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1. Introduction 
 Progress towards integrating computational 
optimization with Computational Weld Mechanics (CWM) 
is presented. Optimization requires evaluating a large 
number of CWM problems.  To be practical, the 
computing time for the CWM must be short and the time to 
set up the necessarily large number of CWM projects must 
be short. The complexity borne by the user in setting up the 
projects and in post-processing the projects must be 
minimized. Two examples are shown for parametric design 
space exploration of an edge welded bar of Aluminum 
5052-H32. The combinatorial optimization problem of 
choosing the sequence of welds that minimizes distortion in 
a welded structure is briefly discussed.The CWM is 
coupled to the optimization framework by a Design of 
Experiment (DOE) matrix.    
 
2. Background 
 In the foreword of [1] Hamming states, “The purpose 
of computing is insight, not numbers.” The authors’ believe 
that insight is very important in CWM. This paper takes the 
view that the goal of CWM is to optimize the design of 
weld procedures, welds and welded structures. To achieve 
that goal CWM must be integrated with computational 
optimization.  
 
2.1 Optimization 
 Computational optimization of structures developed 
rapidly in the period from 1980 to 2000 in parallel with 
CWM but the two have been and largely remain quite 
separate disciplines. The exception has been the work of 
Michelaris [2] and the references therein. Van der Platts [3] 
has a nice introduction to computational optimization. 
Nocedal and Wright [4] and Bertsekas [5] have more 
advanced mathematics. Optimization requires a cost or 
objective function. In this paper the cost function is a 
function of design variables and this function is to be 
minimized or maximized. Optimization has three arms; 
continuous optimization, combinatorial optimization and 
integer programming. In continuous optimization, the 
design variables are at least locally continuous functions, 
e.g., in structures, the cost function is often the weight or 
stiffness of a structure. In addition to the cost function, 
equality and inequality constraints are usually imposed. In a 
stress analysis, the conservation of momentum, i.e., the 
balance of forces, and the constitutive equations are 
equality constraints.  Examples of inequality constraints 

are variables defining the weight, volume, area or length 
that each must be greater than zero.  

The optimization process starts with an initial guess or 
trial solution.  The continuous optimization process then 
follows a path in the `mathematical space’ defined by the 
design variables in the cost function. The minimum 
requirement for continuous optimization is the capability to 
evaluate the cost function for any feasible set of design 
variables, i.e., at any point in the feasible design space. If in 
addition one can evaluate the gradient of the cost function 
wrt to the design variables if it exists, then the computing 
time can usually be reduced at the cost of implementing and 
validating the software needed to evaluate the gradient. If in 
addition, the second derivative of the cost function can be 
evaluated if it exists, then computing time could usually be 
further reduced at the cost of more software development. 
Using either or both the gradient and second derivative 
might make the setup more difficult and time consuming 
for the user. 
 In combinatorial optimization, one seeks the optimal 
combination of some set of variables, e.g., choosing the 
sequence of weld joints or weld passes that minimize 
distortion is an important and challenging problem in 
welding. The fundamental mathematical structure in 
combinatorial optimization is a graph. The solution is the 
path in this graph that minimizes the objective function. A 
famous combinatorial optimization problem is the 
travelling salesman problem [6]. This class of problems is 
often very challenging. For example, to choose the optimal 
sequence of 10 welds when each weld can be welded either 
backward or forward, one must choose from 10^2×10! = 
362,880,000 sequences. Clearly one could not evaluate all 
of these sequences using CWM. 
 In integer programming problems, one chooses from 
finite set, e.g., choose a pipe size from the sizes in a given 
catalogue.  Space does not permit integer programming to 
be discussed further in this paper. 
 
