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5 [1-3]
Tablel.1
[2]
[3]

o 1.1 Hall[4] Petch[5]

oc=0,+kd™*? (1.2)

Table 1.1  Hardening mechanisms in crystalline materials.

Hardening mechanism Obstacle against dislocation slip
Dislocation hardening Other dislocations

(Work hardening)

Grain refinement hardening Grain boundaries

Solution hardening Solute atoms

Dispersion hardening Undeformable particles
Precipitation hardening Deformable particles
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Fig.1.1 Relationship between the yield stress and mean grain size (Hall-Petch relationship) of the

vairous crystalline materials.
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Fig.1.2 Severe plastic deformation processes. (a) ECAP, (b) HPT, (c) multiple
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Table 1.2 Ultrafine grain sizes obtained by various processes for severe plastic deformation.

Process Materials Grain size Reference

ARB Interstitial free (IF) steel 270nm in thickness” [44-45]
0.13wt%C steell (IS-55400) 110nm in thickness” [46]
(Ferrite+ Pearlite)
1100-Al 270nm in thickness” [47-48]
5083-Al 80nm [49]
OFHC Cu 160nm in thickness” [50]
36wt%Ni steel 87nm in thickness” [51]

ECAP Ultra low carbon steel (Ferrite) 200nm [16]
0.08wt%C steel (Ferrite+Pearlite) | 200nm [17]
0.15M%C—1.1!\/In steel 200nm [19]
(Ferrite+Pearlite)
4AN-Al 1300nm (500-1500nm) [20-21]
Al-1wt%Mg 450nm [22-23]
Al-3wt%Mg 270nm [22-23]
Al-3%Mg 200nm [24]
Al-0.2wthZr 700nm [22]

50nm in thickness

Al-1.7athCu (a+67) 500nm in longitudinal length” [25-26]
Al-1.7at%Cu (single phase) 100nm [26]
3N-Cu 210nm [27]
4N-Cu 200nm [28]
TS 3N-Fe (ARMCO iron) 100nm [29]
Ferritic stainless steel (25wt%Cr) 50nm [30]
Al-1.5%Mg 200nm [31]
Al-Zn-Mg-Cu-Fe 300nm [32]
Mg-1.5%Mn-0.3%Ce 100nm [33]
Multiple compression | 304 type austenite strainless steel
. 250nm [34-36]
(8.35wt%Ni-18.09%Cr)
4N-Cu 200nm [37]
MM Fe 30nm [38]
Fe-0.2%0 (Fe/Fe;O, powder) 700nm™ [39]
Fe-0.6%0 (Fe/Fe,O, powder) 350nm™ [39]
Fe-1.5%0 (Fe/Fe,O, powder) 200nm™ [39-40]
316L type austenite strainless steel
. 15nm [41]
(12.09wt%Ni-16.26%Cr)
3N-Al 26nm [42]

* Pancake-shape grains.
** Consolidated by hot-rolling at 700°C after mechanical milling.
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Fig.1.3 Nominal stres -nominal plastic strain curves of the interstitial free (IF) steel with
various grain sizes ranging from submicron size (0.21 11 m) to conventional grain size (11 n
m). The specimens were fabricated by the ARB process. (After N.Tsuji et al.[61].)
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Fig.1.4 Schematic illustration of the lath martensite.
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Fig.1.5 Dislocation density in carbon steel martensite. (after Kehoe et al.[69], and
Nishiyama et al.[70])
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Fig.2.1 Thermomechanical history.
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Table.2.1 (JIS-SS400 mm><

25mm>< 200mm Fig.2.2 SEM
5.6|am
2.3
.0 Ar  10vol%H,
1000 ><0.9ks
50
! g,=0.8) 310
17.5m/min
200 700 1.8ks (30
)

Table.2.1 Chemical composition of the material studied.(wt%)

C N Si Mn p S Fe

0.13%C 0.13 0.004 001 037 0.020 0.004 bal.

fo, L1 Ewm 2.1 [4]

& ——iln t—l 2.1
vM \/g |t0 .
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Fig.2.2 SEM microstructure of the 0.13%C (JIS-
55400) steel as received (hot-rolled sheet).

