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ABSTRACT

This thesis presents a composite modeling of creep voids in textured pure copper. A simple
procedure is used to separate the elastic anisotropy due to texture. The effective stiffness of
the voids/copper composite is related to the ultrasonic velocities.

The creep experiment is made by the best possible procedures for being compatible with
the theoretical treatment. No precipitation of the second phase particles and no texture
modification occur during creep. The density and the ultrasonic velocities are measured for the
composite. Ultrasonic velocities decrease and their anisotropy develops with decreasing density
due to creep voids. The elastic anisotropy due to texture is canceled by using normalized
velocities.

Five models for creep voids are considered based on the elasticity theory of particle dis-
persed composite. There are four void modeling factors; the volume fraction, the shape,
the positional distribution, and the orientation distribution. The effective elastic stiffness is
obtained as a function of the modeling parameters, and it is related to the velocities. The
volume fraction is obtained by the measured density so that we characterize the remaining
three factors for the modeling study. It is concluded that the double composite model is best
for the explanation of experimental features including the evolution of velocity changes and
their anisotropy. In this model, the shape of voids is assumed to be spherical. Their positions
are restricted to within the oblate areas dispersed randomly in the copper matrix. The minor
axes of oblate areas are statistically tilted in an orthorhombic way. The model represents well
the creep damaging process. The ellipsoidal elements are sparsely scattered in the matrix,
but they continue to grow in volume as the creep progresses, containing more and more voids
in them. The elastic anisotropy develops by the preferential void formation within the grain
boundaries perpendicular to the stress axis.

The double composite model provides a basis for understanding complicated and impor-
tant phenomena of creep fracture. The concept of this work, the effective stiffness of the
creep damaged material, is applicable to the heat resistant materials involving metallurgical

complexity. Modeling for them remains for the further study.
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Chapter 1

INTRODUCTION

1.1 Effective moduli of particle dispersed composite

Micromechanics of composite materials and defects in solids has been developed in the
field of the elastic theory [1] -[5]. This thesis applies the results on macroscopic elastic moduli
of particle dispersed composites to the crept metal containing voids.

~ In a particle reinforced composite, a large number of particles are dispersed in the matrix.
Each of them has a distinct boundary and is separated from the other particles. A typical
example of them is short-fiber reinforced composites which are increasingly being used in a
wide range of applications. Short fibers are regarded as slender prolate ellipsoidal inclusions.
The macroscopic (overall) elastic properties of such materials can be derived by applying the
micromechanics theories. The macroscopic elastic moduli of composites, called the effective
elastic moduli, depend on the elastic constants of its constituents and the inclusion aspects;
the inclusion volume fraction, the geometric parameters, and the positional and orientational
distribution of the inclusions. |

The composites have been designed using inefficient trial-and-error approaches. These
costly approaches were mandated because there existed a fundamental gap in the understand-
ing of the relations between microstructure and overall properties. The rule of mixtures,
arithmetic average of elastic constants of its constituents weighting by the volume fraction,
has been used to estimate the effective elastic moduli. However, it had no coincidence with ex-
perimental results. Up to now, the proper theories have been studied to estimate the effective
elastic moduli.

The effective elastic constants for spherical inclusions with dilute suspension were first
derived by Dewey [6]. In this derivation, no interaction or 1ong distance among inclusions
was supposed, so that the result was limited to very small inclusion volume fraction. The
theoretical studies have been developed to generalize the inclusion aspects.

For ellipsoidal inclusions, Eshelby’s work [7] has played an important role. He considered

the case of one ellipsoidal inclusion in the matrix and proved that the state of stress and



strain remains uniform inside the inclusion when the external uniform stress is applied at a
far distance from it. The effective elastic moduli for prolate ellipsoidal inclusions of dilute
suspension with restriction of all aligned orientation was derived by Russel and Acrivos 8]
based on the result obtained by Eshelby.

The problem for non-dilute suspension becomes complicated because it involves the in-
teraction among the inclusions. A three-phase model for spherical inclusions with non-dilute
suspension was introduced by Kerner [9] and van der Pol [10] and was modified later by Chris-
tensen and Lo [11]. In their model, a spherical inclusion surrounded by spherical matrix phase
is embedded in infinite equivalent homogeneous media with unknown properties. An approx-
imate method of the self-consistent scheme was first devised by Hershey [12] and Kréner [13]
as means to model the behavior of single phase polycrystalline materials. The extension of the
scheme to composite materials with non-dilute suspension was given by Hill [14] and Budian-
sky [15]. The method has a very simple geometric interpretation. It assumes a single inclusion
in an infinite matrix of the unknown effective properties of the problem. Mori-Tanaka the-
ory [16] was then applied to obtain the effective elastic moduli. For a full range of volume
fraction, the theory gives average stress in matrix. By Weng and his colleagues, the effective
moduli for several cases were derived based on the Mori-Tanaka theory: multiphase com-
posite containing spherical inclusions {17], unidirectionally aligned spheroidal inclusions [18],
ellipsoidal inclusions with random orientation [19], spheroidal voids with some orientation
distributions [20], and dual-phase metals with randomly oriented spheroidal inclusions [21].

The effective moduli have been studied for the particle reinforced composite. However,

they are applicable to the porous materials, by assuming zero elastic constants of the inclusion.

1.2 Purpose of this work and theoretical assumptions

This thesis presents an application of the theory for effective moduli to the creep damaged
material. The damaged material in the intergranular creep process is regarded as a porous
material. Voids (or cavities) nucleate on grain boundaries at the initial stage of creep. The
nucleation occurs even within 10 percent time to rupture [22]. Voids grow in volume and/or
number especially on the grain boundaries perpendicular to the stress direction. The nucle-
ation and growth of voids continue over the entire range of creep curve [23, 24]. Subsequent
coalescence leads to microcracking and eventually macroscopic cracks occur.

To make the theoretical treatment simple, we use the following assumptions:
(1) No precipitation of the second phase particles,

(2) No texture modification,



(3) No dislocation restructuring,
(4) No interaction between the effects of voids and texture.

In the general creep process for the heat resistant materials, the macroscopic stiffness is
altered from the uncrept state by not only the nucleation and the growth of voids but also the
metallurgical attributes. The first three assumptions are introduced to ignore these attributes.
The first two assumptions are realized by the intergranular creep experiments on a pure metal.
The third is easily acceptable, because the effect would be sufficiently smaller than the void
effect. Also, this effect is minimized by annealing the samples prior to the experiments.

The problem is still complicated even with the first three assumptions. The macroscopic
stiffness of polycrystallite metals has an anisotropy in an uncrept state. It is caused by the
texture developed during the manufacturing process. The rigorous expression of the effective
stiffness in creep damaged material should then be obtained for the composite comprising
the anisotropic matrix and voids. The last assumption is introduced to give a further simple
procedure in calculating the approximated effective stiffness supposing the isotropic matrix

composite. For this simple procedure, we use the theory of polycrystalline aggregate [25, 26).
According to the theory, the anisotropic deviation stiffness due to texture AC’?;H is separated

from the macroscopic stiffness as

C!}'kl =CM, + AQ?}H, (1.1)

% 7]

where CF}, is the macroscopic stiffness in uncrept sample (we refer to it as a reference sample)
and C{‘ﬁd is the isotropic stiffness. Using above four assumptions, the effective stiffness in

damaged sample C7;y; is simply written as

k= %cl + ACEQM + AC,
= Cg}kl + ACEM, (1.2)

c T
= Cij + Al
where AC’}J{“ is the deviation stiffness due to void formation and growth. Because AC’};k,

is also separated in the damaged sample by using the assumption (4), the effective stiffness

Cin= C’%I + AC’X-H can be calculated for a composite comprising of the isotropic matrix and

the voids.
The velocities of ultrasonic bulk waves in this porous material reflect the voids state because
they are simply given by the square root of the effective stiffness divided by the overall density.

We will present an interpretation of the velocity change due to voids through the creep void



modeling and the calculation of the effective stiffness. The ultrasonic velocities in the reference
sample have the anisotropy due to texture. Those in the damaged samples includes further
the void effect.

1.3 Outline of the thesis

Figure 1.1 shows the outline of the thesis. Experimental procedure is described in the
beginning. The results are studied in two subjects, texture effect and void effect, respec-

tively. The study on void effect is organized by the theoretical case studies and the numerical

calculations in the modeling.

In chapter 2, the experiment will be described. We will make the best possible procedures
to carry out a simple experiment for being compatible with the first two assumptions. Poly-
crystalline pure copper samples machined from a rolled plate are used. The specimens are
subjected to the stabilization annealing, and creep condition is chosen for the brittle failure.
Ultrasonic velocities in reference (uncrept) samples show an intrinsic orthorhombic anisotropy

due to the rolling texture. The density and the ultrasonic velocities in creep damaged samples

Chapter 2 (Experiment)

lVelocities in reference sampleJ

[Relation between normalized velocities and density |

— Chapter 3 (Texture effect) L Void effect A
_'I_‘l_“f‘_’fi_’ _______________________ r Chapter 4 (Theoretical case studies)
i Orientation distribution function — cC _ M \4
T S Cisnn = Ciji + Al
EEJ 31; Kl _:-‘:_ _Cj {ﬁ _I_':I'_ _4_@1:_1151_ _E [ (A) Spherical inclusions_J

[ (B) Unidirectionally aligned spheroidal inclusions |

v .
IAC';‘SM / C{‘fkll <1 [ (C) Partially oriented spheroidal inclusions |

Texture effect I »

. Chapter 5 (Modeling studies) l
| (1) Spherical voids model (A)—l

| (2) Unidirectionally aligned oblate voids model (B) I
[ (3) Randomly oriented oblate voids model (C’) |

[ (4) Partially oriented oblate voids model (C) |

l (5) Double composite model (A+C) i

Fig. 1.1. Outline of the thesis.



are measured. The density decreases due to the generation of voids. The relation between the
velocities normalized by those in the reference samples and the density change are presented.
The normalized velocities decrease with the decreasing density. Their anisotropy is observed
and develops with the decreasing density. Discussion in the following chapters are based on
these measurement results.

The study on texture effect will be described in chapter 3. We will separate the anisotropic
deviation stiffness from the macroscopic stiffness using the theory for polycrystallite metals. In
the beginning of the chapter, the theory will be described with the attention to the single-phase
polycrystallite cubic metal having statistically the orthorhombic symmetry (rolling texture).
This is pertinent for the material used in the experiment, that is, pure copper samples ma-
chined from a rolled plate. The crystallite orientation distribution function (crystallite-ODF),

a probability density function to represent the orientation of single crystallite, is introduced.

The explicit form of CF,, = C}, + AC],, is obtained through the ODF. The values for
CY. and ACE iix are calculated from the measured velocities. These values will be used as
the material properties in the following modeling studies for the void effect. The inequality
|ACL,/CYil < 1 (without the summation convention) holds. It supports the assumption
(4). If the assumption is not possible, the calculation of the effective stiffness for the composite
comprising of the aniso’ﬁropic matrix and voids is required. However, the inequality permits
a simple procedure, the isotropic matrix is used in the calculation of ngkl and the texture
effect ACEy; is added later to C{y;. Therefore, the effective stiffness in damaged samples is
expressed as Cjj,; = C), + Angkl + ACY,. The texture effect on the normalized velocities
is then discussed, leading to a conclusion that they exclude the texture effect ACE ;iw within

the first order approximation. The study on the void effect will be carried out based on the
conclusion.

Theoretical case studies on void effect are described in chapter 4. The isotropic matrix is
supposed, and the effective stiffness of the composite C5,; = CJ, M1+ ACY,, will be obtained by
the theory for particle dispersed composites. The inclusions, or voids in our interest, are also
assumed to be isotropic and their shape is spheroidal. The void effect ACY; +:x1 depends on the
void factors; the volume fraction, the shape (the aspect ratio), the positional distribution, and
the orientation distribution of non-spherical voids. In this chapter, the positional distribution
of voids is assumed to be random. (Non-random distribution will be discussed in the later
chapter.) The effective stiffness CS ir1 1s given for three cases. In the case A, the inclusions
are assumed to be spherical. The composite is then macroscopically isotropic. The void effect

ACY. ik 18 glven only by the volume fraction. In the case B, the spheroidal inclusions are



Table 1.1. Void factors and use for the expression in chapter 4.

shape of voids positional distribution | orientational distribution case
model 1 sphere random - A
model 2 | oblate ellipsoid random unidirectional B
model 3 | oblate ellipsoid random random modified C
model 4 | oblate ellipsoid random partially oriented C
model 5 sphere restricted to oblate areas | areas partially oriented | A within C

assumed to be all aligned. The composite is transversely isotropic, and has five independent
elastic constants. AC’,-‘J/-M is given by the volume fraction and the aspect ratio. The case C is a
modified version of the case B by including the orientation distribution. The inclusion-ODF is
introduced with an analogy of the crystallite-ODF in chapter 3. The distribution is assumed
to be statistically orthorhombic. AC,-‘J{,C, depends on the volume fraction, the aspect ratio, and
the orientation distribution. _

In chapter 5, the void effect will be discussed by the modeling studies. The effective elastic
stiffness Cfy; is obtained as a function of the modeling parameters, and it is related to the
normalized velocities. Since the volume fraction is obtained from the measured density, we
characterize the remaining three factors for the modeling study. Five models are considered.
The void factors are summarized in Table 1.1. The expressions of Cfj;; in them are obtained
using the theoretical case studies in chapter 4. It will be concluded that the model 5 is best
for the creep damage. The model 5 explains the quantitative relation between the normalized
velocities and the change in density, perfectly. Moreover, it represents well the damaging
process. The oblate areas are sparsely scattered in the matrix, but they continue to grow
in volume as the creep progresses, containing more and more voids in them. The elastic
anisotropy develops by the preferential void formation within the grain boundaries (oblate

areas) perpendicular to the stress axis.



Chapter 2

ULTRASONIC VELOCITY CHANGE WITH
CREEP VOIDS IN COPPER

2.1 Introduction

In this chapter, the experimental results are described. We make the best possible proce-
dures to carry out a simple experiment for being compatible with the theoretical treatments.
To avoid the precipitation, pure copper is used. To suppress the texture modification by the
recrystallization, a stabilization annealing is provided prior to the creep tests. The test con-
ditions are chosen for intergranular creep fracture to take place. There should be no plastic
deformation, because the rupture occurred in a brittle manner, leaving little elongation of
specimens. The ultrasonic velocities shows an anisotropy due to texture even in the initial
state. We measure the change of ultrasonic velocities and density in creep damaged samples.
The features in velocities and photomicrographic observations of voids will give suggestions

for the modeling study.

2.2 Creep test

Test material is a commercial tough pitch copper of 99.95 mass pct purity. Copper has
been used for the fundamental study of creep fracture because of its relatively short time
to rupture and large density [23, 24, 27, 28]. The creep specimens were machined from a
rolled plate of 20 mm thick. To suppress the texture modification by the recrystallization,
the plate was annealed at 800 °C, which was higher than the creep temperature, for 3 hours
before machining. They were further annealed at 550 °C for 20 hours before the creep tests.
Specimen geometry and the sample coordinate system O — z,z,z3 are shown in Fig. 2.1. The
x; direction lies along the thickness direction of the original plate and the z, axis along the
rolling direction. Tensile load is applied in the x5 direction.

Creep tests were done under the constant load in air. Eight specimens were crept to failure,
four at 500°C and the other four at 550°C to know the time to rupture. The nominal stress

was 6.0 MPa at the minimum cross section. The creep conditions were chosen for intergranular



Fig. 2.1. Specimen geometry and sample coordinate system.

Table 2.1. Creep test conditions and rupture times.