2.2 Design of Experiment 

Design of Experiments (DOE) has a long history in 
mathematics. Taguchi [7,8,9] is arguably the most notable 
contributor to DOE in manufacturing and engineering.  A 
fundamental mathematical structure in DOE is the DOE 
matrix. Each row in this matrix defines one experiment and 
each column in that row defines the value of the design 
variable associated with that column. The statistical theory 
that can be used to design an optimal DOE matrix is mature.  
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Such a design is based on the available knowledge. Usually 
the DOE is intended to specify physical or real experiments. 
However, the DOE matrix can be used to specify numerical 
experiments.   

These various optimization types are all mature 
disciplines with many textbooks, journals and conferences. 
Only rarely do these papers deal with optimization of welds, 
welding procedures or welded structures.  
 
2.3 Optimization, Welding and CWM 

Arc welding technology began slightly more than 100 
years ago. It was largely developed by experiment, i.e., 
largely trial and error tests guided by people’s intuition and 
insight. Although much of electrical engineering was based 
on Maxwell’s equations, the magneto-hydro-dynamics of 
the arc and the CFD of the weld pool were too complex to 
be solved and to a large extent remain open problems today. 
Distortion and residual stress involves involve plastic 
deformation. It was not until 1970 that Ueda [5] did the first 
FEM computation of residual stress in welds. From 1980 to 
2000 CWM research evolved rapidly. From 2000 to the 
present, CWM is being adopted rapidly by industry.  
 In the authors’ judgment, CWM is currently not well 
integrated with optimization software. The important book 
[7], edited by Michelaris, describes the state of the art of 
techniques to minimize distortion and residual stress in 
welded structure. The fact that none of the examples in this 
book were solved by integrating formal computational 
optimization and CWM suggests that there is work to be 
done. 
 Since 2007, the authors have worked to integrate 
computational optimization and CWM.  In this paper, a 
brief overview of several examples is provided to try to 
present an overview of what has been accomplished. 
Section 2.4 discusses the notion of a parametric design 
space.  Section 3 discusses minimizing camber in an edge 
welded bar by prebending, i.e., prescribing displacements, 
and by applying side heaters.  Section 4, discusses direct 
optimization with least square polynomials to optimize 
prebending.  Section 5, briefly summarizes work on 
computing the optimum sequence of weld passes to 
minimize distortion. Section 6 provides a closely statement.  
 
2.4 Parametric Design Space 

A continuous problem with a quite large range of 
possible variation in the design parameters could be 
discretized by a certain step size for each design parameter 
for a full or reduced set of discretized points in a DOE 
matrix to give a well-covered map from the design 
parameters to a response surface, i.e., parametric design. 

The parametric design space for the authors’ computer 
model for CWM has about 300 parameters. Most 
optimization and control applications of CWM are defined 
on a small sub-space of this parametric space, often with 
dimension less than 10, i.e., fewer than 10 design 
parameters would be varied. The CWM parameters can be 
categorized as below. 

 Weld Process, e.g., process type, weld power, 
travel speed, double ellipsoid shape, and so on.  

 Weld Joint, e.g., weld path, weld start/end time, 
start/end position, delay times, and so on. 

 Weld Sequencing, e.g., number of 
sub-passes/weld path, different sequencing 
patterns, sequential/simultaneous patterns, 
inter-pass temperature, and so on.  

 Fixtures & Boundary Conditions, e.g., Dirichlet 
/ Neumann BCs, clamping position, apply/release 
time, convection coefficient, contact parameters, 
and so on.  

 Chemical Composition, e.g., carbon, alloying 
components, uncertainty range, and so on of base 
metal and filler metal. 

 Material Properties, e.g., temperature dependent 
specific heat, thermal conductivity, initial grain 
size, initial hardness, Young modulus, Poisson’s 
ratio, yield stress, hardening modulus, and so on. 

 Thermal, Microstructure, and Stress Simulation 
Parameters, e.g., solver type, heat source model 
used, number of NR iterations, convergence 
criteria, and so on. 

 Meshing and Parts, e.g., mesh type, level and 
type of refinement, coarse-fine perturbation, rigid 
body movement, contacts, and so on. 

 Initial State, e.g., data flow from other projects, 
re-start time step, result mapping, and so on. 