TD-plane
Fig.2.3 Schematic illustration showing the
observed plane in a rolled sample by Optical
Microscopy (OM), Transmission Electron
Microscopy (TEM), and Scanning Electron
Microscopy (SEM).

Scanning Elwctron Microscope; SEM

Transmission Electron Microscope; TEM SEM
JEOL-5600 25 V TEM H-800
Philips CM-200 200 V Fig.2.3
Transverse Direction; TD TD SEM
3
3vol%NHO,+97vol%CH,OH 60s 3-5s SEM
TEM TD 50pam
10vol%
Tenupole-8 TEM Kikuchi
[2]
0.1
[2] TEM Philips CM-200 Kikuchi Zaefferer [3]
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Fig.2.4 ( 24a)SEM  (

24Db) TEM ( .2.4(0)) ( 24a)
[4-5] (Y) 2701am
\V4 50pam
95
SEM (b) [5-6] TEM ()
[5-6] 170 m

surface

Fig.2.4 OM (a), SEM (b) and TEM(c) microstructures of the as-quenched martensite in the
0.13%C steel. (Lath martensite)
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(Rolling Direction; RD) Normal Dorection;
ND
Y
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\V4 135pm
Y
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Fig.2. (b) 50 =,=0.8 SEM SEM
ABZC
A
B:
C:
Fig.2.5(b) SEM
50 (A) (B)
(©)
Fig.2.5(a)
SEM 3 TEM Fig26 50 =
=0.8 TD TEM Fig.2.6 a Fig.2.5
Lamellar Dislocation Cell;
6 nm
1.6pam
SAD LDC SAD
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Fig.2.5 OM (a) and SEM (b) microstructures of the 0.13%C steel 50%
(€,,=0.8) cold-rolled. The starting microstructure was martensite. Observed
Jrom TD.
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Fig.2.6 TEM microstructures (a,b,c) of the 0.13%C steel 50% (¢,,=0.8) cold-
rolled, corresponding to the microstructure A (lamellar dislocation cells;
LDC), B (irregularly bent laths; IBL) and C (kinked laths; KL) in Fig.2.5,
respectively. The starting microstructure was martensite. Observed from TD.
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Table 2.2 Characteristics of the lamellar deformation structures in various kinds of deformed

materials.
Material Deformation Total Boundary spacing Mean misorientation References
process & strain
temperature
Ni(99.99%) rolling, RT 4.5 about 100n about 20° [8]
Al A1200 rolling, RT 5.0 about 300n 29.2° [9]
Al A1100 ARB, 473K 4.8 270nm 37.3° [11]
0.13%C-steel ARB, RT 4.0 110nm ring-like SAD pattern [9]
(ferrite + pearlite
starting structure)
0.13%C-steel rolling, RT 0.8 60nm ring-like SAD pattern this work
(Martensite
starting structure)
LDC (Lamellar boundary structure)[7] FCC
[7-9] [10-11] Table
2.2
ARB
Ni Al 15
(High Angle Boundary; HAB)
50 &,u=0.8)
Fig.2.6 \V4 \V4
\V4 Irregularly
Bent Lamella; Fig.2.5 B IBL
LDC
Y
.2.5()
Y
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Fig.2.6 Fig.2.6 b

Kinked lath;
Fig27 50 1.8ks 400
2.7(a) 400
500 (b)
180nm
50-200nm
45 50
£,,=-0.8 50 =,-=0.8
550
(d) 600 (d) M
300nm
500 550
500
Fig.2.8 Fig.2.9 Fig.2.8 500 TD TEM (@)
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Fig.2.7 TEM microstructures of the 0.13%C steel 50% (t,=0.8) cold-rolled and

subsequently annealed at 400°C(a), 500°C(b), 550°C(c) and 600°C(d) for 1.8ks. Starting
microstructure was martensite. Observed from TD.

