

                                                                    '
     The photoelastic constant or piezo-optical constant is exactly related

to the difference of refractive indices (nlt -nLLL) through [see Eqs. (2.208)

and (2.209)]

               An = nll -nLi-= -t no3(Sii - Si2)(pu - pi2)X ,                                                                 (6.36a)

                              13                                                                 (6.36b)               An =nll -nLL= -i no (nll - R12)X ,
                                                          '
for the [OOI] stress direction, and

                                                                  '                              13               An=nu-nl=-i no S44P44X '                                                                 (6.37a)

              An -- nn-nLLa -- ll no3T44x • ,                                                                 (6.37b)

                              '                                                                 '
for the [!10] stress direction. We note here that Eqs. (2.215) and (2.217)

are only valid when the optical absorption is small, i.e., e2 st O. The

optical constants n and k of Eg. (2.207) are real and positive numbers and

can be determined by optical measurements. They are related to the dielectric

COnStant (e = el + ie2) by the following equations:

                                22                          el =n -k , (6.38a)
                          e2=2nk . (6.38b)
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Resolving these equations in n and k, we obtain

                           .=[ (ei + e22) >2 + ei ]!z2 , (6.3ga)

                                            2
                                                                           '
                                                                    '
                           k'= [ (ei2 + e22)-i2 - ei ]!i. . (6.3gb)

                                            2
                 '
The ehange in the refractive index An can now be given by (first order in

                            'stress)
                                                   Be                                aE        An = -gt/ x = ctr(El, e2) Dxl X + Bi(el, E2) ex2 X

                  = ctr(el, e2) Ael + Bi(el, e2) Ae2 , (6.4o)

with
                              2 2!i-      ct. = g2i = il- [ E[!' + (el; + e2 )` ]--i2 [i + (ei2 + e22)'-i2ei] , (6.4ia)

      Bi . g2 =t[ ei + (ei2 + E22)>2 l-!i2 [(ei2 + g22)--i2.2] . (6.qb)

             22
The first and second terms of Eq. (6.40) are contributions from the stress-

induced changes in the real and imaginary parts o'f the dielectric constant,

respeetively. The coefficients a and B. are functions of photon energy,
                                  rl
and their sign and relative magnitude determine the fractional contributions

of Agl and AE2 to the piezobirefringence effect.

     The change in the real paTt of the dtelectric constant wtth the applied

stress can be given by the expresston (2.221). The stress-induced ahange in

the imaginary part of the dielectric constant Ae2 is also give by replacing

gl of Eq• (2.221) by e2, i.e.,

                                                    '
       m62(a))] - Dbxe2 x= l.=A,B,c( DBMei. ani + lgli Atogt ) . (6.-2)

The photoelastic (piezo-eptic) constant can be obtatned by substituting Eq.
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(6.40) into Eq. (6.36) [Eq. (6.37)].

6.4.2 ResuZts ctnd AnaZysis

                   '     First, we consider the contribution from the imaginary part of the

dielectric constant to the piezo-optieal constant of Si in the region of

       transition ('v 3.3 eV) where the sample Å}s opaque. Figure 6-10'showsthe E     1
the spectral dependence of the fractional coefficients ctr and Bi for Si,

calculated from experimental values of the optical constants reported by

                      224Philipp and Ehrenreich. A low-energy region (below 3.0 eV), which contains

the fundamental absorption edge, is dominated by orr. The orr dominanee in this

region makes it easy to analyze the piezobirefringence effect using a

                                                                            64conventional technique which employs transmission of light through the sample.

The fractional coefficient B. increases at the photon energies above 3.0 eV,
                           i
and rising Bi and falling ctr produce a crossover at about 4.1 eV. In this

     'region, the piezobirefringence analysis becomes very difficult, because the

fractions of the contributions from Ael and Ae2 should be exactly taken into

account. Figure 6-11 shows the changes in the dielectric constants Ael and

Ae2 as a function of photon energy. In order to calcuZate Ael and Ae2, we

have used the following approximations:

                  Ael = ]lll x= lil AEg or - l:l.AEg , (6•43a)

                                  g
                             '                  AE2 = iii2 X cr :il AEg cr - l:2 AEg , (6'43b)

                             '
where Eg Å}s the Eigap energy and E is the photon energy. We have calculated

Ael and Ae2 by nuiner.ically differentiating the experimental data of Philipp

               224                    The obtained resuits are shown in Fig. 6-11 by solid (Ael)and Ehrenreich.
          '
and dashed line (Ae2). The changes in the dielectric properties under strain

have aitso been calcuiated by Tsay et az.225 in terms of a fun band-structure

approach to estimate the BrÅ}11ouin-scattering efficiencies of Ge and Si.
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                                                        218                                                             Figure 6-12Now, we compare our theoretical model with the data of Si.

shows the theoretical curve calculated from Eq. (6.40) along with the

experimental data [Fig. 7 of Ref. 218]. The filled eircles are plotted

on the scale indicated in the figure, while the open circles are replots

of the same values on an expanded scale (4Å~). The theoretical eurve was

calculated using the fractional coefficients and the changes in the dielectric

constant given tn Figs. 6-10 and 6-11, respectively. The data below 1.5 eV

are obtained from Ref. 64 (conventional method) and those above 1.5 eV from
                                  '                                                         'Ref. 218 (new method). It is evident from Fig. 6-12 that the experiment
                              '
                                                'and calculation are in quite good agreement.

                        218     Chandrasekhar et aZ.                            have also reported the experimental value at

                                                    1E = 3.38 eV, where it is plotted on a reduced scale (iirTtX). Due to the lack

of points at intermediate photon energies they have not been able to infer

the sign of the effect at E == 3.38 eV, They have suggested that in the

photon-energy region close to the critical point real transitions occur and

          'the exact linewidth, including the imaginary part of the stress--induced
                                         '
dielectric constant, is required for an accurate description of the piezo-

birefringence phenomena. By virtue of the present model, we can estimate
                       ttthe sign of the data at E = 3.38 eV to be negative because the signs of orr

and Bi are positive in this photon-energy region but those of AEI and Ae2

are negative.

     Next, we consider the contribution from the imaginary part of the dielectric

constant to the piezobirefringence coefficient in ZnSe determined from the

Brillouin-scattering measurernents. Figure 6-13 shows the spectral dependence

of the fractional coefficients ar and Bi for ZnSe, calculated from experimental

                                                     190values of the optical constants reported by Aven et aZ.                                                          The stress-induced
                                      'changes in the dielectric constant Ael and Ae2 as a function of wavelength

for the case of the [OOI] stress direction are shown in Fig. 6-14 by solid (Ael)
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and dashed line (Ae2). In the calculations, we have replaced tu of Eq. (2.221)

by tu + i(rl)h) and calculated real and imaginary parts of this equation. It

is important to point out that the change in the imaginary part (Ae2) has

                                                         'considerably large value in the region very close to the fundamental absorption

edge (2.68 eV = 463 nm). However, the fractional eoefficient Bi is very

small, compared paith orr, in the photon-energy region. It is alear from this

faet that the contribution from the imaginary part of the dielectric constant

to the piezobirefrtngence effect is much smaller than that from the real part

of the dtelectric constant, and therefore we can disregard the imaginary-part

contribution in the regÅ}on below and near the lowest direct gap in a good

approxirnation. From these consideratÅ}ons, the photoelastic constant p!1 - Pl2

becomes proportional to ctrAel [see Eqs. (6.36a) and (6.40)]. Yife have,

therefore, fitted our experimental data of pll - pn to the calculated curve

(solid line) by taking into account the constant term whieh arises from the

higher-gap contributions (El, El+Al and E2 transitions), where we have assumed

that a is nondispersive in the measured wavelength region [see Fig. 6-13].
      r
It ts clear from the figure that the calculated curve shows an excellent

agreernent with the experÅ}mental data. From these discussions, we conclude that

the photoelastic constants in the region of transparency can be safely determined

on!y by the stress-induced change in the real part of the dielectric constant,

and therefore our previous results (Section 6.3) can be used wÅ}thout any

modification.

     It can be found from Figs. 6-10 and 6-13 that the spectral dependence of

the fractional coefficients ct and B. is very similar to that of the modulatÅ}on
                              rl
                                                                      226spectroscopy proposed by Seraphin and Bottka (Seraphin coefficients).

The Seraphin coefficients, which are obtained by differentiating Frenel's

formula, are functions of photon energy, and their sign and relative magnitude

deterTnine the fractional contributions of Ael and AE2 to the modulation spectro-
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scopy. In Chapter VIII, we will survey a relation between resonant Brillouin

scattering (piezobirefringence) and the first-derivative modulation spectro-

scopy such as thermoreflectance, piezoreflectance and wavelength-derivative

spectroscopy, and will compare the experimental Brillouin spectra with the

first-derivative moduiation spectra obtained tn some semiconductors. The
                               '
results will clearly suggest a close relationship between them.

     Finally, we have obtained a generalized expression of the piezobirefringence
                                                       '
effect by taking into account both the stress-induced changes in the real (Ael)

and imaginary part (Ae2) of the dielectric constant. The coefficients orr

and Bi, which are functions of photon energy, have been calculated from an
           '
analytical point of view. Such coefficients determine the fractional contributions

of Ael and Ae2 to the piezobirefringence response. The present model has been

demonstrated for Si and ZnSe in the photon-energy regions of opaque (El edge)

and of transparency (Eo edge), respectively. Good agreement between the

experiment and calculation has been found. When the present method is adopted,

it is possible to extend the piezobirefringence analysis in a large number of

opaque materials.
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                      CHAPTER VII

            EFFECT OF LIFETIME BROADENING
             'ON RESONANT BRILLOUIN SCATTERING IN ZnSe AND ZnTe

                           7.1 INTRODUCTION

     The purpose of this Chapter is to report some effects of the lifetime

broadening on resonant Brillouin scattering. It is well known from the

earlier work that the excitons play an important role on the optical properties,

at least at low temperatures, in the spectral region of the fundamental

               69                   The investigations were rnainly concerned with the energyabsorption edge.

states of the excitons which were found to be of the Wannier-Mott type [see

Sect' ion 2.2.2]. From nurnerous investigations, it is known that in semi-

conductors the optical spectra near the fundament'al absorption edge are

strongly influenced by exciton-phonon or electron-phonon interactions. Below

the edge, this interaetion determines the line shape of the exciton spectrum.

Furthermore, the interaction of electrons and excitons with phonons may cause

                                            227                                                suggested that when theadditional structures near the edge. Toyozawa

exciton-phonon coupling is weak and the exctton effective mass is small,

the exciton absorption band is of a Lorentzian shape, provided that the

temperature T is not too high. The half-value width (broadening) was given

by the level broadening of the optically produced exciton due to phonon

scattering, so that it was proportional to T except at low temperatures.

He also obtained that if the coupling is strong, or the exciton effective
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    '
mass is large, or the temperature is very high, the absorption band Å}s

expected to be of a Gaussian shape and the half-value width is proportional

to T>2. The optieal properties of various interacting exciton-phonon systems

have been explained within the framework of the Toyozawa's theory.

     In this Chapter, we report on a study of the lifetime-broadening (

referred to as cZtxnl)ing hereafter) effeet of the interrnediate electronlc states

on resonant Brillouin scattering in ZnTe and ZnSe. The light-scattering

       ' 35efficiency derived by Loudon                                contains various band parameters. The optical

                                                                         11absorption spectra are also specified by these parameters. Indeed, Pine

has discussed a relationship between the Brillouin-scattering cross section

and absorption, and tried to explain the resonant-Brillouin data (Briltouin

scattering by thermal LA phonons in CdS) from this aspect. The optical-

absorption data reveal that samples of znse, as in other ll-vi compounds,185,228

should be selected and prepared carefully in order to ninimize extrinsic

absorption arising from native or foreign defects. It is well known that

optical spectra in semiconductors are affeeted strongly by the damping (

                                                                 43,44,153,176,e.g., absorption, reflection and emission of the exciton lines).
     '177     Such a damping can be represented by a sum of the temperature dependent
 '
                       153and independent parts; the former arises frorn the thermal vibrations of
                                           '
the lattice and the later from the crystalline imperfections. From the

anaiyses of the optieal speetra,153'i76'i77 it was found that the vaiue of

the damping energy increases with increasing the lattice temperature. This

fact easily suggests an importance of the temperature-dependent part (i.e.,

the damping induced by lattice vibrations) in the damping process. From
                              '
these facts, it is expected that the Brillouin-scattering cross section is

also affected by the damping effect of the intermediate electronic states.

This is the motivation of the present study.

     In order to investigate the temperature dependence of the damping energy,
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we have measured resonant Brillouin scattering at room temperature and low
                                                                        '                                                                'temperature (77 K). Moreover, we have used two kinds of ZnTe and ZnSe single

crystals to study some effects of the crystalline imperfectionS on the

spectral dependenee of the Briiiouin-scattering cross sections.229 For znTe,

                                                                           '
one is the single crystal grown by the eonventional melt-grown method and

the other is that grown by the traveling heater method (THM, see Appendix). ZnTe

has a high me!ting point (os 12gsoc),230 and is usuany prepared from non-

stoichiometrtc melts or by vapor phase transport method. The high-temperature

growth from non-stoichiometric melt is, in general, suffered from a contamination

from silica. The crystals grown from the vapor phase, on the other hand,
                                                                        '
often contain numerous disloeations and inclusions. In contrast to the above

methods, the THM belongs to the solution growth and is suitable for the growth
                     231,232of perfect crystals.                              Two kinds of samples for ZnSe were prepared; one

is the as-grown sample grown by a rnelt-gTowth technique and the other is that
                       98                           We made this purification at 1000eC for about 30purified in Å}iquid Zn.

hours, where the crystals were sealed in evaquated quartz tube with Zn metal

(6N grade). The Zn-purification is known to be effÅíective particularly in

            'removing Zn vacancies and noble-metal impurities 'such as Cu and Ag. The

ability of this purification teehnique was already manifested from optical

                                                    98,185,233-235and electrieal properties of the purified crystals.

     The results obtained here have shown that the damping of the intermediate

electronic states does net depend on the ternperatures but strongly on the

erystalline imperfections. The damping energy of high-quality ZnTe (ZnSe)

determtned from resonant Brillouin scattering is r = 26 meV (44 meV) at 77 K,
                                '
which is very large compared with the value of r bl 2 meV (3 meV) obtained

                           236'from reflectance spectrum.                                We propose here for the explanation of this

difference the domain-indueed damping of the intermediate electronic states

arising from an interaetion of the states with the high-intensity acoustical
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phonon domains.

                                             '                   7.2 LIFETIMIE-BROADENING EFFECT

     When the frequency of radiation approaehes one of the resonance
                                                                   '
frequencies of a solid, we rnust take into account the finite lifetime of
                                                             '
the excited states. The finite lifetime of the states is a consequenee

of the spontaneous transition of the quantum system from higher states to

lower ones. A calculation of the optical process, e.g. electric susceptivility,

based on a fully quantum-mechanical theory may automatieally include spontaneous-

transition effects. However, a good approximation to the rigorous result can
                   '                                                 '
be obtained in a comparatively simple way by a phenomenological inclusion

of spontaneous-transitipn damping tn the theory, i.e., by replacing

               , .r                          tu+tu+iTt , (7.1)
where co is the frequency of radiatton and r is the phenomenological damping

energy [see, e.g.. Eq. (2.55)l. The probability that the quantum system at

the time t is still in the excited state is given by

                          W(t) = [exp -( rt/`fi )] . (7.2)

                    -1The quanttty To =+6r is caUed the lifetime of the exeited state. This
                                              '
quantity determines the broadening of the resonance energy aecording to the

well known uncertainty relation:

                                                     '                          AE4o bl 11 • (7•3)
                '
Equation (7.3) follows that the resonance energy is broadened by an amount

AE cr !L=r. '     To

     At very low ternperatures, the line shape of absorption and emisston of

the excitons results from interactions with aeoustical phonons. But, because

of the relatively strong coupling to the LO phonons, one would expect this
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              '                                                                              237coupling to inf!uence the exciton line width at moderately low temperatures.

The thermal-broadening mechanism is represented schernatically in Fig. 7-1.
                                                                     '
The discrete-exciton bands are depicted by the solid parabolas and the

hatehed 6rea is for the continuum-exciton bands. The dotted curves represent

the dispersion curves for the low-lying polariton modes. The lifetime
                                                          '
broadening is a ,consequence of the scattering of an exciton (excited electronic

state) associated with the annihilation of a phonon of wave vector Il and

energy hal • All energetically accessible states are permissible final states.
         q
     In general, the damping energy can be expressed by a sum of three

                           153independent contributions:

                    v(T) = ro + r.. (T) + rLo (T) . (7.4)

In Eq. (7.4), ro is an independent part of temperature T arising from the

foreign andlor native defects, r (T) is a contribution from acoustical'
                                 ac
phonons, proportional to the occupation number of acoustical phonons (

proportional to T for the thermal phonons), and rLo(T) is a contribution

froin LO phonons given gy

                    PLo(T) = Iexp (,hcoLiilkBT) -i] , (7t5)

where A is a constant taken to be independent of temperature and 'licoLo is

the LO phonon energy. The damping energy r(T), thus, always decreases

as the temperature is lowered because of the temperature-dependent parts.

of Vac(T) and rLo(T). An inforrnation about the shape of the exciton peak

can be obtained by emission, absorption and refleetance measurements.

