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Preface 

In this thesis nonequilibrium steady flows in classical and quantum systems are studied. 

We deal with two nonequilibrium systems in which a steady flow appears in their far­

from-equilibrium states; One is a one-dimensional traffic flow system and the other is 

a one-dimensional quantum driven dissipative system. For the traffic flow system we 

focus on properties of the steady flow. For the quantum driven dissipative system, we 

discuss the generating mechanism of the steady flow . The steady flow appearing in the 

far-from-equilibrium state, either classical or quantal, is the central issue of this thesis. 

A traffic flow system exhibiting steady vehicular flow is an example of macroscopic 

nonequilibrium systems that have the nonequilibrium steady state . Physically, the sys­

tem can be identified as a nonequilibrium system of particles with nonlinear interactions. 

Many interesting phenomena exist, which have significance both in physics and in civil 

eng1neenng. 

In Part I we deal with the one-dimensional traffic flow with computer simulations; 

Chapter 1 and 2 are devoted to introduction of the one-dimensional traffic flow including 

its properties and historical review of previous studies. 

In Chap. 3, we investigate effects of a bottleneck in an one-dimensional vehicular 

flow using a cellular automaton (CA) model with a blockage site which transmits cars 

stochastically. We find three different phases with increasing car concentration. Besides 

a free flow phase and a jam flow phase, which also exist in the CA model without 

the blockage, a mixed phase of these two appears at intermediate concentration with 

clear phase boundaries. This mixed phase, where cars pile up behind the blockage to 

form a jam region, is characterized by a constant flow . In the thermodynamic limit, 

we obtain analytical expressions of several characteristic quantities such as an average 

velocity and an average flow in terms of the car density and the transmission rate at 

the blockage. These characteristic quantities depend strongly on the system size at the 
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transition points; We analyze these finite size effects based on the computer sirnulation 

with the finite-size scaling method. 

In Chap. 4, we introduce new concept of traffic flow modeling based on the coupled­

map lattice. After the general modeling scheme is discussed, an explicit model is de­

scribed. By numerical simulations the model is found to reproduce several phenomena 

which are observed in the real traffic flow. A relationship between flow and concentration 

of vehicles obtained by the simulation shows clear occurrence of the jamming transition. 

In addition, in the free flow phase, the power spectrum of temporal density fluctuations 

at a local section of the road exhibits a power law, 1 / f 1·8, where f is the frequency. Such 

power law is observed in the real traffic flow . The distribution of a headway distance 

h also follows a power law, 1 / h3·0 . The power-law fluctuations are destroyed by the 

occurrence of a traffic jam above the jamming transition concentration. We find that, 

near the transition concentration, the traffic jams propagate with a variety of velocities. 

The informational entropy of the traffic flow becomes a maximum at the transition con­

centration. Moreover, the relationship between flow and concentration obtained by local 

measurements shows clear double-valued behavior near the critical concentration. From 

these properties, we can say that the traffic flow is maximally complex near the critical 

concentration. 

Part II is devoted to investigation of the quantum driven dissipative system. Vle focus 

on a quantum ratchet system which is a one-dimensional quantum system consisting of an 

asymmetric periodic potential and particles influenced by the potential. These particles 

show directional motion and keep steady current in their quantum nonequilibrium steady 

state, when thermal relaxation and external driving exist. Properties of the system and 

the current generating mechanism are discussed in this part. 

Chapter 5 gives general introduction of classical and quantum ratchet systems. In 

Chap. 6, we consider treatment of time-dependent quantum dissipative systems based on 

the projection method. After deriving a fundamental equation describing the dynamics 

of a density operator, we briefly mention its physical meanings. In Chap. 7 the concept of 

classical ratchets is extended to the system governed by quantum mechanics . As a specific 

example of the quantum ratchet, we study a tight-binding model with an asyrnmetric 

periodic potential contacting with a heat bath under an external-oscillating field. The 

dynamics of a density operator of this system is studied numerically using the quantum 
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dissipative Liouville equation. The finite net current is found in the nonequilibrium 

steady state, which originates from purely quantum mechanical effects. The direction of 

the current varies with parameters, in contrast with the classical thermal ratchets . We 

find that the current-generating mechanism essentially depends on dynamical effects; 

Quantum resonance causes the finite net currents . 
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Chapter 1 

Introduction to Traffic Flow 

1.1 Introduction 

Traffic flow is one example of nonequilibrium steady flow appearing in the macroscopic 

world; In a freeway, vehicles travel from a tollgate to another tollgate, so that flow 

of vehicle is generated. At the point far from the tollgate, the traffic stream is fully 

developed and close to steady flow; Traffic streams may become ideal flow there. From 

the viewpoint of physics, the traffic flow is regarded as the nonequilibrium steady flow 

of interacting particles in its far-from-equilibrium state. Thus many interesting and 

universal phenomena will be found in the traffic flow . In the following sections we see 

some features of traffic flow. 

There are features peculiar to the traffic flow: The concept of thermodynamic limits is 

hardly justifiable, in contrast to the case of other physical system in which nonequilibrium 

flow is generated; If we stick to "vehicular traffic", the earth restricts maximal length of 

road as about 40000 km. When an average length of vehicle is about 5 m, the geometrical 

limit restricts the largest number of vehicles as up to 8 million (about 1 06). This number 

is much less than the Avogadro number "' 1 023 . Even though the road connecting between 

the moon and the earth might be constructed in the future, the limit is up to 108 . This 

means that the finite size effects are crucial for real traffic phenomena and relaxation 

processes play quite important roles in them. The other feature concerns that a vehicle 

is controlled by human in addition to laws of physics . Thus human responses such as, 

sudden braking, velocity fluctuation, which may not be periodic but will be chaotic, can 

affect the behavior of individual motion and the global traffic stream. Moreover each 
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14 CHAPTER 1. INTRODUCTION TO TRAFFIC FLOW 

vehicle, or each driver to be precise, has a manner for acceleration and deceleration, 

preferred velocity, origin and destination that are important in network traflfic flow like 

urban traffic, and so on. These conscious or unconscious controls also influence the traffic 

phenomena. 

In traffic flow, there are a lot of interesting phenomena that attract much attention: 

Especially a traffic jam is widely recognized [50, 56]; It is sometimes identified as a dense 

region of traffic stream. Occurrence of traffic jam can be regarded as a dynarnical phase 

transition in nonequilibrium systems. This transition is controlled by concentration of 

vehicles; As the concentration increases and exceeds some critical concentration, the 

transition occurs. In addition, the transition is characterized by the values of flow rate 

of vehicles; We know that the traffic jams suppress the flow rate. Thus the jamming 

transition point is identified by the concentration corresponding to the max:imal flow. 

The transition and its properties are observed in a real road, for instance, in a highway. 

Thus the traffic flow is one of good examples which show dynamical phase transitions in 

the macroscopic world. 

A traffic jam itself is also interesting [50]. Traffic jams can be regarded as an extreme 

case of a density wave in the system. In real traffic flow, it is observed that the traffic jams 

propagate upstream with clear boundaries, so that we can also consider it as a :shock wave 

in the traffic stream. Moreover such traffic jams have a finite lifetime; Sometimes they 

are formed spontaneously and sometimes they are destroyed. The reasons of creation 

and disappearance are still unclear. Other types of density waves are also recognized in 

the real traffic flow: For example, car bunching is observed, which is sometilmes called 

a platoon; A platoon is a single cluster of vehicles and every vehicle consisting of the 

platoon travels with some definite velocity and headway. The formation of platoon is due 

to the distribution of driver's preferred velocities; If a slow vehicle runs in front of a group 

of faster vehicles, the faster vehicles will queue up behind the slow vehicle and a platoon 

will be formed . The above-mentioned density waves are, in a sense, large-scale density 

waves . More small-scale and weak density waves [50), which propagate downstream, are 

also frequency observed inside the freely flowing streams. Such weak density wave causes 

temporal density fluctuations at spatially fixed points . All types of the density waves can 

be generated spontaneously without clear causes, so that these properties are essentially 

embedded in the dynamics of traffic flow. 
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Weak density waves induce the power-law temporal density fluctuations; In 1976 

Musha and Higuchi found that a power spectral density of the real traffic flow obeys 

power law in low frequency regime [63, 64). Similar power law phenomena are also found 

in other nonequilibrium systems such as pipe flow of granular materials experimentally 

and theoretically [13, 35, 91, 102]. This similarity reminds us of the term universality. 

So far we have assumed one-dimensional traffic flow . Actual traffic flow may be 

higher dimensional; Urban traffic flow, which is considered to be two-dimensional traffic 

flow, is familiar to us . There are lots of interesting phenomena in the urban traffic flow. 

There, the situation is quite different from the one-dimensional flow: First, crossings of 

roads must be taken into account; In one-dimensional road it is not necessary. But, in 

the two-dimensional case, they give large influences to the dynamics of vehicles . Most 

important and strong influences are effects of queuing; The queue does not appear in ho­

mogeneous one-dimensional road. In the traffic network, however, the queue is naturally 

formed at the crossing. The queuing effects cause bottlenecks, so that the traffic flow is 

strongly disturbed at the crossing. This effect influences the traffic flow not stationary 

but dynamically, because the queue is dynamically generated according to volume of 

traffic flow and capacity of crossing. Second, origin and destination (OD) of each vehicle 

should be taken into account in the network flow. OD is one of the basic quantities of 

the vehicle traveling in the network; Once the OD is determined, the drivers will choose 

a route according to the OD. In one-dimensional traffic flow OD is trivial. But, in the 

two-dimensional traffic, existence of OD affects the traffic streams; For instance, forma­

tion of queues is directly influenced by the routing. The last one is existence of flexibility 

of selection of routes connecting OD. This flexibility makes a problem of controlling the 

traffic .network difficult; The problem is same as one of finding a set of routes correspond­

ing to the individual ODs and, moreover, these routes must give a minimal travel time of 

each vehicles or a minimal averaged travel time for all vehicles. This problem resembles 

the combinatorial optimization problems such as, a ground-state-finding problem of spin 

glass models [23], and a traveling salesman problem. In the optimized controlling of 

the traffic network, a travel time of particular vehicle or an averaged travel time of all 

vehicles is taken as a cost function under the conditions of fixed ODs and topology of 

networks. The cost function has a lot of local minima as a function of a set of routing; 

If we chose the best route for our own vehicle, this choice is certainly not the best for 
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others; If everybody selects their best routes and if their ODs are identical, large traffic 

jams would occur. In such situation finding the routing set corresponding to the global 

minima is very difficult. 

Phenomena in the traffic flow is related with many other systems as was: mentioned 

above; For instance, pipe flow of granular materials [13, 35, 91, 102), asymmetric simple 

exclusion process of a particle system [38, 39, 57-59], pedestrian dynamics [30], combina­

torial optimization problems [23], and so on. In this part we study several properties in 

the traffic flow, especially one dimensional traffic flow, using computer simulations . 
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1.2 Properties of Real Traffic Flow 

1.2.1 Introduction to Traffic Terminology 

In this section, we briefly review properties of real traffic flow . First, terminology used 

in traffic flow is introduced. Three quantities are fundamental in describing states of 

traffic streams [56]: 

Volume and Flow: They are defined by number of vehicles passing a fixed measuring 

point x during some time interval ~ T; Let us define the stream function <D x ( t ) as the 

accumulated vehicle count at the observed point x during a time interval (0, L); Then 

the volume Q is define as follows: 

Q = <l> x(~ T) 
~T . ( 1.1) 

Precisely speaking, Q has to be called "~ T time volume Q". In the above expression we 

have assumed a steady traffic stream. The statement of traffic volume is not complete 

without a statement of the time interval over which the vehicles were counted. Thus we 

usually use the flow q, which is volume per unit time, in stead of Q : 

r <l> x (~T) 
q = ~f-~o ~T · (1.2) 

In general, the flow is a function of time and position. 

Density or Concentration: From the definition of <l> x( t ) , it is clear that 

N (x,x + ~x;t ) = <l> x+~x( t)- <D x( t ) (1.3) 

represents a number of vehicles which are found in a spatial interval ( x, x + ~x ) at time L. 

This value is called a traffic density. This statement must be accompanied by a statement 

of the distance ~x, too. Thus the limit 

. N ( x, x + ~x; t ) 
p = lim ~ , 

~x-lO X 
(1.4) 

which represents the value of density per unit length, is used as the traffic concentration. 

It also is the function of time and position. 

Velocity: There are two types of definition of velocity: space-averaged velocity V 5 and 

time-averaged velocity Vt. The former is defined as follows : 

1 M 

Vs = M L v i , 

i 

(1.5) 
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where M and v i are a number of vehicles in some spatial region and a velocity of each 

vehicle, respectively. If we introduce a instantaneous probability distribution function 

g5 ( v) dv of velocity, which represents existence probability of vehicles having the velocity 

in the range [v, v + dv] in some spatial region at timet, we can write the space-averaged 

velocity as 

v, = r vg,(v)dv 

The time-averaged velocity is defined as follows: 

(1.6) 

(1 .7) 

where M' and vi are a number of vehicles passing some fixed measuring point during 

some time interval and a velocity of each vehicle, respectively. It is also expressed in an 

integral form using the temporal probability distribution function gt(v) dv of 1Ghe velocity 

at fixed measuring point during some time range: 

v, = r vg,(v)dv (1.8) 

Flow and space-averaged velocity are not independent of each other; Consider a single 

lane circuit of length l with N vehicles. When the vehicles is maneuvered to maintain 

their velocity near their preferred velocity, the traffic flow becomes almost steady. Using 

the instantaneous probability distribution function of velocity 9s (v) dv, we write the 

density of vehicles with velocity v as dp( v) = pg 5 ( v) dv, where p is the traffic density 

defined as p = N / L A vehicle traveling with velocity v requires the tiine interval 

,1t = l / v for going around the circuit once. Thus, at the measuring point, N dp(v) 

vehicles pass in the interval ,1t. Then the contribution to ,1t volume of the vehicles with 

velocity v is N dp ( v). Denoting the contribution of vehicles with velocity v to the flow 

as dq(v), we obtain 

dq (v) = Ng~:)dv = vdp(v ) . (1.9) 

The flow q is obtained by integrating the above expression: 

q = I~ dq(v ) = p t vg,(v)dv = pv, (1.10) 

1.2. PROPERTIES OF REAL TRAFFIC FLOW 19 

This means that q and p are related through the space-averaged velocity V 5 • 

The space-averaged velocity is related with the time-averaged velocity; Consider the 

above situation again. At the fixed measuring point, the contribution of the vehicle with 

velocity v to flow q, which is equivalent to dq (v), can also be expressed as 

dq(v) = qgt(v}dv (1.11) 

with the temporal probability distribution function gL(v}dv. Then we get 

( ) _ dq(v) _ pvg 5 (v)dv _ v ( } 
9t v dv - -- - - - g5 v dv , 

q PVs V s 
(1.12) 

and the time-averaged velocity Vt is 

Vt = vgt(v)dv =- v2 g5 (v)dv J
oo 1 Joo 
0 V s 0 

(1.13) 

Substituting the variance of velocity cr~ = (J: v2 g5 (v)dv) - v; , we obtain 

(1.14) 

If the vehicles are ideal, that is, characteristic properties such as the preferred velocity 

are identical, and the traffic stream is steady, then the variance cr; is zero. In this case 

time-averaged velocity and space-averaged velocity are equivalent. In general, however, 

these two averaged velocities are not identical. 

1.2.2 Fundamental Diagram 

A diagram representing relationship between the flow and the concentration is called 

"fundamental diagram" or "q-k diagram" in traffic engineering. The fundamental di­

agram shows characteristic feature of the road on which data are taken; Typical fun­

damental diagrams are shown in Figs. 1.1 and 1.2 [28, 50), both of which were actually 

observed in roads in Japan and Canada. We can recognize that the essential behavior 

of the traffic stream does not depend on details of the system like properties of vehicles, 

condition of roads, and drivers' skills . The behavior of fundamental diagram may be 

universal for the traffic stream. 

As shown in Figs. 1.1 and 1.2, typical fundamental diagram has a single peak. This 

peak separates into two phases, the free flow phase and the congested flow phase. The 
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Figure 1.1 : Observational result of fundamental diagram taken from Ref. [50] (Japan). 
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Figure 1.2: Observational result of fundamental diagram taken from Ref. [28] (Canada) . 

concentration corresponding to the peak can be regarded as the transition point or the 

critical concentration. In the concentration lower than the critical concentration, the 

flow increases linearly with concentrations and, in the higher concentration. On the 

other hand, above the critical concentration, the flow decreases as the concentration in­

creases, and, finally it seems to vanish. The reason why it behaves like that is clear; In 

the lower concentration regime, traffic stream moves smoothly. Then vehicles are free 

from influence of other vehicles and the vehicles can travel at their own preferred velocity. 

Thus the average velocity is independent of the concentration, so that the flow, which 

is defined as the average velocity times the concentration, is proportional to the concen­

tration. In the higher concentration regime, the average velocity is not independent of 

the concentration; It decreases as increasing concentration. In the case of traffic stream, 

velocity decreases faster than the increase of the concentration. Therefore the flow de­

creases as increasing the concentration. This situation is owing to the time delay in the 

response of vehicles or drivers to the action of the preceding vehicles. Schematically a 

fundamental diagram behaves like Fig. 1.3. 

As was mentioned above, the fundamental diagram represents characteristic features 

of the road on which data are taken; For example, as shown in Fig. 1.1, vehicles travel 

at velocity ~ 45km/ h in the free flow phase. This speed is close to the legal velocity of 
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flow 

critical congested flow 
concentration 

~ 
concentration 

Figure 1.3: Schematic Fundamental Diagram. It has single peak. Corresponding concen­

tration is a critical concentration and corresponding value of flow is called a capacity. At 

concentration lower than the critical concentration, traffic stream is in a free 'flow phase 

and, at higher concentration, it is in a congested flow phase. Behavior of flow near the 

critical concentration has not been clearly understood. 
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the road. The maximal flow is an important quantity representing characteristic features 

of roads. It is called as capacity of the road in traffic engineering; A road with higher 

capacity can let vehicle flow more efficiently. 

Understanding the behavior of the traffic stream near the capacity is important in 

both traffic engineering and nonequilibrium physics; For the engineering it is crucial for 

construction or reconstruction of a road and, for the physics, it is important for under­

standing the features of critical nonequilibrium flow. But the behavior near the critical 

concentration has not been clearly understood; Complicated behavior has been observed 

in real traffic streams; Actually, in Fig. 1.1 (outer lane), flow changes continuously near 

the critical concentration. On the other hand, in Fig. 1.1 (inner lane), overhanging of 

flow is seen; It means that the distribution of values of flow has two peaks near the 

critical concentration. Other type of behavior is seen in Fig. 1.2; In this case, flow shows 

discontinuity near the critical concentration. Canadian traffic engineers, Hall et al ., clas­

sified feasible shapes of flow near the critical concentration into four types (see Fig. 1.4) 

according to shapes of functions fitting data well [28]: 

• Reversed A: The flow takes two values in a finite range of concentration (Fig. 1.1 

(inner lane)). Then the distribution of flow has two peaks in the same range . 

• Gap: The flow has a discontinuity (gap) at the critical concentration (Fig. 1.2) . For 

explaining traffic data, this type of discontinuous functions are sometimes preferred 

[9, 21, 80]. 

• Smooth: The flow is continuous and continuously differentiable function of the 

concentration (Fig. 1.1( outer lane)); No clear phase transition is expected in this 

case. 

• Inverted V: The flow is continuous, but not continuously differentiable function 

at the critical concentration. 

Among these possibilities, they concluded that the inverted V shape is suitable for rep­

resenting the fundamental diagram; Appearance of other types are just due to lack of 

observational data. Their argument is based on assumption that the traffic current is a 

one-valued function of the concentration, which is intuitive view accepted among traffic 
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q 

(a) p (b) p 

q q 

(c) p (d) p 

Figure 1.4: Feasible four shapes of fundamental diagram: (a) reversed A shape; (b) 

discontinuous type; (c) continuous and continuously differentiable type; (d) continuous 

but not continuously differentiable type . 
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engineers. Moreover they empirically explained why the inverted V shape was suitable, 

using the catastrophe theory [100). 

Their argument is as follows [27, 74, 75): They assume that the traffic data, flow, con­

centration, and velocity are on a catastrophe manifold, exactly speaking, a cusp catas­

trophe manifold. Cusp catastrophe theory offers a way to explain systems in which one 

of the variables exhibits discontinuous behavior, while others are showing only smooth 

and continuous change. Figure 1.5 shows schematic picture how the discontinuous be­

havior appears in traffic data based on the catastrophe theory; If traffic data are on the 

cusp catastrophe manifold, which is folded in some region, the discontinuity appears in 

the flow-concentration curve. This theory clearly gives the origin of discontinuity. The 

real data seem to be on the cups catastrophe manifold (see Fig. 1.6) . But this explana­

tion is empirical; The reason why the data are on the cusp catastrophe manifold is not 

explained. 

From physicist's point of view, if a jamming transition is actually a dynamical phase 

transition, fluctuation grows near the critical concentration, and causes such behavior. 

However, the detail is still unclear. 

1.2.3 Density Fluctuations 

In 1976 Musha and Higuchi observed temporal density fluctuations of a traffic stream 

on the Tomei Expressway in Japan. They found that power spectral density of the 

density fluctuations obeyed a power law [63, 64); To avoid disturbance from various 

extrinsic sources such as traffic signals, or traffic jams, the observations were made at 

the expressway. They recorded transit times of vehicles at a three-lane part of the 

expressway, from the bridge over them. They calculated the power spectral density from 

observed data and found a white power spectrum in high frequency regime and power­

law power spectrum 1 / f cx ( f is frequency ) in low frequency regime. Their result is 

shown in Fig. 1. 7. In addition, they estimated the exponent ex as ex = 1 by fitting the 

data, while a phenomenological analysis on the same data using Burgers equation gave 

ex = 1 .4. 

Recently another observation was made by P. Wagner and J . Peinke [101). They 

collected the traffic data by a loop detector over more than one week and analyzed 

them based on the multi-scaling concept (e.g. [62]) , which is used in the analysis of 
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velocity 

~-.!:::=:=::cico5inmc~e;iintration 

concentration 

cusp 
catastroph~e 

surface 

cusp 

.. 

Figure 1.5: Schematic picture of some relationship of traffic flow data based on the 

catastrophe theory. Folded surface embedded into three-dimensional Euclidean space 

shown in center is a cusp catastrophe manifold. Assuming that traffic data are on the 

catastrophe manifold, we can explain three different behavior: discontinuous, continuous, 

and continuous of curves. 
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Figure 1.6: Three dimensional plot of real traffic data taken from Ref. [75]. Data are 

same data plotted in Fig. 1.2 . 
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Figure 1. 7: Power spectral density of real traffic flow taken from Ref. [64]. Solid line is 

a analytic result based on Burgers equations and fitting: S (f ) = 0.0084/ f 1·4 + 1.572 . 
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turbulent flow. They concluded that the traffic stream has multi-scaling properties and 

the power-law fluctuations with an exponent 1.14. 

Power-law fluctuations are also observed in granular systems in a narrow channel ex­

perimentally [13, 35, 91 J; Granular materials like sands drop down a narrow pipe, whose 

inner diameter is about one order of magnitude larger than the diameter of granules. If 

the diameter is larger enough than about ten time of diameter of grains, no power-law 

phenomena are observed. Thus, the friction of the wall is important for the appearance of 

power-law phenomena. In a suitable situation, grains spontaneously form density waves, 

although the grains are uniformly injected from the top of pipe. This density waves 

develop as the grains fall down to the bottom of pipe. The temporal density fluctuations 

of well-developed density waves show power-law in the power spectral density, when the 

local concentration is instantaneously measured at a certain point of pipe. The exponents 

of the power-law spectrum is estimated as about ex = 1 ~ 1.5 experimentally [35]. Some 

theoretical results and numerical simulations support ex = 4/ 3 [29, 82, 83]. These phe­

nomena seems to provide evidence for existence of universality class of nonequilibrium 

one-dimensional flow of interacting "particles". 

1.2.4 Miscellaneous 

Pattern of density waves is also interesting. A real traffic pattern is presented in Fig. 1.8; 

This trajectory was constructed from aerial photo at American freeway [56]. Each black 

line represents a trajectory of a single vehicle. A vehicle moves from lower-left to upper­

right direction. In the center of the figure, a dense region that propagates upstream 

is seen. This dense region is identified as a density wave such as a trafiJ.c jam or a 

shock wave. It is clearly seen that the jam appears without apparent cause:, propagates 

upstream, and disappears . From the viewpoint of a driver, he catches up with the jam 

region and decreases a speed of his vehicle. In a minute, he can drive the vehicle smoothly 

again. Such spontaneous emergence of traffic jam has been attracted much attention; 

Komatsu and Sasa identified it as a soliton described by a modified Korteweg-de Vries 

equations based on continuous traffic flow models (48]. 

There are other interesting problems, although we did not mention in detail; One is 

the problem whether the traffic stream is chaotic . Experimentally time series analysis 

of urban road in traffic network shows a slight evidence of chaotic behavior [16]. But 
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Figure 1.8: Actual traffic pattern taken form Ref. [56]. This was constructed from aerial 

photo at American freeway. 
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we cannot conclude that the traffic stream is chaotic at present. Other way of studying 

the chaotic behavior is to observe a trajectory of a tracer vehicle in a headway-velocity 

plane, so called car-following behavior. If the tracer vehicle is in a uniform traffic stream, 

the trajectory may be bounded in a small area, because the headway distance and the 

velocity are almost steady. If the traffic stream is chaotic, the trajectory will behave like 

a strange attractor. One experimental example of the car-following behavior is shown 

in Fig. 1.9 [50]; The behavior of congested flow and free flow is clearly separated; The 

bunch of dots in the right side of figure corresponds to the free flow branch and another 

bunch corresponds to the congested flow. In addition, the car-following behavior does 

not draw a simple loop. Therefore, the results may support the evidence of chaos. But 

the experiment does not reflect the pure dynamics of traffic stream, because iit is observed 

in a strongly noisy situation. Thus, the chaos in a traffic stream is still unclear. 
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Figure 1.9: Results of experiments of following behavior taken from Ref. [50]. 
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Chapter 2 

Traffic Flow Models 

To understand the behavior of traffic flow, many models have been proposed so far. They 

are classified into two large categories, that is, macroscopic models and microscopic ones; 

In the macroscopic modeling, traffic stream is treated as a fluid mechanical object, so 

that fundamental quantities are local fields such as local concentration, local flow and 

so on. In the microscopic modeling, on the other hand, the traffic stream is decomposed 

into dynamics of individual vehicles and described by their collective dynamics. In the 

following sections, we briefly review these modeling. 

2.1 Macroscopic Modeling 

2.1.1 Fluid Dynamical Models 

Kinematic Wave Theory 

Macroscopic modeling can be classified into further two more categories: Fluid dynam­

ical models and stochastic models. One of the simplest approaches to fluid dynamical 

models is a kinematic wave treatment [55, 60, 61]. Kinematic wave theory can be ap­

plied to any one-dimensional flow as well as one-dimensional traffic flow whenever the 

local relationship between the concentration and the flow is given. The model is "kine­

matic", because it is only described by a continuity equation, in contrast to the case of 

"dynamical" waves that require the additional equation determining the motion. 

In 1955, Lighthill and Whitham have given theoretical framework of the kinematic 

wave [60, 61]. They applied the kinematic wave theory to the different types of one-

33 
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dimensional flow , flood motion in long rivers and a traffic stream on long crowded roads . 

R ichards have also developed t he kinematic wave theory for a traffic stream indepen­

dently, although he did not call it "kinematic wave" explicitly [89]. 

In a kinematic wave approach two fundamental equations appear; The one is the 

continuity equation as follows : 

op oq 
-+-= 0 
at ax 

(2 .1) 

where p(x, t ), q (x , t ) are local fields of the concentration and the flow both of which are 

functions of position x and timet, respectively. Another one is a relationship between the 

flow and the concentration, that is, a fundamental diagram, q (x ) = f (p(x )) . Introducing 

a quantity c(x, p} = (oq j op )x:fixed , we can rewrite the continuity equation as 

op + c(x p) op = 0 
at ' ax 

The flow q is also represented as q (x ) = v (x )p(x ) with a velocity v (x ). Then 

dv 
c (x , p) = v(x} + p(x ) dp . 

(2.2) 

(2 .3) 

Equation (2 .2) describes a motion of waves with velocity c (x, p ). Waves which obey the 

above equation are called "kinematic waves" , and c (x , p) is called a velocity of the kine­

matic wave. Equation (2 .3) gives us a relation between the velocity of kinematic waves 

and the fundamental diagram; Graphically c (x , p) represents a slope of a tangent line 

of the fundamental diagram at concentration p (see Fig. 2.1). Therefore the kinematic 

wave theory allows the density waves which propagate upstream in the congested flow 

phase. It agrees with the observed results. 

Kinematic wave theory can also describe the velocity of a shock front which separates 

a traffic stream into two regions with different concentrations; Consider a shock front 

between the region I and the region II . The concentration and the flow in the region I (II) 

are defined as PI and qr (Pn and qn), respectively. Conservation of number of vehicles 

going through the shock front with velocity u gives 

(2.4) 

Then the velocity of the shock front u is 

qr - qn u = __ _:__ 
Pr - PII 

(2.5) 
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p 

Figure 2.1: Relationship among flow q , velocity of density waves c , average velocity of 

vehicles v, velocity of shock waves u and concentration p in kinematic wave theory. 

Graphically the velocity of the shock front is a slope of line connecting ( p 1, q !} and 

(Pn , qn) (see Fig. 2.1) . Recently the system with many interacting shock fronts have 

been simulated numerically based on the kinematic wave theory [55]. 

General Fluid Dynamical Models 

Kinematic wave models are very simple and easily treated . But they can not predict 

macroscopic features of traffic stream such as the form of fundamental diagram, because 

it requires the fundamental diagram as an initial assumption. A few years later, the 

fluid dynamical models accompanying the equation of motion have been proposed. To 

distinguish the models from the kinematic wave model, which is a kind of fluid dynamical 

model, we call them general fluid dynamical models . A typical equation of motion of the 

models are based on the one-dimensional Navier-Stokes' equation: 

ov ov 1-l a 2v 1 op 1 
- + v- = ----- + - X ot ox p ox2 p ox p 

(2 .6) 

where v and p are the locally averaged velocity and the concentration of the vehicles, 

respectively, 1-1 is viscosity, p is local pressure, and X represents the sum of interactions 

between vehicles . In the general fluid dynamical models , the traffic stream is described 

as a one-dimensional compressible flow. 
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In 1959, Greenberg have proposed an exactly solvable1 model as a special case of the 

general fluid dynamical model [26]. The model is described by the following equations: 

a continuity equation 

a equation of motion 

op + oq = 0 
at ax 
ov ov c2 op 
-+ v- =--­
ot ax P ax 

(2.7) 

(2.8) 

The equation of motion is identical to the Navier-Stokes' equation with J.l = X = 0 

and p = - c2 p. c is a positive parameter representing a width of velocity distribution, 

so called "temperature" of traffic flow. The relation q = pv allows us to rewrite the 

continuity equation as 

op av op 
- + p- + v- = 0 
at ax ax 

Let the velocity be a function of concentration only v = v( p). Then 

ov dv op 
at dp at ' 
ov dv op 
ox dp OX 

(2.9) 

(2.10) 

(2.11) 

After substituting the above identities into the continuity equation and the equation of 

motion, we obtain 

op ( dv ) op at + pdp + v ox = 0 ) (2 .12) 

- + v + - - -= 0 op { c
2 

(dv) -
1

} op 
at P dp ax 

(2.13) 

To have a nontrivial solution for the above simultaneous equations, the determinant of 

the coefficients of the partial derivatives must vanish. Thus 

(2.14) 

Since the velocity is a monotonically decreasing function of concentration, we take neg­

ative sign of square root; 

dv 
dp 

c 
p 

(2.15) 

1 In the present case "solvable" means that we can calculate a functional form of the fundamental 
diagram. 
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Integrating above equation, we get the functional form of the average velocity: 

v(p ) = cln Ps , (2.16) 
p 

or the functional form of the fundamental diagram: 

q(p ) = cpln Ps , (2.17) 
p 

where Ps gives maximally allowed concentration. A critical concentration is easily ob­

tained as p5 e- 1 --- 0.3679p5 . This fundamental diagram is continuous near the critical 

concentration and thus has no singularity. For actual application the parameters c and 

Ps are fitting parameters. 