15 15

Kikuchi

Table2.3 28.6
70

23



(b)

== high-angle boundary (6=15°)
— low-angle boundary (6<15°)....4
------- not measured A

Fig.2.8 TEM microstructure (a) and corresponding misorientation map (b) of the 0.13%C
steel 50% (¢,,=0.8) cold-rolled and annealed at 500°C for 1.8ks. Starting microstructure
was martensite. Observed from TD. Misorientation angles (deg.) of the boundaries are also
written in (b).

13 RD 45
RD

RD
[7-11]
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Table 2.3 Mean misorientation and fraction of HAB in the ultrafine grained microstructure of the
0.13%C steel 50% (&m=0.8) cold-rolled and annealed at 500°C. The starting microstructure was
martensite. Corresponding to the data of Fig.2.8.

mean misorientation fraction of HAB
whole boundaries 28.6< 70 73/104
near parallel to RD 35.0< 96 48/50
near perpendicular to RD 20.2< 20 19/41
(b)

Fig.2.9 Crystallographic features of the 0.13%C steel 50% (t,,=0.8) cold-rolled and
annealed for 1.8ks at 500°C. Starting microstructure was martensite.

(a) {001 }pole figure of all the orientations measured in Fig.2.8.

(b) Orientation map indicating the orientation of each ultrafine grain by {001} pole figure.

Fig.2.9 {001} @)
(b) 13 am><7pam
(a)
(b)
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1f

(unit: mm)
Fig.3.1 Specimen for tensile test.

0.5mm min ! 8.3 10" *
€
5= (3.1)
SO
Al s
e, =—-—— 3.2
L E 3.2)
P S A A
>0 Lo 10mm E’
0.2 0.2
E o

e=In(l+e) (3.3
o=5(+e) (3.4)

o/ds -

5.0x10°° (g,0)
~ Op~9; /(8/41_8/ &
- EAE;; /12, N
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0.2mm 30 0.08mm
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(a) (b)

Air cylinder

Laserdisplacement
sensor

Blade
Speed
1m/sec

Strain gauge

Sample

Fig.3.2 Photograph (a) and schematic illustration (b) of the miniaturized Charpy impact

tester:
80 Roos
i J/ 0.2
i 1+ 1
i
20 1
(unit: mm)
Fig.3.3 Notched specimen for miniaturized impact test.
ND 2mm
mm
2
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SEM JEOL-5600

20 V TEM
H-800 200 V
34 0.3 50%(£,,=0.8)
1.8 -
Fig.3.5 0.2 (Fig.3.5(a))

- As 50% (¢,,=0.8) cold-rolled

1500 ne 0 -
- /Annealed at400°C for 1.8ks B
3 As quenched (martenisite) .
B P Annealed at 500°C for 1.8ks
1000 | el

_ ﬁw/ﬁmnealed at 550°C

I Annealed at 560°C  _

: +  Annealed at 575°C -
s

500f

Nominal stress, s/ MPa

- As received
T . (ferritel-pearli’[e)I

0 10 20 30 40 50
Nominal plastic strain, e, (%)

Fig.3.4 Nominal stress- nominal strain curves of the 0.13%C steel 50% (t,,=0.8) cold-
rolled and subsequently annealed at various temperatures for 1.8ks. Strating microstructure
was martensite. Initial strain rate is 8.3x10"s".
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Fig.3.5 Strength (a) and elongation (b) of the 0.13%C steel 50% (t,,~0.8) cold-rolled
and subsequently annealed at various temperatures for 1.8ks.
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Fig.3.6 Load - displacement curves obtained by miniaturized Charpy impact test of the
0.13%C steel quenched (a), 50% cold-rolled (¢,,=0.8) (b) and annealed at 550°C for