                                                       236                                                                        236                                                                236A series of such studies has been carried out on ZnSe, ZnTe, CdTe
       176and CdS for temperatures from about 2K ttp to those where the exciton

induced structure disappears. Figure 7-2 shows the experimentally

determined widths of the ground-state (n = 1) exciton lines for ZnTe and
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                                     236                                         The line widths are obtained fromZnSe as a function of temperature T.

the reflectance data by introducing the Kramers-Kronig analysis for a range
                                                            tt                                                                             '
of ternperatures. The widths of these curves as a functlon of temperature

exhibit the same behavior, narnely a relatively constant value (ro) from

low T up to T c! 60 K (ZnTe) or to 80 K (ZnSe) at which temperature the

                 (T) becomes diseernable. Gutsche and voigt176 have also
contribution r              LO
obtained a similar result regarding the width for the n = 1 peak of the

B exciton of CdS on the basts of direct absorption measurements on thin

as-grown platelets.
                 '

               7.3 EXPERIMENTAL RESULTS AND DrSCUSSrON

2.3.1 ffeat-T?eatment Effeet

                      98                         have reported a method of the purifieation of II-VI     ,Aven and 'dio' odbury

compounds by firing treatment in molten group-II metals, and obtaÅ}ned

segregation coefficients by a radioactive tracer technique using isotopes,

  64           110              . Since then, this method has been frequently used in orderCu     and Ag
                                                                           238-241to eliminate impurities and to reduce resistivities of the semiconductors.

This method consists in heating the crystals to be purified in contact with

a molten metal in which the particular impurity to be extracted is readUy
                                                              'soluble: the logical choice for the solvent metal being Zn for ZnSe, ZnTe

and ZnS, and Cd for CdS.

     rt is the purpose of this subject to clarify puTification effects

in ZnSe by the heat treatment in molten Zn by using the photoluminescence

          242technique.               ZnSe single crystals used were grown by the melt-growth

technique. They were not intentionally doped with irnpurities, but contained

eopper residue impurity of less than 10 ppm. Prior to the heat treatment in

molten Zn, ZnSe single crystals were mechanically and chemieally polished
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along the (110) crystal plane and etched at room temperature in a mixture

of 1 part HCI and 1 part HN03. The heat-treated samples were once more

polished and etched slightly in the same manner mentioned above. A Hg lamp

with a Toshiba UV-DIA filter was used as a exciting light source for the

               'photoluminescence measurements. The emtssion speetra were obtained with

a modified Shima.z" UV-200 monochromator and a Hamamatsu TV R-136 photo-

                    'multiplier tube. •
     Figure 7-3 shows the photoluminescence spectra of the as-grown sample
                                                         '(dashed line) and the same sample heat-treated in molten Zn (so!id line)

measured at 77 K. The as-grown sample shows a broad emission band and

a weak edge emission. The broad emission band is thought to be a result

of the overlapping of three individual characteristie emission bands;

                                           243Cu-G, Cu-R and SAL. Stringfellopif and Bube described the copper emission

bands by a multivalent-copper-impurity model in which cu+2 and cu+ ions

substituting for Zn site in ZnSe were responsible for the green and red

emission bands. The Cu--G (green) and Cu-R (red) emission bands correspond

                                                244-246to these copper-multiva!ent-luninescenee bands.                                                         The heat-treated

sample gives a strong edge emission and a yellow;orange emission band known

                                            247-249to as the self activated luminescence (SAIi)                                                    peaking at about 590 nm.

The SAL center is essentially an associated center of an impurity-vacancy

pair which consists of a Zn vacancy and a halogen atom substituting for
                                                            '                                                          '
an adjacent Se site. The nature of the SAL center has been successfully•

explained in terms of a localized molecular rnodel and the olle-dimensional

                                  247 ..configurational coordlnate model. It is interesting to point out that

the Cu-G and Cu-R emission bands disappear by the heat treatment of ZnSe

in molten Zn. The disappearance of these emission bands is thought to be

caused by the effect of the Zn-extraction. Recently, Yamaguchi and Shigematsu
235    have earried out similar measurements to clarify effects of the copper
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       '                        'residual impurity from luminescence properties of ZnSe, and to clarify

purification effect of this material by the heat treatment in molten Zn.

They have concluded that the heat treatment in molten Zn can effectively

remove the copper residual impurity from ZnSe.

     Figure 7-4 shows the edge emission spectrum of the heat-treated ZnSe

                                'at 77 K. !t is well known that the noble-meta! impurities such as Cu and

Ag suppress near-band-edge emission. In faet, our as-grown sample does

not show any clear edge-einission structure, as shown in Fig. 7-3. The

near-edge emission spectrum of Fig. 7-4 exhibits the series of 5 lines

located just to the long-wavelength side of the absorption edge (441.6 nm);

                            r : 444 nm (2.793 eV)

                           Ao: 458 nm (2.707 eV)

                            Al : 463 nrn (2.678 ev)

                            A2 : 469 nm (2.644 ev)

                            B : 476 nm (2.605 eV) .

The sharp emission line I is located at 2.793 eV (444 nm). This value is

                                        185close to that determined by Hite et aZ.                                            from reflectanee measurements

and therefore corresponds to the annihiration of the discrete exciton

        250(n = 1). The A series and B line are thought to be due to free electron-

acceptor (or donor-acceptor) pair transitions. The separation energy between

A-series Iines is approximately O.03 eV which is in good agreement with

                                                 251,252the LO phonon energy reported in the literature. The A-series lines,

thus, result from the LO phonon interactions (LO-phonon repliea).-

     In addition, we have fabricated light-emitting MS (metal-semiconductor)

diodes from the heat-treated ZnSe single crystals with gold-Schottky and

indium-ohmic contacts. The as-grown ZnSe crystals usually show very high

resistivity - normallY lo7 N lo9 st-cm at room temperature - probably due

to residual-impurity defects and Zn vacaneies produced during crystal growth.
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The Zn-extraction allows us this semiconductor with about 1 st-cm n-type

resistivity and a room temperature electron mobility of about soo cm21v.sec

which is believed to be close to the intrinsic rnobility for this semiconductor.

Figure 7-5 shows the electroluminescence (EL) spectra from the forward and

reverse biased MS diodes at 77 K. In the forward bias (solid line), the diode

exhibits an EL spectrum very similar to the photoluminescence spectrum shown

                  'in Fig. 7-3. The spectrum clear!y exhibits a blue emission band consisting

of two peaks at 444 and 458 nm and a deep enission band SAL peaking at about

590 mm. In the reverse bias (dashed line), on the other hand, the diode

exhibits only a broad emission band. •This notable difference in the emission

spectra suggests that the emission mechanisrn in the forward bias is thought

to be due to a minority carrier (hole) injection from gold centact tnto ZnSe

          253,254                  and that in the reverse bias is thought to be due to ansubstrate,

impact-ionization excitation. The threshold voltages for the EL emission

are found to be about 2.0 and 20 eV in the forward and reverse biases,

respectively. This Åíact satisfactorily supports the emission mechanisms
                                                                  'statdd above. A similar difference in the emission mechanisms between forward-

                                                                            2S4and reverse-biased gold-ZnSe diodes has also been' reported by Bouley et aZ.

They have observed a blue enission (462 nm) sinilar to that seen iR their

photoluminescence spectrum from a forward-biased diode, while observed a
                                                             '                               '
broad emission band from a reverse-biased diode which differs quitely from the

photoluminescence spectrum.
                                             '
     It is concluded from such drastic changes in the optical and electrical

properties of the heat-treated samples that the treatment in molten Zn can

effectively remove a wide spectrum of metallic impurities and lattice defects

such as Zn vaeaneies from this semiconductor. The high purity of ZnSe crystals

can, thus, be obtained by treatlng the Zn-extraction technique.



"- r
E
6
=
v
J
ut

2.8

  PHOTON
2.6 2.4

ENERGY ( eV
2.2 2.0

  )

l.8 I.6

I.o

O.5

   o.

. 7-5

   t
  i
  t
  t
 '
 '
'

'

 l
 l

t
l

t
l

/
/
l

-
tt"- '- ---N N

x
N

N
x

N
N

N

N
N

N

ZnSe

  <Zn-TREAT)

x
  Ns,

    NNN
      Å~
        Å~
           N

FIG

400

  .

         500 600 700
            WAVELENGTH ( nm )

  Electroluminescence spectra from the forward
biased MS dtodes [heat-treated ZnSe] measured
Forward bias: solid line; reverse bias: dashed

 and
at 77
 line

800

reverse
 K.
.

1
N'
pl
pl
1



                                     -245-

7.3.2 Resonant BpiZZouin Scattening
                                                                '
     Next, we discuss some effects of the crystalline imperfections and

temperatures on the s.pectral dependence of the Brillouin--scattering eross
              '
sections. Figure 7-6 shovfs resonance behaviors of the Brillouin-scattering

cross sections in ZnTe for O.2 GHz fast-TA (T2-mode) phonon domains rneasured

at room ternperatpre [filled triangles (melt-grown crystal) and open circles

(THM crystals)] and 77 K [filled circles (THIY[ crystals)]. The vertÅ}cal arrows

in the figure indieate the positions of wavelength corresponding to the band-

gap energies (E at room temperature and 77 K). The resonant cancellation
               g
observed here occurs at S69 and 545 nrn at room temperature and 77 K, respectively.

One finds in Fig. 7-6 that the resonant enhancernent for the erystal grown

by the THM is stronger than that for the crystal grown from the melt. In

addStion, one'finds that the resonant enhancement for the THM crystal increases

with decreasing the temperature from room temperature to 77 K, which seems

to be coincide with that the intrinsie absorption edge becomes sharper at

lower temperatures.

     The theoretiaal curves of the Brillouin-scattering cross sections,

calculated from Eqs. (2.25) and (2.55) by taking'into account the various

damping energies, are shown in Fig. 7-6. They are fitted to the experimental

            'data at the corresponding cancellation points by adjusting multiplicative

constants (i.e., vertical shifts in the log-plot of this figure). The numerical

values used to calculate the resonant-Brillouin term R. are listed in Table
                                                    -S
4-3. The best-fitting va!ues of the damping energy are determined to be

r = 60 meV for the melt-grown crystal (room temperature), r = 30 meV for the
     '
TH)C crystal (room temperature) and T = 26 meV for the THM crystal (77 K).

     In order to make these resonance features clear, we show in Fig. 7-7

the line shapes of the resonant--Brillouin term Ris in the region near the

fundamental absorption edge along with the experirr!ental data. The data points



-246-

----

9
'E
=

 .A Lv
v

bm

 -2
10

 -3
IO

-- 4
IO

-5
IO

l-o6

I

l

t

1

1

1

 ,

 ,
 1
 l
 1
 1

1

1

l

l

1

1

 1
 1
 1
 t
 1
 .1
  ,
  1
  s

t

1

1

1

t

,

1

,

1

 1
 1
 t
 l
 1
 1
  1
  ,
  1
  1

E (77K)
g

e

 .
 :.
 /r

4
 :.

A
l
:

l

ZnTe

3K56o's6-6'86Ei)iSoo

t

'

1

 ,
 1

 l

:.

.

.

 .

 :

e

' ' '
o' .a

  :.
  .
  :-
  :
 :.

 .
 .
-t

 !
 -•
 .

E (R.T.)
g

A
A

R.T.

--- r= omev
-r= 30mev
•-••--  r= 6o mev

oo o

77K
---- r= omev
-r= 26 mev

2} THM

A MELT-GROWN

FIG. 7-6

520 540 560 580 600 620 640 660
                     WAVELENGTH ( nm )
. Dispersion of the Brillouin-scattering cross sections in ZnTe
   by O.2 GHz fast-TA phonon dornains measured at room ternperature [
   filled triangles (melt-grown crystal) and open circles (THM crystal)]
   and at 77 K [filled circles (THb( crystal)]. The theoretical curves
   are calculated from Eq. (2.55) with r=O meV (dashed lines: room
   temperature and 77 K), r==30 meV (solid line: roorn temperature), r=60
   meV (dotted line: room temperature) and r=26 TneV (solid line: 77 K)•
   The vertical arrows indicate the position of wavelengths eorresponding
   to the band-gap energies at room temperature and 77 K.



-247- :
ZnTe

'

1R.I

s
1

--- r=omev---r=omevI
::

-r=50mev-r=26meVI t

•---•• r=6ornevl l
11

'
AMELT-GROWNl

ii

't -Ro

-'-'-'-'pt'-'-`-' f'-t t
t/:! -- ---- -----

'/l.'/1.

;.

't

'
/1:l

(R.T.}

l

40620600580 560
:l

540 520

WAVELENGTH(nm)
l!

i

FIG. 7-7.

o

Aco
•.--

c=
 `aLv
v
 oor

I

'

.9
ttl

  Theoretical line shapes of the resonant term Ris for ZnTe in the
region near the n = i exciton states along with the experimental
data measured at room temperature [filled triangles (melt-grown
crystal) and open circles (THM crystal)] and at 77 K [filled circles
(TH){ crystal)]. The corresponding nondispersive term Ro.is also
shown by dash-dotted line. The vertical arrows indicate the
position of wavelengths corresponding to the n = 1 exciton states
    ) at room temperature and 77 K.(E
  xl



                                     -24 8-

shown in the figure are obtained by calculating the square roots of oB

(Fig. 7-6), and they are plotted to fit to Ris by taking aec.ount of the

corresponding nondispersive terrn Ro (uB>2 ct iRis + Rol). The vertical arrows

in the figure indicate the positions of wavelength corresponding to the n = 1

exciton states (Exl). It is apparent from Fig. 7-7 that the damping energies

do not depend strongly on the temperatures but on the kinds of the crystals.

The contribution rac(T) of Eq. (7.4) is usually smaller than rLo(T) especially

in the temperature region higher than about 60 K. Zn the present case, the

amplified acoustical-phonon domains have an energy density a factor of the

order of io9 above the therinai equilibrium vaiue,i8 and thus r                                                              (T) has an
                                                            ac
appreciable value to contribute to the daTnping of the intermediate electronic
                                                                    '
states. Therefore, we can expect specific effects of the high-intensity
                                                         '                                                                  'phonon domains on the damping of the intermediate electronie states, as also

suggested by segall.153 we found that the Brillouin-scattering intensities

obtained at room temperature and 77 K are almost same at the wavelength of

He-Ne laser (632.8 nm). This means that the densities of the aeoustical-

phonon domains are almost same at the two different temperatures. Considering

this fact, r (T) becomes independent of temperatures in the range frorn 77 K
            ae
to room temperature. The obtained value of r = 26 meV for the THM crystal

at 77 K is much larger than that determined from reflectance measurements

of ZnTe at 77 K (r bl 2 meV, see Fig. 7-2). Because of the temperature-

                                                      'independent nature of T, we suspect that the damping energy deterrnined here

arises mainly from the r contributÅ}on induced by the intense acoustical-
                       ac
phonon domains.

     In Figs. 7-8 and 7-9, we present the line shapes of the resonant-Brillouin

term Ris for ZnSe along with the experimental data taken at room temperature

and 77 K (fast-TA phonon domains), respeetively. The corresponding 'nonresonant

term Ro is also shown in the figures by dash-dotted lines. The open and filled
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circles are taken for crystals from the as-grown and heat-treated ZnSe,

respectively. The numerical values used to calculate the resonant-Brillouin

term Ris are listed in Table 4-3. The vertieal arrows in the figures indicate

the positions of wavelength corresponding to the n = 1 exeiton states. THe

data taken at liquid-nitrogen temperature shows the same resonanee behaviors

                                                                              'as that taken at room temperature, except a shift of the resonance cuTve

in wavelength due to the shift of resonance energy followed by the shift of

the band-gap energy. It is clearly seen from the figures that the resonant

enhancement for the heat-treated ZnSe (filled circles) in much stronger than

that for the as-grown ZnSe (open circles) both at room temperature and 77 K.

The experirnental dispersion shows a good agreement with the theoretical curves

wtth r = 56 meV (as-grown ZnSe) and 44 meV (heat-treated ZnSe) [room temperature

and also 77 K], indicating that the damping energy does not depend on the

temperatures but on the kinds of the crystals. The value of r = 44 meV for

the heat-treated ZnSe is much larger than that obtained from reflectance

measurements of ZnSe at 77 K (V bl 3 meV, see Fig. 7-2). Such a result agrees

with'that obtained for ZnTe as mentioned above. Thus, we consider that the

main contributton to the damping process comes from an interaction of the

intennediate electrouic states with the intense acoustical-phonon domains.

     Since little attention has been payed on the effect of damping on resonant

light scattering, it is diffieult for us to discuss extenstvely concerning

this problem by comparing with other published works so far. Recently,
                 '172
Klochikhin et aZ.                     have studied resonant Raman scattering in Zn Cd                                                                        Te                                                                  x 1-x
                                                    'solid solutions by LO phonons near Eo gap. They obtained the temperature

dependence of the Rarnan-scattering cross sections in the range 77 - 300 K,

and found that the resonance curves depend on the damping of the intermediate

electronic (exciton) states. The data of the temperature dependence of the

exciton lifetime deduced from the Raman-scattering spectra were compared with
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those obtained from reflectance measurements. The comparison showed a good

agreement with each other, and the temperature dependence wea explained

                                                                      60by the same expression as Eq. (7.4). More recently, Trommer and Cardona

have studied resonant Raman scattering in GaAs in the vicinity of EolEo+Ao

and El/El+Al critical points. They found that Raman scattering taken at

80 K by LO phonons near Eo+Ao critical point required a damping of r =

O.31StuLo (6alLo: LO phonon energy). Measurements taken at liquid-helium

temperature showed exaetly the same resonance behaviors as that taken at 80 K.

On the other hand, the resonance curve at room temperature required a fit

with a damping of r = O.45hckLo. [Vhese data suggest that r(T) is almost

constant in the temperature range from low T to about 80 K, while at temperatures

higher than 80 K the rLo contribution becomes discernible. It is evident for

the above two studies that the r contribution is negligibly small [because
                               ac
the occupation number of thermal acoustical phonons is very small compared

with the intense acoustical-phonon domains].