There are more complicated general fluid dynamical models than the Greenberg 

model. Payne model is described by the following equation of motion [80, 81]: 

av av v - v 1 av a P 
-+ v- - -- + ---
ot ax - T 2Tp op ax ' 

(2 .18) 

where v is an equilibrium average velocity dependent on the concentration. The first 

term of right hand side represents the relaxation effects of velocity. The second term of 

right hand side expresses the pressure term. ( ov ; a p) is a negative function of p, because 

v is a monotonically decreasing function of the concentration. Thus this term is similar 

to the pressure term of the Greenberg model, although c is independent of p in the 

Greenberg model. The parameter T is relaxation time of velocity and typically is taken 

to be order of 30 sec. If the relaxation term is ignored, the model becomes similar to the 

Greenberg model. The Pyne model has been widely used as a good tool for describing 

the traffic stream; The network traffic flow has been simulated based on it for a long 

time [80, 81 J. It has, however, difficulties in describing transients and high concentration 

traffic, especially when a queuing or bottleneck is simulated. Mathematically the reason 

of these difficulties is the lack of a second order spatial derivative in the equation of 

motion. 

These difficulties are avoided by addition of the viscosity term. The model with the 

viscosity term is described by the following equation of motion: 

ov ov v - v c2 a p J.l o2v 
-+ v-=-----+-- , 
Ot OX T p OX p OX2 

(2.19) 
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where T is again relaxation time, c represents "temperature" of traffic stream, and ~ is 

the viscosity. Note that the coefficient c is positive constant again in contrast to the 

Payne model. 

For the above general fluid dynamical model, Kerner and Konhauser showed that a 

region of high concentration and low average velocity of vehicles spontaneously appears 

from an initially homogeneous traffic flow [46, 47]; Consider a linear stability analysis 

according to them. We impose periodic boundary condition and system length is taken 

to be l. The boundary condition can be written as 

q(O , t ) = q(l, t) , v(O, t) = v(l, t) , avl avl 
ax x= O = ax x= L , 

where q(x, L) is the local flow of vehicles defined by q(x, t) = v(x, t)p(x, t). Integration 

of local concentration p(x, t) for whole system gives a total number of vehicles N: 

N = f dxp(x,t). (2.20) 

A concentration of homogeneous traffic stream Ph is defined by Ph = N /l. The corre­

sponding value of an equilibrium velocity vh, follows from the relationship : 

(2.21) 

If N and l are given, there is a unique homogeneous flow characterized by p = Ph and 

Let us consider linear fluctuations from the homogeneous flow ( p 

Defining fluctuations as 

bp(x, t) = bp0 exp ( - yt + ikx) , 

bv(x, t) = bv0 exp( -yt + ikx ) , 

(2.22) 

(2.23) 
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and substituting p = Ph + bp(x, t) and v = vh + bv(x, t) into the equations, we get 

f dxbp(x, t) = 0 

exp(ikl ) = 1 

( - y + ikvn + ~ + ~k2 pj;: 1 ) Dv(x, t) 

+ ( ikc2 ph 1 
- ~E.( Pnl) bp( x, t) = 0 

ikphbv(x, t) + ( - y + ikv1.J bp(x, t) = 0 

from the definition of Ph, (2.24) 

from the periodic boundary condition, 

(2.25) 

from the equation of motion, (2.26) 

from the continuity equation, (2.27) 

by linearizing the equations, where l,( p) is a slope equilibrium velocity, that is, l,( p) = 
dv 1 dp. The last two equations give the dispersion relation, which determines the nature 

of the perturbations; The determinant of the coefficients makes the dispersion relation 

as follows: 

y 2
- y ( 2ikvn + ~k2ph 1 + ~) + k2

( c2
- v~) + ik (v'th. + ~k2Vh.Ph 1 + ~h. E.( Ph.)) = 0 

(2.28) 

Introducing dimensionless variables, 

k = lk ) 
- T 

vh = vhl, 

- Tp 
l, = l,l' 

- Ph 
Ph =~ , 

p 

where pis maximally allowed concentration defined by v(p) = 0 , and lis a unit of length 

defined by l = j wrp- 1 . Omitting~ we get the dispersion relation as 

The boundary condition gives 

2nm 
k =--

l 

(2.29) 

for m = 1, 2, ... , l - 1 . (2.30) 

We remove the perturbation with k = 0 because it changes the number of vehicles N. 
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By separating y into real part and imaginary one, y = A + i.w, the dispersion relation 

Eq. (2 .29) is decomposed into two equations: 

A2
- w 2

- A(1 + k2 ph" 1
) + 2wkvh + k2 (c2 - v~ ) = 0 , 

(2 w - 2kvh) A- w (1 + k2ph" 1
) + k(vh + k2vhph" 1 + ph[,( ph))= 0 

(2 .31) 

(2.32) 

We are interested in the point where the homogeneous flow becomes unstable that is 
I I 

near A = 0. By substituting A = 0, the first equation gives two w: 

For each w, unstable condition Rey < 0 gives 

Ph ( _ 1 _ Ph~ Ph) ) > kl 

Ph ( _ 1 + Ph~Phl) > k l 

for w 1, (2.33) 

(2 .34) 

The second inequality can not be fulfilled due to the negativity of l,, because v is the 

monotonically decreasing function of p. Therefore the first inequality determines the 

linear stability condition: 

(2.35) 

where we use minimal value of k2 . For example, consider the Greenshields model v ( p) = 

2c ( 1 - p). When the system is large enough, the unstable condition is 

2p~ - Ph > 0 . (2.36) 

Thus, for Ph > 1/ 2, the homogeneous stream is unstable. 

The velocity of spontaneously generated density waves can be found by the form of 

fluctuation as 

W e 
V p = kc = vh - c , (2.37) 

where kc and W e are the critical values of k and w, respectively, defined by kc = 2n/ l 

and W e = kc ( vh - c ). Thus the spontaneously generated density waves can propagate 

both upstream and downstream according to the parameter c. 
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As was mentioned above, the general fluid dynamical model shows spontaneous gen­

eration of density waves by small perturbations, when the concentration of vehicle in 

the flow exceeds some critical values, although the traffic stream is initially homoge­

neous. This instability condition depends on the model of equilibrium velocity function 

and the system length. From the above result the models show the discontinuous type 

fundamental diagrams. In general, however, the critical concentration of instabilities is 

different from the concentration at the capacity. What corresponds to this difference in 

the real traffic flow is not clear yet . 

The discontinuous fundamental diagram is reproduced by the present model. But, 

like the case of kinematic wave theory, the present model is not appropriate to explain, 

for example, the form of the fundamental diagram, because the theory contains the 

phenomenological functions of the equilibrium velocity. To understand the shape of the 

fundamental diagrams, we require the microscopic modeling. 

Burgers Equation 

Burgers equation, which was used by Musha and Higuchi to explain the power-law density 

fluctuations [63, 64], contains the equation of kinematic wave as the special case . It also 

is one-dimensional version of Navier-Stokes' equation with p = X = 0 [7]; Consider the 

continuity equation: 

(2.38) 

Assuming that a flow is decomposed into two parts, drift term and diffusion term, that 

is, q = pv - D(op/ ox), where 0 is a diffusion constant, we obtain 

op op ov o2 p 
ot + vox + pox = 0 ox2 

(2 .39) 

The phenomenological assumption of the form of equilibrium velocity v = v0 ( 1 - p/ PsL 

which gives the Greenshields2 model of a fundamental diagram, leads us to the final 

expression 

(~ + Vo~) p - 2 (2__) Vo~~ = 0 °2

p . 
ot OX Ps ox ox2 

(2 .40) 

2 In Ref. [63], the linear form v = v0 ( 1 - p/ p5 ) of a fundamental diagram is called as Greenberg model. 

But it is incorrect; Greenberg model is logarithmic form v = vo log ( Ps / p). Correctly, the linear model is 

called Greenshields model. 
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Taking a moving frame of x' = - x + v0 t, t' = t, we get 

(2.41) 

This is the Burgers equation. If we choose 0 = 0, then the above treatment is identical 

to the kinematic wave treatment with Greenshields' model of fundamental diagram. 

2.1.2 Stochastic Models 

In addition to the fluid dynamical models, stochastic approach also is a macroscopic 

treatment of traffic flow. In 1960, Prigogine developed stochastic treatment of traffic 

flow based on the Maxwell-Boltzmann equation [85]. This treatment has both features 

of macroscopic modeling and microscopic one. In this approach the velocity distribution 

function is a fundamental quantity. We denote the distribution function of velocity 

as f(x, v, L), which is a function of position x and time t; For example, f(v, x, t)dxdv 

represents the number of vehicles existing in spatial region [x, x + dxl with velocity in 

the range [v, v + dv] at timet. Local concentration p(x, t), local flow q(x, t) and local 

average velocity v( x, t) can be expressed by an integral form with f: 

( ) foo f( )d ( ) J.oo f( ) -( ) J:vf(x,v,t )dv p x, t = 
0 

x, v, t v , q x, t = 
0 

v x, v, t dv , and v x, t = Joo 
0 f(x,v,t)dv 

Let us start with the following equation: 

df (a f) (a f) 
dt = at rel. + at call. 

(2.42) 

That is, the temporal change off can be described as a result of only two processes: the 

relaxation process ( af j at )ret. and the collision process ( af ; at )catt.. Expanding the total 

derivative off, we obtain 

~>v:: = (::t,+ (~:t,, . (2.43) 

The relaxation process expresses the relaxation of velocity distribution function; We 

assume the existence of an ideal distribution function or a zero-concentration distribu­

tion function f 0 
( x, v), which is the distribution that would be realized if there was no 
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disturbance of other vehicles or if the system was infinitely dilute . f 0 also is the distri­

bution of preferred velocities. The information such as the legal speed, bottleneck, and 

characteristics of vehicles are included in the ideal distribution function . Whenever f 

deviates from the ideal distribution for same position and time, a force acts for returning 

the distribution to the ideal one. We assume the form of relaxation term as 

f - f 0 

---
T 

(2.44) 

where T expresses a relaxation time. There are many mechanisms contributing to T; 

For example, the movement of vehicles from one position where f 0 takes one value to 

another where f 0 has different value causes some relaxation process in a time T1. Another 

relaxation process is caused by passing. We denote a corresponding relaxation time as 

T2 ; If the vehicle does not pass another vehicle, then T2 = oo; If the vehicle passes another 

vehicle instantaneously, then T2 = 0. Therefore, introducing the probability of passing 

p, we may expect the relaxation time T2 has the form 

1 -p 
T2 = T-- , 

p 
(2.45) 

where 'T is the relaxation time at p = 1/ 2. The total relaxation time T will be achieved 

by the largest relaxation time. If the road is smooth, T1 may be smaller than T2. When 

we want to deal with effects like bottleneck, we take the largest relaxation time as T1 . 

Here we consider the situation in which the passing relaxation effects become dominant, 

so that the form of the relaxation term is as follows: 

(2.46) 

Note that this relaxation term contains only the effects of relaxation caused by passing; 

Effects of interaction due to the passing is included in the collision term. 

For the collision term, we assume the following form by an analogy to gas kinematics: 

(2.4 7) 

This term is described as the summation of influence to type i vehicles, which travel 

with velocity vi., from other vehicles before passing. The coefficient r~i l dvdxdt equals 

the number of vehicles subtracted from volume dvdx by collisions with vehicles with 
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velocity vi during an interval dt. And r~t l dvdxdt equals the number of vehicles added 

to the same volume by collisions with vehicles with velocity vi during the same interval. 

The no-passing probability 1 - p is multiplied to these coefficients, because the influence 

is kept for the intervals in which vehicles does not pass. 

Consider the coefficient r~i-l dvdxdt. The vehicles with velocity vi ( < vd in front of 

the vehicles with velocity vi contributes to the coefficient. During time interval dt the 

number of such vehicles is f ( x, vi , t )(vi - vi) dt, because only vehicles in the front range 

(vi - vi )dt are struck by the vehicles with velocity vi during dt. Therefore the number 

of vehicles which are struck by the vehicles with velocity vi is r f(x, V; , t )(vi - V;)dtdv; . (2.48) 

The number of target vehicles with velocity vi is f(x, vi , t)dxdvi. Thus 

(-) JV; 
ri j dxdvidt = f(X,Vi,t)dxdvi O f(X,Vj,t)(vi- Vj) dtdVj (2.49) 

Similarly we can obtain the coefficient ri~+l dvdxdt as 

(+) f oo 
rij dxdvidt = f (X, Vi, t)dxdvi vi f(X, Vj 1 t)(Vj- vddtdVj 1 (2.50) 

counting the number of vehicles behind the target vehicles. 

Summing two coefficients, we obtain the collision term as 

( af ( x~~l ,t ) ) = L_(r~tl- ri~-J)( l - p ) 
coll. 

(2.51) 

= L. f(x, v,, t) J'"' dv; f( x, v;, t)(v; - v,)( 1 - p) 
j 0 

(2.52) 

= f (x,vi , t )( q (x,t)- vip (x,t))(l - p ) . (2 .53) 

Omitting the index i we get 

( ~:) = fp(v - v )( l - p ) 
co il. 

(2.54) 

Therefore over-all Boltzmann equation for the evolution of one-vehicle distribution 

function is 

a f a f ( f - f0 ) P 
aL + vax =- T(l - p ) + fp (v - v )( l - p ) (2.55) 
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This is the fundamental equation derived by Prigogine for uniform road traffic . Steady 

solution is given as the solution of the integral equation of 

0 = -( f (x, v, t )- f0 (x, v, t )) p + f (x, v, t )p (J~ vf (x, v, t )dv - v) -r (1 - p )2 (2 .56) 

In the limit p --1 0 for finite p, f surely becomes f 0 , which have been our requirement . If 

p equals to unity, the actual distribution is equivalent to the ideal one . 

In the approach with Maxwell-Boltzmann equation, the ideal distribution is required. 

This is a macroscopic quantity and is empirically determined by the experience. There­

fore this approach is not suitable for microscopic understanding of the traffic stream and 

is used for phenomenological studies of traffic flow . 

2.2 Microscopic Modeling 

2.2.1 Car-following Models 

In this section, we consider another class of traffic flow model, that is, microscopic mod­

eling. In contrast to the macroscopic modeling like fluid dynamical models or stochastic 

models, microscopic modeling deals with individual vehicles, so that the motion of the 

traffic stream is described by the collective motion of individual movement of vehicles; 

Motion of each vehicle is governed by the locally described equations or "rules", that is, 

the reaction of vehicles is determined by the local environment such as relative velocity, 

relative position, road condition, and so on. 

There are two large categories of microscopic modeling; One is car-following model 

and another is cellular automaton model. Here we start with car-following models. They 

are described by simultaneous differential equations . In 1952, Pipes presented a simple 

car-following model [84); Consider a single lane road and the situations that vehicles 

travel on the road along one direction and passing is forbidden. Then each driver may 

keep the individual headway distance Xk - 1 - x k as 

(2.57) 

where XkJ vkt Lk are the position of k-th vehicle, its velocity, and its length, respectively. 

b is the natural headway distance taken at the vehicle coming to a stop . The term Tvk 
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represents the length in which the vehicle can stop suddenly, when the vehicle travels 

with the velocity vk! so that T is a response time due to both human and vehicle. This 

regulation of the headway distance is ideal one, which was written in the driving manual 

[84], so that the model describes the only ideal traffic flow. Pipes derived the equation 

of motion based on above regulation: Taking time derivative of the regulation, we get 

(2.58) 

Physically this equation is identical to the following one: 

m d
2
xk = A (dxk- 1 _ dxk) 

dt2 dt dt 
(2.59) 

with 1. / m = 1 / T; The acceleration of vehicle is proportional to the relative velocity 

between the foregoing vehicle. By considering the equations for k = 1, ... , N simulta­

neously, a traffic stream constructed by N vehicles can be studied. For convenience we 

take lk = 1 and renormalize b ----1 b - 1 . The essential of traffic stream is not affected by 

this change. The uniform stream with the velocity v and the interval b + Tv, 

x~(t) = vt - k(b +Tv), (2.60) 

is the solution of the simultaneous equations. 

Next consider a linear stability of the uniform traffic stream; Substituting xdt) 

x~(t) + fk exp (iwt) into the integrated equation (2.59), we get 

(2 .61) 

If we take fo = 1, then fk = (1 + iwT)- k. The fluctuation amplitude of k-th vehicle 

(2.62) 

is always less than one. Therefore the system is stable for any T. But this is unrealistic 

situation. According to Eq. (2 .62), the traffic stream is stable, even in the limit T ----1 0, 

which allows the traffic stream with no headway distance and with very high speed; Such 

flow, of course, is unstable in the real world. The reason why such unrealistic situation 

is allowed is that the sensitivity A is not bounded; It can become arbitrary large. In the 

realistic situation, the sensitivity is limited by the reaction of human or vehicle . 
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To improve the Pipes model, time delay of reaction has been introduced by Chandler 

et al [10]. The fundamental equations are 

m d2xd t ) = A (dxk_,(t- ~) _ dxd t - ~)) 
dt2 dt dt , 

(2.63) 

where ~ represents the time delay. This model also has a uniform solution of traf­

fic stream. Consider a linear stability of traffic flow: Substituting xd t) = x~ ( t) + 

fk exp( iwt), where x~ ( t) is the uniform traffic stream mentioned above, we obtain 

(2 .64) 

and thus the magnitude of fk becomes 

(2 .65) 

Here we take f0 to be 1. Clearly the traffic stream becomes unstable, if wT < 2 sin ~w. 

This condition restricts the value ofT to a realistic value. 

In both Pipes and Chandler models the acceleration is proportional to the relative 

velocity; Thus the vehicle is influenced by the foregoing vehicle which is at, say, 10 km 

ahead. Such behavior is owing to the constant sensitivity. In addition, a leading vehicle 

must exist in the theory, because the reaction is basically determined by the relative 

velocities in both models. Therefore these models are suitable for dense traffic streams; 

They are useful for study of the stability analysis of a platoon or shock wave propagation 

in the platoon and not suitable for study of the macroscopic feature of traffic stream such 

as the shape of fundamental diagram. 

Many improvement have been developed; For example, Kometani and Sasaki added 

the term dependent on the velocity of the foregoing vehicle [49]. Gazis et al . have 

introduced the sensitivity that depends on the relative position and the velocity of the 

vehicle [25]. Then the equation of motion becomes 

d 2xd t ) ( ) ( dxk- d t - ~) dxd t - ~) ) ---=-- = A X X 1 - ----dt2 b k- dt dt 
(2 .66) 

where ~ is time delay. J. (xkl xk- l ) is the sensitivity depending on the relative position 

and the velocity of the vehicle, described as 

aX:k m ( t) 
J. (xk, Xk- d = (xdt- ~)- xk_J(t- ~ ))L (2 .67) 
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where l and mare positive parameters. This model overcomes the large headway prob­

lems, because the sensitivity decays with power law for the large headway distance. The 

uniform stream is the solution of the above model. Using the function fp(x): 

{ 
x 1 - p for p f- 1 , 

fp(x) = 
ln x for p = 1, 

we write the uniform solution as 

(2.68) 

(2.69) 

where, u , s are the velocity and the headway distance, respectively, c is constant depen­

dent on m, l, a and c' is another constant . If l = 1, m = 0, the solution is equivalent to the 

Greenberg model [26]. Nonlinearity of the model enables us to describe the steady-state 

macroscopic feature of traffic flow . 

Newell has also proposed a better car-following model than Pipes or Chandler models 

by modifying the sensitivity [76]. The sensitivity of his model is as follows: 

(2.70) 

where Vk is a preferred velocity, with which the vehicle travel in a free run, lk is a 

parameter related with the length of the vehicle and the natural headway distance. The 

equation of motion is as follows: 

d
2
xdt) = ..\ (x x _ ) (dxk- 1 ( t - ~ ) _ dxdt - ~)) 
dt2 k b k 1 dt dt (2.71) 

with nonlinear sensitivity ..\k( xk, xk_1 ). Integrating above equation, we obtain original 

model by Newell: 

(2.72) 

Owing to the introduction of the preferred velocity, the model can describe the steady 

flow with large headway, as well as treatment of stability of platoons or propagation of 

density waves . 

Above mentioned car-following models are essentially described by first order differ­

ential equations, so that the artificial time delay must be introduced to make models 
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realistic. In addition, the last two nonlinear car-following models give only the contin­

uous fundamental diagram, which does not agree with the actual observation, although 

these models can treat the steady dynamics. But there is no crucial modification of 

model in last forty years. Recently theoretical breakthrough of the car-following models 

has been achieved by Banda et al [3, 4]. Their model is called the optimal velocity (OV) 

model. The OV model is described by second order simultaneous differential equations 

in contrast with the previous ones. The equation of motion is as follows : 

(2. 73) 

where a is the sensitivity. V(~x) is an optimal velocity function which is function only 

of the headway distance. Typically V(~x ) is taken to be tanh(~x ) + tanh 2, that is, 

monotonically increasing function. When the headway distance is large enough, the 

function becomes asymptotically constant, which corresponds to the preferred velocity 

introduced by Newell. Remarkable feature is that the time delay is not required; Effects 

of time delay is naturally introduced by the feature of second order differential equation. 

In addition, the model exhibits instability of a homogeneous traffic flow as the increase 

of the concentration. 

Consider a linear stability analysis. First, we construct the solution of uniform traffic 

stream: N vehicles having the same velocity are uniformly distributed on the circular 

road with length l, then the solution is 

0 0 l 
xk_dt) - xk (t) = N (2.74) 

0 ( l) l xk ( t ) = a V N - N k (2 . 75) 

Next consider a fluctuation from the uniform stream; We denote xd t ) = x~( t ) + ·~Jk( i ) 

and linearize the equation for the fluctuation 1J d t ). We obtain 

d 
2

1} d t ) = vI ( ~) ( ( t ) _ ( t ) ) _ d 1J k ( l ) 
dt2 a N 1J k- 1 1J k a dt (2 . 76) 

Substituting 1Jk ( t ) = fk exp iw l into the above equation, we get 

( 
aV' (l / N ) ) f 

fk= aV' (l / N )- w 2 + iwa k- l · 
(2 . 77) 
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If the amplitude of fk is less than unity, the uniform stream is stable. Therefore the 

stability condition is 

w 2 V' (l / N ) 
-- 2 + 1 > 0 
a2 a 

In the static limit w ---) 0 the condition becomes 

V' (l / N ) 1 
---<-

a 2 

(2. 78) 

(2. 79) 

This is an important result; The stability of the uniform traffic stream depends on the 

concentration, because l / N is an inverse of the concentration. For the optimal velocity 

function such as V(ilx) = tanh(ilx) + tanh 2, it is easily checked that the uniform stream 

becomes unstable as increase the concentration. In the unstable regime inhomogeneous 

traffic stream spontaneously appears, even though the stream is initially homogeneous. 

Inhomogeneous traffic stream consists of regions of tow distinct types; One has high 

average velocity and low concentration and the other has low average velocity and high 

concentration. Similar to the general fluid dynamical models, the critical concentration 

of instability slightly differs from the concentration corresponding to the capacity. 

The OV model is simple and has beautiful mathematical structure, so that many 

analytical studies have been done, in order to understand the mathematical properties 

behind the equations, as well as the features of traffic stream including universality with 

the granular systems [29]. For the application to real situations with intention of control­

ling traffic, however, it is not appropriate; Mathematical simplicity make:s introducing 

the other elements such as randomness of preferred velocity, or inhomogeneous condition 

of road difficult. 

2.2.2 Cellular Automaton Models 

Recently another type of microscopic models, based on the concept of cellular automata 

(CA) (e.g. [103, 104]), has been developed. Cellular automata are mathematical ide­

alizations of physical systems with space and time being discrete. Physical quantities 

are described by finite discrete values . Properties of simple cellular automata have been 

investigated extensively by Wolfram [103, 104]; These cellular automata consists of a 

one-dimensional lattice and a discrete internal state on every site, so called a "cell" . The 
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state of the cellular automaton is completely determined by the state of each cell. Tem­

poral evolution of a cellular automaton obeys discrete-time dynamics. Here we consider a 

elementary cellular automata; The local internal state is described by only binary states 

{0, 1} and its temporal evolution is affected by the state of nearest neighboring sites and 

the state itself. The states of cells are simultaneously updated based on a definite set of 

rules. 

Consider an example of the elementary cellular automata. Let s~+ l be a state of the 

center cell of the neighborhood at the t + 1 time step and s~ _ 1 , s~-p 51\+ 1 are states of the 

neighborhood at the t time step. Three neighbors { s~"l- 1 , s~, s~+ d can take 23 possible 

states, because the state of each cell is 0 or 1. s ~+ 1 is determined by { s~ 1 , s~ , s~L+ 1} 

according to the set of rules. Thus there are 223 = 256 possible distinct sets of rules in 

the elementary cellular automaton. Let us see the following the set of rules, for example: 

(2.80) 

The eight possible states of three adjacent sites are given above the line and the lower 

digits present the state s~+ 1; For instance, if the three neighbors take 101, the state 

of center cell becomes 1 at the next time step. This rule is called rule 184 according 

to Wolfram's classification, because the binary number 10111000 in (2 .80) represents 

184 in decimal number. The rule 184 is called "illegal" in the terminology of Wolfram, 

because the spatial reflection symmetry is broken. For the elementary cellular automata, 

temporal evolution rules can also be considered as a Boolean function f a of the states . 

For example, the rule 184 can be represents as follows: 

(2.81) 

The rule-184 cellular automaton can be regarded as a simplest traffic flow model; 

If the states 0, 1 are identified as an empty site and the occupied site by a vehicle, 

respectively, the rule expresses that a vehicle moves one step rightward, when the right­

neighboring site is empty. This model is quite simple, so that it is not only the model 

of traffic flow, but also of other systems; For example, it is regarded as the surface 

growth model by identifying the movement of a vehicle to single step growth of surface 

[52]; Mathematically the model is also related with totally asymmetric simple exclusion 

processes (TASEP) [57-59], and ultra-discretized Burgers equation [78]. 
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Figure 2.2: Typical space-time trajectories of the rule-184 cellular automaton model. (a) 

in low concentration p = 0.3, (b) in high concentration p = 0.8. Black circle represents 

a vehicle. Periodic boundary condition is imposed. 

For latter convenience, we describe features of the rule-184 cellular automaton model 

using traffic terminology. Consider one-dimensional periodic array of cells, which rep­

resents a periodic road. Concentration p is defined as a ratio of a number of vehicles 

N and a number of cells l: p = N / L The averaged velocity is defined by a number of 

moved vehicles per one time step; If the number of such vehicle at an i-th time step is 

ni., the average velocity (v) is 

T 
1 L 11.-i_ (v) =- -
T N 

i = l 

(2 .82) 

with a duration of observation T. Therefore the maximal allowed average velocity is 1. 

Typical space-time trajectories of the rule-184 cellular automaton model are shown in 

Fig. 2.2: (a) in low concentration p = 0.3, all the vehicles travel with maximal velocity 

and (v) = 1 . (b) in high concentration p = 0.8, the average velocity is less than 1. But 

because of the particle-hole symmetry inherent in the model, empty site travels with 

maximal velocity 1 to the opposite direction. 

The dependence of the average velocity on the concentration is presented in Fig. 2.3. 

The average velocity is calculated for 100 steps after discarding 100 steps for relaxation. 
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The number of cells is taken to be 100. Clearly we can see that the average velocity 

is 1 in low concentration, while for concentration larger than p = 0.5 it decreases as 

increasing the concentration. The fundamental diagram is obtained by multiplying the 

concentration to the average velocity shown in Fig. 2.4. It is clearly seen that a flow 

takes a peak at the concentration p = 0.5 and thus the capacity is 0.5. The concentration 

p = 0.5 corresponds to the transition point. But in this case, there is no critical behavior 

at the transition point. This fundamental diagram is classified into the inverted V shape. 

The behavior of the fundamental diagram is understood by the following arguments; If 

the number of cells is even, then the space-time trajectory at the transition point draws 

a checkerboard pattern. It means that the traffic stream is spontaneously organized into 

the state in which the vehicles align alternately in the cell. Such self-organized state is a 

consequence of the particle-hole symmetry of the model. In the concentration lower than 

the transition point, the traffic stream is made by replacing the appropriate number of 

vehicles with the empty sites in the self-organized state. Therefore the average velocity 

still takes maximal value 1. In higher concentration, on the other hand, vehicles are 

added to the self-organized state, that is, the empty site is occupied by the vehicle . 

Therefore the average velocity of vehicle is less than 1; Empty sites travel with velocity 

1. 

In the rule-184 cellular automaton model, analytic forms of the average velocity and 

flow can be obtained; In the limit T ---1 oo in the lower concentration, the number of 

movable vehicles equals the total number of vehicles, because of the local property of the 

self-organized state; Thus 

T 

(v) = lim L N = 1 
T --t N (2.83) for p < 1/ 2 . 

i 

In high concentration the number of movable vehicles is the number of holes due to the 

particle-hole symmetry. Thus 

T l - N 
(v) = lim' -­

T --too L. N 

Using them, we obtain the flow as follows: 

1 - p 

p 
for p > 1/ 2 . 

{ 
p ( 0 < p :::; 1 / 2) 

q - 1 - p ( 1 / 2 < p :::; 1 ) 

(2 .84) 

(2 .85) 
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Figure 2.5: Space-time trajectories of the Nagel-Schreckenberg model taken from Ref. 

[92]. (a) in low concentration p = 0.1. (b) in high concentration p = 0.3. Vmax is taken 

to be 5. 

as concerning with "self-organized criticality" or "edge of chaos" [71, 72] . Simplicity of 

the model allowed some analytical treatments like mean field approximation [92] . 

There also are many other extensions that we did not mention above; Two dimen­

sional cellular automaton traffic flow model have been proposed by Biham et al [6, 12, 96]. 

Their model is constructed on regular two-dimensional lattice and vehicles travels along 

individually definite directions, upward or rightward, according to rule-184 CA. As a 

consequence of computer simulations, their model shows sharp jamming transition. For 

the one-dimensional or pseudo-one-dimensional traffic flow, models of two lane, single 

lane with crossing, single lane with bottleneck have also been investigated based on the 

rule-184 CA model [65- 68, 108]. 

