
Title Compiler Generation Method for ASIP Design Space
Exploration

Author(s) 小林, 真輔

Citation 大阪大学, 2003, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2287

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Compiler Generation Method for

ASIP Design Space Exploration

 Doctoral Dissertation

 by

 Shinsuke Kobayashi

Department of Informatics and Mathematical Science

 Graduate School of Engineering Science

 Osaka University

Contents

I

2

Introduction

1.1 Application Specific Instruction-set Processor

 1.1.1 Benefits of ASIP

 1.1.2 Application Trends of Embedded Systems

 1.1.3 Problems of ASIP development

1.2 ASIP Design Space Exploration Flow

1.3 Execution Model of SoC with ASIP

 1.3.1 Interrupt Service Routine (ISR) Model. .

 1.3.2 Operating System (OS) Model

1.4 Role of Compiler in ASIP

1.5 Compiler Retargetability

1.6 Contribution of this Thesis

1.7 Organization of this Thesis

Related Work

2.1 Processor Generator

 2.1.1 Processor Core Generation based o

 Processor Core

 2.1.2 Processor Core Generation based c

 tion Language

 2.1.3 Comparison with Two Approaches

2.2 Compiler Generator

2.3 Summary

1

2

3

4

4

5

6

6

8

10

10

12

12

 13

. 13

 n Parameterized Generic

 n Processor Specifica-

13

15

15

16

is

i

ii CONTENTS

3 Compiler Generation for ASIPs

 3.1 Introduction .

 3.2 PEAS-111 .

 3.2.1 Organization of the PEAS-111 system

 3.2.2 Flexible Hardware Model

 3.2.3 Micro-operation Level Processor Specification

 3.3 Processor Model of PEAS-111

 3.4 Compiler Generation for PEAS-111

4

3.5

3.6

3.7

Input Descriptions of the Compiler Generator

3.5.1 Primitive operations used by resources

3.5.2 Timing specifications of resources

3.5.3 Storage units specifications for memory and register allo-

 cation .

3.5.4 Instruction set specification including behavior of instruc-

 tions and usage of resources

3.5.5 Processor structure by resource connection graph

Compiler Generation Flow .

3.6.1 Information Analysis

3.6.2 Mapping Rule Generation

3.6.3 Generation of Scheduling Infon-nation

Summary .

Experiments

4.1 Experiment I .

 4.1.1 Objective .

 4.1.2 Target Processors

 4.1.3 Applications and Environment of the experiment

 4.1.4 Results .

 4.1.5 Discussion

4.2 Experiment 2 .

 4.2.1 Objective .

 4.2.2 Base Processor

21

21

22

22

23

24

25

27

27

29

29

30

31

32

34

34

35

42

42

45

45

45

45

46

47

48

48

48

48

CONTENTS iii

5

4.3

4.4

4.5

4.2.3 Applications and A

4.2.4 Results

4.2.5 Discussion

Experiment 3

4.3.1 Objective

4.3.2 Target Application

4.3.3 Target Processors

4.3.4 Results

4.3.5 Discussion

Case Study

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.4.9

 chitecture Candidates

Objective of Case Study

Target Application: JPEG Codec

Architecture Candidates

Input Image

DCT/IDCT Unit

Additional Instructions

Compiler Generation for Target Processors

How to Estimate Design Quality

Processor Organization

4.4.10 Trade-offs Between Hardware Cost and Performance

4.4.11 Trade-offsBetv

4.4.12 DesignTime

4.4.13 Discussion

Summary

 een Hardware Cost and Power Consumption

.................

..................

.................

Discussion

5.1 Compiler Retargetability

5.2 Code Quality of the Generated Compiler

5.3 Requirements and Solutions for SoC Processors

5.4 Design Productivity of SoC Processors

5.5 DesignSDace Exploration Using the Proposed (ompiler Generator

49

49

52

53

53

53

53

53

55

55

55

56

56

58

59

61

67

67

68

69

72

74

74

76

77

77

80

80

81

82

iv CONTENTS

6 Conclusion and Future Work 83

 6.1 Conclusion 83

 6.2 Future Work 84

 6.2.1 Retargeting Algorithm for Special Architecture 84

 6.2.2 Simulator and Profiler 85

 6.2.3 VLIW extension . 85

 6.2.4 Code Generation for Low Power Design 86

 6.2.5 OS Generation . 86

Bibliography 86

A BNF of Architecture Description for the Proposed Compiler Genera-

 tor 91

 A. I Lexical Elements . 91

 A.2 Grammer . 92

 A.2.1 Architecture Type Section 92

 A.2.2 Resource Class Declaration 92

 A.2.3 Structure Definition . 93

 A.2.4 Storage Definition . 94

 A.2.5 Instruction Definition . 95

B MIPS-R3000 Architecture Description for the Proposed Compiler Gen-

 erator 99

List of Major Publications of the Author 133

Abstract

This thesis studies a compiler generation method for ASIPs (Application Specific

Instruction-set Processor). In the ASIP development, it is an important issue that

designers search for the architecture which matches target applications. This is

called "design space exploration." In design space exploration, target processors

are required to be evaluated in a short time. To evaluate architecture candidates,

compiler plays an important role. When designers search for an optimal architec-

ture of ASIP rapidly, the ASIP development system is one of the best solution.

 PEAS-111 (Practical Environment for ASIP development) [1] is an interactive

ASIP design system. The PEAS-111 system accepts the processor architecture

description as input and generates a synthesizable HDL description of the target

processor core, where user-defined instructions and interrupts can be easily im-

plemented. The processor specification description includes: (1) architecture pa-
rameters such as pipeline stage counts and the number of delayed branch slots, (2)

declaration of resources included in the processor such as ALUs and register files,

(3) instruction format definitions, (4) micro-operation descriptions of instructions,
and (5) interrupt definitions including cause conditions and micro-operation de-

scription of interrupts.

 In this thesis, the compiler generation method for PEAS-111 is proposed. The

proposed compiler generation flow is as follows: (1) analysis of the target instruc-
tion set, and categorizing the instructions using the analysis result, (2) mapping

rule generation for code emission, and (3) generation of scheduling information

for code scheduling. In step (1), instructions are categorized into the following

categories: (a) arithmetic, logical and compare operations such as addition, sub-

traction and so on, (b) control instructions such as jump and branch, (c) load/store

v

vi ABSTRACT

instructions, (d) Compiler-Known-Functions for special instructions. In step (2),

mapping rules for code emission are generated. Mapping rules produce rela-

tionships between internal representations of compiler and target instructions. In

arithmetic, logical, and compare operations and their combinations, relationships

between one instruction and one mapping rule can be made. However, in if-then-

else statements, function calls, and address calculation instructions, relationships

between one instruction and one mapping rule cannot be made. In the proposed

compiler generation method, the instruction for the case of multiple instructions

to one mapping rule is automatically selected using instruction category. The

control instructions and stack manipulation instructions can be selected using se-

lection algorithm. In step (3), scheduling information is produced. When the

instructions are scheduled, throughput and latency of the instruction are required.

The proposed compiler generator calculates the throughput and the latency of the

instruction group which uses the same resources when the instruction is executed.

 Experimental results show that designers can efficiently evaluate numerous

architecture candidates by means of execution cycles of applications, clock fre-

quency, hardware cost of the processor core and power consumption when de-
signers use the PEAS-III system. Therefore, designers can rapidly explore design

space and explore trade-offs of designs by using the PEAS-III system. In addi-

tion, the JPEG Encoder case study shows that the proposed compiler generator

improves the design time for the target compiler in a practical application.

Acknowledgments

I would like to express my gratitude to my adviser Prof Masaharu Imai, Os-

aka University, for introducing me to this research area and guiding this work,

for providing all facilities to carry it out, and for continuous support, help and

encouragement.

 The author also likes to express his thanks to Prof. Teruo Higashino, Prof.

Hideo Matsuda and Prof. Yoshinori Takeuchi for reviewing this thesis, and to

professors and staffs of the Department of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka University for their kind help.

 I am extremely thankful to Prof. Jun Sato from Tsuruoka National College

of Technology, Prof. Akira KitaJima from Osaka Electro-Communication Uni-
versity, Prof Akichika Shiomi from Shizuoka University, and Mr. Nobuyuki

Hikichi from Software Research Associates, Inc. Prof. Takumi Nakano from

Toyota National College of Technology, Prof. Tsutomu Kimura from Toyota Na-

tional College of Technology, Prof. Yoshimichi Honma from Nara National Col-

lege of Technology, for their continuous support and encouragement, and many

thanks to all members of the PEAS project for their kind assistance, especially, Dr.

Makiko Itoh from Osaka University, currently she works for STARC (Semicon-

ductor Technology Academic Research Center), Mr. Kentaro Mita from Osaka

University, Dr. Keishi Sakanushi from Osaka University, and the members of

the VLSI System Design Laboratory at Osaka University, especially, Ms. Akiko

Mori, Ms. Ranko Morimoto, Mr. Norimasa Ohtsuki, Mr. Takafumi Morifuji,

Mr. Jun-ichi Itoh, Mr. Yoshinori Jiyoudai, Mr. Katsuya Shinohara, Mr. Eiichiro

Shigehara, Mr. Shigeaki Higaki, Mr. Shin'ichi Shibahara, Mr. Yoshiharu Watan-

abe, Mr. Tomohide Maeda, Mr. Naoki Morita, Mr. Yaichi Kurita, Mr. Teruaki

vii

viii ACKNOW7-EDGMENTS

Sakata, Mr. Masaaki Abe, Mr. Toshiyuki Sasaki, Ms. Kyoko Ueda, Mr. Yukinori

Yamane, Mr. Takuya Tokihisa, Mr. Koji Okuda, Mr. Youhei Ishimaru, Mr. Hi-

roaki Tanaka, Mr. Yoshio Okada, Mr. Yuki Kobayashi, and Mr. Noboru Yoneoka.

 The author also thanks to professors and the members of Synthesis Corpo-

ration, especially, Prof. Isao Shirakawa from Osaka University, Dr. Toshiyuki

Uegeki, Prof. Yukihiro Nakamura from Kyoto University, Prof. Koso Murakami

from Osaka University, Prof. Kenji Taniguchi from Osaka University, Mr. Hideki

Okamura, Mr. Toshihiro Yoshino, Prof. Takao Onoye from Osaka University,
Prof. Toshihiro Masaki from Osaka University, Dr. Tomonori Izumi from Ky-

oto University, Dr. Hiroyuki Okuhata, Mr. Gen Fujita from Osaka University,

Mr. Yukio Mitsuyama from Osaka University, and Mr. Masahide Hatanaka from

Osaka University.

 The author would like to thank professors and specialists for helpful discus-
sions and encouragements, especially, Dr. Tokinori Kozawa from STARC, Prof.

Toshiro Akino from Kinki University, Prof. Nagisa Ishiura from Kwansei Gakuin

University, Dr. Hideki Yamauchi from Sanyo Electric Co. Ltd., Dr. Hiroyuki

Tomiyama from Institute of Systems and Information Technologies / Kyushu, Dr.

Morgan Hirosuke Miki from Sharp Corporation, Mr. Koji Miyanohana from Mit-

subishi Electronic Co. Ltd., Mr. Takashi Okada from Hitachi, Ltd., and Mr. Tat-

suo Watanabe from Sharp Corporation.

 I would also like to express my thanks to all members of ACE Associated

Compiler Expert bv., especially, Dr. Marnix Bindels, Dr. Bryan Olivier, Dr. Mar-

cel Beemster, and members of Japan Novel Corporation, especially, Mr. Mune-

mitsu Shioyama.

 This work was partly supported by STARC, and one of tools was supported

by Mentor Graphics higher education program.

 Finally, I would like to thank my parents Shigeo and Sachie, and my brothers

Naoki and Koji.

Chapter I

Introduction

ITRS (International Technology Roadmap for Semiconductors) predicts that 90

% of SoCs (System-On-a-Chip) will include more than one instruction-set pro-

cessor in 2005 [2, 3]. From these reports, instruction-set processors for embedded

systems play an important role in the SoC design. Instruction-set processors have

been developed and integrated by a lot of semiconductor companies, such as Intel

Pentium processor, Motorola PowerPC, AMD Athron, and so on. These proces-

sors are used as CPUs (Central Processing Units) in personal computers. The

primary requirement of CPUs for personal computers is high performance pro-
cessing. Windows or Macintosh applications need to be executed on the processor

faster and faster, people buy new PC that contains higher performance processor.

Because the range of these applications is wide, these processors are needed to

execute every kind of applications faster. To execute every kind of applications,

the hardware cost of the processor core and the development cost are very large.

 On the other hand, consumer products such as set-top boxes, mobile termi-

nals, entertainment machines and so on, also contain instruction-set processors.

Requirements of embedded systems such as consumer products, are cost effective

architecture and low power. Moreover, rapid technology change makes product

life cycles short and makes time-to-market a critical issue for industries. Time

required for design and verification is measured in months or years with high

uncertainly. One of the solutions for this requirement is ASIP (Application Spe-

cific Instruction-set Processor) solution. In the ASIP design, designers consider

I

2 CHAPTER I . INTRODUCTION

the feature of application and select an instruction-set architecture. Because the

architecture is suitable for application, ASIP can achieve not only low cost but

also high performance and low power. Unfortunately, although the ASIP solu-

tion can achieve low cost, high performance and low power, development cost

of ASIP is very large. The reason is that designers select an architecture from a

lot of architecture candidates. Many designers decide such application specific

processor architecture using their experiences. This approach, however, includes

miss-decision, which means that they don't select suitable architecture for the tar-

get application. If the selected processor does not match the constraints of the

target system, design time increases because they redesign architecture. Hence,

evaluation of many architectures in a short time is a key issue for ASIP devel-

opment. To achieve this task, the ASIP development environment that includes

generation method both of processor and software development environment is

needed. High abstraction level language reduces design and verification costs of

ASIPs. Moreover, ITRS reported that software routinely accounted for 80 % of

the embedded systems development cost. Hence, the software development en-

vironment plays an important role in the embedded system design, and compiler

retarget technology, one of the key technologies of the software development en-

vironment generation, is indispensable. This chapter begins with a review and

look at the trends of ASIP and retargetable compiler, and concludes with the or-

ganization of this thesis.

1.1 Application Specific Instruction -set Processor

ASIP (Application Specific Instruction-set Processor) is a programmable proces-

sor that is designed for a specific, well-defined class of applications. An ASIP

is usually characterized by a small, well-defined instruction-set that is tuned to

the critical inner loops of the application code. The following sections describe

benefits of ASIP, application trends of embedded systems, and problems of ASIP

development.

M. APPLICATION SPECIFIC INSTRUCTION-SET PROCESSOR 3

X

U_

Off-the-shelf '

General Purpose
Processor

ASIP

ASIC

Cost- Performance

Figure 1. 1: Advantage of ASIP solution

1.1.1 Benefits of ASIP

Figure 1. 1 shows advantage of ASIP solution. The horizontal axis is cost-performance

ratio and the vertical axis is flexibility. Off-the-shelf general purpose processor

like Intel Pentium processor has high flexibility, but cost-performance ratio of the

general purpose processor is low. On the contrary, although ASIC achieves high

cost-performance, ASIC has lower flexibility. ASIP has higher flexibility than

ASIC has, and achieves higher cost-performance than the general purpose proces-

sor. Hence, ASIP can be one of the key component of SoCs.

 On the other hand, the cost of a SoC design is very expensive. Industry an-

alysts indicate much of the rising cost of deep-submicron IC masks: The cost of

a full mask set approaches $1 million. As a result, it is difficult that designers

change the SoC specification and redevelop chips. ASIP design methods permit

painless workarounds for the design cost problem because ASIP has flexibility.

Hence, flexibility is a key issue in developing SoC. Although ASIC cannot satisfy

flexibility, ASIP can satisfy flexibility.

 In addition, ASIP design methods increase designer productivity. RTL-based

ASIC design routinely includes bugs because complexity of ASIC increases. An

4 CHAPTER 1. INTRODUCTION

ASIP based SoC design method significantly cuts risks of fatal logic bugs and

permits graceful recovery when testers discover a bug. The reason is that designers

develop software instead of hardware logic in complex function fields.

1.1.2 Application Trends of Embedded Systems

When the trends of ASIPs are examined, it is important to examine trends of the

application requirements associated with embedded systems. The trends are as

follows: (1) New wireless handsets and base stations need to support multiple

mode. (2) The evolution of video coding standards are developing from JPEG, to

MPEGI, MPEG2, MPEG4 and so on. Each standard evolution is accompanied

by increase of significant complexity. As a result, many functions currently in

hardware will be performed in software in order to accommodate this increased

complexity and evolving standards. (3) Entertainment machines such as PlaySta-

tion 2, Game cube, Xbox and so on need high performance CG processing. Not

only high quality graphics and presentation but also low price are required for

entertainment applications.

1.1.3 Problems of ASIP development

However, there are still several problems in the ASIP development. First, de-

signers must select an architecture from a lot of candidates when they develop

ASIP, which is called "design space exploration." In addition, the SoC require-

ments allow much shorter time for time-to-market. Hence, designers do not have

enough time to select an optimal architecture from a lot of designs. Secondly, de-

velopment cost of hardware and software development environment is very large.

Generally, the development cost of hardware and software development environ-

ment is several months or about a year. Therefore, reducing the development cost

is a key issue in the ASIP design.

1.2. ASIP DESIGN SPACE EXPLORATION FLOW 5

Rapid Prototyping

Evaluation

Iteration

Iteration

RTL Design

Iteration

Logic Synthesis

Iteration

Layout

Figure 1.2: Desig n Space Exploration Flow.

1.2 ASIP Design Space Exploration Flow

ASIP design space exploration flow is shown in Fig. 1.2. The flow when design-

ers search the design space of ASIP suitable for a target application is as follows:

(1) Rapid Prototyping, (2) Evaluation, (3) RTL Design, (4) Logic Synthesis, and

(5) Layout. In the first step, designers consider architecture and make prototype
to evaluate the architecture. In the second step, architecture is evaluated using

prototype made in previous step. To evaluate ASIP, software development envi-
ronment such as compiler, simulator and assembler is needed. The reason is that

the execution cycle when the target application is executed by ASIP is key factor

to measure design quality. If the evaluation result does not fulfill the requirements

of design constraints, designers return back to the previous step and consider an-

other architecture candidates. If the evaluation result matches design constrains,

designers write RTL model and proceed to the following design step. Of course,

when fatal violation is occurred in final step, designers return back to the previous

6 CHAPTER 1. INTRODUCTION

step and redesign ASIR To reduce iteration cost, prototyping and evaluation cost

should be reduced. Generally, software environment development cost is on the

order of several months and years. However, the development cost is too large

to explore design space. Hence, software development environment, especially

compiler, strongly needs to be developed rapidly.

1.3 Execution Model of SoC with ASIP

Execution models of embedded system with ASIP are categorized into two cat-

egories. One is interrupt service routine (ISR) model, and the other is operating

system (OS) model. ISR model is used to realize multi-function or single-function

system which execute a task at the same time. OS model is used to realize multi-

function system which executes more than one task at the same time. The follow-

ing sections explain execution models in detail.

1.3.1 Interrupt Service Routine (ISR) Model

In ISR model, function of system is designed using interrupt service routines.

ISRs are located on memory map. Each ISR is executed when interrupt is oc-

curred. Fig. 1.3 shows an overview of ISR model. The system is started by reset

interrupt. When reset interrupt is occurred, reset vector is executed and program

jumps to boot routine. The boot routine processes stack allocation, global variable
initialization, and so on. When the boot routine is finished, the program jumps to
main routine. In main routine, variable initialization is executed. Then, the main

routine waits interrupts. When an interrupt is occurred, the program jumps to in-

terrupt vector and the program jumps to an ISR. ISR processes the function of

system and return to the main routine.

 The benefit of ISR model is simple organization. Hence, small embedded
system applies ISR model. However, management of a lot of tasks using ISR

model is difficult, because this model cannot manage task priority. If the target

system needs real-time task management, OS model is a more suitable solution.

1.3. EXECUTION MODEL OF SOC WITH ASIP

 Program Memory

-init

(3) Jump to -main

-main

(4) InterruptSignal V\/1_1

(7) Go back to
main routine

_ISR1

6) Jump to
interrupt service
routine

(1) Reset Signal

Reset

INIT1

INIT2

jump -main

(2) J

for (;;);

jump -init

(5)jump _IRS1

(2) Jump to -init

7

 INIT1 jump -IRS1 (5) Jump to interrupt vector

 INIT2

 INITn

Figure 1.3: Overview of Interrupt Service Routine (ISR) Model.

8 CHAPTER 1. INTRODUCTION

1.3.2 Operating System (OS) Model

In OS model, tasks are managed using operating system. OS main routine exe-

cutes tasks and switches contexts to avoid occupying resources of target system.

Fig.1.4 shows overview of OS model. When reset interrupt is occurred, program

jumps to boot routine. The boot routine executes stack allocation, global variables
initialization, and so on. Then, the program jumps to program loader. The pro-

gram loader loads the OS main routine, and locates to memory. When loader is
finished, the program jumps to OS main routine. OS main routine executes tasks.

When a task is switched, loader stores the context of task and loads new task data

to memory. In each task, the priority of task and the sleep time of task can be set

using system calls that depend on OS.

 The benefit of OS model is that designers may not consider resource man-

agement and task management. Hence, development cost of application can be

reduced, and portability of application in OS model is better than that in ISR

model. However, designers must be familiar with OS and system calls to develop

embedded system, especially real-time system.

1.3. EXECUTION MODEL OF SOC WITH ASIP 9

Program Memory

-init

(3) Jump to -main

-main

(4) Go to Program
Loader

jump -main

(2)Jump to -init

(5) Return to
main routine

((10) Return to execute
a 0 s

10) ur to x
nother task

(6) Go to OS
main routine

(9) Jumpt to task 1

(1) Reset Signal

OS main routine

Task 1

jump -init

(8) Jump to interrupt vector

V V I- Reset

V\/,- INT1
(7) Interrupt INT2

7 from timerINTn

Program loader

Figure IA: Overview of Operating System (OS) Model.