     In sunmary, we have determined the damping energies of the intermediate

electronic states for ZnTe and ZnSe from the Brillouin-scattering measurements,
                                             '
and found that it does not depend strongly on the temperatures but on the

kinds of the crystals. We eonsider that the damping of the intermediate

electronic states arises mainly from the contribution due to the high-intensity

aeoustical-phonon domains (i.e., from an interaction of the intermediate

electronic states with the intense acoustical-phonon domains). It is well

known that the intense acoustical-phonon domains can produce an exponential

                                                            255broadening on the intrinsic absorption edge of semiconductors.                                                                 We believe

that the effects of the intense phonon domains on the damping of the electronic

states should be revealed by measuring optical speetra such as reflection,

absorption and emission of the exciton lines during the presence of the intence

phonon domains (i.e., by measuring the destruction of the exeiton spectrum

during the presence of the intense phonen domains).
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              CHAPTER VllI

   RESONANT BRILLOUIN SCATTERING

AS A FORM OF IVIODULATION SPECTROSCOPY

                            8.1 INTRODUCTION

     The attention of many researehers has recently been drawn to the study

on optical properties of solids by means of reflectance and absorptien

           43,44                 The common feature of all modulation techniques of opticalmodulation.

spectroscopy is the measurement of the derivative of some optical properties

with respect to some parameters such as electric field, temperature, stress,

wavelength and Tnagnetic field. The various modulation parameters define

a whole family of (reflectanee) modulation techniques such as electroreflectance

thermoreflectance, piezoreflectance, wavelength-derivative spectroseopy and

magnetoreflectance. The modulated reflectance techniques better define the

spectral contrast of structure than do static reflectance techniques. A

rather featureless reflectanee spectrum is replaced by a modulation trace

rich in structure compressed into narrow regions of photon energy. The

modulation-spectroseopy techniques have, therefore, been widely adopted in

precision investigations of the optical properties of solids. The Tnain task

in the first investigations of the modulation spectroscopy has been to

determine more accurately the energies of electronic tTansitions at critical

points of the band'  structure. Structure in the real and imaginary parts of

the dielectric constant is well known to be intimately related to the presence
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of critical points in the Qpttcal energy versus k-vector relation. [Chese

critieal points have played a mojor role on studies of the band structure.
                          '
The modulation spectroscopy greatly enhances the structure and hence makes

it possible to resolve critical points much more clearly than in the norma1

static methods.
                                                                       '                           '
     The electroreflectance spectroscopy is probably the easiest of all

                                                           256modulation techniques from the experimental point of view.                                                                However, the

electroreflectance spectra in general are strongly dependent on the magnitude

of the modulating field and on experimental conditions and the modulating
                       '
field destroys translational invariance of solids along its direction, so
                                             '
the determination of material parameters frorn these spectra is a difficult

and uncertain process. The stress modulation preserves the translational

invariance. The therrnal modulation occupies a hybrid positon: the thermal

expan.sion preserves the translational invaTiance while the electron-phonon

interaction does not. Consequently, research effort has tended to concentrate

on first-derivative techniques such as thermoreflectance, piezoreflectance

and wavelength-derivative spectroseopy in which experimental spectra are

broader but can be analyzed in relatively simple terms.

     Resonant light scattering in semiconductors has recently attracted

increasing attention, since it has been found to be intimately related to

the optical properties of semiconductors. Light scattering is known to be

a kind of modulation spectroscopy (i.e., the optical constants of a solid

                          41are modulated by phonons). The inelastic-light-scattering experiments

yield more information than its conventional modulation counterpart. A

measurement of the spectral dependence of the Brillouin- (Raman-) scattering

intensities yields the energies of critical points in a manner similar to

more conventional modulation experiments. The spectrometer analysis yields

the frequency and sound velocity (acoustical phonon) of the corresponding
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excitation, without counterpart in the conventionai modulation experiment.

An absolute determination of the Brillouin- (Ramanj- scattering intensity

yields the deformation potential, whieh is the tensorial constant and

represents the interaction of the elementary excitation (phonon) with the

electronic transitions (electron-phonon interaction) [see Fig. 8-1].

     rn this Chapter, a diseussion is given on resonant Brillouin scattering

in connection with first-derivative modulation spectroscopy such as thermo-

                                                                     257reflectance, piezoreflectance and wavelength-derivative spctroscopy.

In Section 8.2, a detailed survey is given of a relation between the expressions

for resonant Brillouin scattering based upon Loudon's light-seattering theory

and the quasi-static approximation and also of a comparison of them with

the first-derivative modulation spectroscopy. In Section 8.3, we compare

the experimentally derived Brillouin-scattering efficiencies with the

first-derivative modulation spectra in some semiconductors (ZnSe, ZnTe and

GaAs). It will be demonstrated there that a good agreement between them

may be obtained when the lifetime-broadening effect is taken into account

in the resonant-Brillouin-scattering analysis.

                       8.2 THEORETrCAL DESCRIPTION

                                                '
     In this Section, we shall show that the resonant-Brillouin-scattering

process can be described by a phenomenological formalism analogous to that

of the first-derivative modulation spectroscopy such as thermoreflectance,

                                                         43,44piezoreflectance and wavelength-derivative spectroscopy.

8.2.1 Resoncxnt BntZZozain Seatte"ing

     First, we consider two-band contribution to the resonant-Brillouin-

scattering process in which intermediate electronic transitions are necessaTily

intraband [i.e., 'htuor(R) = lltuB(il)]. The energy denominators in Eq. (2.24) may
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be written for the Stokes process as

                                                                         '   [(tuor(i) - tui)(ca.(?) - co.)]-1 = tuq-1[(al.(?) - toi)-1 - (co.(k) m tui + tuq)-1]

                                          '                  !t ooq-1{[('es.(R) - coi)-1 + (alct(k) + eei)-l]

                         - [(. (k) . .. . ., )-1 . (. (k) . .. .. )-1]} ,

                              ct -q or lq
                                                                  (8.1)

where we have assumed that tu. >> es . The dieleetric function of a solid is
                     . 1.q
                                       43known to be given by the following form:

          e(tu) = A['gl z -,. 1<p>l2 Å~ [(co.(k) - tu)-i + (coor(k) + tD)Mi] . (s.2)

                oo ct,k
                  '
Comparing Eq. (8.1) with Eq. (8.2), we find that the resonant-Brillouin term

R. [Eq. (2.24)] can be written in terms of the frequency-dependent dielectric
 IS
              ,to) based on the dielectric theory asconstant E(CD
            gor

                                          '                        1          Ris =Ag :'.. al- [E(a)go,,tui) - E(cog.,CDi-tuq)] , (8•3)
                        q
where A = -hm2co.2 14Te2ee . since liee ,is stffficiently smaller than J6cD.                                                                   (especially              -qq 1for the case of the Brillouin-scattering process); Eq. (8.3) can be written

to a good approximation as

                                 D              1tsm-.o Ris = A g :'oror see e(tugor,coi)

                q
                       !! -Ag :'oror googor g(tugct,ali) , (8.4)

where we have neglected an additional term arÅ}sing from A which results in

a structureless contribution to Eq. (8.4).

     Next, we consider tree-band contribution to the resonant-Brillouin-

scattering process in which intermediate electronic transitions are necessarily

                    ++interband [i.e., 'l5edor(k) =tituB(k)]. The energy denominators in Eq. (2.24) rnay
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be written. for the Stokes process as

                                                           '
    [(tuct(k) - coi)(tuB(k) - tos)]-1 = (A t tuq)-1[(to.(k) - coi)-1 '

                                     - (edB(k) - ck)i + cDq)-[i'] , (s.s)

where

                        ÅÄ+                  A= tuB (k) -to. (k) (s.6)
is the difference of the interband-transition energies (e.g., the spin"-orbit

splitting energy for the zincblende-type crystals). Introducing the dielectric

theory into Eq. (8.5), we obtain

                   lim Ris ct '{l- (e+ - e-) ,                                                                  (8.7)
                   tu -K]
                    q

       +-where e and E are the contributions of the tuor and al B gaps to the dielectric

constant, respectively.

     Consequently, we ftnd that the expression for the Brillouin-scattering

efficiency based on the quantum-mechanical approach has the same form as

that derived from the quasi-static approximation [see Section 5.2.1]. The

most dispersive contribution to the resonant-Brillouin process (i.e., two-

band contribution) can, thus, be expressed by the first derivative of e

with respeet to the incident-light frequency (or•equivalently to the band-gap

energy). rt is easy to show that Eq. (2.55) can also be expressed by the

same form as Eq. (8.4) or (8.7) when we use dielectric function valid for the

                              'exciton model instead of the free electron-hole pair model.

8.2.2 ModuZation Spectroseopy

     The refleetivity R of a material is a guantity which ean be measured in

a straightforward manner. For normal incidenee of light, it has the form



The reflectivity

components of the

Eq. (8.8). This

             R=

The effect on re

is made explicitly

             AR
              R

where

       R=

can also be

 dielectric

gives

    22 (e      +c   12
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 (n - !)2 + k2

       22 ' (n + 1) +k

 expressed as a function of

 constant by substitution of

) - [2el + 2(e12 + e22)!i2]-i2 +

the real and

 Eq. (6.39)

1

(8.8)

 imaginary

into

                  (e12 + g22) + l2el + 2(el2 + e22)!i2]-Z2 +1 '

               flectivity of the changes Ael and Ae2 induced by the

                  by differentiating Eq. (8.9). The resuZt has the

                  ct(El, e2)Ael +B(el, e2)Ae2 ,

                  or=Cl[(el-1)A++E2A..] , (s.

                  S- C2[ (El - 1) IA+ - E2 1A-] , (s.
with
                         vi:l[(E12 + e22)/i2 Å} el]-i2

                  AÅ} ='Å} (el2+e22)-'2 ' (8'

                  ci =- [(ei-i)2+E22]-i , (s.

                  C2 E 2E21[(el - 1)2 + e22](e12 + e22) . (s.

                                                         '
The fractional coefficients or and B are functions of photon energy, and

their sign and re!ative magnitude detennine the result of the analysis

the different spectral regions. These coefficients are usually ealled

the Seraphin coefficients. Figure 8-2 plots the Seraphin coefficients

(a) znse, (b) znTe and (c) cds (S J-3), as calculated from experimental

(8.9)

modulation
     226form

(8.10)

11a)

llb)

12a)

12b)

12c)

in

as

for

 values
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                             '
                         190,192,203                                     The three dlagrams are very similar:of the optical constants.

A low-energy region, which contains the fundamental absorptibn edge, is

dominated by a. Raising B and falling ct produce a crossover in the region of

3 - 4 eV. We have previously obtained the fractional coefficients orr and Bi,

like to the Seraphin eoefficients, to analyze the piezobirefringence coefficient

(see Section 6.4). Figure 8-3 plots the fractional coefficients or and B. in
                                                                rl
Eg. (6.40) for (a) znse, (b) znTe and (c) cds (iJ-3), as calculated from

experimental values' of the optical constants.190'192'203 (Note that Fig. s-3

(a) is the same as Fig. 6-13). The coefficients ctr and Bi are found to have

the same physical meanings as the Seraphin coefficients ct and B, i.e., they

determine the fractional contributions of the changes Ael and Ae2 induced by

the stress (modulation parasneters) to the'piezobirefringence effeet (

modulation-spectroseopy response). It is obvious from a comparison• of Fig.

8-2 w' ith Fig. 8-3 that the speetral dependence of ct and B (Seraphin coefficients)

is very similar to that of orr and Bi. We find from Fig. 8-2 that in the

region near the fundamental absorption edge of U-VI compounds such as ZnSe

and ZnTe only the first term of Eq. (8.10) is important, and therefore the

             anbehaviDr of - ii- is determined predominantly by the nature of the function

Ael (to) '

     The function Ael(cD) with various modulation parameters can be given

  43,44by

  Temperature: AT (Thermoreflectance)

                      ae BE ' De            Aei(cD) =.( aEi siTiig + ari -giti )AT

                        g
                        oE ae                    Be                  bl DEI 'i5lit5 AT=bEil AEg , (8•13)

                                              '                                                       '  Stress: AX (Piezorefleetance)
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                        '
            '           Ae,(al) -'( lei -]l/& . Iili g}.t ,,.

                        g
                                  ee                    ae aE                  bl Di "5stig AX=Bi AEg , ' (s.14)
                      g•g

 Wavelength; Ack} (Wavelength modulation)

                 ' De
           Ael(a))=a,,I AtD ' , (s.ls)

 Electric field: AE (Electroreflectance)

                      33                     st d           Aei(es) `= 2 3(co2ei) , (s.i6a)
                        dG>                    3bo

                    where

                           elst)3= e2Lfi 2E21sv . (s.l6b)

In Eqs. (8.13) - (8.16), E is the band-gap energy, V is the broadening
                          g
parameter, M is the squared-p matrix element and v is the interband reduced

mass. The thermoreflectance, piezoreÅílectance and wavelength-modulation
    '
spectra reflect the first derivative of the unperturbed dielectric constant

                                                 '       '(first-derivative modulation spectroscopy). The electroreflectance (low-

field) spectrum, on the other hand, reflects the third derivative of the

unperturbed dielectric constant (third-derivative modulation spectroscopy).

In thermoreflectance spectroseopy, the rnodulation oE temperature results in

a change in El of the crystal which is Å}nduced by a shift of the band-gap'

energy E and by a change of the broadening parameter r. The contribution
        g
to the reflectance modulation caused by the shift of E g is usually larger

than that caused by the ehange of r. Under this condition, the thermoreflectance

and wavelength-modulation spectroscopy should be equivalent, except for a

scaling factor related to the temperature coeffieient of the band-gap energy

bEg/DT. !l]he stress modulation (piezoreflectance) can be represented by the
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                    '
same expressÅ}on as that for the piezobirefringence [see Eq. (2.221)].

Therefore, it can be eoncluded that such types of modulation speetroscopy

can be described by the first derivative of ei with respect to the band-gap

energy (thermoreflectance or piezoreflectance) or equivalently to the light

wavelength (wavelength-derivative spectroscopy).

     Let us now consider the derivative of the dielectric constant with

respect to the intevband energy E at various types of critical points. The
                                g
                               '
complex dielectric constant for a critical point of type Mr is known to be

written from simple theory in the following form (without including exciton

        184 •
                                  >2                     .r+1                                                 , (8.17)                          (hco - E)                 ect1                                g

where E is the interband energy at the critical point. The lifetime-
       g
broadening effect ean be accounted in the expression for phenomenologically

by replaeing 15tu by ha + ir, where r is positive (Lorentzian broadening).

       'This substitution yields '
                 e cc ir+1 (Ked + ir - Eg)-i2 .                                                                  (8.l8)

Introducing the redueed variable x = (ficD - E )lr, we obtain
                                           g
                 '                 E . ir+i r>2 (x + i)!i2 . .                                                                  (8.19)

The separation of the real and imaginary parts leads to the result

                 e cc ir+i r-i2 [o(x) + iÅë(-x)] ,                                                                  (8.20)

where
                      Åë(.) = [.+ (x2 +o-'2]!i2 . (8•21)

The derivative of the dielectric constant e with respect to the interband

energy E can be obtained from Eq. (8.20) in the following form:
        g
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               gii t= - {i ir+l r->2 [F (.) - iF (-.)] , (s.22)

                 g

where
                      F(x) = [(x2 + 1)-i2 + x]>2/ (x2 +o . (8.23)

The behaviors of the derivatives of el (solid lines) and e2 (dashed lines)

with respect to the interband energy E represented by Eq. (8.22) are shown
                                       g
in Fig. 8-4 for the Eaur types of the critical points Mo, Ml, M2 and M3•

It is interesting to point out that the sign of the derivative del/dEg (

solid lines) is negative for the Mo and M3 critical points whi!e positive

for the Ml and M2 critical points, and the magnitude of the contribution

frorn the M2 critica! point is considerably large at a low-energy region

(which contains the Mo critical point). This fact reasonably explains the

possibility of cancellation (isotropic point) in the Brillouin-scattering

process (piezobirefringence), i.e., the Mo-gap resonanee component should

be cancelled mainly by the M2-gap nonresonance component. As mentioned in

Section 6.2, the M2-gap component can also be estimated by using the Penn-gap

model, where the Penn gap lies in the neighborhood of which most of the

optieal density of states is concentrated (i.e., near the E2 critical point).

           258     Aspnes has verified that the electric-field-induced change in the

dielectric constant, determined from low--field electroreflectance measurement,

is shown to be in qualitative agreement with the third derivative of the

unperturbed dielectric constant measured by high-resolution ellipsometry.

He has also verified the relationship of electroreflectance spectra to those

obtained by first-derivative modulation techniques such as thermoreflectance,

piezoreflectance and wavelength-derivative spectroscopy. Similarly, we have

already verified in Chapter V that the spectral dependenee of the Brillouin-

                                'scattering eross sections shows a quite good agreement with the numerieally
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differentiated first-derivative spectra of the dielectric constant. It is

apparent from the present discussion that resonant Brillouin scattering is

quite equivalent to the first-derivative rnodulation spectroscopy. In the

next Section, indeed, we try and compare experimentally derived Brillouin-

tensor term Ris with expeTimental spectra of the first-derivative modulation

spectroscopy in some semiconductors (ZnSe, ZnTe and GaAs).