Stress (MPa) 6.0
Temperature (°C) 500 550
Rupture time (hr) 618.9 279.2
573.1 264.2
580.5 267.3
618.6 272.6
tr 597.8 270.8
Time of interrupt test { 0.1 ¢.2 0.3 0.4 0.5 0.6
t/t, 0.7 0.75 0.8 0.85 0.9

fracture, referring to a fracture-mechanism map for copper [29]. The temperature was held
within the fluctuation of 2°Cj its spatial variation along the specimen gauge length was less
than 2°C. The test conditions and the rupture times are listed in Table 2.1. The scatter of
rupture time is relatively small because all specimens were machined from a plate. The average
rupture time, t., was 597.8 hours at 500°C and 270.8 hours at 550°C. The elongation of the
ruptured specimens was negligible despite the fairly high ductility at the room temperature
as shown in Fig. 2.2. Brittle fracture occurred without any visible precursors. The location
was within 10 mm from the minimum cross section. We can suppose that the effect of texture
modification by plastic deformation is sufficiently smaller than the void effect.

We made interrupt tests in the same creep conditions as the rupture tests to obtain coupons
for the density and ultrasonic measurements. Eleven interrupting times were chosen relative to

t,. as shown in the bottom row of Table 2.1. Shallow notches were introduced to obtain two cube



Fig.

Fig. 2.2. Comparison of uncrept and ruptured specimens.

2.3. Photomicrograph of creep damaged copper; notched position, t/t, = 0.7,

550°C, 6.0 MPa.



samples, 20 mm on each side, of different damage states (Fig. 2.1). They underwent slightly
different stresses with the equal thermal history. Because the stress concentration factor at
the notch bottom was estimated as 1.04 from a finite element computation, we ignored the
damage inhomogeneity around the notches. Here we refer to them as the damaged samples.
For a comparison purpose, we prepared six reference samples of the same dimensions from a
specimen after the heat treatment.

Figure 2.3 is a typical photomicrograph of the damaged samples. The grain shape is nearly
equiaxial and the grain size is approximately 0.1 mm. Voids are not randomly positioned.
They tend to gather preferentially on the grain boundaries perpendiciﬂar to the z3 (stress)

direction. The void diameter is approximately 10 ym at this stage of creep.

2.3 Porosity

Because no precipitation of the second phase particles occurs during creep, the porosity c,

that is the void volume fraction, is equivalent to the decreasing rate of density:

c=1-2 (2.1)
PR

where pg and p. are the densities of the reference (uncrept) and damaged samples, respectively.

We determined ¢ from the weight measurements as Ratcliffe [30] did:

Wi (W - Wg)
Wg(We — Wy’

c=1 (2.2)

where ”a¢” and "w” indicate the weights in air and in water. The method doesn’t give the
densities, but it gives directly the density ratio, or the porosity. This measurement of c is
independent of the sample volume and the fluid density. The weight measurements were
done using a digital electric balance with 0.1 mg accuracy. The experimental equipment for
measuring weight in water is illustrated in Fig. 2.4. A beaker is held on a support straddling
the balance table. The weight of cubic sample is applied to the balance table through the
swing hanging from the top. The top plate has a circle hole to insert a sample. The weight
of equipment was canceled before the measurement. To suppress the error caused by the rise
of the water level, a fishing line with 0.090 mm diameter was used to hang the swing. The
measuring error of the porosity was estimated to be less than +10~%. The tolerance is tested
through many trial measurements by choosing two out of reference samples. '

Figure 2.5 shows the change of porosity ¢ with creep time. The solid lines are the least-

square fitting curves of ¢ = 1 — (1 — t/a)’. The constants a and b are listed in the figure. For

the samples from the notches, ¢ increased at the accelerating rates. The samples from the
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Fig. 2.4. Experimental equipment for weight measurements in water.
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Fig. 2.5. Evolution of porosity ¢ with creep time. Least-square fitting curves are ¢ = 1 — (1 — t/a)>.
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smooth positions displayed a slower increase because of the slightly lower stress. The creep
tests were duplicated at 550 °C for ¢/, = 0.8, 0.85, and 0.9. The difference for nominally the
same creep condition arises probably from the metallurgical inhomogeneity, which causes a
variation in the rupture time or the damage accumulation rate in the individual specimens.
The slopes of porosity increase at ¢ = 0 are not equal to zero. This indicates that the voids
nucleate from the beginning of the creep test. Similar results have been obtained for Cr-Mo-V
steel [22], OFHC copper [23], SUS347 [31], and SUS304 [32].

Boettner and Robertson [23] measured the density change and the creep strain during
creep at 500 °C for OFHC copper. They showed that the increasing rate of porosity was not
coincident with that of the creep strain. According to their results, the creep curve, that was
the creep strain versus time, was divided into primary, secondary, and tertiary creep periods.

On the other hand, the increase of porosity ¢ was a continuous process.

2.4 Ultrasonic velocities

Ultrasonic velocities are measured by the pulse reflection method. An ultrasonic pulse,
introduced by a transducer from a surface, is reflected at the opposite side and returns to the
transducer. Ultrasonic velocities are calculated by dividing a traveling distance, which is two
times distance between the parallel surfaces, with the measured transit time.

We used the sing-around technique to measure the transit time. Experimental setup is
shown in Fig. 2.6. It contains a sing-around unit, an oscilloscope to observe the waveform, a
transducer to excite and receive the ultrasonic pulse, and a personal computer. The personal
computér is connected by RS232C to the sing-around unit, and'controls it and processes the
measured data. The transducer is attached on the specimen with the couplant. We measured
the velocities of nine plane waves propagating and polarized in the principal directions using
7.5 mm square piezoelectric transducers. The center frequency was 10 MHz for longitudinal

waves and 5 MHz for shear waves. The accuracy was +1.3 x 103 in terms of V*/VE, where

V® denotes the average velocity over six reference samples and V* denotes the velocity in
creep damaged sample.

It is often the case that the texture varies in the thickness direction of the rolled plate.
However, the reference samples showed an ideal orthorhombic anisotropy due to the rolling
texture. In Table 2.2, exchanging the propagation and polarization directions leaves the
shear wave velocity virtually unchanged. Maximum velocity difference is VJ/ViE = 0.9976,
where V;; refers to the velocity of elastic wave propagating in the z; direction and polarized
in the z; direction. The creep loading creates a damage-induced anisotropy, which has the

axes coincident with the original principal axes and is regarded to be superimposed upon the
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RS232C

Parsonal Computer
Transducer

Specimen

Fig. 2.6. Experimental setup for ultrasonic velocities.

Table 2.2. Ultrasonic velocities in the reference sample. (unit: m/s)

Polarization direction
1 T9 T3
Propagation =z; | 4726 2303 2287
direction xg | 2308 4723 2284
z3 | 2281 2285 @ 4734

texture-induced anisotropy as Eq.(1.2). Specimens had shallow notches (Fig.2.1) causing a
degree of inhomogeneity. However, the velocities in creep damaged samples demonstrated a
macroscopic elastic homogeneity with the equivalent shear wave velocities in exchanging the
propagation and polarization directions. This is beneficial for the modeling study.

The relations between the porosity ¢ and the normalized velocities are plotted in Fig. 2.7.
The solid lines represent the least-square fitting with polynomials. Polynomial fitting curves
are V*/V® = 1 —ac—bc?; the constants are shown in the figure. The longitudinal wave suffered
from a severe damping in the final stage of creeping. The velocity V5 was not obtainable for
¢ > 0.018. All normalized velocities decrease acceleratingly and their anisotropy develops
with increasing ¢. The velocity of longitudinal wave propagating in the stress direction V3
is most sensitive to the creep damage, and V;% is most insensitive. V;i/ViF and V3/VE are
approximately equal to V5/V,E and V3 /VE, respectively.

Ledbetter et al. [33] measured the ultrasonic velocities for longitudinal wave in creep
damaged copper. Their results also show V33 /VE < Vi /ViE. Althoﬁgh they gave the linear

relation between the porosity and the ultrasonic velocities, their discussion was restricted to
within ¢ < 0.006.
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Fig. 2.7. Relation between porosity ¢ and normalized ultrasonic velocities for longitudinal waves (a)

and shear waves (b). Polynomial fitting curves are V*/VE = 1 — ac — bc?.

2.5 Summary

Annealed copper specimens were used in the creep test. The elongation of the ruptured
specimens was negligible, and a brittle fracture occurred without any visible precursors. The
theoretical assumptions (1) and (2) described in chapter 1 were satisfied. The porosity and the
ultrasonic velocities were measured. Porosity ¢ increased at the accelerating rates with creep
time. It was represented by a function of ¢ = 1 — (1 —t/a)’. The relations between porosity
¢ and normalized velocities were given by polynomials V*/V® = 1 — ac — bc?. Equivalent

shear wave velocities in exchanging the propagation and polarization directions indicated the
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homogeneity of the texture and the damage.
The experimental results give the following suggestions for the creep void modeling. They

will be further discussed in the following chapters.

(1) The reference (uncrept) samples show an intrinsic orthorhombic anisotropy due to the

rolling texture.
(2) All normalized velocities decrease acceleratingly with increasing c.
(3) The anisotropy of them develops with increasing c.
(4) The equalities Vi /Vi} = V34 /V;E and Vi35 /V,E = Vit /VE approximately hold.
(5) The inequalities Vs/ViE < Vs /ViE < Via/VE < ViV hold.

(6) Voids are not randomly positioned, but they tend to gather preferentially on the grain

boundaries perpendicular to the stress direction.
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Chapter 3

TEXTURE EFFECT

3.1 Introduction

If the orientation distribution of polycrystalline aggregate is perfectly random, the ma-
terial is macroscopically isotropic because the intrinsic strong anisotropy of single crystals
is neutralized. However, the orientation distribution is not random in many cases because
of solidification, heat treatment, or plastic deformation in the manufacturing process. The
preferred orientation is called texture. Because of texture, polycrystalline metals have elastic,
plastic and magnetic anisotropy.

The explicit form of macroscopic elastic stiffness in reference sample Cfy; = CM, + ACLy

is presented by the theory on polycrystalline aggregate. The values for C¥; and AC%-'H are

ij
calculated from the measured velocities. The inequality |ACE,,/CM;| <« 1 is obtained. It
supports the theoretical assumption (4) in this thesis, and allows us to express the effective
stiffness in damaged sample as Cf,;, = C}, + ACELy + ACY,. The effect of texture on

normalized velocities is discussed. We will reach a conclusion that the normalized velocities

exclude the effect within the first order approximation.

3.2 Macroscopic elastic moduli of polycrystallite metal

The texture has been represented by pole figure diagrams obtained by x-ray diffraction
method [34]. The pole figure diagrams are two dimensional or stereographic expression for
the distribution of selected crystallographic plane normals. They don’t have the information
about the rotation around the normals. A harmonic method for quantitative texture analysis
was developed by Bunge [35] and Roe [25, 26] in the 1960s. Their mathematical formulations
are equivalent, but we will adopt Roe’s notation throughout this work. The method requires
the intensity of diffracted x-ray measured as a function of the orientation of the sample to
decide the coefficients of the orientation distribution function (ODF). In the last fifteen years,

intensive studies have been directed toward obtaining the coefficients of the ODF by measuring
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ultrasonic velocities and relating them to the texture [36] -[40]. The ultrasonic method gives
the texture using only lower order coeflicients of the ODF.

A harmonic method for quantitative texture analysis is described in this section. The ODF
is related to the macroscopic elastic moduli of textured polycrystalline metal. We will here
describe it with the attention on a single-phase polycrystalline cubic metal having statistically

the orthorhombic symmetry (rolling texture).

3.2.1 Crystallite orientation distribution function

We begin by taking up a crystallite (grain) in a polycrystalline sample. The crystallo-
graphic axes [100], [010], and [001] are chosen for the crystallite-fixed axes, X;. We simply
take the sample-fixed axes, z,, 75, and z3 aligned in the normal, rolling, and transverse direc-
tions of the plate sample, respectively. The relation between the crystallite axes O — X3 X3 X5
and the sample axes O — z,z,73 can be specified using three Euler angles, v, 8, and ¢. That
is, these Cartesian coordinate systems come to coincide with each other through the rotations
of —¢ around the X3 axis, —f around the X, axis, and — around the X3 axis in this order

as shown in Fig. 3.1. The coordinate transformation from X; to z; can be written with the

Fig. 3.1. Sample-fixed coordinate O — 212223 and crystallite-fixed coordinate O — X; X, X3.
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summation convention as
I = :Bjin7 Z’J - 1727 3 (31)

where the transformation tensor §;; is written as

cos 1 cos 0 cos ¢ — sin P sin ¢ siny cosf cos¢ + cosypsing —sinfcos¢
Bji=| —costpcosfsing —sintpcosd —sinycosfsing+ cospcos¢g sinfsing
cos 9 sin 8 sin 1 sin § cos

(3.2)
The ci‘ystallites making up the polycrystalline sample have a wide range of the crystal-
lographic orientation relative to the sample coordinate. An orientation distribution function
(ODF) w, that is, a probability density function, is introduced for the purpose of uniquely
representing the crystallite orientation distribution. The 1ntegrat10n of this probability density

over all possible orientations is naturally unity:

/0% /Ozr /_ 11 w(é,p, p)dédipdp = 1, (3.3)

where £ = cos 6.
In the harmonic method, the ODF w is expanded in a series of generalized spherical

harmonics as

w(f, ¥, ¢) = Z Z Z Winn Zimn (€) exp(—imip) exp(—ing), (3.4)

1=0 m=—Iln=-I

where the Z,,,(£) is the generalization of associated Legendre function defined by Roe [25].

The expansion coefficients W, are called crystallite orientation distribution coefficients

(crystallite-ODCs) and are determined by

Wha= 15 [ [ ] (6 8)Zimn(€) explimp) expling)dédpds.  (35)

From the discussion of pole figure diagrams related to the ODF w , it is concluded that Wi,
is identically equal to zero when [ is odd. The function Zi,,(£) in Eq.(3.4) is a solution of

2 2 2
(1—52)25 2§d€ {(1+1)—m 12_7_”’Zf+"}2=0, (3.6)

and have the following properties:
1
‘/_1 Zlmn(f)Zl’mn(f)dé = 511’;
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Zimn(8§) = Zizm (£),
Zimn(€) = (=1)"™*" Ziam (£),
Zlmﬁ(é.) = Zlmn(_g) = Zlﬁm(&))

where 7 stands for —m. The explicit forms of Z,,,(§) of lower orders are given as:

Zaol) = 75,
Zal) = 7
Zan(6) = L2
Ziol8) = 575
Zaol) = 52
Zuol) = 22
Zun(6) = 12
Zual) = Y22
Zu®) = 1575
Zuald) = 3 75
etc.

TN TN TN

(3¢ -1),

+
[

S’

35¢* — 30¢% + 3)

—764 4867 — 1),

¢ —2¢7 +1),

—E4 -2+ 2 +1),
—E 28— 26 +1),
4465 4+ 662 + 46+ 1),

£ — 48+ 662 — 4 +1),

(3.7)

The value of WL, = 1/(4v/27?) is given by Eq.(3.7); and the normalization condition Eq.(3.3).
Considering the symmetry properties of the cubic crystallites and that of the sample

with the orthorhombic symmetry, many of the ODCs are found to be zero, and furthermore,

the remaining coefficients are linearly dependent on each other. Because of this, the above

procedure is highly simplified. Being restricted to the rolling texture of cubic metals, they

have the following characteristics:

(a) Wi are real values,

(b) W, ate zero unless [ and m are even and n(< [) is a multiple of 4,

(©) Witnn = Wik = Wik = WE

Imn mn Imna
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(d) Warno = 0, Winas = (3/VTO)W 0, etc.
The characteristics (a)-(c) apply to orthorhombic, tetragonal, and cubic classes of crystal
symmetry, but (d) applies to only cubic classes. It is then concluded that the independent
texture parameters are only W1, WZL,, and WL, up to [ = 4.
With the full benefit of symmetry consequences from (a) to (d), when the summation is
truncated at | = 4, Eq.(3.4) reduces to

w(€>¢) ¢) = 53

82

5 fwgo (35¢* — 302 + 3) + 5 (€* — 262 + 1) cos 44}

+3 f Wiho {(—7€" + 862 — 1) cos 29 (3.8)

+(—€" +1) cos 29 cos 4¢ + 2 (€ — ) sin 2 sin 49 }

3«/‘
56

+ (§4 + 662 + 1) cos 41 cos 4(;5 —4 (53 + §) sin 44 sin 445} .