1.8ks (c).
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Fig.3.7 Absorbedenergy obtained by miniaturized Charpy impact test at various test
temperatures of the 0.13%C steels quenched, 50% (¢,,,=0.8) cold-rolled and subsequently
annealed at 550°C for 1.8ks.
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Fig.3.8 SEM images of the fracture surface obtained by miniaturized Charpy impact test of the
0.13%C steel quenched (a, b, ¢), 50% (t,,=0.8) cold-rolled (d.e.f) and annealed at 550°C for 1.8ks
(g.h,i). Test temperatures were 20°C (a,d.g), -170°C (b,e,i) and -190°C (cfi).
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Fig.3.9 Relationship between tensile strength and uniform elongation (strength-ductility balance) of
the 0.13%C steel 50% (€,,=0.8) cold-rolled and annealed. Starting microstructure was martensite.
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Fig.3.10 TEM microstructures of the IF steel ARB processed by 5 cycles (€,,=4.0) at 500°C (a) and

subsequently annealed at 500°C(b), 600°C(c) 625°C(d), 650°C(e) or 700°C(f) for 1.8ks. Observed from
TD.
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Fig.3.11 TEM microstructures of the 0.13%C steel ARB processed by 5 cycles (e,=4.0) at
ambient temperature(a) and subsequently annealed at 400°C(b), 450°C(c) 500°C(d), 540°C(e) or
560°C(f) for 1.8ks. Observed from TD.
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Fig.3.12 Nominal stress- nominal strain curves of the 0.13%C steel ARB processed to
an equivalent strain (c,,) of 4.0 and subsequently annealed at various temperatures for
1.8ks. Strating microstructure was ferrite and pearlite.
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Fig.3.13 Relationship between tensile strength and total elongation of the 0.13%C steel 50%
cold-rolled (e,,,~0.8) and annealed. Starting microstructure was martensite.
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Fig.3.15 TEM microstructures of the 0.13%C steel 50% cold-rolled (€,,=0.8) and

annealed at 550°C for 1.8ks with martensite starting microstructure(a), the IF steel ARB
processed at 500°C by 5 cycles (€,,=4.0) (b) and the 0.13%C steel ARB processed at
ambient temperature by 5 cycles (¢, 0f 4.0) and annealed at 540°C for 1.8k with ferrite-

pearlite starting microstructure. Observed from TD.
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Fig.3.16 TEM microstructure of the 0.13%C steel ARB processed and annealed at
540°C for 1.8ks. Starting microstructure was ferrrite and pearlite. Observed from TD.
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Fig.4.2 Nominal stress - nominal strain curves of the 0.13%C steel cold-rolled to a
reduction of 25% (¢,,=0.3), 50% (¢,,=0.8) or 70% (¢,,=1.5). Starting microstructure
was martensite. The data of the as-received (ferrite-pearlite) and the as-quenched
(martensite) specimens are also shown in this figure.
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Fig.4.3 0.2% offset stress, tensile strength, uniform elongation and total
elongation of the 0.13%C steel cold-rolled to various reductions. Starting
microstructure was martensite.
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Fig.4.4 @ 25 (=,,=0.3) (b) 50%(=,,=0.8) (b) 70 £,7°15
() TD SEM

(Fig.4.3(a))
50%(=,,,=0.8) SEM
2 (Lamellar Dislocation Cell) (Irregularly
Bent Lamella) (Kinked Lath) 25 =
w=0.3 (Fig.4.3(b)) 70 =£,°15 (Fig.4.3(d))
M LDC IBL KL LDC IBL
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Fig.4.4 SEM microstructures of the 0.13%C steel quenched (a) and cold-rolled to a reduction of 25%
(€,.,=0.3) (b), 50% (c,=08) (c) or 70% (c,~=1.5) (d). Starting microstructure was martensite.
Alphabetic characters indicate which type of microstructure is exhibited (M: lath martensite, LDC:
lamellar dislocation cell, IBL: irregularly bent lath, KL: kinked lath).
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Fig.4.5 Fraction of the areas showing lamellar dislocation cells (LDCs). irregularly bent lath (IBL),
kinked lath (KL) and lath martensite (M) in the 0.13%C steel cold-rolled to various reductions. Starting