                      8.3 EXPERIMENTAL VERIFrCATION

     Figure 8-5 shows a comparison of the resonant-Brillouin term R. wÅ}th
                                                                    IS
the thermoreflectance modulation spectrum of ZnSe at room temperature. The
Brillouin-scattering data (oB-i2 cc ]Ris + Ro]) were obtained from TA-phonon

domains injected from CdS into ZnSe by using the acoustical-domain injection

method. The TA-phonon domains in ZnSe propagate in the [OOI] direction with

shear polarization parallel to the [110] direation (fast-TA phonons). The

                                                                            184experimentally derived thermoreflectance spectrum is from Matatagui et aZ.

They'are fitted by adjusting a multiplicative constant in R. since the
                                                            IS
measured scattering intensities were not absolute- values. The square root

of crB eontaÅ}ns the nonresonant term Ro aristng from the dispersionless

contribution to the Brillouin-saattering process. It is reasonable to consider

that the nonresonant contribution Ro is not generally equal to that of the
baekground component contained in fltt. when the spectrum of crB-i2 is compared

             AR
with that of - iF measured by the modulation spectroscopy, we have to take into
                                             fi2
aceount such a nonresonant contribution to aB . In the present analyses, we
shifted the zero point of oB-i2 to fit it to the spectrum of lltS, and adjusted

the absolute value by the procedure stated above.

     The theoretical line shape of Ris (solid line) is caleulated from Eq.
  '
(2.55) with the fol!owi.ng numerical values: `htugA = 'htugB = 2.68 eV; -lledgc =

                                                     '
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                         .e3•09 eV; :' BA = 3•8! eV; :' cB " 2•69 eV; :' cA = 4•67 eV;thR* = 19 meV; aork = 51 A;

P&o = P3B; and r = 56 meV, where we have assumed P&o = P8B = const. since

      '
the detailed values are net well known at present. (Note, however, that

Lawaetz259 has developed a semiempiricaz model to deseribe the dependence of

the matrix elements on lattiee constant, ionieity and d-electron shells in

the cores of various semieonductors). It is believed that the structure

                                                                  criticalappearing in the neighborhood of 460 nm is the result of the M                                                                o

point (contribution from the unbound continuum exciton and free electron-hole

pair) plus discrete-exciton interaetion [see Fig. 8-9]. It is obvious that

a reasonable fit between the line shape of R. and the thennoreflectance
                                             IS
spectrum can be obtained.

     In Fig. 8-6, we compare the theoretical line shape of R. (solid line),
                                                             IS
fitted with the experimental data (filled ctrcles), wtth the thermoreflectance

spectrum of ZnTe. The Brillouin-scattering data were obtained from fast-TA

phonon domains at 77 K. The experimentally derived thermoreflectance spectrum

                                       184 (dashed line) is from Matatagui et al.                                            The line shape of R. is calcu!ated
                                                               IS
from Eq. (2.55) with the following numerical values: 'llcogA = thedgB = 2•379 eV;

'ISal gc = 3•309 eV; :' BA = 4•61 eV; :' cB ` 3•26 eV; :' cA = 5.64 eV; -6Rik = IO rneV;

          o.              ISao"' = 45 A; Poro = PoB = const.; and r= 26 mev.

     Figure 8-7 shows a comparison of R. (same as that of Fig. 8-6) with
                                        IS
the piezoreflectance modulation spectrum of ZnTe. The experimentally derived

                                                               260piezoreflectance spectrum (dashed line) is from ]Ftathieu et aZ.                                                                    As compared

with the therrnoreflectance spectroscopy, the uniaxial stress modulation has

an interesting new feature; the stress may lower the syimnetry of the crystal

and thus introduce anisotropy in the modulation spectra. The piezoreflectanee

spectra of cubic material, for instance, are expected to depend on the

                       261polarization of light.                            We shottld, thus, regard from a phenomenological

aspect that the piezoreflectanee spectroscopy is quite equivalent to the piezo-
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birefringence. An excel'lent agreement between the line shape of RÅ}s and the

piezoreflectance speetrum is seen in the figure. '
                       '                                      . (same as that of Fig. 8-6) with     FÅ}gure 8-8 shows a comparison of R
                                      IS
the waveiength-derivative speetroscopy. The experimental wavelength-

derivative spectrum is from Barbier et az.262 in the waveiength-derivative

modulation, an external perturbation is not applied to the sample. This

moduiation, thus, gives essentially the derivative of the optical constants

and hence its interpretation involves only the theory of those optieal constants.

It is obvious frorn Fig. 8-8 that a reasonable agreement between the line shape

of R. and the wavelength-derivative spectrum can be obtained.
    IS
     We have also found that the line shapes oÅí R. [Figs. (8-5) - (8--8)]
                                               IS
are very simUar to the wavelength-modulated reflectance spectra obtained

                                           263-266in semiconductors such as ZnSe, ZnTe and CdS.

     Let us now consider the reflectance structure appearing in the vicinity

of the Mo critical point [see Figs. (8-5) - (8-8)]. The calculated line

shapes of the first derivatives presented in Fig. 8-4 are based on the simple

model in which only the transition between one-electron energy bands is

taken into account. The exciton effects are known to affect significantly

the one-electron optical constants in the neighborhood of critical points.

Figure 8-9 shows the line shapes of the first derivatives of the model dieleetric

constants for the band-te-band transitions [Eq. (2.184)] and dtscrete--exciton

transitions [Eq. (2.199)] in the vicinity of the Mo critical point. In the

calculations, the damping parameter is properly taken into account in a way

as described previously. It is clear from the figure that 6nly the first

derivative of the dielectric constant for the discrete-exciton transitÅ}ons

gives sharp negative peak in the region of the ground-state exciton energy

(Exl). The sharp negative peaks observed in the modulation spectra are,

therefore, easily understood to be due to the discrete-exciton transitions.
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                                      '
     In Fig. 8-10, vife show a compartson of the caXculated piezoreflectivity
with the experimentally 'derived Brillouin•-scattering data (uB-i2) of GaAs.

                                                     25The Brillouin-seattering data are from Garrod and Bray.                                                         By means of the

K-K relations [Eq. (2.189)], the re!ative reflectivity change ean be related
              '                                                       'to a ehange of the absorption cQefficient Act(cD):

              Zlt...,ISOb(iil?Eitu,'ldiil; .BA.(.) ' , (s.24)

                      o

where A and B are constants corresponding to the fractional coefficients or

and B of Eq. (8.10), respectively. The first and second terms of Eq. (8.24)

eorrespond to the contributions of the ehanges Ael and A62 to the piezo-

refleetance spectroscopy, respectively. [Note that the absorption coefficient

is directly related to the imaginary part of the dieZectric constant through

Eq. (2.198)]. The spectral shape of the stress-induced change in the
     '
absoxption coefficient Aor(tD) ean be calculated by taking account of the rigid

           '
shift of the band-gap energy with stress. Then, the piezoreflectivity can

be obtained from Eq. (8.24). The spectrum shown in the figure is calculated

by Engeler et az.267 using this procedure. Good agreement 6etween the

calculation (piezoreflectivity) and experiment (Brillouin scattering) is

clearly seen in the figure.

     We have demonstrated in Chapter V that the fesonance features of the

                                                              'BrUlouin-scattering efficiencies should be estimated sufttcÅ}ently frorn

the numerically calculated speetral dependence of the derivatives of the

optical constants. The results presented in this Chapter, moreover, dernonstrate

that the experimental spectra of the first-derivative modulation spectroscopy

are very suitable for the purpose of direct comparison with the resonance

curves of the Brillouin-scattering efficiencies.
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                  CHAPTER IX

      RESONANT BRILLOUIN SCATTERING

IN GaP NEAR THE INDIRECT ABSORPTION EDGE

                               9.1 INTRODUCTION

     Resonance phenomena of the Raman- and BrillouÅ}n-scattering intensities

in direct-gap semiconductors have reeently received a considerable attention

both theoretically and experimentally. Resonance effect involving indirect
268-273                                        274,275        or dipole forbidden transitions                                                has also been examined by

several authors. Experimental data of resonant Raman scattering in the
                                   269,270                                                              271                                              268,270indirect-gap materials sueh as Si,                                           GaP                                                      and AgBr                                                                  showed very

weak or nomresonanee feature in the indirect-gap region. Recently, Chiang
      276et aZ.          have reported no existence oE resonance' behavior in the Brillouin-

scattering cross sections of the indirect-gap layer cornpound GaSe. On the

contraty, we have observed a weak resonant cancellation of the Brillouin-

scattering cross seetion in the region near the fundamental absorption edge

                                                  277of the indirect-gap layer eompounds GaSe and GaS.                                                       The resonance behav-iors

have been successfully interpreted in terms of the direct- and indirect-gap

resonances for GaSe and GaS, respectively. [Vhis differenee arises froin the

            'faet that the separation between the indireet- and direct-gap energies in

these materials is relatively small for GaSe (a few tens of meV) but large

for GaS (O.4 eV), and thus for GaSe the indirect-gap resonance should be

masked off by the much stronger direct-gap one. (Details will be discussed
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in the next Chapter).
                                 '
     The GaP erystal is a more suitable rnaterial to study some of the indirect-

gap resonanee behaviors, since it has three indirect gaps, rg ÅÄ Xg near 2.25 ev

(room temperature), rg + X; near 2.48 eV (room temperature) and rg + Lg near

                                      '2.67 eV (78 K), as weil as the lowest direct gap rg -)- r6C near 2.75 eV,(room

temperature). [Irhis material was in fact the first indirect-gap material

examined by resonant-Raman-scattering experiments by scott et az.268 subsequent
                                                                 '
                                                                          54resonant-Raman-scattering experiments on GaP have been studied by Bell et aZ.
                                                                      '                        53                           in the region of the lowest-direct gap E                                                                    butand Weinstein and Cardona                                                                  o'

no careful study has yet been undertaken of indirect-gap resonance in this

                          278material. Recently, Valdez has observed significant resonant enhancement

of the Raman-scattering efficiency near the 2.25 eV rls -+ X: (rg + xg)

indireet gap, but found no enhancement near the 2.67 eV rXs + LCI (rg " Lg)

indirect gap. Trormner and cardona273 have observed seiective resonant

enhaneement of the RaT!tan-seattering effieiency in GaAs near the indirect rg ep

'cL6 and rg ')' X6C gaps. They have also found that the L--point conduction-band

minima lie below those at the x points. Jain and Jayanthi279 have recently

                                                   273                                                                       270                                                       and Klein et aZ.analyzed the experimental data of Trormer and Cardona

by their proposed theoretical model of the indirect-gap resonance, and obtained

a good agreement between the experiment and calculation.

     In this Chapter, we shall report the resonance phenomena of the Bri!louin-

scattering cross sections in GaP by the transverse aeoustieal phonons in the

region of the lowest indirect-gap energy by maktng use of the acoustical-

dornain injection method.280 in section g.2, we present some physical properties

of this material. The indirect-gap resonance process may be descrÅ}bed by the

5th-order perturbation theory, i.e., the perturbation is two orders higher

than that for the direet-gap resonance process [see Section 2.2]. !n Section

9.3, we present theories of the indirect-optieal transition and resonant
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Brillouin scattering near an indirect absorption edge of semieonductors. A
              '
comparisop of our data with theoretical calculation is made in Section 9.4.

The spectral dependence oÅí the photoelastic eonstants, lpn ' p121 and lp441,

is also determined as a by-product of the Brillouin-scattering data.
                      '

                          9.2 PROPERTIES OF GaP

             '
9.2.1 Eleet?onac Band Struetupae

     The II!-V compound GaP forms crystal with the zincblende structure as

shown in Fig. 4-1 (a) [solid cireles: gallium atoms, open circles: phosphorus

atoms]. The Brillouin zone for GaP is, thus, drawn in Fig. 4"-2 (b). The

electronic band structure of GaP has been studied by a number of groups,

including zanen and paui,282 cohen and Bergstresseri4i and waiter and cohen.

283 we show in Fig. g-1 (a) the eleatronic band structure of Gap obtained

                    282                         [Iftie states are labeled using the notation for thefrom Zallen and Paul.

irreducible representations of the single group of the zincblende !attice.

The lowest-lying conduction band is at the X point, 2.25 eV above the valence--

                                           284band minimum at the r point. Dean and Thomas                                               have studied the fundamental

absorptioti edge of GaP at many temperatures between 1.6 and 300 K. The

corresponding transitions are found to be of the allowed indirect type and

involve the creation of free excitons and electron-hole pairs. From the

                                                 !41band-structure calculations, Cohen and Bergstresser                                                     have predicted a

conduction--band Xl - X3 heteropolar splitting in GaP of about 300 meV. Spitzer

      285et aZ.         have observed an infrared absorption band in degenerate material,

which they have attributed to the Xl + X3 transition (310 meV). The next

              '                                                                        286lowest conduction-band minirnum is at the L point, at about 2.67 eV (78 K).

           287Dean et al.              have observed an unresolved indirect transition at 2.67 eV,

                                  vcwhich they have attributed to the Tls -+ X3 transition. However, Kyser and
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                                                   '                       '    286       have recently studied this indirect-transition band by means ofRehn

transverse-electroabsorption measurements, and concluded that the band is

shown to be from rl[s'to L:, contrary to the previous assigrment. The lowest

                                                                    '                                                  287direct gap is at the r point (2.75 eV). Dean et aZ.                                                      have examined this

                                                      45                                                         have measureddtrect gap from an experimental aspect. Thompson et aZ.
                                                              '
the electroreflectance spectra of a series of GaP-GaAs alloys and determined

the direct interband transition energies such as Eo• Eo+Ao, El, Ei+Al, E6,

                                    184E6+A6, E2 and E2+6. Matatagui et aZ.                                        have also studied optical propertÅ}es
            '
of GaP by means of the thermoreElectance technique.

9.2.2 PhysacaZ PTope?ties

     In this subsection, we shall summarize some physical properties of GaP

whieh are of interest to us in the present work. The lattice dynamics of

                                                        288Ga? crystal has been investigated by Banerjee and Varshni. Figure 9-1 (b)

shows the phonon dispersion relations for GaP along direetions r-L and r-X.

288     The elastic compliance, elastic stiffness and static dielectrtc eonstants

of the zincblende GaP crystal are listed in [l]able 9-1. The deformation

potentials b and d of the rls valence bands, lattÅ}ce parameter a and crystal

density g of GaP are also listed in this table. The elastie stiffness

constants were measured by Weil and Groves by means of ultrasonic phase-

                                290cornparison method. Yamada et aZ.                                    have recently determined the elastic

constants of GaP from the Brillouin-scattering measurements using a Fabry-

Perot interferometer. Their results are in good agreement with those listed

in Table 9-1. The deformation potentials b and d (Pikus-Bir's notation) are

from Glurdzhidze et az.206 determined from the piezobirefringence measurements.

       '                         291Reeently, Humphreys et aZ.                             have also determined these deformation potentials

                                                       '                                               292to be b = --l.8 and d = -4.6 eV. Onton and Morgan                                                   has studied the effeet
                                                                             'of a uniaxial stress on bound-exciton lines in GaP and found that the deformation

potentials of the excitons are approximately an order of magnitude smaller
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Table 9--1. ge:2:• :C,C,O.M,P.i.i,a.",C.e Egfig' ls.:i?g:l8 , SEEg"..'::,gfiij ' •

potentials of the rls valence bands (b and d),
lattice parameter (a) and crystal density (g) of
GaP at rooTa temperature. E in 10-IO m21N; c in lolO
    ;b and d in eV; a in A; and g in glcm3.N/m2

Symbo! Numerical value

 s  1!

 S12

 S44

 Cll

 C12

 C44

eil/eo

  b

d

a

g

O.973a

      a-O.299

 1.419

     a14.12

a

6.253a

 7.047a

     b10.18

-1.sC

-4.oC

s.4so4d

4.13oa

a Reference
b Reference
c Reference
d Reference

289.

296.

206.

297.
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than the eorresponding free--hole deformation potentials. [lrhe stress-induced

coupling between X: and Xg conduction-band minima tn GaP hag. recently been

                        293studied by Merle et aZ.                           by means of the wavelength-modulated transmission

spectroscopy and determined deformation potential of the X conduction band

                               'to be IE3I = l3 eV.

     Figure 9-2 shows the dielectric constant El for GaP as a function of

photon energy at room cemperature taken from the data of Ref. 294. The solid

line is a fit of Eq. (6.1) to the experimental data. The photon-energy

derivative of the dieleetric constant, delldE (in eV-1), is also shown in

the figure by dashed line obtained by numerical differentiation.

          '                        '          '

   9.3 THEORY OF LIGHT SCATTERXNG IN THE XNDIRECT ABSORPTION EDGE

9.3.1 lndimect optical Absoxption

     The band strueture of GaP is schematically drawn in Fig. 9-3 in which

the top of the valence band VB and the direct DCB (r point) and indirect

TCB minima (X and L points) of the conduction bands are shown. The states

labeled are those for the irreducible representations of the double group

of the zincblende lattice. EED and EDg denote the [Lowest indirect- (= 2.2s

eV) and direct-gap energies (or 2.75 eV), respectively.
                                                                       '
     We shall now eonsider a theory of the indirect optical absorption

neglecting the electron-hole interaction (exciton interaction). The theory

of indirect optieal transitions can be developed by considering the

                          295perturbation Hamtltonian:

                 ff(P)=lleR+HeL ' (9'1)

with
           UeR = :vAK{fxe(C"AK)a:K(C'V)Cxe6K,x + f*xe(evXK)axK(c,v)cxe6K,.-k}
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                        ' +c.c., (9.2)
       '
                                                      '     Hel, = g.AK,.,.,x,K,{hng(C"XK,C'"'X'K')a:K(C,V)ax,K,(e','v')bntg6K-K,,-n

           ng

               + hn*E(cvXK,c'v'X'K')a:K(c,V)aA,K,(e',V')bng6K-K,,n} , (9.3)

                                                                   '

Where f xe, f fe, hng and h:g are coup!ing parameters, and the subscripts c, v,

X, K ...., etc., have similar meanings to those appeared in Seetion 2.2. lleR

is the electron-radiation perturbation which is linear in both electron (

alK and axK) and photon creation-annihilation operators (cle and cxe), and

lieL is the electron--lattice perturbation which is linear in phonon creation-

                       tannihilation operator (bng and bng) but bilinear in electron one. The total

Hamiltonian is now taken from Eqs. (2.1) and (9.1) as

                           '
     '                   "= H(O) +H(P) . ' (9.4)

     We perform the cannonical transformation of the form [see Section 2.2]

                                            '                    rv -iS iS                                =ff-i[S, ll] , (9.5)                           ffe                   H=e

where S is chosen such that

                '        • s= l. [s, ff (O)]= ll (p) . (g.6)

Using Eq. (2.18), we obtain

                     s=l (x+x' +y+y') , (g.7)
                         -

         x=-2.AK!xe-S(Slllii2141tilltll2ExgC"III)-a:hKtu(C.")C 6K,x+c.c., (g.s.)