Chapter 3 

Dynamical Phase Transition Caused 

by Bottleneck 

3.1 Introduction 

In this chapter, we study effects of a bottleneck on the traffic flow in a road. The 

bottleneck is defined as a part of the road whose capacity is lower than that of the 

rest of the road. As has already been discussed in Ref. [ 61), it is expected that if 

the concentration is high to some extent the cars pile up behind the bottleneck and 

form a "shock front''. We introduce a blockage site in the rule-184 CA to consider the 

bottleneck. The blockage site transmits the cars with some transmission probability. 

This blockage mimics the effect of the bottleneck caused by the road construction, the 

tunnel, and so on in the real world. As will be shown in later sections, the introduction 

of the blockage site causes nontrivial behavior . N agatani has investigated the effects of 

a bottleneck in two-lane road by a CA model in which cars can move back and forth 

stochastically between the two lanes [68]. The model we treat, on the other hand, has 

only a single lane, and the movements of the cars are deterministic except for a single 

site, that is, blockage. 

The CA model of traffic flow is closely related to the one-dimensional totally asym­

metric simple-exclusion process (TASEP) [57] as was mentioned in the previous chapter. 

The TASEP is not a deterministic process; Rather, a randomly chosen particle is moved 

to its neighboring site at each time step. While the rule-184 is regarded as a model for 

the traffic flow, the TASEP may be regarded as a model for charged particles adsorbed 

57 
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on a solid surface with the electric field gradient imposed. Janowsky and Lebowitz have 

reported the simulation of TASEP with a blockage similar to one in our model [38]. 

They found a formation of the shock front, and analyzed its properties. Our model can 

also be regarded as a deterministic version of their model. Apart from the difference in 

the dynamics of two models, we focus mainly our attention on the behavior near the 

transition point between the free phase and the phase where the shock front exists. 

The present chapter is organized as follows: In Sec. 3.2, we describe the model and 

define quantities we observe. The results of simulations are given in Sec. 3 . ~3. We perform 

a mean-field-like approach for thermodynamic limit, and make analysis based on the 

finite-size scaling idea. The last section is devoted to summary and discussions. 

3.2 Cellular Automaton Modeling 

We start from describing the pure rule-184 CA without a blockage again. Suppose we 

have a one-dimensional lattice where each site can take either of the two states, 0 and 

1. The CA evolves in discrete time step; The state of each site at the next time step is 

determined from the state of the site itself and those of the two nearest-neighbor sites. 

The evolution rule for the rule-184 CA is expressed symbolically by the following set of 

fractions: 

{ 
111 11 0 1 01 1 00 011 01 0 001 000 } 
- 1- '0' _1_ ' _1_ ' _1- '0'0'0 . (3 .1) 

The three binary numbers in the numerators express the states of the three sites, the 

site in concern and the two neighboring sites. These fractions express that a state, 1 or 

0 in denominators, of each site after one time step is determined by the states of the 

three sites. Now we consider the state 1 is an empty site or hole, and the state 0 a site 

where a particle exist, Then the particle is driven left by the evolution rule, whenever the 

left nearest-neighbor site is empty. The number of the particles is conserved throughout 

the evolution process. The combination of the binary number in the denominators, 

10111000, is 184 in decimal number; That is why this CA is called the rule-184 [103). 

It should be noted that the rule-184 is one of the "illegal" rules according to Wolfram, 

since it lacks the spatial reflection symmetry. This illegality, however, is the source of 

the asymmetric motion. 
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The effects of a bottleneck are taken into account by introducing a blockage site . 

This site has a transmission probability r ; If a particle exists on this site and its left 

nearest-neighbor site is empty, then a particle moves left with probability r and does not 

move with probability 1 - r. On a blockage site , the evolution rule is modified as 

{ 
11 0 1 11 00 0 1 01 0 1 00 } 
-- - -----

01 , 01 ) 01 ) 01 

{ 
11 0 1 11 00 0 1 0 1 0 1 00 } 
lo' lo' lo' 1o 

with probability r, 

with probability 1-r. (3 .2) 

In each fraction the blockage site is the third digit from left in the numerator, and the 

denominator expresses the state of the blockage site at the next step. The evolution 

rule for other states and other sites are the same as that of the pure rule-184 CA. The 

blockage site will act as a seed of the "traffic jam" for the particles . The model thus 

constructed evolves mainly with the deterministic rule (3.1); Only at the blockage site, 

the stochastic rule (3.2) applies. 

We study this model by computer simulations of finite lattices with the periodic 

boundary condition imposed. The present model is expected to have a steady state, 

because of the periodic boundary condition and the global conservation of the particle . 

The particle on the blockage site moves with the transmission probability r, so that the 

"life time" for a particle on the blockage site is 1 / r. If a particle comes to the blockage 

site, this particle will leave the blockage site after 1 + 1 / r time steps on average. Therefore 

the particles is expected to pile up after the blockage if the particle concentration exceeds 

r / ( 1 + r ); Thus a traffic jam region of finite thickness is expected to form . 

Let us define some quantities we observe by the simulations. These quantities are 

calculated after the system reaches the steady state . 

First we define the average speed v as 

(3.3) 

where Tis the total time steps, Tl-t is the number of particles which move at i-th time step, 

and n is the total number of particles. Using this average speed, the flow is calculated 

as 

(3.4) 
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where L is the lattice length and p is the particle concentration. Next, we define the 

width of the jam created after the blockage site. The tail of the jam is unambiguously 

determined as the last site from the blockage where the particle on it is blocked by 

the particle at the left nearest-neighbor site; In other word, all the particles after the 

tail can move freely. It is one of the advantage of the present deterministic model over 

the stochastic TASEP in which the tail position (the shock front in the terminology of 

TASEP) can be determined only statistically by means of the second-class particle [38]. 

If the blockage is at I-th site and a tail of the jam is at Ji-th site at i-th time step, the 

width of jam phase his defined as 

(3 .5) 

The fluctuations of width .6.h2 of the jam is calculated as 

2 1 L 2 2 .6.h = - (h - I) - h 
T . 

(3.6) 
t 

3.3 Results 

3.3.1 Simulation 

We made computer simulations of the model varying the system size l, the transmission 

rate r, and the particle concentration p. In Figs. 3.3.1(a) and (b), typical results for 

the average speed and the flow are plotted, respectively, against the concentration for 

three transmission rates, r = 0.3 , 0.5, and 1, where the last one corresponds to the pure 

rule-184. We took l = 99 in this figure. Three phases are recognized for r = 0.3 and 

0.5. On the other hand, only two phases exist for r = 1, which we call the free phase 

(for p < 1 / 2) and the fully jam phase (for p > 1 / 2). What we call interrnediate phase 

appears for r = 0.3 and 0.5 as the flow-constant phase . The plot of the flow is symmetric 

about p = 1/ 2 as expected from the particle-hole symmetry of the model; Thus the two 

critical points for the blockage model also are at the symmetric positions with respect 

to P = 1/ 2. From the typical flow in Fig. 3.3.1(b), we see that the values of the flow in 

the flow-constant phase coincide with the values of the lower critical concentration Pc, 

and that the flow is proportional to the concentration in the free phase and in the fully 
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jam phase. These behaviors of the average speed and the flow are quite similar to those 

found in the two-lane model [68]. 

Figures 3. 2 (a) and (b) show the typical plots for the width of the jam region and the 

fluctuations of the width, respectively, for the three transmission rates . We find that the 

width of the jam region increases linearly with the concentration in the flow constant 

phase. In Fig. 3. 2(b), the fluctuation of width has a peak at the concentration slightly 

higher than the critical point. 

To see the nature of the flow-constant phase, we show typical snap shots . Fig­

ures 3.3( a) and (b) show snap shots for l = 100 and r = 0.5 at p = 0.5 and 0.33 , 

respectively. It is clearly seen that the flow-constant phase is a mixture of the free phase 

before the blockage and the fully jam phase after the blockage, as expected. This mixed 

phase reminds us of the mixture of the gas phase and the liquid phase in wetting phe­

nomena [19]. The tail of the jam, that is, the interface between the free region and the 

jam region, shows a "saw tooth" pattern, which means that the tail moves backward 

gradually and abruptly jumps forward; This behavior coincide with our experience in 

a real traffic jam caused by a road construction. Figure 3.3 (b) is a snap shot near 

the critical concentration. In this concentration, jam clusters like droplets appear and 

disappear from time to time . 

The transition to the flow-constant phase is not sharp in the figures we have seen so 

far, in contrast to the case of the pure rule-184 model, where the sharp transition between 

the free phase and the fully jam phase is seen even for the finite systems. Origin of such 

rounding of the phase transition is attributed to the finite-size effects . To study the 

finite-size effects, we plot v, h / l, and .6.h2 / l near Pc for several system sizes and r = 0.5, 

in Figs . 3.4(a), (b), and (c), respectively. We see the clear trend that the transition 

becomes sharper with increasing the system size. Such size effects at a glance resemble 

to that near the phase transition point of equilibrium critical phenomena. 

3.3.2 Thermodynamic Limit 

In this subsection, we discuss the model in the thermodynamic limit l ---7 oo and the 

long-time limit T ---7 oo . 

First, we deal with the pure rule-184 model, that is, r = 1.0 . Let Pr be the particle 

concentration and Ph = 1- Pr be the hole concentration. For Pr > Ph, we expect that the 
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Figure 3.1: (a) Typical results for average speed; Each transmission rate i:s taken to be 

T = 0.3, 0.5 , 1 .0 and system size is 99 sites. Solid lines are solutions of rnean-field-like 

analysis. (b) Typical results for flow. Parameters are identical to the same as (a) 
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Figure 3.2: (a) Typical results for width of the jam region; Each transmission rate is 

taken to be T = 0.3, 0.5 and system size is 99 sites . (b) Typical results for fluctuations 

of width of the jam region. Parameters are identical to the ones in (a). 
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Figure 3.3: (a) Snap shot for 100 sites and transmission rater = 0.5 at density 0.5. White 

square is particle and blockage site is 3. (b) Snap shot for 100 sites and transmission 

rate r 0.5 at density 0.33, near the critical concentration. White square is particle and 

blockage site is 3. 
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Figure 3.4: (a) Average speed for several system size; transmission rate r = 0.5; near the 

critical density Pc = 1/ 3. (b) Width of a jam phase for several system size; transmission 

rate r = 0.5; near the critical density Pc = 1/ 3. (c) Fluctuations of the width for several 

system size; transmission rate r = 0.5; near the critical density Pc = 1/ 3. 
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number of movable particles per one step coincides asymptotically with that of movable 

holes: 

lim 2_ .[_ n i = Ph.l 
T ---100 T 

(3 .7) 
i 

Then 

Phl Ph 1 - Pp 
V = - =-= . 

n Pp Pp 
(3 .8) 

For Pp < Ph, on the other hand, we expect that the movable particle number is just the 

particle number: 

Then 

v = Ppl = 1. 
n 

Consequently, for the rule-184 CA, we get 

{ 

1 (O< p < 1/ 2, ) 

v = 1 - p ( 1 /2 < p < 1 ) . 
p 

(3 .9) 

(3.10) 

(3 .11) 

It is well known that the above result is exact not only for the infinite system but also 

for any finite system of the rule-184 CA. 

Next we consider the blockage model. In the flow-constant phase, the two regions, 

that is, the free region and the fully-jam region coexist as have been seen in the previous 

section. According to the observations in the previous section, we assume that these two 

regions are locally equivalent to the corresponding phases in pure rule-184 CA; Especially 

the particle concentration is assumed uniform in both regions. Let Pr and Pi be the 

concentration in the free region and the concentration in the jam region, respectively. 

For the particle number to conserve, the relation 

(3.12) 

should hold in the flow-constant phase. According to the discussion we have already 

made on the "life time" of the particle on the blockage site, the particle concentration 

in the free region is 

r 
Pr = --. 

1 + r (3.13) 
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Because of the particle-hole symmetry of the model, the transmission of the particle into 

the free region is equivalent to the transmission of the hole into the jam region. Thus the 

above discussion also apply to the jam region, and the hole concentration there coincides 

with Pr; The particle-hole symmetry in the jam region is equivalent to 

Pf + Pi = 1. 

From Eqs . (3 .13) and (3.14), we determine Pr and Pi as 

r 
Pf = 1 + r' 

1 
Pi = 1 + r. 

(3.14) 

(3.15) 

Therefore both the concentration in the free region and the jam region are independent 

of the total density p; Rather, they depend only on the transmission rate r. 

From Eq. (3.12), we obtain the width of the jam region as 

h P - Pt 

l Pi - Pt 
(3.16) 

Combining Eq. (3 .15) and Eq. (3.16), we get 

h (1 + r)p - r 
l 1 - r 

(3.17) 

The critical concentration Pc is determined from Eq. (3.17) by putting h == 0 and h = l; 

We get Pc = Pr and Pi· Thus by solving Eq. (3 .15), the phase boundary in the (p, r)-plane 

in the thermodynamic limit is obtained as 

1 - p 
r= --. 

p 

p 
r = --

1 - p' 
(3.18) and 

The phase diagram thus obtained is shown in Fig. 3.5. 

The average speed in the flow-constant phase can also be calculated. Since the dy­

namics of the particles is locally rule-184, the particles in the free region naove with the 

speed vr = 1, and the particles in the jam region move with the speed vi == ( 1 - Pi) / Pi. 

Thus the average speed of the particles in the flow-constant phase can be written as 

l 
V = h l - h' (3 .19) 

- +--
V j V r 

which gives 

r 1 
V=---

1 + r p 
(3.20) 
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Figure 3.5: Phase diagram for infinite system with blockage; Density p vs transmission 

rate r . 

Putting above considerations together, we get the average speed in the thermody­

namic limit: 

(0 < P < Pr,) 
r 

(Pr < P < Pi,) V = - - -
1 + r p 
1 - p 

(Pi < P < 1 ), 
p 

(3.21) 

with Pr = r / (1 + r ) and Pi = 1/ (1 + r). We also get the width of the jam region, 

0 (0 < P < Pr, ) 

h / l = 
P - Pf 

(Pf < P < Pi, ) (3 .22) 
Pi - Pf 
1 (Pi < P < 1 ). 

Since the local motion of the particles in the both regions are treated exactly by 

applying the results of the rule-184 CA, we expect that the above results are exact in the 

thermodynamic limit. For finite systems, on the other hand, the effects of randomness at 

the bottleneck will cause deviations in local motion from the pure rule-184 CA near the 

bottleneck; Such deviations, however, is expected to remain only in some small region 
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near the bottleneck, so that they do not affect the properties in the thermodynamic limit. 

In fact, the solid lines shown in Fig. 3.3.1(a), which represent the relation Eq. (3.21), 

very well to the simulation data, apart from the region near the critical concentration; 

Especially, the flow-constant phase is very well described by Eq. (3.21 ). 

3.3.3 Finite-Size Scaling 

As shown in Figs. 3.4( a)- ( c), clear size effects are observed near the critical concentra­

tion Pc = 1/ 3. As was discussed in the last subsection, such finite-size effects are the 

consequences of the randomness at the bottleneck. Our next step is to study the nature 

of these finite-size effects especially at the first critical concentration Pc = Pf , because of 

the particle-hole symmetry. To this end, we carry out analyses based on the finite-size 

scaling method [5], which is widely used in the field of the critical phenon1ena. 

First, we consider the finite-size scaling of the average speed. Suppose v converges to 

1 with the system size l at the critical point with a power law: 

1 - v "' l l. ) (3.23) 

where we introduced a scaling dimension E, for the average speed. Following the usual 

procedure for the finite-size scaling analysis, we assume 1 - v is expressed in a scaling 

form 

(3.24) 

where f v is an unknown scaling function whose argument is the reduced concentration 

( P - Pc )/ Pc scaled by the system size . The exponent ( is the scaling exponent for the 

reduced concentration. For the concentration much larger than Pc (in the off-critical 

region), the flow is expected to approach the constant value Pc· If we take that into 

account, we have to assign the same exponent to both the average speed and the reduced 

concentration, that is, we put E, = C Thus the expected scaling relation for v becomes 

1 - V = l l.f ( p - Pc) 
v Ll. . 

Pc 
(3.25) 

Next we consider the finite-size scaling for the width of the jam region. The normal­

ized width h / l is also expected to vanish in the thermodynamic limit at Pc; Thus we 
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suppose again the power-law dependence of h / l on l: 

(3.26) 

where ¢ is the scaling exponent for the normalized width. Let us assume the scaling 

form similar to Eq. (3.25) : 

~ = l cl>f ( P - Pc ) 
l n Ll. ' Pc 

( 3.27) 

where f~c is an unknown scaling function. We expect h is order l at ( p - Pc) I Pc >> 1, 

and thus expect h / l is constant. To consider that, we put ¢ = E,. Therefore v and h / l 

scale with the same exponent. The expected scaling relation for h / l thus becomes 

h _ l, ( P - Pc) l - l f~c Pcl l. . (3 .28) 

Finally, from a simple dimension counting, we expect that the scaling relation for the 

fluctuation of the width is written as 

(3 .29) 

with an unknown scaling function f ~n· It should be noted that only a single scaling 

exponent E, appears in these scaling relations. If the scaling width h / l at Pc is simply a 

consequence of random fluctuations, it may behaves as l - 112 ; Therefore, from Eq. (3 .26) 

we expect E, = - 1/ 2 for random fluctuation. 

We investigate the validity of the scaling relations derived above with the simulation 

data. We show results only for the transmission rater = 0.5 in the following . Figure 3.6 

shows the scaled average speed ( 1 - v) L112 against the scaled reduced concentration. We 

used (P- Pc)/ p as the reduced concentration instead of (P- Pc)/ Pc used in Eq. (3.25), just 

because we can get better scaling plot with the former than with the latter. Such change 

of the definition for the reduced concentration, however, does not affect the leading 

scaling behavior; It, in fact, only gives an analytic correction-to-scaling term. We see 

in the scaling plot that all the data for different system sizes indeed collapsed onto a 

single scaling function. For p - Pc > 0, this scaling function seems to approach a linear 

function of ( p - Pc) L112 j p. This behavior is consistent with the fact that the flow takes 

the constant value at Pc· 
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Figure 3.6: Scaled average speed for several system size; transmission rate r= 0.5; near 

the critical density. Pc = 1/ 3. 

In Fig. 3.7, we plot the scaled width of jam phase hl 112 against the scaled reduced 

concentration. We took ( p - Pc) l 112 for the horizontal axis. Again we see that all the 

data fall on a single curve. The scaling function seems to approach the linear function 

of ( p - Pc) l 1 12, for p - Pc > 0; That again is consistent with the fact that h / l in the 

flow-constant phase is proportional to p - Pc· 

So far, we have seen that the simulation data are consistent with E., = --1/ 2. Putting 

this value into Eq. (3.29), the scaling relation for the fluctuation of width becomes 

~h2 
o ( P - Pc ) l ..___ l f~h PcL- 1/2 . (3.30) 

In cases of usual critical phenomena, the power l 0 implies the logarithmic divergence . In 

the present case, however, where E., = - 1/ 2 is a consequence of the randmn fluctuation, 

the power l 0 may simply imply that ~h2 / l does not depend on l. In Fig. 3.8, we 

plot the fluctuation of width ~h2 / L without rescaling by l against the scaled reduced 

concentration . We see a somewhat different scaling behavior from those of v or h / L: 

While all the data for the concentration lower than the peak collapse into a single curve, 

the data for higher concentration do not scale. Thus the scaling relation Eq. (3 .30) holds 
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Figure 3. 7: Scaled width of jam phase for several system size; transmission rate is 0.5; 

near the critical density Pc = 1 / 3. 

only for the concentration lower than the peak, which appears at a small positive value of 

the reduced concentration. The size dependence of ~h2 / l for higher concentration can 

be deduced from the raw plot in Fig. 3.4(c). We can see that ~h2/l for the concentration 

higher than the peak is almost independent of the system size without rescaling of the 

concentration. This behavior in this region coincides with the result for TASEP with 

blockage, where the unnormalized fluctuation of the shock-front position in the mixed 

phase t>ehaves as L112 [38], although the definition of the interface position is different 

between two models. 

3.4 Summary and Discussion 

We have examined a one-dimensional cellular automaton model of the traffic flow with a 

bottleneck, by introducing a blockage into the rule-184 CA. We found the formation of 

the jam region after the bottleneck when the car concentration exceeds some critical value 

determined by the transmission rate of the bottleneck. Consequently, in the intermediate 

range of the concentration between free phase and the fully-jam phase, that is, the 
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flow-constant phase, the coexistence of free region and the fully-jam region is observed 

with well-defined boundary between them. Such behaviors agree with our experience 

in real traffic ways, when road constructions or tunnels exist . In fact, we sometimes 

find ourselves trapped in a traffic jam all of a sudden, after having driven freely. In the 

fully-jam region after the blockage of the present model, a car does not move constantly; 

Rather it moves and stops alternately. Such intermittent motion also agree:s with our real 

experience. Thus, the model treated in the present study can represent some realities 

despite its simple structure. 

We have discussed the properties of the traffic flow in the thermodynamic limit, where 

the fluctuations due to the randomness at the blockage can be ignored. The expressions 

we obtained for the average velocity and the average flow reproduce the simulation 

results very accurately apart from the concentration near the critical value. Since the 

local motions of the particles are treated exactly by applying the known results of the 

rule-184 CA, the above expressions are expected to be exact in the thermodynamic limit . 

We also obtained the phase diagram of the present model in terms of the concentration 

and the transmission rate . 
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By the computer simulation of the model, the strong finite-size effects near the tran­

sition point was observed, which were analyzed by means of the finite-size scaling. Since 

the pure rule-184 model does not exhibit such finite-size effects, they are induced by a 

randomness only at the single blockage introduced in the system. Although the finite-size 

behaviors of the present model resemble to those of the equilibrium critical phenomena, 

they are caused simply by the random fluctuations. It should be noted that no such 

finite-size behaviors have been reported so far for the stochastic two-lane model [68], 

although the overall behavior is close to the present model. 

Exact solutions have been found for some TASEP-related models [17, 18]; Janowsky 

and Lebowitz obtained the exact solutions on small lattices for the same model as they 

treated in Ref. [38], which is a stochastic TASEP model with a blockage, and extrapo­

lated them to the thermodynamic limit by Pade approximation [39]. As another related 

model in the context of TASEP, Schutz have found the generalized-Bethe-ansatz so­

lution for the two-sublattice deterministic version of the TASEP with a blockage [93], 

where the system is divided into two sublattices and the particles in the same sublat­

tice move simultaneously. Although these three models including the present CA-based 

model resemble with each other at a glance, their update dynamics is quite different . 

Consequently, they behave differently in detail; Especially the phase boundaries do not 

coincide with each other. Recently analytical and numerical treatments of ASEP have 

been developed extensively; Some remarkable results are obtained [33, 34, 86]. 
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Chapter 4 

Coupled-Map Modeling of Traffic 

Flow 

4.1 Introduction 

In order to understand the traffic flow phenomena, many models have been proposed 

and tested so far. Among them we will concentrate on microscopic models below. In 

1950's, for instance, sets of first-order simultaneous differential equations, called car­

following model, were used for representing traffic flow. They, however, had a difficulty in 

describing both the free flow and the congested flow separated by the jamming transition 

on unified ground [9, 21, 49, 84]. Recently more realistic models have been proposed by 

physicists, which successfully reproduce several observed traffic phenomena including 

the jamming transitions. They are classified into three categories according to structure 

of the space-time used for constructing the models . Cellular automaton (CA) models 

[6, 66-68,70-73,92,96,99, 102, 108Jare in the first category. They treat both time and 

space as discrete; Thus states of vehicles are described by discrete variables . Among CA 

models, certainly the best known and the most successful model is the one proposed 

by Nagel and Schreckenberg (NS model) [73]. In the second category, both time and 

space are treated as continuous. Models under this category describe the traffic flow by 

a set of differential equations using continuous variables for expressing states of vehicles. 

Conventional car-following models fall within this category. Recently, Banda et al. 

proposed a new model called the optimal velocity model (OV model), which describes 

the motion of the cars by second-order differential equations [3, 4, 95]. It exhibits the 

77 
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jamming transition in contrast with former car-following models. In the last category, 

which is the main subject of this article, the space is treated as continuous, but time 

as discrete. Thus states of vehicles are expressed by continuous variables, but they are 

updated at discrete time steps . A few models have been constructed in this category 

[51, 70, 106, 107, 109]. We call models of this type "coupled-map" models. Coupled-map 

based modeling bas several advantages over others modeling scheme, as will be described 

in the following sections. The coupled tanh-map (CTM) model proposed by the present 

author belongs to this category [106, 107]. The aim of this chapter is to give a general 

concept of the coupled-map type modeling and results obtained by computer simulations 

of CTM model. Another coupled-map based model is also presented in the proceedings 

[97]. 

The organization of this chapter is as follows: In Sec. 4.2.1 after the general concept 

of the coupled-map modeling is briefly discussed, CTM model proposed by the author 

is described. Some results obtained by computer simulations are shown in Sees. 4.3-4.5; 

We focus our attention on the density fluctuations, the shape of fundamental diagrams 

and the entropy of traffic flow. The last section is devoted to summary and discussions. 

4.2 Coupled-Map Traffic Flow Model 

4.2.1 Concept 

In this subsection, we give a general discussion about bottom-up modeling of the traffic 

flow using the concept of the coupled map. Modeling procedure will be as follows: First, 

essentials of a motion of a single vehicle are extracted and they are made into a form 

of mathematical model. Since time is taken as a discrete variable, the single vehicle 

motion is described by a map which updates internal variables of the vehicle one time 

step further. Next, an array of such vehicles are considered. The maps for different 

vehicles are connected so that they describe essentials of the interactions between the 

vehicles properly. All these maps are updated simultaneously by parallel discrete-time 

dynamics . 

Here we take the velocity and the position as the internal variables of the vehicles. 

Then in the coupled-map models in general, these internal variables at t -th time step 
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time t+1 

vehicle i-1 vehicle vehicle i+1 

Figure 4.1: Conceptual diagram of coupled-map modeling for one-dimensional traffic 

flow: An array of vehicles is considered. Each vehicle has the position and velocity as 

internal variables. These variables are updated by discrete time dynamics according to 

a map which takes the velocity and headway distance as inputs. 

are updated one step further by the following relations : 

( 4.1) 

( 4.2) 

where Map1 expresses a map for updating the velocity of i-th vehicle, which takes the 

velocity v1 and the headway distance .6.x1 to the preceding vehicle at time t as the 

inputs. The second equation defines a (trivial) map for updating the position Xi · The 

headway distance is defined as .6.xt = xt+1 - x~ + l, where l is the length of the vehicle. 

In Fig. 4.1, a conceptual diagram of the coupled-map modeling is shown. This type 

of dynamics is sometimes called the Coupled Map Lattice (CML) [44], because maps 

are aligned in an array (one-dimensional, in the present case) . In the above equations, 

effects of interactions with other vehicles enter only through the headway distance to the 

preceding vehicle. In principle, one can choose more general types of maps for taking 

other effects into account, e.g., the relative velocity to the preceding vehicle . 

One of the advantages of employing coupled-map type modeling is that it can handle 

rule-based decision-making. Human behavior are not always smooth as what can be de­

scribed by differential equations. In fact, drivers are sometimes obliged to make decisions 

in real traffic situations. Sudden braking in case of emergencies is a typical example . 
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Decision-makings are also required when changing lanes for overtaking, when turning 

at crossroads, and so on. For treating such behaviors accompanied by decision-making, 

rule-based modeling is suitable rather than differential equations. Since coupled-map 

modeling is based on discrete time dynamics, rule-based decision-makings are easily im­

plemented. As a consequence, we can introduce several road conditions into the model 

like a traffic blockage, multi-lane roads, crossings, open roads with inflow and outflow, 

junctions and so on. In addition, parallel discrete-time dynamics makes the model suit­

able for simulation by parallel supercomputers. The CA approach also is suitable for 

rule-based modeling. But the coupled map approach is much more flexible than CA, 

because the internal variables describing the state of the vehicle are not restricted to 

integer values . Coupled-map based models can describe both smooth behaviors and 

rule-based decision-makings on unified ground. For the above reasons, we believe that 

the coupled-map type modeling is the most promising modeling scheme for describing 

traffic flow realistically. 

The coupled map modeling has formally the same structure with the first order solver 

for first-order ordinary differential equations, that is, Euler's method. But here, we by no 

means intend to solve any differential equations faithfully by time discreti2mtion. In fact, 

the model presented in the next subsection has no corresponding differential equations 

in continuous time limit. 

4.2.2 Model 

Let us move on to the CTM model we will actually use in the following sections. What 

we have to do for making model definite is to give an explicit form of the map Mapi . 

According to the plan presented in the preceding subsection, we first consider es­

sentials of a free motion of a single vehicle. The following three are what we consider 

important for making the models of the free motion: 

• Preferred velocity vrre. of the driver: When there is no disturbance by other 

vehicles or by road conditions, the driver tends to run a car with this preferred 

velocity. It differs from driver to driver; Some wants to run fast and some slowly. 

• Acceleration and deceleration: When the velocity is slower (faster) than vrre. , 

then a vehicle is accelerated (decelerated) until its velocity fits vrre .. 
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• Velocity fluctuation: Even if the velocity is close to v rrc ., it is not kept constant . 

Rather, it fluctuates around vpre. 

Taking above essentials into account, we construct the velocity updating map. In general, 

it will be a function of the velocity, the position and the preferred velocity. But here, 

for simplicity, we use the following map for describing the free run: 

vt+ l F(vt; vpre. ) 

yv' + I> tanh ( vP"·I)- v') + E (4 .3) 

where vl and vpre. are the velocity of the vehicle at time t and its preferred velocity, 

respectively. f3, y, D and E are parameters. The return maps of F are presented 1n 

Figs. 4.2. Throughout this article, we take parameters f3 = 0.6, D = 0.1, E = 0.1. If 

y = 1 , the free motion map expresses constant acceleration and deceleration toward v 'nc. ; 

Once the velocity becomes close to vrre ., on the other hand, the map describes periodic 

oscillation of the velocity. Velocity fluctuations made by human drivers, however, are not 

periodic in reality. For more realistic generation of the fluctuations, we take y = 1.001 . 

Then the fluctuation becomes chaotic, while the acceleration and deceleration are still 

kept approximately constant. This chaotic fluctuation is caused by the overshoot 1n 

velocity control; Considering the nature of human responses and mechanical ones as 

well, the overshoot is indeed one of the natural origins of the velocity fluctuations. But 

note that we do not insist that it is really the most important origin . We introduce it 

here just for expressing the fluctuations in some sense naturally. From the viewpoint of 

fast computation, on the other hand, the chaotic fluctuation used here is better than the 

conventional random numbers generated by pseudo random number generators . 

Using this map, we plot a space-time trajectory and time series of velocity in Figs . 4.3: 

Slight fluctuation originated from chaotic motion of the map F is seen and chaotic fluc­

tuation is clearly observed in the time-series of the velocity. 

Next turn to the interactions between vehicles. Following three is what we consider 

important about the interactions: 

• Free run when the headway distance is large : When the headway distance is 

large enough, the vehicle runs freely according to the map ( 4.3) . 
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Figure 4.2: The return maps of the free motion map f: Parameters are taken to be 

~ = 0.6, 8 = 0.1, € = 0.1 and vpre. = 3. (a) y = 1; The map expresses the constant 

acceleration and deceleration toward vpre . . The velocity oscillates periodically near vpre . . 