These parameters can vary in time or space during 
welding and cool-down after welding. Increasing the 
number of design parameters enlarges the parametric design 
space. A parametric design with 5 to 10 parameters is a 
quite large space to explore. Considering that a CWM 
model can have roughly 300 parameters, unless a small 
subset of parameters is selected, exploring a parametric 
design would not be feasible. For example, to compute 
Tagauchi’s sensitivities [8,9,10] for 15 design parameters 
with 3 levels, L36 requires 36 analyses to screen the 
parameters. Selecting 8 parameters with 3 levels for a full 
factorial analysis requires 3^8 = 6,561 analyses to compute 
a local approximation to the response surface. A fractional 
factorial analysis still requires a large number of analyses. 
To compute a response surface requires many more design 
points. Using an automated framework and depending on 
the problem’s characteristics, exploring a parametric design 
with less than 10 parameters could be feasible. 

At this time, our parametric design analyses for CWM 
usually solves tens or hundreds of design points to explore 
or map the associated design space specified by a 
parametric design DOE matrix to find optimal designs. In a 
parametric design, algorithms that use DOE matrices for 
more efficient searching are preferred. Such DOE matrices 
take advantage of the fact that multiple trial solutions can 
be obtained simultaneously in contrast to sequential 
algorithms that do search based on solving one-problem at a 
time. In a framework for exploring a parametric design 
space using DOE matrices, the number of processors and 
cores allocated to the problem affects the number of rows in 
the DOE matrix. To use the available processors and cores 
efficiently, the total number of projects, (rows) in a DOE 
matrix should be divisible by the number of cores or 



Transactions of JWRI, Special Issue on WSE2011 (2011) 

57 

processors that are to be utilized. 
 
3. Minimizing Distortion in an Edge Welded Bar 
 An edge weld on a 152 x 1220 x 12.5 mm 
Aluminum bar shown in Fig. 1 was employed for validation 
in [11]. In this paper this edge-welded-bar test is used as an 
example of minimizing the distortion in the bar due to an 
edge weld. The objective function is the maximum 
displacement on the bottom surface of the bar after 
cool-down. The mesh employed has 6600 8-node brick 
elements and 9680 nodes. 
 The material was aluminum 5052-H32 alloy with 
chemical composition Al 96.7, Mg 2.5, Cr 0.25, Cu max 0.1, 
Fe max 0.4, Mn max 0.1, Si max 0.25, Zn max 0.1 Wt %. 
The temperature dependent material properties of Al 
5052-H32 were given in [12] and this data was employed in 
the analysis of this test. The gas metal-arc-welding process 
was employed to weld the specimen and the welding 
parameters were current 260 amperes, voltage 23 volts, 
travel speed 7.34 mm/s, filler metal Al-4043 with 1.6 mm 
wire diameter, wire feed speed 170 mm/s and the shielding 
gas was Argon. The specimen was allowed to cool to 
ambient temperature after welding was completed.  
 

 

 
3.1 Nodal Pre-bending Technique 
 In this technique, the bar is pre-bent during welding by 
prescribing the y-displacement of FEM nodes on the 
bottom surface of the bar.  Point pre-bending prescribes 
nodes on the end edges of the bottom surface to zero 
vertical displacement and prescribes nodes on a line in the 
bottom surface normal to the welding direction prescribed 
to five different values. In addition, the delay time after the 
weld was completed was designated a design variable.  
Nine values of delay times were chosen. All pairs of 5 
prescribed displacements and 9 values of delay times 
ranging from 0 to one hour were chosen.  This generated a 
DOE matrix with two columns for the two design variables 
and 45 rows for the 45 experiments.  
 In Fig. 3, the vertical axis is the value of the objective 
function, i.e., the maximum y-displacement. The horizontal 
axes are the maximum prescribed displacement and the 

delay or waiting time after welding to release the prescribed 
displacement.  The intersection of the horizontal zero 
plane and the tilted surface is the curve of design 
parameters that generate zero maximum y-displacement. 
 Without pre-bending, the camber in the beam was 
3.8 mm after cool-down. The camber after cool-down for 
the 45 experiments is shown as dots in Fig. 2. Each curve 
shows a fitted curve for one prescribed y-displacement. 
Curves from bottom to top correspond to 7.6, 6.67, 5.7, and 
4.75 mm of prescribed y-displacement.  