               Xe
         X' =g.xK iES'i9HSSiilliZll(C"lii)ilX"fiKiC.")C 6K,-x - c'c', (9'8b)

              Xe
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    Y="Z..xK,.,'v,x,K,!tlngSE)ll!lllil;Lll:{IHIIIIIfSl}!il:}'r!SISE:illl2IllS( XKExiilKIKI)(+"iini ( V)btg6K..Ks,.n

          ne

                                                                 '    Y'--Z..xK,.,.,x,K,lt}fil!SE]Il!Llillll"l:il"l'i}l;S;XISi>IJSIES:iMl-2!lng( AKExK.XKExlKl)(-.r,knl ( )b 6K-K,,n

         ne

                ' .'• (9.8d)
Substituting Eq. (9.4) into Eq. (9.5), we obtain '

           H'N,.H(O) - i[s, ff(P)] •                                                                  (9.9)

The lowest--order commutator that contributes to the indirect optical absorption

can, thus, be written as

           flID = i[s, H(P)] .. .[(x + x, +y+ y,), ff(P)]

                =[(X+X' +Y+Y'), (ff.R+ll.L)] ' (9'10)

Rejecting the terms which do not contain photon operator and omitting two-photon

transitton proeesses, one can rewrite Eq. (9.10) as

                                               '
             ID           H = XHeL + (Y +Y')ffeR 'H.LX- ff.R(Y +Y') ' (9'11)

The transition probability per unit time of a process is, thus, given by

        ' wcc i<fl fliDli>12 6(coi -- tof) , (g•i2)

where li> and lf> are the initial and final states, respectively. From Eq.

(9.12), we obtain the following expression for a typical process sketched in

Fig. 9-3r

         w cc' fi `f i ffili (i illii lMIIUill li l i' E 2 6 (E. (it2) - E. (iii) - Jritu + tsedq) , (g . i5)

                                   '
                                                                        'where Rl and 12 are the wave vectors at the r and X points, respectively.
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                          'We suppose that the quantity
                                    '
                   <f1HeL]M><MIHeRli>
         Cl =- Zfl: Eg(?1) .. .ri,,, I (9•14)

                                                       '
to a good degree of approxirnation is regarded as independent of the wave

        -> +                   in the vieinity of the extrema. This is, in fact, a good           and kvectors k         12
approximation for allowed transitions when the energy denominator in Eq. (9.13)

is not too small. Equation (9.13) corTesponds to the process in which the

valence electron is scattered to the eonduction state (ICB) and a photon of

                                    ++ +energy 15co and a phonon of momentum q = k2 - kl (and energy fcoq) are both

absorbed. <mieeRii> is the momentum matrix element between the VB and DCB

extrema loeated near r point and separated by ED g(l}1), and <flffeLlm> is the

matrix element of the phonon-assisted transition frorn DCB to ICD, where for

                                            r                                                      284GaP they involve the TA, LA, TO and TA + LO phonons.                                                           Considering the case

of indirect-optical transÅ}tions between gpherical bands and summing over R
                                                                           1
and lt2 of Eq..(9.13) in the Brillouin zone, we obtain the following expression

for the absorption eoeÅíficient ct(al):

                                           2                               ID                                                           ID                   a Cl(hed ' Eg (O) +11CDq) fOr `fico>Eg (O) - hCDq

             ct(tu) (9.l5)                   =o' for '6ck)<EiD(o) -- "cD.
                                                           gq

                                         IDThe absorption of light begins at '5tu = E                                           (O) - 'ficD , as seen in Eq. (9.15).
                                         gq
Another contribution to the indirect-optical transition is due to the emission
                                                                   '
of a phonon and can be obtained using the same proeedure, where the only

difference from the above case is the sign of the photon energy.

9.3.2 Resonant Light SeatteTing

     The indirect-gap Brillouin-scattering process is described by a 5th-order
                                                         '                             281tirne-dependent perturbation, i.e., the perturbation is two orders higher '
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than that for the direct--gap resonance, This proeess contains in part the

indirect optical transition as discussed in Section 9.3.1. 0ne of such '

processes may be explained as follows [see Fig. 9-3]; (i) A photon (ooi) incident

on a crystal in the ground state IO> creates a virtual eleetron-hole pair

state lct> in bands DCB and VB. (ii) The electron in the jct> state is scattered

to ICB by the phonon-assisted transition, forming a new pair state IB> in bands

ICB and VB. (iii) The electron or hole then interacts with an acottstical phonon

vaa deformation potential, changing its state to a IB'> state. (iv) The electron

tn the IB'> state is scattered to DCB by the phonon-assisted transition, forming

a pair state lot'> in bands DCB and VB. (v) The system returns from lor'> to the

ground state IO> with emission of a scattered photon (tus).

     According to Loudon,28i the Briiiouin-tensor term arising from such an

indirect-gap resonance process may be given by

    Ri•2 c[ [ ,,,,i,,,,,, ,,i?:i;Åíilg:lli:,l:liiil:il"i,Bekil'i,,.,

                               `BlH2Llct'<orlEleRlO'

                      Å~ ++ .,. i, (9.16)
                        (EB (k2 ,kl) -6alq-thcoi) (E. (kl , kl) -ncx,i)

where the matrix element <]H2LI> represents the phonon-assisted transition

through the deformation-potential scattering, <iHgLi> represents the

deformation-potential scattering arising from an acoustical-phonon interqetion

of the intermediate electronic state, responsible for the BrÅ}11ouin process,

      -}" ÅÄ                             •and Eor(kl,kl) " Eorc(kl) in Ectv(kl) is the electrontc-energy differenee between

                                                           'the conduetion and valence bands in the pair state lct> and so forth. The

matrix element <IHgLl> has already been calculated to explain the direct-gap

resonance data for both the zincblende- and wurtzite-type crystals [see Section

2.2.3].
                                                         '
     Equation (9.16) can be simplified under the following assumption: the
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factor
  c2 =- i.,,,,F,., `OiHeRict'liglitil'ii?Eii:`i21lilkI{iiX4/ik:.]`oriHeRiO' i (g.!7)

                 '
                                  ++is independent of the wave vectors kl and k2 in the vicinity of the extrema

of the bands, as similar to Eq. (9.14). Such an assumption was found to be

                                             284                                                 Equation (9.16) is, thus,valid for the analysis of the absorptton data.

reduced to the form:

   Rlg cc c2 zl .. 'i .,. -,. ]. (g.is)
           'l}1,it2 (E3'(k2.'kl)-"6toq-6als)(EB(k2,ki)-h`"q-"(Di)

This expression is similar to that obtained in the case of the forbidden

yellow exciton in cu2o.275 we can, therefore, calcuiate Eq. (g.ls) in the

same way as was done in this Reference. The result is written by the following

equation:

                             or (to)                                               ID                                                  (O) - htu                        oc c                                      for 'ritu > E                !D 2r(co) g q                                                                  (9.19)               Ris
                         =o for 6tu < EID (o) -.fico ,
                       . gq
where or((D) is the absorption coeffÅ}cient given by Eq. (9.15), r(ed) is the

lifetime-broadening energy of the scattering state, and -htu is the photon

energy. It is clear from Eq. (9.19) that the indirect-gap resonance begins

as the ineident-photon energy exceeds the energy of EED(o) - thcDq.

               9.4 EXPERIMENTAL RIESULTS AND DISCUSSION
                                '

9.4.1 B?iZZouin-Seatterdng Cposs Seetion

   ' Figures 9-4 and 9-5 show the spectral dependence of the Brillouin-scattering

cross sections in GaP for the Tl- and T2-mode phonons, respectively, measured '

at room temperature in the region near the indirect-gap energy. All the data
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points were obtained by carrying out a eorrection for absorption of light.

The phonon frequency was selected to be O.4 GHz for both phonon modes by

properly setting the incident and seattering angles [see Seetion 3.3.3]. It
                                                                   '
was confirmed that the sound velocity of eaeh mode domain agrees well with

                                                           289                                                               and Brillouin-those obtained from the ultrasonic phase-comparison method

                                                         290scattering teehnlque using a Fabry-Perot interferometer,

     The data of the Brillouin-scattering cross sections show a monotonic

decrease when the incident-photon energy is near resonance with the indirect

gap of Ga?. Such a decrease implies a cancellation between the resonant (

indireet gap) and nonresonant (direct gap) contributions in the BriUouin

tensor. However, the resonant cancellation observed here is not complete in

contrast to the case for the direct-gap semiconductors such as ZnSe and ZnTe,

as discussed in Chapter IV. It seems that this is due to the weak resonance

nature in the indireet gap, implying that the resonanee is two perturbation

orders hÅ}gher than for the direct-gap resonance.

     It was demonstrated in Chapter V that the resonance behaviors of Brillouin

(Raman) scattering in the direct-gap semiconductors can be predicted from an

expression based on the quasi-static approximatio'n, where in this appriximation

the phonons are assumed to act like static perturbations of the eiectronic
                           '
structure of the crystal through the electron-phonon interaction. This

perturbation causes a change in the dielectric constant of the crystal. The
  '
quasi-static approximation shovts that the direct-gap term of the Brillouin-

scattering efficiency is proportional to the first derivative of the dielectric

constant with respect to the incident-photon energy. Accordingly, we can

express the direct-gap (nonresonant) terms in the Brillouin tensor of GaP as

follows:

                      Dde                     Ri. ct rt (g.2o)
                                                            '
and
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                    Ro (= const.) , (9.21)
where R?.s arises from the lowest direct gaps (r point) such'as Eo and Eo+Ao

gaps, Ro arises from the higher direct gaps such as El, El+Al and E2 gaps,

                                                            Dand E in Eq. (9.20) is the incident-photon energy. The term Ris and Ro are

                                                   IDopposite in sign to the indirect-gap resonance term Ris as suggested to account

for the resonant cancellation.

     From Eqs. (9.19) - (9.21), the Brillouin-scattering cross section can

                       'be written as

                    oB cc IRIg+R?..+Rol2 . (g.22)

In Figs. 9-4 and 9-5, the theoretical curves obtained frorn Eq. (9.22) are

                                                                     '                                                          IDshown by the solid lines. The indirect-gap resonance term Ris                                                             is obtained

                                                  284                                                      ustng Eq. (9.19)from the absorption data measured by Dean and Thomas

                                                                      Dwith neglecting a dependence of r on ck). The direct-gap resonance term R                                                                      is
is caleulated by differentiating the data of dielectric constant reported
                                                              '
in Ref. 294 [see Fig. 9-2]. The constant term Ro is adjusted to give best

fitting with the experimental data. It has been reported that three types

of the indirect transitions are present in GaP below the direct rg + rg

gap; rg ÅÄ xg transition near 2.2s ev (room temperature),284 rg -,• x; transition

   'near 2.4s ev (room temperature)287 and rg + Lg transition near 2.67 ev (7s K).

286     It is obvious that the indirect-gaP resonance observed here is arising
                              'frorn only the rg + X6C transition, since the measured photon-energy regton is

limited up to 2.30 eV (540 nm). The dashed lines in the figures are also

              'calculated from Eq." (9.22) without taking into account the constant term Ro•

The solid lines show a quite good agreement with the experimental data. The
   '
best-fitting values of the constant term Ro are found to be 8.0 and 14.0 (

in units of ev-1) for the Tl- and T2-modes, respectively. These values are

relatively large and opposite in sign to those obtained in the dtrect-gap
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sendconductors such as ZnSe, ZnTe and CdS [see Chapter V]. Similar results

have also been found in other indÅ}rect-gap seniconduetors GaSe and GaS [see

next Chapter].

               '
     The indirect-gap resonance is sometimes masked off by the strong direct-

gap resonance. In the present study, however, the weak resonant cancellation

has been clearly found in the indirect absorption edge of GaP. This is

presumably accounted for the fact that the separatÅ}on between the indirect

and direct gaps of this material is cpnsiderably large (cr O.5 eV) and thus

the direct-gap resonance is relatively weak in the photon-energy region

near the indirect gap. Equation (9.l9) clearly indicates that the indirect-

gap resonance depends on the lifetirne broadening of the scattering states,

t.e., the resonance becomes strong with decreasing r. The effect of the

lifetime broadening on the Brillouin-scattering intensity has been found

by the present auther in the direct-gap semiconductors [Chapter VII]. The

resonance curves of the direct-gap semiconductors have clearly shown that

the lifetime broadening suppresses the direet-gap resonances and consequently

a new resonant cancellation appears in the region very close to the discrete

exciton states. In the present study, unfortunately, we were not able to

determine the value of P from the fit to the experimental data with Eq. (9.22),

                              ID                              is in Eq. (9.19) contains the prefactor C2 (C21r)since the indirect-gap term R

                                    'as an adjustable parameter.

9.4.2 Photoelastie Constant

                                46     It has been shown by Dixon                                   that the GaP crystal is exceptionally good

material for use in light deflectors and modulators. rf an acoustical strain

Skl propagates in a crystal the induced change in the dielectric constant is

A(1/e)ij = PijklSkl, where pijkl is the component of the photoelastic tensor.

Modulation of the dielectric eonstant induced by the acoustieal strain results

in a diffraction of an incident light beam. It is, therefore, very important
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to investigate the spectral dependence of the photoelastic constant. The
  '                 'components of the photoelasttc tensor, pn - p12 and p44, are involved in the

Brillouin-scattering cross section from the Tl- and T2-rnode phonons,

respectively. In a macroscopical point of view, as discussed in Chapter VI,

the Brillouin-scattering cross section is proportional to the square of the

relevant photoelastic constant. [lrhe spectral dependence of the photoelastic

constants can, thus, be easily determined from the Brillouin-scattering data.

  . Figures 9-6 (a) and (b) show the spectral dependenee of lpn - p121 and

ip441, respectively. Absolute values of these constants are given in the

figures; they were determined by normalizing our data to the absolute ones

                  46                                      290                     and Yamada et aZ.measured by Dixon                                          at a light wavelength of 632.8 rm.

The solid curves in the figures are not theoretical ones but probable curves

of the experimental data. Note that the spectral dependence of the photo-

elastic constants obtained here shows very weak dispersion at light wavelength
                                   '
longer than 550 nm. This arises from the fact that the photoelastie

constants show no sign reversal in the region below the indirect-gap energy,

        D        is and Ro of Eq• (9•22) have the same sign (i.e., plus), in contrastnamely R

to the case for the direct-gap materials such as ZnSe, ZnTe and CdS. Therefore,

we can conclude that the GaP crystal is potentially useful in device application

such as deflectors and modulators of light wavelengths longer than 550 nm.
                                                 '                            207     Recently, Canal et aZ.                                have reported experimental data of the photo-

elastic constants in GaP in the region below and above the indirect rg + Xg

gap obtained from the piezobirefringence measurements employing the Raman--

scattering technique as a probe. Our data show a reasonable agreement with

those reported by Canal et aZ., but they analyzed their data by taking into

account only the real part of the dielectric constant of the direct gaps

(neglecting the contribution from the irnaginary part of the dielectric constant),

We have proposed in Section 6.4 new method of the piezobirefringence analysis
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                         '
                   CHAPTER X

       RESONANT BRILLOUIN SCATTERING

IN THE LAYER-TYPE COMPOUNDS GaSe AND GaS

                             10.1 INTRODUCTION

     The layer-type semiconductors GaSe and GaS are III-VI compounds which

present a strong anisotropie behavior of their physical properties due to the

                                       47,298singularity of the erystal structures.                                               These compounds have been shown

to have fine structures associated with strong excitonic transitions in the

vicinity of the fundamental absorption edges. In recent years, there have

been extensive studies on resonant light scattering around excitonic transitions

                           8in various semiconductors. Resonant Raman scattering around the direct-exciton

                                                             299-303levels in GaSe has already been reported by several authors.                                                                      Resonant

                                     crystals (O S x S O.23) has also beenRarnan seattering in mixed GaS Se                              x 1-x
                                                   302,304studied by Chiang, Camassel, Voitchovsky and Shen.                                                            The resonance-Raman

spectra in such seniconduetors have clearly shown resonant enhancement around

the direet--excitonic-transition region. Resonant Brillouin scattering in.the

                                                                               276layer-type compound (GaSe) has flrst been reported by Chiang, Dumas and Shen.

However, the measured spectral dependence of the Brillouin-scattering cross

section has shown no obvious resonance feature in the region near the direct-
                             '
excitonic-transition region. The absence of resonance feature is thought to be

due to that the exciton-acoustical phonon coupling for the electronic states

near the band gap is rather weak so that the nonresonant contribution always
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dominates in the Brillpuin-scattering process.