(b) y = 1.001; The acceleration and deceleration are still kept constant approximately. 

The velocity fluctuation near vp re. becomes chaotic. 

• Sudden braking when the headway distance is small: When the headway 

distance becomes too small, the vehicles are forced to stop for avoiding a collision. 

• Smooth speed control between these two situations: When the headway 

distance is not sufficiently large for vehicles to run freely, the velocity is kept slower 

than v p re. 

For expressing above essentials, we use the following maps: 

where 

for v{ ~ ~x{ < cxv{ , 

for ~x~ ~ v~ , 
(4.4) 

( 4.5) 

( 4.6) 

ex is a constant parameter larger than 1. We call G(v{, ~x{ ) and B ( ~x{) the deceleration 

map and the braking map, respectively. The deceleration map seems to be a little 
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Figure 4.3: One vehicle motion: (a) Space-time trajectory and (b) time series of velocity. 

An initial velocity and a preferred velocity are taken to be 3.0 . We show the trajectory 

of (a) 9 time steps and (b) 100 time steps after discarding 500 steps . Slight fluctuation 

originated from chaotic motion is seen in (a) and clearly chaotic fluctuation is observed 

in (b). 
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Updated Velocity 

Figure 4.4: Three dimensional representation of the map: Mapi (v{, 6x{) . Horizontal 

two axes represent input current velocity and headway distance and vertical axis shows 

updated velocity. Parameters are taken as ex = 4, {?> = 0.6, y = 1.001, 8 = 0.1 and 

E: = 0.1. Preferred velocity is chosen as 3.0. 

complicated. But after all it expresses that the velocity is proportional to the headway 

distance. 

Gathering everything up, we define the velocity updating map, Mapi ( vL L1x{), as 

follows: 

l 
F (v~· v~:Jre ) for exv~ < L1x ~ 

lll l- ll 

Map1 (v~ , L1xt ) = G(v{, L1x{) for v{ ::; L1x~ < exv{ 

B(L1xU for L1x{ ::; v{ 

(4 .7) 

Three-dimensional form of Mapi(vL L1x{) is presented in Fig. 4.4. 

One step of the simulation consists of the following procedures: First the headway is 

measured for all the vehicles. Next they move simultaneously according to the map ( 4.2). 

Finally values of the velocity are updated using the velocity updating map ( 4. 7) . 

In the present study, parameters are taken as ex = 4, {?> = 0.6, y = 1.001, 8 = 0.1 and 

E: = 0.1. The distance is measured in unit of the length of the vehicle; If we take it to 

be 5 meters and the time step to be 1 second, then the velocity 3 corresponds to 15 m/ s 

or 54 km/ h or 87 mph. The preferred velocities are randomly assigned to the vehicles 

within the range [2.0, 4.0] using uniform random numbers . Simulations are performed for 

a single-lane closed circuit with the number of vehicles fixed ; No overtaking is allowed 

then . Initially, the vehicles are put in the circuit randomly. 
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Figure 4.5: Fundamental diagram: The length of the system is 1000. Averages over 1000 

steps are taken after discarding 5000 steps for relaxation. The averages are taken further 

over 10 independent samples. 

4.2.3 Basic Results 

First, we show some basic results of simulations . The fundamental diagram, that is, the 

relation between traffic current q and concentration p is shown in Fig. 4.5. q and p are 

measured over the whole system and averaged over time. There is a critical concentration 

Pc where the current takes its maximum value. This concentration separates two phases: 

The free flow phase and the congested flow phase. At concentration lower than Pc, the 

current is proportional to p . The above characters of the fundamental diagram is similar 

to those obtained by the NS model and the OV model, although more or less different 

in detail; For example, the curve is slightly upward convex in the free flow phase of the 

OV model. 

In Figs. 4.6, 4.7, and 4.8 the space-time trajectories are presented. Figure 4.6 is for 

the free flow phase. We can see a single cluster, a platoon, of vehicles. The formation of 

the platoon is a consequence of the distribution of the preferred velocity, because all the 

vehicles are forced to follow the slowest one. In addition, weak density waves propagating 

downstream are found in the trajectory; They appear and disappear from t ime to time. 
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Figure 4.6: Space-time trajectories in the free flow phase: p = 0.1 . 
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Figure 4. 7: Space-time trajectory in the congested flow phase: p = 0.3. A number of 

jams are observed, which propagate upstream with the definite velocity - -1/ 2. 
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Figure 4.8: Space-time trajectories near the critical concentration: p = 0. 193. They are 

for different samples. One jam section is seen in all the samples with different group 

velocities. The group velocity of the jam is (a) ~ 0, (b) ~ - 0. 1, and (c) exactly - 1/ 2, 

respectively. 
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Similar density wave is indeed observed in the real traffic flow [50]. Figure. 4. 7 is for high 

concentration. A number of clear traffic jams are recognized; The jam sections propagate 

upstream with definite group velocity, which is exactly -1 / 2. All the vehicles are forced 

to stop inside the jams. The last three trajectories are taken from the simulations of the 

same concentration near Pc, but with different initial conditions. One jam section is seen 

each in the trajectories. But the group velocities of the jam sections are different from 

each other: in Fig. 4.8 (a) it is close to zero, (b) it is negative but not - 1/ 2, and (c) it is 

exactly - 1/ 2. In the cases of (a) and (b), the vehicles are still moving even in the jam 

section. In the case of (c), on the other hand, vehicles stop in the jam section. Thus 

the nature of the jam in (c) is the same as ones appear in high concentration (Fig. 4. 7). 

So the group velocity of traffic jams can take several different values near the critical 

concentration depending on the initial conditions. We made additional simulations for 

investigating stability of the jam, and found that the jams with the group velocity other 

than - 1/ 2 are metastable in a sense that they are converted into the jams with group 

velocity - 1/ 2 if small perturbations are applied. But such transformation does not occur 

spontaneously in the present model. These metastable jams are observed only near the 

critical concentration. 

In Figs. 4.9, we show the typical car-following behavior, which is a trajectory of a 

test vehicle with a preferred velocity 3.0 in the actual traffic stream represented in a 

headway-velocity plane. Fig . 4.9(a) corresponds to a low concentration case p = 0.1, (b) 

is near the critical concentration p = 0.2, (c) is in high concentration p = 0.3, and (d) 

is their superposition. All the car-following trajectories except for the right branch in 

Fig. 4.9(b) make counterclockwise bounded loops. 

The loops in Fig. 4.9(a) correspond to the movement of the vehicle in the platoon 

where the vehicle travels using the deceleration map and the braking rnap. The left 

boundary in the same figure is determined by the braking map and the upper one is 

decided by the feature of the deceleration map. Figure 4.9(b), on the other hand, is 

near the critical concentration. The trajectory seems to be decomposed into three parts: 

First is the dense loops same as one at low concentration. Second is triangular loops 

containing the first loops inside. Its lower right boundary is determined by the properties 

of acceleration of the deceleration map. The last one is the bunch seen in the right of the 

triangular loops . It corresponds to the free motion of the test vehicle near the preferred 
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velocity. Fluctuation of velocity near the preferred velocity is seen . Figure 4. 9( c) is in 

a higher concentration than (b) . In this case, the upper boundary is not clearly seen , 

because the vehicle cannot accelerate near the preferred velocity. In contrast with the 

two trajectories in lower concentration, the loops touch the origin . This result shows 

that the jam regions where the vehicles stop inside exist in this concentration. 
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Figure 4.9: Car-following behavior of a test vehicle. An actual trajectory of the test 

vehicle with a preferred velocity 3.0 in the actual traffic stream is presented in the 

headway-velocity plane. (a) p = 0.1: in low concentration, (b) p = 0.2: near the critical 

concentration, (c) p = 0.3: in high concentration, and (d) these superposition . System 

length and relaxation time are taken to be 500 and 500, respectively. We plot the response 

for 4000 time. 
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4.3 Power-Law Density Fluctuations 

As was mentioned in the introduction, power-law density fluctuations are observed in the 

traffic flow [63]. In order to understand the mechanism of such power-law fluctuations, 

Takayasu and Takayasu made a computer simulation using a simple CA model [99]. Nagel 

and Rasmussen [72] and Nagel and Paczuski [71] studied several power-law phenomena 

using the NS model in connection with the edge of chaos. The present author also 

reported the power-law density fluctuations found in the simulation of CTM model, 

which we discuss below. 

In order to study the density fluctuations, we record the time series of the density 

measured at a local section in the closed circuit. Power spectral density (PSD) of the 

time series is calculated by the Fourier transformation. The PSD for the free flow phase 

is shown in Fig. 4.10(a). Clear power-law behavior, in which the PSD i:s proportional 

to 1 / f cx ( f is frequency), is seen with ex. ~ 1.8. The PSD in the congested flow phase is 

presented in Fig. 4.10(b). In contrast with the case of the free flow phase, no power-law 

behavior is seen; rather, the spectrum seems to be white. From detailed investigation 

of the PSD [107], we found that the power-law behavior appears only at concentration 

lower than the transition; In other words, long-time correlations of traffk flow persist 

only in the free flow phase and they are destroyed by the emergence of the traffic jam. 

To study the origin of the power-law fluctuations, we make a histogram of the headway 

distance, which is shown in Fig. 4.12. We can see that the distribution of the headway 

distance also obeys power law in some range with the power "' -3. The power-law 

distribution of the headway distance is considered to be related to the weak density 

waves in Fig. 4.6. As we have seen, the density waves appear, grow up and disappear 

from time to time; Such fluctuations remind us of the avalanches of the sand-pile model 

in the self-organized critical state [1, 2]. The above two power laws, one in space and the 

other in time, are related to each other1 ; We just observe the same phenornena from two 

different sides . Thus, the power law in both space and time appear at the same time . 

1 In a steady system, we can prove that existence of space-like power law means existence of time-like 

one and vice versa: M. Takayasu, private communication. In the present case, even though the power - 1.8 

indicates that the system is not steady in the meaning of existence of correlation functions, the system is 

steady because of the bounded power-law regime . Thus the argument in steady system could be applied 

to the present case . 
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Figure 4.10: Power spectral densities of temporal density fluctuations: The log-log plots 

are shown. Measurements are made in a local section of the length 20 in the system of 

total length L = 100000. We recorded the time series for 65536 steps after discarding 

400000 steps. (a) p = 0.19, in the free flow phase. Averages of 30 samples are shown. 

The slope of the straight line is - 1.8. (b) p = 0.2, in the congested flow phase. The 

other conditions are same as in (a) . The result for a single sample is shown. 
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(a) Just below transition 
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Figure 4.11: Power spectral densities of temporal density fluctuations: The log-log plots 

are shown. Measurements are made in a local section of the length 20 in the system of 

total length l = 200000. We recorded the time series for 32768 steps after discarding 

800000 steps. (a) p = 0.197575, which is just below the transition. No sample average 

is taken. (b) p = 0.197576, which is just above the transition. The other conditions are 

same as in (a). 
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Figure 4.12: Log-log plot of the histogram of the headway distance. The lengths of 

the system and concentration are taken to be l = 100000 and p = 0.19, respectively. 

Histogram is made for 100 steps after discarding 500000 steps. The slope of the straight 

line is - 3. 
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The weak density waves appear in a platoon of the vehicles when there are a sufficient 

number of vehicles in the free flow phase. So we may say that the cluster flow in the 

free flow phase is always near the self-organized critical state; The nature of the self­

organization is determined not by the concentration but by the number of the vehicles 

in a platoon. As a consequence, the power-law fluctuations are also found in an open 

boundary case [97]. 

4.4 Shape of Fundamental Diagram 

A shape of the fundamental diagram, especially that near the critical concentration, has 

been long in controversy in the field of traffic engineering, because the observed data 

scatter very much. Hall et al. classified feasible shapes into four types [28): 

• Reversed A: The current takes two values in a finite range of concentration [50]. 

• Gap: The current has a discontinuity (gap) at the critical concentration. For 

explaining the traffic data, this type of discontinuous functions are sometimes pre­

ferred [9, 21]. 

• Smooth: The current is continuous and continuously differentiable function of the 

concentration; No clear phase transition is excepted in this case. 

• Inverted V: The current is continuous, but not continuously differentiable function 

at the critical concentration. 

Among these possibilities, they concluded that the inverted V shape is suitable for rep­

resenting the fundamental diagram. Their argument is based on the catastrophe theory 

[27, 74) and an intuitive view that the traffic current is a one-valued function of the 

concentration. But it is still not clear whether their conclusion is justified .. 

Although we obtained the fundamental diagram already in the previous section 4.2.3, 

Fig. 4.5, it is not appropriate for discussing the shape in detail, because the measurement 

conditions are quite different from real measurements: Data are usually taken at some 

local segment of an open (that is, not a circular) road for making fundamental diagrams 

in reality, while the concentration and the current of the whole circuit have been plotted 

in Fig. 4.5. In other words, the real traffic flow is neither in a closed circuit nor under the 
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condition of the fixed concentration, in contrast with the simulations made in previous 

sections. Thus we need to get more realistic fundamental diagram using the computer 

simulations. To this end, we mimic the observation made in the real traffic flow as 

follows: Simulations are made for the circuit with the overall concentration fixed as 

before. Measurements of the density and the current are made at some local segment in 

the circuit. That is, only a small portion of the circuit is used for measurements. As a 

consequence, the measured value of the density is not fixed any more. Simulations are 

made for several different values of the overall concentration independently. For making 

the fundamental diagram, the data taken in all the simulations are superposed. 

Three individual measurements in characteristic concentration are shown in Fig. 4.13 : 

Raw data of 5000 measurements are shown: We took the system size to be l = 1 0000 

and the length of the local section to be 20. Each dot represents a single measurement. 

Three figures are taken for (a) p = 0.10: in the free flow phase, (b) p - 0.193: just 

above the critical concentration, (c) p = 0.40: deeply inside the congested flow phase . 

In Fig. 4.13(a), a bunch of dots spreads from the lower left to the upper right. In 

Fig. 4.13( c), on the other hand, majority of the dots spreads from the upper left to the 

lower right. In contrast to these two cases, each of which has basically one branch of 

flow-concentration relation, the locally measured fundamental diagram near the critical 

concentration has two distinct branches (see Fig. 4.13(b)), which has characters of the 

congested flow phase and the free flow phase, respectively. It is clearly a consequence of 

the coexistence of the platoon and the jam section. 

The fundamental diagram obtained by superposing the individual results is shown in 

Figs. 4.14 and 4.15. Raw data are plotted in the diagram (Fig. 4.14), as is frequently 

done in traffic literatures. The histogram of the same data are also shown in Fig. 4.15 . 

In this figure, the number of data is represented by the brightness of the cell; Bright cell 

corresponds to one with large number of data. The number distribution clearly shows 

a shape of the reversed A, in contrast with Fig. 4.5 . Two branches are seen in a finite 

range of the density near the critical point. Therefore, the local current is bistable there . 

The free flow phase mainly contributes to the upper branch and the congested flow phase 

mainly to the lower branch. But from the simulations near the critical concentration, data 

in both branches are taken. This fundamental diagram made from local measurements 

resembles nicely with real ones. If we naively average the current for each local density, 
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Figure 4.13: Individual results of locally measured fundamental diagrams: The system 

size and the length of the local section are taken to be l = 10000 and 20, respectively. 

Each figure is different in the total concentration: (a) p = 0. 1 00, (b) p = 0. 19 3, and (c) 

p = 0.500. We calculate the local value of current and concentration for 5000 steps after 

discarding 50000 steps and we plot raw data on the figures . 
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we certainly will get the diagram with the inverted V shape. But the averages are not 

taken usually for presenting fundamental diagrams. Thus we conclude that the reversed 

A shape is the appropriate form. 
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Figure 4.14: The fundamental diagram made by the local measurements: Data taken 

from nine independent simulations for p = 0.1 ,0 .2,0 .3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 are 

superposed. The length of the system is l = 1 0000 and the measurements are made at 

a local segment of the length 20 . We measure the local values of the current and density 

for 5000 steps after discarding 50000 steps. The raw data without taking averages are 

plotted. 

Above results tell us that the shape of fundamental diagrams depends strongly on how 

the measurements and the analysis are made; If we measure the current in a large scale in 

space and for very long time, and average the data, then the inverted V shape will result . 

If, on the other hand, we measure it in a small scale in space and for short time and do 

not average the data, we will get the reversed A shape. The latter is the case in usual 

situations. In many cases of data analysis of real traffic flows, only scattered diagrams 

are presented when the fundamental diagrams are shown. If the number distributions 

(histogram) as Fig. 4.15 are made instead of scattered diagrams, we will see the reversed 

A feature more clearly. One implication of the present analysis is that the intuitive 
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Figure 4.15: Histogram of the fundamental diagram made by the local measurements : 

Histogram of Fig. 4.14 is shown. Number of data in each cell is expressed by the bright-

ness . 

view where the traffic current is a one-valued function of the concentration is to be 

reconsidered. The present results also cast a doubt on the argument frequently made 

that any good model for one-dimensional traffic flow should have a metastability near 

the jamming transition in the infinite-size limit. Since the real fundamental diagrams 

reflect only local properties of the traffic flow, the reversed A shape, if seen, does not 

serve as an evidence for the metastability. We indeed obtained the fundamental diagram 

which shows clear bistability by the computer simulations. But this bistability by no 

means imply metastability in the infinite system. 

The observed bistability of the current is simply interpreted. When the jam sections 

pass the region where the measurement is made, then the observed current falls into the 

lower branch. Otherwise, the current corresponding to the upper branch is observed. We 

expect the same scenario for real open traffic flows. So there will be some parameter other 

than the density which can distinguish these two branches. To specify such parameter 

for one-dimensional open traffic flow is, however, still an open problem. 
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4.5 Entropy of Traffic Flow 

For representing states of traffic flows, quantities such as the current, the concentration, 

the average velocity are used. Here we introduce a new quantity for representing the 

states: the "entropy" 2 of the traffic flow. The entropy gives more detailed information 

of the traffic flow than the current or the concentration. 

Before introducing the entropy, we need to define the phase space of a s.ingle vehicle. 

In the present model, it is spanned by the headway distance ~x and the velocity v. 

We take (~x~ v~+ 1) as the state of the i-th vehicle at time t. An alternative choice tl t 

(~xL v{) also is possible and these two choices give essentially the same results . Using a 

distribution function p ( ~x, v) per vehicle per step in the phase space, we can calculate 

the entropy I as follows: 

I =- § dL1x dv p(L1x, v) In p(L1x, v) . (4.8) 

The concentration dependence of the entropy for several system sizes are shown in 

Fig. 4.16. The entropy has a pronounced maximum at the critical concentration Pc· 

For concentration much lower than Pc, it decreases as increasing concentration. It turns 

to increase rapidly near Pc and has a peak. Beyond the peak, it decreases again monoton­

ically and finally becomes zero at p = 1. Clear size dependence is observed for p < Pc; 

As the system size becomes larger, the entropy becomes smaller. For p > Pc, on the 

other hand, no apparent size dependence is seen. Such difference in the size dependence 

is understood as follows . In the free flow phase, as we already know, the vehicles form 

a platoon and all the vehicles except for the leading one are forced to run with almost 

identical velocity and headway distance . In other word, the vehicles run in a highly 

ordered manner. At concentration just above Pc, on the other hand, vehicles behave 

quite differently because a single jam section is formed . When running into the jam, the 

vehicles are forced to reduce their velocity; As is seen in the trajectories in Figs. 4.8, 

they run with the same velocity and headway distance in the jam section. After escaping 

from the jam, the vehicles separate into a number of small platoons. It is clear that each 

platoon is headed by the vehicle having the smallest preferred velocity within it. This 

situation resembles to very early stages of the relaxation toward the stationary state 

2 Correctly speaking, the "entropy" introduced here should be called the informational entropy. Thus 

some concepts like H theorem for physical entropy do not hold . 
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in the free flow phase, where small clusters adjust their mutual distances so that they 

eventually form a single large platoon. In the present case, however, they do not have 

time enough to form a single platoon, because vehicles encounter the jam again before 

they travel around the circuit. Therefore, apart from the jam section, a number of small 

platoons having different velocities coexist. That is to say, the vehicles runs in less or­

dered manner just above Pc than in the free flow phase, and thus the entropy increases 

rapidly near Pc· For concentration much higher than Pc, a number of jams are formed 

and the intervals between the jams become shorter in average. As a result, durations 

of the vehicles encountering the adjacent jams become smaller. In such situation, not 

many platoons are formed in the intervals, because it takes some time for the vehicles to 

separate into small platoons. In other words, vehicles redress the order, but in a differ­

ent manner, in the congested flow phase. The system size dependence of the entropy is 

understood by a similar argument. While the number of vehicles directly contribute to 

the entropy in p < Pc, the entropy relates to the density of jam sections in p > Pc· 
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The entropy is, in general, a measure of disorder. But the traffic flow near the 

critical concentration is by no means randomly disordered; Rather, it is organized in a 

complicated manner. Large entropy here indicates the coexistence of several platoons of 

different group velocity. We may say that the traffic flow is maximally complex near 

the critical concentration. Measuring the entropy for real traffic flows will be difficult 

task. But we expect it behaves similarly to the one observed in the simulations. 

4.6 Summary 

In this chapter, we have presented the concepts of the coupled-map modeling of one­

dimensional traffic flow in general and have described the coupled tanh--map (CTM) 

model proposed by the author. The coupled-map modeling is highly flexible, so that 

we can implement CM models easily to several interesting traffic situations. We have 

followed a bottom-up approach; Thus the choice of the essentials of traffic rnotions men­

tioned in Sec. 4.2 .2 are crucial. The CTM model presented in this chapter is a totally 

deterministic microscopic model except for the initial conditions . We can also choose 

some alternative forms of the maps which also represent the above essentials. Another 

realization is presented in Ref. [97]. 

Numerical simulations of CTM model reproduced several phenomena observed in 

real traffic flows nicely, such as occurrence of the jamming transition and the basic prop­

erties of the fundamental diagram. In addition, we have found the power-law density 

fluctuations caused by the power-law headway distance distribution. By :making local 

measurements of the current, which mimics the real observations, we successfully repro­

duce a realistic fundamental diagram. Observed bistability in the fundamental diagram 

is attributed to the consequence of the local measurements, and thus it is also expected 

to appear in observations of real traffic flows. Finally, we have introduced the entropy 

of the traffic flow. It exhibits a maximum at the critical concentration; we 1nay say that 

the traffic flow becomes maximally complex there. 

Before closing this chapter, we would like to stress again that the coupled-map type 

modeling, that is, the modeling scheme treating time as discrete and space as continuous, 

is a promising approach for modeling the traffic flow realistically, because of its high 

flexibility. Further investigations in this direction are expected. 
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Chapter 5 

Introduction to Dynamics of Ratchet 

Systems 

5.1 Introduction 

A device consisting of an asymmetric wheel and a pawl, in which the wheel is allowed to 

rotate only in one direction, is called a "ratchet". Unidirectional character ( "rectifica­

tion") of ratchets is utilized widely in industrial tools, such as a ratchet driver. Consider 

a ratchet fabricated in a microscopic scale. In case that the ratchet is so small that the 

effect of thermal fluctuations cannot be ignored, the rectification effect will be smeared 

by the thermal noise, and a motion in the opposite direction which is forbidden in the 

macroscopic ratchets will take place with certain probability. Feynman examined such 

situations in his famous lecture [19), connecting them with the second law of thermody­

namics. He also discussed if such microscopic ratchets work as thermodynamic engines 

to produce work from purely thermal noises. Ratchets which are small enough to be 

regarded in the Brownian regime under influence of the thermal noise are called thermal 

ratchets in general. Feynman's original ratchet as well as other types of thermal ratchets 

has attracted much attention recently [59, 60]. 

In theoretical studies of thermal ratchets, a simplified model is frequently used in 

which a Brownian particle moving in an asymmetric periodic potential is considered 

instead of the asymmetric wheel and the pawl. Dynamics of such Brownian particles 

can be treated by the Langevin equation. In such simplified thermal ratchets, what is 

in question is whether a unidirectional Brownian current appears . This type of thermal 
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ratchets has also been realized experimentally and evidence of the rectification has been 

observed under certain conditions [17, 58]. 

For the appearance of a steady current, both the spatial reflection symmetry and the 

time reversal symmetry need to be lost, unless they break spontaneously, according to 

Qurie's principle [11]. Let us start from discussing a more or less trivial siltuation. If 

the spatial reflection symmetry is globally broken by, for instance, a thermal gradient, 

an electric field, a gravitational field and so on, the current will appear. The breaking 

of time reversal symmetry is also needed, however, to maintain the steady currents . For 

example, for a particle under gravitational force to drop down in a constant terminal 

velocity, the frictional force is required. On the other hand, if the spatial reflection 

symmetry is broken only locally, while it recovers in large scale, appearance of steady 

current becomes nontrivial phenomenon. An example is the ratchet with a periodic 

asymmetric zero-mean potential; There the potential is asymmetric only in a unit cell . 

The ratchet systems can be classified into several categories according to the scale in 

which they are fabricated and the temperature of surrounding environment: 

• Inertia Ratchets: In the macroscopic world, inertia of particles can not be ig­

nored. In such situation, the ratchet system is called "inertia ratchet"' [39]. The 

inertia ratchet can be used in industrial application such as granular transportation, 

or size selection [3]. 

• Thermal Ratchets: In the Brownian regime, particles are subject to thermal 

noise and the inertia can be ignored in the dynamics because of large viscosity. In 

this situation, the ratchet system is called the thermal ratchet. Detailed features 

will be mentioned later. 

• Quantum Ratchets: If the particles are very small and temperature is very low, 

quantum mechanical effects should also be taken into account. Then the ratchet 

system is called "quantum ratchet". The concept of the "quantum ratchet" was 

proposed by the present author and the co-workers [65, 70], and independently 

by Reimann et al [56]. This second part of the thesis is devoted to describe the 

properties of the quantum ratchets . 

Among them, the thermal ratchets have been studied extensively [1-5 10 12-14 16 
' l ' ' 

17, 32,35- 39,42,43,45- 47,50,54, 55, 59, 71, 72]. In the thermal ratchet, the tirne reversal 
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symmetry is broken by a coupling with a thermal heat bath. A steady current of the 

particle, however, cannot be produced as long as a single heat bath is considered, even 

though both the spatial reflection symmetry and time inversion symmetry are broken. 

In that case, the steady state of the system is the thermal equilibrium state and the 

velocity distribution of the particles is Maxwellian. Thus the current in both direction 

should be cancelled. In order for the net unidirectional current to appear, an additional 

mechanism that breaks the thermal equilibrium is required. A possible example for the 

additional mechanism is a non-thermal stochastic process . In this case, non-thermal 

noise (accompanied by the thermal one) will generate the currents. Thus the thermal 

ratchet systems of this type are regarded as an example of noise-induced transportation 

phenomena. Unbiased time-dependent deterministic external force is also a candidate of 

the additional mechanism. Many other mechanisms have also been introduced so far . In 

the next section, we briefly review some examples of thermal ratchets. 

In the context of biology, the ratchet systems has been discussed in connection with 

biological motors such as myosin moving on actin filament, or kinesin on microtubule . 

In 1990, Vale and Oosawa discussed the possibility of the ratchet mechanism of muscle 

contraction for the first time based on the Feynman ratchet [66]. Essence of their idea is 

that the anisotropic periodic structure of the filaments on which motor proteins move is 

regarded as an asymmetric wheel of the ratchet and the motor protein is considered as 

the pawl. In this model, a chemical energy of ATP hydrolysis is used for producing the 

temperature difference between the filaments and the motor proteins. In 1993, Magnasco 

proposed the thermal ratchet model of the Brownian particle as was described above as 

a more sophisticated model for muscle contraction [46]. In his model, a fluctuating force 

due to a chemical reaction of ATP hydrolysis is taken as the additional mechanism. 

Another type of the thermal ratchet has also been proposed as the mechanism of the 

muscle contraction [4]. Temporally fluctuating asymmetric periodic potential which 

models the conformational change of proteins caused by the energy of ATP hydrolysis was 

considered in this case . Experimental evidences, however, imply that a simple thermal 

ratchet model is not suitable for the model of muscle contraction [64]. Accordingly, 

more complicated models have also been proposed [5]. Similar conclusion is drawn also 

from the theoretical study of the energetics of thermal ratchets. Quite recently, Sekimoto 

proposed a general method to treat energetics of Langevin dynamics and calculated the 
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energetics of the thermal ratchet as well as the Feynman ratchet for the first time [60]. 

In contrast with the known fact that the efficiency of biological motors is very high, he 

found that these ratchets show quite low efficiency. Thus more studies are required for 

determining whether the mechanism of the motor proteins is really explained by some 

extension of the ratchet mechanism or we should consider a totally different :mechanism. 

--
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5.2 Classical Ratchets 

In this section, we briefly review known properties of classical ratchets, especially of 

the thermal ratchets. In the thermal ratchets, particles are subject to a thermal noise 

and the inertia is ignored. Then their dynamics is described by over-damped Langevin 

equation [22]: 

dx(t ) au(x) 
YJt =- ax + E,( t ) + F(t ) , (5 .1) 

where y is a friction constant, U is a potential and E, ( t ) is a thermal noise satisfying the 

following relations: 

(E, (t)) = 0, (E, (t )E,(t' )) = 2yk8 T6 (t - t') . (5 .2) 

The latter represents the fluctuation-dissipation theorem. k8 and T are Boltzmann con­

stant and temperature of a heat bath, respectively. If the external force F(t ) = 0, the 

system will reach thermal equilibrium state eventually and then the distribution function 

of particles becomes simply a Boltzmann distribution: 

P ( x) <X exp (- ~ U ( x) ) , (5 .3) 

where 1/ ~ = k8 T is the inverse temperature. Clearly, net directional motion of particles 

does not appear in this case. 

In order to generate net drift motion, a finite external force is required : F(t ) # 0. 

Typical choices of the unbiased external forces are as follows (We are interested only 

in the unbiased case, since generation of a current under a biased force is more or less 

trivial): 

Fluctuating Force: For example F(t ) is chosen as a unbiased sinusoidal force like 

asin(wt). This type of forcing was introduced by Magnasco [46]. 

Fluctuating Potential [17]: In this case potential height fluctuates temporally. In a 

case of so called "flushing potential", that is, the potential is turned on and of periodically 

with a period f - 1 , F(t ) is taken to be (au; ax )8 (tmod f - 1 - 1/ 2f) where 8 (t) is Heaviside 

step function. 

Stochastic Processes: There are following two types of choices: 

• Correlated Noise: In this case F(t ) is chosen as a colored noise, in which the au­

tocorrelation of the force is not instantaneous, but has a characteristic correlation I 

' 
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time. An additional white noise, which corresponds to the thermal noise of differ­

ent temperature from T, may also seem to generate the unidirectional Brownian 

motion. But as long as F(t ) is uncorrelated and unbiased, satisfying (F(t)) = 0 and 

(F(l )F(t' )) = cxb (t - t' ) , the Langevin equation is equivalent to another Langevin 

equation without the external force at the temperature T2 = T + cx/ Lyk8 . Then 

the system only approaches the thermal equilibrium at T2 . Accordingly
1
, a stochas­

tic process should be non-white for the present purpose. As a special case of the 

colored noise, dichotomous noise can be used, in which noise takes only two values 

which alternate according to a stochastic process. Dichotomous noise is sometimes 

preferred because it is easy to treat [10, 14, 43, 55]. 

