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Fig. 1.1: Barotropic state law p = f(p) [35].
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Table 1.1: Empirical constants used in k — e turbulence model [63].

Model Cu C:1 Ce2 Ok O

Original k — e 0.09 1.44 1.92 1.0 1.3
Nonequilibrium k —e  0.09  1.15+0.25(P:/e) 1.15+0.25(P;/e) 0.8927 1.15
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Fig. 1.3: Coherent fine vortices in spatially-developing turbulent mixing layer.
(DNS results by Wang et al. [96])
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(b) Front view

Fig. 1.4: Cavitating turbulent shear layer. (Experiment by O’Hern [105])
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Fig. 3.1: Overview of flow field and computational domain.
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Table 3.1: Parameters for simulation.

grid points Nz x Ny x N, 64 x 32 x 32
grid size Ax 0.06D
grid size Ay(= Az) 0.03125D

Reynolds number | Re(= DU/vyp) 1 x 103
Mach number M 0.1
time increment At 1x1073D/U
difference of flux AQ 0.05Q)
Burgers vortex’s r 0.3
parameters v/ v 300 ~ 900
cavitaiton number o 0.1,0.2,0.3,
oo (single phase)
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Fig. 3.2: Time evolution of cavity volume in the computational domain at o = 0.1.
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Table 3.2: Pattern map of cavitation in elementary vortex: (1) inception and dis-
appearance (steady); (2) growth and decay (periodic); (3) surviving
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Fig. 3.4: Instantaneous contours of cavitation and vortex for v/v = 400, o = 0.1

indicated by fr = 0.9 (white) and w, = 4.85 (green) isosurface.
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Fig. 3.5:

Instantaneous contours of cavitation and vortex for v/v = 600, ¢ = 0.1

indicated by fr = 0.9 (white) and w, = 4.85 (green) isosurface.
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Fig. 3.6: Instantaneous contours of cavitation and vortex for v/v = 800, o = 0.1

indicated by fr = 0.9 (white) and w, = 4.85 (green) isosurface.
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Fig. 3.8: Contours of vortex and cavitation indicated by w, = 4.85 (green) and

fr = 0.9 (white) isosurface.
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Fig. 3.12: Predicted circumferential velocity and streamwise vorticity. (blue line :
simulation (7" = 19), red line : simulation (7" = 23), orange line : P,

green line : P»)
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Fig. 3.13: Distribution shift of dissipation rate. (blue line : T = 19, red line :
T = 23 and black line : T'= 27)
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Fig. 4.1: Overview of flow field and computational domain.
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Table 4.1:

Cavitation model parameters for simulation of turbulent mixing layer.

Evapolation (p < p,)

Condensation (p > p)

Case 1
Case 2

C, =100, C; =1
C, =100, C; =1

C, = 10,

C, =100, C; =1

(=1

Table 4.2: Parameters for simulation.
grid points Nz x Ny x N, 800 x 192 x 120
Ax 1.250,,
grid size Ay 0.5214,,
Az 0.8336,,
Reynolds number | Re(= HAU/vp) 1 x 10*
Mach number M 0.1
time increment At 5x 107°H/AU
cavitaiton number o 0.3,0.4,0.5,
oo (single phase)

O0000 41000 case 1000 20000000000000000DO0O0O0O0O0O 4.2
gbobobooooobobuooobobooooobobood

42 000000

04204300000 case 10200000 oO0O0OODOODOOODO 410000000

gjooooooooooooooooooooogogooo
1
Q:§<WijWij_SijSij) (4.3)

00000000000000000000W,;06;; 00000000000000

Ou;
u. :Sij+Wij
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Fig. 4.2: Top and front view of vortices and cavitation at 7" = 15, indicated by

Q@ = 230 isosurface (green) and fr, = 0.999 isosurface (white), case 1.
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Fig. 4.3: Top and front view of vortices and cavitation at 7" = 15, indicated by

(Q = 230 isosurface (green) and fr = 0.999 isosurface (white), case 2.
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(f) T =12.0

Fig. 4.4: Time evolution of vortices indicated by @) = 230 isosurface (front view).
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Fig. 4.5:

(f) T =12.0

Time evolution of vortices indicated by @ = 230 isosurface (top view).
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YA

Fig. 4.6: Velocity vector at z = 0.87 cross-section and streamwise vortex stretched

between two roll-cell vortices indicated by @@ = 230 isosurface (green).
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Fig. 4.7: Distributions of non-dimensionalized velocity along y-direction to confirm

self-similarity law.
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L,

(f) T =12.0

Fig. 4.8: Time evolution of vortices indicated by @ = 230 isosurface (green) and
isosurface of fr = 0.999 (white), at case 1, o = 0.3 (front view).
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Fig. 4.9:

Time evolution of vortices indicated by @ = 230 isosurface (green) and

isosurface of fr, = 0.999 (white), at case 1, 0 = 0.3 (top view).
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(f) T = 3.8