10 CHAPTER] . INTRODUCTION

1.4 Role of Compiler in ASIP

Previous section explains execution model when ASIP is used in SoC. In ISR

model, applications of system are developed as ISR. In OS model, applications of

system are developed as task. Designers develop ISR or task using high level lan-

guage, such as C language, C++ language and so on, or assembly language. Using

assembly language, designers can describe optimal applications for the target pro-

cessor, but the development cost is too large to release products within a short

design time. Although the code quality of application using high level language is

not higher than the code quality of hand assembly code. However, portability of

application using high level language is much better than that of hand assembly

code.

 Especially, in ASIP design space exploration, it is required that each task of

systems is rapidly developed for target processors. Of course, application de-

velopment time can be reduced when designers use compiler. In addition, when

designers prepare hand assembly code for each processor, iteration cost is so large

that total retargeting time for ASIPs is on the order months or years. As a result,

compiler is very important for ASIP development, and compiler retargeting is a

key issue to explore the best possible architecture.

1.5 Compiler Retargetability

For embedded processors, the interest in retargetable compilers is twofold:

 Retargetability allows the rapid set-up of a compiler to a newly designed

 processor. This can be an enormous boost for algorithm developers wishing

 to evaluate the efficiently of application code on different existing architec-

 tures.

 Retargetablility permits design space exploration. Processor designer is

 able to tune his architecture to run efficiently for a set of source applica-

 tions in a particular domain, recompiling the application for each redesign

 of the architecture.

1.5. COMPILER RETARGETABLLITY 11

From the interest, the retargetable compiler is needed by both algorithm develop-

ers andarchitecture designers. In today's retargetable compiler, several levels of

retargetablility exists. In [4], they are generally categorized into three levels in

compiler retargetability.

 Automatically retargetable level

 The compiler includes a set of parameters that change the characteristics of

 target processors. Retargeting time is on the order of minutes and seconds,

 but compilers in this category mainly include parameterized compilers al-

 lowing a narrow range of target processor.

• Developer retargetable level

 The compiler can be retargeted to a wide range of processor architectures,

 but this level compiler requires expertise with the compiler systems. Retar-

 geting time is on the order of months and weeks. Therefore, the developer

 retargetable compiler does not satisfy the design time requirement when the

 compiler is used for design space exploration.

• User retargetable level

 The designer is able to retarget the target processor even when changing its

 instruction-set specification. Retargeting time is on the order of days and

 hours.

 Compilers in automatically retargetable level are mainly parameterized com-

pilers which allow narrow variations of the target processor. The disadvantage in

these compilers is the small range of targets which they support. Compilers in

developer retargetable category supports a wide range of the target architectures.

The disadvantage of these compilers is, however, large development time. As a

result, the goal of the compiler generator for the ASIEP development system should

be user retargetable, because the user retarbetable level compiler widely permits

the architecture design styles and set-up the application development environment

rapidly.

12 CHAPTER 1. INTRODUCTION

1.6 Contribution of this Thesis

A compiler generation method for ASIPs is proposed in this thesis. The proposed

compiler generator permits the design space exploration to find an optimal archi-

tecture from various range of architectures. The proposed compiler generator is

the user-retargetable compiler generator, which uses both of the instruction-set in-

formation and the structural information. From this feature, designers can modify

their design in a short design time, and the compiler generator keeps retarget range

wider than that of the automatically retargetable compiler. The experimental re-

sults show that the modification cost of adding instructions to some processors

and changing the resource features in it is so low that the developer can use this

compiler generator in design space exploration.

1.7 Organization of this Thesis

The organization of the rest of this thesis is as follows: Chapter 2 describes sur-

veys of ASIP development systems. Chapter 3 describes compiler generation

method for the ASIP development system: PEAS-111, which has been developed

in Osaka University. Chapter 4 describes experimental results using the proposed

compiler generation method. Chapter 5 describes discussion of results presented

in the previous chapters. Finally, Chapter 6 concludes this thesis and describes

my future work.

Chapter 2

Related Work

In this chapter, ASIP development environments are surveyed. When designers

develop processor core for embedded systems, they need to design processor core

and software development environment suitable for the target application at the

same time. ASIP development environments have been proposed to evaluate the

processor organization and develop the processor core rapidly. The ASIP de-

velopment environment includes generations of processor core descriptions and

software development environment.

 In the following sections, ASIP development environments that have been pro-

posed is discussed.

2.1 Processor Generator

Conventional approaches to ASIP development can be classified into two kinds.

One is based on "parameterized generic processor core," and the other is based on
46processor specification language

."

2.1.1 Processor Core Generation based on Parameterized Generic

 Processor Core

This category includes PEAS-I [5], Satsuki [6], MetaCore [7], CASTLE [8], and

Xtensa [9].

 13

14 CHAPTER 2. RELATED WORK

 PEAS-I is one of the system which utilizes ASIP optimization method. PEAS-

I has the base processor called PEAS-1 CPU. The PEAS-1 CPU includes ALU,

shifter, multiplier and divider. Users can specify the number of registers in the

register file. The hardware algorithm of multiplier and divider are automatically

selected using the result of target application profiling. Moreover, instructions are

automatically reduced when the profiling result reports that the instructions are

not needed. However, the pipeline stage cannot be changed.

 Satsuki is similar to PEAS-1. In Satsuki, RISC processor, C compiler, assem-

bler are generated from configuration file. In addition, the data and instruction

width of RISC processor can be changed. Hence, designers can optimize CPU to

reduce hardware cost and power consumption.

 MetaCore is an application specific DSP development system. Basic and ex-

tended instruction set is prepared in MetaCore, and users can add custom instruc-

tions to the instruction set. The target architecture specification includes the net-

list level description of the datapath structure and the behavioral description of

instructions. From this specification, software development tools and HDL de-

scriptions of the target processor are synthesized. However, execution units can

be added to one pipeline stage, and changing the number of pipeline stages are

not permitted.

 In the CASTLE system, the target processor's datapath is described in block

diagram. The CASTLE system generates VHDL descriptions of the processor that

specifies the datapath. The feature of CASTLE includes: instantiation for func-

tional units from a module library, automatic input signal conflict resolution by

selector insertion, and generation of VLIW control word for the datapath. CAS-

TLE, however, assumes a base VLIW architecture and cannot change pipeline

stages.

 Xtensa uses a customizable processor core. User-defined instructions de-

scribed in Tensilica Instruction Extension Language (TIE) can be added to the

base processor core. While Xtensa supports both processor generation and soft-

ware development environment generation, user-defined instructions must be ex-

ecuted in restricted cycles. Designers can specify the behavior of new instructions

and the structure of execution stage. However, the number of pipeline stages and

2. 1. PROCESSOR GENERATOR 15

the structure of pipeline stages except for execution stage cannot be changed.

2.1.2 Processor Core Generation based on Processor Specifica-

 tion Language

In AIDL, designers specify operations of each pipeline stage, timing relations, and

cause/effect relations among pipeline stages. Various kinds of processors includ-

ing processors with out-of-order completion can be described in AIDL. However,

it is difficult that designers modify the design because they have to consider vari-

ous kinds of dependency in the inter-instruction behavior.

 Hamabe, et al. proposed a description of clock based instruction behavior and

pipeline stage information including the relationship between hardware units and

the pipeline stage that contains their operations. Since designers must describe

instruction behaviors considering pipeline registers, modification cost of this ap-

proach is larger than those of other approaches.

2.1.3 Comparison with Two Approaches

In this section, comparison with each approach is described. In the first approach,

their processor models usually have basic instruction sets and a synthesizable

ASIP description is generated by adding predefined or user defined instructions to

the basic instruction set. Architectures of these processors ease to develop param-

eterized retargetable compiler, but in many cases have little flexibility on pipeline

structure and instruction variations. Hence, the variety of architecture candidates

by these systems is limited with respect to pipeline stage count, instruction format

and micro-operation for each pipeline.

 In the second approach, the variety of architecture can be described using spe-

cific languages. Therefore, a lot of architecture candidates can be designed and

evaluated using this approach. However, generation of the target compiler from

these languages is more difficult than that of the parameterized target processor

model, because the range of the target architecture is too wide . Since the require-

ment of ASIPs includes wide range of architecture, the second approach is much

superior to the first approach achieving the requirements of the SoC processor.

16 CHAPTER 2. RELATED WORK

2.2 Compiler Generator

Several generation methods of software development tools for embedded systems

have been proposed, and most of them utilize architecture description languages

as their input. Architecture description languages are classified into three cate-

gories depending on the focus of processor specification: (1) the structure of the

processor, (2) the instruction set of the processor, and (3) the structure and the
instruction set of the processor.

2.2.0.1 Description Language Focusing on the Structure of Processor

In the first class, binding and scheduling tasks are executed using the structural

information of the processor. Therefore, yielded compilers can generate high-

quality codes for the target processor. The MIMOLA system[10] is an example
of this approach. The MIMOLA system generates a set of application program

development tools including a compiler, for a target architecture. The target pro-

cessor is specified using the same MIMOLA language. The compiler generated

by MIMOLA is called MSSQ, which is used to analyze the target application and

to make a data graph called i-tree. However, because designers must specify inter-

connections among hardware resources using a selector, it is not easy to modify

the target machine description.

2.2.0.2 Description Language Focusing on the Instruction-set of Processor

The second class includes nML[11] and ISDL[12], which are examples of the

instruction set architecture description language approach. Because these methods

focus on the instruction set, modification of the instruction set is easier than using

the method focusing on the structure of the processor. CBC compilers can be

generated from a compiler description in nML. However, it is not possible to

specify multi-cycle or multi-word length instructions in nML.

 The ISDL system also generates a compiler assembler and simulator. In ISDL,

constraints on parallelism are specified through illegal operation groupings. Hence,

complex architectures which permit using instruction set parallelism can be de-

scribed in ISDL. However, these methods do not have the ability to specify pipeline

2.2. COMPILER GENERATOR 17

execution information. Therefore, the compiler cannot generate efficient object

codes for pipeline processors.

2.2.0.3 Description Language Focusing on the Structure and the Instruction-

 set of Processor

The last class includes LISA[l 3], FlexWare[14], HMDES [15] and EXPRESSION

[16] whose languages focus on both the structure and the behavior of the proces-

sor. Because these languages consider both the structure and the behavior, the ar-

chitecture information used in instruction scheduling, such as pipeline execution

information, can be described in these languages. When ASIPs are designed us-

ing HW/SW co-design methodology, area, performance, and power consumption

are required to be evaluated. To evaluate the design quality, synthesizable HDL

models and target compilers are needed. However, hardware resource information

cannot be described in these languages.

 LISA has been developed for processor architecture design. LISA inherits

concepts from nML. Moreover, pipeline execution information can be described

in LISA language. While an assembler and a cycle-accurate simulator can be

generated using LISA, no result is reported that indicates compiler generator in
LISA so far.

 FlexWare contains the CODESYN compiler and the Insulin simulator for ASIPs.

The simulator uses the VHDL simulation model of a generic parameterized ma-

chine. User-defined instructions can be described by the combination of generic

instructions. Designers can specify execution cycles for each instruction, but can-

not specify pipeline organization. Moreover, resource conflict information con-

sidering with pipeline execution is not described in FlexWare.

 HMDES language is developed by IMPACT project. HMDES language has

a structurallbehavioral representation. Information is broken down into sections

based on a high-level classification. HMDES, however, allows restricted architec-

ture types. Moreover, to modify the architecture, designers may change a lot of

sections. It is not suitable for design space exploration that the modification cost

is too large.

 EXPRESSION has a mixed-level approach to facilitate design space explo-

18 CHAPTER 2. RELATED WORK

ration. Moreover, EXPRESSION provides support for reservation tables by ex-

tracting them from the structural description. However, synthesizable hardware

description cannot be generated by EXPRESSION.

 The PEAS-III system uses structural and behavioral information to generate

target compilers and synthesizable HDL models. When ASIPs are designed using

the PEAS-III system, FHM [17] is used for resources of ASIPs, which has many

parameters such as bit width, implementation algorithm and so on. These param-

eters of resources affect the throughput and latency of resources. The proposed

compiler generator produces the target compiler rapidly, when designers change

the parameters of resources. Using the PEAS-111 system, designers can efficiently

evaluate numerous architectural candidates in terms of programs, clock frequency,

hardware cost and power consumption of the processor core.

2.3 Summary

In this chapter, ASIP development environments have been discussed. The ASIP

development environment includes generation of both processor and software de-

velopment environment, such as compiler generation, instruction-set simulator

generation, and so on. In processor generation, two methods have been proposed.

One is the method based on parameterized processor core, and the other is the

method based on processor specification languages. In the method based on pa-

rameterized processor core, the processor core is prepared and designers specify

the parameters of the processor core and add special purpose instructions to the

base processor. One of the features of this approach is that the target compiler

and other software development environments can be produced easily. However,

the class of the target processor is limited. In the method based on processor

specification languages, the instruction set and the structure of the processor core

are described using the language. This approach supports much wider architec-

ture class than the former approach. To generate the processor core, however, the

number of pipeline stages or execution cycles are limited in this approach.

 On the other hand, it has been proposed that the software development envi-

ronment for ASIPs is produced from architecture specification languages. These

2.3. SUMMARY 19

methods are classified into three categories. In the first approach, the target com-

piler and simulator are generated from the structure of the processor core that is

described using RT-level description. This approach supports various type of the

architectures like heterogeneous register files, non-orthogonal datapath, and so on.

It is, however, difficult to modify the architecture because abstraction level of the

description is low. In the second approach, the target compiler and simulator are

produced from instruction behavior. In this approach, designers can modify the

architecture easily because the abstraction level of the description is higher than

RT-level description, but the , class of the target architecture is limited rather than

the first one. In the third approach, the target compiler and simulator are gener-

ated from the structure of the processor and the behavior of the instructions. This

approach supports larger class than the second one. Moreover, the modification

cost is smaller than that of the first one.

 In next chapter, the proposed compiler generation method is explained in more

detail. The compiler generator based on the proposed generation method is a sub

system of the PEAS-111 system, which is one of the ASIP development system.

PEAS-111 can generate synthesizable HDL description and software development

environment such as assembler and compiler using the architecture specification

language.

Chapter 3

Compiler Generation for ASIPs

3.1 Introduction

There are two approaches for realizing application domain specific embedded sys-

tems. One is to use general purpose processors and ASICs (Application Specific

Integrated Circuits), and the other is to use ASIPs (Application Specific Instruc-

tion set Processors). One of the advantages of the second approach is that better

implementations can be realized by introducing cost-effective instructions suit-

able for specific applications. In the ASIP design, it is also important to search for

a processor architecture that matches the target application. To achieve this goal,

it is essential to estimate the design quality of architecture candidates that have

different instruction sets, pipeline stage counts, and combinations of hardware

resources. Here, design quality indicates area, performance, and power consump-

tion of a design. Because there are many architectural parameters, there exist a

huge number of processor architecture candidates, which makes it difficult to find

an optimal architecture in a short design time. In this case, the target compiler

plays an important role in estimating the design quality of processor candidates.
 PEAS-111 (Practical Environment for ASIP development) [1] is an interactive

ASIP design system. The PEAS-111 system accepts the processor architecture

description as input and generates a synthesizable HDL description of the tar-

get processor core, where user-defined instructions and interrupts can be easily
implemented. The processor specification description includes: (1) architecture

21

22 CHAPTER 3. COMPILER GENERATION FOR ASIPS

parameters such as pipeline stage counts, the number of delayed branch slots, (2)
declaration of resources included in the processor, such as ALUs and register files,

(3) instruction format definitions, (4) micro-operation descriptions of instructions,
and (5) interrupt definitions including cause conditions and micro-operation de-

scription of interrupts. While a processor architect can design a processor in a

few days using PEAS-111, development of a compiler for a target processor took

several months.

 This thesis proposes a compiler generation method for the PEAS-111 system.

Experimental results show that various compilers and synthesizable HDL descrip-

tions can be generated from the same architectural description and designers can

analyze trade-offs among hardware cost, performance and power by using PEAS-

Ill.

 The rest of this chapter is organized as follows. Section 3.2 explains the

PEAS-111 system which is the ASIP development environment. Processor Model

of PEAS-Ill is explained in section 3.3. Section 3.4 explains the proposed com-

piler generation method. Section 3.5 presents input descriptions of the compiler

generator. In section 3.6, compiler generation flow is explained. Finally, section
3.7 summarizes this chapter.

3.2 PEAS-111

3.2.1 Organization of the PEAS-111 system

The organization of the PEAS-111 system is shown in Fig. 3.1. The architecture

specification is written on the PEAS-111 input system. The designer selects re-

sources from Flexible Hardware Model. The design quality is estimated from the

architecture parameter and the selected resources. The hardware description of the

processor core is produced by the HDL-generator. The HDL-generator analyzes

the micro-operation description and makes the data flow graph of the target pro-

cessor. Then, the target HDL is generated using the data flow graph. The software

development environment generator including the compiler generator also pro-

duces the compiler and the assembler description. The proposed compiler gener-

3.2. PEAS-III 23

Architecture

Specification

Application

Program

I I
kh~ A

Flexible

Hardware Model

Management System

Flexible

Hardware Model

:-BqhqVi&. Level. I

.RT.L.evOl

::Gat*, I.Lii~

0 Input System

4w 4W

0

_W

0 HDL Generator

Compiler

Assembler

Simulator
Debugger

_W

Architecture

Information

4W

_W

Design Quality
Estimator 0

_W

Object
Code

Behavior Model

HDL Descriotion

Cycle Accurate

Model HDL Desc.

Synthesizable

HDL Description

Estimation

Report

Hardware Cost

Max Frequency

Power

Execution Cvcle

Figure 3. 1: Organization of the PEAS-Ul system.

ator extracts instruction set information and structural information from the input

system, and generates the mapping rules for the target compiler and scheduling

information.

3.2.2 Flexible Hardware Model

Flexible Hardware Model is parameterized resource model . The parameter in-

cludes bit width, interface type, hardware algorithm and so on . The abstraction

level of description, such as behavior level, RT level , and gate level, is also in-

cluded in the parameter. When a designer would like to change the characteristics

of the resource, he only changes the parameter of FHM . FHM has the functions

that are used in micro-operation description explained below. For example, ALU

has addition, subtraction, logical-and, and logical-or functions. These functions

24 CHAPTER 3. COMPILER GENERATION FOR ASIPS

are defined in each class. Hence, when a designer changes the parameters of re-

sources, he does not have to change the other part of descriptions.

3.2.3 Micro-operation Level Processor Specification

The micro-operation level processor specification consists of six major steps as

follows: (1) Design Goal and Architecture Parameter Setting, (2) Resource Dec-

larations, (3) Instruction Format Definition, (4) Interrupt Condition Definitions,

(5) Interface Declarations, (6) Micro-operation Descriptions of instructions and
interrupts. The following sections explain each part briefly.

3.2.3.1 Design Goal and Architecture Parameter Setting

In this step, the designer specifies the design goal of area, clock frequency, execu-

tion cycle count and power consumption. In addition, architecture parameters for

pipelined execution are specified. The architecture parameters include the follow-

ing items: the number of pipeline stages, the number of delayed branch slots,

3.2.3.2 Resource Declaration

In the resource declaration step, Flexible Hardware Models are selected from

FHM-DB, and instance names and parameter values for them are specified when

the designer declares the resource instance. Moreover, since the estimation re-

sult of each resource instance is displayed on the GUI, called FHM Browser, the

designer can select the resource considering the area, the delay and the power

consumption of resources.

3.2.3.3 Instruction Format Definition

In this step, the instruction type including bit fields, field type, field name is de-

fined. The instruction format including ope-code binary representation is defined

using the instruction type. In the micro-operation description phase, the bit field

name can be referred when the designer specifies the storage.

3.3. PROCESSOR MODEL OF PEAS-III 25

3.2.3.4 Interrupt Condition Definitions

Interrupt definitions include the interrupt conditions and the number of execution

cycles of each interrupt.

3.2.3.5 Interface Declaration

The interface declaration includes the entity name, the direction of interface, bit

width, and the attribute. The attribute of the interface includes clock, reset, in-

struction-memory-address-bus, instruction -memory -data-bus,

data-memory -address -bus, data-memory-data-bus, and user-defined-port.

3.2.3.6 Micro-operation Descriptions of Instructions and Interrupts

In the micro-operation description step, the designer defines the behavior of each

pipeline stage and interrupt behavior. Operations of the processor such as setting
specific values to the special registers and jumping to the interrupt handler routine

are described in the interrupt definition. The micro-operation consists of the three

kinds of statements: (1) Operations that are executed by resources, for example,

arithmetic and logic operation, register read/write are included in this category,

(2) Data transfers between resources, and (3) Conditional execution of operations
and data transfers.

3.3 Processor Model of PEAS-111

The processor model of PEAS-III is explained in this section. Figure 3.2 shows

the processor model of PEAS-111. The processor model consists of resources, con-

troller, and pipeline registers. The number of pipeline stage can be changed. The

designer can select resources in each pipeline stage. The controller and pipeline

register is generated by HDL generator [1]. The HDL generator makes data flow

of each instruction from micro-operation description. Each data flow is merged

and selectors that arbitrate resource conflict are inserted by HDL generator.

26

Stage 1

Stage 2

Stage N

 CHAPTER 3. COMPILER GENERATION FOR A SIPS

 Resources Controller

 Pipeline stage

 ------------ -----------

 Resources Controller

 F- Pipeline stage

 ------------ -----------

 Resources Controller

 F77 Pipeline stage
 - - - - - - - - - - - - -

Figure 3.2: The processor model of PEAS-111.

