

Title	高温材料と核燃料およびグラファイトとの両立性
Author(s)	村岡,進
Citation	大阪大学, 1978, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/2282
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

[14]

氏名・(本籍) 村 間 進

学位の種類 工 学 博 士

学位記番号 第 4323 号

学位授与の日付 昭和53年5月1日

学位授与の要件 学位規則第5条第2項該当

学位 論文題目 高温材料と核燃料およびグラファイトとの両立性

(主查) 論文審查委員 教授佐野 忠雄

教授 井本 正介 教授 稔野 宗次 教授藤田 英一

論文内容の要旨

本論文は高温材料と核燃料およびグラファイトとの両立性に関する研究結果であって, 6 章からなっている。

第1章では、両立性の研究とりわけ高温における固相反応の研究を行う上で重要な基礎をなす拡散 について、その現象論と実験方法を概説している。

第2章では、本研究で対象としているTaとグラファイト、Taと UO_2 、UCおよびHastelloy <math>Xとグラファイトの両立性に関し、現在までに得られている結果について考察を行い本研究の位置づけを行っている。

第3章では、Taとグラファイトの反応によって生成される炭化物TaC、 Ta_2 C の層成長速度から TaC、 Ta_2 C中のCの拡散係数を求めている。この結果両者のアレニウスプロットにおいて1800C付近 に折れ曲りが見られ、特に Ta_2 Cで著しいことを見い出している。これは Ta_2 Cの α \nearrow β 変態の存在に関係があるものと考えられると述べている。

第4章では、TaとUO₂、UCの両立性とくに非化学量論性の問題について検討している。その結果、TaとUO₂は一般には両立性が良いが、hyperstoichiometric UO₂の場合にはTaと過剰の酸素との反応の可能性を示している。TaとUCは反応性に富み1600℃以上ではCのみならずUがTa中に侵入1800℃においてはUの侵入速度がCのそれを凌駕していることを見出している。また、Ta表面にあらかじめ生成させたTa炭化物がTa-UC反応、特にU侵入の障壁とならないことを指摘している。

第5章では、Ni基の耐熱合金であるHastelloy Xについて、"Cを使うトレーサー法で真空中ならびにヘリウム流中における浸炭現象について研究を行っている。

反応後の浸炭プロフィルや β 線オートラジオグラフィによる観察などから、Hastelloy X中のCの拡散は粒界拡散が先行していると述べている。またヘリウム中に混在する酸素の影響で Hastelloy X中での浸炭と表面での脱炭の両現象が見られ、Hastelloy X中での酸素が浸炭の促進と抑制の相反する作用に寄与していることを指摘している。

第6章は以上の結果を総括したものである。

論文の審査結果の要旨

本論文は高温材料とUO₂, UCなどの核燃料ならびにグラファイトをの両立性を,主として拡散現象の立場から研究したものであって,今後高温化する原子炉に対し,材料ならびに核燃料はどうあるべきかについて考察している。特に,TaCあるいはTa₂C中におけるCの拡散において1800℃附近でアレニウスプロットに折り曲り点を生ずること,またTaとUCの反応において,CのみならずUまでがTa中に拡散することは初めて見出された現象である。これらは、耐熱材料 Hastelloy Xの浸炭現象の解明と相まって今後の原子炉材料の研究、開発に重要な示唆を与えるもので原子力工学に寄与するところが大きい。よって本論文は博士論文として価値あるものと認める。