The pairs of values of prescribed displacement and 
delay that generate zero camber is shown in Fig. 3 which is 
intersection between a 3D plot of Fig 2 and a flat plane 
showing zero final displacement.  
 
 

 
 

 
Figure 3 The pairs of values of the nodal prescribed 
displacement and delay that generate zero camber 

3.2 Parabolic Pre-bending Technique 
 In this technique, the bar is pre-bent during welding by 
prescribing the vertical y-displacement of all nodes on the 
bottom surface of the bar to a parabola of specified 
amplitude. The maximum value of the parabola was 
prescribed to five different values. Again, the delay time 
after the weld was completed was designated a design 
variable.  Nine values of delay times were chosen. All 
pairs of 5 prescribed displacements and 9 values of delay 
times ranging from 0 to one hour. This generated a DOE 
matrix with two columns for the two design variables and 
45 rows for the 45 experiments. One experiment was 

Figure 1 Camber in an edge-welded beam with no mitigation 
of distortion. 

Figure 2 Points on each curve show the objective function for 
a nodal prescribed displacement. 
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dropped to make the number of experiments divisible by 
four so that the 44 experiments could run in 11 groups of 4 
on a quad core processor. 

The camber after cool-down for the 44 experiments is 
shown in Fig. 4 for curves corresponding to 9.5, 8.55, 7.86, 
and 6.67 mm of parabolic prescribed displacement from 
bottom to top. The curve showing the pairs of values of 
prescribed displacement and delay that generate zero 
camber is shown in Fig. 5. 
 

 
Figure 4 Points on each curve show the objective function for 
a parabolic prescribed displacement. 

 

 
Figure 5 The pairs of values of the parabolic prescribed 
displacement and delay that generate zero camber. 

 
4 Side Heater Technique 

In a continuous response surface of a given system, if 
the initial pattern cannot find the optimum, there are 
direct-search algorithms [13, 14, 15] to learn from current 
observation and find a possible path toward an optimum. 
The algorithm repeats the learning to follow the path until it 
reaches the minimum or some imposed limits.  

Okerblom [16] discussed different techniques for 
mitigation of distortion from welding. One of the 
techniques is to apply a transient thermal tension by side 
heaters [17]. This technique introduces a significant tension 
around the weld. The side heater’s power, heated area, the 
distance from the weld either longitudinal or transversal are 
the design parameters chosen for this technique. Song et al 
[18] solved a similar problem  

The side heater source is characterized by a double 
ellipsoid model [12] moving parallel to the weld path. The 
power is computed from ηVI; side heater efficiency, current 
and voltage. Power is varied by changing η from 0.2 to 0.7 
using fixed I and V equal to 260 amp and 23 V. Four 
semi-axes lengths of the parameters of the double ellipsoid 
geometry are assumed equal and therefore form a sphere. In 
effect, the area formed by the intersection of this sphere and 
the surface of the bar is the area that absorbs the power and 
therefore is one of the side heating parameters. We 
characterized this parameter, area, by a single value that is 
the radius of the sphere, R. This parameter ranges from 10 
to 70 mm. The quasi-transient position of the side heater 
wrt the weld, can be moved ahead/behind the arc or shifted 
closer or farther from the weld path. We put the origin of 
the coordinate system on the bar’s centerline and exactly 
below the weld tip as shown in Fig. 6. The relative position 
of the side heater therefore can move in the X or Y 
direction. Finally, the optimized side heater design 
parameters are; η = 0.6, R = 6 cm, (X, Y) = (0.012, -0.025) 
mm, denote power, area’s radius, longitudinal and 
transverse shift respectively. 