Resources Controller

Pipeline stage

I

Resources Controller

I v

I Pipeline stage

I

Resources C ontroller

I
Pipeline stage

3.4. COMPILER GENERATION FOR PEAS-III 27

3.4 Compiler Generation for PEAS-111

Figure 3.3 shows the relationship between the proposed compiler generator and

generated compiler. The instruction information and structural information, which
are inputs of the compiler generator, are produced from the PEAS-111 input sys-

tem. The proposed compiler generator makes mapping rules, resource usage, and

storage specification for the target compiler. The target compiler produced by the

proposed compiler generator executes the following steps: (1) Parsing the source
code, (2) Machine independent optimization, (3) Syntax tree rewriting and pattern

matching, (4) Register allocation and Spill code insertion, (5) Instruction schedul-

ing, (6) Machine dependent optimization, and (7) Assembly code output. In steps

(1) and (2), the compiler generator does not touch their processing for each design
because these steps are independent of the target processor. In step (3), syntax tree

rewriting and pattern matching are executed using the mapping rules, which are

rewriting rules of the target processor. For example, in Fig. 3.3, when the target

processor has three rules: (a) regi <= mem, (Load regi), (b) regi <= regi +

(Inc regi), and (c) meM2 <= regi (Store regi), syntax tree meM2 <= MeMl +
are rewritten using Load regi, Inc regi, and Store regi. Steps (4), (5) and (6) are

executed to reduce the code size and execution cycles, respectively. Finally, the

assembly code is emitted in step (7).

 The following sections explain the architecture descriptions which are used in

the proposed compiler generator, and the flow of the proposed compiler genera-

tion.

3.5 Input Descriptions of the Compiler Generator

The description used in the compiler generator includes the following information:

(1) primitive operations used by resources, (2) timing specifications of resources,

(3) storage-unit specifications for memory and register allocation, (4) instruction
set specification including behavior of instructions and usage of resources, and

(5) the processor structure by resource connection graph. The rest of this section
describes these description in detail.

28 CHAPTER 3. COMPILER GENERATION FOR ASIPS

C input

PEAS-111

Input System

Extract

instruction-set
information

Instruction-set
eTD D

 INC
 LOAD
 STORE

Create mapping rules
for rewriting and
pattern matching.

'
optimizatio

pptimizatiq

C
Darse

j 19igh level Internal epresenta~tion
 Front end

(a) meml <= reg

(b) reg <= reg + 1

(c) reg <= mem2

I

Mapping Rules

I

Extract

structural

information
Storage spec. for

register allocation.
I

Tree Rewriting

and Pattern Matchin

 Rule (3

meml meml Rule (2)
 + +

 mem21 regl 1

Rule (1)

mem2

Back end

4.

'R
egister allocation

Spill code Insertion

Instruction Scheduling

Machine dependent

Optimization -

Target Compiler

Output

assembler code.

Figure 3.3: Relationship between the Proposed Compiler Generator and Gener-

ated Compiler.

3.5. -INPUT DESCRIPTIONS OF THE COMPILER GENERATOR 29

addition f
 interface

 input

a

b

 output

c

 behavior

 c = a + b;

 Figure 3.4:

f type fintj width 13211
f type f intj width 13211

I type f intj width f 3211

 Example o f Primitive Operation Used By Resources.

3.5.1 Primitive operations used by resources

Resources contain particular primitive operations, which represent the behavior of

resources. The primitive operations are described using sentences. The primitive

operations are used in the timing specification of resources.

 An example of primitive operation used by resources is shown in Fig. 3.4.

The function "addition" has two input ports and one output port. The input and

output port data type are 32 bits integers. The operation "+" is one of the primitive

operations.

3.5.2 Timing specifications of resources

The timing specification of resources includes throughput and latency information

when functions of resources are used. The throughput and the latency are used for

instruction scheduling. This information can be acquired from FHM-DBMS[18].

Hence, when the designer changes the resource parameters including implemen-

tation algorithms, specifications for resources are generated from FHM-DBMS.

30 CHAPTER 3. COMPILER GENERATION FOR ASIPS

ADDERf
 port

 input f in 1, in2
 output f outl I

I
 function

 addition

 interface

 inl fal
 in2 f bj
 outl f cl

 latency 11
 throughput f 11

 Figure 3.5: Example of Timing Specification.

 An example of timing specifications of resources is shown in Fig. 3.5. ADDER

has the addition function. The latency and the throughput of the addition of

ADDER are I cycle and I cycle, respectively. The latency and throughput sections

are used when calculating the throughput and latency of instruction.

3.5.3 Storage units specifications for memory and register al-

 location

The specification for a storage unit consists of available flag, storage class, re-

source, size of storages, bit width, and data type. The specification for storage

unit is used for memory and register allocation in the generated compiler. The

available flag indicates that the storage can be allocated by the compiler. The

storage class indicates the usage of storage such as data register, program counter,

data memory, instruction memory, stack pointer and frame pointer. The resource

3.5. INPUT DESCRIPTIONS OF THE COMPILER GENERATOR 31

GPR f
 class f reg

 resource GPR

 avail f T
 number 32

 width f 32 1
 data-type f any

Figure 3.6: Example of Storage Unit Specification.

indicates hardware resource. The number indicates the number of storage. The

width means data width. The data type means what kinds data type can be treated.

 An example of storage unit description is shown in Fig. 3.6. The "GPR"

belongs to the register class, and uses resource "GPR". Moreover, the available

flag field is T, which means that the storage GPR can be allocated by the compiler.

The number of storages which belong to GPR is 32, and bit width is 32. The GPR

treats any data type. This means that the GPR has 32 general purpose registers,

and each register has 32 bits.

3.5.4 Instruction set specification including behavior of instruc-

 tions and usage of resources

The specifications for an instruction set include operand declaration, instruction

format, usage of resources, and behavior of instruction. Operands of instruction

are declared in operand field. Operands are declared using addressing modes.

Table 3.1 shows addressing modes. First column shows addressing mode, and

second column shows description of addressing mode. The "REG" is the storage

instance which belongs to register class, and the "MEM" is the storage instance

which belongs to memory class. Format of instruction is declared in format field.

The format of instruction is used to make assembler file format. Resources and

functions which are used by the instruction are described in functions field. Usage

32 CHAPTER 3. COMPILER GENERATION FOR ASIPS

Table 3. 1: Addressing Mode.

Addressing Mode Description

Register direct REG

Register indirect [REG,disp]
Memory direct @MEM

Memory indirect @[MEM,disp]
Immediate #Imm

of resources is used in generation of the scheduling information to avoid resource

conflict. Behavior of instruction is used for instruction mapping. Behavior is

represented using combinations of operators included in "C" language such as
64 64*" + and so on.

 An example of instruction description is shown in Fig. 3.7. The instruction
"ST" has two operands . The operand "a" uses register-direct addressing mode

using GPR register, and the operand "b" uses register-indirect addressing mode.

The data type of both operands are INT32toO. This data type is user-defined data

type. The function field describes resource and function usage of each pipeline

stage. The behavior of instructions is described in the behavior field. The behavior

of "ST" instruction includes data write and address increment.

3.5.5 Processor structure by resource connection graph

The structure of the processor is represented by a resource connection graph.

Nodes in the resource connection graph correspond to the components in the pro-

cessor, and the edges in the graph correspond to the resource connections. The

processor structure is created from a micro-operation description [1]. Since a re-
source connection graph is generated, designers can concentrate on the instruction

design.

 An example of a processor structure description is shown in Fig. 3.8. The

resource "ADDERO" belongs to the resource class ADDER. The ADDERO is in

the third pipeline stage, and connects to GPR.

3.5.

ST

I

INPUT DESCRIPTIONS OF THE COMPILER GENERATOR

operand I
 GPR

 GPR, disp]:DMEM

format
 "ST" a b

I functions
 stage(l)

 PC.read
 IMEM.load-word
 PC.inc
 IR.read

 stage(2)
 GPR.readO(a)

 GPR.readl

 stage(3)
 ALUO.addition

I

 stage(4)
 DMEM.store(b)
I
 stage(5)

behavior
 *b = a;

 b = b + 4;

1

INT32toO

INT32toO

a;

b;

Figure 3.7: Example of Instruction Set Description.

33

34 CHAPTER 3. COMPILER GENERATION FOR ASIPS

ADDEROf
 class f ADDER I

 stage f 3 1
 connection

 out 1 f
 GPR.in4

Figure 3.8: Example o f Processor Structure Description.

3.6 Compiler Generation Flow

In this section, compiler generation flow is explained. The generation flow is as

follows: (1) analysis of the target instruction-set, and categorizing the instructions

using the analysis result, (2) mapping rule generation for code emission, and (3)

scheduling information generation for code scheduling. The following section

explain each step.

3.6.1 Information Analysis

The proposed compiler generator analyzes the instruction set. The target instruc-

tion set must include the minimum set of instructions which can compile any

source code in C language. This result is used in the step of mapping rule gen-

eration. The proposed compiler generator examines the following cases: (1) All

operations, which can be written in C language, are included in the target instruc-

tion set, (2) Load and store instructions are included in the target instruction set,

and (3) Control instructions are included in the target instruction.

3.6 COMPLLER GENERATION FLOW 35

3.6.2 Mapping Rule Generation

Mapping rules are created by the proposed compiler generator. The proposed

compiler generator classifies target instructions into several categories . From
these categories, mapping rules are generated. Instructions can be classified into

the following categories: (1) arithmetic and logical instructions, (2) control in-

structions, (3) load and store instructions, (4) stack manipulation instructions , and
(5) special instructions. The rest of this section explains these categories.

(1) Arithmetic, Logical and Compare Instructions

The instructions whose behavior is written by using arithmetic , logical and com-

pare operations, are categorized into arithmetic, logical and compare instructions,

respectively. Moreover, the compare instructions are categorized into two cate-

gories. One involves instructions writing the result of comparison to register, and

the other involves instructions writing the result of comparison to condition code .

When the result of the compare instruction is written to register, the behavior of

compare is that of relational operations, such as "less than ," "greater than," and so

on. When the condition code is issued, the behavior of comparison is subtraction

and updating of the condition flags including zero flag, carry flag , negate flag, and

overflow flag. The proposed compiler generator analyzes these instructions and

generates the mapping rules.

(2) Control Instructions

The instructions, which have the effect of changing the value of the program

counter, are categorized into control instructions. Control instructions include

conditional branch, jump, and function call. The conditional branch is described

using an "if" statement with condition. The jump instruction is described using

an "if" statement without condition. The function call is described using an "if"

statement and assignment of the value of the program counter to the link regis-

ter or the stack. The proposed compiler generator categorizes and maps these

instructions to the syntax tree of the compiler.

36 CHAPTER 3. COMPILER GENERATION FOR A SIPS

Table 3.2: The assignment rules between condition code and relational operations.

Condition code Relational operations

z == 1

z == 0

N == 0

N == 1

N==O && Z==

0

 Moreover, the proposed compiler generator checks the condition of "if" state-

ment. When the relational operations are used in the condition, the compiler gen-

erator assigns conditional branch instructions to syntax tree using each relational

operation. When the conditional code is used in the condition of branch, the pro-

posed compiler generator assigns branch instructions to the syntax tree using the

rules, which are explained in table 3.2. Table 3.2 shows the assignment rules from

condition code to relational operations. In table 3.2, 'Z' denotes zero flag, 'N'

denotes negate flag. '1' denotes true value and '0' denotes false value.

(3) Load and Store Instructions

Load and store instructions are instructions whose behaviors include data transfers

from memory to register and vise versa. The proposed compiler generator checks

the data type and storages including register files and memories when the map-

ping rule of load/store is generated. The algorithm of mapping rule generation is
summarized as follows.

1. Load instructions that move data from memory to register are obtained from

 a target instruction set.

2. Store instructions that move data from register to memory are obtained from

 a target instruction set.

3.6. COMPILER GENERATION FLOW 37

3. Conditions that are used in rule selection for syntax tree rewriting are made

 from manipulating data type and storages.

(4) Stack Manipulation Instructions

In the compiler, memory space of parameter and local variable are accessed using

stack pointer and frame pointer. When function calls are executed, parameter

values are pushed to stack. The proposed compiler generator selects such stack

manipulation instructions. The selection algorithm is as follows.

1. Load and store instructions are obtained from a target instruction set.

2. Instructions that can use the stack pointer and frame pointer are selected

 from load and store instructions.

3. Data width is checked and obtained from instructions which have been se-

 lected in the previous step.

These stack manipulation instructions are used as spill and reload instructions.

 Fig.3.9 shows memory layout of stack frame. The stack frame consists of

function parameters, return address, frame pointer, and local variables area. The

stack manipulation instructions are used for storing data, and loading data when

function is called. The function call instruction selected from control instructions

includes the return address assignment to link register. The value of link register

is stored to stack frame after the function has been called. Address calculation

instructions for local variable area allocation is selected from addition instructions

or subtraction instructions.

(5) Special Instructions

Special instructions such as complex multiply and accumulate, trap instructions

and co-processor control instructions determine the characteristics of the proces-

sor. In the proposed compiler generator, special instructions are represented using

Compiler-Known-Functions. These functions directly replace instructions instead

of constructing a usual function call. The proposed compiler generator checks

38 CHAPTER 3. COMPILER GENERATION FOR ASIPS

Local Variable

Arguments

Previous FP

Return Address

Previous Frame

41 SP

-9 FP

Figure 3.9: Memory Layout of Stack Frame.

3.6. COMPILER GENERATION FLOW 39

ckf prototype f
 void complexMAC (unsigned int

I
unsigned int);

CKF-complexMAC

 operand f
 GPR UInt3 1 toO a;

 GPR UInt3 I toO b;

 ... (snip)
 behavior

 complexMAC (a, b);

Figure 3.10

Function.

: Example of Special Instruction Definition using Compiler-Known-

the data type and storages used in the Compiler-Known-Functions,

them to the target compiler.

and annotates

 Figure 3. 10 shows an example of special instruction definition in the proposed

compiler generator. In the ckf prototype section, the user defines Compiler-

Known-Functions to execute special instructions. In instruction definition, the

user describes the behavior using Compiler-Known-Functions, which he defines

in the ckf prototype section. The proposed compiler generator produces the rules,

which are specified to emit special instructions when Compiler-Known-Functions

are used in input C source code.

40 CHAPTER 3. COMPILER GENERATION FOR ASIPS

Table 3.3 : Parameters of ZOL.

(1) Method specifyin
dress

g loop end ad- (2) Method specifyin
of loop instructions

g the number

Loop counter size

Start address size

(End address size)

Start address size

The number of Instruction

Instruction Buffer

The number of special register sets (for loop nesting)

(6) Zero Overhead Loop (ZOL)

Zero Overhead Loop instructions can be reduced loop overhead including com-

pare instructions to check the end of loop, and jump instruction to return to
the beginning of loop. ZOL is used by many commercial DSP architectures

[19, 20, 21, 22]. ZOLs of commercial DSPs are classified into three category:

(1) Method specifying loop end address, (2) Method specifying the number of
loop instructions, (3) Method using continue instruction. However, taking into

account of the number of instructions when ZOL of each category is executed,

method (3) is not superior to methods (1) and (2). The instruction counts of each

method is: (1) rn x i + 2, where the loop end address setting and the loop begin

address are specified I instruction, and the number of loop body instructions is m

and iteration is i times, (2) m x 1+ 2, where the loop end address setting and the

number of loop body instructions are specified 1 instruction, and the number of

loop body instructions is m and iteration is i times, (3) m x i + i + 1, where the

continue instruction is I instruction, and the number of loop body instructions is

rn and iteration is i times. From computational costs, in the proposed compiler

generation method, ZOL methods (1) and (2) are supported.

 Fig.3.3 shows parameters of ZOL. The common parameters of each ZOL

method are loop counter size and the number of special register sets. Moreover,

the method (1) has the start address size, and the method (2) has the start address

size, the number of instructions, and instruction buffer that is used as local cache.

3.6. COMPILER GENERATION FLOW 41

SETEND f
 operand

 label any a;

 EADDR any b;

 format
 "SETEND" a

I

 ... (snip)
 behavior
 b = end-set(a);

Fig ure 3. 11: Example of ZOL instruction (SETEND).

 The input format to specify ZOL parameters is described using storage spec-

ification and instruction behavior specification. If the designer would like to use

method (1), he describes loop counter, start address register in storage specifi-

cation. If the designer would like to use method (2), he specifies instruction

counter. Then, he describes the instruction using iter-seto which means setting

iteration count, start-seto which means setting start address, loop-starto which

means starting the loop, end-seto which means setting loop end address. The pro-

posed compiler generator detects the ZOL instructions and registers, and outputs
to ZOL internal representation. Mapping rule of ZOL internal representation is

assigned pseudo-instructions. When ZOL instructions are defined, the compiler

generator also produces the filter for ZOL instruction. The filter is used to change
the instruction format from pseudo-instructions to real instructions. The reason

why pseudo-instruction is used is that the number of instruction is not determined

before assembly code is emitted.

42 CHAPTER 3. COMPILER GENERATION FOR ASIPS

3.6.3 Generation of Scheduling Information

The compiler generator produces scheduling information. The algorithm is shown

in Fig. 3.12. The generation of the scheduling information involves the following

3 steps: instruction classification, resource tracing, and throughput and latency

calculation.

 In the instruction classification step, instructions are classified by resource us-

age in the instruction and, its throughput and latency. For example, if the "xor"

function and addition function use the same resource such as ALU and these func-

tions have the same throughput and latency, these instructions are classified into

the same class. In the resource tracing step, to obtain connections of function

interfaces between resources, the compiler generator traces the resource graph

translated from the processor structure using a resource connection graph. In the

throughput and latency calculation step, the throughput and latency of instructions

are calculated using the throughput and latency of the resources. The maximum

value of all pipeline stages determines throughput, which is the ratio of instruc-

tions per cycles. Latency is the total value of the resource latencies from the

execution stage to the write-back stage.

3.7 Summary

In this chapter, the compiler generation method for PEAS-111 is proposed. The

PEAS-111 system is one of the ASIP development systems. Designers describe

processor specification using the PEAS-111 input environment. The HDL genera-

tor and the proposed compiler generator get the description from the input envi-

ronment. Then, the HDL generator output the target processor description with

accessing FHM-DBMS. FHM is parameterized resource model. When designers

would like to change the characteristics of resource, he only changes the parame-

ters of resource. Moreover, FHM has estimation method which produces hardware

cost, delay time, power consumption, throughput cycle, and latency cycle. From

this estimation result, the user can select the best solution from a lot of candidates

easily.

3.7. SUMMARY 43

H Instructions are classified by resource and function.
while !(all instruction classes are calculated.

 H "ready" is a set of write functions.
 ready GetReadySet;

 while pipeline stages from execute stage
 to write storage stage are calculated.

 while !(all paths which are in
 same pipeline stage are calculated.

 H A set of next resources
 nextReady = GetPredecessors(ready);

 H Get throughput and latency
 H which is used by this instruction.

 throughputTemp = GetThroughput(ready);
 latencyTemp += GetLatency(ready);

 if (throughput > throughputTemp

 throughput = throughputTemp;

 ready = nextReady;

 latency += latencyTemp;

Figure 3.12: Algorithm of scheduling in formation generation.

44 CHAPTER 3. COMPILER GENERATION FOR A SIPS

 The proposed compiler generation flow is as follows: (1) analysis of the tar-

get instruction-set, and categorizing the instructions using the analysis result, (2)
mapping rule generation for code emission, and (3) scheduling information gen-

eration for code scheduling. In step (1), instructions are categorized into the fol-

lowing categories: (a) each arithmetic, logical and compare operation such as ad-

dition, subtraction and so on, (b) control instructions such as jump and branch, (c)

load/store instructions, (d) Compiler-Known-Functions for special instructions. In

step (2), mapping rules for code emission are generated. Mapping rules produce

the relationships between internal representations of compiler and target instruc-

tions. In arithmetic, logical, and compare operations and their combinations, re-

lationship between one instruction and one mapping rule can be made. However,

in if-then-else statements, function call, and address calculation instructions, re-

lationship one instruction and one mapping rule cannot be made. In the proposed

compiler generation method, the instruction for the case of multiple instructions to

one mapping rule is automatically selected using instruction category. The control

instructions and stack manipulation instructions can be selected using selection al-

gorithm explained in previous sections. In step (3), scheduling information is pro-
duced. When the instructions are scheduled, throughput and latency are required.

The proposed compiler generator calculates the throughput and the latency of the

instruction group which uses the same resources when the member instruction is

executed.

 Next chapter describes experiments to examine the proposed compiler gener-

ation method.

Chapter 4

Experiments

4.1 Experiment 1

4.1.1 Objective

The objective of this experiment is to evaluate the proposed compiler generator
when it is used for many types of instruction sets processors.

4.1.2 Target Processors

The target processors are as follows:

(1) 32 bits RISC instruction set

(a)Architecture Type is Load/Store architecture, Harvard architecture, and pipeline
architecture which has five pipeline stages. (b)Functional Units are load/store
unit, ALU, multiplier, divider, shifter, and address calculation unit. (c)Addressing
modes include direct register access, in-direct memory access. (d)Register file in-
cludes thirty two 32-bit registers.

(2) 16 bits CISC instruction set

(a)Architecture I)rpe is Load/Store architecture, Harvard architecture, and pipeline
architecture which has eight pipeline stages. (b)Functional Units are load/store

 45

46 CHAPTER 4. EXPERIMENTS

Table 4. 1: Design Result of Processor 1 and Processor 2.

Processorl Processor 2

Hardware Cost

(K gates)

57.28 77.84

Performance (ps) 6.68 33.5

Power (mW) 30.8 75

Max Clock Fre-

quency (MHz)

89.4 132.9

Table 4.2: Design Time of Processor 1 and Processor 2.