     Until now, at least in our knowledge, no attempt has been made on resonant

Brillouin (Raman) scattering in GaS. The absorption edge of GaS is characterized

                                     305-309by the indirect-optical transitions, in contrast to that of GaSe (
                                                             '                             306,307,310,311direct-optical transitions).                                              The resonance effect in the direct-

gap region has been the subject of a number of reports, but the sarne effect

involving the indirect-energy gap has received little attention. The GaS crystal

is thought to be rnore suitable material to study some of the indirect-gap

resonance effects sinee the separation between the indirect- and direct-gap

                                                              305,307energies of this material is relatively large (about O.4 eV),                                                                      as similar

to that of GaP (Section IX). Therefore, it is interesting to study some of the

resonance effects especially around the indirect-energy gap of GaS.

     In this Chapter, we investigate resonant Brillouin scattering in the layer-

type.semiconductors GaSe and GaS by the pure-transverse (PT) acoustical phonons

in the photon-energy ranges of 1.55 - 1.99 eV (GaSe) and 1.70 - 2.59 eV (GaS).

previous work by chiang et az.276 was iimited to the photon-energy range of

1.92 - 2.00 eV in GaSe using a tunable dye laser combined with a 3-path

feedback-controlled Fabry-Perot interferometer (Brillouin scattering by thermal

quasi-transverse acoustical phonons). We have carrted out the resonant-Brillouin-

scattering measurements by using the amplified acoustical-domain injection

method, where the amplified acoustical domains provide strong scattering signals

                               'and thus enable us the use of a non-coherent light source (Xe-flash tube)

instead of a laser. This technique also enables us to discuss accurate resonance

behaviors at a region very close to the fundamental absorption edge.

     The crystal structures of GaSe and GaS are reviewed in Seetion 10.2. The
                                                                             '
eleetronic band structure and lattice dynamics of the layer-type compounds are

also presented in this Section. The experirnental method is described in Section

10.3. In Section 10.4, we present the experimental results and compare them
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with the theoretical models based upon the quasi-static, approximation and

Loudon's light-scattering theory. The measured spectral dependence of the

Brillouin-scattering cross sections shows a monotonic decrease (i.e., resonant

eancellation) at photon energies very close to the n = 1 direct-exciton state

for GaSe and beyond the indirect-energy gap for GaS. The resonant cancellation

can be well interpreted by taking into account the direct-gap (direct-exciton)

and indirect-gap resonance processes for GaSe and GaS, respectively. The

experimental data also show that the Brillouin-scattering efficiency depends

strongly on the lifetirne-broadening effect of the Å}ntermediate electronic states,

The theoretical description and cornparison of it with the experimental data,

moreover, clearly indicate that the nonresonant contribution (nonresonant

electronic transition) dominates in the Brillouin-scattering process for both

GaSe and GaS especially in the region far from the fundamental absorption edges.

                     10.2 PROPERTIES OF GaSe AND GaS

10.2:1 CyystaZ Stvuctux?e and EJZect?onie Enejr'gy Band

     The basic crystal structure of GaSe and GaS is the hexagonal unit layer

                                                                        The                                 3h and two molecules per unit cell.with a poÅ}nt-group symmetry of D

binding between the layers is of the van der Waals type, whereas it is covalent

within each layer. In GaS, only one way of stacking of adjacent layers exists

and the crystal has a syam}etry of point group D6h with two layers (four

molecules) per unit cell. A layer of GaSe is represented in Fig. 10-1 (a),

where one recognizes that each Ga atom has one Ga and three Se neighbours.

The Se atoms have three neighbours only within the same layer. Three different
                                                            312modifications of GaSe have been reported in the literature,                                                                as y, B and e

modifications, respectively. A rhombohedral y modification with three layers

per unit cell and two hexagonal structures B and e. The B-type structure is
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identical with that of GaS [see Fig. 10-1 (b)]. The e-type strueture has a

D3h POint-group symmetry with two layers per unit cell. According to Terhell

          313              B-type GaSe does not seem to exist as a crystal, although powderand Lieth,

X-ray pictures of iodine-transport grown crystals always indicate B-type

stacking. The y-type structure (point group C3v) is found in pure form in

sublirnation-grown needle crystals and is very rare.

     The study of the electronic structure of layer-type compounds has attracted
                                                     '
much attention in the last few years, essentially because of their bidimensional

character. The principal theoretieal works on this subject are by Bassani and

parravicini,3i4 Kamimura and Nakao,3i5 Fong and cohen,3i6 schiuter,47 Mooser

and schiliter,298 schi{iter and cohen3i7 and Bordas et az.3i8 The eiectronic

band structures of the layer-type eompounds GaSe and GaS have been ealculated

                      . . .314                               by using the two-dimensional tight-bindtng approachby Bassani and Parrav-cmi

in a semi-empirical way. The band structure of GaSe has also been calculated

by schlliter47 by using the empirical pseudopotential method and considering

interaction between the layers. The energy bands of B-GaSe along the main

symmetry axes calculated on the basis of the empirical pseudopotential method

are shown in Fig. Io-2 (after schlliter).47 Note that differences between the

                           '                     'one-eleetron energies corresponding to the three modifications are of the

order of the weak interlayer coupling and thus do not influence the main features

of the band structure. Among the three modifications, y, B and E, B modification

has the highest symmetry.
                                      1     In E-GaSe with the space group D3h, the lowest-lying conduction-band

minimum is at the M point (M3), a few tens of meV lower than the lowest-direct

conduction band. The lowest direct gap occurs at the center of the Brillouin

zone (r point), the top of the valence band having the synmetry rl and the

minimuin of the direct conduction band that r4• !n B-GaS with the space group

D6h, the lowest-lying conduction-band minimum Å}s at the M point (M3), 2.5 eV
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above the valence-band maximum at the r point. The lowest direet gap occurs

at the r point, the top of the valence band having the symmetry r4 and the

                                             +minimum of the direct conduction band that r                                                 The direct-gap energies of                                             3'
              '                                                                      305,319GaSe and GaS are 2.02 and 2.90 eV, respectively, at room temperature.

                                                       '

10.2.2 Lattiee Dyncunics

     There has been considerable interest in recent years in the properties

of layer structures particularly in the extent to which their two-dimensional
                                           '
nature influences these properties. Measurement of. the phonon dispersion curves

is known to be a powerful rnethod for obtaining information about the interatomic

forces. The inelastic-neutron-scattering measurements have been perforrned to

                                                                 320obtain the phonon dispersion relations in GaSe by Brebner et aZ.                                                                     and Jandl

      321                         322et aZ.           Powell et aZ.                            have recently made the analysis of lattice vibrations

and inelastic-neutron-scattering rneasurement in GaS. The data of Jandl et al.

      321                                  322                                      are shown in Fig. 10-3 (a) and (b),          and Powell et aZ. (GaS)(GaSe)

respectively. These results have shown that the interlayer force constants

are very small compared with the intralayer ones. The results have also been

used to calculate the Debye temperature and lattice specific heat of GaSe and

    321,322GaS.

     The elastic properties of GaSe and GaS have been extensively studied by

                                                                       320,322                                       323means of ultrasonic pulse-echo method,                                           inelastic neutron scattering

                          277,324and Brillouin scattering.                                   The elastic constants of GaSe and GaS obtained
                                                                           '
from these methods are listed in Table 10-1. The use of Brillouin-scattering

technique has recently been developed by many workers who used a Fabry-Perot

interferometer to determine the elastic eonstants of Gase.324'325 The five

independent etastic constants, Cn, C12, C13, C33 and C44, have been deduced

from a best-fit procedure of these constants [see Table 10-1], but there remains

uncertainty to determine the non-diagonal component C12. 0n the other hand,
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Table 10-1. Elastic eonstants of GaSe and GaS.

    11( 10 dynlcm2 )

GaSe
    *aB.S. I.N.

  krkb
s.

     *rk*e
U.P.E

c 11

C 12

c 12

c 33

C 44

10.5

3.25(3 •77t)

10.24

1.26

3.83

3.24

3.51

1.04 1.03

3.07

O.70

    11( 10
dynlcm2 )

GaS
    "Kd
B.S. I.N.S.

".ke

c 11

c
 12

c 13

c 33

C 44

15.7

3.32

1.50

l5.5

(5
•3st)

3.58

O.81

3.64

1.33

  *
". rk "A" Brillouin
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Present Work
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             322 -                                                                        and CPowell et aZ.                 have determined only the diagonal cOmponentS Cn, C33 44

                                                                             'of GaS from the inelastic--neutron-scattering measurements. We determine

                                             of GaSe and GaS by measuring thehere the non-diagonal elastic constants C                                          l2

sound velocities of the PT-mode phonon domains in these rnaterials by means of

Brillouin seattering, as a by-product of the resonant-Brillouin-scattering

measurements. Figure 10-4 represents the plots of domain-transit time versus

light-spot position for GaSe and GaS using a He-Ne laser as a light source.

(The experÅ}mental detail is given in the next Section). The slope of each line

gives the domain velocity vpT consisting of the PT--mode phonons, which is

deterrnined to be 2.s6 Å~ lo5 cmlsec for Gase and 3.6o Å~ lo5 cmlsec for Gas. The

sound velocity of the PT-mode phonons is given by

                                         !i,                   "pT = [(Cll ' C12)f2P] , (10.1)

where p is the mass density (s.13s glcm3 for Gase and 3.g16 gfcm3 for Gas). It

is clear that the non-diagonal component C12 can be determined from Eq. (10.1)

when the diagonal component Cll is known. We ean determine the value of C12-

by using the previously reported value of C12. The results are as follows:

                                    276Cn = 3.77 with Cn = IO.5 for GaSe and C12 = 5.35 with Cll = 15•5 for
Gas322 in units of loll dynlcm2 [see also Table lo-1]• The value of C12 (GaSe)

                                           276,324agrees well with that reported previously.

                       10.3 EXPERI)v[ENTAL PROCEDUR[E

     The GaSe and GaS crystals used in this experiment were grown by the

Bridgrnan teehnique and had e- (DZh symmetry) and B-type (D46h syuifEetry) structures,

             326respectively.                  In order to obtain a strong phonon flux, the acoustical domains

amplified in CdS were transmitted into the GaSe and GaS samples through the

end-bonded surfaces by making use of the acoustical-domain injection method [see
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section 3.3.4]. The GaSe and GaS crystals were cut in the form of parallelepipeds

with dimensions of about O.5 Å~ 1.5 Å~ 5.0 mm, where the optical-flat surfaces

(layer planes) perpendicular to the c-axis were obtained by cleavage using a

raz.or blade. Zndium layers were deposited by vacuum evaporation onto the

end-surfaces of CdS and layer-type specimens, and they were carefully bonded

by heating the evaporated indium layers so as to give a good contaet for the

acoustical-domain injection from CdS into the layer-tyDe specimens. The acoustical

domatns injected into the specimens travel in the direction perpendicular to

the e-axis with shear polarization perpendicular to the c-axis (PT-mode phonons).

The apparatus used in this experiment is almost the same as those described in

Section 3.3.

              10.4 EXPERIMENTAL R[ESULTS AND DISCUSSION
                                   '     '                                                       '
10.4.1 CiptieaZ Ahsoxption

     Let us first consider selection rule of the optical transitions (dipole

transitions) by the aid of group theory.327 The polarization vectors kl3

and i ll 3 of the spece group Dgh (e-GaSe) belong to r6 and r4, respectively.

The highest valence and lowest conduction bands of e-GaSe have r                                                                and r                                                              14
symmetries, respectively, for the irreducible representation of the single
                                               '      298group. The optical transitions between the highest valenee and lowest

conduction bands can, thus, be given by the direct product:

                       rlXr4=r4 • (10.2)
This representation " contains only for the iE ll 3 polarization. Experimental

data confirs that the light of this polarization is strongly absorbed in GaSe

                                                           310,311,328in the region near and above the fundamental absorption edge.

However, there is also an absorption for E -L3 in this region, which is only
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about one to two orders' of magnitude weaker than that for iE II 3. This can

be understood if we consider the spin-orbit interaetion (spin-orbit coupling).

The spin-orbit coupling results from interband mixing and is known to be

                298                     The extra representations of the double group, now, gorelatively weak.

from rl to r7 (the highest valence band) and frorn T4 to rs (the lowest conduction

band), and then the product '

                        r7Xrs=r3+r4+r6 (10.3)
                                                                             '
contains the representations of both E I] Z; and iE ll- 3. similarly, the polarization

vectors EE -L ZI and ik ]l 3 of the space group Dgh (B-Gas) belong to Tg and ril

symmetries, respectively, for the irreducible representation of the single group.
                                              '                                                                       +The highest valence and lowest conduction bands of 6-GaS have rZ and r3 syrTifnetries,

             298                  The direct productrespectively.

                        rZxr:=Ti (lo.4)
contains only the representation of symrnetry rg (iE II 3). The extra represen-

tations of the double group go from rZ to rg (the highest valence band) and

      ++from r3 to rs (the lowest conduction band), and the product

                        r-,Å~rE-r5+rg+rl ao.s)

contains the representations of both iE l[ 2; and ik ll- 3. in Fig. Io-s, we show

the seleetion rules of the direct optical transitions at r point in e-GaSe

(Dih) and B-GaS (D46h), obtained in a way described above, based on the irreducible

representation of the single group. Dashed lines indicate the compatibility

relation between Dgh and D46h symmetries•

     GaSe and GaS are known to have indirect-energy gaps at energies below

the lowest direct-energy gaps. The energy separations between the indirect and

direct gaps of these compounds are found to be about 25 meV for GaSe and O.4 eV
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for Gas.307 Figure lo-6 shows the optical absorption speetra of Gase and Gas

used in the present work in the region of the fundamental absorption edge.

The spectra have been obtained at room temperature from the iE J-3 polarization

measurernents. The behavior of the optical absorption seems to be direct for

GaSe and, at energies below 2.9 eV, indirect for GaS. The optical absorption

of GaSe shows a sharp peak at 2.00 eV which can be explained i.n terrns of
                                                            '
forrnation of direct excitons (n = 1) due to the Coulomb interaetion between the

electron and hole ,produced in the optical transition near the fundamental

                298absorption edge. In GaSe, however, the characteristic indireet-optical

transitions could not be clearly found in the absorption spectrum which arises

from the fact that the much stronger direet-optical transition should cornpletely

mask off the weaker indirect-optical transition. On the other hand, since the
       '
energy separation between the indirect and direct gaps of GaS is considerably

large•, the indirect-optical transition could be clearly fonund in the absorption

spectrum. We can obtain from the figure that the indirect-gap energy of GaS

is about 2.50 eV which agrees well with the value obtained from the emission

and absorption spectra of this material.305'307'329 it is also important to

note that in both Gase and Gas the absorption coeffieient for kdL3 is much

weaker than that .for fi 'II 3 at the band-edge region,310'311,328 since the

optical transition is fully allowed only in the later polarization, as discussed

prevÅ}ously.

10.4.2 auasi-Statie AnaZysis

     Figure 10-7 shows the spectral dependence of the Bri!louin-scattering

cross sections in GaSe obtained at room temperature in the region of transparency,

The acoustical-domain frequency has been seleeted to be O.2 CHz by properly

setting the incident and scattering angles. All the data points have been

obtained by carrying out a eorrection for absorption of light. The following

scattering configurations have been used in the present study by taking into
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account the poiarization seiection ruies: ai Å}3, gs Å}3 and gi igs, where

+ÅÄe. and e are the unit vectors in polarization direction of the incident and :sscattered 1Å}ghts, respectively. It can be found in the figure that the spectral

dependence of the Brillouin-seattering cross sections shows very weak resonant

enhancement in the region of transparency. The spectral dependence is very

similar to that reported previously in GaSe [Ref. 276]. Such a resonance

feature is in contrast to those found in the direet-gap semiconductors sueh as

     25                    27,30,39                                30             31                                       71                                                  95        CdSe,                CdS,                                                     where in these direct-gapGaAs,                                   ZnTe                            zno,                                          and ZnSe,

semiconductors the spectral dependence of the Brillouin-scattering cross sections

shows clear resonance features (resonant enhancement and cancellation) in the

region near the lowest direet gaps. It should be noted here that the present

data shows a monotonic decrease in the region very close to the fundamental

absorption edge which were not clearly found in the previous work by Chiang

      276et aZ.

     Figure 10-8 shows the spectral dependence of the Brillouin-scattering

cross sections by the O.8 GHz PT-mode phonon domains in GaS obtained at room

temperature in the region of transparency. The observed spectral dependence

is essentially the same as that in GaSe. The monotonic decrease of the

Brillouin-scattering cross sections has also been found in GaS in the region

                                                'of the fundamental absorption edge (fv 2.5 eV).

                                               '     We have demonstrated in Chapter V that the qualitative features of resonant

Brillouin scattering can be predicted from an expression based on the quasi-

static approximation, where in this approximation the phonons are assumed to

act like static perturbations of the electronic band structure of the erystal.

This perturbation reflects a change in the dielectric constant e of the crystal.