• Multi-state Jumping: Brownian particles are forced to jump between different 

potential landscapes by a stochastic noise [3, 4, 9, 54, 72]. We call this type of ratchet 

"multi-state thermal ratchet". In this case the above Langevin equation is slightly 

modified into simultaneous stochastic differential equations: 

dx(t ) 
Yidl = 

oUdx) r . ( ) 
OX + '-.l t l (5.4) 

where Yi are friction constants, Ui are potentials and E..dt) are ther:mal noises 

satisfying the following relations: 

(5.5) 

Here, index i. refers to the landscape of potential. The dynamics of the transi­

tion between the states is determined by the stochastic process. The dichotomous 

stochastic process is used when only two different landscapes are considered, 

Let us discuss the rectification mechanism of these ratchets. Current is generated in 

the fluctuating force ratchet essentially due to difference of potential gradient in both 

directions. Consider a piecewise linear asymmetric periodic potential (see Fig. 5.1): 

c 
pl (x mod l ) for 0 < xmod l :::; pl, we call region A, 

U(x) - (5.6) 
c 

(l _ p )l (xmod l - l ) for pl < xmod l :::; l, we call region B, 

where lis the length of unit cell, c gives the maximal potential height and p determines 

the asymmetry of the potential. We assume p > 1/ 2 without loss of generality. When a 
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sinusoidally oscillating force F ( t ) = a sin wt is applied, the forces acting at two regions 

FA and F8 become as follows : 

FA (t ) = -~ + asinwl , 
pl 

F8 ( t ) = ( c ) + a sin wt 
1 - p l 

(5.7) 

(5 .8) 

If we choose a = E + c/ pl with small enough positive constant E, forces vary temporally 

in the following ranges: 

2c 
-- - E < fA(t )< E pl - - , 

( 2p - 1 ) c - € < FB ( t ) < c + € 
p(l -p )l - - p(l - p )L 

(5 .9) 

(5 .10) 

We can choose the value of E so that F8 (t ) is always positive and FA( L) is varying 

around zero (see Fig. 5.1). Then current flows to positive direction in Fig. 5.1, in other 

word, the Brownian particle climbs up the less steeper side of the asymmetric potential. 

According to the nature of the mechanism, the net flow is expected to appear at low but 

finite frequency. The current vanishes at the zero frequency. We cannot expect the net 

current also in high frequency regime. Other types of fluctuating force have also been 

proposed. But the mechanism for the appearance of the current is essentially the same, 

that is, the difference of the potential gradient in two directions. 

Generation mechanism of the current in colored-noise driven ratchets is also similar 

to that of the fluctuating force thermal ratchet . Comparing the force due to the potential 

and the amplitude of noise integrated over the correlation time of noise, we can easily 

confirm that the particle climbs up the less steeper side of the potential. 

Situation is different in the fluctuating potential ratchets. For simplicity, we consider 

the case of the flushing potential. Intuitively the Brownian particle is expected to behave 

as follows : When the asymmetric periodic potential is ccon", the particles tend to relax 

to thermal equilibrium state under the existence of the potential, that is, particles tend 

to localize near the bottoms of the potential. When the potential is turned off suddenly, 

the particle starts to diffuse by the thermal noise . If sufficiently long time is allowed 

for relaxation, the system reaches thermal equilibrium without the potential, in which 

particle distribution is spatially homogeneous. Then the centers of these two equilibrium 

distributions in the unit cell are different. This difference induces the directional mo­

tion of particles (see Fig. 5.2) . The mechanisms of other fluctuating potential thermal 
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Figure 5.1: Schematic potential shape of a fluctuating force thermal ratchet: (a) asym­

metric periodic potential, (b) (c) sinusoidally oscillating force is applied; (b) corresponds 

to the largest positive gradient. (c) corresponds to the smallest negative gradient. 

ratchets are essentially the same. Frequency dependence of the current is quite different 

from that of fluctuating force thermal ratchets. In low frequency limit, the Brownian 

particles always achieve thermal equilibrium in which no directional motion appears. 

Consequently, the net current par unit time becomes smaller as decreasing frequency. In 

high frequency limit, on the other hand, Brownian particles do not have tirne enough 

for relaxation. Thus the form of the distribution becomes steady. Therefore the current 

does not appear also in high frequency. Only in an intermediate frequency, particles 

can diffuse sufficiently to generate the currents. The plot of currents against the period 

has extrema near the characteristic time of diffusion in the unit cell. Thus the direction 

of the net current is opposite in the fluctuating force ratchet and fluctuating potential 

ratchet, even if the potential form is same. 

Current generating mechanism of multi-state thermal ratchet is also similar to that of 

the fluctuating potential thermal ratchets; Consider the case of two different potential: 

one is the fiat potential and another the asymmetric periodic potential. Schematic picture 

is shown in Fig. 5.3. In this case, the centers of the equilibrium distribution in upper and 
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Figure 5.2: Schematic picture of fluctuating potential. Difference of centers of mass 

causes the directional motion of particles . 
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Figure 5.3: Schematic picture of multi-state thermal ratchets. Figure shows a two-state 

model. Brownian particles jump between upper and lower states by a stochastic process 

represented as r + and r- . 

lower potential landscapes are different. The directional motion of Brownian particles is 

induced by this difference. Its direction is negative in the case of Fig. 5.3. Comparing 

the transition rate of stochastic jump between two potentials with the frequency in the 

fluctuating potential ratchet, we expect that the current does not appear neither in the 

case of high transition rate nor the case of low transition rate . Thus the current appears 

only in an intermediate transition rates. 

Many other types of ratchets that are not classified into above categories have also 

been proposed. An entropic ratchet is one example [52, 63]. This system is realized by 

the gel electrophoresis of polymers. The polymers are confined in quasi-one-dimensional 

channel whose inner wall has an asymmetric periodic shape. When symmetric electric 

pulses are applied to the polymers, they exhibit directional motions under certain con­

ditions. In addition to ordinal ratchet effects, a directional migration is enhanced due to 

entropic effects, since confined polymers in the narrow asymmetric channel feel effective 

force by the spatial asymmetry of conformational entropy. 

Another example is the cooperative ratchet [13, 37], in which collision of the Brown­

ian particles is introduced, which induces cooperative motion of the Brownian particles . 

. 
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Remarkable result is that the direction of rectified motion of particle changes as in­

creasing the particle density. The average velocity of particles depends sensitively on 

the particle size. As a biological model, more realistic interaction has been introduced 

[36, 37]. Brownian particles in this model represent the myosin heads. In order to take 

into account the fact that the myosin molecules are attached to each other with their 

tails, each Brownian particle is connected to the backbone that represents the myosin 

filament by a spring. Since the spacing of the myosin heads is different from that of the 

actin monomers, the period of asymmetric periodic potential and spacing of Brownian 

particles are incommensurate in general. The model is the multi-state thermal ratchet in 

which the Brownian particles are connected with each other. It shows dynamical phase 

transition under certain conditions; As increasing the jumping rate between different po­

tentials, the nonzero average current appears . Moreover spontaneous directional motion 

appears even when both the potential shape and external forcing are symmetric. 

There also are other ratchet-like systems in which, in the contrast with ratchet sys­

tems, the periodic potential is spatially homogeneous but time-dependent external pro­

cess has temporal inhomogeneity, that is, the mean value of the external process has 

no bias but its higher correlation is inhomogeneous. Typical example of such external 

process is a chaotic noise generated by the tent map [33]. It has zero average but its 

dynamical correlation due to the existence of an unstable fixed point is inhomogeneous. 

As a result, Brownian particles subject to this chaotic noise exhibit directional diffusion 

even though periodic spatial potential is symmetric. Dichotomous noise can also realize 

the above situations [10, 14]. 

1'1 
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5.3 Semi-classical Treatment of Quantum Ratchets 

If the ratchet is fabricated in smaller scale than the Brownian regime and subject to lower 

temperature environment, the quantum mechanical effects will become appreciable. The 

ratchets in this regime are called quantum ratchet [26, 56, 57, 65, 70]. Concept of quantum 

ratchets were proposed quite recently by the author and the co-workers [65, 70] and 

independently Reimann et al [56] . In the quantum ratchets, quantum tunneling will 

give appreciable contribution to the current at low temperature. Thus if the system is 

cooled from high temperature to low temperature, quantum-classical crossover will be 

observed. In addition, since the quantum tunneling is accompanied by energy dissipation 

in ratchet systems, the quantum ratchet system gives rise to important issues regarding 

quantum nonequilibrium steady dynamics caused by interplay of thermal heat bath 

and external driving. Moreover the quantum ratchets, if fabricated in near future, will 

be used in new quantum electric devices or quantum energy transducers for industrial 

purpose. From theoretical point of view, we would be able to explore a new paradigm of 

quantum thermodynamics such as a quantum engine [24]. Here semi-classical treatment 

of quantum ratchets is briefly described. A fully quantum treatment will be given in 

detail in the following chapters. 

There are several treatments of dissipative quantum dynamics: Path integral methods 

[7, 15, 18, 27, 30, 31, 68, 69], projection methods [6, 41, 48, 61], quantum Langevin dynam­

ics [22, 23, 51] and so on. In semi-classical regime, the path integral treatment is widely 

used. Reimann et al. [56] have studied tunneling current for the quantum ratchet 

system based on the Caldeira-Leggett model of the heat bath [7, 44]. They started with 

the following Hamiltonian: 

p2 N ( 2 1 ( ) 2) 
Hlo l a l = 2M + V(Q) + L., ~ + - m a w 2 X - Ca Q 

a = 
1 

2ma 2 a a maw~ ' 
(5.11) 

where {P, Q} are canonical variables of the ratchet system and M is a particle mass. V( Q) 

is the asymmetric periodic potential chosen as a combined sinusoidal potential as 

{ 
. 2nQ 4nQ} V(Q ) = V0 s1n - l -- 0.22 sin - l - , (5 .12) 

where l is a period of the potential. {p a, xa} are canonical variables of the harmonic 

oscillator with a frequency W a and a mass m a. Ca is a coupling constant between 

-
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the ratchet system and the heat bath represented by a set of the harmonic oscillators. 

Assuming the Ohmic dissipation, they obtained the effective action of the ratchet system: 

s ;u[Q] = r d-r ( ~ Q( -r ]2 + V( Q( -r)) ) + 4: r d-r L d-r' ( Q( ;~ = ;,i;'))2 

' (5 .13) 

where h, (3, 11 are Planck constant, an inverse temperature of the heat bath, and a viscosity 

coefficient, respectively, (see Appendix A). 

They calculated the currents based on the above effective action and the additional 

external force. The external force is taken as dichotomous periodic symmetric fluctuating 

force, whose amplitude is F, with sufficiently large period so that the system can always 

adiabatically adjust to the instantaneous thermal equilibrium state. Then the potential 

varies periodically as 

V(Q ) +FQ ~ V(Q )- FQ. (5.14) 

As a result, the effects of quantum tunneling enhance the directional currents below a 

classical-quantum crossover temperature and the finite net currents remain in the zero 

temperature limit. In addition, they reported the direction of currents changes at low 

temperature. 

The above results correspond to dichotomous fluctuating thermal ratchet . Next con-

sider the quantum ratchet system under oscillating force, which has been discussed by 

Tatara et al [65]. An asymmetric periodic potential is simply chosen as a saw-tooth 

shape with spatial period a. In the unit cell it is written as 

U(x) = ex( a - x) (O :S x < a). (5.15) 

A parameter ex determines the slope of the potential. External forcing is taken as a 

sinusoidally fluctuating force with an amplitude Eo and the frequency w ; Then the total 

potential is 

V(x , t ) = U(x) + £ 0xcos wt . ( 5.16) 

The Lagrangian of the ratchet system without an interaction with the heat bath is 

expressed as 

£
5
=- - - U(x)+Eox coswt . m (dx) 

2 dt 
(5 .17) 

--

r, 
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Consider the tunneling probability from X = 0 to X = a and it is denoted by rR. For 

weak external forcing, the WKB approximation gives 

r ( S~rr) R --- w0 exp - h , (5.18) 

where w 0 is a frequency of the zero-point oscillation around x = 0. S~rr is the action along 

a motion of particle from x = 0 to x = a and it can be separated as a non-dissipative 

part S~ and a dissipative part S ~. The non-dissipative action is expressed as 

4 1 
5~ = 3CX'Ioa - 4€'loa WJ (w COSh W - sinh w) (5.19) 

with the classical bouncing solution for the Euclidean equation of motion according to a 

time-dependent WKB approximation [20, 34]. In the above expression we use a half of 

bouncing time 'To without oscillating field under the Euclidean equation of motion, that 

is, 'To = Jlffiucx, and definitions w = W'lo and £ = £0 cos wt0 , in which t 0 is real time of 

entering a particle into the potential barrier. The dissipative action is 

' qa2 [4 - . -S R = - 16 ~ w 2 3 ( 4 - 5 In 2) w s1nh w 

+ ( dx rl d-y x; + 1}: {cosh WX + X+ 1} -
2 COSh w(l - x) }] 

Jo Jo x - -y x + -y . (5.20) 

Similarly we calculate the tunneling probability from x = a to x = 0,, which is 

expressed by rl as 

(5.21) 

and 

4 1 I I 2 
S~r r = -3CX'Ioa - 41 l'loa_3(sinhw - w ) - 16~ T]a2 [2(1 - ln2)(coshw - 1) 

w cxw 

J
l Jl x2 + 112 { x + 11 _ 2 J 

+ dx d-y 2 2 cosh w(l - x ) + cosh wx} 
o o x - -y x + -y . (5.22) 

Each tunneling probability is obtained by considering only the tunneling of a single 

potential barrier. If the dissipation of energy and decoherence at the potential bottoms 

are sufficiently fast, the dynamics can be described by a collection of independent single 

tunneling. In such situation the currents per unit cell is determined by the difference 
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of single tunneling probability in both directions. This condition restricts the viscosity 

constant TJ. Two tunneling probabilities allow us to calculate the current as 

where 

and 

1 
I(w) _ 3 (w cosh w - 2 sinh w + w ) 

w 

(5.23) 

(5 .24) 

1 [ sinh w cosh w - 1] K ( w) := 3 (51 - 64 ln 2) w + ( 31 - 36ln 2) w
2 

2 Jl Jl (x2 + -y 2)(x + -y - 1) 
- - dx d-y --:---------=---

w2 0 0 (X - lJ )( X + 1} ) 2 

x (cosh wx - cosh w-y + cosh w( 1 - x ) - cosh w( 1 - -y )) . (5 .25) 

This expression shows that the current is actually generated by the oscillating force, since 

J is proportional to 1£1. In addition, because two functions K(w ) and I( w ) are positive 

and monotonically increasing functions of w, the dissipation enhances the current . 

Experimentally such quantum ratchet systems can be realized in the quantum me­

chanical devices. For example, superconducting quantum interference devices (SQUID) 

are one of candidates. Zapata et al. [71] have demonstrated that SQUID that contains 

three Josephson junctions can realize the asymmetric periodic potential. In this case, 

the phase of the wave function feels the asymmetric periodic potential and exhibits di­

rectional motion, although they have only considered thermal noises . Another candidate 

is a device fabricated by semiconductor super lattices [8]. Capasso et al . have experi­

mentally shown that the pulse currents appear in the semiconductor superlattice with 

asymmetric periodic potential structure by a laser pulse excitation. If the laser pumping 

is periodically applied, the steady currents will be generated. Its rectification mecha­

nism is also owing to the classical thermal relaxation. Experiments of the ratchet in the 

quantum regime have not been achieved so far. 
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I 

I 

II 

Chapter 6 

N Ulllerical Treatiilent of Quantum 

Driven Dissipative Systeiils 

In this chapter we develop numerical treatment of a quantum driven dissipative systems 

extending the projection method. In the first section we derive a fundamental equation 

governing dynamics of the density matrix. In the next section, for a periodic driving, 

steady periodic state is calculated. The last section is devoted to description of a con­

crete model of a heat bath and calculation of coefficients appearing in the fundamental 

equation, for convenience of numerical calculation. 

6.1 Projection Method 

6.1.1 Quantum Driven Dissipative Liouville Equation 

There are many ways to deal with a time-dependent quantum system interacting with a 

heat bath; For example, the path integral method using the semiclassical expansions are 

widely used [7, 15, 18, 27, 30, 31, 44, 69]. For deep quantum regime, projection method is 

sometimes used [6, 23, 41, 48, 61]. In this section we develop the projection method for 

the system with time-dependent external field, intending to apply to quantum ratchet 

systems. 

Let us derive a fundamental equation governing quantum dynamics of a system. 

Assume that a total time-dependent system Hamiltonian H ( t ) is decomposed into three 

parts: an subsystem (influenced by the time-dependent field) H sys (t ) whose dynamics is 
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of our main interest, a heat bath H8 , and an interaction between them Hint· The total 

system is isolated. Temporal evolution of a density operator cr( t) of the total system is 

given by the following quantum Liouville equation: 

a~~t ) =- ~[H ( t), cr(t )] (6.1) 

DenotethreeLiouvilleoperatorsasiLsys (t) = -(i / Tt)[Hsys (t) 1 ], iLint = - (i/ Tt)[Hint, ], 

and i£8 = -( i/Tt)[H 8 1 L and define a Liouville operator of the total system as i£ ( t) = 
i(Lsys (t ) + L int+ £ 8 ). Then Equation (6.1) can be rewritten as follows: 

acr(t ) . . -----a:l = tL (t) cr(t) = l(Lsys (t ) +Lint+ Ls)cr(t) (6.2) 

We define the density operator of the subsystem p(t ) as: 

p(t) = Tr8 [cr(t)], 

where Tr8 means the trace operation carried out with respect to the Hilbert space of H 8 . 

Assuming that the heat bath is in the thermal equilibrium with inverse temperature (3, 

we can write the density operator of the heat bath p8 as 

where Z8 is the partition function of the heat bath, that is, Z8 = Tr8 exp( - (3 H8 ). 

Let us define the projection operators P and Q as follows: 

Pf = Trs [f] ® Ps, 

Q - 1 - P, 

where f is an arbitrary operator acting on the total Hilbert space. P decon1poses an 

action of the operator on the total Hilbert space into two actions on the each Hilbert 

space: Trs [fj is an operator acting on the Hilbert space of the subsystem and p8 is 

acting on the Hilbert space of the heat bath. The density operator of the subsystem is 

expressed as 

Pcr (L) = p(t ) ® PB· 
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When the heat bath is in the thermal equilibrium state, these projection operators satisfy 

the following relations: 

p 2 = P, 

PQ = O, 

P + Q = l, 

PLs = 0, 

QLsys (t) = Lsys (t) Q, 

Q2 = Q, 

QP =0, 

P L sys ( t ) = Lsys ( t) P , 

LsP = 0 1 

QLs = Ls. (6 .3) 

Here, for simplicity, Lint is restricted to satisfy the condition P Lint P = 0 which means 

that Trs [HinLPBJ = 0 · 

Applying these projection operators to Eq. (6.2) gives two equations: 

and 

aPcr(t) = Pi£ (t) Pcr(t) +Pi£ (t) Qcr(t}, 
at 

aQcr(t) = QiL (t ) Pcr(t) + QiL (t) Qcr(t ). 
at 

A general solution of the second equation is 

Qo-( t) = T exp {[ Qi.L ( t') dt'} Qo-( t o l 

+ [ T exp { L Qi.L ( t' ) dt'} Qi.L ( 't) Po-( -r) d-r , 

where to is an initial time and T indicates that a time-ordered product is taken . If the 

initial condition is selected as cr(t0 ) = p(t0 ) ® Ps, the first term of the solution is zero. 

Substituting the solution to the first equation, we get 

aPcr(t) = Pi£ (t) Pcr(t ) +Pi£ (t) J t /exp {Jt Qi£ (t' ) dt'} Qi£ (rr) Pcr(rr) drr. 
at lo T 

Expanding the action of P by using the relations (6.3), 

ap(t ) . 
-- = lLsys (t) p(t ) 

at 

+ Tra ( i.LinL [ d-rT exp {L ( i.L,y, ( t' ) + i.La + i.QL;ntl dt'} Qi.L;ntP( -r)pa) (6.4) 

is obtained. Hereafter we call the second term of r.h.s of Eq. (6.4) as a dissipation term 

(DT). 
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In order to consider weak coupling case of the interaction, we parametrize -u::int to 

i E£ int by introducing a small parameter E. Then 

We set t 0 = 0 and assume that Hint = Lj H{ ®E) , where H~ acts on the Hilbert space of 

the system and E,i acts on the Hilbert space of the heat bath. Let us define the following 

time-ordered product operators: 

'r(t, 'f) = T exp { - ~ f H,y, (t') dt'}, 

'ft (t, 'f) = 'f exp { ~ f H,,, (t') dt'}, 

where T (resp. Tf) indicates increasing time ordering from the right to the left (resp. 

from the left to the right). Heisenberg representation of E,i is defined as 

~;(l) = exp (~Hat)~; exp (<Hat). (6.5) 

We define the notation 

(6.6) 

for arbitrary operator A. Using these definitions, we can approximate DT as 

(DT} ---- €: Trs (r.L. Hit,i, rt drr[.L_ Hft ,'f E,1(- (t - rr}},p(rrrt ,TPsll), 
h i Jo l 

up to order £
2

. Variable transformation rr --1 t - s gives 

After carrying out the trace-operation, we get 

jl 
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where <D i1(s) is the correlation function of the operator l)(s) and l,1(0}: 

<Djt(S) - Trs (pse il~,B s t,ie - il~e s t,l) 

- ( t,i ( s) t,L ( 0) ) 

= ( t,i ( 0) E, l ( - s ) ) 

Now the equation, we call a dissipative Liouville equation, becomes 

which is exact up to order £ 2 . 
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The dissipation term is written in convolution form, which makes the equation diffi­

cult to handle. Let us consider an approximation scheme without convolution. Since we 

have assumed the parameter € to be small, the characteristic time of the temporal change 

of p(t) caused by the heat bath is very long. Moreover, if the heat bath is sufficiently 

large, the function <Di 1 ( s) vanishes quickly as increasing time. In such situation only the 

integrand near s --- 0 contributes to the integral. In addition, assuming that the external 

field is slowly varying, we can justify the following approximation: 

1. T(t,t - s}p(t - s)Tf(t,t - s} ---1 p(t) 

2. T exp {- ~ r' H,, , (t') dt'} --) exp { - ~ H,y, (t) s} 

3. 'f exp { ~ r' H,,, (t') dt'} --l exp { ~ H,y, (t) s} 

4. J>s --) r ds 
Therefore we can approximate DT as 

., 

l 
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Using the property of t he correlation functions <D j1(s ) = <D 1i( - s ), which is proven by 

Hermitian property of E,i ( s) , E,1 ( s) and Ps , we get 

[DT) =- ~: r ds I; ( [H\, [ exp { < H,y, [ t) s } Hl exp { ~ H,y, [t) s} , p(t)]] Re <Dil( s] 
J, 

+ [H\, [ exp { - ~ H,y, ( t) s } Hl exp { ~ H,y, ( t] s}, p(tJl+]ilm <Dr; (s ]) 

Now we introduce the following new operators JC (t )j 1, 1i (t )i1: 

IC (t ];r = r ds exp { - ~ H,", (t ) s} Hl exp { ~ H,y, (t ] s} Re <D;r (s), 

1-i (t );r = r ds exp { - ~ H,y, (t ) s} Hl exp { ~ H,y, (t ) s} Im <D;r(s ). 

Finally the equation of motion of the density operator p(t ) of the subsystem becomes 

ap (t ) 1. £2 ( . . . ') ----a1 = - h[Hsys (t ), p(t )] - h 2 L [H~, [JC (t )j t, p(t)]] + t[HL [H (t )j t , p(t )]+] , (6.8) 
jl 

for the weak coupling case. This expression is valid when the following condition is 

satisfied: 

1 
Tbath << T s-y s l e m << - , 

£ 

where T tJat h , T systcm are the characteristic times of the heat bath and the systern, respec­

tively. The above approximations including weak coupling expansion are not appropriate 

in the case where long-time correlation in the heat bath exists. If we are interested in 

short time dynamics corresponding to the scale of the correlation time of the heat bath, 

we should use time-convolution-less (TCL) equations for describing dynamics [61, 67] 

instead of Eq. (6.8) . In the present study, however, we do not discuss such case. 

When the interaction Hamiltonian is factorized as H1flt = H 1 E, , the dissipation term 

becomes simple . Taking the indices j , l as 1 and omitting them, we get 

a p(L) 1. £2( . ) ----a1 = - h[Hsy s (t ) , p(t )] - h 2 [Hr , [JC (t ), p(t)]] + t[HI , [7-l (t ), p(t )]+] , (6.9) 

where two kernels are defined as follows: 

/C (t ) = t ds exp { - ~ H,y, (t ) s} H1 exp { ~ H,y, (t ) s} Re <j> [s ) , 

1-i ( l ) = L ds exp { - ~ H,y, (t ) s } Hr exp { ~ H,y, (t ) s} Im <j> (s ) 
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6.1.2 Physical Interpretation 

Time-independent Case 

Here we discuss the physical meanings of the dissipative Liouville equation. Let us 

consider first the time-independent case . We write the dissipation term (DT ) in a matrix 

representation with the matrix elements using eigenstates {In) } of the system Hamiltonian 

and corresponding eigenvalues {En}; 

where 

M~ip q =: (n iHi ll ) (p i H~ I q ) = M~~nt , 

1 
Wpq = h (Ep - Eq) = - Wqp ) 

Pqm = (qjp(t )im ) 

Two coefficients are defined as follows: 

r+ _ 1 " M j,l Joo d <D ( ) - iW ntS 
kmnl = 2 L kmnl s jL s e 

h ' l 0 ) , 

1 " · 1 { 1 - . Joo dw - ( ) 1 } = n_2 L M~mfll 2<Dil( - w nd - lP -oo 2n <D jL w W + Wnt 
J • L 

1 · L Joo · r- =- " MJ, ds<D ·(-s )e- 1.W kmS 
kmnl - n_2 L_ nlkm LJ 

j,l 0 

1 " · 1 { 1 - . Joo dw - ( ) 1 } 
= 2 L M~lkm -2<Dti( w km) + tP 2n <D ti w w - w ' 

h . -oo km 
J ,l 

where <Dil ( w ) is the Fourier transformation of the correlation function <D id t ) (see, Sec. 6.3.1 ). 

These definitions allow us to express DT as 

(n i(DT)Im ) = - £
2 

.[_ {Pqmr:ppq - Pqpr:mnq - Prqr;mn.p - Pn.clc~Jpm} 
p,q 

2 " { r + r - - 6 " r+ - 6 " r } = £ L_ Ppq qmnp + qmnp qm L_ n.rrp pn L_ qrrm 
p,q r r 
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Defining a dissipative superoperator by matrix elements as 

Rnmpq = r:mnp + r~mnp- bqm L r:rrp- bpn L r;.rm ' 

we can write DT as 

(n i(DT)Im) = €
2 

..[_ RnmpqPpq 
p,q 

r 

Now the dissipative Liouville equation is expressed by the matrix elements as 

Consider the equation of motion for the diagonal elements of p ( t) Substituting m = n 

gives 

We decompose the right-hand side into two parts; one expresses the temporal change 

caused by the diagonal elements of p(t), so-called a diagonal-to-diagonal part, and 

another is the remaining a off-diagonal-to-diagonal part, and obtain 

The first term is the diagonal-to-diagonal part and the second term is the off-diagonal­

to-diagonal part. Here we have introduced coefficients, which can be interpreted as a 

transition probability from the state p to the state n, as follows: 

( 6.11) 
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It is rewritten further as 

where if> it( w) is the Fourier transformation of the correlation function <Dit ( t ) (see Sec. 6.3.1) . 

Substituting the explicit form of the Fourier transformation into the above expression, 

we get 

Wnv = 2
n Joo J"" dEdE'g (E)g(E') e;~E 8(E'- E- li.wpn) 

h, -oo -oo B 

(6.12) 

..[_ (p, E I H~ ® t:,iln, E')(n, E'IH} ® t:,L ip, E) 
j ,l 

2nJ00 Joo e - ()E 2 
=- dEdE'g(E)g (E ') - 5(E' - E - hwvn) l(n, E'IHintiP, E)l 

h -oo -oo ZB 

Integrand is understood as the transition probability from the initial state IP, E) (states 

of the heat bath {IE)} are in thermal equilibrium) to the final state In , E ') by Fermi's 

golden rule. Thus the coefficient Wnv represents the process that the system is excited 

by the boson in the heat bath or the system emits the boson which is absorbed into the 

heat bath (see Fig. 6.1). 

Since <D il(t ) is the thermal correlation function, the Kubo-Martin-Schwinger (KMS) 

relation [40, 49], <Di1( w ) = ehwf3(f>li ( - w ), should be satisfied. It provides 
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System Bath System Bath 

Figure 6.1: Schematic diagram of the process Wnp. 

Thus the KMS relation ensures that the system relaxes to the thermal equilibrium and 

supports the detailed balance. As a result, the diagonal-to-diagonal term is interpreted 

as the classical Master equation. 

The off-diagonal-to-diagonal term of Eq. (6.10): 

E
2 L {r~Htp + r~mp - L (r;rpDqn + r;rrpDpn)} Ppq (t) 

p ,q r 
p?'= q 

manages the phase relaxation. It forces an initial pure state to be a mixed state and, 

finally, to be a classical state. 

Let us consider the equation of motion for the off-diagonal elements Pnm( t) ( n =/=- m) 
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where 

and they satisfy 

- - r+ r-Ynm = - mmnn. - m1nnn , 

* Ynm = Ymn , 

We express Rnmnm another way: 

Yn.m = L r:rrn + r~rrm 
r 

- -* Yn.m = Ymn · 

R _ (n,m) ·A nmnm - - y - lDWnm , 

where y ln,ml and ~Wnm are real parameters defined as: 

y ln. ,m) - Rei'nm + Reyn.m , ~Wnm := lm Ynm + lm Ynm 
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The last part of Eq. (6.13) contains the transition from the diagonal elements to the 

off-diagonal elements and from the off-diagonal elements to the off-diagonal elements. 

Thus this part also contributes to the phase relaxation. 

Consider the second term; Here we calculate two coefficients, Ynm and Ynnv The 

former is decomposed as 

The equation is y nm := L_ {r,:trrn + r~rrm} 

p,q 

= - i.WrunPnm(l ) + E
2RnmnmPnm(t) + E

2 L RnmpqPpq(t) 
p,q 

p=_;fn q=.;fm 

(6.13) 

First term in the last expression expresses the purely quantum dynamics. The second 

term represents the relaxation effects and the corrections of purely quantum dynamics, 

because it is proportional to the off-diagonal elements Pnm and Rnmnm is a complex 

coefficient . This coefficient is written as 

Rnmnm = - Ynm - Ynm , 

r 

= ~ L. {Wrn. + Wrm} - i (~En - ~Em ) , 
r 

where Wrn. is the transition probability defined by Eq. (6.12) and ~En is defined by 

1 L. L . l Joo dw - ( } 1 ~En := 2 M~rrnp -2 <D j l W + 
h -oo 7T W Wrn j,l r 

) 
2 oo - i3E oo T E' H· n E 

J 
e J (E ' )dE' ~ I( , I ntL I , I 

= p - oo g(E }dE--z;- - oo g ~ E' - E + hw rn. 

which is interpreted as the energy shift of the eigenstate with label n caused by the 

second-order perturbation of the interaction Hamiltonian HinL· For the coefficient Ynm, 
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on the other hand, we obtain 

Defining W,~~ = (2n/ h ) f~oo dEg (Ef( e- f3 E/Zs)\m, EIHint lm, E)(n, EIHint ln, E), we get 

1 
Y (n,ml = - ' {W + W } - wad 2 L_ rn rm nm , 

r 

Then the complex coefficient Rnmnm is 

R _ (n ,m) ·A n.mnm - - y - lDWnm 

1 
= -l L {Wrn. + Wrm} + W~! - i (flEm - flEn ) 

r 

Therefore the relaxation effects caused by the second term is represented by the transition 

probabilities Wrn. and the real coefficients W~!. The corrections to the purely quantum 

dynamics is described by the energy shift calculated by the second-order perturbation. 