Processorl Processor 2

Design time

(hours)

8 23+59

unit, ALU, multiplier, divider, shifter, address calculation unit, accumulator, and

bit operation unit. (c)Addressing modes include direct register access, direct

memory access, in-direct memory access, memory access with post-increment,

and memory access with pre-decrement. (d)Register file has sixteen 8-bit regis-

ters and eight 16-bit registers. Moreover, eight 32-bit registers can be used. The

32-bit register overlaps two 16-bit registers, and 16-bit register overlaps two 8-bit

registers.

4.1.3 Applications and Environment of the experiment

The FIR filter, a typical DSP application, was used in these experiments. Every

processor was synthesized by a Synopsys Design Compiler using the 0.14 pm

CMOS standard cell library.

4. 1. EXPERIMENT I 47

6

.9 5

4 0
tr-
.9-

L

3 2 0

0

ElDescribed

m Resource

o Generated

I

Processor 1 Processor 2

Figure 4. 1: Amount of Descriptions (lines).

4.1.4 Results

Table 4.1 shows the design result of processor I and processor 2. The design result

includes hardware cost, performance and dynamic power, when the processors

executed FIR filter application.

 Table 4.2 shows the design time for each processor. The design time for pro-

cessor I was 8 hours, which includes the processor I architecture description in

PEAS-111. The design time of processor 2 was 82 hours, which includes 23 hours

for processor 2 architecture description with PEAS-111 and 59 hours for designing

the components for processor 2. From Table 4.2, the processors are designed in a

short time, once the components of the processors have been designed.

 Figure 4.1 shows the amount of description for the proposed compiler genera-

tor. "Described" denotes that designers describe this part. "Resource" denotes the

description of the timing specification. Designers do not have to describe this part

because it is obtained from FHM-DBMS. "Generated" denotes the lines that de-

signers do not describe because this description is produced from micro operation

48 CHAPTER 4. EXPERIMENTS

description which is a part of PEAS-111 machine description.

4.1.5 Discussion

In this experiment, the proposed compiler generator produced compilers for the

target processors that have many types of instruction sets. Moreover, the target

compilers were generated in a short design time. Using the PEAS-III system, de-

signers can describe instruction sets with about 10 minutes per instruction. Hence,

ASIPs and compilers are produced in reasonable time using PEAS-111. The lines

of each description were about 3.5 K lines and 5 K lines, respectively. However,

the lines described for processor I and processor 2 by designers were about 1.2

K and 1.7 K, respectively. This is because the timing specification is produced

by FHM-DBMS, and the structural description is translated from micro operation

description. Therefore, designers can describe processor specifications rapidly.

 In this experiment, hardware cost of processor I was larger than that of pro-

cessor 2, and performance of processor I was better than that of processor 2. The

reason is as follows. In address calculation, many spill codes were generated in

processor 2. 32-bit registers were used when the processor accessed the memory,

but the number of 32-bit registers was not sufficient to store temporal values.

4.2 Experiment 2

4.2.1 Objective

The objective of this experiment is to evaluate the target processor using PEAS-

III, when the configuration of processor core is changed.

4.2.2 Base Processor

The base processor used in this experiment was processor

processor as that in experiment 1.

which was the same

4.2. EXPERIMENT 2 49

4.2.3 Applications and Architecture Candidates

DCT and FIR filter were used in these experiments . Multiply and shift instructions
are used in DCT, and multiply and add instruction are commonly used in FIR filter .
Therefore, the "MAC (Multiply and Accumulate)" and the "MSRA (Multiply and

Shift Right Arithmetic)" instructions were added to the base processor in this

experiment. Moreover, the size of the register file was changed among 8, 16 and
32 registers, because the size of the register file affects the area of the CPU core

and execution cycles. In addition, in order to take trade-offs between hardware

cost and performance into consideration, the number of pipeline stages was varied

among 3, 4 and 5 stages.

4.2.4 Results

Figures 4.2 and 4.3 show trade-offs between hardware cost and performance in

DCT and FIR filter. The horizontal axis in Fig. 4.2 and 4.3 indicates hardware

cost of the processor core, and the vertical axis indicates the execution time of

applications. In Figs. 4.2 and 4.3, "Base" denotes the processor core which has

the processor I instruction set. "MAC" denotes the processor core where MAC

instruction was added and "MAC and MSRN' denotes the processor core where

MAC and MSRA instructions were added to the "Base" processor . As shown in

Figs. 4.2 and 4.3, the trade-offs between hardware cost and performance existed ,

when the size of register file, the number of pipeline stages and the instruction set

were changed.

 Table 4.3 shows modification cost using the PEAS-HI system . The time to

design the base processor was eight hours. The modification cost of pipeline

stages was half an hour. Moreover, adding each MAC and MSRA instruction

takes half an hour. The total modification cost of all these experiments was only

4.1 hours.

50 CHAPTER 4. EXPERIMENTS

 14

 12 Base
 1-11 MAC

 to

 al 0 A MAC and MSRA
 <D

 L)
 r_

 w 8
E
0 1
-- 6

 (D

4 2

 35 40 45 50 55 60 65 70

 Hardware Cost (K gates)

Figure 4.2: Trade-offs Between Hardware Cost and Performance (DCT).

Base

MAC

A, MAC and MSRA

I I I I I I

4.2. EXPERIMENT 2 51

 18 11
A
 16 + Base ----

 0 MAC S
 :,14 A MAC and MSRA

 ID12

 4 A E10
 AL

 a) 8 A

 A I.A 0

6 4

 35 40 45 50 55 60 65 70

 Hardware Cost (K gates)

Figure 4.3: Trade-offs Between Hardware Cost and Performance (FIR Filter).

*9
* Base

* MAC

* MAC and MSRA

4 AA_
AL

A

0

A

I I I I I I

52 CHAPTER 4. EXPERIMENTS

Table 4.3: Modification Cost.

I - I c o s F(h7o-u -r)]
Base processor design 8

Pipeline stage count 1 0.5 x 2
MAC 1 0.5

MSRA 1 0.5

Size of Register File 1 0.3 x 2
Other 1 1.5

I Total I P_ =1:1

4.2.5 Discussion

When designers select the processor architecture, they must consider trade-offs

among hardware cost, performance and power consumption. Using the PEAS-111

system, not only the processor HDL description but also its target compiler are

generated when designers change the configuration of the processor core. There-

fore, designers can explore the design space more efficiently by using the PEAS-

III system rather than other systems including compiler generators, which are

discussed in chapter 2. Moreover, the modification cost of these experiments is

only a few hours, because resource features such as the size of the register file can

be changed only by setting the parameters in the PEAS-111 system. This indicates

that the PEAS-III system enables rapid exploration of the design space.

 In this experiment, MAC and MSRA instructions did not affect the perfor-

mance of processors. This is because the maximum frequency of processors is

reduced on adding the resources, with all reducing execution cycles. Using the

PEAS-111 system, not only execution cycles but also the maximum frequency can

be evaluated.

4.3. EXPERIMENT 3 53

4.3 Experiment 3

4.3.1 Objective

The objective of this experiment is to evaluate whether special instructions can be
efficiently used by the target compiler. Furthermore, code quality is evaluated in
this experiment.

4.3.2 Target Application

The target application was a complex coefficient FIR filter. Each complex data is

organized as follows: (a) bit width was 32 bits, (b) real part of data was from the

16th bit to the 3 1 st bit, (c) imaginary part was from the Oth bit to the I 5th bit, and

(d) the format of each part was a fixed-point number.

4.3.3 Target Processors

The base processor used in this experiment was processor 1, used in the exper-

iment 1. Moreover, special instructions were added to the base processor. The

special instructions were as follows: (1) CMULT calculates complex multiply and

accumulate, (2) SETCPOS sets arithmetic point in the imaginary part, (3) SETR-

POS sets arithmetic point in the real part, (4) ACMCLR sets accumulator value

to zero, and (5) CLOAD moves accumulator value to general purpose registers.

The FIR filter application was written by using compiler known functions, which

operate each special instruction.

4.3.4 Results

Figure 4.4 shows a comparison of code quality between the code generated by a

compiler and the code written by a designer. In Fig. 4.4, (a) denotes the code

before instruction addition, (b) denotes the code after instruction addition, and

(c) denotes the hand assembly code. The code sizes of (a), (b) and (c) were 624
bytes, 464 bytes, and 204 bytes respectively. Execution cycles of (a), (b) and (c)

were 14593 cycles, 3665 cycles, and 2234 cycles, respectively. From Fig. 4.4, the

54 CHAPTER 4. EXPERIMENTS

16000

14000

 12000

,5 1 ODOD

>, SON
0
r
0

 6000

(U
x 'U

40001

2000

700

600

 500

 400

 300

 200

(a)
Before
Inst
Addition

100

(b) (C)
After Hand
Inst Assembly
Additioin Code

0

(a)
Before
Inst
Addition

(b)
Afte r
Inst
Additioin

(C)
Hand
Assembly
Code

Figure 4.4: Code Quality Comparison Among (a) Code Before Instruction Addi-
tion, (b) Code After Instruction Addition, and (c) Hand Assembly Code.

4.4. CASE STUDY 55

code size of (b) was about 2.2 times larger than that of (c). The execution cycle of

(b) was about 1.6 times larger than that of (c), and the execution cycle of (b) was
about 3.5 times larger than that of (a).

4.3.5 Discussion

From experiment 3, special instructions such as CMULT and so on can be used in

the generated compiler. Using special instructions, machine suitable codes can be

generated. Moreover, comparing (a) and (b), special instructions play an impor-
tant role in improving the performance of the processor, and designers evaluates

the effect of special instructions using the proposed compiler generator . The code

size of (b) was 2.2 times larger than that of (c), but the execution cycles of (b)

were 1.6 times larger than that of (c). This is because loop optimizations such

as loop invariant, loop strength reduction and so on effectively reduce the cost of

iterations.

4.4 Case Study

4.4.1 Objective of Case Study

Objective of this case study is to evaluate effectiveness of ASIP design method and
the proposed ASIP development environment. Particularly, it is evaluated that de-

sign space exploration time using the PEAS-III system when designers develop an

application system used in real world. Target applications of ASIP include digital

signal processing (DSP) such as JPEG, MPEG, network system, wireless commu-

nication system such as mobile phone. JPEG is one of the target applications of

ASIP, and JPEG is used for a lot of systems such as digital camera, mobile phone

with camera, and so on. Hence, JPEG is a good example to confirm effectiveness

of ASIP design method and the proposed ASIP development environment.

56 CHAPTER 4. EXPERIMENTS

8 * 8 blocks
DCT based Encoder

DCT Quantization VLC

Compressed Image
Data

Source Image Data Table Table
 Specification Specification

Figure 4.5: JPEG Encoder Procedures based on the DCT.

4.4.2 Target Application: JPEG Codec

JPEG is a definition of a still-image compression algorithm established by the

JPEG committee. Fig. 4.5 shows JPEG encoder procedures based on the DCT.

In the encoding process, the input component's samples are grouped into 8 x 8

blocks, and each block is transformed by the DCT into a set of 64 values referred
to as DCT coefficient. The first element is referred to as the DC coefficient and the

other elements are referred to as the AC coefficients. Each of the 64 coefficients

is then quantized using one of 64 corresponding values from a quantization table.

After quantization, the DC coefficient and the 63 AC coefficients are prepared for

Variable Length Coding (VLC) which compresses the DC and AC coefficients. In

JPEG specification, one of two coding procedures can be used. One is Huffman

encoding and the other is arithmetic coding.

4.4.3 Architecture Candidates

Several kinds of parameters are defined in JPEG specification. In this case study,

8 bit precision baseline algorithm was selected. Huffman coding was selected as

VLC and VLD. In the following section, architecture candidates are described,

and experimental results are explained.

4.4.3.1 DCT and 1DCT

DCT and IDCT are designed using Chen DCT algorithm [23], which is one of the

famous algorithm reducing multiplications and additions. Data flow of Chen DCT

is shown in Fig. 4.6. Here, x(i) denotes element of input matrix, X(i) denotes

4.4. CASESTUDY 57

X(O)

X(l)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

MADD3 MADD1

............

si 8

K8P

~

MADD2

.C38
............... fill I -.-

.................. .

% Cl;S 176 ; ~
rr

-S3

3 316
S=16-Sy

..... ... MADDI
ADD2

C7 16ADD1
.....................................

 X(O)

 X(4)

 X(2)

 X(6)

 X(1)

 X(5)

 X(3)

16
 X(7)

MADD3

Figure 4.6: Data Flow of Chen DCT (1- dimensional 8 points).

transformed element. Ci-j and Si-j denote cos(-'x') and sin(-'x'), respectively.
3 Using Chen algorithm, multiplication times are reduced from 64 to 16, and addi-

tion times are reduced from 56 to 26 in I dimensional 8 points DCT. IDCT can be

designed using inverse of DCT. Hence, multiplication and addition times in IDCT

are reduced as much as those of DCT.

 There are several approaches in DCT and IDCT design.

 • Sequential Instructions Approach

 Sequential instructions approach stands for software design. All of the al-

 gorithm is processed by software.

 • DCT Instruction Approach

 DCT instructions approach stands for hardware unit design. All of the al-

 gorithm is processed by hardware.

 • Butterfly Instructions Approach

 Butterfly instructions approach stands for design using fine grain instruc-

 tions. The part of the algorithm is processed by hardware, and the other part

 of the algorithm is processed by software.

58 CHAPTER 4. EXPERIMENTS

quantization (short int *input,
 short int *output,
 short int *qtable)
 short int *inputPtr = input;

 for (; inputPtr < input + 64; inputPtr++
 if (*inputPtr > 0) I

 *output = (*inputPtr + (*qtable > > 1))
 *qtable;

 else I
 *output = (*inputPtr - (*qtable >> 1))

 *qtable;

 output++; qtable++;

Figure 4.7: C Source Code of Quantization.

These approaches have trade-offs between hardware cost and performance.

4.4.3.2 Quantization

In quantization design, several approaches exist, which is the same as DCT design.

Fig. 4.7 shows the C source code of quantization. From Fig. 4.7, quantization

divides the element by the element of quantization table. Hence, the performance

of divider affects the execution cycles of quantization. In this case study, the

algorithm of divider was changed.

4.4.4 Input Image

In this evaluation, a standard image (Fig. 4.8) was used as an input image. The

image size was 256 x 256 pixels and the sampling factors of each component

were as follows: horizontal sampling factors of Y, U, V were 4, 1, 1, and vertical

4.4. CASE STUDY 59

Figure 4.8: Sample Color Image (Lenna).

sampling factor were 4, 1, 1, respectively.

4.4.5 DCT/IDCT Unit

Fig. 4.9 shows the DCT/IDCT unit that processes 2 dimensional (2-D) 8 points
DCT/IDCT. The input and output ports of DCT/IDCT unit consist of as follows:

(a) input or output 32-bit data bus, (b) input port of 32-bit base address for data
read/write, (c) 32-bit data address bus, (d) 1 -bit calculation mode signal to change
DCT execution or IDCT execution, (e) I-bit start signal, and (f) I-bit fin signal.
Functional blocks consist of 8 blocks: 16-bit internal registers, ADD blockl, ADD
block2, MADDI, MADD2, MADD3, address unit, and controller. ADD blockl,
ADD block2, MADDI, MADD2, and MADD3 execute part of Chen DCT data
flow illustrated in Fig. 4.6. ADD block I has 4 input ports (in I, in2, in3, in4), and
4 output ports (outl, out2, out3, out4). Each adder calculates using the following
equation: outl = ffil + in2, out2 = ffil. - in2, out3 = -in3 + in4, out4
in3 + in4. ADD block2 has 8 input ports (inl, in2, in3, in4, in5, in6, in7, in8),
and 8 output ports (outl, out2, out3, out4, out5, out6, out7, out8). Each adder
calculates using the following equation: outl ffil + Z'n8, out2 = in2 + Z'n7,
out3 = in3 + M, out4 Z'n4 + in5, out5 in4 - in5, out6 = in3 - in6,
out7 = Z'n2 - in7, out8 ffil. - Z'n8. MADD1 has 2 input ports (inl, in2) and
2 output ports (outl, out2). MADD 1 unit calculates using the following equation:
Outl z-- Cos(') - ffil + cos() - in2, outl = cos() - inl - cos("') - in2. 4 4 4 4

60 CHAPTER 4. EXPERIMENTS

 2 data read/write or
 1 data read/write

 on 32 bits data bass

Data Read and Write

 base address
.

Data address

 start

address Unit

selector

reg6 reg7

 fin

regO reg 1 reg2 reg3 reg4 reg5 Controller

selector

ADD Blockl ADD Block2 MADD1 . MADD2 MADD3

.......................

Figure 4.9 : DCT/IDCT Unit.

MADD2 has 2 input ports (in 1, in2) and 2 output ports (out 1, out2). MADD2 unit
calculates using the following equation: outl = sin() - Z*nl + cos() - in2, 8 8

out2 = sin() -inl+cos() -in2, MADD3 has 4 input ports (inl, in2, in3, in4)
 8 8

and 4 output ports (outl, out2, out3, out4). MADD3 unit can change calculation

mode to use the same unit twice in Chen DCT/IDCT calculation flow. MADD3

unit calculates using the following equation: outl = sin(') -Z'nl+cos(') -in4,
 16 16

out2 sin in2 + cos Z'n3, out3 sin (3") - in2 + cos (') - in3,
 16 16 16 16

out4 sin(') - inl + cos(') - in4, or outl = inl + in4, out2 = in2 + in3, 16 16

out3 in2 - in3, out4 =: ffil. - in4. Each value is calculated in 16-bit fixed

point arithmetic.

 Fig. 4. 10 shows the finite state machine of DCT/IDCT unit. The finite state

machine consists of two part. One is I-D Chen DCT calculation control part, the

other is 2-D DCT calculation control part. In 2-D part, first step calculates row of

matrix and second step calculates column of matrix. In each step, 1-D Chen DCT

is executed 8 times. In 1-D part, the flow consists of data read, 4 steps execution

illustrated in Fig. 4.6, and data write. The DCT/IDCT unit fetches data from

the data memory to the internal registers. When the DCT/IDCT unit fetches data

that is from row of matrix, one 16-bit value can be fetched using an address. In

4.4. CASESTUDY 61

Idle

8 times

First

Second

8 times

Dimenssion 2

sta

4 times

Idle Data Read 1 st Step 2nd Step

3rd Step

4 times

4th Step

end

Data Write

Dimenssion 1

Figure 4. 10: Finite State Machine of DCT/IDCT Unit Controller.

column data of matrix, two 16-bit values can be fetched using an address. Hence,

the number of memory accesses when the DCT/IDCT unit fetches from row of

matrix is 8, and the number of memory accesses when the DCT/IDCT unit fetches

from column of matrix is 4. From this feature, the number of memory accesses

can be reduced when the DCT/IDCT unit is used. The reason why the DCT/IDCT

unit has 32-bit data bus is that the data is allocated to the data memory which is

the same memory of ASIP.

4.4.6 Additional Instructions

 DICT

 DCT instruction executes the procedure of DCT. This instruction uses the

 DCT unit described in section 4.4.5. Instruction set specification for PEAS-

 III is described in Fig. 4.11. In application written in C language, DCT is

 described using function call. In PEAS-111 specification, Compiler-Known-

 Function "dct" is defined, and the behavior of DCT instruction is defined

 using "dct" function. Micro-Operation description defines pipeline execu-

 tion. DCT unit is executed at pipeline stage 4.

62 CHAPTER 4. EXPERIMENTS

(a) Behavior Description for Compiler Generator

ckf prototype I
 void dct (unsigned int , unsigned int

I

DCT I
 operand
 GPR Ulnt3 I toO a;

 GPR Ulnt3 1 toO b;

 fon-nat I "DCT" "I" a "," b
 function I

 stage(l) I PC.read IMEM.1oad-word
 PC.inc IR.read I

 stage(2) IGPR.readO GPR.readl
 stage(3) I }

 stage(4) I DCTO.dct
 stage(5) I

 behavior

 dct a, b

(b) Micro-Operation Description

stage(I)f IR := IMEM[PC]; PC.inco;j,
stage(2)f $opl := GPR.readO(rs); $op2 := GPR.readl(rt);I,
stage(3)f },
stage(4)j$durnmy := DCTO.dct($op 1,$op2);},
stage(5)j}

(c) Bit Field
000000 rs rt 0000000000 111111

Figure 4.11 : DCT Instruction Specification of PEAS -111 .

4.4. CASESTUDY 63

* MADDI

MADDI instruction calculates the MADD1 block in Fig. 4.6. MADDI in-

struction takes 2 operands as input and write back to the same operand reg-

isters. Instruction set specification for PEAS-III is described in Fig. 4.12. In

application written in C language, MADD1 is described using function call.

In PEAS-III specification, Compiler-Known-Function "maddl" is defined,

and the behavior of MADD I instruction is defined using "maddl" function.

MADDI unit is executed at pipeline stage 3.

64 CHAPTER 4. EXPERIMENTS

(a) Behavior Description for Compiler Generator

ckf prototype I
 void madd I (unsigned int , unsigned int

I

MADDI f
 operand

 GPR Ulntl5toO a;
 GPR UIntl5toO b;

 format I "MADDI a "," b
 function f

 stage(l) f PC.read IMEM.load-word
 PC.inc IR.read I

 stage(2) IGPR.readO GPR.readl I
 stage(3) IMADDlUO.madd I

 stage(4) f }
 stage(5) f GPR.writeO GPR.write I

I
 behavior I

 maddl (a, b);
I

(b) Micro-Operation Description

stage(l)f IR:= IMEM[PC]; PC.inco;},
stage(2)1 $op 1 := GPR.readO(rs); $op2 := GPR.read I (rt);},
stage(3)1($resultl, $result2):= MADD1U0.rnadd($op1, $op2);I,
stage(4)1 1,
stage(5)jGPR.write0($resu1t1, rs); GPR.writel($result2, rt);

(c) Bit Field
000000 rs rt 0000000000 011110

Figure 4.12: MADD1 Instruction Specification of PEAS -111 .