Wj;0 {7(&* - 262 +1) cos 4y

3.2.2 Average weighted by ODF

We will now calculate the macroscopic elastic moduli incorporating the ODF w(,v, ).
Sayers [36] has derived the elastic moduli as functions of the single-crystal elastic moduli and
WL o (m=0,2,4). He employed the Voigt type averaging procedure and averaged the single-
crystal elastic moduli with w as a weighting function. As shown by Hill [41], the Voigt and
Reuss averages provide the upper and lower bounds, respectively, for the true values. Hirao
et al. [38] considered the Voigt and Reuss averages for elastic moduli and take the mean value
of them (Hill average). |

Supposing generalized Hooke’s law for a single crystal, the following relations between the

stress o;; and the strain eg; hold locally for each crystallite,

G55 = Uik, (39)

€ij = VijkiOkl, (3-10)

with respect to the crystallite-fixed coordinate O — X; X, X5, where Cj;; is the elastic stiffness

and S;;x; is the elastic compliance of the single crystal. They are related to each other by

Cijm = 5'1-;,1,. On a hypothesis that the strain is uniform in the material, the average of
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Eq.(3.9) over all crystallites is given by
(0i5) = (Cijmier) = (Cijur) v (Ent),s (3.11)

where the angle brackets denote an averaging process. Equation (3.11) is called the Voigt
average and (Cj;x), is the macroscopic elastic stiffness of polycrystalline aggregate. On the
other hand, supposing that the stress is uniform in the material, the macroscopic elastic

compliance (S;;x1), of polycrystalline aggregate is then written as
(i) = (Sijraon) = (Siju1) n{ow)- (3.12)
The macroscopic elastic stiffness is obtained by
(Ciju) . = (Sijar) - (3.13)

This averaging procedure is called the Reuss average. The macroscopic elastic stiffness by the

Hill average is then given by

(Cisr)y + (Cijmi) g
5 .

(Cijt)y = (3.14)

The averaging procedures for the Voigt and Reuss averages with the ODF w(¢,9,4) as a

weighting function are performed by

Cisde = [ [ [ BribioioBaConnggro€, 6, $)dekbds, (3.15)
Siube= [ [ [ BmibuiboBaSmupm 6, 6, D)dedpdg, (316

where B,,:83,; 818y represents the transformation tensor from the crystallite-fixed coordinate
O — X1 X, X5 to the sample-fixed coordinate O — z;2,75. We find that (Cyju), and (Siju),
contain WL, up to I = 4 because of the orthogonality in harmonics and the tensor rank (4) of
elastic stiffness and compliance for a single crystal. In other words, the ODCs W for [ > 4
have no effect on (Cijki), and (Sijui),. Although the inverse problem such as the ultrasonic
pole figures requires the calculation of WL, from the macroscopic elastic constants obtained

by the experiments, it is impossible to determine WL _ for I > 4.

3.2.3 Macroscopic elastic moduli of cubic metal

. We calculate the macroscopic elastic moduli for a single phase polycrystalline cubic metal.

The elastic stiffness C;;; has three independent components. Since the crystallite-fixed axes
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X; coincide with the crystallographic axes [100], [010], and [001], C;;zs is written in the Voigt

(two index) notation as

/011 012 C'12
C'11 012
: 011

sym.

0 0\
0 0
0 0
3.17
Cu O 0 ( )
044 0
Cus)

Substituting Egs.(3.8) and (3.17) into Eq.(3.15), the macroscopic elastic stiffness in the Voigt

average (Cjju), is obtained. Similarly, from Eq.(3.16), the macroscopic elastic compliance in

the Reuss average (S;jri) 5 is obtained. Both of them are reduced to the sum of isotropic and

anisotropic parts. The macroscopic elastic stiffness in the Reuss average (Cj;x1), is calculated

by Eq.(3.13). Since the anisotropic part in (S;jx), is sufficiently smaller than the isotropic

part, (Cijr1), is also given by the sum of isotropic and anisotropic parts to the first order

approximation. Finally, the macroscopic elastic stiffness for a single-phase polycrystalline

cubic metal is represented in the unified expression as:

(C11)i = A + 2p; — 2a;64,

(Ca22)i = i + 2u; — 2a;0,,
(C3s)i = Ai + 2u; — 2a;63,

(Caadi = pi + @iy,
(Css)i = pi + ai0s,
(Cos)i = pi + a:ds,
(Ca3)i = Ai + aidy,
(C31)i = A + a;6s,
(Ch2)i = Ai + aids,

(3.18)

where the subscript 1 (= V, R, H) refers to the averaging procedure. A; and y; are the Lamé

constants for an isotropic elastic solid and a; is the anisotropy factor. They are defined by

Ay = Cn - 2C’44 - gdvs

4

1
py = Cu + ga%

ay = 011 - 012 - 2044,
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2(S12 + Sr/5)

Ap=— ,
R (S11 + 2512) (S4a + 4Sr/5)
_ 1
HR = Sis+4Sp/5’
1 R
Sp= 51— 512 - 5544, (3.19)
AR = _4H?%SRa
Av + Ar
)y
H 9 3
_ MKVt PR
==
o = ay + ap
H = 5

The ¢’s in Eq.(3.18) are

/T

6+/272 . 2V/10
b= S (g, - 2y

35 3 W44o)

6+/2n2 24/10 \/_
= — (w 2V0pr | V03

35 3

16272
85 = ——35—”—W4T00, (3.20)

16 27

0y = \/— ( a0 T \/PWZ;O) y
16+/27? 5

55 = - 35 (W‘£O - \EW‘;I;O) 3

b = 4\23- (Wg;)o VTOW, 440)

The d’s, which carry the anisotropy, are dependent on each other, since they are the linear

combinations of three independent ODCs:

01 + 0y + 03 = 04 + 5 + Jg,

26, = s + &6, (3.21)
252 = 54 + 567
2(53 = 64 + 65.

The values for );, y;, and a; depend on the averaging procedures. But the bulk modu-

lus, which is obtained from Eq.(3.18) taking account of the first expression of Eq.(3.21), is
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Table 3.1. The elastic constants of a single crystal and polycrystallite in copper [42]. The unit of

elastic constants is GPa.

Single crystal Polycrystallite

Cu  Cin Cy At 2 a; ai/ i
Voigt  209.9 54.64 -103.8 —1.900
168.4 1214 754 | Reuss 190.4  40.03 -93.9 -2.345
Hill 200.2 47.34 -98.8 —2.088

independent of them. It means that both suppositions of the Voigt and Reuss averages are
satisfied under the static hydraulic pressure. The value is common to three averages, that is
K=X+2u/3.

The macroscopic elastic constants of a textured polycrystalline aggregate are given by the
sum of the isotropic and the anisotropic parts. Furthermore, the latter one is the product
of the anisotropy factor a; and the ODCs WL , (m = 0,2,4). If the single crystal has no
elastic anisotropy, a; = 0. If the orientation distribution is perfectly random, WX = 0. In
these cases, the aggregate is macroscopically isotropic. The elastic constants of a single crystal
aﬁd Ai + 2p4, pi, a; of a polycrystallite are shown in Table 3.1 for copper [42]. The value of
a;/; in the Hill average for copper is lager than the other cubic metals; for example, iron has
—1.668, aluminum has —0.405, and tungsten has —0.0026. Therefore, even‘ a weak texture
may possibly cause a strong elastic anisotropy in copper polycrystallite. In a crystal with a
large value of a;/p;, furthermore, the values of A; + 2u;, pi, and a; differ each other depending

on the averaging procedure.

3.3 Elastic stiffnesses of reference samples

We adopt the Hill average for the macroscopic elastic stiffness in reference (uncrept) sam-
ple. The explicit form of CF? k= =CM e T ACE i 18 written as

2 2 10 70

12f

2+/10 70~ \
022 =Am 4+ 2ppm + —— (Wg(‘)o + —\g—_Wj’;o + \/—Wg;o) )

3
324/2
35

16\/_
044 HM — 35 (W4T00 \/7W4T20)a

25

C:gz )\M+2,UM+ ’n'ZCZWZ(;O,



161/2
051% Hym — 35 71'C‘(I/V4Too \/7 420)a (3:22)

w2,
Cés = im + ‘35—’" (WZ;)O VTOW. 440)

1642 5

Cg = )\M — 35 71'2a (WZE,O -+ J;WEO) R
162 5

CE =y — 3 ra (Wj}o - \EW;QO) ,

42 ,
Cfy = A + —z-%a (Wiho — VTOWZ,) ,

where the notations are recast as
Chu=(Cim)r,  M=Xu,  pm=py, a=agy  (3.23)

The numerical calculation requires the elastic stiffnesses of reference samples. We attempt

to obtain them from the measured velocities. The velocities are related to CF, Jw through

F’R(Vf‘l2 C'11’ PR(V2122 2= 021?3» PR(V;’»]:} 033’

(3.24)
pR(Vzlg = Oﬁa PR(VZ’,?V = 05}%, pR(V£ 2= Cgﬂ

where Vi, V.E, and V are the averages of measured velocities: (V& + VE)/2, (V& + ViB)/2,
and (V4] + Vif)/2.

The density was obtained as pp = 8.89 x 10 kg/m® from mass and volume measurements.
We adopted the bulk modulus Kj; = 137 GPa from Table 3.1, which is independent of the
averaging procedures. These values gave the shear modulus as py = 46.5 GPa through an

equation
pr{(VID)? + (Vi) + (Va3)* + 2(V33)? + 2(V)” + 2(V45)°} = 3K + 10pma. (3.25)

The equation is independent of the ODCs, and is based on the fact that pr{(Vi})? + (V)2 +
(VEYY, prd (VB + (VB + (VE)}, and pr{ (V)2 + (V) + (VE)?} are all equal to Ky +
10p57/3. We adopted the above equat}on to minimize the measuring errors in the velocities.
We obtained Aps = 106 GPa from Ay = Kjr — 2up/3.

"We have six velocities for three unknown ODCs. We define an error function as

> {on (vF)' 2}, (3.26)

=1
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where V® denotes the measured velocities in the reference samples, having six independent
values, and CF is the calculated stiffness corresponding to the velocity. Although the ODCs
Wi cannot be determined, the products of the anisotropy factor and the ODCs (aW[ ;)
can be determined so as to minimize E. Because CF is given by the linear combination of

the three unknowns aW[ ,, the function E is a quadratic surface in a four-dimensional space,
and has only one minimum. The minimum is found by the simultaneous equations of partial
derivatives OF / d(aWr ) = 0. Calculated results were
aWlk, =1.40 x 1072 GPa,
aWZk, = —6.96 x 1073 GPa, (3.27)
aWl, = —5.53 x 1072 GPa.
These values gave the velocities as listed in Table 3.2, for which- Ep, = 1.47 x 1072 (GPa)?,

The macroscopic stiffness CF . is written in a simple form as CF, = C}, + ACL,.

According to the calculation, they take the values of

CcM = cM = CM =199 GPa,
CM = CM = CYM = 46.5 GPa, (3.28)
CM =CM = CM =106 GPa,

and

ACE = —0.60 GPa,
ACTL, = —0.74 GPa,

ACE = 0.18 GPa,

ACT, = ACEL = —0.02 GPa,
ACE = ACE = —0.16 GPa,
ACE = ACEL, = 0.76 GPa.

(3.29)

The maximum ratio is ACE/C2 = 0.016. The deviation stiffness ACY;,; is much smaller

than the isotropic stiffness Cz-jk,. It supports the theoretical assumption (4), and allows us

Table 3.2. Agreement between measured and calculated velocities in reference samples. (unit:m/s)

ViR vy vl viE VR v
Measured | 4725.6 4722.5 4734.0 22847 22842 2305.5
Calculated | 4724.8 4723.1 47341 2286.1 2282.7 2305.2
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to express the macroscopic stiffness in damaged sample as Cfj;,; = ,—%, + AC};M + ACL{M.
The isotropic matrix is supposable in the calculation of the effective stiffness for the damaged

samples.

3.4 Effect of texture on normalized velocities

We now discuss the effect of texture on normalized velocities. The six independent veloc-

ities are given by

R M T
VR J cr _ \J9_+_AG_ (3.50)
PR PR
* M T \4
gy L \l G +AS@' A (3.31)
P* *

where 1 = 1,2,...6, and CM, ACT, and ACY are the stiffnesses corresponding to the ve-
locities. Considering that the magnitudes of two deviation stiffnesses are sufficiently small

compared with Cz%,, the normalized velocities reduce to

v 1 ¢¢
o (3.32)

within the first order approximation, where Cg,; = CM, 4+ AC[,,. This implies that the

texture effect ACTy, has been excluded in the normalized velocities.

Numerical examples are presented below. The normalized velocity Vy5/ViE at ¢ = 0.02
is calculated as 0.9803 using the fitting curve in Fig. 2.7. The void effect ACY is estimated
to be —2.75 GPa from Eqs.(3.28)-(3.31). Substituting the value into Eq.(3.32), we obtain
Vi / Vi = 0.9798. The difference of 0.0005 falls into the measuring errors. The difference for
Vi /VE at ¢ = 0.015 is found to be 0.0002.

3.5 Summary

For the simple procedure to deal with the anisotropic matrix of damaged composite, we
used the theory of polycrystalline aggregate. We gave the expression of the macroscopic
elastic stiffness in reference sample used in the experiment in chapter 2 as the Hill average for

the single-phase polycrystallite cubic metal having statistically the orthorhombic symmetry

(rolling texture). The expression was used for the numerical calculation to determine C%c,
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and ACT,;. The theoretical assumption (4) was supported by JACE,,/CM | « 1, indicating
that the expression of Cfy, = C’%, + ACT"JTH + ACY,, is acceptable for the approximated

% g i

effective stiffness in damaged samples. We also conclude that the texture effect is absent in

the normalized velocities. We will consider only the effective stiffness C’gk, = f‘ﬁc, + _AC’X-H

for the isotropic copper-matrix/voids composite in the modeling studies. The concept of
orientation distribution function, ODF, will be adopted to express the inclusion orientation
distribution in section 4.5.

The theory of quantitative texture analysis is summarized as follows. A probability density
of the crystallographic orientation is represented by the crystallite-ODF. The ODF is expanded
by the generalization of associated Legendre functions Z;,,.,,. The coefficients of the expansion,
WE | are called crystallite orientation distribution coefficients, crystallite-ODCs. We use
three simple averaging procedures, Voigt, Reuss, and Hill, to obfain the macroscopic elastic
moduli. The Voigt and Reuss averages provide the upper and lower bounds, respectively, for
the true values. The Hill average is given as the average of them. The macroscopic elastic
constants of a textured polycrystalline aggregate are given by the sum of the isotropic and
anisotropic parts. Furthermore, the latter is the product of the anisotropy factor, caused by
the anisotropy of single crystal, and the ODCs. Three independent ODCs, WZk,, Wi, and
WZL, play an important role in the macroscopic elastic moduli of polycrystallite cubic metals
with the rolling texture. Even a weak texture may possibly cause a strong elastic anisotropy
in copper polycrystallite. The values of A; +2u;, p;, and a; differ each other greatly depending

on the averaging procedure.
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Chapter 4

THEORETICAL CASE STUDIES ON VOID
EFFECT

4.1 Introduction

Theoretical case studies on the void effect are described in this chapter. Following the

simplification and the conclusion in chapter 3, the isotropic matrix is supposed. The effective
stiffness of the composite C5y, = CX, + ACY,, will be obtained for three cases. They will be
applied to the creep damage modeling studies in next chapter.