The. Brillouin-scattering cross section derived on the basis of the quasi-statie

approximation can be written as [same as Eq. (5.10)]

                          de                 oB =A( dErm +B )2 ,• (lo.6)
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where A is a constant, E is the incident-photon energy and B is a nonresonant

term (background contribution) arising from the far-off critical points in the

band structure. The subscripts m and n are the directions of the incident and

scattering fields, respectively. In order to obtain Eq. (10.6), we Tnade

the usual approxirnation:

                     de de                     dEM" =- dET"" . (lo.7)
                               g•                                  '
!lhis relation is obtained by making use of the fact that near resonanee the

dielectric constant ean be approximated by a function of (E - E ) only.
                                              ,g
     Figure 10-9 shows the dielectric constants for the ordinary ray of GaSe
            .../
and CaS as a function of photon energy at room temperature (dashed lines) taken

from the data of Refs. 310 (GaSe) and 330 (GaS). The photon-energy derivatives
            '
of these constants are also shown in the figure by solid !ines. The theoretical

eurves calculated from Eq. (10.6) are shown in Figs. 10-7 and 10-8 by dashed

(B = O) and solid lines (B + O). The photon-energy derivatives of the dielectric
            'constant (ip ev- l) has been obtained by differentiating the date of Refs. 310

                   'and 330 (GaSe) and 330 (GaS) [see Fig. 10-9]. We have used the data of the

dielectric constants for the ordinary ray (i -L3) whtch correspond to the

present Brillouin-scattering configurations (erm = ell = a }). The constants A

and B have been adjusted to give the best fitting. The best results ean be
                                               'obtained by taking into account the nonresonant contributions of B = 1.5 and

2.s (in units of ev-1) for Gase and Gas, respectively, as shown in the figures by

solid lines. This fitting procedure deduces an interesting fact that for both
                                                    '
GaSe and GaS the BrUlouin-scattering process arises mainly from the

dispersionless contributions due to the nonresonant electronic transitions.

Moreover, the nonresonant term B has a positive sign in contrast to that for

the direct-gap II-VI compounds [see Table 5-1]. Such facts explain reasonably

why the dispersion curves of the Brillouin-scattering intensity in both GaSe
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and GaS did not show any clear resonant caneellation (except in the region above

                'the band-edge regÅ}on) and enhancement. The quasi-static analysis for the case
                '
of I!-VI compounds showed that the resonant contribution was dominant in the

Brillouin-scattering process and thus the resonant cancellation could be

clearly found in the region belovif the lowest direct gap. The resonant

cancellation reflected the sign opposite relation between the resonant and non-

resonant contributions [see Chapter V]. The weak resonant enhancement observed

in the present study can be understood from a phenomenological aspeet by taking

into account the following fact; ln the layer-type semiconductors sueh as GaSe

and Gas, the absorption coefficient for the lli l3 polartzation is much weaker

than that for k il 3 near the excitonic-transition region which is attributed

to the symetry of the electronic bands being such that for ti II 3 the optical

transitions are fully anowed while for E-L3 they are allowed only because of

the p•resence of spin-orbit coupling. This means that the oscillator strength

for g .L3 is much weaker than that for S II 3. Therefore, we can expect that

the resonance effect near the band-edge region is rather weak so that tne
                                                        'nonresonant electronic transition is always dominant for the gi Å}3 and gs -L3

scattering configurations. (Note that the Brillouin-scattering intensity is

proportional to the fourth power of the corresponding momentum matrix element).

On the contrary, the strong resonance effect should be expected when we proceed
                                               'the Brinouin-scattering measurements in the lli(gs) ll 3 configuration. The

      'quasi-static approximation easily supports this expectance because the spectral

dependence of the dielectric constant e lE (e33) shows a strong dispersion near

                        'the band-edge region, i.e., the first term in the bracket of Eq. (10.6) gives

considerably large value. Unfortunately, however, the ineident and seattering

angles for this scattering configuration can not be determined from the usual

                  ll7procedure of Dixon because of the strong anisotropic nature of the refractive

indices in the layer-type compounds.



                                       -321-

     As shown in Figs. 10-7 and 10-8, we have observed clear resonant cancellation

of the Brillouin-scattering cross sections in GaSe and GaS at a region very close

to the fundamental absorption edges. The resonant cancellation in GaSe is found

to be well interpreted in terms of the dielectric theory of resonant Brillouin

scattering given by Eq. (10.6), whereas the resonant caneellation in GaS can

not be suceessfully explained when we use the data of dielectric constant (Ref.

330) which do not show any clear structure or maximurn at the fundamental

absorption edge [see Fig. 10-9]. Note here that de!dE becomes zero at a maximurn

of g(E) and thus the resonant cancellation occurs near the maximum of e(E). The

solid line of Fig. 10-8 does not show a decrease near the fundamental absorption

edge (rv 2.50 eV), reflecting the structureless nature of e(E) in the region.

The dielectric constant of Gas reported by Akhundov et az.,328 on the other

hand, exhibits a clear maximum at a photon energy of about 2.65 eV, and thus

the observed resonant cancellation can be interpreted by Eq. (10.6). However,

the data of Akhundov et aZ. show optically positive nature (c ll-< eH) which is

                            330,331                                             310,330                                    and GaSe.                                                      Thus, we need more detailedin eontrast to those of GaS

measurements on the dielectric constant of GaS for the analysis of the quasi-

static approximation.

10.4.3 Maa?oseopicaZ AuaZysis

     In this subsection, we analyze the Brillouin-scattering data from a micro-

                                                                     35scopical point of view, based upon Loudon's light-scattering theory.                                                                         The
                                                                          '
resonant cancellation observed in both GaSe and GaS wUl be successfully

interpreted by the proposed theoretical model.

     The layer-type compounds GaSe and GaS are known to be indirect-gap semi-

conductors, as mentÅ}oned previously. The top of its valence band lies at r point

and the bottom of the conduction band at M point. Relative minima of the

conduction band at r point are situated a few tens of meV for GaSe and about
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O.4 eV for GaS above the ninima at M point. A coTrrrnon feature of theoretical

expressions for the Brillouin-scattering intensÅ}ty of a substance is the presenee

of terms which either divergence or become relatively large when the frequency

of the exciting radiation is equal to an allowed optical-transition frequency

of the substance. The Brillouin scattering cross section can be given in terms

of the frequency-dependent Brillouin tensor R(-tui,tus,(Dq) bY

                       oB cc IR(-cDi,tu.,tuq) 12 . • ao.s)

     For the case of the indirect-gap materials such as GaSe and GaS, we can

separate the Brillouin-tensor term Å}nto three independent components [see Chapter

                                                   '

                           ID                                 D                                               , (10.9)                      R=R                              +R                                    +R                                 is O                           is

       ID               Dwhere• Ris and Ris are the indirect-gap and lowest direct-gap resonance terms,

respectively, and Ro is the nonresonant term arising from the far-off critical

points in the band structure. The indirect-gap resonance process, which contains

in part the indirect-optical transition, is described theoretically by the 5th-

                                                                      IDorder time-dependent perturbation [see Chapter IX]. The expression of R                                                                         is                                                                      is
given by the same form as Eq. (9.19). The absorption coefficient can now be

                                                                     305,306written in terms of the density of states of the indirect-energy gap as
                                                                           '
      '
                    ct (tu) cx (6c,) - EID Å} 'fioo )2 . (lo.lo)
                                  gq

As mentioned in Section 2.2, the direct-gap resonance process is described by

the 3rd-order time-dependent perturbation and is given by the same form as Eq.

(2.55).

     Let us now consider the direct-gap Brillouin-scattering process by the aid

                    'of group theory. The direct gap with which the exciton series of interest here

are associated occurs at the center of the Brillouin zone (r point). The
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                                                                            '
                        'Brillouin-scattering process can be deduced froin the symmetry properties of

the intermediate electronic states and corresponding acoustical vibrations.

The strain cornponent induced by acoustieal phonons is defined by Eq. (2.70).
                                                                    '
The PT-mode phonons propagating in GaSe, thus, induee the non-zero strain

component eÅ} = exx - eyy Å} 2iexy which has the symmetry of r6 (space grottp

 1D3k). The initiql-intermediate-electronic state can be assumed to have V6

syrmetry, since in the present study it is produced by the e" i a-3 (r6) radiation

After being the deformation-potential interaction with the PT-mode phonons, the

intermediate electronic state will have the symetry given by the following

produet:

                  r6 (e"i L3) x r6(eÅ}) = rl + r2 + r6 • ao•11)

The right-hand side of Eq. (10.11) contains the representation of symmetry r6,

and as a result the scattered-intermediate-electronic state can produce the

radiation having polarization of e+' s -L 3 (r6). The above result possibty

suggests that in the ease of GaSe the exciton (electron)-acoustical phonon

intetaction is necessarily intraband, i.e., the Brillouin-scattering process

can be described only by the two-band model. The'schernatic diagram of this

process is represented in Fig. 10-10 (a), where ]O> represents the electronic

ground state and 1or> and IB> represent the intermediate electronic states.

The same result can also be obtained in the case of GaS (space group Dgh).

The PT-mode phonons propagating in GaS induce the non-zero strain compDnent of

                                                   +eÅ} ` exx ' eyy Å} 2iexy which has the symmetry of r6. The syTmnetry of the

scattered-intermediate electronic state is, therefore, given by the product

                 rg (g, Å}3) x rt(e.) - r5 + r-4 + rg , ao a2)

which contains the representation of symetry rg (gs IZ;). Thus, the direct-gap

Brillouin-scattering process in GaS can also be described only by the two-band
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model (i.e., intraband electronic transition). The schematie diagram of the

                                                           4Brillouin-scattering process in the case of the space group D6h (GaS) is

represented in Fig. 10-10 (b).

     Figure 10-11 shows the theoretical curves of the Brillouin-scattering

cross sections in GaSe, calculated from Eq. (10.8), along with the experimental

data. The vertic.al arrow indicates the posit'ion of the n = 1 discrete-exciton

           ). The indirect-gap resonance is usually weaker than the direct-gapenergy (E         xl
one because of the higher perturbation orders of the indirect-gap resonance

process. The energy separation between the indireet and direct gaps of GaSe is

too small (a few tens of meV). It can, therefore, be reasonably considered that

                                        IDin GaSe the indirect-gap resonance term Ris is negligibly srnall compared with

                              D                                , i.e., the indirect-gap resonance should bethe direct-gap resonance terrn R                              is
masked off by the much stronger direct-gap one. Sinilar phenomena can also be

expected in other optical processes such as absorption and emission of light

[see, e.g., Fig. 10-6]. From the above fact, we have neglected the indirect-

gap resonance term for GaSe and then ca!culated theoretical eurves using the

following Brillouin tensor instead of Eq. (10.9):

                                                '                           D                                                                  (10.13)                      R == R. +R                           IS O '

The numerical vaiues used in the calculations are listed in Table 10-2. The

theoretical curves have been taken into account four different lifetime-broadening

energies; r = O meV (dash-dotted line), r = 30 rneV (dashed line), r = 60 meV

(solid line) and r == 90 meV (dotted line). The group-theoretical analysis

discussed before indicated that for both GaSe and GaS the direct-gap resonance

process can be treated only by the two-band model. We have, thus, mode in

Eq. (2.55) that

                  tugor -- cogB , P&o = PgB and :' Bor = :' oror • (lo. 14)
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       meV (dotted line). The vertical arrow indicates the position
       of the n = 1 direct-exciton energy (Exl)•
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Table 10-2 . -Numerical
   dependence

parameters used to calculate
 of the Brillouin--scattering

the spectral
cross sections.
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rt is obvious from Fig. 10-11 that the lifetime-broadening effect strongly

broadens resonance features especially near the direct-exciton resonance region

    ). The best-fitting value of the lifetime-broadening energy is determined (E
  xl
to be r= 60 meV (solid line).

     Figure 10-12 shows the theoretical curves of the Brilloutn-seattering

cross sections in GaS, calculated from Eq. (10.8), along with the experimental

data. The vertical arrows in the figure indicate the positions of the indirect-

gap (EED) and n == 1 direct-exciton (Exl) energies. The solid and dashed lines

have been calculated from the Brillouin tensors of Eqs. (10.9) and (10.13),
                  '
respectively. The numertcal values used are listed in Table 10-2. In the

calculation of the direct-gap resonance term RP , we have taken into account
                                               -S
                                               332the lifetime-broadening energy of r = 200 meV.                                                    The dashed line in whÅ}ch the
                                   '
indirect-gap resonance is not taken into account shows a decrease in the region

near the n = 1 direct-exciton state (Exl) arising from the !ifetirne broadening

of the exciton states. However, the agreement between the theoretical curve

and experimental data is very poor in the region near the fundamental absorption

edge. As already mentioned in Section 10.4.1, GaS has an indirect-energy gap

below the lowest direct one and this gap sufficiently aparts from the lowest

direct gap. As a resu!t, the absorption spectrurn of this material clearly shows

an indirect-gap characteristic at energies below 2.9 eV. This fact enables us
                                                 '                                                                             '
to consider that the indtrect-gap resonance should be occured without masking

off by the strong direct-gap resonance as the photon energy approaches and

                                         IDextends beyond the indirect-energy gap E g . It should be important to point

out that the indirect-gap resonance expressed by Eq. (9.19) begins as the

                    '                                                       IDincident-photon energy extends beyond the energy of (E                                                          -fitu ). One can find
                                                       gq
from Fig. 10-12 that the theoretical curve ca!culated from Eq. (10.9) well

interpretes the measured monotonic decrease of the Brillouin-scattering cross

sections, as shown by solid line. !n the calculation, we have assumed to account
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  in the calculation of the direct--gap resonance term R?s. The vertical arrows indicate the
  positions of the indirect-gap (EED) and n = 1 direet-exeiton energy (Exl)•
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the cancenation that the the indirect-gap resonance term (Rl2) has a opposite

                                                                             'sign to the direct-gap (R2.s) and nonresonant terms (Ro).. !rhe monotonic decrease

                                                         - rD                                                                        Dis, thus, considered. to be the result of cancellatÅ}on between the Ris and Ris

(plus Ro) terms. Similar resonant cancellation has also been Eound in the

                 269                     from the Raman-scattering measurements as the resonanceindirect gap of Si
                   '                         '
wtth the indirect-energy gap is approached. Unfortunately, we were not able to
                                                                '                         'detemine the value of r(tu) from the fit to the experimental data with Eq. (10.9),
         '
since tihe' t' 6rm,Rl.g- .contains the prefactor c2 as an adjustable parameter.

     Figure' 10-13'shows the theoretical line shapes of the Brillouin tensor R

of GaSe calculated from Eq. (10.13) in the neighborhood of the excitonic structure
 '
with three different broadening energies; r = 4e meV (dashed line), r = 60 meV
(sol{d'lin6) and r = go mev (dotted line). The experimental data (aB-i2 ct IRI)

are plotted in the figure by solid circles. The corresponding nonresonant term

Ro is also shown by solid line. The vertical arrow indicates the position of

                                    One can find from the figure that thethe n = 1 direct-exciton state E             .. xl'     '
calculated curves show sharp peaks at arround 2.00 eV arising from the direct-

exciton resonance. Note that the absorption spectrum [Fig. 10-6] also showed
    '
sharp peak at the same photon energy due to the n = 1 direct-exciton transition.

The resonance behaviors are clearZy found to be strongly affected by the lifetime

                'broadening of the exciton states. The ealculation has required a fit to the

experimental data with r = 60 meV (solid line; see also Fig. 10-11). The figure

clearly indicates that at photon energies below 1.95 eV the nonresonant

contribution (nonresonant electronic transition) is dominant in the Brillouin-

scattering proeess; We obtain, for example, that the ratio of each contribution

R2.s/Ro is about 1!7.'5 at photon energy of 1.8s ev. such a result agrees

reasonably with that obtained from the quasi-static analysis, as mentioned in

Section 10.4.2.

     It is interesting to note here that the line shape of.R [Fig. 10-13] is
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    2.10 2.00 1.90 1.80                                                            '             PHOTON ENERGY (eV)
10-13. Theoretical line shapes of R in the neighborhood of the
        fundamental absorption edge along with the experimental
        data for GaSe. The theoretical curves are obtained from
        Eq. (10.13) with r=40 meV (dashed line), r=60 TneV (solid
        line) and r=90 TneV (dotted line). The corresponding non-
        dispersive term (Ro) is also shown in the figure by solid
        line. The vertical arrow indicates the nosition of the                                              i        n = 1 direet-exciton energy (Exl)•
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very similar to that of the first-derivative modulation spectroscopy. We have

discussed in Chapter VI[II that resonant Brillouin scattering is quite equivalent

to the first-derivative rnodulation spectroscopy such as thermoref!ectance,

piezoreflectance and wavelength-aerivative spectroscopy. Indeed, the thermo-

                            333,334                                   showed a sharp peak due to the n = 1 excitonicreflectance spectrum of GaSe

structure at a region close to the direct-energy gap, which is very simUar to

the line shape of R given in Fig. 10-13.

     Figure 10-14 shows the theoretical line shapes of the Brillouin tensor R

of GaS in the neighborhood of the fundamental absorption edge. The solid line

is calculated from Eq. (10.9), where the lifetime-broadening energy of r = 200

meV is taken into account in the calculation of Eq. (2.55). The theoretieal

line shapes are also calculated from Eq. (10.13) with three different bToadening

energies; r = O meV (dash-dotted line), r = 200 meV (dashed line) and r = 300

                                           !Z2                                             cc IRI) are plotted in the figuremeV (dotted line). The experimentai data (OB

by solid circles. The corresponding nonresonant term Ro is also shown by solid

                                                                      rDline. The vertical arrows indicate the positions of the indirect-gap (E                                                                      g)

and n = 1 direct-exciton (Exl) energies. The figure clearly indicates that

the monotonic decrease observed in the region of the indirect-energy gap can

not be successfu!ly interpreted only by the direct-gap resonance process, in

contrast to the case of Gase. The indirect-gap resonance term Rl.g, on the

other hand, completely interpretes the observed monotonic decrease, as shown

                     'by solid line. 1ife can also show in the figure that the nonresonant terrn Ro is

                                             IDalways dominant especially at energies below E                                                 This result is sinilar to                                             g'
the case of GaSe. An exanination of analogous data allows one to argue

possibility of the indirect-gap resonanee in GaS. For example, we have

reported in Chapter IX the results of resonant Brillouin seattering in GaP.