4.4. . CASE STUDY 65

e MADD2

MADD2 instruction calculates the MADD2 block in Fig. 4.6. MADD2 in-

struction takes 2 operands as input and write back to the same operand reg-

isters. Instruction set specification for PEAS-111 is described in Fig . 4.13. In

application written in C language, MADD2 is described using function call .

In PEAS-III specification, Compiler-Known-Function "madd2" is defined ,

and the behavior of MADD2 instruction is defined using "madd2" function .

MADD2 unit is executed at pipeline stage 3.

66 CHAPTER 4. EXPERIMENTS

(a) Behavior Description for Compiler Generator

ckf prototype I
 void madd2 (unsigned int , unsigned int

MADD21
 operand

 GPR UIntl5toO a;
 GPR Ulntl5toO b;

 format I "MADD2" "I" a "," b
 function I

 stage(l) f PC.read IMEM.1oad-word
 PC.inc 1R.read I

 stage(2) IGPR.readO GPR.readl
 stage(3) IMADD2UO.madd

 stage(4) I }
 stage(5) IGPR.writeO GPR.writel}

I
 behavior I

 madd2 (a, b

(b) Micro-Operation Description

stage(I)l IR:= IMEM[PCI; PC.inco;j,
stage(2)1 $op I := GPR.readO(rs); $op2 := GPR.read I (rt);},
stage(3)1($result 1, $result2) := MADD2UO.madd($op 1, $op2); 1,
stage(4)1 1,
stage(5)fGPR.writeO($resultl, rs); GPR.writel($result2, rt);1

(c) Bit Field
000000 rs rt 0000000000 011111

Figure 4.13 : MADD2 Instruction Specification of PEAS _111 .

4.4. CASE STUDY 67

4.4.7 Compiler Generation for Target Processors

The target compiler is generated using processor specification partly represented

in previous section. The target compiler produced by the proposed compiler gen-

erator executes the following steps: (1) Parsing the source code , (2) Machine inde-
pendent optimization, (3) Syntax tree rewriting and pattern matching, (4) Register
allocation and Spill code insertion, (5) Instruction scheduling , (6) Machine depen-
dent optimization, and (7) Output assembly code . When special instructions such
as DCT, MADDI and so on are added to the processor specification , the proposed
compiler generation method produces the following information: (a) function pro -

totypes for C parser, (b) mapping rules for special instructions , and (c) instruction
throughput and latency table for instruction scheduling . When parser reads the
special instructions written in target application , the generated compiler makes
CKF internal representation for compiler. When back-end of compiler generates

assembler, target instruction is emitted using mapping rule for CKF . For example,
DCT function is read by the compiler and the internal representation "xirCKF"

is generated, which means that extended internal representation "CKF" . The "xir-
CKF" has attributes that include operands and CKF ID . The mapping rule for
"xirCKF" specifi es assembly format which is specified in format section . For
instance, in DCT instruction in Fig. 4.11, the mapping rule of DCT instruction
includes instruction string "DCT" and the operand order of DCT instruction "a"

and "b". Furthermore, instruction latency and throughput are calculated using re-

source usage described in function section of instruction behavior specification .
Resource throughput and latency can be obtained from FHM-DBMS . The pro-

posed compiler generator traces the resource connection graph and calculates in-
struction throughput and latency.

4.4.8 How to Estimate Design Quality

Hardware Cost and maximum clock frequency were estimated using Synopsys

Design Compiler. Input of Design Compiler was synthesizable HDL generated by

PEAS-111. 0. 14 pm CMOS standard cell library (voltage 1. 5 V) was used for logic
synthesis. Execution cycle was estimated using Synopsys Scirocco that is a cycle-

68 CHAPTER 4. EXPERIMENTS

Table 4.4: Processor Cores and Their Execution Cycles of JPEG Application.

Multiplier Divider Area

(K
gates)

Max
Freq.

(MHz)

Exec Cy-
cles

(M
cycles)

Power

(mW
MHz)

seq(32)
seq(32)

array
array

seq(34)
array

seq(34)
array

39.43

52.1

57.59

70.19

151

22.5

44.5

43.3

61.28

51.19

44.54

34.45

2.40

2.44

2.48

2.53

1. Normal

2. Normal

3. Normal

4. Normal

5. Butterfly

6. Butterfly

7. Butterfly

8. Butterfly

seq(32)
seq(32)

array
array

seq(34)
array

seq(34)
array

57.3

70.0

75.5

88.0

149

23.0

44.5

23.0

53.57

43.48

43.52

33.43

2.48

2.52

2.56

2.61

9. DCT

10. DCT

11. DCT

12. DCT

seq(32)
seq(32)

array
array

seq(34)
array

seq(34)
array

71.17

89.35

83.86

101.93

151

22.4

43.3

43.3

39.62

29.53

36.25

26.17

2.49

2.54

2.58

2.62

Library: 0. 14 CMOS Standard Cell Library -

based HDL simulator. Dynamic power was estimated by gate-level simulation

using Mentor Graphics ModelSim and Synopsys Power Compiler.

4.4.9 Processor Organization

Processor organization in this case study is shown in Table. 4.4. Normal de-

notes base instruction set that is sub set of MIPS-R3000 instruction set. Butterfly

denotes instruction set added MADDI, and MADD2 instructions. DCT denotes

instruction set added DCT instruction. The hardware algorithm of multiplier is

sequential type that executes 32 cycles and array type that executes 1 cycle. On

the other hand, the hardware algorithm of divider is sequential type that executes

34 cycles, and array type that executes 1 cycle.

4.4. CASE STUDY 69

 65

--~60

g55
250

-45

 40
c
.o35

10
IV
x

-25

 20

'i
* Normal

* Butter-My

* DCT

-6
2

*3 ~sa 3-j-7

All
v40

8
A 12io

A

30 40 50 60 70 80 90
 Hardware Cost (K gates)

100 110

Figure 4.14: Trade-offs Between Hardware cost and Execution Cycles When

JPEG Encoder was Executed.

4.4.10 Trade-offs Between Hardware Cost and Performance

Fig. 4.14 shows trade-offs between hardware cost and execution cycles when

JPEG encoder has been executed. Horizontal axis is hardware cost, and vertical

axis is execution cycles. The number of each plot point in Fig. 4.14 corresponds

to each processor in Table 4.4. From Fig. 4.14, the trade-off between hardware

cost and execution cycles exists when instructions are added and the hardware

algorithms are changed.

 Figs. 4.15 and 4.16 show trade-offs between hardware cost and execution

time when JPEG encoder has been executed. Horizontal axis is hardware cost,

and vertical axis is execution time. In Fig. 4.15, execution time was calculated

using execution cycles and clock frequency that was 66 MHz, and in Fig. 4.16,

execution time was calculated using execution cycles and clock frequency that was

40 MHz. As shown in these figures, the number of architecture candidates was

changed because the max clock frequency of each architecture candidate ranges

between about 20 MHz and 150 MHz. These results show that designers have

70 CHAPTER 4. EXPERIMENTS

 0.95

 0.9

60.85

 0.8

E
pO.75
r- 0

.7 .2

 0. 65

x LU U.tj

 0.55

 0.5

1*
* Normal

* Butter-fly

,L DGT5
M

Ag

30 40 50 60
Hardware Cost (K gates)

70 80

Figure 4.15: Trade-offs Between Hardware Cost and Execution Time When JPEG
Encoder was Executed. (66 MHz)

to consider not only the execution cycles of an application, but also the clock

frequency when architecture candidates are selected. In Fig. 4.15, when a design

constraint is that hardware cost is under 60 K gates, the processor No. 5 in Table

4.4 is selected as the optimal architecture.

4.4. CASESTUDY 71

1.6 - -------------- i -------- --- ---------------------
 * Normal 1.5

 0 Butter-fly
 61.4 A DGT

 ID 1.3 E

 C12

0

 3* 7

9 X 1

 0.8
 30 40 50 60 70 80 90 100

 Hardware Cost (K gates)

Figure 4.16: Trade-offs Between Hardware Cost and Execution Time When JPEG
Encoder was Executed. (40 MHz)

* Normal

M Butter-fly

A DGT

3. 7

I I I I I I

72 CHAPTER 4. EXPERIMENTS

4.4.11 Trade-offs Between Hardware Cost and Power Consump-

tion

Figs. 4.17 and 4.18 show trade-offs between hardware cost and power consump-

tion when JPEG encoder has been executed. The horizontal axis is hardware cost,

and the vertical axis is dynamic power. In Fig. 4.17, JPEG Encoder was executed

within 0.5 second, and in Fig. 4.18, JPEG Encoder was executed within 1 second.

In Fig. 4.17, the frequency of processor I was about 120 MHz, the frequency of

processor 9 was about 90 MHz. Hence, the dynamic power of processor I in Fig.

4.17 was about 290 mW, and the dynamic power of processor 9 was about 190

mW. If design constraint of power consumption is 200 mW, the processor 9 can

be selected, but if design constraint of power consumption is 300 mW, processor

1 can be selected because the hardware cost of processor I is smaller than that of

processor 9.

 Furthermore, if design constraint of execution time is within I second, the

trade-off between hardware cost and power consumption is Fig. 4.18. In Fig.

4.18, processors 5 and 7 cannot be architecture candidates.

4.4. CASESTUDY 73

310 ---------------------- ... - --------- -----------------------------------

 290

 zt-,e'-r,fly
 270 A DCT

E
 250

0 a 230
Y E

210 ------
>
 190

 170

 150
 30 40 50 60 70 80

 Ha rdwa re Cost (K gates)

Figure 4.17: Trade-offs Between Hardware Cost and Power Consumption When

JPEG Encoder was Executed Within 0.5 Second.

*Normal

FM Butterfly

A DCT9

A

160 --

 150

 5 y
 __~19'B-tte 140

 "orrr'~
'

 E A DCT
 130

 120
 3 7

 EM 110 0 E
>
 100 A

 90

 80
 30 40 50 60 70 80 90 100

1-larckuare Cost (K gates)

Figure 4.18: Trade-offs Between Hardware Cost and Power Consumption When

JPEG Encoder was Executed Within I Second.

1
I

+Normal

n Butterfly

A DCT
Ij

99

I

9

74 CHAPTER 4. EXPERIMENTS

Table 4.5 : Design Time.

 Time (hour)

C source code design 130

DCT unit design 1 60
Total 1 190

Base processor design 12

Registration of DCT unit and I

Convolution blocks to FHM-

DBMS

Instruction addition I I

Hardware algorithm selection 1 0.1
Others 1 150

I Total I ~q- =1

4.4.12 Design Time

The design time of the case study is shown in Table 4.5. From Table 4.5, about

ten hours were spent using the PEAS-111 system. Here, the reason why the hard-

ware algorithm selection time is short is only changing FHM parameters to select

hardware algorithm. From this result, the hardware description and the target

compiler can be designed in a short design time. 130 hours were spent designing

JPEG codec using C source code. 60 hours were spent DCT unit design. Oth-

ers include debug time and simulation time and synthesizing time to evaluate the

processor core. It seems that the time of JPEG codec application design and DCT
unit design is as long as other environments.

4.4.13 Discussion

The experimental result shows that architecture candidates are changed when

clock frequency or time constraint are changed. From this result, designers must

consider not only the execution cycles of a target processor but also the max fre-

quency of a target processor and power consumption. For example, in Fig. 4.17,

4.4. CASE STUDY 75

processor 5 can be an architecture candidate. However, in Fig. 4.18, processor 5

is not an architecture candidate because processor 3 can achieve low power and

the same hardware cost. In the PEAS-III design, software development environ-

ment and designed processor's HDL descriptions are generated at the same time.

Hence, designers can consider the execution cycles of application, the clock fre-

quency of processor, hardware cost and power consumption efficiently.

 When an application suchas DSP application is designed using ASIPs, design-

ers consider trade-offs among hardware cost, performance and power consump-

tion. Generally, it is said that the design time of hardware description, compiler

and assembler require several months or at least several weeks. However, it is too

long to meet a requirement of the design time in design space exploration. On the

other hand, when designers use other ASIP development systems that have been

explained in section 1, either software development environment or hardware de-

scription is produced in a short time, but the other part, for example processor

cores for software development environment, must be developed by themselves.

The advantage of the PEAS-III system is that compiler, assembler and hardware

description are generated at the same time. Furthermore, the modification cost of

the design is low, and hardware modules such as DCT unit can be reused easily,

because designers only select modules from FHM-DBMS as resources. Using the

PEAS-111 system, designers can evaluate processors and select an optimal archi-

tecture in a short design time.

 The architecture candidates described in section 4.4.3 were selected from the

feature of C source code or data flow. Although a lot of candidates can be con-

sidered, several architecture candidates that were expected to improve processor

performance were designed to evaluate the potential of PEAS-111 design method

in this case study. Generally, architecture candidates selection is very difficult.

Hence, the profiling environment to select architecture candidates and architec-

ture selection method are needed to reduce design cost and to get better solution.

 In table 4.5, the time of others includes debug time and simulation time of

target processor. To reduce this part, a source code debugger and a faster simulator

are desirable.

76 CHAPTER 4. EXPERIMENTS

4.5 Summary

In this chapter, experiments using the proposed compiler generation method were

explained. In experiment 1, development time and the amount of description were

evaluated using two architectures. In experiment 2, 27 architectures were evalu-

ated using FIR filter and DCT. In experiment 3, the proposed compiler generator

was evaluated using a real application: JPEG encoder. Experimental results show

that designers can efficiently evaluate numerous architecture candidates by means

of execution cycles of applications, clock frequency and hardware cost of the pro-

cessor core when they use the PEAS-111 system. Therefore, designers can rapidly

explore design space and explore trade-offs of designs by using the PEAS-111 sys-

tem.

 Next chapter describes discussion of the result which was explained in this

section.

Chapter 5

Discussion

In this chapter, feasibility of the proposed compiler generation method and impact

of design productivity of SoC processor are discussed. The following sections

discuss compiler retargetability, code quality of the generated compiler, design

productivity of SoC processor, and design space exploration using the proposed

compiler generation method.

5.1 Compiler Retargetability

In chapter 1, compiler retargetabi .lity has been discussed. Automatically retar-

getable compiler includes a set of parameters that changes the characteristics of

base processor. The method for compiler generation using parameterized generic

processor core such as PEAS-1, Satsuki, Xtensa and so on is automatically re-

targetable. These systems can easily produce the target compiler, because com-

plexity of compiler generation is not high. However, the range of the supported

processor's class is narrow. The number of registers and special instructions exe-

cute can be configured using these methods. However, the pipeline stage number,

bit width of instruction or data, and instructions reduction cannot be configured

using this methods.

 Developer retargetable compiler can be retargeted to a wide range of processor

architectures. The range includes not only the range of automatically retargetable

compiler but also the pipeline stage number, bit width of instruction or data, spe-

77

78 CHAPTER 5. DISCUSSION

cial instructions that cannot execute in certain cycles and instructions reduction

can be configured using this methods. In addition, the processor that has com-

plex datapath can be included in the range, but spill code for the processor that
has complex datapath is very difficult. However, this level compiler retarget re-

quires expertise with the compiler systems. For example, GCC [24] is one of the
developer retargetable compiler. GCC can be used for a lot of architecture such

as Intel Pentium processor, IBM Power PC, MIPS architecture, ARM and so on.

GCC can be retargeted to a lot of architecture, but GCC requires expertise of the

compiler system. GCC users need to understand what is RTL which is an internal

representation of GCC. It is difficult that designers who are not compiler experts

understand RTL, because RTL is defined in order to represent high-level language

such as C, C++, Java and so on. All processor designers do not have the expertise

of compiler. In addition, the retargeting time is on the order of months and weeks.

Hence, this type compiler is not suitable for ASIP design space exploration.

 User retargetable compiler can be retargeted to the target processor by chang-

ing its instruction-set specification. Compiler generator explained in chapter 2

and the proposed compiler generator in this thesis are user retargetable. The range

of configuration consists of the number of registers, special instructions in cer-

tain/uncertain cycles execution, the pipeline stage number, bit width of instruc-

tion or data, and instructions reduction. Moreover, the retargeting time is on the

order of hours and days. Hence, this type compiler is suitable for design space

exploration. The proposed compiler generator produces the target compiler using

instruction-set specification and structure specification of processor. Designers

that do not have the expertise of compiler can describe the processor specification

and generate the target compiler.

 When you see the aim of the compiler generation, the generation methods are

categorized into two categories: (1) compiler and other software tools genera-

tion oriented method, (2) processor generation oriented method. ISDL, HMDES,

EXPRESSION, LISA, FlexWare can be in the first category. Since the first cat-

egory aims compiler and other tools generation, hardware resource model is not

included. Hence, it is difficult to generate the synthesizable hardware descrip-

tion. Moreover, compiler oriented specification such as peep hole optimization

5. 1. COMPILER RETARGETABILITY 79

Traditional

Design

Proposed

Design
Metlhodolo~gy

0 50 100 150

Design Tirre (hours)

200

0 Processor and

 Compiler Design
M Com pil er Design

0 Processor Design

0 Instruction Addition

0 Resource Algorithm

 Selection

Figure 5. 1: Design Productivity of JPEG Encoder ASIP (From Case Study).

rules can be described in several methods in the first category. These features are

suitable for compiler developers, but it is not suitable for all processor designers

because not all of them are familiar with compilation techniques.

 Fig. 5.1 shows design productivity of JPEG Encoder ASIR Traditional design

stands for the design using developer retargetable compiler such as GCC and RTL

processor description. Proposed design methodology stands for the design using

PEAS-Ill. When designers use the PEAS-111 environment, processor and compiler

can be designed within several days. In traditional design methodology, the retar-

get time of developer retargetable compiler is at least several weeks even if the

compiler experts retarget it. Moreover, processor core must be developed individ-

ually. If compiler generation methods based on compiler oriented specification

language can produce the target compiler rapidly, the design time of the processor

core are not included. Hence, the proposed design methodology improves design

productivity of ASIP significantly.

80 CHAPTER 5. DISCUSSION

5.2 Code Quality of the Generated Compiler

The code quality of the generated compiler has been examined in chapter 3. In the

embedded processor, code quality is one of the important factor, because memory

space is limited and achieving high performance is required. The generated code

size is about twice and the execution time is about 1.5 times larger than these by

hand assembly code. Generally, the execution cycles using the generated code

is about from 1.2 to 2 times larger than that by hand assembly code. Hence, the

execution cycle using the generated code is feasible. The generated code size is,

however, twice larger than that by hand assembly code. The generated compiler

executes the loop specific optimizations such as loop invariant, loop unrolling and

so on. Hence, the generated processor can execute the generated code 1.5 times

better than that by hand assembly code. When you describe the target application

assembly code such as JPEG, and MPEG, design time is on the order of months

or years. Design time is, however, on the order of weeks when you use the tar-

get compiler. Hence, it is feasible to use the generated compiler when designers

search an optimal architecture from a lot of candidates.

 Moreover, in the proposed compiler generation method, general optimization

algorithms such as dead code elimination, loop invariant and so on can be included

for each target processor. These techniques are commonly used in compilers de-

veloped by compiler experts. Hence, general optimization algorithms are out of

my study.

5.3 Requirements and Solutions for Soc Processors

In chapter 1, the application trends have been discussed. The trends include (1)

new wireless handsets and base stations which need to support multiple mode, (2)

the continued evolution of video coding standards from JPEG to MPEG I, MPEG2

and MPEG4, (3) entertainment and other embedded system which connect the In-

ternet. These applications require upper compatibility to support legacy software

or hardware. Therefore, the requirements of the SoC processor include not only

high cost-performance and low power but also flexibility. Hence, one of the key

5.4. DESIGN PRODUCTIVITY OF SOC PROCESSORS 91

issues for SoC is ASIPs. There are, however, a lot of constraints when designers

develop ASIR Designers search the best solution from architecture candidates.

When designers use the PEAS-HI system, design space exploration can be in a

short time, because the target compiler and the target processor are generated

using the same processor specification. Moreover, designers use the generated

description to develop SoC which includes ASIPs seamlessly .

5.4 Design Productivity of SoC Processors

ITRS [2, 3] predicts that the complexity and cost of design and verification of

MPU products have rapidly increased to the point where thousands of engineer-

years are devoted to a single design, yet processors reach market with hundreds

bugs [3]. Moreover, to achieve the requirements of the SoC processor, designers

search an optimal architecture from a lot of architecture candidates in a short de-

sign time. Hence, the time when designers decide the architecture is restricted.

Therefore, the ASIP development environment is strongly needed in the SoC de-

sign.

 PEAS-111 has the well-defined parameterized model and the processor archi-

tecture specification language. Using the processor architecture specification lan-

guage, the target processor description and the target compiler are generated. Gen-

erally, the development cost of the target processor and the target compiler , sev-

eral months or a year are devoted to a single design. When designers would like

to consider about the architecture, it is too long to develop both the target proces-

sor and the target compiler. The proposed compiler generation method enables

design productivity increase from thirty to one hundred times, which is confirmed

by experimental results in chapter 4. Designers can develop the target processor

and the target compiler in a short design time using the PEAS-Hl design method .

82 5.5. DSE USING THE PROPOSED COMPILER GENERATOR

5.5 Design Space Exploration Using the

Compiler Generator

Proposed

In case study of chapter 4, ASIP architecture for JPEG encoder was designed using

PEAS-111. In PEAS-111, designers describe the architecture specification. Then,

synthesizable HDL is produced by HDL generator, and the target compiler is pro-

duced by the proposed compiler generator using the same architecture specifica-

tion. This feature can reduce iteration cost of design space exploration, because

the target compiler is produced when designers make prototype of ASIPs. From

experimental results, the design time of the target architecture is about 12 hours,

which means that the target processor and the target compiler can be produced

within order of days. In addition, RISC and CISC ar chitecture can be supported,

and special instructions such as DCT instruction can be supported by the pro-

posed compi!er generator. These results are sufficient to meet the requirements

of the user retargetable compiler. Hence, it is one of the best solution that the

proposed compiler generation method is used in ASIP design space exploration.