The present treatment draws much on the previous work, especially of Tandon and Weng [18].
They derived the effective elastic moduli for a composite with unidirectionally aligned spheroidal
inclusions. The derivation was carried out by the combination of Eshelby’s equivalent inclu-
sion [7] and Mori-Tanaka’s average stress [16]. ‘The result is appropriate for the full range,

from the dilute to the dense concentration.

We begin with the basic theory for the effective moduli. The effect of the inclusion shape
(aspect ratio) is represented by the Eshelby’s transformation tensor. Substituting the explicit
form of the tensor, the spherical inclusions (case A),. and the oblate or prolate inclusions with
unidirectional alignment (casev B) are considered. Partial orientation is considered in case C

as a modified version of the case B by using the orientation distribution function (ODF).

4.2 Basic theory

A composite model is shown in Fig. 4.1(a), where the spheroidal inclusions are embedded
in the infinite elastic matrix. We adopt the coordinate systems analogous to the previous
chapter. The composite-sample fixed axes are taken to be O — z;z523, and the inclusion fixed
axes O — X1 X, X3. The domain of an ellipsoidal inclusion is bounded by

Xz X2 X2

21, 2, P38 4.1
a? + a3 + a? 1, (4.1)
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Inclusion

(Ciiw)

@ L ®

Fig. 4.1. A composite model and a comparison material.

where ay,a2, and a3 are the principal radii of the ellipsoid along the X;,X,, and X3 axes,
respectively. The inclusions are spheroid, that is a; = a,. We first consider the case that the
principal axis of inclusions a3 is unidirectionally aligned along the z3 direction and the two
coordinate systems coincide each other.

It is assumed that the matrix and the inclusion materials are both linearly elastic, isotropic,
and homogeneous. We further assume that the inclusions are randomly positioned in the
matrix. Thus the composite is regarded to be macroscopically homogeneous. The elastic
stiffness tensor of the matrix is denoted by C}ﬁ,, and that of inclusions is given by C’fjk,. We
now preséribe a surface traction on the boundary of the composite to give a uniform stress &;;.
We introduce an identically shaped matrix, as shown in Fig. 4.1(b), as a comparison material,
being subjected to the same boundary stress. If we denote the still unknown effective stiffness

tensor of the composite by Cgk,, the strain of the composite &;; and of the comparison material

ef-‘;f will be related to the applied stress ;; by

0ij = Skﬁkz, (4.2)
gij = i]\j/fkle%a (4'3)

where the summation convention for a repeated index from 1 to 3 is implied.

In general, the strain in the matrix is not equal to €/, and it is a function of the position.
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A certain perturbed strain &g from 5% averaged over the matrix is introduced due to the
presence of inclusions. Note that & # € + &5, £u is the strain averaged over the composite,
and e} 4 &, is the strain averaged over the matrix. This perturbed strain corresponds to an

average perturbed stress, denoted by &;;, in the matrix; through the elastic moduli C’fﬁl,

&ij = CMié. (4.4)

Thus, under a given &;;, the average stress in the matrix is now given by 7;; + &;; and its

average strain is 61]-‘]-4 + £;;. These quantities are related to each other by
0i; + 5‘,']' = 1{%{:1 (6% + gkl) . (45)

This concept was originally introduced by Mori and Tanaka [16].

We denote by o*ﬁ’; the average perturbed stress component in the inclusions from the average

stress G;; 4 0;; in the matrix, and the corresponding perturbed strain by ef-’; . Thus the average
perturbed stress &;; has a common value in the matrix and the inclusions. The stress-strain

relation in the inclusions is then
oi; + 5‘2'_7' + O'Z-t = ijkz (62/{ + €+ 6%) . (46)

According to Eshelby [7] this relation is rewritten using the elastic stiffness in the matrix and

"equivalent transformation strain” €}; as
= ~ pt _ M M ~ ot *
0ij + Gij + 035 = Ciju (5kl +éutey — ekl) 3 (4.7)
with the transformation of
pt *
€x = StmnEmn) (4.8)

where S;;11 is Eshelby’s transformation tensor; its components depend on the aspect ratio of
the inclusions and the elastic moduli of the matrix. The tensor S;;.; satisfies the symmetry

relations of
Siikt = Sjikt = Sijie-
The explicit forms of S;;; will be given later. From Egs.(4.5) and (4.7),
Uf; = C% (Sﬁ - 521) (4.9)
is obtained.
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The volume of the matrix is denoted by v, and that of the inclusions is denoted by vy;
then that of the composite is given by v = vps + v;. Since the average of stresses over the

composite should be ;;, one has

1 . _ ~
Gi; = - {_/,,M (65 + &i;) dv +/W (a,-,- + 0i; + a{f) dv} .

~ t . . . , .
Note that &;; and o}, are the average values over the composite and inclusions, respectively.

They are independent of the position. The equation, therefore, reduces to
5','1' + CO‘f’Jt = 0, : ’ (410)

where ¢ = vy /v is the volume fraction of the inclusions. Substituting Eqgs.(4.4) and (4.9) into

Eq.(4.10), we obtain the average perturbed strain in the matrix
g =—c(efl —ep), (4.11)

for arbitrary C’%c,. On the other hand, the strain of the composite &; in Eq.(4.2) is given by

the volume average of strains over its matrix and inclusions:
Er =X + & + ceby. (4.12)
Substituting Eq.(4.11) into the above equation, it simply reduces to
&t = M + e}y (4.13)
From Eqgs.(4.6), (4.7), (4.8), and (4.11), we obtain

(Gl — C¥u) {b + (1 = 0)Stumnenn + cely} + Cluet = 0, (4.14)

to calculate the equivalent transformation strain &}, in terms of e¥.
Conclusively, the effective elastic moduli of the composite C’Sk, is calculated from Eqgs.

(4.2), (4.3), (4.13), and (4.14).

4.3 Case A —Spherical inclusions—

When the inclusions are spherical (¢; = a3 = a3), the effective elastic moduli of the

composite are also isotropic, thus the moduli have two independent components. Eshelby’s
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tensor S;;x; is written as follows;

7 — by
S froeed = S = —_—
1111 = S2220 3333 15(1 = vm)’
Stz = Soasa = Sagty = Siss = Spaty = Sapz = — M =1 (4.15)
1122 = 92233 = O3311 = O1133 = O2211 = S33p2 = 5L = va1)’ .
4 — 51/M
S =9 = 5. = —
1212 2323 3131 51— vm)’
where vy is Poisson’s ratio of matrix.
The elastic stiffness of the matrix and inclusions can be written as
2
C = Km0 + pu (5ik5jl + Sadjx — '3'5ij5k1) , (4:16)
2
Cii = K186 + pi1 (5ik5j1 + il — §5ij5kl) , (4.17)

where Kps and ppr, K7 and uy are the bulk modulus and shear modulus of the matrix and
inclusions, respectively, and d;; is the Kronecker delta, having the property §;; = 1 wheni = j
and 6;; = 0 when ¢ # j. Taking account of the symmetry property of Eshelby’s transformation
tensor Eq.(4.15), Eq.(4.14) is simply reduced to

. e

Epkp = — Kt ) (4.18)

%Ko +c+ (1 —¢) (St + 25112)
M
e = 12 , (4.19)
Em

————+ ¢+ 2(1 - ¢)S1212
Kr— UM

4.3.1 Bulk modulus

We consider the state of static hydraulic pressure



where K¢ is the effective bulk modulus of the composite. They can be combined as

Ko e

Km  &wm
Substituting Eq.(4.18) into Eq.(4.13), & is represented in terms of e4:

K
E}——-LK]\; + (1 — ¢)(S1111 + 251122)

Ekk = Kor €k
m— + ¢+ (1 — ¢)(S1111 + 251122)

Using S1111 + 251122 = 3Km /(3K + 4um), we obtain the effective bulk modulus K¢ as

K C C

_- _ 4.2
Ku T Rw - oK (4:20)
In the case of dilute suspension ¢ « 1, it reduces to
I(C c
= 4.21
Ko 1T TRn . 3Ku (421)

Ki— Ky 3Kp +4pm

Equation (4.21) coincides with Dewey’s result [6] derived by a classical theory of elasticity.
It represents the proportional change in the effective bulk modulus K¢ with the inclusion

volume fraction c.

4.3.2 Shear modulus
We apply a pure shear stress
012 = 091 # 0, 031 = T13 = O3 = 032 = 0.
The strain components of the comparison material in Eq.(4.3) are
=0

M _ M M _ M__ _M_ _
€13 = €5 # 0, €31 = €13 = €3 = €33 = L.

Equations (4.2) and (4.3) are combined as

M
Ko _ 12
- b
123,73 €12
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where pc is the effective shear modulus of the composite. Substituting Eq.(4.19) into Eq.(4.13),

12 18 represented in terms of a{‘g:

- +2(1 —¢)S1z2 -
&10 = ‘I — UM €
12 ,U,M 12
—— + ¢+ 2(1 — ¢)S1212
K1 — UM

Using Eq.(4.15)3, we obtain the effective shear modulus p¢ as

bo _ 15(1 — vam)(p1 — pm)c
e T 15up(1 — vag) 4+ 2(4 = 5oar)(pr — par) (1 =€) (4.22)

In the case of dilute suspension ¢ « 1, it reduces to

15(1 -VM)( - i‘-f—) c

yg:l__ ‘M

Hm T — Buas + 2(4 — Suar) £
2374

(4.23)

Equation (4.23) coincides again with Dewey’s result [6].

4.3.3 Numerical results and discussions

- A numerical calculation for the effective bulk and shear modulus for spherical-void/copper

composite is shown in Fig. 4.2, where six models are compared with each other. The calculation

1.0 T '. L T B ™ 1.0~- LANLENY AL ANALNL N R AR I I BRISRL
, Rule of mixtures ] : * Rule of mixtures .
0.8} - 0.8} -
3 Weng, Eq.(4.20) E - Weng, Eq.(4.22) 4
i Ledbetter — Datta 1 - Ledbetter — Datta
i Christensen ~ Lo i . y
x 0.6} , § s 0.6F ]
M i Sayers - Smith R i \ Christensen - Lo |
&) - J &) | J
X 04f 4 204 .
0.2f y 0.2 | .
. . - R " b
- Dewsy ~} Sayers-Smith -\\ Dewey
- Eq.(4.21) : . Eq(4.23)
0 (U S I WA, W S N YN NN T S N 0 PR ST TR N T W Ll - PR VRl T R
0 02 04 0.6 0.8 1.0 0 0.2 04 06 08 1.0
Porocity ¢ _ 4 Porocity ¢

Fig. 4.2. Effective moduli of spherical-void /copper composite.
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supposes Ky = 137 GPa and ppr = 46.5 GPa, which are the values in the reference samples
calculated in section 3.3. The elastic constants of voids are, of course, K; = ur = 0. The
horizontal axis porosity c is the void volume fraction. The rule of mixtures is the arithmetic
average of elastic constants of its constituents weighting by the volume fraction. Weng’s
results [17] are given by Eqgs.(4.20) and (4.22). Dewey’s results [6] are from Eqs.(4.21) and
(4.23) for a dilute suspension. The results of Christensen-Lo [11] are obtained by the three
phase model as an approximation for a non-dilute suspension. The results of Sayers-Smith [43]
and Ledbetter-Datta [44] are both obtained by the scattering theory of elastic waves. The
limitation of the models by Dewey and Sayers-Smith is ¢ < 1. The model by Christensen-Lo
has a less strict limitation. The models by Weng and Ledbtter-Datta cover the whole range
of 0 < ¢ <1, but there remains the discussion for ¢ & 1 because of the contact or coalescence
of the inclusions.

As shown in the figure, the rule of mixtures is far away from the others. The models
by Weng and Ledbetter-Datta coincide numerically with each other over whole range. The
other models, due to Dewey, Sayers-Smith, and Christensen-Lo are asymptotical to Weng
and Ledbetter-Datta as ¢ decreases. Moreover, the effective bulk modulus by Christensen-Lo
coincides with Weng and Ledbetter-Datta over the whole range. It can be estimated from
this calculation that the use of Dewey and Sayers-Smith is limited to ¢ < 0.05 and that of
Christensen-Lo to ¢ < 0.15.

4.4 Case B —Unidirectionally aligned spheroidal inclusions—

When the inclusions are spheroid, Eshelby’s tensor S;;;; is written as follows;

3 o? 1 9
St = Sagee = T3t l— o + 2= o) {1 -2y + m} 9
Soaas : _2_(—1—;11/_1\4) (4_ 2vm = 1 —2a2) + 2(1 —1VM) (—4+ 2w+ —1———3—03) 9
S = S = 8—(T—17M—) <1 "1 —1a2) T - var) {—4(1 —B) ¥ —3a2}g’
S1133 = S9933 = 20 j o) 1 _Cj:z T jVM) (1 —2upr + %1—2) g,, (4.24)
Ssont = Sapmz = ﬁ—l_ﬂ{) {~0~2m) + =} + i EVM) {200 - 2m1) - -1——_-?—;2-}9,
Sz = —gq —1VM) 1 i12012 + 1601 1— at) {4(1 ~ ) + i—-'g'&'f} &
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1 1+ a? 1 14 a?
— [1-2 — 1— T
4(1—VM>( ”M+1—a2) 8(1—VM){ 2”M+3(1—a2)}9’

where o is the aspect ratio of the spheroid and

51313 = 52323 =

a (cos'l a—aV/l-— a2) /(11— a2)3/2 Oblate: o = azfa; < 1
g =
a (a\/ a? —1—cosh™! a) / (e — 1)3/2 Prolate: a = az/a; >1

The elastic stiffness of the matrix and inclusions are written as

Ciik = Am0ii8u + unr (St + 8adin) (4.25)
Ciim = M+ pr (Sadjn + 6adin) , (4.26)

where Ay = Ky — 2upn/3 and par, Ar = K1 — 2p1/3 and py are the Lamé constants of the
matrix and inclusions, respectively. The symmetry axes of spheroids are all aligned along the
sample coordinate x3. The composite is then macroscopically transverse isotropic in the ziz;
plane, and the effective moduli have five independent components.

To find the €}; components, we first set ij = 11, 22, and 33 in Eq.(4.14). Taking account

of the symmetry property of Eshelby’s transformation tensor in Eq.(4.24), we have
DieM 4+ &M 4+ eM 4 Biel, + Byel, + Bacis = 0, (4.27)
e}l + Diedy + e + Baely + Biehy + Baels = 0, (4.28)
eM 4 eM 4 DieM 4+ By(eh, +€5,) + Bsela = 0, (4.29)
where
By = ¢Di + Dy + (1 = ¢) (D1S1n + Suizz + Saann)
By = ¢+ D3+ (1~ ¢) (Su11 + D1S1122 + Saan1)
By =c+ D3+ (1 —¢){(1 + Dy) Si133 + Szsss}, ' (4.30)
By=c+ D3+ (1 — ¢) (Sun + Suzz + D1Ssa1)
Bs = ¢Dy + D2 + (1 — ¢) (281133 + D1.S3333)
and

D1:1+2M

Ar—Au’
A + 2pm
M M 4.31
D2 /\I IR /\M y ( )
AMm
D; = Y
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Solving Eqs.(4.27)-(4.29) simultaneously, we obtain
e = -2714: {(As = AsAy) &M+ (Az + AsAy) el + 24,2},
£hy = 5%{ {(A2+ AsAr) ¥l + (42 — AsAy)elf + 2Ased] ),
cto = o {As (e + o) + Accll},

where

Al = 2BgB4 - BS (Bl + BZ) 9
Az - (]. + Dl) BS - 2B3,

_1-D,
- B,-B’

Ay = Bs — D1 B,
A5 = BI+B2—(1+D1)B4,
A6 = D1 (Bl + Bz) - 2B4

As

Similarly, setting 15 = 23, 31, and 12 in Eq.(4.14), one finds

. e
€3 = — Y ’
————— 4+ ¢+ 2(1 — ¢)Saa23
I — P
. el
€31 = — Y ’
— 4 ¢+ 2(1 — ¢)Sa1:
M — UM
. el
€12 = — Y .
—————+c+2(1 —¢)Sin2
HI — kM

(4.32)
(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)

Although we will derive eight effective constants, they are connected with each other and only

five effective constants are independent.