In the special case that Hin.L = H1 t, and H1 = H5115 , the equation of motion becomes 

very simple: 

OPnn< _ . ( 1 2 En + Em roo ) 2 2 ( roo ) 
~ - - lWn.m + € h Im Jo dscD (s) Pnm - € wnm Re Jo ds<D (s) Pnm 

The first term represents the purely quantum dynamics including a correction term of 

energy shift. The second term expresses the phase relaxation. In this case, however, 

the thermal equilibrium is not ensured, since energy does not dissipate, even though the 

entropy is generated. 

6.1. PROJECTION METHOD 143 

Time-dependent case 

When the system Hamiltonian depends on time explicitly, the above discussion should 

slightly be modified. There are two cases of the dependence on time of the eigensystem 

in the present situation; one is that only the eigenvalues depend on time and another 

is that both the eigenvalues and the eigenstates depends on time . In the first case, the 

eigenstates {In)} and eigenvalues {E11 (t )} satisfy the following eigenvalue equation: 

Hsys (t) In ) = En.(t)ln) , 

where In) does not depend on time. For instance, two-level systems with time-varying 

energy level, and harmonic oscillators having time-dependent frequency correspond to 

this case. Then the dissipative Liouville equation expressed by the matrix elements, 

a Pn m ( t ) . ( ) 2 L ( ) --- = - lWnmPnm t + € Rnmpq Ppq t , at p,q 

does not change. Only the frequency Wnm becomes dependent on time . Thus all W,1111 

in the equation must be replaced by W 11m(t ). 

In the second case, the fundamental equation is a little complicated. Consider the 

eigenvalues {En ( t) } and the eigenstates {In)} satisfying 

Hsys (t) In) = En(t) ln) 

The eigenstates depend on time implicitly. Let the basis {I ~)} (indicated by Greek letter) 

be independent of time. Using these bases we can write the dissipative Liouville equation 

as 

O(~~ ~~t )l-v) = ~ (~ln)(n l { - ~[H,", (t), p(t)) 

- €: L ( [H\, [IC ( t lit. p( t)]] + i.[H \, [H ( t lit• p( t ll+l ) } lm) ( m l-v) 
h jl 

= L (~In) ( - lWnmPnm(t) + £
2 L RnmpqPpq(t)) (mi'Y) 

n,m p,q 

= - i L Wnm( ~ ln)(m i'Y )(n i :\)(K i m)p,_K(t) 
n,m,A,K 

p,q,n,m,!.,K 



. 

---
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In the final expression all the frequencies W nm depend on time t. Besides them, the 

coefficients ( 11-ln ) , (mi'Y), .. . depend on time . In the next chapter numerical calculation 

will be done based on the above equation. 

6.2 Steady Periodic States in Quantum Driven Dissi­

pative Systems 

In this section we consider a steady state of the systems whose temporal evolution is 

described by the time-dependent dissipative Liouville equation. In Sec. 6.1 we have 

already obtained the equation of motion for the density operator p(t ) as follows: 

This is a linear equation for the matrix elements of the density operator. Thus we can 

rewrite the equation as follows: 

a~~t ) = M(t)p(t), (6.15) 

where p( l ) E CN
2 

(N is a dimension of Hamiltonian) is vector representation of the 

density matrix and M(t ) E CN
2

®N
2 

is matrix representation of the dissipative Liouville 

superoperator. In general M (t ) is a complex asymmetric matrix. Formal solution of 

Eq. (6 .15) can be obtained as follows: 

p ( t) = V ( t, to) p (to ) , (6.16) 

where V ( l, t 0 ) is a time-evolution operator: 

V ( t, t o) = T exp It M ( t 1
) d t 1

• 

t o 
(6.17) 

If the Hamiltonian of the system is independent of time and the matrix M is symmetric, 

the steady state is given by the linear combination of the eigenstates corresponding to 

largest eigenvalue 0 of the matrix M . But in the present case M is asymmetric and the 

naive diagonalization fails to give steady states. 

What we are interested in is the "steady state" of the time-dependent systerns, espe­

cially periodically driven systems . When an external forcing is periodic with period T, 
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M ( t ) = M ( t + T ). Then we expect that the dynamics of the system also becomes even­

tually periodic with the same period and periodically steady p (t ) = p (t + T ) by analogy 

to classical forced damping oscillators . Let us introduce the time-evolution operator V 

for one period: 

V = V (t o, t o + T) 

= T exp L M (t' )dt' 

(6 .18) 

(6 .19) 

The steady periodic state Ps ( t ) then should be in right invariant subspace of V corre­

sponding to the largest weight 1, that is, Ps = Vps . 

Let us construct the steady periodic state: Consider Schur decomposition of V, 

VU = UT , (6.20) 

N z®N z E c N z®N z . 1 where matrix U E C is a unitary matrix and T 1s a comp ex upper 

triangular matrix whose diagonal elements are the eigenvalues of V . If U = [ul , . . . , uN z] 

is a column partitioning of the unitary matrix U and 

(6.21) 

then the 1.4 are referred to as Schur vectors corresponding to the eigenvalues Ai · When 

the steady periodic state exists, the matrix T can be written in the following form: 

(
IM A) 

T = 0 T (l l , 

where M represents multiplicity of the largest eigenvalues, IM is a M x M identity matrix, 

A is aM x (N 2 - M ) complex matrix and T(1l is a (N2 - M ) x (N2 - M ) complex upper­

triangular matrix corresponding to the rest subspace with smaller eigenvalues. In this 

representation indexes of Schur vectors from 1 to M correspond to the subspace of the 

largest eigenvalues. The multiplicity M reflects the symmetry of the system. 

Since Schur vectors {1.4} are orthogonal and can be normalized, an initial state vector 

p( 0 ) can be decomposed as follows: 

N 2 

p(O) = L Uil4 (6.22) 
i = l 

' 
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Consider a following matrix Z: 

(6.23) 

where IM and IN2 M are M x M and (N 2 - M ) x (N 2 - M ) identity matrices, respectively. 

X is a M x (N 2
- M ) complex matrix determined later. Then the inverse matrix of z is 

z - 1 = (IM X ) . 
0 IN 2-M 

(6.24) 

The matrix T can be decomposed into a block diagonal form using z, z - 1: 

z - 1Tz = (IM - X + A + XT(lJ ) = (IM 0 ) 
0 T (1l 0 T (1l ' 

(6.25) 

if the matrix X satisfies the following matrix equation: 

- X + A + XTr1l = 0 
' (6 .26) 

which is a kind of Sylvester equation. A Sylvester equation can be solved by a standard 

way [25), so that the matrix X is easily obtained. 

Using 'D = urut, the solution X of Eq. (6 .26), and T = Z[IM E9 T(1l] z - 1 , we obtain 

'D = UZ [IM E9 T{ll] z - 1ut 

Defining a matrix Q as Q = UZ, we get 

thus 

( 6.27) 

(6.28) 

(6.29) 

Since the absolute values of the diagonal elements of the upper-triangular matrix T(1 l 

are smaller than 1, (T(1 1 )n vanishes for n ----i oo. Thus in the long time limit 

Ps = ,{ir;n v np(O) = Jim Q [IM E9 (T(l))n] Q- 1 p(O) 

- Q[IM Ell O]Q 1 p(O) = UZ c~ ~) z-1 ut (~ a,Uc ] 

= u c~ ~) r::~Jr~ a ,Uc ) = u c~ ~) ( a~J 
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Writing a row partitioning of the matrix X is X = t(t X1, t)(2 , . .. , tXM) and defining a 

vector aN L_M as aN L_ M = t( a M+1, a M + 2 , . . . , aN 2), we obtain 

a, + X1 · aN 2- M 

a 2 + x2 . UN L M 

M 

Ps= U aM + XM-UN L M = ..[_ (a i+ Xi- a N2 M)u j 

0 j = 1 

0 

(6 .30) 

If the matrix M is symmetric, the matrix 'D also is symmetric, and the solution of 

Sylvester equation (6.26) is zero. In that case the steady state becomes well-known form 

L~1 ai~ where {~}~ 1 span an invariant subspace corresponding to the largest weight 1. 

But, in the asymmetric case, the steady state depends on all the coefficients appearing in 

the decomposition by Schur vectors through the solution of the Sylvester equation (6.26). 

6.3 Thermal Correlation Function, Model of Heat Bath, 

and Dissipation Kernels 

6.3.1 Thermal Correlation Function and Model of Heat Bath 

In this section we consider general features of the thermal correlation function and a 

model of heat bath which are convenient for numerical computation. In addition, as­

suming the factorized interaction Hamiltonian, we will calculate explicit form of the 

thermal correlation function. First general features of a Fourier transformation of the 

thermal correlation function are briefly reviewed. Consider the Fourier transformation 

of the correlation function <D iL ( t ) given as follows: 

<D ·d t ) = Joo dw e i.wt <f> J·d w ) 
1 2n - ()() 

( 6.31) 
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Substituting the explicit form of the thermal correlation function , we obtain 

iii;t ( w ) = [ ,., dte'wl Trs{Ps [ i ( t ) [ 1( 0)} 

= r dte' w' [,, g (E) d E [ ,., g(E ' )dE' (EIPs iE)(Eit,i( t )IE')(EW(O)IE) 

= L= dtelwl r= g(E)d E r= g(E ' )dE' e;:E e ·:;· e '{ ' (Eit,i IE' ) (E'Il.' IE) 

= r= g(E )dE r= g(E ' )dE'e;:E 2nM(E + ftw - E' )(EIE.iiE')(E' Il.' IE) , 

where IE) and g(E) are the energy eigenstates and the density of states, respectively. 

Introducing the function h,i, t.d E, E' ) = Tr8 {cS (E - H8 )E,i cS(E' - H8 )E,L}, we can rewrite 

the above equation as 

J
oo J oo J oo - {3 E , - i.wl I e i ( L L ) t • I 

eDit( w ) = dte dE dE --e h Jt,i,t, l (E, E ) 
- oo - oo - oo Zs 

J
oo J oo e- 13 E 

= - oo dE -oo dE' z;-2nhcS (E + hw - E')j t,i ,t,t (E, E' ) 

By exchanging E and E' in the final expression of above equation, we obtain the Kubo­

Martin-Schwinger (KMS) relation: 

(6.32) 

Since c:D jt( t ) = <Dti( - t ), ci> il( w ) should also satisfy the following relation: 

(6.33) 

For j = l, explicit calculation of a trace operation gives 

jt.i,t_ i (E, E' ) = g(E)g(E' )/(E' /E,i/E)/2 (6 .34) 

Using this, we can further rewrite ci> ii ( w ) as 

cD ij( w } = J oo g(E) dE J g(E ' )dE ' e f3E 2nhcS (E + hw - E' )/(E' /E,i /E)/2 

- Zs 

= J g (E ) dE e;:F 2nftg (E + ftw )I(E + ftw l[ i IE) 12 

Integrand is interpreted as the t ransition probability from the initial state with energy 

E to the final state with energy E' = E + hw except for multiplicative factors, in terms 
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of Fermi's golden rule . Therefore the Fourier transformation of the correlation funct ion 

c:D ii ( t ) is proportional to the transition probability from the initial thermal equilibrium 

state to the thermal equilibrium state absorbing (or emit t ing) the boson with energy 

hw . 

Next let us fix a model of heat bath and an interaction between the subsystem and the 

heat bath. We assume that the heat bath is represented by a set of harmonic oscillators : 

Hs = ~ ftw~ (a~ a~ + ~) . 

For simplicity we consider the case where the interaction Hamiltonian is able to be 

factorized, Hint = HrE. . We suppose that the part acting on the Hilbert space of the heat 

bath of the interaction Hamiltonian is taken to be 

This form satisfies the requirement of P LintP = 0 or Trs [H int Ps] = 0 . When the heat 

bath is large enough, modes ex is continuously distributed . Thus we replace the sum­

mation for the modes by the integration with respect to the frequency. Here we assume 

the functional form of the spectral density of the heat bath as J( w) = TJ W exp ( - ,\w), 

in which ,\ is inverse cut-off frequency of the heat bath. TJ is a coefficient which has 

dimension of [timeF . 1 Then the heat bath Hamiltonian becomes 

Hs = r dw](w )ftw ( a 1(w )a (w ) + D ' 
and E, becomes 

1 In the special case where H tn.L is p rop ort ional to the coordinate operator, it is relat ed with a viscosity 

coefficient. 
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Then the thermal correlation function <1> ( t ) is calculated as follows: 

<D (T) = 1 ~ TrB {e- f3 Hs eiTH s/ h(a +at )e- iTH s/ h (a , +at )} 
Tr (e- f3 Hu) L ex ex ex ex' . 

8 ex,ex ' 

( 
hw cx (3 . ) cosh 

2 
- tWexT 

- L --------'---------;----~~ 
- . h (hw ex (3) ex Sin 

2 

oo cosh (-h-~_1> - iw-r) 
= J dwJ(w ) ( ) o . h hw(3 sin --

2 

where J( w) = TJW exp( - Aw) , 

and its Fourier transformation 

h w(3 
e 2 

TJ 7tW e - :.\w - ---=---=-
. h hw(3 sin --

h w[l 
2 

e 2 
TJ7tWe:.\w _ -----::::--:::-

. h hw(3 Sin --

21lT] 

h(3 

2 

{ 
hw(3 } _ exp -

2
-- Alw l 

- TJ7tW . hw(3 
smh -

2
-

w > 0 

w < 0 

w = 0 

Integrating the above, we get the real part of the thermal correlation function as 
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follows: 

J
oo ( hw(3) Re <l>(T) = 
0 

dwJ(w) coth -
2

- cos WT 

A2 - T2 00 T2 - (A+ h(3n )2 

= 11 (A2 + T2)2- 211; (T2 + (A + h(3n) 2)2 
(6 .35) 

A 2 - T2 1 7t2 2 ( T7t ) 
rv TJ + 11-- T]-- cosech -
,.__, (A2+T2)2 T2 h 2(3 2 h(3 ' 

A 
in the case of low temperature or sufficiently large heat bath, that is, h(3 << 1 

A2 -T2 

~ TJ (A2 + T2 )2 ' 

in zero temperature limit , (6.36) 

and imaginary part: 

Ioo 0 T - 2AT 
Im<l>(T) =- dwJ(w ) sinwT = TJ::\"\A2 2 = 11 2 2 2 

0 v /\ + T (A + T ) 
( 6.37) 

6.3.2 Dissipation Kernels for Factorized Interaction 

Consider dissipation kernels in the simple case of interaction. When the interaction 

Hamiltonian is factorized, only two kernels JC(t ) and 'H (t) are required. They are explic­

itly calculated in this section. First we calculate two coefficients for later convenience: 

I~ ds exp {- iDs} Re <ll ( s) and J~ ds exp { - iQs } Im <ll (s ] 

The former is 

J
oo { 7t :.\I.OI h(3 Q 

0 
ds exp{-i.Qs}Re<l>(s ) = TJ 2oe- coth -

2
-

and the latter is 

- i ~ Av (AIO IJ- iO ~ Av ((A + nftl) I lOl l } 

= , {~De :.\1.01 coth h(3D - i. 
0 A ('A ID I) 

'I 2 2 2 p 

- i Q Joo dxe-1.0 (:.\+hf3 /2lx sech {3xhiDI (p_1_- _1_)} 
2 0 2 1 - x l + x 

I
oo { 1 ID I . n -An } 
0 

ds exp {-iQs}Im <D (s ) = TJ - :\ -TAm ('AID I) + t 2 0e 
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with the explicit form of the thermal correlation functions (6.35) and (6 .37). For compu­

tational convenience, we decompose them into real parts and imaginary parts as follows: 

J
oo 7t h~Q 

Re 
0 

ds exp {- iQs} Re <D (s ) = TJ
2

oe- A/D coth -
2

- , 

J
oo Q oo 

Im ds exp {- iDs } Re <D (s) = - TJ-yAP ( ~ /0/)- T]D L. A p (( ~ + nh~) /0 /) , 
0 n = l 

J
oo T] T] /0 / 

Re 
0 

dsexp {- iQs}Im<D (s) = - ?: - -
2
- Am ( ~ /0 / ) , 

Imf
00 

dsexp {- iQs}Im<D (s) = +TJ~De-A /D I . 
0 2 

The functions Ap ( x ) and Am ( x) ( x > 0 ) are defined as follows: 

Ap (x) = ex Ei ( - x ) + e- xEi (x) , 

Am (x) = ex Ei ( - x)- e- xEi (x) 

Ei ( - x) , Ei (x ), (x > 0) are the exponential integral functions: 

and 

J
- x l 

Ei (- x) = dt~ 
- oo t 

for x > 0 

oo ( - 1 ) nxn 
= y + ln x + ~ , Taylor expansion, 

L n!n 
n = l 

- x oo I 

--- - ~ ~ (-1 ) n n. asymptotic expansion, 
XL xn 

n = O 

- e 
Ei (x ) = P dt -f

- x - t 

for x > 0 
oo t 

oo n 

= y + lnx + " ~ 
Ln!n 
n = l 

Taylor expansion, 

asymptotic expansion, 

(6.38) 

(6.39) 

(6.40) 

( 6.41) 

where Y is Euler constant and P represents the principal value. In the special case, 

Q = 0, we obtain 

I ds<D (s ) = TJ~ - i~ 
o h~ A 

6.3. HEAT BATH AND DISSIPATION KERNELS 

In the actual numerical calculation, the functions 

A p (x) = ex Ei ( - x ) + e- xEi (x ) , 

A m (x ) = ex Ei ( - x ) - e- xEi (x ), 

are calculated using routine C.l. 

Now we can calculate two dissipation kernels, JC (t ) and H (t ): 

IC(t) = r ds exp { - ~ H,y, (t) s} H1 exp { ~ H, y, (t) s} Re <D (s ) , 

1l(t) = r ds exp { - ~ H ,y, (t) s} H1 exp { ~ H, y, (t ) s} Im <D (s ) 

Using the eigenstates {/n)} and the eigenvalues {En ( t )} of Hsys ( t), we obtain 

(ni/C( t)lm) = (niH 1Im) r ds exp( - iwnms J Re <D(s ) 

{ 
7t A/ 1 h~Wnm = (niHI Im)TJ 2Wnme- Wnm coth 

2 

-i W;m Ap (Aiwnm ll - iWnm t, Ap ((A + nhj3 ) lwnml) } 

and 

(nl1l (t) lm) = (niH1 Im ) r ds exp( - iwnms ) Im <D (s ) 

= (niH Ji m )ll { -~ - lw;ml A m (Aiwnml) + iiwnm e- Aiw""' 1
} 

153 

where Wnm = (En(t)- Em(t))/h. In the next chapter we use these two kernels for 

numerical calculation. 
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Chapter 7 

Resonance Current in Quantum 

Ratchet Systems 

In this chapter we describe one possible realization of quantum ratchets. In Sec. 7.1 we 

construct a model based on a tight-binding model. In the next section, before presenting 

numerical results, we demonstrate that the linear response theory is not suitable for 

calculating the current in the present situation. Sec. 7.3 gives Numerical results obtained 

by means of the treatment developed in the previous chapters. In Sees . 7.4 and 7.5 we 

discuss detailed features of the quantum ratchet system. Simpler minimal model, in 

which only the essentials of quantum ratchet are taken into account, is also given in 

Sec. 7.5. The last section 7.6 is devoted to the summary. 

7.1 Model 

The model studied in this chapter is based on the tight-binding model. The Hamiltonian 

is as follows: 

H(t) = Hs~s (t) + EHinL + Hs, 

Hsys (t) = .[_ (ln)(n + 11 + ln )(n- 11) + .[_ VnmodN in)(nl- .[_ fn(t )l n)(nl, 
n n n 

Hint = EHr ®E.,, 

Hs = ~ flw~ ( a~a~ + D , 
155 
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where H(t) is a Hamiltonian of the total system with a dimensionless coupling constant 

E, Hsys ( t) is a tight-binding Hamiltonian including a spatially asymmetric periodic po­

tential v n mod N ' whose period is N. An external oscillating field is represented by F n ( t ). 

We measure energy in unit of the hopping coefficient from now on. The localized state 

at site n is denoted by the ket state In ). Hint is the interaction Hamiltonian which is a 

direct product of two parts, H1 and E.,: 

Hr = .L (ln )(n + 1/ + ln )(n - 1/), (7.1) 
n 

(7.2) 

This interaction expresses that the particle hopping is influenced by the therrrtal fluctu­

ations . Applying the treatment developed in Sec. 6.1, we get an equation of n1otion for 

a density matrix of the ratchet system p( t ) as 

op(t ) i €2 ( ) aL =- 'h[Hsys (t ), p(t )] - 'h2 [Hr, [JC (t ), p(t )]] + i[Hr, [H (t ), p(t )]+] . (7.3) 

Since we are interested in whether or not the net currents appear, we first define 

a current operator. A local current is defined through the conservation of probability; 

Taking the diagonal elements of Eq. (7.3), we obtain 

op (t ) i €2 
(n latln ) =- 'h (n /[Hsys (t ), p(t )]/n ) - 'h2 (n /[H1, W (t )]/n ) 

2 2 
= 'h Im(n + 1lp(t )ln ) - 'h Im(n /p(t )ln - 1) 

2€ 2 2 €2 
- 'h2 Re (n + 1IW (t )/n ) + 'h2 Re (n /W (t )ln - 1) 

where 

W (t ) = [JC (t ), p(t )] + i[H (t ), p(t )]+ . (7.4) 

Since the local current Jn satisfies the conservation of probability, (n /op (t )/ot/n ) + Jn+l ­
Jn = 0, we get 

2 2 €2 
Jn = - 'h Im(n /p(t )ln - 1) + 'h2 Re (n /W (t )ln - 1) , (7.5) 

This definition is equivalent to the expectation value of a local current operator j n ( t ) 
defined as 

2 

Jn ( t ) = ~ + ~ ( - im, JC ( t )] + m, H ( t )]+) , (7.6) 
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where ~ is an ordinary current operator of the tight-binding model defined by n = 

( i / 'h) (In - 1) (n l-ln ) (n - 11). The second term expresses a correction by the interaction 

with the heat bath. For the weak coupling case, contribution of this correction term is 

small. 

In the present study, we adopt the on-off type external forcing, i.e., 

where 8( t ) is the Heaviside step function . Then the potential exists in the first duration 

rr1 and in the next duration rr2 the potential vanishes. We call the first duration as "on­

potential" period and next one as "off-potential" period for convenience. This type of 

forcing is sometimes called as "flushing" potential. Thus, hereafter , we call the model as 

a flushing quantum ratchet . 

Next we determine a specific form for the asymmetric periodic potential. Simple 

choice like a piecewise linear potential is not appropriate in the present case . For this 

purpose, we consider dynamics of energy of the system. The expectation value of energy 

is defined as follows: 

(E(t )) = Tr{( Hsys (t ) + EHT)p (l )} . (7. 7) 

Let us take its time derivative. For both durations, on-potential and off-potential, we 

obtain 

d (E(t )) = Tr{( H (t ) + EH ) op (t )} 
dt sys I Ot 

l€ 
= -- Tr (Hr[Hsys (t ), p(t )]) 

'h 
€ 2 . 

-- Tr (Hsys (t ) [Hr, [JC (t ), p(t )]] + lHsys (t ) [Hr , [H (t ), p(t)]+]) 
'h 

If the system Hamiltonian and the interaction Hamiltonian commute with each other, 

both JC ( t ) and H ( t ) are proportional to the interaction Hamil toni an HI · Then H s1,1 s ( t ), 

JC (t ), 1-L (t ), and Hr all commute with one another. In this case, energy does not dissipate 

to nor transfer from the heat bath apart from the instant of t he switching. Thus H r must 

not commute with H sys ( t ). 

The commutation relation between the tight-binding type Hamiltonian Htb = Ln. (In ) (n-

1/ + /n )(n + 1/) and the diagonal Hamiltonian V = L n Yn/n )(n / is calculated as follows : 

[H tb, V] = .L {(Yn- 1 - Yn) /n )(n - 1/ + (Vn+l - Yn.) /n )(n + 11} (7.8) 
n 
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If we set V n = c (constant), Htb and V are commutable. On the other hand, if we choose 

Vn proportional to the coordinate n, [Htb, VJ ex: Htb · In these cases it is shown that 

JC (t ) and H (L) also are proportional to the tight-binding Hamiltonian. Therefore, when 

the potential is a constant or a linear function of the coordinate, the energy dose not 

dissipate . Thus for energy to dissipate, a nonlinear part in terms of the coordinate is 

required for the potential. 

For the sake of simplicity, we choose the interaction Hamiltonian proportional to the 

tight-binding Hamil toni an and the asymmetric periodic potential as shifted harmonic 

potential, which is defined later. Therefore energy dissipates only during the on-potential 

period and not during the off-potential period. Only the relaxation of entropy takes place 

in the off-potential period. Since we consider only the weak coupling case, such details 

of dissipation will not affect the qualitative results . 

7.2 Linear Response Theory 

Before presenting numerical results, we analyze the ratchet system in the framework 

of the linear response theory [41]. Let us take the tight-binding Hamiltonian as the 

unperturbed Hamiltonian H0 : 

Ho = .L {In ) (n + 11 + In) (n - l l} , 
n 

and regard asymmetric periodic potential as the perturbation. For that purpose, the 

potential Vn is multiplied by the small parameter y. The linear response theory gives 

the expectation value of the lowest correction to the current operator, which is denoted 

as ~(jo ), as 

where ( .. . )t and ( ... )B represent expectation value at time t and the thermal average 

with the inverse temperature (3, respectively. j 0 is the ordinary current operator defined 

as follows: 

6 i '\ 
Jo = h L (In - 1) (n l- ln ) (n - 11) 

n 
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In the above integral, f ( s ) is the time-dependent part of the external force, which is 

taken f (t ) as 8 (TJ - tmod(TJ + rr2)) in the present case. cD 1A( t ) is the response function 

defined as follows: 

A =- .L yVnln )(n l . 
n 

j 0 (t) is the current operator in Heisenberg picture, that is, exp (itH0/ h)j0 exp ( - iLH0 / h) 

The response function can also be expressed as 

__ 1 I[A "" (t )]) = _1 Tr { A[j0(L), e f3 Ho]} 
ih \ 'Jo f3 ih Tr e - f3H o 

In the present case the total current operator j 0 commutes with the Hamiltonian H0 , that 

is, the total current is a conserved quantity of the unperturbed system. Thus the response 

function vanishes exactly and, as a result, net current cannot be expected. Therefore, the 

net current does not appear in the linear order of small asymmetric periodic potential. 

If the current appears in the numerical calculation, it is caused by the nonlinear and 

nonequilibrium effects. 

7.3 Numerical Calculation and Results 

In the actual calculation, we take values of the parameters as follows: 

N = 5 

l = 10 

h = 1 

"A = 0.01 

TJ = 1 

number of sites in an unit cell, 

number of sites in a whole system, 

Planck constant, 

inverse cut-off frequency of a heat bath, 

"viscosity" coefficient . 

The asymmetric periodic potential is taken to be a shifted harmonic shape (see Fig. 7.1) : 

1 4 1 
Yo mod S = 0, vl mod S= 9' V2mod 5 = 9' V3mod5 = 1) andV4mod5 = 9 . (7.9) 

The time dependence of external forcing is simply chosen as "symmetric", that is, TJ = 

rr2 = T/ 2 with a period T. Two dissipation kernels are calculated according to Sec. 6.3.2. 
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Figure 7.1: Asymmetric periodic potential 

Inserting the eigenstates {lEn)} of H sys ( t), we obtain 

/C( t )( orH(t)) = L dse- \H,,,[ l)s/hH1e'H,, .ItJs/h Re( or Im) <D(s ) 

= r ds L_ lEn) (En le- \1 1'" I tis/hi En) (En iHr iEm) (EmleiH.,,I tJs/hiEm) (Em I 
0 E", Em 

Re(orim)cD(s ) 

L_ IEn)(EniHr iEm) (Em Ir ds exp { i(En ~ Em)s} Re(orlm)<D(s ) . 
En ,t m 

The integral in the final line can be calculated numerically using the routine presented 

in Appendix 6.3.2. Note that the eigenstates inserted here depend on time. Thus, in the 

actual calculation, we must convert the basis {lEn) } to the time-independent basis such 

as the site representation In) . 

We suppose that the system is initially in thermal equilibrium state of the ratchet 

Hamiltonian under the existence of the asymmetric periodic potential at inverse temper­

ature ~, that is, 

Using this initial distribution and above-mentioned parameters, we integrate the density 

matrix by means of 4th order Runge-Kutta method [53]. A typical result of the time 
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series of the expectation value of total current is shown in Fig. 7.2. For this calculation, 

we take the period as T = 1000, the inverse temperature of the heat bath as ~ = 0.8, and 

the coupling constant as £ = 1.5 x 1 o-2 . We see that the current oscillates rapidly in the 

on-potential period. This oscillation is induced by the asymmetric periodic potential, 

because the total current operator does not commute with the asymmetric periodic 

potential. In the off-potential period, on the other hand, the current is kept constant. 

In this case the total current is conserved. In addition, it is found that the time series 

supports the existence of the steady periodic state with period T. After some relaxation 

time is passed, the current seems to repeat the same dynamical behavior with period 

T. For other T and ~~ we also find the steady periodic states. Therefore the physical 

quantities can also be calculated by the method described in Sec. 6.2 without explicit 

integration of the differential equation. We found that if we take different state from 

the thermal equilibrium as the initial state, slightly different periodic states is produced. 

That implies the lack of ergodicity. In high temperature, ~ :S 1, the difference is invisibly 

small. Even in low temperature, where the difference is recognizable, we found that it 

is still quite small. Thus we use the thermal equilibrium state as the initial state of the 

computation. Qualitative features are unchanged by choosing other initial conditions. 