The GaP crystal is an indirect-gap semiconductor and is thought to be excelZent

material to study some of the indirect-gap resonanee effects, since the energy
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               PHOTON ENERGY ( eV )
10-14. Theoretical line shapes of R in t.he neighborhood of the
        fundarnental absorption edge along with the experimental data
        for GaS. The theoretical curves are obtained from Eq. (10.9)
        with r=200 rneV (solid line) and from Eq. (10.13) with r=O meV
        (dash-dotted line), r=200 meV (dashed line) and r=300 meV (
        dotted line), where r is the direct-exciton lifetime-broaden-
        ing energy. The corresponding nondispersive term (Ro) is also
        shown in the figure by solid line. The vertical arrows indicate
        the'positions of the tndirect-gap (EED) and n = 1 direct-exeiton
        energy (Exl).



-334-

separation between the indirect and direct gaps of this material is relatively
  'large (bl O.5 eV). The measured spectraJ dependence of the Brillouin-scattering

cross seetions in GaP also showed weak resonant cancellation as the incident-

photon energy extends beyond the indirect-energy gap of this material.
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       CHAPTER XI

SUMMARY AND CONCLUSION

     Resonant Brilloutn scattering has been investigated in U-VI, III-V and

III--VI semiconductors. The results and eonc!usions obtained in the present

work are sumarized as follows.

     Resonant Brillouin scattering in ZnSe and ZnTe has been studied at

room temperature and 77 K by making use of the acoustical-domain injection

method. The spectral dependenee of the Brillouin-scattering cross sections

in these semiconductors for the Tl- (slow TA) and T2-mode (fast TA) phonons

has shown resonant enhancement and cancellation Å}n the region near the

fundamental absorption edge. The 3rillouin-seattering cross section has been

found to depend strongly on the lifetime-broadening effect of the intermediate

electronic states near the resonance region. The resonance-Brillouin effect

has also been studied in ZnxCdl-xTe solid solutions by making use of the

acoustical-domain injeetion method. The relative concentration of the partic-

ipants in solid solutions determines the band-gap energy which usua!ly falls

within the range of the band-gap energies of the two pure compounds. The

band-gap energy plays a significant role in the resonance features through

the Å}ntraband and interband electronic transitions. !t has been clearly found

that the resonance curve observed shifts toward longer wavelength side as the

molar composition x decreases, originating from the shift of the band-gap

energy with x. The resonance behavior of the Brillouin-scattering cross
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sections in CdS has been measured by using the acoustoelectrically amplified
                '
phonon domains [T2-mode (slow TA)]. The resonance data of Brillouin scattering

by the Tl-mode (fast TA) and PL---mode (pure longitudinal) phonon domains have

also been obtained in CdS by the mode conversion upon partial reflection of

the T2-mode domains at the anode-end surface. The data have shown resonant

enhancement and cancellation for the Tl- and T2-mode phonon domains in the

region near the fundamental absorption edge, while only weak resonant

enhancement has been found for the PL-mode phonon domains in the region below
                                      '
the intrinsic absorption edge. The experimental data obtained have been

compared with the theoretical prediction based upon Loudon's light-scattering

theory assuming the free electron-hole pairs or Wannier-Mott excitons as the

intermediate electronic states. It has been found that the VJannier-Mott exciton
                                                                 '
model shows a quite good agreement with the present expertmental results when

the lifetime-broadening effect is phenomenologically taken into account in

the calculation.

     The resonance data of Brillouin scattering in ZnSe, ZnTe and CdS have

been analyzed with a theoretical prediction based on the quasi-statie

approximation. This analysis indieates that for the allowed scattering the

Brillouin-scatteing efficiency (Brillouin tensor) is proportional to the first

derivative of the dielectric constant e with respect to the incident-photon

energy while for the forbidden scattering proportional to the second derivative

of e with respect to the incident-photon energy. The theoretieal calculation

has been performed by numerically differentiating the experimental data of

the dielectric constant. The resonance behaviors of Brillouin scattering
                   '   '
have been well interpreted by the quasi-static approximation when the non-

dispersive contributions are properly taken into account. [rhis analysis has

also clearly indicated that resonant Brillouin scattering is quite equivalent

to the conventional modulation spectroscopy such as thermoreflectance spectro-



                                     -337-

scopy. Resonance forbidden Brillouin seattering has been observed in CdS

by the T2-mode phonon domains in several scattering configurations (

parallel-parallel and parallel-perpendicular configurations). Th.e data have

been well interpreted with a dielectrÅ}c theory based on the second derivative

of E with respect to the tncident-photon energy, as expected from the quasi-

statie approximaPion. Although the forbidden-scattering mechanism observed

here has not yet been completely explained, it may be pointed out that the

strong longitudinal field associated with the T2-mode phonon domain is one

of the causes.

     From a rnacroscopical point of view, the Brillouin-scattering cross section

is proportional to the sguare of the corresponding photoelastic constant which

can be obtained independently from the piezobirefringence experirnent. The

spectral dependence oÅí the photoelastic constants, pll - p12 and P44 fOr ZnSe

and ZnTe and p66 [lll(p!ip12)], p44 and p31 for CdS, has been determined from

the present data by introdueing the piezobirefringence analysis. The photo-

elastic constant has been found to depend strongly on the lifetime-broadening

effect of the electronic states especially near the band-edge region as in

the Brillouin-scattering efficiency. Moreover, i't has been reported a new

method to analyze the piezobirefringence eoefficient Å}n an opaque region of

solids. This method takes into account the contributions from the stress-

induced changes in both the real (AEI) and imaginary part (Ae2) of the

dielectric constant. New coefficients, which determine the fractional

contributions of Ael and Ae2 to the piezobirefringence coefficient, have been

derived from an analytical point ef view. The experimental data of Si and

ZnSe have been analyzed by using the present model. Good agreement between

the experiment and calculation has been found. The present method is thought

to provide a guiding principle for analyzing the piezobirefringence coefficient

in an opaque region.
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     The effect of the lifetime broadening on resonant Brillouin scattering

                                                                        'has been studied in more detail by using the acoustical-domain injection

method. Two kinds of ZnTe and ZnSe single crystals have been used to investigate

some effects of the crystalline imperfeetions on the speetral dependence

of the Brillouin-scattering cross seetions. Moreover, the uteasurements have

been made at room temperature and low temperature (77 K) to investigate some

temperature effeets on the lifetime broadening. It has been found that the
                      '
lifetiime-broadening energy does not depend strongly on the temperatures but

on the kinds of the crystals. The lifetime-broadening energy of the high-

purity ZnTe (ZnSe) determÅ}ned from the Brillouin-scattering measurements

is r= 26 meV (44 meV) at 77 K, whieh is very large compared with the value

of r cr 2 meV (3 meV) obtained from reflectance spectrum. The results are

interpreted in terms that the lifetime broadening is caused mainly by an

interaction of the intermediate electronic states with the high-intensity

phonon domains and erystalline imperfections.

                           '     [IJhe cormon feature of all modulation techniques of optical spectroscopy

is the measurement of the derivative of some optical properties with respect

to some parameters such as tenperature, stress, wavelength, eleetric field

and magnetic field. Such a modulation speetroscopy yields information about

the structures and properties of optical eritical points and profiles of the

exciton lines. A detailed discussion has been given on resonant Brillouin

scattering in connection with the first-derivative modu!ation spectroscopy

such as thermoreflectance, piezoreflectance and wavelength-modulation

spectroseopy. It has been shown that the Brillouin-scattering efficiency

is expected by the first derivative of the dieleetric constant with respect

to the incident-light wavelength or equivalently to the band-gap energy, which

is the same as the expression for the first-derivative modulation spectroscopy.

                 'A comparison of the Brillouin-scattering efficiencies derived experimentally
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with the first-derivative modulation spectra has shown that they agree quite

well with each other and a!so with the theoretical curves of the BrÅ}11ouin-

$cattering efficiency when the lifetime-broadening is taken into account in

the Brillouin-scattering analyses. It has been concluded from these results
 '

that the resonant-Brillouin process can be described by a phenomenologtcal

formalism analogous to that of the first-derivative modulation spectroscopy.

     Resonant Brillouin scattering in I!I-V semiconductor GaP by the transverse
                                                                  '
acoustical phonons has been studied at room temperature in the region of the

indirect absorption edge by making use of the acoustical-dornain injection

method. The GaP crystal is a more suitable material to study some of the

indirect-gap resonance behaviors, since the energy separation between the

indirect and direct gaps in this rnaterial is relatively large (or O.5 eV).

The spectral dependence of the Bri!louin-scattering cross sections has shown

a monotonic decrease (resonant cancellation) as the incident-photon energy

extends beyond the indirect-gap energy. It has been formulated a theory of

resonant Brillouin scattering at the indirect gap of semiconductors. The

experimental data have been well interpreted by this theorettcal model (

indireet--gap resonance) and an additional dielect-ric theory of the direct-gap

resonance (quasi-static approxiTnation). The spectral dependence of the

photoelastic constants, lpll - p12I and Ip44[, has also been determined as a

by-product of the Brillouin-scattering data.
                                                '     The strong anisotropic nature of the layer-type, IU-VI semiconducto.rs

GaSe and GaS makes it a very Å}nteresting subjeet of investigation from both

theoretical and experimental aspects. Resonant Brillouin scattering in GaSe

and GaS has first been investigated at room temperature by making use of the

acoustical-domain injection method. The GaSe and GaS crystals are well known

to have indirect gaps below the lowest direct gaps; the top of its valence

band lies at r point and the bottom of the conduction band at M point.



-34e-

Relative minima of the conduction band at r are situated a few tens of meV
                '
for GaSe and about O.4 eV for GaS above the minima at M. The group-theoretical

analysis has indicated that the two-band process (intraband electronic

transition) plays an important role in the direct-gap resonance of the

Brillouin-scattering mechanism by the pure-transverse phonons. The experimental

data obtained have shown clear resonant eancellation for both GaSe and GaS

in the region very close to the fundamental absorption edges. rt has been

found that the Brillouin-scattering intensity depends strongly on the

lifetime-broadening effect of the intermediate eleetronic states. The spectral
               '
dependenee of the Brillouin-seattering cross sections has shown a good agreement

with the theoretical predictions based on the quasi-static approximation and

Loudon's light-scattering theory. The resonant cancellation has been

successfully interpreted by the direct-gap (direct-exciton) and indirect-gap

resonance processes for GaSe and GaS, respectively. Such analyses, moreover,

have elearly indicated that the nonresonant electronic transitions are

dominant in the Brillouin-scattering process even in the region near the

fundamental absorption edges.
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                   APPENDIX

CRYSTAL GROWTH: TRAVELING HEATER IVIETHOD

                               A. INTRODUCTION

     The most important factor in the characterization of materials is the ability

to prepare structually and chemically pure crystals (i.e., both from the point of

view of natural defects and foreign impurities). Single crystals of fatr

perfection have been grown by a variety of techniques from vapor, gaseous phase,

melt and solution. Although growth from the melt is the most cormon technique

used in crystal growth of elemental materials, this method is not readily

applicable to the higher band-gap II-VI compounds. [I]he high melting temperatures

and pon-insignificant pressures developed near the stoichiometric melting points

are important reasons for growth from the vapor phase at eonsiderably lower

temperatures and pressures. Vapor growth, however, has its limitaions with

regard to purity, crystal size and especially the time required for growing

sizable crystals. Moreover, the gaseous and vapor growth should suffer from

local supersaturation and local undercooling. [rt}e high-temperature melt growth

                                                                          'should also suffer from uncontrollable temperature fluetuations. The growth

of crystals from solution, in particular from metallic solution, on the other

hand, is much less susceptible to sueh disturbances. The traveling heater
                       '
method (THM) is a kind of solution growth [1], and is advantageous for the

growth of large single crystals with little contanination and good crysta!line

perfeetion.
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     The THM has been applied to obtain high-purity semiconductors such as

ZIT-V (GaSb[2], rnSb[2], GaP[3] and GaAs[4]) and II-VI compounds (CdTe[51,

ZnTe[6] and ZnO[7]). This method has also been found to be advantageous for

the growth of crystals of solid solutions of homogeneous composition, and

has been applied to the growth of a range of solid solutions such as Ga(As,P)

[8], (Ga,In)P [4], (Ga,Al)As [4], (Zn,Hg)Te [8] and Zn(Te,Se) [9]. In the

course of this work, we have grown ZnTe, CdTe and (Zn,Cd)Te single crystals

by the THM from tellurium solution. The methodology and growth technique

are as follows.

           B. cRySTAL GROWTH OF ZnTe, CdTe AND ZnxCdl"xTe

ra) Phase DiagTam of Zn-Te. Cd-Te and Pseudobinavy ZnTe--CcZTe Systems
     '
     The knowledge of the phase diagram is of importance for crystal growth

especially from the melt. The phase-diagram study on Zn-Te system has been

carried out by Carides and Fischer [10]. [rhe result obtained is shown in

Fig. A-1 (a). The melting point of stoichiometric ZnTe is about 12980C.

The phase diagram of the system Cd-Te has been studied by Lorenz [11]. He

has obtained that solid stability reaches a maximum at 1092eC in the vicinity

of the equimolar ratio, but the maximum melting point is not coincident with

the stoiehiometric composition. [I]hell-•V! compounds ZnTe and CdTe form a

                 'complete series of solid solutions with cubic zincblende structure and with
                        '
band-gap energies varying from 1.5 to 2.25 eV at room temperature [see Fig.

4-16]. The phase diegram of the Zn-Cd-Te ternary system has been studied by

Steininger et aZ. [12] and Steininger and Strauss [13]. The ZnTe-CdTe system

shows a typical lens-shaped phase diagram with sublinear variations in

temperature with composition and relativeiy narrow liquidus-solidus gaps,

as shown in Fig. A-1 (b).
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 (b) Sour;ee Mate?iaZs

                '     The elements, Za (6N from Cominco), Cd (6N from Osaka Asahi Metal) and Te

 (6N from Osaka Asahi Metal), are used in shots to limit their surface of contact

with air during the manipulations. Zinc and cadmium are etched in a solution

of 4 % HN03 in ethanol and tellurium in a dilute HCI.

re) Synthesis of Feed CiystaZs

     Polycrystaliine ingots of ZnTe, CdTe and ZnxCdl-xTe were prepared by melting

the component elements in evaquated quartz tubes (Bridgman method). A 8 mm I.D.

quartz tube was first cleaned with an aqueous solution of HF, graphitized by

                                                                      -6                                                               -5cracking of acetone vapors at 11000C, and then baked out under 10                                                                  - 10                                                                         Torr

for several hours at about 1000eC. The graphitized quartz ampule was filled

by a charge of Zn:Te = 4:6, Cd:Te = 4.7:5.3 or (Znx,Cdl-x):Te = 4.6:5.4 (in

                                    -6atomic ratio) and sealed off under 10                                       Torr. The temperature profile of a

vertical Bridgman furnaee is schernatized on Fig. A-2 (a). The direet synthesis

from the elements is often explosive. Therefore, the temperature was increased

slowly over a 48-h period to 11800C, held constant for 5 h, and then the

ampule was s!owly lowered in the steep temperature gradient of about 20 deg/cm

at 2 mmlh. The ingots obtained in all preparation trials consisted of few

grains of single crystals.

(d] C"ystaZ G?owth by TffM

                '     In the THM, a molten solvent zone is made to move through a solid source

material by the slow movement of the charge material relative to the solution--

zone heater, or vice ve?sa. Tn this process, the dissolution of feed material

occurs at the receding liquid-solid interface, and the crystallization of the

dissolved feed occurs at the advancing liquid-solid interface. [I]he schematic

diagram of the THbC furnaee used and its temperature profile are shown in Fig.

A-2 (b). A 8 mm I.D. quartz tube was cleaned with an aqueous solution of
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                                              '
                               -6                        -5                                  Torr for several hours at about 10000C.                           - 10HF and baked our under 10

The quartz tube contained Te ingot (solvent) [6N from Osaka Asahi Metal] and
                                                          '                                                                        '                                        -6feed crystal was then sealed off under 10                                           Torr. The single crystals were

grown by the THM with a growth rate of 5 mmfday. The maximum temperature of

the THM furnace was adjusted to be 850, 700 and 700 - 8500C for the growth of

ZnTe, CdTe and ZnxCdl-xTe, respeetively. The solubilities of ZnTe and CdTe

into Te solvent were about l2 and l7 mol % at these temperatures, respectively.

     The material-transport mechanism in THM can be easily understood by the

following expression [8]:

                   d[A]                  IZ                                                D                 r dt =[ (A)eqo- (A)eqz. ]'7 , (A-1)

where f is the cross section of ingot, IA]z is the actual concentration in

solid at the receding liquid-solid interface, (A)                                                   and (A) are the                                               eqO                                                          eqZ
equilibrium concentrations in the solution at the advancing and receding

liquid-solid interfaces, respectively, D is the diffusion constant within

the solution zone, and Z is the zone length. .From this eguation, the material

transport is found to be probably due to a diffusion controlled growth, and

to be very sensitive in temperature (solubility) and zone length.

     We have obtained the inclusion-free, high-quality single crystals of
         '
ZnTe, CdTe and ZnxCdl-xTe by the THM from tellurium solution. It has been
                                                               '
confirmed that the TH)( can be taken as a useful method to grow reproducibly

large crystals of II-VI compounds at low growth temperatures with low dislocation

densities. The extraction effect of the tellurium solvent and low growth

temperature should 1.ead to materials of good erystalline perfection. The

crystalline-imperfection effect on resonant Brillouin scattering is discussed

Sn detail in Chapter VII.
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