4.4.1 Young’s moduli

Apply the unidirectional stress in the z3 direction,

5‘33 # 0, 6'11 = 5'22 = O
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The strain components in the comparison material, from Eq.(4.3), are

5% = 533/EM, €1l = €99 — —VMS%a (4-39)

where Ejps and. vy are Young’s modulus and Poisson’s ratio of matrix, respectively. Then,
Egs.(4.2) and (4.3) are written as

_ C = — M
033 = Fg4€as, o33 = Fuess,

where ES, is effective Young’s modulus along the z3 direction. They are combined as

By _ e (4.40)
By E33
Substituting Eq.(4.39)2 into Eq.(4.34), we obtain
1
623 = Zl— (-—2VMA5 + Ae) Sgg. (441)
Substituting this equation into Eq.(4.13), one finds
6_33 = {1 +c (—21/MA5 + Ae) /Al} 6%. (442)
Finally, from Eqs.(4.40) and (4.42), we obtain
B _ | (4.43)

EM - 1 +c (—2I/MA5 + Ae) /Al

By the similar procedure, we obtain effective Young’s modulus EY, along the z; direction,
which is exactly the same as ES, as
ES ]

= . 4.44
EM 1 + C{(l - I/M)A2 - (]. -+ I/M)A3A1 - 21/MA4} /2A1 ( )

4.4.2 Shear moduli

We apply the pure shear stress
023 = 032 # 0, 031 = 013 = 013 = 021 = 0.
Then, Eqs.(4.2) and (4.3) are written as
Gys = 2ugafas, D2z = 2pinMEDs,
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where pS; is the effective shear modulus in the z;z3 plane with p$, = uS;. Using Egs.(4.36)
and (4.13), we obtain

C
Bas _ g 4 c . (4.45)
pum L - + 2(1 — ¢)Sa323 '
B — pM

By the similar procedure, we obtain the effective shear modulus u%, as

c

M _HM +2(1 — ¢)S1212
HI— kM

4.4.3 Poisson’s ratios

Effective Poisson’s ratio /5 is defined by

c __ &n
Vg = ——»
€33

where the first index refers to the coordinate of imposed stress or strain and the second index

refers to the response direction. We apply the unidirectional stress along the x5 axis and then

the strain components in the comparison material are

eM =Ml = —upeld.
Equations (4.32) and (4.34) reduce, respectively, to
* 1 ) M
511 = _A: (—VMA2 + A4) 633,

1
€33 = i (—2up As + Ag) €2

Using Eq.(4.13), we fined

v (—2up As + Ag) + (—var Az + Ay)

4.47
Al +c (—QVMA5 + A6) ( ' )

C

Similarly, applying the unidirectional stress along the z; direction, we obtain Poisson’s ratios

as
o (1= vd,) (A2 + AsAL) — 2var (1 + var) Aa
— s — 448
M2 T M g e {(As — AsAy) — vag (g + AsA; + 2A0)) (448)
VE = oy 245 + var {(As = Ashi = 245 — 246) = vag (Ao + Ashs +244)} (4.49)

2A1 + c{(Az — A3A;) — vn (A2 + AsA; + 244)}
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4.4.4 Plane-strain bulk modulus

- We consider the plane strain state in the z,z, plane for the composite as

= C = = __ o M M

where KS is the effective plane-strain bulk modulus in the z;z, plane and Ky = Ay + 5% is

the plane strain bulk modulus of the matrix. Since &33 = (—21/35716"4— 33)/ ES = 0, we find
5’33 - 2V36;5' .

Using this equation, the strain components of the comparison material are

M M %{1_,% (1+28)}3,

2 _
6% E (Vg - VM) o.
From Eqs.(4.32) and (4.13), we obtain

Kf _ (1 +vm)(1 - 2vy)
Ky  1—vp(L+20§) + c[{1 —vm(l +208)} A2 + 2(05, — var)Ad] JAL

(4.50)

Finally, substituting Eq.(4.47) into Eq.(4.50), the explicit form of K, is obtained.

4.4.5 Numerical results and discussions

Figure 4.3 shows a comparison of two models for the effective moduli of a spheroidal-
void/copper composite as a function of porosity c. A constant aspect ratio o = 0.5 is supposed.
The material properties used in the computation are the same as Fig. 4.2: Kjp; = 137 GPa,
pa = 46.5 GPa, K1 = py = 0. The results by Tandon-Weng [18] are based on Egs.(4.43)-
(4.46) and Eq.(4.50). The curves by Russel-Acrivos [8] are calculated based on their solutions
assuming a dilute suspension. Tandon-Weng’s curves pass through 1 at c=0and 0 at ¢ =1,

while Russel-Acrivos’s curves give linear dependence on ¢. They become closer to each other

for a dilute suspension.
Figure 4.4 shows the variation of the effective moduli as a function of aspect ratio c.. The

material properties used in the computation are the same as Fig. 4.3. E, is most sensitive to
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Fig. 4.3. Comparison of effective moduli for a spheroidal-void/copper composite by Tandon-Wng [18]

and Russel-Acrivos [8]. Aspect ratio is @ = 0.5. The composite is transversely isotropic in the z1z;

plane.
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Fig. 4.4. Dependence of aspect ratio on effective moduli of spheroidal-void/copper composite. The

composite is transversely isotropic in the z;z2 plane,

45



the variation of a. ES increases with increasing aspect ratio, while EY; and pf, decrease with
it. u% has a maximum value around o = 2. K& has also a maximum value for smaller ¢, but
it shows a monotonous decrease for lager c¢. These five effective moduli reach the convergence
at @ = 100 with increasing a. On the other hand, ES, u$,, and K, reach the convergence at

a = 0.01 with decreasing o. ES; and uS; converge to zero with decreasing a.

4.4.6 Relation between stiffness and engineering constants

In the end of this section, the engineering constants of a transverse isotropic composite
described above are related to the effective elastic stiffness. The relations will be useful for a
partially oriented composite in the next section and for creep damage modeling in the next

chapter.

Stress-strain relation in a transverse isotropic composite is written as

(cq ¢% ¢S o o 0 )
(Z”\ cg ¢% 0 0 0 /Z”\
a:z Cs 000 0 SZZ
723 N ‘ 046:1 0 0 Y23 (451
T31 sym. cs, 0 Y31
7'12/ _;_ (Cﬁ _ 0,102) ) \712}

\

Consider a unidirectional stress state in the zs direction. From Eq.(4.51), ES; and 1§, are

obtained as

. 9 CC 2
BS = 0% - gp i (452)
C
c C C’13 (453)

U3y = V3 = C n 012

Next, we consider a plane strain state in the z;z, plane. From Eq.(4.51), we obtain

KG=-(Ch+C5). - (4.54)

DN =

From Eq.(4.51), shearing moduli are apparently

pss = pS; = Coy, (4.55)

piy = (Cn 0102) (4.56)
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The inverse relations of Eqs.(4.52)-(4.56) are as follows;

Ci = K1 + p,
Cr = K, — 1
Ch = 2K5vs, (4.57)
C$, = B+ 4K5(5)%,
Ch = 13-
The transverse isotropic materials have five independent engineering elastic constants. The

other engineering constants are related to them. Considering a unidirectional stress state in

the z; direction, ES, v5, and v5; are obtained as

c5{(Ccq)? - c5es} + (€% (¢G - Cf)
011033 (013)2 ’

15, = 0808~ (C8)
12 0101033 - ( 13)2’

Ej=Ch+

(4.58)

(4.59)

¢ (nc c
VO = Cis (011 - 012) . . : (4.60)
ChCH — (CR)Y

From the symmetry property, they are evidently,

c _.C c _ . C
Vig = Va3, Viz = Va3 (4-61)

V% is not equal to 1§, and the relation

C C
Nis _ Ya1 (4.62)
Ef  E§

holds. Substituting Eq.(4.57) into Eqgs.(4.58) - (4.60), we obtain

4K us.
EC _ 12M12 (4.63)
1 KG 4 pb +4KGuS (V8)?  BS,
o _ kG- #12 4K D15 (v))/ E303 (4.64)
P KG + pG + 4K GG (5 ES
4K uC g
¢ 12M12V31
- _ (4.65)
B EG(KG 4+ uG) +4K5u5(05)?
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4.5 Case C —Partially oriented spheroidal inclusions—

We consider a particle dispersed composite that has partially oriented spheroidal inclusions.
The probability density for the orientation of spheroid is given by the orientation distribution
function, ODF, described in chapter 3. Originally, the ODF was used to study the textured
polycrystalline aggregate. It was also found useful to study the composites, such as rocks
containing microcracks [45] and short-fiber composite [46, 47]. Their successes encourage us
to apply the ODF to creep void modeling. The Voigt average was used in these previous
studies, but we will adopt the Hill average to calculate the effective moduli for better result.

We suppose that the orientation distribution of spheroid is statistically of the orthorhombic
symmetry. The coordinate system O — X;X;X3 shown in Fig.3.1 represents the inclusion-
fixed axes in this case, where the X5 axis is taken along the symmetry axis of a spheroidal
inclusion. We denote the inclusion-ODCs of the inclusion-ODF by Wi . Since the shape of
inclusions is axial symmetric around the X3 axis, the ODF w(f ,¥, @) must be independent of
¢. Therefore we take n = 0 in Eq.(3.4). Considering the symmetry properties of the inclusions
and that of the sample with the orthorhombic symmetry, the ODCs WL, have the following
characteristics:

(a) W',{no are real values,

(b) WL , are zero unless [ and m are even,

(©) Witmo = Wino-
Therefore, the ODF contains five independent ODCs, WL, Wy, Wi, Wi, and W1, up
to [ = 4. It is written explicitly as

w(é, ¥, $) = Zﬁwioo (3¢ 1)+ ‘/21_5Wf (~€ +1) cos 29
Wi, (35¢* — 30¢7 + 3) (4.66)

8f
y fW"I”( 7€+ 8¢% — 1) cos 2

3v/35
+ —‘Q;WAO (€* — 262 +1) cos 49,
where ¢ = cosf. The ODCs W[ _, (m = 0,2) determine the two-fold distribution intensity
characterized by the second order functions of £. W} ., (m = 0,2,4) correspond to the four-
fold distribution characterized by the fourth order functions of {. The truncated higher order

ODCs, corresponding to the higher order functions of £, have no effect on the effective moduli.

We recast the effective elastic stiffness tensor for perfectly aligned spheroidal inclusions
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obtained in previous section as Cfj;. The stiffness tensor C%;; has five independent com-
ponents. They are Cf} = Cf;, C4, Cft = Ci, Ct = C4 = C4 = CA, Cf, = C4, and
C4 = (Cﬁ - C’ﬁ) /2 in the Voigt (two-index) notation; all others are zero. They are given as
functions of ¢, o, and the elastic constants of the matrix and the inclusions. We further denote
the corresponding effective compliance tensor by S# fr- It has the same symmetry property
with Cf;, except for S = 2 (S’ﬁ 5{12). Similar to Egs.(3.15) and (3.16), the effective elas-

tic moduli of the composite having the partially oriented spheroidal inclusions are obtained

by

G = [ [ [ BuibuibpsBaCiimpgl, b, 8)dcbds, (4.67)
SGida= [ [ [ BribioauS gt &, 0, $) b (4.68)

Substituting Eq.(4.66) into Eq.(4.67), the effective elastic stiffness in the Voigt average (C Criby
is obtained. Similarly, from Eq.(4.68), the effective elastic compliance in the Reuss average

(S4)n is obtained. Both of them again reduce'to the sum of the isotropic and anisotropic
parts. The effective elastic stiffness in the Reuss average (C O} s is calculated by Eq.(3.13).

Since the anisotropic part in ( ijk,) » 1s much smaller relative to the isotropic part, (Cgk,) "

is also written as the sum of isotropic and anisotropic parts. Finally, we adopt the Hill aver-
age. The effective elastic stiffness for a particle dispersed composite with partial orientation

distribution is represented as follows:

8
CH = Ao +2uc + \/—ﬂ'ag( Who — VW)

105

4f 210 V70 '
mlay W4100 -~ “”“W4I4o y

35 3

810 ,

105

4
+ —\/——7r2a1 (me +

Wi +

mag ( Wio + \/EW2120)

2T, VIO
3 W4I20 + W‘II‘IO)

C$ = Ao +2uc +

164/10 ,

105

32v2 ,

;Wi + g2

C%ZAc-}-Q,uC—

24/10
315

a1W400,

Ca=up * (Taz + 2a3) (WzIoo - \/6W2120)
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_16v2 ,
105 7T ay (W‘lIOO \/>W420) ’

CS =p 2;{15_0# (7as + 2as) (Wi + V6Wi)

1?82—71' a ( Lo — \[ Wm) , (4.69)
CS% = 4;{5_ ?(Tag + 2a3) Wayg + 1‘0/3 nay (Who — VIOWy) ,
CS =X+ 4;){15_07r2 (Taz — a3) (W2IOO — \/§W2I20)

_ 1faé—7r a (W‘{U0 + \/%szo) :

c 4;{;—0772 (Tag — a3) (Wzloo + \/EWZ,IZO)

lfag—nzal ( 400 \/— W420) ,
CS =X — 8;{5_ 2 (Tay — ag) Wiy + 41\0/5—71' ay (Who = VIOW,,) ,

where A¢ and p¢ are the Lamé constants for an isotropic composite and a; (§ = 1,2, 3) is the

anisotropy factor. They are defined by

Av + A
Ao = Ay = VAR
2
+
pio = pg = “—V—z—“f
a1v + a1p
G =0 ="
2
azv + 2R
ay =g = —5—,
| 2
azv + asp
a3 = a3g = ———=
2
Ay (C +Ch +5CH + 804 —4C4)
1
w =55 (TCA + 204 — 5C4 — 404 +1204) ,

ajy = Cf + C4 — 2C4 —4C4,,
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agy = Cf — 3CH + 204 — 2C4,
azy = 4CH — 304 — C4 —2C4,

Sha
— , 4.70
R (Sr1 — Spr2)(Sr1 + 25r2) (470)
_ 1

HR = 2(Sm — Sra)’
aiR = ‘“4/‘?2533’

Sr1S
asr = 2ARpR { IER 4z (25R4 + SRS)}

Sr1S 1
a3Rp = 2AR/J:R{ }‘?R;%S + §(7SR4 - SR5)} )

1
Sm = 1 —(85‘;‘1 + 3545+ 454 +254,),

Sra (311 + 545+ 557, + 854 — 544 ,
Spa = Sﬁ 484 _ 954 _ A

1
Spe = SH — 354 + 254 — 55;31,

1
Sps =4S4 — 354 — 54 — -2-554.

Note that in the case of an axial symmetric distribution of inclusions along z3, Wi, = Wk, =
W], = 0 and the effective elastic stiffness are determined by only two expansion coefficients
Wi, and W/,. In this case the composite is transversely isotropic in the z;z, plane. In the
case of a random orientation, five ODCs are all zeros, and the composite is isotropic.