 
Figure 6 Origin of the coordinate system. X is red and Y is 
yellow. 

Side heating could add plastic strain to the bar if the 
power density is too high. To avoid forming such plastic 
strain, power is constrained to be in the gray area in Fig. 7. 
This plot is drawn based on the plastic strain computed by 
FEM analyses when the side heater is applied with no weld. 
The gray area shows no-plastic-strain zone. Our analyses 
show that if the maximum temperature in the side heater 
stays below 480 K, plastic strain does not form. 

 

 
Figure 7 Constraint showing the feasible region for the side 
heater's power and area. 
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A regular direct-search moves to a new trial optimum 

chosen from the result of the last DOE matrix and forms a 
new DOE-matrix for the next iteration. Coupling a 
least-square approximation in a regular direct-search 
algorithm followed the path to the minimum more 
efficiently in the neighborhood of a smooth basin. However 
the least-square approximation is not expected to work as 
well when the response surface is not a smooth basin, e.g., 
if the response surface is very wavy or rough. This is very 
similar to the expected behavior of a Newton-Raphson 
algorithm. The regular and least-square direct-search 
algorithm are illustrated graphically in Fig. 8 to show the 
path followed by each algorithm to the minimum. 

 

 
Figure 1 The regular and least-square direct-search are shown 
in red (the longer path) and blue (the shorter path) 
respectively. 

 
5. Optimal Sequence of Weld Passes 

Space does not permit a detailed discussion of optimizing 
the sequence of weld passes.  Voutchkov et al [19] present a 
novel algorithm for optimizing a sequence of 6 weld 
sub-passes in which each weld pass can be welded in either 
direction. There are 46,080 possible sequences in the graph. 
They construct a graph with 27 sequences such that every 
weld pass is welded in both directions at least once, i.e., 
each edge of the graph is an ordered pair of weld sub-passes. 
Therefore every edge of the complete graph is traversed at 
least once in each direction. They solve these 27 sequences 
as full CWM problems using FEM. From these 27 solutions 
they obtain an estimate of the displacement caused by each 
edge. They construct a simple surrogate model that can 
evaluate  each sequence with 6 multiplies and 6 adds.  
With this surrogate model they can evaluate an estimate of 
the displacement caused by each of the 46,080 sequences. 
They pick the optimal sequence predicted by the surrogate 
model and evaluate it with a full CWM solution. 

Asadi and Goldak [20] used this approach to optimize 
the sequence of welding 6 sub-passes in a 2 pass girth weld 
in a pipe. Currently the surrogate equation must be devised 
for each new type of problem.  Thus it is not a general 

method.  Nevertheless when the surrogate model works, it 
can be a very efficient model for solving for an optimal 
weld sequence.  
 
5. Summary 

The authors have applied these methods to large 
industrial problems, e.g., in a complex machine with tens of 
parts and tens of welds including a 4 m long 8 pass weld 
joining two 50 mm thick plates. In this weld, each weld pass 
was partitioned into 3 weld passes for a total of 24 weld 
sub-passes. The optimal sequence was computed from a set of 
32 sequences. The mesh for this project had 68371 8-node 
brick elements, 90879 nodes and 272,637 DOFs. Each 
sequence was solved with 1360 time steps and required 4 days 
CPU time on one core of processor. The 32 projects were 
solved 16 days by running 8 projects in parallel on a dual 
processor with 8 cores.  

Several examples of integrating computational 
optimization with CWM have been described.  It was argued 
that the following points were important: simple, quick  
generation of variations of the CWM problem in order to 
explore an design space and generate a response surface; a fast 
solver, direct optimization with parallel processing effectively 
reduces total elapsed time and avoids the time, cost and 
complexity of developing software to compute first or second 
derivatives. Some parameters are more difficult to vary, e.g., 
varying the mesh topology or the topology of the geometry and 
changing boundary condition types. However, for many types 
of parameters, the authors have found that it is easy to set up 
parametric problems for CWM.  
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