The periodic behavior of the density matrix is caused by the dissipation of energy, 

that is, the existence of the heat bath, and the periodic driving. That is confirmed by 

a calculation for the "pure" system, i.e ., £ = 0, which is presented in Fig. 7.3. In this 

calculation, the ratchet system does not interact with the heat bath, and thus obeys 

pure quantum dynamics. We choose the same initial condition as Fig. 7.2 apart from 

£. Characteristic behavior is similar to Fig. 7.2 . Current oscillates in the on-potential 

period and is kept constant in the off-potential period. Different feature is seen in the 

value of the conserved currents in the off-potential period. In the present case the current 

does not reach the steady periodic state, because of the absence of the dissipation. As 

a result the value of the conserved current varies randomly in each off-potential period. 
' 

Therefore the interaction with the heat bath is necessary for maintaining the periodically 

steady state and generating net currents . 
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Figure 7.2: Time series of current. The period of external forcing, the inverse tempera­

ture of the heat bath, and the coupling constant are T = 1000, (3 = 0.8, and E = ·1 .5 x 1 o-2 , 

respectively. At time l = 0, the system is in thermal equilibrium state of the ratchet 

Hamiltonian with the asymmetric periodic potential at the inverse temperature f3 = 0.8. 
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Figure 7.3: Time series of the current. The period of external forcing and the coupling 

constant are T = 1000 and E = 0, respectively. At time t = 0, the state of the system is 

same as thermal equilibrium state with the inverse temperature f3 = 0.8 . The dynamics 

of current obeys pure quantum mechanics. 
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Figure 7.4: Dynamics of the current for one period corresponding to the periodically 

steady states. We plot the current for one period after discarding 500000 time for relax­

ation. Parameters are same as ones in Fig. 7.2. At timet = 0, the system is in thermal 

equilibrium state of the ratchet Hamiltonian with the asymmetric periodic potential at 

the inverse temperature f3 = 0.8. 

7.3.1 Dynamics in Steady Periodic State 

Dynamics of the current for one period is shown in Fig. 7.4. Parameters are same as 

ones in Fig. 7.2. After discarding 500000 time for relaxation, we plot the time series of 

the current for one period. The figure shows the steady periodic dynamics of the density 

matrix. In the first 500 time, i.e ., the on-potential period, the current oscillates with 

several frequencies. These frequencies are related with the eigenvalue differences of the 

ratchet Hamiltonian with the asymmetric periodic potential. Moreover the oscillations 

seems to resonate with half the period of the external forcing. More detailed studies are 

left for Sec. 7.4. 

Other physical quantities also have same periodicity. For example, we calculate von 
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Neumann entropy of the system defined as follows: 

I ( l ) = - Tr p ( t ) ln p ( t ) 

The result is shown in Fig. 7.5. Parameters are same as ones in Fig. 7.2. After discarding 

500000 time for relaxation, we plot the time series of the entropy for one period. The 

entropy has same periodicity as the current. Equilibrium expectation values of the 

entropy are 1.84 for the ratchet Hamiltonian with the asymmetric periodic potential at 

{3 = 0.8, and 1.87 for one without the potential. Maximal possible value of the entropy, 

that is, the entropy in the case of p = ( 1/ 10) diag( 1, 1, 1, ... 1), is 2.30. In this figure, 

the value of the entropy is larger than the equilibrium values in both on-potential and 

off-potential periods. It means that the periodic steady state is far from equilibrium. 

Periodicity and nonequilibrium behavior are also seen in the dynamics of the internal 

energy (see Fig. 7.6). Equilibrium expectation values of energy are -0.977 for the on­

potential period and - 1.24 for the off-potential period. From Fig. 7.6 we find that 

the calculated values are larger than both. As was mentioned above, energy does not 

dissipate in the off-potential period, so that the expectation value is conserved. In this 

case, all the energy which is injected by the external forcing should be wasted in the 

on-potential period. 

7.3.2 Parameter Dependence 

Numerical integration has shown the existence of the steady periodic state for the density 

matrix. Therefore we can apply the method developed in Sec 6.2 for studying the 

properties of the steady periodic state in detail. In Figs. 7. 7 and 7. 8 we plot typical 

temperature dependence of the currents. By a technical reason, we do not plot the time­

averaged current (J) but the conserved current J in the off-potential period. Thus, for 

the purpose of getting time-averaged current, we should multiply some period-dependent 

factor. Qualitative results is, however, independent of this choice. 

We discuss characteristic behavior of the current based on these figures : First, the 

current vanishes in the high temperature limit and remain finite in the zero ternperature 

limit. At low temperature the current is proportional to the temperature (see Fig. 7.8) 

..... - 0.0016 + 0.061 (1/ {3 ). In the intermediate regime, the value of the current takes 

maximal at some temperature, which is close to the characteristic energy scale of the 
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Figure 7.5: Dynamics of the entropy for one period. It also has same period as the one of 

external forcing. Parameters are same as ones in Fig. 7.2. At timet = 0, the system is in 

thermal equilibrium state with the inverse temperature {3 = 0.8. After discarding 500000 

time for relaxation, we plot one-period time series. Equilibrium expectation values of 

entropy are 1.84 in the on-potential case, 1.87 in the off-potential case at {3 = 0.8. 

Maximal allowed value of entropy is 2.30. 
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Figure 7.6 : Dynamical behavior of the expectation value of internal energy in the ratchet 

system for one period. Parameters are same as ones in Fig. 7.2. At time t = 0, the 

system is in thermal equilibrium state with the inverse temperature (3 = 0.8. Equilibrium 

expectation values of energy are - 0.977 in the on-potential case, - 1 .24 in the off-potential 

case. 
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Figure 7. 7: Typical behavior of the current J against inverse temperature (3 . The pe­

riod of external forcing and the coupling constant are T = 1000 and E = 1.5 x 10 2 , 

respectively. The initial state of the ratchet system is in thermal equilibrium state with 

corresponding temperature. 

ratchet system. Such behavior can be understood as follows: In the high temperature 

limit (3 --1 0, it is natural to expect that current vanishes, because the influence of 

potential becomes negligible as increasing the temperature. This situation is similar 

to the case of the classical fluctuating potential ratchet. In the low temperature limit 

(3 --1 00 , the thermal fluctuation, which causes the thermal diffusion, can be ignored 

and the particle diffusion is governed by the quantum diffusion. In addition entropy is 

generated even at zero temperature . This is the reason why the net current remains 

finite at zero temperature. In the intermediate temperature range, the current becomes 

maximal near the temperature close to the scale of the characteristic energy of the ratchet 

system. Such behavior reminds us of the similarity to the stochastic resonance (SR) [21]. 

In SR, the thermal noise acting on a nonlinear oscillator amplifies the response to a weak 

coherent signal. It happens most efficiently for some finite optimal intensity of the noise. 

Thus the present behavior may be concerned with the quantum stochastic resonance 

[28, 29]. 
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Figure 7.8: Low temperature behavior of the current. Extrapolation of the current to 

lower temperature is shown. Parameters are same as Fig. 7.7. The current J behaves like 

J ---- - 0.0016 + 0.061 (1 / 13) near 1/ 13 ---- 0 . 

!! 
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Temperature dependence of the current under several different periods T is plotted 

in Fig. 7.9. In all the figures, finite currents remain at low temperature, while at high 

temperature the currents vanish as before. Single or double extremes are seen in the 

intermediate range of the temperature near the scale of characteristic energy of the 

system. From these figures, we find that the direction of the current changes both with 

the period of external forcing and the temperature . For instance, in the case ofT = 110, 

the current is negative in high temperature regime and crosses zero as increasing 13 and 

finally positive at zero temperature. For T = 310, in contrast to the case of T = 110, 

the direction of current varies from positive to negative as decreasing the temperature . 

In the case of T = 21 0, the direction of current is always negative. Such behavior is not 

recognized in the classical flushing potential thermal ratchets. Therefore it is not due to 

thermal effects but quantum effects. 

Next three figures show other dependence of currents: First we plot a typical behavior 

of currents against the coupling constant in Fig. 7.10. Inverse temperature and period of 

external forcing are taken to be 13 = 0.8 and T = 1000, respectively. £ = 0 corresponds to 

the pure quantum dynamics, where the current does not appear. Figure 7.11 presents the 

dependence of the current on the asymmetry of the potential shape. the horizontal axis 

represents the degree of asymmetry, which we take as the height of on-site potential, 

V 2 mod S· If V2mod S = 1, spatial reflection symmetry is not broken and no finite net 

current is expected. Actually we observe that the current is zero at V 2 mod 5 = 1. In the 

intermediate range, the current violently oscillates with varying potential height. Last 

Figure 7.12 shows dependence on the amplitude of forcing. So far we take the time 

dependent part of the forcing as 8(T/ 2 - t mod T) . Here and only here we multiply it 

by a factor P. Varying P in the range [0, 1], we calculate the current and the results are 

presented in Fig. 7.12. Remember that the linear response theory did not result in a 

finite net current. The plot for small P confirms the conclusion of the linear response 

theory. For large P, on the other hand, the current oscillation is observed again . 

The above results imply that generation of the currents strongly depends on the 

eigenset, i.e., eigenvalues and corresponding eigenstates, of the ratchet Hamiltonian. 

Changing a parameter which is accompanied by modification of the eigenset induces 

violent change of the behavior. For example, changing V zmod N (Fig. 7.11) or P (Fig. 7.12) 

induces discontinuous change of the current . Changing a parameter not accompanied by 

..... 

l 
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Figure 7.9: Many sample of current-temperature plot . Each figure is different in the 

period of external forcing, which is shown inside the plot. Coupling constant is € = 
1.5 x 10 2

. Initial state of the ratchet system is in thermal equilibrium state with 

corresponding temperature. 
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Figure 7.10: Current against coupling constant: We plot behavior of dependence of 

currents on the coupling constant. Inverse temperature and period of external forcing 

are taken to be f3 = 0.8, T = 1000 , respectively. € = 0 is corresponding to pure quantum 

dynamics. 
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Figure 7.11 : Dependence on asymmetry of the potential shape: Horizontal axis represents 

the asymmetry; Height of V 2 mod S is varying in the range [0.1, 1]. When V 2 mod S = 1, 

then the potential is symmetric, no one breaks spatial inversion symmetry.. Inverse 

temperature, coupling constant, and period of the external forcing are taken to be (3 = 

0.8, € = 1.5 x 1 o-2 , and T = 1000, respectively. 

7.3. NUMERICAL CALCULATION AND RESULTS 173 

0.02 

0 

-0.02 

0 0.2 0.4 0.6 0.8 1 
p 

Figure 7.12: Dependence on amplitude of the forcing. P represents amplitude of the 

forcing. If P = 1, the forcing is same as one used in the calculations so far. P = 0 

means that the forcing no longer exist . Thus, near P ~ 0, the linear response theory is 

valid. As was mentioned in the previous section, no finite net currents appear near P ~ 0. 

Inverse temperature, coupling constant, and period of the external forcing are taken to 

be (3 = 0.8, € = 1.5 X 1 o-2 ' and T = 1000, respectively. 
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the modification of the eigenset, on the other hand, makes smooth change of the current 

as is seen in Fig. 7. 7. 

Let us see that the dependence on the coupling constant and the dependence on the 

period of the external forcing is related to each other. Since equation (7.3) is a linear 

equation for the matrix elements of the density matrix, it is formally rewritten as follows: 

a p( t ) i M ( } ..... ( ) £ 2 M ( } ..... ( ) -- = -- t p t - - d t p t at h p Ft2 , 

where p, M p and Mct are the vector representation of the density matrix, the matrix 

representation of the Liouville superoperator corresponding to pure dynamics, and a ma­

trix representation of the Liouville superoperator corresponding to the dissipative term, 

respectively. In the present case, one-period time-evolution operator 'D(T) is formally 

written as follows: 

V(T ) = exp { - iT Marr - T£2 Marr} exp { - iT Man - T£2 Man} 
2h p 2h2 d 2Ft p 2h2 d , 

where suffixes on and off indicate on-potential period and off-potential period, respec­

tively. The coupling constant appears through the form £2T. Thus the dependence on £ 

can be renormalized into the dependence on T to some extent. 

7.4 Resonating Behavior: Dependence on Period 

In this section, we study the dependence on the period of the external forcing in detail. 

We show the behavior of the current in a wide range of the period in Figs 7.13(a) and 

(b). Parameters are taken to be (a) (3 = 51 and (b) (3 = 1 , and £ = 1 .5 x 1 o-2. Direction 

of the current varies with the period in both low and high temperature case. In the low 

temperature case, many sharp peaks are seen. In the high temperature, on the other 

hand, many resonance-like peaks with large width are seen. In both cases, the current 

is zero at T = 0. Also in the limit ofT -1 oo the current is expected to vanishes. Since 

the current is finite at T = 1000, the relaxation time of the ratchet system is larger 

than 1000, which is consistent with the order of the inverse square coupling constant . 

Both positive and negative current appear, so that neither of the directions seem to be 

preferred. 

We investigate dependence on the period and the temperature in detail. The results 

are shown in Fig. 7.14. The inverse temperature varies in the range [1, 1001, from high 
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Figure 7.13: Dependence of the current on the period of external forcing . Parameters 

are taken to be (a) f3 = 51 (b) and f3 = 1; £ = 1.5 x 10 2. The period is varying in the 

range ro, 1000]. 
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Figure 7.14: Dependence on the period and the temperature. The coupling constant €. 

is taken to be 1.5 x 1 o-2 . The inverse temperature is varying in the range [1, 1 00] and 

the period is varying in the range [1 000, 101 0]. 

temperature to low temperature, and the period varies within the range [1 000, 101 0]. 

From this plot, sharp peaks seen in Figs. 7.13 continuously changes their shape as vary­

ing parameters. Comparing high temperature behavior and low temperature one, we find 

that the fine structures existing at lower temperature is smeared gradually as increasing 

temperature. Two resonance-like peaks should be paid attention to: First one is found 

near T = 1003 and second one near T = 1007. The former is not seen at high tem­

perature, rather it seems to be a broad peak, and becomes resonance-like as decreasing 

temperature. In contrast, the latter exists at high temperature and disappears at low 

temperature. It is natural that the peak becomes narrower as decreasing the tempera­

ture, so that the broadening behavior of the former peak is caused by high ternperature 

effects . But the behavior that the peak disappears at low temperature seems to be 

strange at first sight . Amplitude of the currents near two points T = 1003 and T = 1007 

depends on the inverse temperature. But the positions of the peaks hardly depend on 

the temperature. 

To study the dependence on the period, especially of the resonance-like behavior, 

...... 
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we focus the pseudo-periodicity seen in Figs. 7.13. It is seen in high temperature case 

(Fig. 7.13(b)), while it is hardly recognized in low temperature case(Fig. 7.13(a)) . Identi­

fying the periodicity of the currents as the period of the external forcing, we can calculate 

the autocorrelation function ( (J[O]J [T])) of the current J, where we denote T dependence 

explicitly as J[T], defined by the discrete Fourier transformation as: 

(7.10) 

and a one-sided power spectral density (PSD) P(f ): 

( ) 

N 5 - l 2 N 5 1 2 

p _ k _ = L e27ri lk/ N s J[l~ T] + L e - 2nilk / N s J[l~ T] 
N s~ T l = O l= O 

(7.11) 

where we take N s = 65536 and ~ T = 0. 01. The results are presented in Figs . 7.15 and 

7.16. In the plot of the autocorrelation function, clear periodicity is seen in both high and 

low temperature cases with period 50.4. The peak with period 59.5, on the other hand, 

vanishes at low temperature. Several other peaks also disappear at low temperature . 

Such situation is also seen in PSD. The peak with period 50.4 appears in PSD as a 

peak at frequency 0.02. Many peaks in PSD disappear again at low temperature . Such 

behavior has already been seen in Fig. 7.14; For example, the second peak in Fig. 7.14 

belongs to these disappearing peaks. 

From the above results, existence of periodic behavior in the current is evident, 

although the origin of the periodicity is still unclear. For the later convenience, we pick 

up characteristic periods T~ from Fig. 7.16 and list them in Table 7.1. Corresponding 

peaks are marked in Fig. 7.16. 

If the resonance-like behavior in Fig. 7.14 is really due to the resonance, it is proba­

bly caused by the resonance between the quantum oscillation and the periodic forcing . 

When the frequencies determined by the eigenvalue differences, namely eigenfrequen­

cies is close to the inverse of half the period of the external forcing, the resonance is , 
expected. In addition the current in Fig. 7.4 seems to be consistent with the resonance 

mechanism between the oscillations with the eigenfrequencies and the periodical driving. 

In order to confirm above argument, we have to identify the resonance-like peak as the 

eigenfrequencies. But this process has a little difficulty, because there are many fre­

quencies which distribute almost continuously. Since the present system has ten energy 

-
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Figure 7.15: Autocorrelation of the current J. Parameters are taken to be (3 == 1 , high 

temperature, {3 = 51, low temperature, and £ = 1.5 X 1 o-2 . 
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Figure 7.16: One-sided power spectral density of the current J. Parameters are same as 

ones in Fig. 7.15. Marked peaks are corresponding to periods listed in Table 7.1. 
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characteristic period of PSD 

high temperature case low temperature case 

59.5 50.4 

50.4 25 .2 

31.2 21.1 

25.2 

21.1 

16.8 

15.6 

12.6 

12.6 

179 

Table 7.1: Characteristic periods T~ picked up from Fig. 7.16. Corresponding peaks are 

marked in Fig. 7.16. 

levels without degeneracy, we should treat forty five different eigenfrequencies. Moreover 

higher harmonics should also be taken into account. Thus we wonder which frequency 

causes resonance. For making clear which frequency resonates and understanding the 

mechanism of the resonating behavior, we consider further simplified models in the next 

section. 

7.5 Simplified Ratchet Models 

In this section we consider two simplified models for understanding resonating behavior. 

First is a three-level model which has a linearly increasing potential and second is a 

"delta-kicked" ratchet, in which the duration of the off-potential period is fixed to a 

small value instead of the symmetric forcing . 

7.5.1 Ratchet-like Three-Level Model 

The first model is basically the same as the flushing ratchet model, but for the system 

size and the potential shape. We consider only one unit cell which consists of only three 
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sites with the following potential: 

V o mod 3 = 0, 
1 

V , mod 3 = l ' V2mod 3 = 1 . 

The periodic boundary condition is imposed, so that the linearly increasing potential 

becomes an asymmetric periodic potential. Note that such potential does not cause the 

energy dissipation in the unit cell as was mentioned in the previous section and the 

energy dissipates only at the boundary of the unit cell. In the present model, however, 

only three bonds are in the unit cell and thus such localized dissipation is not expected 

to arise serious influence. 

This system has a periodically steady state too, so that the state can be calculated 

directory. Dependence of the current on the period of flushing potential is plotted in 

Figs. 7.17 and 7.18 for both low and high temperature cases. Global tendency is similar 

to the case of the flushing ratchet discussed in the previous section: Direction of the 

current varies with the period. Many peaks are seen both at high and low temperature 

and, in the high temperature case, they seem the resonance-like peak with large width. 

The current behaves systematically in both cases, and the periodicity of the current is 

clearly recognized, in contrast to the flushing ratchet. Periodic feature of the current 

can be seen also in the autocorrelation function and its power spectral density, which 

are calculated using Eqs. 7.10 and 7.11. The results are presented in Figs . 7.19 and 7.20. 

Clearly we find one period TJ = 21 .8 in both figures . 

In the present case, we can identify TJ as the characteristic time of the three-level 

model. Taking account only of the oscillating current in the on-potential period, we 

calculate the characteristic periods T6 as 2nh//En - Em/ by the numerical diagonalization 

of the Hamiltonian in the on-potential period. The result are listed in Table 7.2. 

In the actual situation, energy levels are modified by the correction from the interac­

tion with the heat bath. The shift of the energy by this correction is given as follows: 

E
2 

2 Joo dw- 1 
L1En = 2 .[_ 1\n/Hr /r)/ P - <D(w) , 

h r _ 00 27t W + Wrn 

where <D ( w ) is the Fourier transformation of the bath correlation function and Wrn. = 

( r - n)/h . Remember that the current oscillates in the on-potential period. Then the 

quantum oscillation resonates with half the period T/ 2 instead of the period T. Thus we 

must compare TJ / 2 with the characteristic times T6. We find that TJ = 21.8 corresponds 

ii 
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Figure 7.17: Dependence of the current on the period of flushing potential for the three­

level system. Low temperature behavior is presented; We take (3 = 100. The coupling 

COnstant is taken to be € = 1 .5 X 1 o-2 . 
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Figure 7.18: Dependence of the current on the period for the three-level system. Inverse 

temperature is taken to be (3 = 1, high temperature . Other parameters are equivalent 

to ones in Fig. 7.17. 
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Figure 7.19: Autocorrelation of dependence of the current on the period. We plot the 

autocorrelation function of Figs. 7.17 and 7.18. 
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Figure 7.20: Power spectral density of dependence of the current on the period. We plot 

the one-sided power spectral density of Figs . 7.17 and 7.18. 
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eigenvalue characteristic times 

label eigenvalue related states characteristic time 

1 -0.792016575144414 1 2 0.109297232727052E+ 02 

2 -0.217145160264573 1 3 0 .182855283862893E+ O 1 

3 2.64413541854713 2 3 0. 2195934 76031441E+ O 1 

Table 7.2: Eigenvalues and characteristic times T6 of the three-level system at on poten­

tial duration; They are defined by 2n'h/IEn - Eml where En is energy of state n of the 

Hamiltonian with the potential. Energy shift caused by the interaction with the heat 

bath is included. Inverse temperature is taken to be f3 = 100. 

to twice of T6 = 10.930. That is, we confirm that this period is really generated by the 

resonance between the quantum oscillation and the periodically driving . Other two 

possible periods T6 x 2 = 2.1959 x 2 and 1.8286 x 2 observed neither in Figs. 7.19 nor in 

7.20. That implies some selection mechanism, which is unclear at present . 

To summarize in short, we have found that the quantum stochastic current is gen­

erated by the resonance between the quantum oscillation and the periodic driving. The 

resonance does not appear at all the possible frequencies, but at some selected frequen­

cies. In the present three-level system case, only minimal frequency, which corresponds 

to the lowest excitation between the ground state and the first excited state, seems to 

be selected. 

7.5.2 Delta-Kicked Ratchet Model 

Now we face new problems: Where have unselected frequencies gone? What is the origin 

of the peak which does not belong to the period 21 .8 in Fig. 7.17? Both questions 

are related with the dynamics in off-potential period, although the current is conserved 

there. 

In the off-potential period, relaxation of the off-diagonal elements of the density 

matrix takes place, even though the current is conserved. In the present case, the density 

matrix obeys the following equation in the off-potential period: 

ap (t )p q = { - iw (1 - €2 Ep + Eq T]) - €2 w 2 nl } p(t ) 
at pq 11. r.. pq 'hf3 pq 
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where Wpq = (Ep - Eq)/h and Ep are eigenvalues of the tight-binding Hamiltonian. If 

p = q, then 

ap(t )pp = 0 . 
at ' 

The diagonal element is thus conserved. In addition, if the states q and p degenerate 

with each other, Wpq = 0, so that 

ap(t )pq = 0 
at ' 

if q, p are degenerated 

If p and q are not degenerate, on the other hand, the off-diagonal elements decay in a 

similar manner as damping oscillation with the frequency Wpq(l - £ 2T](Ev + Eq) / (h::\)) 

and a inverse time constant £ 2 w~q 7lll / ( 'h(3 ). 

To remove the relaxation effects, we introduce a time-asymmetric forcing, while so 

far we have used symmetric forcing. Here we set the period of the off-potential period as 

a small interval Torr = 1 x 1 o-s (we call "delta-kicked" ratchet for convenience, although 

it is not truly the delta-function). For the three-level model, we show the dependence of 

current on the length of the on-potential period Ton in Figs. 7.21 and 7.22. Note that the 

time-averaged net current becomes smaller when Toff is short, because it is the conserved 

current which contributes mainly to the net current. The plots of the conserved current 

is still useful to understand the mechanism of the generation of the net currents. Using 

the delta-kicked ratchet, we see that the behavior of the current becomes more systematic 

than the case of the symmetric forcing . In fact, the envelope of the peaks behaves in 

highly organized manner, in contrast to the case of the symmetric forcing. In the both 

figures, peaks corresponding to almost the same values of the listed values of T2; in 

Table 7.2 are recognized. In addition, short characteristic times T2; disappear for large 

Ton · The direction of the currents is always the same for same frequency, in contrast to 

the case of symmetric forcing . 

Based on the results for the short off-potential period, we can identify all the eigenfre­

quencies for the three-level ratchet system. Next we apply the time-asymmetric forcing 

to the flushing ratchet model. We set To rr = 1 x 1 o-s and investigate the dependence on 

Ton· The results are plotted in Figs. 7.23 (global behavior) and 7.24 (magnification). We 

can easily identify the period Tf appearing the figures as eigenfrequencies of the flushing 

ratchet as in the case of the three-level ratchet . For later convenience, we calculate the 
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Figure 7.21: Dependence on the period of on-potential duration. We plot the result 

of the delta-kicked three-level system in low temperature (3 = 1 00. The period of the 

off-potential duration is taken to be 1 X 1 o-s. Interval between each large peak is 87.47 

. Thins time is near 87.44 = 8 x 10.930: 10.930 is characteristic time which appears in 

Figs. 7.17, 7.18, 7.19 and 7.20. The envelope of large peaks behaves like ~ 1 / Ton· 
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0 100 200 300 400 500 600 700 800 900 1000 
Ton 

Figure 7.23: Dependence on the on-potential period. We plot the result for the delta­

kicked flushing ratchet model in low temperature f3 = 51. The period of off-potential 

duration is taken to be Toff = 1 X 1 o-s. 

characteristic times T6 determined by the eigenfrequencies at the on-potential period. 

We take the correction of energy into account, because energy levels are modified by the 

interaction with the heat bath in actual situations. The results are listed in Table 7.3. 

In Figs. 7.23 and 7.24, the systematic behavior of the current is recognized again; The 

envelopes of the peaks behave like damping oscillations. At least four modes are seen in 

Fig. 7.23. In each mode, one period is concerned; For instance, the mode corresponding 

to the positive current seen in Fig. 7.23 is identified as a characteristic time Tf = 4.47 

(Fig. 7.24). Other Tf of each mode is presented in the same figure. 

Numerical comparison between Tf and the characteristic times Tb is still not clearly 

done. To clarify the resonance, we consider another way. If the peaks indicate really 

resonance, the related matrix elements of the density operator becomes large there. The 

behavior of the currents reflects that of the off-diagonal matrix elements, especially their 

imaginary parts. Thus we calculate dynamics of the off-diagonal matrix elements of the 

density operator directly. 

We calculate the dependence of imaginary parts of the off-diagonal elements on the 

period Ton.· The results are shown in Figs. 7.25 and 7.26. Corresponding Ton dependence 
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eigenvalue 

label eigenvalue label eigenvalue 

1 -1.65098840215929 6 0.844696352513499 

2 -1.46390826051103 7 1.05351661983403 

3 -1.05457167685571 8 1. 79164542372574 

4 -0.401063986891026 9 2.29590644 792017 

5 -0.143856290629779 10 2.51190998207248 

characteristic times 

related states characteristic time related states characteristic time 

1 2 0.335855287828377E+02 3 10 0.176173217274119E+ 01 

1 3 0.105348914868659E+ 02 4 5 0.244284505221154E+ 02 

1 4 0.502685234824908E+ 01 4 6 0.504365509422825E+ 01 

1 5 0.416896795838864E+ 01 4 7 0.431958562693308E+ 01 

1 6 0.251761985173041E+ 01 4 8 0.286548935832670E+ 01 

1 7 0.232322936394261E+ 01 4 9 0.232971982225864E+ 01 

1 8 0.182511001744714E+01 4 10 0.215696588742976E+ 01 

1 9 0.159193130820261E+01 5 6 0.635594424394 703E+ 01 

1 10 0.150932953487998E+ 01 5 7 0.52474 7589252819E+ 01 

2 3 0.153496797816535E+02 5 8 0.324628257129564E+ 01 

2 4 0.591167082325700E+ 01 5 9 0.257532643758610E+ Ol 

2 5 0.4 75980160280385E+Ol 5 10 0.236586538002532E+ 01 

2 6 0.272163775753419E+01 6 7 0.300889638857743E+ 02 

2 7 0.249587804231280E+ 01 6 8 0.663518838872899E+ 01 

2 8 0.192998982398848E+ 01 6 9 0.432961809038713E+ 01 

2 9 0.167114232197013E+ 01 6 10 0.376867449415419E+ 01 

2 10 0.158035028229618E+ Ol 7 8 0.851231580301119E+ 01 

3 4 0.961455477649342E+ 01 7 9 0.505733815585418E+ Ol 

3 5 0.689917572169623E+ Ol 7 10 0.430829270395283E+ 01 

3 6 0.330821420929827E+ 01 8 9 0.124601846673808E+ 02 

3 7 0.298051343100354E+ 01 8 10 0.872344114285904E+ 01 

3 8 0.220755664 799483E+ 01 9 10 0.290883457378743E+ 02 

3 9 0.187531010441844E+ Ol 

Table 7.3: Eigenvalues and characteristic times of the ratchet system at on-potential 

duration Tb; They are defined by 2nh/ IEn - Em I where En is energy of state n for on­

potential duration. Energy shift caused by the interaction with the heat bath is taken 

into account. Inverse temperature is taken to be f3 = 51. Pairs of energy levels, 2-3, 4-5 , 

c '7 



-

:,. 

' 
f· 

., 
' 

i 

: 

.. 

188 CHAPTER 7. RESONANCE CURRENT IN QUANTUM RATCHET SYSTEMS 

1 *1 o-4 

""") 

I I I I .I l I I I I I I I 0 -.r.-H 1"/"1 I ~ T r 
I I I I ·1 r 1 1 1 T 

1.57 

-1 * 1 o-4 7.59 7.59 

I L I I 

0 10 20 30 40 50 60 70 80 90 100 

Ton 

Figure 7.24: Magnification plot of Fig. 7.23 at small Ton period. Interval time between 

the peaks are presented in the figure. 

of the current is also shown in Fig. 7.27. We plot only the values of the off-diagonal matrix 

elements which exhibit nontrivial behavior. The other values do not vary largely with 

the period. In addition we give two separate figures, for the matrix elements connected 

to the ground state and the ones disconnected from the ground state. 

Figure 7.25 shows that the imaginary parts of the matrix elements Im(l lp(t )l4) , 

Im(l lp(t)l5), Im(l lp(t) l8), and Im(l lp(t) l9) (labels of the states are explained in Ta­

ble. 7.3) vary periodically. In contrast to Fig. 7.25, Figure 7.26 shows a little compli­

cated behavior, which is understood as higher order effects of the dynamics shown in 

Fig. 7.25. The behavior of the matrix elements Im(4lpl5), for example, can be regarded 

as the superposition of the dynamics of Im(l lp(i) l4) and Im(l lp(t) l5). In addition, order 

of magnitude of the current are all less than ones in Fig. 7.25. The reason why only the 

matrix elements connected among the states 1, 4, 5, 8, and 9 show nontrivial behavior is 

concerned with the translational symmetry of the Hamiltonian, especially the invariance 

in the unit-cell-translation. The eigenstates of the Hamiltonian in both on-potential and 

off-potential periods are classified into two subspaces by the operation of the unit cell 

translation, one changing the sign of the eigenstate and one not changing the sign. In 

this sense, the ground state and the excited states 4, 5, 8, and 9 belong to same subspace 
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Figure 7.25: Dependence of the off-diagonal matrix elements on the period of the on­

potential duration. Imaginary parts of the off-diagonal elements of the density matrix 

are plotted. Basis is taken to be the eigenstate of the on-potential Hamiltonian. Cor­

responding two states are presented inset of the figure. This index is same as one in 

Table 7.3. Here only the results of the matrix elements connected between the ground 

state 1 and higher excited state are plotted; Period-independent matrix elements are 

discarded . Parameters are equivalent to ones in Fig. 7.23. 
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Figure 7.26: Dependence of the off-diagonal matrix elements on the period of the on­

potential duration. Remaining results which show nontrivial behavior is plotted. Period­

independent matrix elements are discarded. Other conditions are equivalent to Fig. 7.25 . 
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Figure 7.27: Identification of peaks in period vs current plot with eigenstates; We plot 

the current corresponding to the range of Figs. 7.25 and 7.26. The arrows and labels in 

the plot show related eigenstates which is determined by comparing with Fig. 7.25. 
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both in the on-potential and off-potential period. In low temperature case, majority of 

the population of particles gather in the ground state. Therefore the states connecting 

among the states 1, 4, 5, 8, and 9 is selected. Comparing with Fig. 7.27, we conclude that 

the dynamics of the above four matrix elements determine the behavior of the current. 