microstructure was martensite.
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Fig.4.6 TEM microstructures and corresponding SAD patterns of the 0.13%C steel quenched (a)
and cold-rolled to a reduction of 25% (¢,~=0.3) (b), 50% (¢,=0.8) (c) or 70% (t,=1.5) (d).
Starting microstructure was martensite.
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Fig.4.7 Mean spacing of the lamellar boundaries in the LDC structure of the 0.13%C
steel cold-rolled to various strains. Starting microstructure was martensite.
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Fig.4.8 Nominal stress - nominal strain curves of the 0.13%C steel tempered at various
temperatures for 1.8ks (a) or cold-rolled to a reduction of 25% (¢,,=0.3) (b), 50% (¢,,=0.8) (c) or
70% (e,=1.5) (d) and subsequently annealed at various temperatures for 1.8ks. Starting

microstructure was martensite.
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Fig.4.11 TEM microstructures of the 0.13%C steel quenched and tempered at 400°C(a), 500°C(b), or
600°C(c) for 1.8ks.
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Fig.4.12 TEM microstructures of the 0.13%C steel cold rolled to a reduction of 25% (e,,=0.3) (a-
¢), 50% (¢,,=0.8) (d-f). or 70% (c,,=1.5) (g-i) and annealed at 500°C (a, d, g), 550°C (b, e, h), or
600°C (c, f. i) for 1.8ks. Starting microstructure was martensite. Observed from TD.

Fig.4.13 SEM microstructures of the 0.13%C steel tempered at 550°C for 1.8ks (a), or cold-
rolled to a reduction of 25% (¢,,=0.3) (b), 50% (c,,=0.8) (c) or 70% (c,,=1.5) (d) and annealed
at 550°C for 1.8ks. Starting microstructure was martensite. Observed from TD.
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Fig.4.14 Relationship between the tensile strength and the uniform elongation of the
0.13%C steel cold-rolled and annealed. Starting microstructure was martensite.
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Fig.4.15 Schematic illustration exhibiting the microstructural change during annealing of the
0.13%C steel cold-rolled to various reductions. Starting microstructure was martensite.
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Fig.4.16 Relationship between the tensile strength and the total elongation of the
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Nb

interstitial free (IF)

IF Ti IF
[3]
60 2mm Fig.5.1
Table 5.2
IF
(-10 -15
50 &,,=0.8)
300 700 1.8ks
SEM TEM
2.2 0.20
FE)-TEM Phillips CM200-FEG
TEM/Kikuchi
SEM/EBSD(Electron Back Scattering Diffraction)[4]
EBSD FE-SEM Phillips XL30 -FEG 20 V
10000 m? 0.05pm 1
260pam 13pam>=<130pam 20nm
Table.5.1 Chemical compositions of the steels studied.(wt%)
C N Si Mn P S B Ti sol. Al Fe
IF steel 0.0026 0.0024 <0.01 0.14 0.008 0.005 0.0024 0.046 0.015 bal.
0.04%C 0.042 - 0.18 0.35 0.16 0.009 - - 0.19 bal.
0.09%C 0.09 0.0061 0.18 0.35 0.008 0.011 - - 0.019 bal.
0.20%C 0.195 - 0.19 0.35 0.016 0.01 - 0.021 bal.

Table 5.2. Conditions for Austenitization and quenching.

Specimen Condition for austenitization and quenching
(1) 975°C x 0.6ks IBQ
IF steel (2) 1000°C x 1.8ks IBO
0.04%C 1000°C x 1.8ks IBQ
0.09%C 1000°C x 1.8ks IBQ
0.20%C 1200°C x 1.8ks IBQ
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Austenitization

(Table 5.2)
50%(¢,,=0.8)|] 300°-
IF steel IBQ. w— )
0.04%C steel Cold-rollin 700°c |wa.
0.09%C steel A
0.20%C steel i
Martensite 3 passes

Fig.5.1 Thermomechanical history.