A numerical example is given in Fig. 4.5 to compare the averaging procedures with each
other. The material properties used in this calculation are the same with Figs. 4.2 - 4.4; a
void/copper composite. A constant aspect ratio a = 0.1 is supposed. The figure shows the
large relative differences depending on the averaging procedures especially in ay; (: = V, R, H).
But the differences for the dilute suspension are negligible except for a;;. The values of a;;
and ay; have one order smaller values than as;;. The degree of the differences in these five
parameters depends on the degree of the anisotropy in C# k- The anisotropy In cs ikl was
shown implicitly in Figs. 4.3 - 4.4. Despite such a large difference in a,; only the Voigt average
had been used to apply the ODF to the partial oriented composites in the existing work [45]
- [47].
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4.6 Summary

The effective elastic moduli of a particle dispersed composite were derived for three cases.

They will be applied to establish the creep void modeling in chapter 5. The experimental

result of the porosity shows ¢ < 0.02. It seems that the calculation of effective elastic moduli

for a dilute suspension is sufficient for creep void modeling. However, we adopted a full range

theory to make a model (model 5) having a positional distribution of voids. In the model,

the spherical voids are restricted to within the volume elements dispersed in the matrix. The

overall porosity is ¢ < 0.02, but the void volume fraction in the elements can have a large

value.

It is assumed that the matrix and the inclusion materials are both linearly elastic, isotropic,

and homogeneous. The inclusions are assumed to be randomly positioned in the matrix. Three

cases are summarized as follows:

Case A.

Case B.

Case C.

The spherical inclusions are assumed. The composite is isotropic. The effective
stiffness of the composite C’gk, depends only on the volume fraction ¢, provided

the elastic constants of the constituents are given.

The shape of inclusions is assumed to be spheroidal. The symmetry axes are

unidirectionally aligned along the z3 direction. The shape of inclusions is given by
the aspect ratio . The effective stiffness Cgk, is transversely isotropic in the z,z,

plane. It is obtained as functions of ¢ and a.

We applied the ODF to a composite with partially oriented spheroidal inclusions.
The statistical distribution of the orientation is assumed to be orthorhombic. The
effective stiffness is modified from that of the case B (recasting as C’{}k,) using the
inclusion-ODF as a weighting function. We use the Hill average to obtain the
better results. CJ;; again reduces to the sum of isotropic and anisotropic parts.

The isotropic constants Ag and pe, and the anisotropy factors a; (5 = 1,2,3)

- depend on ¢ and a. The anisotropic parts are given by the products of a; and the

five independent inclusion-ODCs, Wi, Wi, Wik,, Wi, and W[,,. For the axis-

symmetrical distribution, C’gk, is obtained by setting Wi, = Wi, = Wi, = 0.

Substituting zero to the five ODCs, the expression of Cf; reduces to that of

random orientation.
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Chapter 5

CREEP VOIDS MODELING AND NUMERICAL
CALCULATIONS

5.1 Introduction

In this chapter, we intend to establish a creep voids model that explains the ultrasonic ve-
locity change described in chapter 2. According to the conclusion in chapter 3, the normalized

velocities exclude the texture effect:

|14 1 ¢
E = =7 (5.1)
1/2' 1—e Ci
where Cgk, = %c, + AC’,-‘;H is the effective stiffness of the composite made up with isotropic

copper matrix and voids. The values of the stiffness in the matrix C’fﬁ, have already been

obtained in Eq.(3.28). The elastic constants of voids are K7 = puy = 0. The void effect AC’};M
depends on the void factors; the volume fraction (the porosity), the shape (the aspect ratio),
the positional distribution, and the orientation distribution of non-spherical voids. Porosity
is obtained by the measured density, but the remaining three factors have to be determined
to establish the models. Five candidate models are considered. Among them, we seek the
most acceptable model, which best explains the quantitative relation between the measured

velocities and the porosity, and represents well the damaging process.

5.2 Model 1 —Spherical voids model-

Spherical voids randomly positioned in the copper matrix are assumed. The model co-
incides with case A in the previous chapter. The effective stiffness CF;; is macroscopically
isotropic. It is obtained by Eq.(4.20) and Eq.(4.22) as a function of the porosity c¢. Com-
parison of the measured normalized velocities with the calculations is shown in Fig. 5.1. The

broken lines represent the calculations. When the porosity is sufficiently small, this is a good

approximation to the measured velocities, indicating that the spherical voids nucleate at ran-
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Fig. 5.1. Comparison of the measured normalized velocities with the calculations by the spherical

voids model (model 1) for longitudinal waves (a) and shear waves (b).

dom locations. However, the measured velocities decrease more acceleratingly with increasing
¢ than the calculation. Together with the isotropy, this model should be rejected except for

c~ 0.

5.3 Model 2 —Unidirectionally aligned oblate voids model—

We consider the unidirectional alignment of minor axis of the oblate voids (aspect ratio

a < 1) with random positions. In this composite, four independent velocities are V; = V35,

Vs, Vos = Vi = V3 = Vi%, and V3 = V;;. The model can potentially explain the velocity
c

anisotropy. The effective stiffness Ci is obtained from case B in section 4.4. It has two

parameters, ¢ and a.
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Fig. 5.2. Slope S(e) in normalized velocities as a function of aspect ratio o by the supposition of

unidirectionally aligned oblate voids (model 2).

Measured porosity ¢ is smaller than 0.02. For such a dilute suspension, the normalized
velocities are approximated to | |
% =14 S(a)c, (5.2)
where S(a) is the slope of straight line as a function of a. In the case of spherical voids
(a = 1), the above equation (5.2) coincides with the result from Eq.(4.20) and Eq.(4.22), and
is shown in Fig. 5.1. Figure 5.2 shows S(«) based on the present model. The figure shows
Vi < Vi < Vi3 < Vi, for the possible range of a, which is compatible with the measured
velocities (see Fig. 5.1). Supposing that the aspect ratio o decreases with increasing porosity
¢, the accelerated decrease of measured velocities V35 and V5 can be understood from the
figure. According to the lines for V;% and V}}, the slope of the velocities should increase with
decreasing a. However, the measured velocities showed the opposite tendency.
The unidirectional alignment explains the experimental features (3), (4) and (5) sum-
marized in chapter 2, which are qualitative features of the velocity anisotropy. However, it

explains only partly the feature (2) and is not acceptable.

5.4 Model 3 —Randomly oriented obiate voids model—

We next consider the random orientation of the oblate voids with random positions. The

effective stiffness of the composite is then isotropic, and is given by Eq.(4.69), in which the
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Fig. 5.3. Slope S(a) in normalized velocities as a function of aspect ratio @ by the supposition of

randomly oriented oblate voids (model 3).

all ODCs are set to zero. As in the unidirectional alignment, the normalized velocities are
approximated to the form of Eq.(5.2) for dilute suspension. Figure 5.3 shows S(a), where V}*
denotes the longitudinal wave velocity and V;* denotes the shear wave velocity. Both S(«)
naturally take the average values of longitudinal and shear waves in Fig. 5.2 and decrease
with decreasing a. Therefore, the random orientation compensates for the contradiction to
the experimental features (2) in the unidirectional alignment, although it gives the macroscopic
isotropy.

From the qualitative discussions of models 1 - 3, it is concluded that the orientatio‘n

distribution should be partial.

5.5 Model 4 —Partially oriented oblate voids model—

We consider model 4 as illustrated in Fig. 5.4 in a two dimensional sketch. The oblate
ellipsoidal voids are assumed to be randomly positioned in the matrix. A void is rotated by
angle ¥ around the z3 axis and by # around the X, axis. The symmetry axis of spheroidal

void X3 inclines in the direction of the angle ¢ (See Fig. 3.1). The inclusion-ODF is given by
Eq.(4.66). This model coincides with case C. The effective stiffness C5;,, = CM¥; + ACYy, is

ij

given by Eq.(4.69). The modeling parameters are the porosity ¢, the aspect ratio of voids a,
and five ODCs.

It is natural to suppose that the orientation distribution is statistically axial symmetric

around the z3 axis. If the supposition is acceptable, the ODF is independent of % and
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Oblate ellipsoidal void

Fig. 5.4. Partially oriented oblate modeling (model 4).

Wi, = Why = Wi, = 0. In the velocity measurements shown in Fig. 2.7, we observed
vV~ Voo [VE and Vi /VE ~ Vi /VE. The equalities indicate only Wi, & 0 and W}, ~
0. It is unclear from the measurement whether W, varnishes or not. We thus suppose the
statistically orthorhombic symmetry with five unknown ODCs. The calculation results will
show Wk, ~ 0 and Wk, ~ 0. If W], ~ 0 is also achieved, the distribution will be concluded
to be axial symmetric.
The porosity ¢ has been obtained by the measurements. We need to determine the re-
maining parameters from the measured velocities; the aspect ratio a and five ODCs. We use

an error function as

B=3 @ —ul)?, (53)
i=1

where u* = (V;*/VE)? are the measured values and u? = CF/ {(1 —c)CM } are the predicted
values from the given parameters. Finding the parameters to make E minimum is equivalent
to solve the simultaneous equation, dE/8a = 0 and OE/OW[,, = 0. Because we have
six parameters to six measured velocities, the perfect agreement between the measured and
the calculated velocities, or E = 0, could be achieved. Unfortunately, the calculation for
derivative 9E /O« is very laborious in this case. We attempt to determine the parameters by a
numerical iteration procedure without using 0E/da = 0. The partial derivatives with respect
to five ODCs OE /OW|L , are easily obtainable, because E is a quadratic function of the linear

combination of W ;. Under a given o for the kth iteration, the numerical solution of the

simultaneous equations for five ODCs are substituted into Eq.(5.3), and then Ej is calculated
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Fig. 5.5. Error function E as a function of aspect ratio o for model 4. Porosity ¢ is assumed to be
0.01.

numerically. Next, Ej,, is calculated for apy; = ag + Aag. The corrector Aoy is selected
to be Eiyy < Ej and to arrive at Eym as fast as possible. The iteration is continued until
an absolute difference |Acy| becomes smaller than the sufficiently small value e: |Aag] < e.
The predicted a is then obtained as ai. A typical example of E as a function of « is shown
in Fig. 5.5. The porosity ¢ is assumed to be 0.01 in this example. The function F has only
a minimum of zero. In other words, #E/da = 0 has a unique solution. Because of fhis, we
can determine o to give Emi, by the iteration procedure with no ambiguity. We adopt the
conjugate direction method [48] for the iteration procedure. It is one of the method for finding
the most efficient corrector and gives the minimum only after several iterations. v

We used e = 107%. The function E reached the minimum in the order of 1072 for all
damaged samples. The convergence was achieved by several iterations even in a far different
initial value. Because the order of F.;, is sufficiently small, we were able to determine the
modeling parameters that make perfect agreement between the measured and the calculated
normalized velocities. The agreement is shown in Fig. 5.6. It is the natural result because
of the six parameters to the six velocities. However, the parameters have to be examined
whether they represent the damage process suitably.

Numerical results for the modeling parameters are shown in Fig. 5.7. Solid lines represent
the calculated results based on the fitting curves in Fig. 2.7. The fitting curve on V3 is
extrapolated to compensate for the last two unavailable measurements. Aspect ratio a is

around 0.5 in the early stage and decreases with increasing porosity ¢. This indicates the
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Fig. 5.6. Agreement between the measured and the calculated normalized velocities using model 4.

nucleation of oblate voids and the void growth to microcracks with the damage accumulation.

The ODCs for small ¢ could be erroneous in some degree due to the behavior of the
anisotropy factors a; (j = 1,2, 3). Figure 5.8 shows the anisotropy factors calculated from the
measured porosity ¢ and the estimated aspect ratio . They approach zero when ¢ diminishes.
The calculation contains dividing with a; and their very small values may cause a large
scattering in the calculated ODCs.. |

As shown in Fig. 5.7, the calculated W, and W, are close to zero as is expected from
the measured normalized velocities, V35 /ViE ~ V35 /V:E and Vi3 /VE ~ V3t /VE. Wi, which
is the remaining ODC to give the distribution on ¢ (see Eq.(4.66) and Fig. 3.1), is not equal
to zero. We expected W[, = 0 because of the unidirectional stress. The result indicates
that the inclusion orientation distribution is not ideally axial symmetric, but it approaches
the symmetry with the damage accumulation. The void nucleation doesn’t take place axis-

symmetrically on the grain boundaries (probably due to the texture-induced anisotropy of
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Fig. 5.7. Calculation results for model 4.

misorientation distribution). But the growth of voids occurs mainly in the axial symmetric
way.

Wi and W[, determine the distribution intensity at 8 = 0, where 6 is the rotation angle
of the void symmetry axis X3 from the stress direction z3. Wi, increases with the porosity,

1 1
but W, decreases. Because W,

o is one order of magnitude larger than W _,, the ODF w is
governed by W] .. Therefore, the distribution intensity at # = 0 decreases with the porosity.

The inferred ODF w by Eq.(4.66) at two porosities is shown in Fig. 5.9. The inferred ODCs
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Fig. 5.9. ODF w for model 4 truncated at I = 4.

by fitting curves for measured velocities at ¢ = 0.005 and ¢ = 0.015 were substituted into
the equation. Truncation at | = 4 has lost fine features of the orientation distribution, and
is responsible for yielding unrealistic negative values of w. The figure shows the decreasing
intensity at § = 0 with increasing ec.

- We summarize the modeling calculation results and point out a irrationality of model
4. We determined the modeling parameters to make the measured velocities coincide with
the calculated velocities. The minimum E,;, was sufficiently small. The model can explain
the experimental features from (2) to (5) described in chapter 2. The changes in modeling

parameters with increasing porosity ¢ are summarized as follows:
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(i) @ decreases, (ii) Wi, increases, (iii) W],, decreases, (iv) W[, decreases.

The changes (i), (ii), and (iii) are acceptable for the damage accumulation model. However,
the éhange (iv) is improper. We require the increasing W,foo because of the damaging process,
that is, the growth of voids within the grain boundaries perpendicular to the stress axis
x3. According to the observation of voids by photomicrograph (Fig.2.3), the voids are not
randomly positioned. They tend to gather preferentially on the grain boundaries perpendicular

to the z3 direction. The irrationality would be caused by the simplification for void state.

5.6 Model 5 —Double composite model—

The damage morphology motivates us to consider a composite modeling relying on the
non-random positions ‘of spherical voids. The basic concept is illustrated in Fig.5.10 in a
two dimensional sketch. The creep voids are assumed to be dispersed uniformly in oblate
ellipsoidal volume elements. The volume elements are randomly positioned in the matrix, and
their principal axes X; are statistically tilted in an orthorhombic symmetric way. A volume
element is rotated by angle ¢ around the z3 axis and by @ around the X, axis. By the
ellipsoidal volume elements, we simulate the grain boundaries containing creep voids. The
composite model having such a hierarchical structure has been used for studying the effective
stiffness of $iC/Al-alloy composite by Ledbetter et al. [49].

The calculation procedure with this double composite model consists of three steps [50].

For the first step, the spherical voids are assumed to be distributed uniformly in the copper

matrix. We calculate the effective stiffness of this composite C;; using Egs.(4.20) and (4.22).