Chapter 6

Conclusion and Future Work

In this chapter, the conclusion of this thesis and the future work of this study are

described.

6.1 Conclusion

In this thesis, the processor architecture and the compiler generator for embed-

ded systems were proposed. In chapter 2, ASIP development environments have

been discussed. The ASIP development environment includes generation of both

processor and software development environment, such as compiler generation,

instruction-set simulator generation, and so on. Several methods that the software

development environment for ASIPs is produced from architecture specification

languages have been proposed. These methods are classified into three categories.

In the first approach, the target compiler and simulator are generated from the

structure of the processor core that is described using RT-level description. This

approach supports various type of the architectures like heterogeneous register

files, non-orthogonal datapath, and so on. It is, however, difficult to modify the

architecture because abstraction level of the description is low. In the second ap-

proach, the target compiler and simulator are produced from instruction behavior.

In this approach, designers can modify the architecture easily because the abstrac-

tion level of the description is higher than RT-level description, but the class of

the target architecture is limited rather than the first one. In the third approach,

83

84 CHAPTER 6. CONCLUSION AND FUTURE WORK

the target compiler and simulator are generated from the structure of the processor

and the behavior of the instructions. This approach supports larger class than the

second one. Moreover, the modification cost is smaller than that of the first one.

 In chapter 3, a compiler generation method for ASIPs was proposed, the com-

piler generator was implemented for one of ASIP development system: PEAS-III,
and the PEAS-111 system is evaluated using case studies of DSP applications. The

target compiler is produced by the proposed compiler generator using architecture

specification. The architecture specification includes the following information:

(1) primitive operations used by resources, (2) timing specifications of resources,

(3) storage-unit specifications for memory and register allocation, (4) instruction
set specification including behavior of instructions and usage of resources, and (5)

the processor structure by resource connection graph. Mapping rule and schedul-

ing information are generated using the architecture specification. Mapping rule

includes arithmetic, control, load/store, spill/reload, and special hardware instruc-

tions. The proposed compiler generator analyzes the instruction-set specification,

and decides each mapping rule for emitting the instructions. Experimental re-

sults show that designers can efficiently evaluate numerous architecture candidates

by means of execution cycles of applications, clock frequency, hardware cost of

the processor core and power consumption when they use the PEAS-111 system.

Therefore, designers can rapidly explore design space and explore trade-offs of

designs by using the PEAS-111 system. In addition, the case study shows that the

proposed compiler generator can be used for a real application and improve the
design time for the target compiler.

6.2 Future Work

The future work includes the following items.

6.2.1 Retargeting Algorithm for Special Architecture

DSPs have the special architecture such as SIMD, for particular applications. It

is difficult that the compiler exploits these functions because these functions can-

6.2. FUTURE WORK 85

not be described in C language. Although the proposed compiler generator can

use these functions by using Compiler-Known-Functions, designers modify the

source code to use Compiler-Known-Functions. However, these kinds of retarget-

ing is expected to be automatic.

, In addition, compiler generation for the processors that have complex datapath

is expected. These processors can reduce hardware cost and execution cycles for

particular domain applications. It is useful that compiler generation method can

exploit such processors.

6.2.2 Simulator and Protiler

To evaluate the target application or the target processor, the simulator and the

profiler for the target processor are required. To retarget application specific ar-

chitecture automatically, simulator and profiler generation are very important. If

the features of target applications can be obtained from profiling report, architec-

ture modification candidates can be listed. Simulator can calculates the execution

cycle when target application is executed. Moreover, frequency of resources or

frequency of instructions can be analyzed by using simulator. From this result,

efficient instruction candidates for the target application can be reported. Further-

more, power consumption can be analyzed using frequency of resources and data

type for instructions.

 For example, in JPEG encoder case study in chapter 4, instructions are added

to initial design. If simulator and profiler can be produced automatically, DCT in-

struction or butterfly instructions are reported from profiling result automatically.

As a result, simulator and profiler boost ASIP modification rapidly.

6.2.3 VL1W extension

The proposed compiler generator can generate the target compiler for scalar pro-

cessor. However, VL1W extension of the proposed compiler generator is needed,

because VLIW processor will be used for high performance ASIPs. The config-

urable VELW model has been proposed in [25]. This VLIW model extends from

the PEAS-III processor model. Operation dispatch model is added to the PEAS-

86 CHAPTER 6. CONCLUSION AND FUTURE WORK

III processor model in order to configure the number of VLIW slot, operation

dispatch policy. Because the configurable VLIW model is based on the PEAS-111

processor model, the target processor and the target compiler can be generated

using this model. In compiler generation, instruction issue method using the pro-

posed dispatch policy is needed.

6.2.4 Code Generation for Low Power Design

Market trends are favoring high-performance and low power systems: such as

long battery life mobile phone, digital steel camera, and other mobile equipments.

Gated clock and voltage control drastically reduce power consumption. More-

over, low power techniques for instruction-set processor have been proposed. For

example, instruction encoding is one of low power techniques [26]. To reduce

instruction bus energy, instruction is encoded and frequency of data switching is

reduced. This technique achieves about 75 % instruction bus transition reduction,

which means that this technique can reduce power consumption of instruction bus

significantly. In code generation, low power techniques are required.

6.2.5 OS Generation

Since complexity of application increase rapidly, OS generation method is an im-

portant issue for ASIP SoC. The reason is that the system development using
ISR model which explained in chapter 1 is difficult. OS generation method was

proposed by'L. Gauthier et.al. [27]. OS consists of three types of components:
API's, communication/system services, and device driver services. This genera-

tion method can produce from Colif specification, which defines communication

in a hierarchical network of modules and behavior codes. Code size of generated

OS is optimized and response time of service call is optimized for target applica-

tions.

Bibliograph

[1] M. Rob, S. Higaki, J. Sato, A. Shiomi, Y Takeuchi, A. Kitajima, and
 M. Imai, "PEAS-111: An ASIP design environment," Proceedings of 2000

 IEEE International Conference on Computer Design: VLSI in Computers &

 Processors (ICCD2000), pp. 430-436, Sept. 2000.

[2] International Technology Roadmap for Semiconductors, "International tech-
 nology roadmap for semiconductors 2001: Design." http://public.itrs.net,

 2001.

[3] International Technology Roadmap for Semiconductors, "Interna-

 tional technology roadmap for semiconductors 2001: System drivers ."
 http://public.itrs.net, 2001.

[4] C. Liem, "Retargetable Compilers for Embedded Core Processors," Kluwer
 Academic Publishers, Dordrecht, 1997.

[5] J. Sato, A. Y. Alomary, Y. Honma, T. Nakano, A. Shiomi, N. Hikichi , and
 M. Imai, "PEAS-1: A Hardware/Software Codesign System for ASIP Devel -

 opment," MICE Trans. Fundamentals , vol. E77-A, no. 3, pp. 483-491, Mar
 1994.

[6] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi, H. Tomiyama, and

 H. Yasuura, "Satsuki: An Integrated Processor Synthesis and Compiler Gen-

 eration System," IEICE Trans. Inf. & Syst ., vol. E79-D, no. 10, pp. 1373-

 1381, Oct. 1996.

87

88 BIBLIOGRAPHY

[7] J.-H. Yang, B.-W. Kim, S.-J. Nam, J.-H. Cho, S.-W. Seo, C.-H. Ryu, et al.,
 "MetaCore: An Application Specific DSP Development System," 35th De-

 sign Automation Conference, pp. 800-803, 1998.

[8] R. Camposano and J. Wilberg, "Embedded System Design Design Au-
 tomation for Embedded Systems, vol. 1, no. 1-2, pp. 5-50, Jan. 1996.

[9] Tensilica, "Xtensa." http://www.tensilica.com.

[10] R. Leupers and P. Marwedel, "Retargetable Code Generation Based on
 Structural Processor Descriptions ' " Design Automation for Embedded Sys-

 tems, vol. 3, no. 1, pp. 75-108, Jan. 1998.

[11] A. Fauth, "Beyond tool-specific machine descriptions," Code Generation for
 Embedded Processors, pp. 138-152, Kluwer Academic Publishers, 1995.

[12] G. Hadjiyiannis, P. Russo, and S. Devadas, "A methodology for accurate

 performance evaluation in architecture exploration," 36th Design Automa-
 tion Conference, pp. 927-932, June 1999.

[13] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, "LISA - Machine De-
 scription Language for Cycle-Accurate Models of Programmable DSP Ar-
 chitecture," 36th Design Automation Conference, pp. 933-9389 1999.

[14] P. G. Paulin, C. Liem, T. C. May, and S. Sutawala, "Flexware: A flexible
 firmware development environment for embedded systems," Code Genera-

 tion for Embedded Processors, pp. 65-84, 1995.

[15] J. C. Gyllenhaal, W. W. Hwu, and B. R. Rau, "HMDES Version 2.0 Specifi-
 cation," Technical Report IMPACT-96-3, University of Illinois, 1996.

[161 A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,
 "EXPRESSION: A Language for Architecture Exploration through Com-

 piler/Simulator Retargetability," Design And Test Conference 99, pp. 485-
 490, March 1999.

BIBLIOGRAPHY 89

[17] M. Imai, A. Shiomi, Y Takeuchi, and J. Sato, "Hardware/Software Codesign
 in the Deep Submicron Era," International Workshop on Logic and Archi-

 tectural Synthesis '96, pp. 236-248, Dec. 1996.

[18] T. Morifuji, Y. Takeuchi, J. Sato, and M. Imai, "Flexible hardware model:
 Implementation and effectiveness," Proc. of Synthesis And System Integra-

 tion of Mixed Technologies 97, pp. 83-89, Dec. 1997.

[19] MOTOROLA, Inc., "MSC8101 Programmer's Quick Reference."
 http://www.motorola.com, 2001.

[20] Lucent Technologies., "DSP16410B and DSP16410C Degital Signal Proces-
 sor, Programmer's Quick Reference Guide." http://www.lucent.com, 2001.

[21] Analog Devices, Inc., "ADSP-21160, SHARC DSP Instruction-set Refer-
 ence." http://www.analog.com, 1999.

[221 TEXAS INSTRUMENTS, "TMS320C54x DSP Reference Set, Volume 2:
 Mnemonic Instruction Set." http://www.ti.com, 2001.

[23] W. H. Chen, C. H. Smith, and S. C. Fralick, "A fast computational algorithm
 for the discrete cosine transform," IEEE Trans. Commun., pp. 1004-1009,

 1977.

[24] R. M. Stallman, " Using Porting GNU CC." Free Software Foundation, Inc.,
 http://www.gnu.org, 1995.

[25] K. Okuda, S. Kobayashi, Y. Takeuchi, and M. Imai, "Proposal of an Archi-
 tecture Model and a Simulator Generator for Configurable VLIW Processor,"

 IPSJ Symposium Series, vol. 2002, pp. 161-166, July 2002. (in j apanese).

[26] L. Benini, G. D. Micheli, E. Macii, D. Sciuto, and C. Silvano, "Address Bus
 Encoding Techniques for System-level Power Optimization," Proceedings of

 Design Automation and Test in Europe (DATE'98), March 1998.

90 BIBLIOGRAPHY

[271 L. Gauthier, S. Yoo, and A. Jerraya, "Application-Specific Operating Sys-

tems Generation and Targeting for Embedded SoCs' " Proceedings of the

Workshop on Symthesis And System Integration of MIxed Technologies,

vol. 2001, pp. 57-60, Oct. 2001.

Appendix A

BNF of Architecture Description for
the Proposed Compiler Generator

A.1 Lexical Elements

<alphabets and numbers>

<alphabets>

<alphabets small>

<alphabets capital>

<alphabets string>

<all alphabets>

<letter>

<small letter>

<capital letter>

<natural number>

<nonnegative number>

<all number>

<single-digit number>

<non zero number>

<blank>

 <letter> <letter>
 <letter> <letter>
 <small letter> { <sma

 <capital letter> <c
 <all alphabets> <al

 <letter> <number> I
 -aI 'b" "c" "d"

 'h. "i" "j" "k"
 Ioll "p" "q'I 'Irl,
 IVI IWI IXI I.Y.
 "All "B" 'C' 'D"
 "H" "I" "J" "K'
 "P" "Q" "R"
 "W" IXI "Y"
 "b" "c" "d"
 "A" "B" "C" "D'
 "H- "I" "J" 'K"
 .10. "P" "Q" "RII
 IVI '-W'- IXI "Y.
 <non zero number> { <

 "0" <natural number
 .0. <natura

 .9.
 -4-
 .16-1 -71 -9"

 11 1.

 <number>

 11 letter>
 apital letter>

 1 alphabets> I

_" I
 ,ell

 .111

 Is,

 "E"

Z
 "e"

 "E'

 ILI

 IS.,

 .1 Z 11

<blank>

t

 IMI

 IT 11

IMI

'IT'

 single-digit

 1 number>
 "5"

 I0.

g"
n"

ull

'G"

I.gll

'G"

'IN'

I U.,

number>)

91

92

A.2 Grammer

A.2.1 Architecture
<arch type>

<cpu type>

<pipeline>

:= 11cpu type

<stage number>

<common stage number>

<phase par stage>

<decode stage>

<stage name>

<each stage name>

<delayed slot number>

<max instruction bit>

<max data bit>

BNF OF ARCH. DESC

Type Section
 "arch type"

 <cpu type>

 <pipeline>
 <max instruction bit>

 <max data bit>

 pipeline

 "pipeline"

 < stage number>
 <common stage number>

 <phase par stage>

 <decode stage>
 <stage name>

 <delayed slot number>

 "stages" 11{11 <natural number>

 "common stages" .{,. ,0,, ,},,
 "phase par stage" .{,. .l., "P

 "decode stage" 11P <natural number>
 "stage name"

 ,each stage name>

 <each stage name>

<natural number>

 <alphabets and numbers>
 "delayed slot" "(I' <nonnegative number>

 "max instruction bit" "(" <natural number>
 "max data bit" I'P <natural number>

\subsection{Input/Output Section}

\begin{verbatim}
<port-decralation> "inputports" <ports> 11P

 "outputports" <ports> IP

<ports> [<Port-name> <Port-name>

A.2.2 Resource Class Declaration
<resource arch> "resource class"

 <port dec>
 "function"

 <each resource class>

I I

A.2. GRAMMER 93

<each resource class>

<resource func>

<class name>

<interface>

<each interface>

<port name>

<operand>

<exec time>

<latency>

<throughput>

 <each resource

 <class name>

 <resource func>
 <resource func>

 <resource func name>

 < interface>

 <exec time>

 <alphabets and numbers>

"interface"

 <each interface>
 <each interface>

<Port name> "{11 <operand>

<alphabets and numbers>
<alphabets and numbers>

"latency"

 < latency>

"throughput"

 < throughput>
.1)"

<natural number>

<natural number>

class>

111.1

A.2.3 Structure Defi
<structure arch>

<each resource instance>

ni tion
"structure"

 <each resource instance>

 <each resource instance>

 "portion"

 <instance name>

 <resource class>

 <stage>

 <input ports>

 <output ports>

94 BNF OF ARCH. DESC

<instance

<resource

<stage>

<output

<each

<each

name>

class>

ports>

output port>

connected port>

<resource instance>

<port name>

 1. } 11

 <alphabets and numbers>

"class" <alphabets and numbers>

"stage" <natural number>
,'multi stage"

 <natural number>

 <natural number>

 "output port"

 < each output port> { <each output

 <resource instance> 11.~ <port name>
 "connection"

 <each connected port>

 "stage" <natural number>

 <resource instance> <port name>

= <alphabets and numbers>

= <alphabets and numbers>

port>)

A.2.4
<storage

<instance

<storage

<resource

Storage Definition
arch> "storage"

 < instance section>

 <stack model>

 <flag section>

 section>::= "instance"

 < storage instance> <storage instance>

instance name> <alphabets and numbers>

 instance name> <alphabets and numbers>
 <natural number

 <natural number> I

<storage instance> <storage instance name>

 <avail field>

 <class field>

 <resource field>

 <number field>

 <width field>

 <cost field>

 <type field>

A.2. GRAMMER 95

<avail field>

<Class field>

<storage class>

<resource field>

<number field>

<width field>

<type field>

<data type class>

<stack model>

<stack

<stack

<stack

width>

alignment>

depth>

 "avail,, "{' "T"
 "avail,, 'P "F'
 "class" "(" <storage class>

 "reg'. "I -mem" "D_mem-1 ~pcl- "zero" .'sp'. fp" "link" "resource"

 <resource instance name>
 <resource instance name>

 "number" <natural number> 11)"
 .width" <natural number> .}1.
 "data -type" 11{" <data type class>

"any" I "intl- I -float,, I "fixed"

"stack"
 11 P

 < stack width>
 <stack alignment>
 <stack depth>

"width,, <natural number> "alignment" "P <natural number> "depth" "P <natural number>

<flag

<each

<flag

section>

flag>

instance>

"condition flag"

 <each flag>

"Neg -flag" <flag
"Zero

-flag', <flag
"Carry

-flag" <flag
"Overflow

-flag" <flag
<alphabets capital>

instance>

instance>

instance>

instance>

A.2.5 Instruction
<instruction set file> ::

<each

<inst

<inst

instruction>

name>

functions>

Definition
= "instruction"

 <each instruction>

 <each instruction>

= <inst name>

 < inst operand>

 <inst format>

 <inst functions>

 <inst behavior>

= <alphabets and numbers>

= "functions"

 < each stage>

 <each stage>

96 BNF OF ARCH. DESC

<each stage>

<stage number>

<each function>

<resource name>

<function name>

"stage" <stage number>

 <each function> I

<natural number>

<resource name> <function
 <parameter>

 <parameter>

<alphabets and numbers>

<alphabets and numbers>

name>

<inst operand>

<each operand>

<addressing mode>

<register mode>

<register direct>

<register class>

<register indirect>

<memory class>

<memory mode>

<other mode>

<immediate size>

<data type>

<fix Spec>

<parameter>

<macro typedef>

"operand"

 < each operand>
 <each operand>

<addressing mode> <data type> <parameter>
<register mode>
<Memory mode>
<other mode>
<register direct>
<register indirect>
<register class>
<alphabets and numbers>

 <register class> "displacement"
 11:11 <memory class>

<alphabets and numbers>
"@11 <memory class>
11@11 -[11 <memory class>
l.#l. lImml. <immediate size>
-1#11 "label"
IIVI -global"
<natural number>
.lint-, I ,uint-, I "float"
"fix" <fix spec>1 -,any" I <macro typedef>

 <nonnegative number> ".."
 <nonnegative number> 11P

<alphabets small>
<alphabets and numbers>

ll

<inst format>

<format element>

"format"

 C.
 < format element>

 <format element>

 <alphabets string>

<parameter>

<inst functions>
"functions"

<each stage>

<each stage>

A.2. GRAMMER

<each stage>

<stage number>

<each function>

<resource name>

<function name>

<inst behavior>

<normal operation>

<expression>

<left term>

<right term>

<term layer9>

<term layer8>

<term layer7>

<term layer6>

<term layer5>

<term layer4>

<term layer3>

<term layer2>

<term layerl>

<constant>

<set flag>

<control operation>

"Stage- <stage number>

 <each function>

<natural number>
<resource name> "." <function name>
<alphabets and numbers>
<alphabets and numbers>

"behavior"

 <normal operation>
I
 <control operation>
I
 <compare operation>

<expression> <expression>
[<left term> <right term> <set flag>
<parameter>
"(" <parameter> <parameter>
<term layer9> (<term layer9>
<term layer8> { <term layer8>
<term layer7> (<term layer7>
<term layer6>

 { [I I <term layer6>
<term layer5>

 ([.<., I -,<=" I -,>- I .1>=11 I <term layer5>
<term layer4>

 { ["-" I ">>" I ">>>" I <term layer4>
<term layer3>

 { 1 11+11 1 1 <term layer3>
<term layer2>

 ("' I "P <term layer2>
 <term layerl>

"Sign _extended" "(" <term layerl>
"Next" "C' <term layerl>

 <right expression> "P <field>
 <field>

 <right expression> <bit>
<parameter> "P' <field>

 <field>

<parameter> <bit>
<constant>
<natural number>
"{" <flag instance> <flag instance>
"If" <conditions>

 <normal operation>

 "Else-,

 <normal operation>

97

I

98 BNF OF ARCH. DESC

<conditions>

<normal conditions>

<comparator sign>
<flag conditions>

<flag condition>

<flag instance>
<flag value>

<logical operator>
<compare operation>

 <normal conditions> ")" I
 <flag conditions> 1.).,

 <parameter> <comparator sign> <parameter>
I I ,<" I 11<=11 I -1>11 I -'>=" I "always"

 <flag condition>
 I <logical operator> <flag condition>

 <flag instance> "==" <flag value>
 <alphabets capital>

 "Compare" <parameter>
 <parameter> <set flag>

Appendix B

MIPS-R3000 Architecture

Description for the Proposed

Compiler Generator

99

100

1 2

3

4

5

6

7

8

9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

arch type

 cpu type { pipeline

 pipeline

 stage

 common stage

 phase par stage
 decode stage

 stage name

 1 { IF

 2 ID
 3 EXE
 4 mEm

 5 WB

 slot

 max instruction bit
 max data bit

resource class

 PC

 port

 input { inl)
 output { outl)

 function

 read

 interface

 outl { a

 latency
 throughput

 write

 interface

 inl { a

 latency

 throughput

 inc

 interface

 inl f a I

5

0

2

0)

 32
 32

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

ill

112

113

114

 MIPR-R3000 ARCH.