Now we can identify the period Tf which is taken from Fig. 7.24 with the character­

istic times Tb calculated by the diagonalization. We know only four characteristic times 

appear; They are Tb = 5.03 for the states 1 - 4, Tb = 4.17 for 1 - 5, Tf, = 1.83 for 1 - 8, 

and Tb = 1.59 for 1 - 9. But, in the present case, the characteristic times Tf, and the 

period Tf is not exactly same; For example, the period 4.47 appearing in the figure is 

different from the corresponding characteristic time 5.03. Other periods also are different 

from the characteristic times . Since the numerical integration also gives the period close 

to the results of direct diagonalization, such difference implies that the origin of energy 

shift exist other than the second order perturbation described in Sec. 6.1. 

7.6 Summary 

In conclusion we have studied the quantum stochastic currents in the quantum_ ratchet 

system. For the flushing potential quantum ratchet, we have shown that the currents 

appear when both time inversion and spatial reflection symmetries are broken. The 

steady periodic state of the density matrix with the same period as that of the external 

forcing is generated as a consequence of the energy dissipation and the periodic driving. 

By the direct diagonalization of the dissipative Liouville superoperator, we have investi­

gated in detail how the current depends on the temperature and the period of external 

forcing. The current depends linearly on temperature at low temperature and the net 

current remains finite even in the zero temperature limit. In the high temperature limit, 

on the other hand, the currents vanish. In the intermediate range of temperature, the 

currents have a single extremum or multiple ones near the characteristic energy scale of 

the flushing ratchet system. Such behavior reminds us of similarity with the (quantum) 

stochastic resonance (e.g. [21, 28, 29]). Relation between the quantum ratchet and the 

quantum SR, however, is not clear yet, and will be left to a future problem. 

The current depends on the period of external forcing in a singular manner; As in­

creasing the period, the direction of the current changes violently around zero. Genera-
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tion of the finite currents is essentially due to a quantum resonance; Temporal oscillation 

of the currents with an eigenfrequency resonates with the periodical flushing of the exter­

nal potential. For simplified ratchet models , namely, the three-level ratchet-like model 

and the delta-kicked ratchet model, we can identify the period of t he external forcing at 

which a finite net current appears as the eigenfrequencies of the Hamiltonian. All the 

eigenfrequencies, however, does not resonate, but some eigenfrequencies are selected by 

the symmetry of the system. This conclusion is for the simplest models of the ratchet; 

But the essential features are same also for the flushing ratchet model. In the flushing 

ratchet system, other effects related with the relaxation of the off-diagonal element of the 

density matrix is also important for explaining the detailed behavior of the currents. As 

was mentioned above, the mechanism for generating the net currents is totally different 

from that of the classical flushing ratchets . It is essentially a (quantum) mechanical one, 

while mechanics is irrelevant in the classical thermal ratchets. The dependence of the 

current on the period of the external forcing is characteristic to such mechanical origin. 

The present model has been considered in the weak coupling situation. Thus, in order 

the model to be justified, the thermal relaxation time should be longer than any other 

time scale such as the period of external forcing and the characteristic times determined 

by the eigenfrequencies. Therefore we only studied the system in non-adiabatic situation. 

If we study the system in adiabatic time scale and strong coupling case, different phe­

nomena like quantum-classical crossover may be observed. To study such cases, however, 

the present approach is not appropriate and we need different approaches . Although the 

present study is only on some specific models and the details of the results depends on 

the detail of the model, we believe that the essential mechanism of generating currents 

applies widely to other models of this type . Especially there is a possibility of producing 

the currents more effectively by tuning the details of the model. 

Finally let us consider possible experimental realizations . The present model may 

be fabricated in the quantum dots array. Order of typical hopping energy and length of 

interval between quantum dots are ~ 10 meV, 100 nm, respectively [62]. If we take the 

unit of energy and length in the present model as these values, the order of the unit of 

time and total stochastic currents become ~ 1 psec , --- 1 x 107 m / sec, respectively. In case 

that the population of electrons is 2 per one quantum dot, the concentration is about 

..... 1021 m-3. Then the unit of current corresponds to --- 1 rnA. The current is generated 
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most efficiently in the regime about (3 = 1 ~ 10 and T ~ 1000, which corresponds to the 

real scale of the temperature 10 K ~ 100 K and 1 GHz switching of the potential. These 

conditions are certainly realistic for experimental setup. 

Appendix A 

Path-Integral Treatment of Quantum 

Dissipative Systems 

Here we briefly review the method based on path integral treatment according to Caldeira 

and Leggett [7, 68]: Let us start with a following Hamiltonian: 

Hlotal = Hs + HR + HI , 

where 
p2 

Hs = 2M + V(Q ) , 

HR = f_ ( 2p~ + 2~mcxw~x~) , 
cx= l fficx 

N 

H1 =- .L. Fcx( Q)xcx + ~V(Q ) . 
ex= I 

(A.1) 

(A.2) 

(A.3) 

(A.4) 

H5 represents a Hamiltonian of one-dimensional system and P, Q are its canonical vari­

ables. HR denotes a thermal heat bath system represented by a set of harmonic oscillators, 

and HI is an interaction part between the isolated system and the heat bath described 

by linear coupling term F ex ( Q ) and a counter term ~ V ( Q). If we choose ~ V ( Q ) = 0, 

then the potential of the system is represented as follows: 

(A.5) 

This expression shows that the energy spectrum of the system is renormalized by the 

second term which comes form the interaction part. To remove such renormalization 
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effects we take L1 V( Q) as 

L1V(Q ) =f. F~( Q )2 . 
cx=l 2mex w ex 

(A.6) 

Supposing the interaction is separable and linear, that is, F ex ( Q ) = Cex Q, we get the 

Hamiltonian of total system as 

H to ta l = ;~ + V(Q) + t, ( 2~"' + lm"'w~ (X"'- m:;.,~ Q) ' ) · (A.7) 

This model is called Caldeira-Leggett model. Path integral treatment allows us to calcu-

late a Green function for real time or a density matrix for imaginary time. Here we are 

interested in calculating a density matrix, because the statistical nature such as tunnel­

ing probability is given by the density matrix. In order to calculate the density matrix, 

Euclidean Lagrangian must be required; First we calculate the corresponding Lagrangian 

(not Euclidean) to each Hamiltonian as follows: 

1 . 2 
.Cs = lMQ - V (Q ) , (A.8) 

(A.9) 

(A.10) 

by the standard way .c = L qp - H. A Green function JC(Q", x"; Q', x'), we express the 

heat bath coordinates by the vector form, x = {xex}, is given by the path integral as 

Q (l " )-Q" , 
x( t" l= x " 

K(Q", X"; Q',X') = J VQVXexp (~s[Q,X1) , 

where S [Q, x] is an action defined by 

Q (t ') = Q' , 
x(t ' l= x' 

l " 

S[Q ' X1 = L dt (L, IQI + t:.IX1 + t:, [Q' X1) 

(A.ll) 

(A.12) 

Wick rotation l = - iT and appropriate boundary conditions give the density matrix 

W 13 (Q", x"; Q', x') for the inverse temperature f3 as 

Q (h f?> l= Q" x( h f?>l = x" 

W ~ ( Q", x"; Q ', x' ) = z- 1 J V Q J V X exp ( - ~ S E [ Q, X1 ) , (A.13) 

Q (O) - Q ' i (O) - i' 
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where suffix E represents the Euclidean action defined as 

f
h(3 

S E[Q, X]= O drr (£~[Q ) + £~[X)+ £ f[ Q , xJ) (A.14) 

and Euclidean Lagrangian: E 1 . 2 
.Cs [Q ] = lMQ + V (Q ) , (A.15) 

L~ IX1 = t, Gm.X~ + lm.w~x~ ) , (A.16) 

.C~ [Q , x] =f. (-c.x<XQ + 2 c?.Q', ) , 
ex=l ffi cx Wex 

(A.17) 

and Z is partition function defined as 

(A.18) 

where f 'DQ means path integrating for the all periodic path with period hf3. 

The reduced density matrix of the system p0(Q", Q' ) is calculated by taking trace 

for heat bath variables and we obtain it as 

p~( Q", Q' ) = [ "' dX'Wp( Q", X'; Q', x' ) (A.19) 

Defining the reduced partition function zd as Zct = Z/ ZR, where ZR is the thermal 

equilibrium partition function of heat bath Hamiltonian not including interaction part: 

N N 

ll (ex) ll 1 
ZR = ZR = 2sinh(w cx hf3 / 2) ' 

ex= 1 ex= 1 

(A.20) 

we get 

Q (ft (3) = Q II 

p~ ( Q", Q') = z;; ' J VQ exp ( - ~ S;'IQI) F c[Q] (A.21) 

Q (O)=Q ' 

where s ; [Q] is the Euclidean action of the system: 

s ;r QI = l'o"P d-rt:;rQI (A.22) 

and .rE[Q] = ZR1 fvx exp ( - ~ ( S ~IX1 + s, [Q, X]) ) (A.23) 
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The functional ;=-E[Q] represents the interaction effects with the heat bath and it is called 

an influence functional. 

For the Caldeira-Leggett model we can evaluate the influence functional. By the 

periodicity with period hj3, we expand the variables Q and Xcx as Fourier series 

1 00 

Q (rr ) =- .[_ Qne1"~nT (A .24) 
hj3 n=-oo 
1 00 

X (T) =- ' X e i-vn T 
ex. hj3 n~oo cx,n , (A.25) 

where 'Yn = 2nn/ hj3 . Using the properties Qn = Q :_n, Xcx,n = x~.-n' we obtain 

s.rxl + SffQ, XI =; ~[) J_Jma ( -v~ lxa, n l 2 + wajxa,n-c"m::J) . (A.26) 

Classical Euclidean equations of motion give us the classical solution of dynamics: De­

noting the classical solution by suffix ( cl), we obtain the equations of motion as follows: 

(A.27) 

(A.28) 

Substituting the Fourier series of the variable x~ll , we get the classical solution for Xcx as 
2 

x (cLl _ ccx Q (cLl 
cx ,n - mcx('Y~ + w~ ) n 

(A.29) 

We define the fluctuation 1J cx n for Xcx n as 
' ' 

c2 
1Jcx,n := Xcx,n - ( 2 ex 2 ) Qn . (A.30) 

mcx 'Vn + wcx 

Note that this fluctuation includes the effects of the fluctuation of Qn, so that we use 

Qn instead of Q l~ll. Using the fluctuation 1J cx,n, we rewrite the action corresponding to 

the influence functional as 

(A.31) 

and 

(A.32) 

(A .33) 
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The first action is identical to the action of the harmonic oscillators. Then the path 

integral for 1J cx,n gives the partition function ZR. Finally we obtain 

(A.34) 

The action corresponding to the influence functional can be rewritten as 

(A.35) 

where 

(A.36) 

(A.37) 

or 

(A .38) 

Introducing continuous spectral density J ( w ), we can replace the summation with the 

integration, then 

where the spectral density 

and 

1 J oo K ( T) = - dw J( w ) 0 w ( T) , 
n o 

D w( rr ) = cosh ~ w ( h(3 /2 -lrrl)) . 
s1nh(hj3w / 2) 

(A.39) 

(A .40) 

(A.41) 

To summarize above arguments, we obtain the reduced density matrix Prd Q" , Q' ) as 

Q (h[)) = Q " 

p~( Q",Q' ) = Zd1 I VQ (-r ) exp ( - ~ ( S ;'fQI-t- SfnnlQJ) ) (A.42) 

Q (O)=Q' 
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The second action SfnrdQl represents the influence of the thermal heat bath. The effective 

action s;rrfQ] = s;[Q] + S~rdQl is as follows: 

. (A.43) 

The variable Q ('f ) is defined in 0 S 'f < h(3 and K ('f) holds the periodicity K ( 'f + h(3) = 

K('t) . Extending the variable Q ('t) to outside the range 0 S 'f < h(3 by the prescription 

Q ( 'f + n h(3 ) = Q ('f), we can rewrite the influence action 

(A.44) 

(A.45) 

(A.46) 

where 

(A.4 7) 

For realizing the Ohmic dissipation, the spectral density J( w ) is chosen as 11 w . In 

this case the kernel is K0 ('f) = 11 I ( 2 7t'f2 ). Then the effective action is as follows: 

This is the exact expression for the linear coupling and Ohmic dissipation. For the actual 

application this effective action is calculated by several ways . 

Appendix B 

Time-Convolution and 

Tirne-Convolutionless Equations 

In this chapter, we consider the two equations obtained by the weak-coupling expansion 

in the projection method; There are a time-convolution (TC) equation and a time­

convolutionless (TCL) equation. 

Consider the following linear differential equation: 

ocr(t ) = Lcr(t) 
at ' (B.l) 

where L is an arbitrary linear operator and cr( t) is an arbitrary variable describing the 

state of the whole system. In the present case, we assume that the linear operator L can 

be decomposed into two parts, L0 and L 1 ; L0 describes the time evolution of the subsystem 

A that we are interested in and L 1 is the time-evolution operator of the remaining part B 

of the system. We express such decomposition as L = L0 + y L 1 with a coupling constant 

y. 

When we are interested in the dynamics of the subsystem A, the effects of the remain­

ing system B can be projected to the dynamics of A by the projection method. Before 

carrying out the process of the projection, we describe the equation in the interaction rep­

resentation. Expressing the variable in the interaction picture as ofl) = exp (- L0 l ) cr( t), 

we get 

(B.2) 

with the commutation relation [L0 , exp ( - Lot )] = 0. Defining the operator as L1 (t ) = 
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e- Lol l eLoL we obtain 
1 ' 

a&(t ) - ~ 
-- = yl J( t )CY (t ) . 

at 
(B.3) 

Hereafter we deal with the above equation for the renormalizing the effects of the system 

B according to the projection method. 

We define the projector that projects the variable belonging to the subsystem B to 

the subsystem A as P and the conjugate projector Q is defined through the identity 

decomposition 1 = P + Q. 

Using them, we obtain the following two equations: 

_aP_ &_(_t) = yPlJ(t)P&(t) + yPlJ(t) Q&(t) , 
at 

aQ&(t ) = yQL,(t )P&(t) + yQldt )Q&(t) 
at 

The solution of the second equation can be described as 

Q&( L) = Q+( L, L0 )Q&(t0 ) -1 JL dsQ+(t, s)yQl1 (s )P&(s ) 
t o 

formally. Here we define the operator Q+ ( t, s ) as 

where T represents the chronological ordered product. 

(B.4) 

(B.5) 

(B .6) 

(B.7) 

When the formal solution is substituted into the Equation (B.4), we obtain a TC 

equation. Actually we get 

aP&(t ) - -
at = yPld t )P&(t) + yPlJ(t)Q+(t, t 0 ) Q&(t 0 ) 

+ yPlJ(t ) JL dsQ+(t, s)yQl1(s )P&(s) . (B.8) 
Lo 

This is a time-convolution equation that is same as one obtained in Sec. 6.1. 

From the original equation (B.3), the formal solution of &(t ) is described as 

fr( l ) = T exp ( y L, dl1 L,( tJ)) IT( t 0 ) • (B.9) 

Defining the time-evolution operator Q_ ( t , s ) as 

g_(t , s)= 'fexp(-y fdt , L, (t !l ) , 

we can write &( s ) ( s < t ) as 

&(s ) = Q_ (t, s )&(t ) . 

Substituting this into the formal solution (B .6), we get 

Q&( t) = Q+ ( t , t 0 ) Q&( t 0 ) + JL dsQ+( t, s )yQl J( s )PQ_( t, s )&( t ) 
t o 

Thus we get the explicit description of Q&(L) as 

Q 0" ( t) = ( 1 - I ( t) ) - 1 
( Q + ( t, t 0 ) Q & ( t 0 ) + I ( L) P & ( L) ) 

where 

I ( t) = y J L ds Q + ( t, s) Q l, ( s) P Q _ ( t, s) . 
lo 
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(B .lO) 

(B .ll) 

(B .12) 

(B .13) 

(B.14) 

Substituting this into the equation (B.4), we obtain a time-convolutionless equation: 

where 

_aP_ O"_(t_) = K(t)PO"(t) + K(L )Q+( L, t o) QO"(t o) , 
at 

K( t ) = yPlJ(t )( l - I ( t )) - 1 
• 

(B .15) 

(B .16) 

The TC and TCL equations obtained above are exact equations. Thus, we can study 

the dynamics of the subsystem A, solving these equations. But, in practical studies, it 

is difficult to solve them analytically or numerically. Therefore some approximation is 

sometimes preferred. Here consider the weak-coupling expansion for two equations . 

First we expand two chronological ordered time evolution operators by y up to suf­

ficient order; We obtain 

(B .17) 

(B.18) 
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With these series, we expand the TC equation by y . Then 

_aP_ 8_(t_) = yPf;" (t ) (P8(t ) + Q8(to)) 
at 

+ y 2 It dt1 PG ( t ) Qld t,) (P<J( t,) + Q<J( to)) 
to 

+ y 3 It d t 1 It, d t 2 P l 1 ( t) Q l ,( t,) Q l ,( t 2) ( P 8 ( t 2) + Q <J (to) ) 
to lo 

+ y 4 Il dt 1 It, dL2Il
2 

dt3Pl1(t )Ql,(t,)Ql,(t2)Ql, (t 3) (P8(t3) + Qo·(to)) 
to lo lo 

+ O (y 5 ) (B.19) 

is obtained. If the initial condition is taken to be Q<J( t 0 ) = 0, the equation becomes 

aP<J(t) ---
at = yPl, (t)P<J(t) 

+ y 2 It dt 1 Pl ,( t ) Ql ,( t,)P<J( t,) 
lo 

+ y 3 Il dt, Ill dt2Pl, (t)Ql, (t, )Ql,(t2) P<J(t2) 
l o l o 

+ y4 Il dt, I ll dl2IL
2 

dt3Pl, (t )Ql, (t,)Ql, (t 2) Ql,(t3)P8(t3) 
t o lo l o 

+ O(y 5 ) . (B .20) 
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Similarly the expansion of the TCL equation is obtained as 

a Po-( t ) -
at = yPl,(t) (P<J(t) + Q<J(t 0 )) 

+ y 2 It d t 1 P l 1 ( t ) Q l 1 ( t,) ( P 8 ( t ) + Q 8 ( t 0 )) 

to 

I
t It, 

+ y 3 dt1 dt2 (Pl 1(t )Ql,(t,)Ql1(t2) - Pl1(t )Ql,(t2)Pf;" (t ,) ) 
to to 

(P<J( t ) + Q<J( to)) 

+y4 It dt1 It , dt2I
12 

dt3 (Pl,(t)Ql,(t,)Ql,(t2) Ql,(t3) 
l o t o t o 

+ Pl, (t ) Ql, (t3)Pl, (t2 )Pl1 (t 1) 

- Pl1 (t)Ql, (t, )Ql1 (t3)Pl1 (t2) 

- Pl1 (t)Ql 1 (t2)Ql1 (t3)Pl 1 (t 1) 

- Pl, (t)Ql, (t2)Pl, (t, )Ql1 (t3) 

- Pl,(t)Ql1(t3)Pl1 (t,)Ql1(t2)) (P<J(t) + Q<J(t 0 )) + O(y5 ) . (B .21) 

If the initial state satisfies Q8(t0 ) = 0, the part (P8(t ) + Q<J(t0 )) is replaced by P<J(t ). 

In the expansion of the TC equation, to avoid a memory integral, the Markovian 

approximation is sometimes adopted; That is, the part of the integrand P8( s) ( s < t ) 

is replaced by the P<J(t ). Then the both expansions of TC and TCL equations are 

identical up to the order y 2 ; Difference appears in higher order than y 2 . 

To clear the difference between the expansion of TCL equation and one of the TC 

equation with the Markovian approximation, we choose the projection operator P as 

taking the avarage for the subsystem B, which operation expresses as, for instance, 

Pl1 ( t ) = (l 1 ( t )) . Then the expansion of TC equation with the initial state satisfying 
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the condition Q<J(t0 ) = 0 becomes 

a (~~t ) ) = y (L, (t ))(<J( t )) 

+ y 2 J L dt 1 (( l ,( t )l J( t J))- (l J( t ))( l, (t, )) ) (<J(td ) 
Lo 

+ y3 f t d t 1 f t 1 

d t 2 { ( L, ( t ) L, ( t d l1 ( t 2) ) - ( l, ( t) l, ( t d ) ( l, ( t 2 ) ) 

to Lo 
- (l 1 (t )) (l 1 (t1 )l 1 (tz )) + (L, (t))(l1 (t1 ))(l, (tz)) }(<J(tz)) 

+ y4 Jt dt, J t
1 

dtz JL
2 

dt3 ( (l1 (t)l1 (t1 )l1 (tz)l1 (t3)) 
Lo Lo Lo 

- (l 1 (t) ) (l 1 (t, )l1 (tz)l1 (t3 )) - (l, (t)l1 (t, )) (l1 (tz)l1 (t3)) 

- (l 1(t)l,(tJ)l, (t z)) (l,(t3) ) + (l,(t )l1 (td)(l1 (tz))(l,(t3)) 

+ (l 1 (t ))( l 1 (t 1 )l1 (t2 ))(l1 (t3)) + (l1 (t))(l1 (t, ))(l, (tz)l1 (t3) ) 

- ( l d t ) ) ( l, ( t ,) ) ( l 1 ( t 2) ) ( l 1 ( t 3 ) ) ) ( <J ( t 3 ) ) + 0 ( y 5 
) 

= y (l1 (t) )pc(<J (t)) 

+ y 2 JL dl,(l1 (t)l,(t1))pc(<J(t, )) 
Lo 

+ y 3J L dt, JL
1 
dtz(l,(t)l, (t,)l,(tz))pc( <J(tz )) 

Lo Lo 

+ y 4 JL dt1 Jt
1 

dt2 J L
2 

dt3(l1 (t)l1 (t1 )l1 (tz)l1 (t3))pc(<J(t3)) + O (y 5
) 

Lo to Lo 

where (A ( t J) ... B ( ln)) pc is a partial cumulant defined by 

, (B .22) 

(A(L ) B( 4 )) ' ' (- l )(numberofpartition)- 1 
1 ··· Ln pc = L_ TI (A(t1 ) ... )( ... ) ... ( .. B(tn )) , 

all partitions keep the order of t i 

(B.23) 

that is, the summation of the product of the averaged operators with corresponding sign 

for all partitions keeping the order of the operator . 

In the same way, we average the TCL equation: 

a(~~t ) ) = y(L, (t ))(<J(t)) 

+y2 J t dt1 ((L1(t)l1(t,) )- (l,(t )) (l ,( t ,)) ) (<J(t )) 
to 

+ y 3Jt dt1 Jt
1 

dt2 ((l,(t)l1(t1)l1(t2 ) ) - (l, (t)l,(t,) )( l,(tz)) 
to to 

- (l1 (t))(l 1 (t 1 )l 1 (t 2))- (l 1 (t)l 1 (t z))( l 1 (t, )) 

+ (l1 (t))(l 1 (t1 ))(l1 (t2 )) + (l, (t ))( l 1 (tz))( L, (t, )) ) (<J(t )) 

+ y 4 Jt dt, Jt
1 

dt2 JL
2 

dt3 ( (L, (t)lJ(t,)lJ(t2 )l, (t3)) 
to to to 

- (l 1(t)l, (t 1)l 1(t 2 ))(l 1(t 3))- (l 1(t )l, (t 2 )l 1(t3)) (l1(t1) ) 

- (l 1 (t )l, (t 1 )l 1 (t 3) )(l 1 (t z)) - (l, (t ))( l 1 (t 1 )l, (t z) l 1 ( t3)) 

- (l 1 (t )l 1 (t 1 ))( l 1 (t 2 )l 1 (t 3)) - (l 1 (t )l, (t 2 ))( l 1 (t 1 )l 1 ( L3)) 

- (l,(t)l1(t3)) (l 1 (t ,) l,(t2 )) + (l 1(l )l,(L ,))( l ,( t 2 ))( l 1(t3)) 

+ (l1(t)l 1(t1)) (l 1(t3))(l1(tz) ) + (l 1(t)l1(t2) ) (l,(t3))(l , (t, )) 

+ (lJ(t)l 1 (t 2))(l,(t,))( l 1 (t 3)) + (LJ( t )l d t 3))(l ,( t J))( l ,( t z)) 

+ (l 1(t )l 1(t3))( l 1(t 2))( l 1(t, )) + (l 1(t ))( l 1(t 1)l ,( t 2 ))(l1(t3)) 

+ (l 1 (t ))( l 1 (t 1 )l, (t 3))(l, (t z)) + (l, (t ))(G ( l2) l1 ( l3)) (l 1 ( t , )) 

+ (l 1(t))( l 1(t3))( L, (t 1)l, (t z)) + (L, (t ))( l, (t, ))(l 1 (L2)l, (t 3)) 

+ (l 1(t ))( l 1(t 2 ))( L, (t 1)l, (t 3)) - (L, (t ))( l ,( t, ))(L1(t 2 ))( l 1(t 3)) 

- (l 1 (t ))( l 1 (t 1 ))( l, (t 3))(l, (t z)) - (l, (t ))( l, (t z))(L1 (t 3))(L1 (t 1 )) 

- (l 1 (t ))( l 1 (t2 ))( l, (t1 ))(l, (t3)) - (l, (t ))( l, (t 3))(L, (t 2))(L, ( L1 )) 
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- (l 1 (t ))( lJ(t3))(l, (t, ))( l d t z))) (<J (t )) + O (y 5
) . (B .24) 
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Using a definition of the ordered cumulant , we can express the above one as 

(B.25) 

where (A (t 1 ) ... B(t n))oc is the ordered cumulant, which is an ordinal cumulant but keeping 

the chronological order and one of operator products. 

Clearly we can find that the cumulant appearing in series of the TC equation with 

Markovian approximation and one in TCL equation are different for the higher order 

than three but the structure of both series expantions are identical for all orders. In the 

case of TCL equation, only the weak coupling expansion is applied. Thus the higher­

order term of the series expansion is significant for appropriate situations . In the case of 

TC equation, on the other hand, the higher-order term of the series expansion is hardly 

justifiable. Therefore, in the actual situation, we should use the series expansion of TCL 

equation for the study of dynamics. 

Appendix C 

N urnerical Routines 

C.l Exponential Integrals 

The functions A p (x) and Am (x ) are calculated with the following FORTRAN subrou­

tines. For small argument, Taylor expansion is used for the calculation. In contrast, for 

large argument, asymptotic expansion is used. In the intermediate range, we use numer­

ical integration for getting numerical accuracy. This routine requires several routines 

in "Numerical Recipes in FORTRAN 2nd ed." [53]: qromo, polint, midpnt and midinf 

routines. 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

real*8 function ei(x) 

real*8 x 

ei = -exp(- x)/x 

return 

end 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

real*8 function eibb(x) 

real*8 x 

if(x.eq.OdO) then 

eibb = 1d0 

return 

end if 
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eibb = (exp(x) - 1d0)/x 

return 

end 

APPENDIX C. NUMERICAL ROUTINES 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 

real*8 function eeibx(x) 

c 

c 

c 

c 

c 

c 

c 

c 

c 

c 

this function calculates 

exp( - x) \bar{Ei}(x), where x must be positive, 

with Taylor expansion, numerical integration, 

and asymptotic expansion, 

calling numerical integration subroutines, 

qromo, polint, midpnt and midinf, which can be 

obtained from Numerical Recipes in FORTRAN 2nd ed. 

implicit none 

integer maxit 

real*8 x,eps,euler,fpmin 

parameter (euler=.57721566490153) 

parameter (eps=t.Od-15) 

parameter (maxit=300000,fpmin=1.d-30) 

integer k 

real*8 fact,prev,sum,term,rx,zero 

parameter (zero = OdO) 

real*8 eibb,res2 

external eibb,midpnt 

if(x.le.OdO) stop 'bad argument in eibar' 

if(x.lt.fpmin) then 

eeibx = (log(x)+euler)*exp( - x) 

else if(x.le.3)then 

sum = OdO 

C.l. EXPONENTIAL INTEGRALS 

1 

2 

fact 1d0 

do k 1,maxit 

fact fact*x/k 

term fact/k 

sum = sum+term 

if(term.lt.eps*sum) goto 1 

end do 

stop 'series failed in eeibx' 

eeibx = (sum+log(x)+euler)*exp(-x) 

else if(x.gt.30) then 

sum = OdO 

term = 1d0 

rx 1d0/x 

do k 1 ,maxit 

prev term 

term term*k*rx 

if(term.lt.eps) goto 2 

if(term.lt.prev) then 

sum = sum+term 

else 

sum = sum-prev 

goto 2 

endif 

end do 

eeibx 

else 

call 

eeibx 

end if 

return 

end 

(1dO+sum)*rx 

qromo(eibb,zero,x,res2,midpnt) 

= (res2+log(x)+euler)*exp( - x) 

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc 
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c 

c 

c 

c 

c 

c 

c 

c 

c 

APPENDIX C. NUMERICAL ROUTINES 

real*8 function eeix(x) 

this function calculates 

exp(x) Ei( - x), where x must be positive, 

with Taylor expansion, numerical integration, 

and asymptotic expansion 

calling numerical integration subroutines, 

qromo, polint, midpnt and midinf, which can be 

obtained from Numerical Recipes in FORTRAN 2nd ed. 

implicit none 

integer maxit 

real*8 x,eps,euler,fpmin 

parameter (euler=.57721566490153) 

parameter (eps=1.0d- 15) 

parameter (maxit=300000,fpmin=1.d-30) 

integer k 

real*8 fact,prev,sum,term,tmp,rx,infty,res,ei 

external midinf,ei 

parameter (infty = 1d30) 

if(x.le.OdO) stop 'bad argument in ei' 

if(x.lt.fpmin) then 

eeix = (log(x)+euler)*exp(x) 

else if(x.le.3)then 

sum = OdO 

fact = x 

do k 1 ,maxi t 

tmp 2*k*(x-2*k) - x 

tmp tmp/(4*k*k*(2*k- 1)) 

term = fact*tmp 

sum = sum+term 

C.l. EXPONENTIAL INTEGRALS 

1 

2 

fact = fact*x*x/(2*k*(2*k+1)) 

if(abs(term) . lt.eps*abs(sum)) goto 1 

end do 

stop 'series failed in eebx' 

eeix = (sum+log(x)+euler)*exp(x) 

else if(x.gt.30) then 

sum = OdO 

term = 1d0 

rx 1d0/x 

do k 1,maxit 

prev term 

term -term*k*rx 

if(abs(term).lt.eps) goto 2 

if(abs(term).lt.abs(prev)) then 

sum = sum+term 

else 

sum = sum-prev 

goto 2 

end if 

end do 

eeix -(1dO+sum)*rx 

else 

call qromo(ei,x,infty,res,midinf) 

eeix = res*exp(x) 

end if 

return 

end 
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