Oblate ellipsoidal

volume element ™, Spherical void

Fig. 5.10. Double composite modeling (model 5).
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The density of this composite, p1, is given by

= (1 c)pm, (5.4)

where ¢; is the volume fraction of spherical voids and pg is the density of the matrix, that is
the reference sample. _

In the second step, the volume elements including voids are regarded as the oblate ellip-
soidal inclusions. They are distributed randomly in the copper matrix with the minor axes

parallel to the stress direction z3. The shape of the oblate ellipsoids is represented by an as-

pect ratio & (< 1). We obtain the anisotropic stiffness tensor for perfect alignment, Cf},;, by

the equations described in section 4.4. In this calculation, the stiffness C;; obtained by the
previous step is used as the stiffness of ellipsoidal inclusions Cfj;. The volume fraction of the
oblate ellipsoids is denoted by c;. The density of the composite with the perfect alignment,

P2, is
p2 = (1 —¢)pr + cap1 = (1 — c1e2)pr, ' (5.5)

where the density of ellipsoidal inclusion p; in Eq.(5.4) was used.

Finally, the oblate ellipsoids are inclined by angles § and v and then C{}k, is averaged
with ODF w as a weighting function. The ODF w is given in Eq.(4.66). We obtain the
effective stiffness of the double composite model as Eq.(4.69). The density of the composite

px 1s equivalent to p, in the second step, Thus the density of the composite is given by

ps = (1 — c1e2)pr. (5.6)

The porosity c¢ is determined by c;c,.
The final effective stiffness CF;; is governed by eight modeling parameters, ¢i, ¢, @, and

five ODCs WL ;. The anisotropy factors a; (j = 1,2,3) and ODCs contribute to the stiffness
anisotropy. The a; reflect the anisotropy strength introduced by the arranged formation of
spherical voids on the grain boundaries. The five ODCs W , reflect the orientation distri-
bution of the oblate ellipsoids containing the voids inside. When the ellipsoids are randomly
oriented, W/ , vanish and the stiffness is isotropic. The isotropic constants A¢ and pc are
the functions of ¢;, ¢;, and . They decrease with the void formation.

Equation (5.3) is considered again. Since the porosity ¢ has been measured, we give the
volume fraction of the oblate ellipsoids as ¢; = ¢/c;. We have seven parameters, ci, a,
and five ODCs, against the six velocities. It is impossible to determine them from only the

velocities. WL, = WL, = 0 could be assumed. However, it indicates V3 /V{ = V3, /VE and
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Fig. 5.11. Error function F as a function of ¢; for model 5. Porosity ¢ and aspect ratio o are

assumed as 0.01 and 0.1 respectively.

|V = V3, /VE. Therefore, this assumption is meaningless. For the sake of supplement,
we impose a constant aspect ratio o = 0.1. This is suggested by the average void diameter
of 10 pm and the average grain size of 0.1 mm. The error function E can be calculated as
a function of only ¢;, by putting the solutions for the simultaneous equation 8E/W{ , = 0
and the constant aspect ratio o = 0.1. A typical example of E as a function of ¢; is shown
in Fig. 5.11. The porosity c is assumed to be 0.01 in this example. The function E has only
a minimum of zero. In other words, 9E/d¢; = 0 has a unique solution. Because of this, we
can determine ¢; to give Ei, by a numerical iteration procedure with no ambiguity. We used
again the conjugate direction method.

The convergence for the iteration procedure was found in the order of 10712 for E,
using e = 10~°. We were able to determine the modeling parameters to agree perfectly the
measured and the calculated normalized velocities. Because the order of E,;, was equivalent
to the previous model 4, the graphical expression for the agreement between them is equivalent
to Fig. 5.6. Next, we discuss the change in parametérs with the damage accumulation. ‘

The inferred parameters are shown in Fig. 5.12. The oblate-ellipsoid volume fraction ¢,
is also plotted, which is calculated from inferred ¢; with the measured porosity c. As the
creep progresses, the two volume fractions increase. The ellipsoidal elements are sparsely
scattered in the matrix, but.they continue to grow in volume, containing more and more voids
in them. High volume fraction ¢; shows that the voids of various sizes are closely packed in

the ellipsoids. The effective moduli for the first step, which are derived by Weng [17], are
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Fig. 5.12. Calculation results for model 5.

applicable to a dense concentration. Ledbetter and Datta [44] gave an alternative expression
using a scattered-plane wave ensemble average model. These two approaches give the same

values of effective moduli for random distribution of voids up to extremely high concentration

(See Fig. 4.2).
The ODCs W, are almost equivalent with those of partially oriented oblate voids model
(model 4). W}, is nearly zero as in the previous model, but W}, and W}, apparently show a

different tendency. In the double composite model, W}, increases as a whole with increasing ¢,
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Fig. 5.14. ODF w for model 5 truncated at I = 4.

and W}, is almost unchanged. The anisotropy factors are shown in Fig. 5.13. The anisotropy
factors 7as + 2as and a3 are almost equivalent to those of the previous model, which affect
the ODCs WY . However, the anisotropy factor a; has a different tendency. The difference
of W} ., is caused by the difference on a;.

The irrationality on WJ,, observed in the previous model was removed. The evolution
of W), and W], indicates the anisotropy growth due to the preferential void formation
within the grain boundaries perpendicular to the stress axis x3. The unchanged W}, is also

acceptable. The inferred ODF w by Eq.(4.66) at two porosities is shown in Fig. 5.14. The
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ODF w demonstrates the progressive concentration around 8 = 0 as creep advances.
The changes of the parameters appear to be suitable as the creep damage model. The
double composite model best explains the observations among the five models studied.

An alternative numerical procedure was attempted to determine the parameters. From
Eq.(4.69), we obtain

p{(ViD)" + (V)* + (Vy)* +2(Vs)® +2(Va1)® +2(Vi3)*} = 3dc + 120 (5.7)

The equation is ihdependent of the inclusion-ODCs and the crystallite-ODCs. We determined
¢; numerically to satisfy the equation, under a given porosity ¢ with o = 0.1 and ¢; = ¢/¢;.
The inclusion-ODCs were determined by the simultaneous equation 0E/OWL , = 0. The
numerical results coincided with Fig. 5.12.

If we usedb cylindrical specimens, the inclusion orientation distribution could be assumed to
be axis-symmetric. The independent ODCs are then W, and W},,. We have four parameters,
¢1, a, and the two ODCs, to the four independent velocities. In this case, all four parameters
can be determined from the measured velocities. However, the prediction would be impossible.
The supposition on the constant « is indispensable. Equation (5.7) holds for the case with
Vi1 = V3, and V35 = V3. We have only one equation independent of ODCs. Therefore, only

one void parameter is determined being independent of the number of the ODCs.

5.7 Summary

We explained the ultrasonic velocity change by creep voids modeling studies. The studies
were based on the conclusion in chapter 3 that the normalized velocities excluded the texture
effect. We characterized the three factors; the aspect ratio, the positional distribution, and the
orientation distribution of non-spherical inclusions. The effective stiffness Cf;; was obtained
as functions of the modeling parameters. Five models were considered. The void factors are
summarized in Table 5.1. From the qualitative discussions of models 1 - 3, it was concluded

that the orientation distribution should be included.

In models 4 and 5, we supposed the statistically orthorhombic symmetry for the orientation
distribution of oblate ellipsoids. Five independent ODCs were W) , (m = 0,2) and W],
(m = 0,2,4). The void modeling parameters were the porosity ¢ and the aspect ratio of oblate
voids « in model 4 (partially oriented oblate voids model). In model 5 (double composite
model), they were the void volume fraction in oblate volume element ¢;, the volume fraction
of oblate ellipsoids ¢z, and the aspect ratio of them «. Measured porosity was used for the
calculation. Only six parameters can be predicted because of the six velocities. A constant

aspect ratio 0.1 was assumed in model 5 for the sake of supplement. The modeling parameters
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Table 5.1. Comparison of void factors among models.

shape of voids positional distribution | orientational distribution
model 1 sphere random -
model 2 | oblate ellipsoid random unidirectional
model 3 | oblate ellipsoid random random
model 4 | oblate ellipsoid random partially oriented
model 5 sphere restricted to oblate areas | areas partially oriented

were predicted by the conjugate direction method so as to minimize the error function E for
@ in model 4 and for ¢; in model 5 with the simultaneous equations dE/OW] , = 0. The
minimum of the function E,;, was sufficiently small in the order of 1072 for both models. We
were able to determine the modeling parameters to yield the calculated velocities coincident
with the measured velocities as a natural result. The modeling parameters have to represent
the damage accumulation. On this view point, the last two models were investigated.

The result for aspect ratio in model 4 indicates the nucleation of oblate voids and the void
growth to microcracks with the damage accumulation. The increase of two volume fractions
in model 5 shows that the ellipsoidal elements are sparsely scattered in the matrix, but they
continue to grow in volume, containing more and more voids in them. The void modeling
parameters for both models represent suitably the generation and growth of voids.

Two ODCs Wi, and W, are approximated to be zero for both models as expected by
the measured normalized velocities, V;;/VE = V5 /VE and Vj,/VE =~ V3, /VE. The estimated
evolution of the remaining ODCs are summarized as Table 5.2. WL, were equivalent for
both models, because of the equivalences of the anisotropyrfactors Taz + 2a3 and a3. The
different tendencies for W}, and W}, were caused by a,. The coefficient of W1, is a3 for

the longitudinal waves and Tag + 2as for the shear waves, and that of W1 _ is a;. Both W,

m
and W/, decrease in model 4. On the other hand, W}, increases and W}, is unchanged in
model 5. Decreasing W}, in model 4 was not acceptable. Because W} , were remarkably
larger than WY ,, the ODF w is governed by W[ .. Therefore, the distribution intensity at
0 = 0 decreased with the porosity. On the other hand, all ODCs for model 5 were acceptable.
The ODF w demonstrated the enhanced concentration around § = 0 as creep advances. It
was concluded from the change in ODCs that model 5 was better than model 4.

It is natural to suppose that the orientation distribution of oblate ellipsoids is statistically
axial symmetric around the z3 axis because of the unidirectional stress. In this case, Wi, =
Wko = W} = 0 should be satisfied. However, the numerical results for models 4 and 5 showed

W], # 0, indicating that the inclusion orientation distribution is not ideally axial symmetric.

70



Table 5.2. Comparison of inferred ODCs.

I I I
Wioo Wioo Wi
model 4 | increase decrease - decrease

model 5 | increase increase unchanged

We surmised that the orthorhombic distribution of the oblate ellipsoid orientation is caused
by that of the grain boundary misorientation, on which the nucleation and the growth of voids

on the grain boundaries would depend.
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Chapter 6

CONCLUSIONS

6.1 Sﬁmmary

The effective stiffness of the particle reinforced composite has been studied. The theories
are applicable to porous materials, and we applied them to the creep damaged material. An
interpretation of the ultrasonic velocity change due to creep voids is presénted through the
void modeling and the calculation of the effective stiffness. For the simplicity, we adopted

four assumptions to give the theoretical discussions:
(1) No precipitation of the second pha,se particles,
(2) No texture modification,
(3) No dislocation restructuring,
(4) No interaction between the effects of voids and texture.

The first three assumptions are introduced to ignore the metallurgical attributes, which are
obstructive in the concept of voids/ matrix composite. The last is introduced to give an simple
procedure in calculating the approximated effective stiffness supposing the isotropic matrix
composite.

The work is summarized as following. The experiment was described in chapter 2, where
we made the best possible procedures to carry out a simple experiment for bing compatible
with the theoretical analysis. To avoid the precipitation, pure copper was used. To suppress
the texture modification by the recrystallization, a stabilization annealing was provided prior
to the creep tests. The test conditions were chosen for the brittle failure to occur. The
porosity and the ultrasonic velocities were measured for coupon samples at various times to
rupture. Ultrasonic velocities showed an orthorhombic anisotropy even in the initial state.
They decreased and the anisotropy developed with increasing porosity due to creep voids.

In chapter 3, the anisotropic deviation stiffness due to texture is separated. We gave

the macroscopic elastic stiffness in reference (uncrept) sample as Cfyy = CM, + ACL,; using
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the ODF to represent the crystallite orientation distribution in polycrystallite metals. The

expression was used in the numerical calculation to determine C%cz and ACZL,,. The theoretical

assumption (4) was supported by IAC'}; w1/ Cg[kll <« 1. It allowed the supposition of the isotropic

matrix in the calculation of the effective stiffness in damaged samples, so the expression of

Ctn = Clly+ ACE, + ACY,, was acceptable. It was concluded that the normalized velocities
don’t contain the texture effect.

The effective stiffness C’gk, = C%c, +AC’¥-M of a composite comprising the isotropic copper
matrix and the inclusions was obtained for three cases in chapter 4. We have four aspects of
the inclusions; the volume fraction, the shape, the positional distribution, and the orientation
distribution of non-spherical inclusion. Theoretical case studies in this chapter assumed the
random distribution of the position.

Five models for creep damage were investigated in chapter 5. From the qualitative discus-
sions on the first three trial models, it was concluded that the inclusion orientation distribution
should be taken into account. In model 4 (partially oriented oblate voids model), the oblate
voids were randomly positioned in the matrix. In model 5 (double composite model), the
oblate volume elements containing the spherical voids were randomly positioned in the ma-
trix. Non-random positional distribution of voids was given by the hierarchical structure.
The modeling parameters were determined so as to give a coincidence between the calculated
and measured velocities. The coincidence is a natural result because of the six parameters to
the six velocities. However, the parameters have to represent the damage process suitably.
The changes in void parameters appear to be suitable for both models. The features of the
ODF leaded to the conclusion that model 5 was superior in explaining the evolution of creep
damage. In this model, the ellipsoidal elements are sparsely scattered in the matrix, but they
continue to grow in volume, containing more and more voids in them. The elastic anisotropy
develops with the preferential void formation within the grain boundaries perpendicular to

the stress axis.

6.2 Discussions

The five models are relatively simple compared with the real situations. To express the
void state more appropriately, a more involved model is required. We consider, for example,
the partially oriented oblate spheroidal elements including oblate spheroidal voids. In the
second step to obtain the effective stiffness, the composite counsists of the isotropic matrix
and anisotropic inclusions. The problem would be difficult. We assumed the same shape for
all voids or inclusions in the matrix in this study. It would be also complicated to introduce

the distribution of the aspect ratio. Anyway, it would be impossible to determine the void
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parameters, because we can determine only one using the isotropic function unconnected with
the ODCs.

The concept of this work, the effective stiffness of the creep damaged material, is appli-
cable to the heat resistant materials involving metallurgical complexity. Micromechanics of
dislocations and inclusions in anisotropic matrix is highly complicated, but the problems is
treated in the book of Mura [2]. We now discuss the remaining two assumptions used in this
work for the simplicity.

In the heat resistant alloys, the precipitation of the second phase particles such as carbide
and intermetallic compounds occurs during creep. The effect on the effective stiffness will be
investigated by a three-phase composite modeling consists of matrix, voids, and precipitated
inclusions. The effective stiffness of a two-phase composite consists of matrix and inclusions
can be calculated if the inclusion material is identified. It is recast as the stiffness of matrix for
the next step, where the additional effect of voids is involved. The inclusion volume fraction
would be approximated by the ultrasonic velocity measurements for the sample with the same
thermal history and no stress. V

If the texture modification occurs during creep, the stiffnesses in reference sample and in

damaged sample are written as

Ch, = CMy+ ACTE, (6.1)
rw = Oy + ACLH + ACY,,.

2

The texture effect, ACZE ii%i> in reference samples is modified to ACED iv1 due to the texture change

during the creep. From these equations, the normalized velocity reduces to

(CE + ACFP — ACTH), (6.2)

1—cCM

within the first order approximation. The texture modification gives rise to ACLL Kl — C’,J b

which affects the normalized velocities. The explicit form of Cj;, is given as

8
Oikl = ¢ +2#C +

12[
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where

a
2wl +WIB  m=0,24.