I
 latency 1

 throughput 1

IMEM

 port

 input f inl }
 output (outl)

 function

 read

 interface

 inl a
 outl b

 latency 2
 throughput 2

IR

 port

 input { inl
 output { outl

 function

 read

 interface

 outl { a

 latency
 throughput I

 write

 interface

 inl { a

 latency 1
 throughput 1

GPR

DESC

MIPR-R3000 ARCH.

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

 DESC.

 port

 input inl in2

 in3 in4
 output outl out2

 function

 readO

 interface

 inl a
 outl b

 latency 1)
 throughput 1)

 readl

 interface

 in2 a
 out2 b

 latency
 throughput 1

 write

 interface

 in3 a

 in4 b

 latency 1

 throughput 1

EXT

 port

 input inI

 output outl

 function

 z ero-ext

 interface

 inl a

 outl b

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

 latency (1)

 throughput { 1)

 sign

 interface

 inl a
 outl b

 latency

 throughput 1

ADD

 port

 input inl in2
 output outl

 function

 add

 interface

 inl a
 in2 b

 outl c

 latency { 1
 throughput { 1

 adc

 interface

 inl a
 in2 b

 outl c

 latency

 throughput 1

ALU

 port

 input inl in2
 output outl

 function

101

102

229

230

231

232

233

234

235

236

237

 238

 239

 240

 241

 242

 243

 244

 245

 246

 247

 248

 249

 250

 251

 252

 253

 254

 255

 256

 257

 258

 259

 260

 261

 262

 263

 264

 265

 266

 267

 268

 269

 270

 271

 272

 273

 274

 275

 276

 277

 278

 279

 280

 281

 282

 283

 284

 285

addu

 interface

 inl a

 in2 b

 outl c

 latency

 throughput

add

 interface

 inl a

 in2 b

 outl c

 latency

 throughput

subu

 interface

 inl a

 in2 b

 outl c

 latency

 throughput

sub

 interface

 inl a

 in2 b

 outl c

 latency

 throughput

and

 interface

 inl a

 in2 b

 outl c

 latency

 throughput

compu

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

MIPR-R3000 ARCH.

 interface

 inl a I

 in2 b

 outl c

 latency

 throughput 1

 comp

 interface

 inl a

 in2 b

 outl c

 latency

 throughput 1

 compzu

 interface

 inl a

 outl b

 latency

 throughput f I

 compz

 interface

 inl a

 outl b

 latency

 throughput 1

 nor

 interface

 inl a

 in2 b

 outl c

 latency 1

 throughput I

 or

 interface

 inl a

 in2 b I

DESC.

MIPR-R3000 ARCH.

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

 DESC

 outl (C

 latency 1
 throughput 1

 xor

 interface

 inl a
 in2 b
 outl c

 latency 1
 throughput 1

SFT

 port

 input inl in2
 output outl

 function

 sll

 interface

 inl a
 in2 b
 outl c

 latency I)
 throughput 1 }

 sra

 interface

 inl a
 in2 b
 outl C

 latency 1
 throughput 1

 srl

 interface

 inl a
 in2 b
 outl c

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

 latency { 1)

 throughput f 1)

DMEM

 port

 input { inl in2

 output { outl

 function

 load

 interface

 inI a

 outl b

 latency { 2

 throughput j 2

 lhu

 interface

 inl a
 outl b

 latency { 2
 throughput { 2

 lh

 interface

 inl a
 outl b

 latency (2)
 throughput { 2)

 lbu

 interface

 inl a
 outl b

 latency { 2)
 throughput { 2)

 lb

 interface

103

104

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

 472

473

474

475

 476

 477

 478

 479

 480

 481

 482

 483

 484

 485

 486

 487

 488

 489

 490

 491

 492

 493

 494

 495

 496

 497

 498

 499

 500

 501

 502

 503

 504

 505

 506

 507

 508

 509

 510

 511

 512

 513

 inl a
 outl b

 latency

 throughput

 store

 interface

 inl a

 in2 b

 latency
 throughput

 sh

 interface

 inl a
 in2 b I

 latency
 throughput

 sb

 interface

 inl a
 in2 b

 latency

 throughput

NOT

 port

 input { inl

 output { outl

 function

 not

 interface

 inl a
 outl b

 latency

 throughput

2

f 2

2

2

2

2

{ 2
f 2

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

 MIPR-R3000 ARCH.

CMAC

 port

 input { inl in2 I
 output (outl

 function

 cmac

 interface

 inl { a I
in2 b

 latency (34

 throughput { 34

 clracc

 interface

inl a

 latency

 throughput 1 1

 readacc

 interface

 outl { a I

 latency 1
 throughput 1

 ifracdigits

 interface

 inI { a

 latency 1
 throughput 1

 ofracdigits

 interface

inl a

 latency 1
 throughput 1 1

DESC.

MIPR-R3000 ARCH.

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

 DESC.

CMP

 port

 input { inl in2

 output { outl

 function

 cmP

 interface

 inl a
in2 b I

 outl c

 latency (1)
 throughput { 1)

 cmpz

 interface

 inl a
in2 b }

 outl c

 latency
 throughput I

MUL

 port

 input inl in2

 output outl

 function

 multiply __~u

 interface

 inl a
 in2 b

 outl c

 latency 1

 throughput 1

 multiply-S

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

 interface

 inl a

 in2 b
 outl c

 latency

 throughput

HI

 port

 input inl
 output outi

 function

 direct-read

 interface

 outl { a

 latency
 throughput

 direct write

 interface

 inl { a

 latency
 throughput

LO

 port

 input inl
 output outl

 function

 direct-read

 interface

 outl (a

 latency 1)

105

106

685

686

687

688

 689

690

 691

 692

 693

 694

 695

 696

 697

 698

 699

 700

 701

 702

 703

 704

 705

 706

 707

 708

 709

 710

 711

 712

 713

 714

 715

 716

 717

 718

 719

 720

 721

 722

 723

 724

 725

 726

 727

 728

 729

 730

 731

 732

 733

 734

 735

 736

 737

 738

 739

 740

 741

 throughput

 direct-write

 interface

 inl (a

 latency

 throughput

 DIV

 port

 input ~ inl

 output { outl

 function

 divide_u

 interface

 inl a
 in2 b I

 outl C
 out2 d

 latency
 throughput

 divide-s

 interface

 inl a
 in2 b I

 outl C
 out2 d

 latency

 throughput

storage

 instance

 PC

I)

in2)

 out2

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

 793

 794

 795

 796

 797

 798

MIPR-R3000 ARCH. DESC.

 avail F

 class PC
 resource PC

 number 1
 width 32

 data type any

SP

 avail T
 class sp
 resource GPR[291

 number 1
 width 32

 data type any

FP

 avail T

 class fp
 resource GPR[301

 number 1
 width 32

 data type any

LINK

 avail T

 class link
 resource f GPR[311
 number 1

 width 32
 data type any

ZERO

 avail F

 class zero
 resource GPR[01
 number I

 width 1 32
 data type any

RETURN

 avail T
 class return

 resource GPR[281 I
 number 1

 width { 32
 data type any

DMEM

 avail T f
 class D mem

MIPR-R3000 ARCH. DESC

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

 resource

 number

 width

 data type

IMEM

 avail

 class

 resource

 number

 width

 data type

IR

 avail

 class

 resource

 number

 width

 data type

GPR

 avail

 class

 resource

 number

 width

 data type

ACC

 avail

 class

 resource

 number

 width

 data type

HI

 avail

 class

 resource

 number

 width

 data type

LO

 avail

 class

 resource

 number

 width

DMEM

1

32

any

F

 I-mem

 IMEM

 32

 any

F

 reg

 IR

 32

 any

T

 reg

 GPR

 32

 32

 any

T

 reg

 CMACO

 40

 any

T

 reg

 HI

 32

 any

T

 reg

 LO

 32

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

 data type any

 HL

 avail T

 class reg

 resource HI&LO

 number I

 width 64

 data type any

stack

 width 16

 depth 200

condition flag

instruction

f

source data type spec

 char

 alignment f 8

 size 8

 short

 alignment 16

 size 16

 short2

 alignment f 16

 size 16

 int

 alignment 32

 size 32

 long

 alignment 32

 size 32

 long2

 alignment 64

 size 64

 float

107

108

913
914
915
916
917
918
919
920
921
922
923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969

 alignment f 32

 size 32

 double

 alignment 64
 size 64 1

 quad

 alignment 64 1
 size 64

 point

 alignment f 32

 size 32

 struct

 alignment f 8

 data

 alignment { 8

struct declaration

 struct man
 char person_name[201

 int age;

 struct complex
 int real;

 int imaginary;

macro typedef

 Int7toO

 signed unsigned char

 SInt7toO

 signed J char

 UInt7toO

f

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

 MIPR-R3000 ARCH. DESC.

 unsigned (char }

 Intl5toO
f
 signed unsigned { char short

 SIntl5toO

 signed { char short
I

 UInt15toO

 unsigned { char short

 Int3ItoO

 S igned unsigned { char short
 int long

 SInt31toO

 signed { char short int long

 UInt31toO

 unsigned { char short int long

ckf prototype

 void complexMAC
 (unsigned int , unsigned int

 unsigned int loadAcc
 void accumClear
 void setCpos int

 void setRpos int
 short maddl(int, int

 short madd2(int, int
 void blockadd(int, int);

ADD

 operand

 GPR SInt31toO

 GPR SInt31toO

a;

b;

MIPR-R3000 ARCH. DESC

 1027

 1028

 1029

 1030

 1031

 1032

 1033

 1034

 1035

 1036

 1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

 GPR SInt3ltoO c;

 format

 ADD" a b c

 functions

 stage(l)

 PC.read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 ALUO.add

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b + c;

ADDI

 operand

 GPR SInt3ltoO a;

 GPR SInt3ltoO b;
 'Imm 16 SIntl5toO c;

 format

 I'ADDI" a .1
, -1 b c

 functions

 s tage(l)

 PC.read
 IMEM.read

 PC.inc

 IR.read

 1084

 1085

 1086

 1087

 1088

 1089

 1090

 1091

 1092

 1093

 1094

 1095

 1096

 1097

 1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

 stage (2)

 GPR.readO
 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b + c;

ADDIU

 operand

 GPR UInt3ltoO a;
 GPR UInt3ltoO b;
 'Imm 16 UIntl5toO c;

 format

 I.ADDIUll a b c

 functions

 stage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 stage(5)

 GPR.write

109

110

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

 1181

 1182

 1183

 1184

 1185

 1186

 1187

 1188

 1189

 1190

 1191

 1192

 1193

 1194

 1195

 1196

 1197

behavior

 a = b + c;

ADDTJ

f

 operand

 GPR UInt3ltoO
 GPR UInt3ltoO

 GPR UInt3ltoO

 format

 ADDU" a

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 ALUO.add

 stage(4)

0
 stage(5)

 GPR.write

 behavior

 a = b + c;

AND

 operand

 GPR any a;

 GPR any b;
 GPR any c;

 format

a;

b;

C;

b " , 1. c

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

 1242

 1243

 1244

 1245

 1246

 1247

 1248

 1249

 1250

 1251

 1252

 1253

 1254

MIPR-R3000 ARCH. DESC

 MD

functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 ALUO.and

 stage(4)

 stage(5)

 GPR.write

behavior

 a = b & c;

b " ,

ANDI

 operand

 GPR any a;

 GPR any b;
 ,Imm 16 any C;

 format

 I.ANDI" a b

 functions

 S tage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

.1 c

.. c

MIPR-R3000 ARCH. DESC

 1255

 1256

 1257

 1258

 1259

 1260

 1261

 1262

 1263

 1264

 1265

 1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

 EXTO.zero -ext

 stage(3)

 ALUO.and

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b & c;

BEQ

 operand

 GPR any a;
 GPR any b;
 'label any c;

 PC any d;

 format

 BEQ" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 GPR.readl
 EXTO.sign

 stage(3)

 PC.read
 ADDO.add

 CMPO.cMP
 PC.write

 stage(4)

 (I
 stage(5)

I ~ c

 1312

 1313

 1314

 1315

 1316

 1317

 1318

 1319

 1320

 1321

 1322

 1323

 1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

I

behavior

 if a == b

 d C;

BGEZ

 operand

 GPR SInt31toO
 'label any b;

 PC any c;

 format

 BGEV a b

 functions

 s tage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 PC.read
 ADDO.add

 CMPO.cMpz
 PC.write

 stage(4)

0
 stage(5)

 behavior

 if a >= 0

 c b;

BGEZAL

f

a;

III

112

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

operand

 GPR SInt31toO
 ,label any b;

 PC any C;
 LINK any d;

format

 .IBGEZAL" a

functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 PC.read
 ADDO.add
 CMPO.cmpz

 PC.write

 stage(4)

 1)
 stage(5)

 GPR.write

behavior

 if a >= 0

 d Next(c);

 c b;

a;

b

BGTZ

 operand

 GPR SInt31toO a;
 ,label any b;

 PC any c;

 format

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

MIPR-R3000 ARCH. DESC.

 BGTZ" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 EXTO.sign

 stage(3)

 PC.read
 ADDO.add

 CMPO.cMpz
 PC.write

 stage(4)

 stage(5)

 behavior

 if a > 0

 c b;

BLEZ

 operand

 GPR SInt31toO
 'label any b;

 PC any c;

 format

 11BLEZ" a 11, 11 b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc
 TR.read

a;

MIPR-R3000 ARCH. DESC

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

 stage (2)

 GPR.readO
 EXTO.sign

 stage(3)

 PC.read

 ADDO.add

 CMPO.cMpz
 PC.write

 stage(4)

 stage(5)

 behavior

 if a <= 0

 c b;

BLTZ

 operand

 GPR SInt3ltoO
 'label any b;

 PC any c;

 format

 BLTZ" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 EXTO.sign

 s'~age(3)

 PC.read

 ADDO.add
 CMPO.cMpz

a;

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

 PC.write

 stage (4)

 stage (5)

 behavior

 if a < 0

 c b;

BLTZAL

 operand

 GPR SInt3ltoO
 ,label any b;

 PC any c;
 LINK any d;

 format

 "BLTZAL" a

 functions

 S tage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 PC.read
 ADDO.add

 CMPO.cMpz
 PC.write

 stage(4)

0
 stage(5)

 GPR.write

 behavior

h

a;

113

114

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

 1645

 1646

1647

 1648

 1649

 1650

 1651

 1652

 1653

if a < 0

 d Next (c)

 c b;

BNE

 operand

 GPR any a;
 GPR any b;
 ,label any c;

 PC any d;

 format

 .IBNE~ I

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 GPR.readl
 EXTO.sign

 stage(3)

 PC.read
 ADDO.add

 ALUO.cmp
 PC.write

 stage(4)

0
 stage(5)

 behavior

 if a != b

 d c;

b 11 , 11 c

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

 1710

MIPR-R3000 ARCH. DESC

 operand

 label any a;
 PC any b;

 format

 J" a

 functions

 s tage(l)

 PC.read

 IMEM.read

 PC.inc
 IR.read

 stage(2)

0
 stage(3)

 PC.write

 stage(4)

0
 stage(5)

0

 behavior

 if always

 b a;

JALR

 operand

 GPR any a;
 PC any b;

 LINK any c;

 format

 .IJALRII a

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

MIPR-R3000 ARCH.

 1711

 1712

 1713

 1714

 1715

 1716

 1717

 1718

 1719

 1720

 1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

 DESC

 IR. read

 stage (2)

 GPR.readO

 stage(3)

 PC.write

 stage(4)

 stage(5)

 GPR.write

 behavior

 if always

 c Next(b);

 b a;

JR

 operand

 GPR any a;

 PC any b;

 format

 JR" a

 functions

 stage(l)

 PC.read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 GPR.readO

 stage(3)

 PC.write

 stage(4)

 stage(5)

 1768

 1769

 1770

 1771

 1772

 1773

 1774

 1775

 1776

 1777

 1778

 1779

 1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

 behavior

 if always

 b a;

 LB

 operand

 GPR

 [GPR, disp]:

 format

 LB " a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc
 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 DMEM.lb

 stage(5)

 GPR.write

 behavior

 a = lb[7:01;

LBU

 operand

f

 DMEM

115

SInt7toO

SInt7toO

a;

b;

116

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

 1864

 1865

 1866

 1867

 1868

 1869

 1870

 1871

 1872

 1873

 1874

 1875

 1876

 1877

 1878

 1879

 1880

 1881

GPR UInt7toO a;

[GPR, disp]:DMEM UInt7toO b;

format

f
"LBU" a " , 1. b

functions

I

stage (1)

 PC. read
 IMEM.read

 PC.inc

 IR.read

stage(2)

 GPR.readO
 EXTO.sign

stage(3)

 ALUO.add

stage(4)

 DMEM.lbu

stage(5)

 GPR.write

 behavior

 a = *b[7:01;

LH

 operand

 GPR SIntl5toO a;

 [GPR, disp]:DMEM SIntl5toO b;

 format

 LH" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

 1923

 1924

 1925

 1926

 1927

 1928

 1929

 1930

 1931

 1932

 1933

 1934

 1935

 1936

 1937

 1938

MIPR-R3000 ARCH. DESC.

 IR. read

I
stage (2)

 GPR.readO
 EXTO.sign

stage(3)

 ALUO.add

stage(4)

 DMEM.lh

stage(5)

 GPR.write

behavior

 a = *b[15:01;

LHU

 operand

 GPR

 [GPR, displ:

 format

 LHU" a

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 DMEM.lhu

 DMEM

b

UIntl5toO

UIntl5toO

a;

b;

MIPR-R3000 ARCH. DESC

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

 stage (5)

 GPR.write

 behavior

 a = *b[15:01;

LUI

 operand

 GPR any
 'Imm 16 Intl5toO

 format

 LUI" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 stage(3)

 stage(4)

0
 stage(5)

 GPR.write

 behavior

 a = b << 16;

LW

 operand

 GPR

 [GPR, disp]:DMEM

 format

.ILW" a 1
, 11 b

a;

b;

any a;

any b;

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

 functions

 stage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 DMEM.read

 stage(5)

 GPR.write

 behavior

 a = *b;

NOR

 operand

 GPR any a;

 GPR any b;
 GPR any c;

 format

 "NOR" a

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

b " , .1 c

117

118

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

 GPR.readl

stage (3)

 ALUO.nor

stage (4)

stage (5)

 GPR.write

 behavior

 a b I c

OR

 operand

 GPR any a;

 GPR any b;
 GPR any C;

 format

 OR' I

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc
 IR.read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 ALUO.or

 stage(4)

 stage(5)

 GPR.write

 behavior

b " , 11 c

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

MIPR-R3000 ARCH. DESC.

 a = b

ORI

 operand

 GPR

 GPR
 'Imm

 format

 ,.ORI"

SB

any

any

16

c ;

 a;

b;

any c;

a 'I ,

functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 EXTO.zero

 stage(3)

 ALUO.or

 stage(4)

 stage(5)

 GPR.write

behavior

I
a = b

operand

 GPR

 [GPR,

format

 I.SB"

c ;

.1 b " , .1 c

ext

disp] : DMEM

, 11 ,

functions

1. b

any

any

a;

b;

MIPR-R3000 ARCH. DESC

 2167

 2168

 2169

 2170

 2171

 2172

 2173

 2174

 2175

 2176

 2177

 2178

 2179

 2180

 2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

I

stage (1)

 PC. read
 IMEM.read

 PC.inc
 IR.read

stage(2)

 GPR.readO
 GPR.readl

 EXTO.sign

stage(3)

 ALUO.add

stage(4)

 DMEM.sb

stage(5)

0

 behavior

 b = a[7:0];

SH

 operand

 GPR

 [GPR, disp]:

 format

 SH" a b

 functions

 s tage(l)

 PC.read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 GPR.readO

 GPR.readl
 EXTO.sign

 stage(3)

 DMEM

any a;

any b;

 2224

 2225

 2226

 2227

 2228

 2229

 2230

 2231

 2232

 2233

 2234

 2235

 2236

 2237

 2238

 2239

 2240

 2241

 2242

 2243

 2244

 2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

 ALUO.add

 stage (4)

 DMEM. sh

 stage (5)

 behavior

 b = a[15:0];

 SLL

 operand

 GPR any a;

 GPR any b;
 'Imm 5 any c;

 format

 SLL" a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 stage(3)

 SFTO.sll

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b << c

SLLV

c

119

120

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

 2323

 2324

 2325

 2326

 2327

 2328

 2329

 2330

 2331

 2332

 2333

 2334

 2335

 2336

 2337

f

operand

 GPR any a;

 GPR any b;

 GPR any c;

format

.ISLLV" a b c

functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 SFTO.Sll

 stage(4)

 stage(5)

 GPR.write

behavior

 a = b << c

SLT

operand

 GPR any a;

 GPR SInt3ltoO b;
 GPR SInt3ltoO c;

format

 .ISLT" a -1, " b c

functions

 stage(l)

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

 2383

 2384

 2385

 2386

 2387

 2388

 2389

 2390

 2391

 2392

 2393

 2394

MIPR-R3000 ARCH. DESC.