Fig52 975
x0.6 (a) 1000 x1.8ks(b)

[5] IF

Fig.5.2 Optical microstructures of the IF steel austenitized at 975°C for 0.6ks (a) or 1000°C for
1.8ks (b) and subsequently quenched.
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Fig53 0.04 C (a) 0.09 C () 020 C ()

[6]
160jam 0.05%C ) 43 (0.09%C ) 71 (0.20%C )
0.13
0.04 C 10pam
004 C 009 C 020 C
Fig.5.4 SEM/EBSD Image quality 1Q)

IQ Kikuchi

Fig.5.3 Optical microstructures of the 0.04%C(a), 0.09%C(b) and 0.20%C(c)
steels austenitized at 1000°C (0.04%C and 0.09%C) or 1200°C (0.20%C) for
1.8ks and quenched.
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Fig.5.4 Orientation imaging micrographs (OIMs) of the IF steel austenitized at 975°C for (.Gks
(a-b) or 1000°C for 1.8ks (c-d) and subsequently quenched. Image guality (10) maps (a,c) and
orientation color maps showing the normal direction of the observed plane (b.d).

[4]

15

Fig.5.4

EBS

/A

(b)

1Q
(c.d)

Fig.5.5

(a,b)
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EBSD
(a,c,e) Fig.5.3)
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Fig.5.5 Orientation image micrographs (OIMs) of the 0.04%Cta-b), 0.09%Cfc-d). and
0.20%C(e-f) steels austenitized at 1000°C' (0.04%C and 0.09%C) or 12000C (0.20%C) for
1.8ks and quenched. Image quality (10) maps (a.c.e.g) and color maps showing the normal
direction of the observed plane (b.d S h).
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Equivalent grain size, deq /um

Fig.5.6 Equivalent grain size of the steels with various carbon content. The
microstructures were lath- marteniste.
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975 >0.6ks 1000 ><1.8ks
360nm 380nm
58 004 C (@ 0.09 C (b 0.20 C (¢
0.09 0.20 C

Fig.5.7 TEM microstructures of the IF steel austenitized at 975°C for 0.6ks (a) or
1000°C for 1.8ks (b) and subsequently quenched.

Fig.5.8 TEM microstructures of the 0.04%C(a), 0.09%C(b) and 0.20%C(c) steels austenitized at
1000°C (0.04%C and 0.09%C) or 1200°C (0.20%C) for 1.8ks and quenched.
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Fig.5.9 Nominal stress - nominal strain curves of the 0.00%C, 0.04%C, 0.09%C and
0.20%C steels austenitized at 1000°C (0.04%C and 0.09%C) or 1200°C (0.20%C) for
1.8ks and quenched.
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Fig.5.10 50 =,=0.8
RD ND

240nm 975 x0.6ks) 230nm 1000 x1.8Ks)

Fig.5.10 TEM microstructures of the IF steel austenitized at 975°C for 0.6ks
(a) or 1000°C for 1.8ks (b), quenched and 50% (¢,,,=0.8) cold-rolled.
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004 C 009 C 0.20 Fig.5.11
(Fig.5.10)

Fig.5.11 TEM microstructures of the 0.04%C(a), 0.09%C (b), and 0.20%C steels (c)
austenitized at 1000°C (0.04%C and 0.09%C) or 1200°C (0.20%C) for 1.8ks, quenched

and 50% (t,,=0.8) cold-rolled. The starting microstructure was martensite. Observed
Jrom TD.
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Fig.5.12 Mean spacing of the lamellar boundaries in the 50% (t,,=0.8) cold-

rolled steels with various carbon contents. Starting microstructure was
martensite.
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=

Fig.5.13 Orienmation image micrographs of the IF steel (a-b), 0.04%C
steelfc-d), and 0.09%C steelfe-f) quenched and 50% (e,=0.8) cold-
rofled. Image quality (10) maps fa.c.e) and color maps showing the ND
orientation and high-angle boundary as well. (b.df) .
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Fig.5.14 Equivalent grain size of the IF steel, 0.04%C, and 0.09%C steels quenched and 50%
(e,,,~0.8) cold-rolled.