W4m0 = 3a

The anisotropy factor of single crystal a is a constant. The isotropic elastic constants A¢ and

P, and the anisotropy factors a; (j = 1,2,3) are given by the void parameters; ¢ and « in

model 4, ¢1, ¢z, and @ in model 5. The ODCs W}, and WXL are not independent to each
other. It is then impossible to determine each ODC from the velocities. If W12 is obtained
by x-ray or neutron diffraction technique, W} , can be predicted by the measured porosity
and velocities. |
One of the practical applications of the modeling studies would be the estimation of creep

life. Some of high temperature components in fossil fuel power planfs have been used over the
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designed lives, 15 years or 10° hours [51]. This is partly because the stationary projects for
new plants result from a great fund of construction, the difficulty for procurement of a site,
and the severe controls over environment. Moreover, the overage components have been used
in more and more severe operating conditions, such as daily starting-stopping with the electric
power demand. After the long term operation, the damage has accumulated even in low stress
portions and may lead to the eventual failure. Their fracture would give catastrophic hit to
the social and economical activities. Evaluation of their damage has been desired for the
prevention of hazardous fracture and the extension of life. The evaluation for the ductile
failure, the transgranular creep process, is achieved by the measurement of elongation or
deformation.

The hardly accessible situation is the brittle fracture, that is, the intergranular creep
process. It is revealed that the ultrasonic velocities are sensitive to such damaging process,
while the damage state cannot detect from the conventional technique, say, measuring the
elongation.

Ultrasonic velocity measurement is one of the nondestructive means proposed for continu-
ously monitoring the damage evolution in high-temperature components. Ultrasonics detects
the internal damage state. Other techniques mainly sense the surface and the surface re-
gion. Because the creep damage is distributed over the entire body in general, ultrasonics
supplements the information from other techniques. Moreover, ultrasonics is easy for the
measurements. At the present time, the effect of creep damage on ultrasonic velocities is
inconclusive. In some cases, the velocity decreases with the damage accumulation [33] [52]
-|55], while in others, this tendency is not observed [56] -[58]. Such confusion results from
the diversity of creep damage in the high-temperature steel alloys. A number of metallurgical
attributes occurring in creep process may affect the ultrasonic velocities.

The modeling studies provide a basis for understanding complicated and important phe-
nomena of metals creep. The development of ultrasonic methods for the reliable estimation

of creep remaining life would be supported by the studies.
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Appendix A

ULTRASONIC BACKSCATTERING DUE TO
CREEP VOIDS IN COPPER

A.1 Introduction

When the ultrasonic pulse wave passes through a porous material, it is partly scattered
by voids. Faint scattered waves from a large number of voids are superimposed, and the
backscattering noise is detected by the transducer at incidence surface [57, 59]. Creep voids
would be estimated nondestructively by the backscattering noise measurements. This mea-
surement offers an alternative access to the creep voids, although the theoretical background

is still under development [60].

A.2 Experiment

Reference (uncrept) and damaged samples described in chapter 2 are used again. Ex-
perimental setup is shown in Fig. A.1. An electric pulse generated by a pulser is fed to a
transducer through a diplexer. The transducer inputs an ultrasonic pulse to the specimen.
When the ultrasonic pulse travels through a creep damaged specimen, it scatters slightly due
to voids. The transducer receives the backscattering noise that is a integration of faint scat-

tered waves from a great number of voids. Receiver amplifies the backscattering noise and

Signal
» Receiver
Diplexer |-
Pulser
!
TR Trigger| Personal
b Oscilloscope [*
| Computer
r-L]Transduser i
Specimen Boxcar Integrator A
GP-IB

Fig. A.l. Experimental setup.
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sends it to boxcar integrator (waveform recorder). A personal computer is connected to the
boxcar integrator through GP-IB, controls it, and processes the measured data. The receiver
has the amplification rate ranging from —12 to 67 dB. The maximum amplitude of input
signal to the boxcar integrator is 1.0 V. The vertical resolution is 10 bits.

The longitudinal ultrasonic wave was generated by the piezoelectric transducer of 6 mm
diameter. The center frequency was 10 MHz. To make full use of the vertical resolution of the
boxcar integrator, the received noise was amplified by the receiver. Through the experiment,
all the measuring parameters were fixed except for the amplification rate of the receiver. The
noise waveform before the first echo arrival was taken as shown in F ig. A.2. Taking sixty-four
time average for the waveform in the boxcar integrator, the random noise was eliminated and
only the backscattering noise from creep voids survived. |

We define the noise intensity I as the rms (root mean square) value:

t2
1=\/ L Vadt, (A
t2—t1 171
400 —————
> ool |
E
Q
D)
©
= _ .
g —,200 i ‘ ~ 2nd Echo 1
~400— — 10 20
V Time (1 sec)
4 T T T T Y T ' { ‘.
g 7
10)
o 0
© 5
=
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> i
T3 T4 s 8 7
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Fig. A.2. Ultrasonic backscattering noise.
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Fig. A.3. Backscattering noise and probability density.

where V is the voltage of backscattering noise and is shifted to zero average in order to
eliminate the drift in the circuit. We denote the sum of the time period by 7, when the noise

voltage exists in a range from V to V 4+ AV. The probability is, as illustrated in Fig. A.3,

V4+AV
fv p(V)dV = lim

r
T—c0 T’

where p(V') is a probability density. The average p and the variance o? are defined by,

respectively,
p= f_ o; Vp(V)dV,
o= °; V2p(V)dV — 2.
They are rewritten as

1T
y=hm—f0 Vi,

T—o0

1 (T
o= lm = | V2dt— .
T—oc0 0
In this experiment the average u is always zero. Therefore the noise intensity I corresponds
to the standard deviation o if the observed time width ¢, — ¢; = T is long enough.

Because V is a time series of discrete data, we calculate the noise intensity by

I = lZVi?, (A.2)

n i=1
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where n is the number of sampling points. In this experiment we fixed ¢, —#; = 5 ps and
n = 1024. We measured the noise intensity I for longitudinal ultrasonic waves propagating in
z; (1=1,2,3) direction (see Fig. 2.1).

The relation between porosity ¢ and noise intensity I is shown in Fig. A.4. Because the
result for ultrasonic wave propagating in z, direction is almost the same as that in x5 direction,
we omitted the result. The noise intensity I at ¢ = 0 corresponds to the backscattering noise
from the grain boundaries, and it indicates the equiaxial grain shape and a weak texture at
the same time. The ultrasonic velocities in the reference samples showed the anisotropy due
to the rolling texture as shown in Table 2.2. Hirao et al. [61] showed the strong anisotropy
of I depending on the propagation direction in textured pure titanium. The annealed copper
samples in this experiment have a weak texture, but the initial values of I are insensitive to the
direction. The change in I for creep damaged samples is caused only by the backscattering
from voids because of the assumptions of no texture modification, no precipitation of the
second phase, and no dislocation restructuring. The noise intensity I for the z, direction
remains unchanged in the range of ¢ < 0.01, and then it increases slowly with increasing ¢. On
the other hand, the noise intensity I for the x5 direction, that is the stress direction, is sensitive
to c. I increases with ¢ in a parabolic way until it reaches a maximum at approximately

¢ = 0.014, saturates, and then it decreases.
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A.3 Discussion

The dependence of noise intensities on the propagation direction can be explained by the
positional distribution of creep voids. As shown in Fig. 2.3, voids are not randomly positioned.
They tend to gather preferentially on the grain boundaries perpendicular to the z3 direction.
If the voids line up in the propagation direction, the number of voids that cause the scattering
will be limited. Therefore we conclude that the projective area of voids on the incident surface
decides the noise intensity. The equivalence between the noise intensity in the z; direction
and that in the z, direction is similar to the velocity equality of V}5/Vif = V5 /VE.

The multiple scattering or the interference can be considered for the reason of maximum
noise intensity in the z3 direction. Increasing the number of voids, the scattering waves don’t
arrive at the transducer because of the secondary scattering. Moreover, if too many scattering
waves of various phases overlap each other, they cancel out each other and the amplitude
becomes smaller through interference. Hirao et al. [61] calculated the backscattering noise
intensity from the grain boundaries, and showed that there was a maximum in the relation

between the grain size and the noise intensity.

A.4 Summary

The noise intensity I for the perpendicular direction to the stress is unchanged until the
beginning of the final stage, and then it increases slowly with increasing ¢. On the other hand,
I for the stress direction increases with ¢ in a parabolic way until it reaches the maximum
at approximately ¢ = 0.014, and then it decreases. The dependence of I on the propagation
direction can be explained by the positional distribution of creep voids. The existence of the
maximum intensity in the stress direction may result from the multiple scattering and/or the
interference among the scattered signals. ,

From the practical viewpoint, the high sensitivity of [ seems promising, particularly in
the z3 direction, where I increases in a factor of 7 or more. Also, the measurement of [
doesn’t require the opposite surfaces of the parts. However, we cannot measure I in the stress
direction in many cases and the measurement is vulnerable to the surface conditions. After
all, it lacks the theoretical background for interpretation.

The use of a transducer with higher frequencies should be attempted. It may give the
more sensitive response to the voids. Angle beam method would be useful instead of the
normal incidence like the present measurement. Detailed measurements around the maximum

intensity would be required.
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Appendix B

CREEP LIFE ESTIMATION BASED ON DAMAGE
GROWTH EQUATION

B.1 Introduction

The author previously proposed a method for the nondestructive estimation of creep life
using ultrasonic velocities. It makes use of the relation between the consuming rate of life and
the normalized velocities. We will now discuss another method based on the damage growth
equation. The method doesn’t need any master curves, but it requires several measurements.
It was proposed by Ihara et al. [62] We will apply this phenomenological method to the

measured values in chapter 2; the porosity and the normalized velocities.

B.2 Damage growth equation

The damage growth equation can be written as

dD

— = f(D,o,T) - (B.1)
dt

for creep damage growth, where ¢ is the time, o is the stress, and T is the temperature.
Variable D is the monotonically increasing parameter to indicate the present state of damage.
It is defined so that it varies from 0 in virgin material to 1 at failure. Several equations have
been proposed [63]-[65]. They reduce to

dD A

& 1=D)F (B2)

where A (> 0) and k£ (> 1) are the material constants depending on o and 7. The eqﬁation
simply shows the finite rate A at D = 0 and the infinite rate at D = 1. The difference of the

proposed equations is the definition of constant A. The damage dependence 1/ (1 — D)* is

commeorn.
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Fig. B.1. Influence of constant k on the damage curve.

Thara et al [62] rewrote the equation using the rupture time ¢,. Taking the integration, the
equation can be rewritten as |

1

- ma — D) = At4C. (B.3)

The above equation has to be satisfied D = 0 at ¢ = 0, we thus obtain C = —1/(k + 1).
Taking D =1 at ¢ = t,, one has

1 ,
t, = m (B.4)

The rupture time ¢, is decided by k and A, which is the damage growth rate at ¢ = 0. Finally,
Eq.(B.3) reduces to

1/(k+1)
! ) (B.5)

p=1-(1-=
1

r

This equation indicates that the relation between the damage variable D and the normalized

time ¢/, depends only on k. The influence of constant k on the damage curve is illustrated
in Fig. B.1."

B.3 Estimation of creep life

Our objective is to estimate ¢, based on Eq.(B.5) from the measured data (¢;, D;). Schematic

illustration for this method is shown in Fig. B.2. The damage growth curve can be obtained
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Fig. B.2. Estimation of ¢, based on the damage growth equation from the measured data (t;, D;).

by fitting to the given sets of data (¢;, D;) and the values for the parameters, ¢, and k, are
given.

We define an error function as

- £\ (E+1)) ]2
E:Z[D,-—{l—(l—;’) H , (B.6)
=1 r

where n is the number of data. We determine ¢, and k so as to minimize F by the conjugate

direction method. We denote the estimated t, by £, to distinguish from the measured ¢,.

We will calculate i, for copper samples used in this thesis. The stress was 6.0 MPa and the
temperature was 500 °C and 550 °C. In this study, D is simply defined by the pbrosity c as

D =c¢,or D =1— V*/VE by the ultrasonic velocity, where V® and V* denote the velocities

Table B.1. Estimated £, for copper samples crept at 6.0 MPa, ¢, = 597.8 hr at 500 °C, ¢, = 270.8 hr
at 550 °C.

500 °C 550 °C
() k|4 (r) K

¢ | 585.0 1199 | 3244 96.93
Vi | 547.9 8165 | 269.9 92.89
Vaz | 5467 78.65 | 270.4 85.29
Vas | 486.8 80.63 | 261.8 51.34
Vas | 547.2 9161 | 271.1 1005
Var | 549.6 9513 | 269.2 1105
Via | 557.2 1566 | 2904 157.0
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Fig. B.3. Fitting curves of D =1 — V*/VE for the crept copper samples at 500 °C, ¢, = 597.8 hr.

in the reference and damaged samples, respectively. The definition D = 1 — V*/V® follows
Thara et al. [62]. The measurements in chapter 2 are not the data monitored throughout with
a specimen. The data includes a scatter originating from the metallurgicél inhomogeneity,
which causes a variation in the rupture time or the damage accumulation rate in the individual
specimens. bRelatively small difference in the rupture time as shown in Table 2.1 encourages
us to apply the estimation..

The numerical results are shown in Table B.1. The velocity V33 at 500 °C was not obtain-
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Fig. B.4. Fitting curves of D =1 — V*/VE for the crept copper samples at 550 °C, ¢, = 270.8 hr.

able for /¢, > 0.85. The calculation was made using V35 up to t/¢, < 0.80. Good estimations
for £, were achieved except for Vis at 500 °C. The fitting curves for the porosity have already
been presented in Fig. 2.5. Those for the velocities are shown in Fig. B.3 and in Fig. B.4.
They represent well the porosity evolution and the velocity change, for which Eq.(B.5) is a
good approximation.

Figure B.5 shows #,/t, depending on #/¢,. The value of #, at ¢/t, = 0.3 is, for instance,
estimated by the data up to n = 3. We observe that involving the data at the late stages con-
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Fig. B.6. Comparison of the estimated #, with the measured ¢,.

sidera,bly improves the estimation. The unsatisfactory estimation results from the measuring
error or the metallurgical inhomogeneity in the individual specimens, because D and dD/dt
are both extremely small in the initial and the middle stages. To obtain a good estimation
even in the early stage, the data containing less error and/or a large number of data n are
required.

We apply the estimation based on the porosity to other metals. The change in density has
been measured for Cr-Mo-V steel [22], OFHC copper [23], SUS347 [31], and SUS304 [32]. In
the heat resistant materials, the change in density is caused by the precipitation of the second
phase particles in addition to the generation of voids. We adopt the specimen head, having
the same thermal history with the gauge position, as the reference sample. The porosity is
calculated by Eq.(2.1) in all cases. The number of data is n = 3 ~ 6, and the measurements
were done from the initial stage to the final stage. The comparison of the estimated #, with the
measured ¢, is shown in Fig. B.6 including the present measurement on tough pitch copper.

The agreement is just excellent despite the large range of ¢,.

B.4 Summary

We applied the estimation of the creep life based on the damage growth equation to the

crept copper samples used in chapter 2. Two definitions for the damage variable D were
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attempted: D = ¢ and D = 1 — V*/V®. The damage growth equation represents well the
porosity evolution and the velocity change. The creep life was estimated successfully. The
definition by the porosity with the careful measurements gives a good estimation for other
metals.

The porosity is not obtained nondestructively. For the practical use of Eq.(B.5), the non-
destructive measurement for the continuous monitoring of the damage is necessary. Ultrasonic
velocities can be applied for the purpose. As described in Appendix A, the backscattering
noise intensity propagated in the transverse direction to the stress holds the initial value even

in the middle stage. The other technique should be attempted.
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