PC. read

IMEM.read

PC.inc

TR.read

stage (2)

 GPR.readO
 GPR.readl

stage(3)

 ALUO.cmp

stage(4)

stage(5)

 GPR.write

behavior

 a = b < c

SLTI

operand

 GPR any a;

 GPR SInt3ltoO b;
 'Imm 16 SIntl5toO C;

format

.ISLTI" a b c

functions

 s tage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 EXTO.sign

 stage(3)

 ALUO.cmp

 stage(4)

MIPR-R3000 ARCH. DESC

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

 { I
 stage (5)

 GPR.write

 behavior

 a = b < c

 SLTIU

 operand

 GPR any a;
 GPR UInt3ltoO b;

 ,imm 16 UIntl5toO c;

 format

 SLTIU" a b c

 functions

 stage(l)

 PC.read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 GPR.readO
 EXTO.extend

 stage(3)

 ALUO.cmp

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b < c

SLTU

I
 operand

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506

2507

2508

 GPR any a;

 GPR UInt3ltoO b;
 GPR UInt3ltoO c;

 format

 SLTUII a 11, 11 b 11, 11 c

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 ALUO.cmp

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b < c

SRA

 operand

 GPR SInt3ltoO a;

 GPR SInt3ltoO b;
 'Imm 5 any c;

 format

 I.SRA-' a b

 functions

 stage(l)

 PC.read
 IMEM.read

 PC.inc

121

122

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

 IR. read

stage (2)

 GPR.readO

stage(3)

 SFTO.sra

stage(4)

stage(5)

 GPR.write

behavior

 a = b >> c

SRAV

 operand

 GPR SInt3ltoO a;

 GPR SInt3ltoO b;
 GPR any c;

 format

 SRAW a b c

 functions

 s tage(l)

 PC.read
 IMEM.read

 PC. iric
 IR.read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 SFTO.sra

 stage(4)

 stage(5)

 GPR.write

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

MIPR-R3000 ARCH. DESC.

behavior

 a = b >> c

SRL

 operand

 GPR UInt3ltoO a;

 GPR UInt3ltoO b;
 Imm 5 any C;

 format

 SRL" a b c

 functions

 s tage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 stage(3)

 SFTO.srl

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b >>> c

SRLV

 operand

 GPR UInt3ltoO a;
 GPR UInt3ltoO b;

 GPR any c;

 format

MIPR-R3000 ARCH. DESC

 2623

2624

 2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

I'SRLVI' a 11
, " b 1, c

 functions

 stage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 SFTO.srl

 stage(4)

 stage(5)

 GPR.write

 behavior

 a = b >>> c

SUB

 operand

 GPR SInt3ltoO a;
 GPR SInt3ltoO b;

 GPR SInt3ltoO c;

 format

 SUB" a b c

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 2680

 2681

 2682

 2683

 2684

 2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

 GPR.readl

 stage (3)

 ALUO.sub

 stage (4)

 stage (5)

 GPR.write

 behavior

 a = b - c;

SUBU

 operand

 GPR UInt3ltoO a;
 GPR UInt3ltoO b;
 GPR UInt3ltoO c;

 format

 I.SUBU" a b c

 functions

 s tage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 ALUO.sub

 stage(4)

 stage(5)

 GPR.write

 behavior

123

124

2737

2738

2739

2740

2741

2742

2743

2744

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

 a = b - c;

Sw

 operand

 GPR

 [GPR, disp]:DMEM

 format

.1sw" a b

 functions

 stage(l)

 PC.read
 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO

 GPR.readl
 EXTO.sign

 stage(3)

 ALUO.add

 stage(4)

 DMEM.write

 stage(5)

0

 behavior

 ,b

XOR

 operand

 GPR any a;
 GPR any b;

 GPR any c;

 format

 XOR" a b

any a;

any b;

.
, .1 c

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

 2819

2820

 2821

 2822

 2823

 2824

 2825

 2826

 2827

 2828

 2829

 2830

 2831

 2832

 2833

 2834

 2835

 2836

 2837

 2838

 2839

 2840

 2841

 2842

 2843

 2844

 2845

 2846

 2847

 2848

 2849

 2850

 MIPR-R3000 ARCH.

 functions

 S tage(l)

 PC.read
 IMEM.read
 PC.inc
 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 ALUO.xor

 stage(4)
0
 stage(5)

 GPR.write

 behavior

 a = b c

XORI

 operand

 GPR any a;
 GPR any b;
 ,imm 16 any c;

 format

 XORI" a b

 functions

 stage(l)

 PC.read
 IMEM.read
 PC.inc
 IR.read

 stage(2)

 GPR.readO
 EXTO.zero-ext

 stage(3)

DESC

c

MIPR-R3000 ARCH.

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

 DESC.

 ALUO.xor

 stage (4)

 stage (5)

 GPR.write

 behavior

 a = b ^ c

CKF-complexMAC

 operand

 GPR UInt3ltoO a;
 GPR UInt3ltoO b;

 format

 CMULT ~ a b

 functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 CMACO.mac

 stage(4)

 stage(5)

 behavior

 complexMAC a b

CKF-LoadFromAcc

 operand

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

 GPR UInt3ltoO a;

format

 "CLOAD" a

functions

 stage(l)

 PC.read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 stage(3)

 CMACO.readacc

 stage(4)

 stage(5)

 GPR.write

behavior

 a = loadAcc

F AccumClearCK

 op

 fo

 fu

 erand

 rmat

 "ACMCLR"

 nctions

 stage (1)

 PC. read

 IMEM.read
 PC.inc
 IR.read

 stage(2)

 stage(3)

 CMACO.clracc

125

126

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

behavior

stage (4)

stage (5)

accumClear

CKF_setCpos

operand

 Imm 5 UInt7toO a;

format

 SETCPOS" a

functions

 stage(l)

 PC.read

 IMEM.read
 PC.inc

 IR.read

 stage(2)

 stage(3)

 CMACO.ifracdigits

 stage(4)

 stage(5)

behavior

 setCpos (a

CKF -setRpos

operand

 Imm 5 UInt7toO a;

format

 "SETRPOS" a

functions

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

MIPR-R3000 ARCH. DESC.

 stage (1)

 PC. read
 IMEM.read

 PC.inc
 IR.read

 stage(2)

 stage(3)

 CMACO.ofracdigits

 stage(4)

0
 stage(5)

behavior

 setRpos (a

MFHI

operand

foimat

functions

GPR any a;
HI any b;

'IMFHIII a

stage(l)

 PC.direct_read
 IMEM.load.word
 PC.inc

 IR.direct-read

stage(2)

stage(3)

 HI.direct-read

stage(4)

0
stage(5)

 GPR.write

behavior

MIPR-R3000 ARCH. DESC

3079

3080 a = b;
3081

3082
3083 MFLO
3084

3085 operand
3086

3087 GPR any a;

3088 LO any b;
3089

3090 format
3091

3092 "MFLO" a
3093

3094 functions
3095
3096 stage(l)

3097
3098 PC.direct -read
3099 IMEM.loadword
3100 PC.inc
3101 IR.direct -read
3102

3103 stage(2)
3104 0

3105 stage(3)
3106

3107 LO.direct -read
3108
3109 stage(4)

3110 0

3111 stage(5)
3112

3113 GPR.write
3114
3115

3116 behavior
3117

3118 a = b;
3119

3120
3121 MTHI
3122

3123 operand
3124
3125 GPR any a;

3126 HI any b;
3127

3128 format
3129 1

3130 I'MTHI" a
3131
3132 functions

3133

3134 stage(l)
3135

3136

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

3186

3187

3188

3189

3190

3191

3192

 PC.direct read
 IMEM.load.word

 PC.inc
 IR.direct -read

 stage(2)

 GPR.readO

 stage(3)

 stage(4)

 stage(5)

 HI.direct __~write

 behavior

 b = a;

MTLO

 operand

 GPR any a;
 LO any b;

 format

 I'MTLO" a

 functions

 stage(l)

 PC.direct read
 IMEM.load.word

 PC.inc
 IR.direct -read

 stage(2)

 GPR.readO

 stage(3)

 stage(4)

 stage(5)

 LO.direct -write

 behavior

127

128

3193

3194
3195

3196
3197

3198
3199

3200
3201

3202
3203

3204
3205
3206

3207
3208

3209
3210

3211
3212
3213

3214
3215

3216
3217

3218
3219
3220

3221
3222

3223
3224
3225

3226
3227

3228
M9

3230
3231

3232
3233
3234

3235
3236

3237
3238

3239
3240
3241

3242
3243

3244
3245

3246
3247

3248
3249

 b = a;

MULT

 operand

 GPR SInt32toO a;
 GPR SInt32toO b;

 HL SInt64toO c;

 format

 ,.MULT" a b

 functions

 stage(l)

 PC.direct_read

 IMEM.load.word
 PC.inc
 IR.direct read

 stage(2)

 GPR.readO
 GPR.readl

 stage(3)

 MULO.multiply-s

 stage(4)

 stage(5)

 HI.direct-Write
 LO.direct_write

 behavior

 c = a b;

MULTU

 operand

 GPR UInt32toO a;
 GPR UInt32toO b;
 HL UInt32toO c;

 format

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

MIPR-R3000 ARCH. DESC

 "MULTU" I b

functions

 stage(l)

 PC.direct-read
 IMEM.load word

 PC.inc

 IR.direct-read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 MULO.multiply_~u

 stage(4)

 stage(5)

 HI.direct_write

 LO.direct write

behavior

 c = a * b;

DIV

 operand

 GPR SInt3ltoO a;

 GPR SInt3ltoO b;
 HI SInt3ltoO c;

 LO SInt3ltoO d;

 format

 "DIV" I b

 functions

 stage(l)

 PC.direct-read
 IMEM.load.word

 PC.inc
 IR.direct-read

 stage(2)

MIPR-R3000 ARCH. DESC

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

 GPR.readO

 GPR.readl

 stage(3)

 DIVO.divide_s

 stage(4)

 stage(5)

 HI.direct -write
 LO.direct -write

 behavior

 c a b;
 d a b;

DIVU

 operand

 GPR UInt3ltoO a;

 GPR UInt3ltoO b;
 HI UInt31toO c;

 LO UInt3ltoO d;

 format

 .'DIVU" a b

 functions

 stage(l)

 PC.direct -read
 IMEM.load -word
 PC.inc

 IR.direct -read

 stage(2)

 GPR.readO

 GPR.readl

 stage(3)

 DIVO.divide -u

 stage(4)

 stage(5)

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

 HI. direct

 LO. direct

behavior

 c a % b;

 d a / b;

structure

PC

 class PC

 stage 1

 connection

 outl

 IMEM.inI

 ADDO.inl

IMEM

 class IMEM

 stage 1

 connection

 outi

 IR.inl

IR

 class IR

 stage 1

 connection

 outl

 stage 2

 stage 2

 stage 5

 stage 5

write

write

GPR.

GPR.

GPR.

GPR.

EXTO

SFTO

inl

in2

in3

in4

 inl

 inI

129

130

3421
3422

3423
3424

3425
3426

3427
3428
3429

3430
3431

3432
3433

3434
3435

3436
3437
3438

3439
3440

3441
3442
3443

3444
3445

3446
3447

3448
3449

3450
3451
3452

3453
3454

3455
3456
3457

3458
3459

3460
3461

3462
3463
3464

3465
3466

3467
3468

3469
3470
3471

3472
3473

3474
3475

3476
3477

CMPO

MULO. inl

DIVO. inl

MADDIUO.inl

MADD2uO.in1

ADDBLOCKlUO

portion
GPR

 class GPR

 stage 2

 connection

 outl

 ALUO.inl

 .inl

 CMACO.inl

 SFTO.inl

 .inl

MULO. in2

DIVO. in2

MADDlUO.in2

MADD2UO.in2

ADDBLOCKlUO

out2

 PC. inI

 ALUO. in2

 CMPO. in2

 CMACO.in2

 SFTO. in2

 DMEM. in2

 in2

portion
GPR

 c lass GPR
 stage 5
 connection

 outl

0
 out2

EXTO

 class I EXT

 stage { 2
 connection

 outl

 ALUO.in2

MIPR-R3000 ARCH. DESC

3478

3479

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

3529

3530

3531

3532

3533

3534

 ADDO. in

ADDO

 class ADD

 stage 3

 connection

 outl

 PC.inl

ALUO

 c lass ALU

 stage 3

 connection

 outi

f

NOTO

2

 inl

 stage 5

DIVO

 c lass DIV

 stage 3

 connection

 outl

 HI.inl

 out2

 LO.inl

SFTO

 c lass SFT

 stage 3

 connection

 outl

 stage 5

DMEM.

 GPR

 GPR

inl

. in4

- in4

MIPR-R3000 ARCH. DESC

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

DMEM

 class DMEM

 stage 4

 connection

 outl

 stage 5 GPR.in4

CMPO

 class { CMP

 stage { 3

 connection

 outi

CMACO

 class CMAC

 stage 3
 connection

 outl

 stage 5

NOTO

 class NOT
 stage 3

 connection

 outl

 stage 5

MULO

 class MUL
 stage 3

 connection

 outl

 HI.inl

GPR. in4

GPR. in4

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

HI

LO

f

I

LO. inl

class HI

stage 5

connection

 outl

 stage

class LO

stage 5

connection

 outl

 stage

5

5

GPR

GPR

- in4

. in4

131

List of Major Publications of the
Author

Journal Papers

[1] Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, and Masaharu Imai:
 "JPEG Encoder Implementati on Using the ASIP Development System: PEAS-
 1119" IPSJ Journal (submitted paper) .

[2] Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, and Masaharu Imai:
 "A Compiler Generation Meth od for HW/SW Codesign Based on Config-

 urable Processors," IEICE Transactions on Fundamentals of Electronics ,
 Communications and Computer Sciences, Vol. E85-A , No. 12, pp. 2586-

 2595, Dec. 2002.

[3] Shinsuke Kobayashi, Yoshinori Takeuchi, Akira KitaJima and Masaharu
 Imai: "Proposal of a Multi-Threaded Processor Architecture for Embed-

 ded Systems and Its Evaluation," MICE Transactions on Fundamentals of
 Electronics, Communications and Computer Sciences , Vol. E84-A, No. 3,
 pp. 748-754, Mar. 2001.

International Conference Papers

 [1] Koji Okuda, Shinsuke Kobayashi, Yoshinori Takeuchi, Masaharu Imai: "A
 Simulator Generator Based on Configurable VLIW Model Considering Syn-

 thesizable HW Description and SW Tools Generation " Proceedings of the
 Workshop on Synthesis And System Integration of MIxed Technologies

 2003, (to appear).

133

134 LIST OF MAJOR PUBLICATIONS OF THE AUTHOR

[2] Akira Kitajima, Yoshinori Takeuchi, Akichika Shiomi, Jun Sato, Shinsuke
 Kobayashi, Masaharu. Imai: "Architectural Design Space Exploration of

 Configurable Processors using ASIP Meister," Proceedings of the Work-
 shop on Synthesis And System Integration of MIxed Technologies 2003,
 (to appear).

[31 Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, Masaharu Imai:
 "Rapid Prototyping of JPEG Encoder Using the ASIP Development Sys-

 tem: PEAS-111," IEEE International Conference on Acoustics, Speech, and
 Signal Processing 2003 (to appear).

[4] Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, Masaharu Imai:
 "Design Space Exploration for DSP Applications using the ASIP Develop-

 ment System PEAS-111 ' " Proceedings of IEEE International Conference on
 Acoustics, Speech, and Signal Processing 2002, V61.3, pp.3168 - 3171, May

 13-17,2002

[5] Shinsuke Kobayashi, Yoshinori Takeuchi, Akira Kitajima, Masaharu Imai:
 "Compiler Generation in PEAS-III: an ASIP Development System' " Pro-

 ceedings of Software and Compilers for Embedded Systems 2001, Mar.
 2001.

[6] Toshiyuki Sasaki, Shinsuke Kobayashi, Tomohide Maeda, Makiko Itoh,
 Yoshinori Takeuchi, and Masaharu Imai: "Rapid Prototyping of Complex

 Instructions for Embedded Processors using PEAS-III," Proc. Proceedings
 of the Workshop on Synthesis And System Integration of MIxed Technolo-

 gies 2001, pp 61-66, Nara, Japan, Oct. 2001.

National Conference Papers

[1] Kentaro Mita, Shinsuke Kobayashi, Yoshinori Takeuchi, Keishi Sakanushi,
 Masaharu Imai: "A Proposal of Zero Overhead Loop Model in ASIP Meis-

 ter' " Technical Report in IEICE, CPSY2002-58, vol. 102, No. 478, pp.
 43-48, Nov. 2002 (in Japanese).

[2] Yoshinori Takeuchi, Shinsuke Kobayashi, Masaharu Imai: "An ASIP devel-
 opment environment ASIP Meister and its Application to DSP," Technical

 Report in IEICE, CAS2002-61, vol. 102, No. 295, pp. 73-78, Sep. 2002 (in
 Japanese).

LIST OF MAJOR PUBLICATIONS OF THE AUTHOR 135

[31 Koji Okuda, Shinsuke Kobayashi, Yoshinori Takeuchi, Masaharu Imai: "Pro-
 posal of an Architecture Model and a Simulator Generator for Configurable

 VLIW Procesor," IPSJ Symposium Series, Vol. 2002, No. 10, pp. 161-166,
 Jul. 2002 (in Japanese).

[4] Nobuyuki Hikichi, Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi,
 Masaharu Imai: "Proposal of Common Processor Architecture Description

 for ASIP Design Automation - Integration of Processor and Machine De-
 scription for Retargetable Compiler -," Technical Report in IEICE, VLD2002-

 60, vol. 102, No. 163, pp. 25-30, Jun. 2002 (in Japanese).

[5] Shinsuke Kobayashi, Kentaro Mita, Yoshinori Takeuchi, Masaharu Imai: "A
 Compiler Generation Method in The PEAS-III System and Its Evaluation ' "

 Technical Report in IEICE, VLD2001-145, vol. 10 1, No. 577, pp. 10 1 - 108,
 Jan. 2002 (in Japanese).

[6] Kentaro Mita, Shinsuke Kobayashi, Yoshinori Takeuchi, Akira Kitajima,
 and Masaharu Imai: "A Case Study of Compiler Generator for PEAS-111
 System," IPSJ Symposium Series, Vol. 2001, No. 8, pp. 143-148, Jul. 2001

 (in Japanese).

[7] Shinsuke Kobayashi, Yoshinori Takeuchi, Akira Kitajima, Masaharu Imai:
 "An Evaluation of Processor Cores for Embedded S

ystems using Multi-
 threading Mechnism," Proceedings of The 13th Workshop on Circuits and

 Systems in Karuizawa, pp. 533-538, Apr. 2000 (in Japanese).

[8] Shinsuke Kobayashi, Yoshinori Takeuchi, Akira Kitajima, and Masaharu
 Imai: "A Proposal of a Processor for Multi-threading Using Interleaving

 Threads Mechanism," IPSJ Sig Notes, 99-ARC-135 V61.99, No. 100, pp.45-
 50, Nov. 1999 (in Japanese).

	175-00001.pdf
	175-00002.pdf
	175-00003.pdf
	175-00004.pdf
	175-00005.pdf
	175-00006.pdf
	175-00007.pdf
	175-00008.pdf
	175-00009.pdf
	175-00010.pdf
	175-00011.pdf
	175-00012.pdf
	175-00013.pdf
	175-00014.pdf
	175-00015.pdf
	175-00016.pdf
	175-00017.pdf
	175-00018.pdf
	175-00019.pdf
	175-00020.pdf
	175-00021.pdf
	175-00022.pdf
	175-00023.pdf
	175-00024.pdf
	175-00025.pdf
	175-00026.pdf
	175-00027.pdf
	175-00028.pdf
	175-00029.pdf
	175-00030.pdf
	175-00031.pdf
	175-00032.pdf
	175-00033.pdf
	175-00034.pdf
	175-00035.pdf
	175-00036.pdf
	175-00037.pdf
	175-00038.pdf
	175-00039.pdf
	175-00040.pdf
	175-00041.pdf
	175-00042.pdf
	175-00043.pdf
	175-00044.pdf
	175-00045.pdf
	175-00046.pdf
	175-00047.pdf
	175-00048.pdf
	175-00049.pdf
	175-00050.pdf
	175-00051.pdf
	175-00052.pdf
	175-00053.pdf
	175-00054.pdf
	175-00055.pdf
	175-00056.pdf
	175-00057.pdf
	175-00058.pdf
	175-00059.pdf
	175-00060.pdf
	175-00061.pdf
	175-00062.pdf
	175-00063.pdf
	175-00064.pdf
	175-00065.pdf
	175-00066.pdf
	175-00067.pdf
	175-00068.pdf
	175-00069.pdf
	175-00070.pdf
	175-00071.pdf
	175-00072.pdf
	175-00073.pdf
	175-00074.pdf
	175-00075.pdf
	175-00076.pdf
	175-00077.pdf
	175-00078.pdf
	175-00079.pdf
	175-00080.pdf
	175-00081.pdf
	175-00082.pdf
	175-00083.pdf
	175-00084.pdf
	175-00085.pdf
	175-00086.pdf
	175-00087.pdf
	175-00088.pdf
	175-00089.pdf
	175-00090.pdf
	175-00091.pdf
	175-00092.pdf
	175-00093.pdf
	175-00094.pdf
	175-00095.pdf
	175-00096.pdf
	175-00097.pdf
	175-00098.pdf
	175-00099.pdf
	175-00100.pdf
	175-00101.pdf
	175-00102.pdf
	175-00103.pdf
	175-00104.pdf
	175-00105.pdf
	175-00106.pdf
	175-00107.pdf
	175-00108.pdf
	175-00109.pdf
	175-00110.pdf
	175-00111.pdf
	175-00112.pdf
	175-00113.pdf
	175-00114.pdf
	175-00115.pdf
	175-00116.pdf
	175-00117.pdf
	175-00118.pdf
	175-00119.pdf
	175-00120.pdf
	175-00121.pdf
	175-00122.pdf
	175-00123.pdf
	175-00124.pdf
	175-00125.pdf
	175-00126.pdf
	175-00127.pdf
	175-00128.pdf
	175-00129.pdf
	175-00130.pdf
	175-00131.pdf
	175-00132.pdf
	175-00133.pdf
	175-00134.pdf
	175-00135.pdf
	175-00136.pdf
	175-00137.pdf
	175-00138.pdf
	175-00139.pdf
	175-00140.pdf
	175-00141.pdf
	175-00142.pdf