ND

e
Fig.5.15 TEM microstructures of the 0.20%C steel quenched and 50% (€,=0.8)

cold-rolled. Observed from TD. Misorientation angles (deg.) measured by
TEM/Kikuchi method were also shown.
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Fig.5.16 Nominal stress - nominal strain curves of the IF steel , 0.04%C steel,
0.09%C steel and 0.20%C steel quenched and 50% (€,,,=0.8) cold-rolled.
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Fig.5.17 TEM microstructures of the IF steel(a), 0.04%C (b),0.09%C(c) and
0.20%C(d) steels quenched, cold-rolled and annealed at 500°C for 1.8ks. Observed
Jrom TD.
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Fig.5.18 Nominal stress - nominal strain curves of the IF steel(a), 0.04%C steel(b),
0.09%C steel(c) and 0.20%C steel(d) quenched, 50% (t,=0.8) cold-rolled and
annealed at various temperatures for 1.8ks.
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Fig.5.21 Relationship between the tensile strength and the uniform elongation (a) or the
elongation (b) of the steel quenched, cold-rolled and annealed.
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=
RD

Fig.6.1 TEM microstructure of the 0.13%C steel (JIS-SS400) 50% (¢,,,=0.8) cold-
rolled. Strating microstructure was martensite. Observed from TD.
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Table.6.1 Chemical compositions of the materials studied.(wt%)
C N Si Mn P Cu Ni Ti Fe
IFsteel | 0002 0003 001 017 0012 001 002 0.072 bal
IF ARB
Fig.6.2(a) IF 1 £,.,-0.8 ARB
TD TEM  (a) (b)
Fig.2.8 1 £,,-0.8 ARB TEM
=,,-0.8
(b)
Fig.6.2
Fig6.3(a) 3 £ 2.4 ARB IF TD TEM
20
0.33pm
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s high-angle boundary(0 15deg.) . 1um
low-angle boundary(6<15deg.)
----------------- not measured

Fig.6.2 TEM microstructure(a) and corresponding misorientation map(b) of the IF steel ARB
processed by I cycle (,,=0.8) at 500°C. Observed from TD.
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'- -' e high-angle boundary(6215deg.)
low-angle boundary(6<15deg.)
------------------ not measured

Fig.6.3 TEM microstructure (a) and corresponding misorientation map (b) of the IF steel
ARB processed by 3 cycle ( ¢ ,,=2.4) at 500°C. Observed from TD.
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high-angle boundary(t&15deg.)

low-angle boundary(0<15deg.)

.............

not measured

Fig.6.4 TEM microstructure (a) and corresponding misorientation map (b) of the IF steel
ARB processed by 3 cycles (¢ ,,=4.0) at 500°C. Observed from TD.
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Fig.6.5 TEM microstructure (a) and corresponding misorientation map (b) of the IF steel ARB
processed by 7 cycles (€,,=5.6) at 500°C. Observed from TD.
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Fig.6.6 Histograms showing the distribution of misorientation angle of the boundaries in the
IF steel ARB processed by 1 cycle (¢,,=0.8)(a), 3 cycles (€,,=2.7)(b), 5 cycles(e,,,=4.0)(c),
and 7 cycles(e,,,=3.6)(d) at 500°C.
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Fig.6.7 TEM microstructures of the 0.13%C steel ARB processed to an
equivalent strain, t,, of 4.0 at ambient temperature (a,b) and subsequently
annealed at 500°C for 1.8ks. Observed from ND (a,c) or TD(b,d).
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Fig.6.8 /mage quality (1Q) map (a), orientation color map showing the normal direction of the
observed plane (b) of the as-quenched martensite in the 0.13%C steel. The map (b) shows high-
angle grain boundary.
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Fig.6.9 Image quality (1Q) map of the 0.13t%C steel with marteniste starting
microstructure 50% cold-rolled (e, =0.8). Measured from TD by FE-SEM/EBSD.
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Fig.6.10 TEM microstructures of the IF steel ARB proocessed to a strain of
4.0 and annealed at 675°C for 1.8ks (a) and subsequently 50% (¢,,,~0.8) cold-
rolled (b). Observed from TD.
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