Fig. 4.10: Merging of cavity by vor-
tices pairing indicated by @ = 230 iso-
surface (green) and isosurface of fr, =
0.999 (white), case 1.
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Fig. 4.11: Time evolution of cavity
area passing through three different
y — z cross sections (0 =0.3,5 < T <

55), case 1.
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(f) T =12.0

Fig. 4.12: Time evolution of vortices indicated by @ = 230 isosurface (green) and
isosurface of fr = 0.999 (white), at case 2, o = 0.3 (front view).
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Fig. 4.13:

(f) T =12.0

Time evolution of vortices indicated by @ = 230 isosurface (green) and
isosurface of fr, = 0.999 (white), at case 2, 0 = 0.3 (top view).
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Fig. 4.14: Modification of Reynolds
stress Rao profiles by cavitation (black:
Non-cavitating, red: o = 0.5, blue:

o = 0.4, green: o = 0.3)
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blue: o = 0.4, green: o = 0.3)
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Fig. 4.16: Streamwise distributions of maximum values of Reynolds stress compo-
nents observed in y — z cross-section. (black: Non-cavitating, red: o = 0.5,
blue: o = 0.4, green: o = 0.3)
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Fig. 4.17: Streamwise distribution of time-averaged cavity area passing through
y — z cross sections. (red: o = 0.5, blue: o = 0.4, green: o = 0.3)
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Fig. 4.18: Streamwise distribution of time-averaged w,. (black: Non-cavitating, red: o =
0.5, blue: o0 = 0.4, green: o = 0.3)
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(b) 0 =0.3

Fig. 4.19: Front view of instantaneous streamlines composed of spanwise-averaged u

and v.
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Fig. 4.20: Spanwise vortices shedding frequency at z/H = 6. (black: single phase,
green: o = 0.3)
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Fig. 5.8: Contour of ratio between psgs and pksas by least square method.
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Fig. 5.11: Contour of cross-correlation between psgs and pksgs. Filter
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Fig. 5.15: Time evolution of actual PDF (red) and estimated PDF by Gaussian
(green) at x/H = 5.45, from T = 54.05 to T" = 54.50. The black dashed
line indicates the vapor pressure set for the simulation of Fig. 4.2(b).
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Fig. 5.16: Time evolution of actual PDF (red) and estimated PDF by Gaussian
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line indicates the vapor pressure set for the simulation of Fig. 4.2(b).
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Table 7.1: Parameters for simulation.

grid points Nz x Ny x N, 200 x 48 x 30
Ax 50,
grid size Ay 2.086,,
Az 3.330,,
Reynolds number | Re(= HAU/vyp) 1 x 10*
Mach number M 0.1
time increment At 5x 107°H/U
cavitaiton number o 0.3, 00 (single phase)
PDF model constant C 5,7,10
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Fig. 7.1: Time evolution of vortices indicated by () = 100 isosurface (front view).
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(f) T =12.0

Fig. 7.2: Time evolution of vortices indicated by ¢ = 100 isosurface (top view).
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(f) T =12.0

Fig. 7.3: Time evolution of vortices indicated by @ = 100 isosurface (green) and
isosurface of fr, = 0.999 (white), without PDF model (front view).
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Fig. 7.4: Time evolution of vortices indicated by @ = 100 isosurface (green) and
isosurface of fr = 0.999 (white), without PDF model (top view).
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(e) T =11.9

Fig. 7.5: Cavity in low-pressure region of reflective wave at inflow. Vortices are
indicated by @ = 100 isosurface (green) and cavity by isosurface of fr =
0.999 (white), without PDF model (front view).
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Fig. 7.6: Streamwise distribution of time-averaged cavity area passing through y—z
cross sections. (black: without PDF model, red: n = 20, magenta: n = 40,
blue: n = 50, green: n = 60)

On=6000000000000000000n=400000000000000 nO
O000n=400000000000000000000OO0O0ODODO0OODODODOO
O0M»=50000000000000000000nO000DO0OO0OOODODODO
gbobobooobooboboooobbooooooooboboooooboboooobobod
gooobooobbboooobboooobbooooubbbooooboboooobo
00000000000000 ¢,000000000000000000000000
gooobooooooboooobobuooobobboooooobobbooooboboooobooo
000000000000 0oO0oO0onD ¢c=40000000000000000DO0O0
goooooobobooogon

OOooboobod0d0n00000D0O0DO0O0DOODODO0O0ODbODOO0O0OOn=60000
gobobooooboooooobobooon

gooobod
OvrO0780000000DODOOODOOODOOPDFOODODOODODOODOD
74000«z/H <2000000000000000000000O00OOOO 780
01<z/H<20000000000000000000000DOOO0ODOOOOOO
000000000 bOOobOobOobO 7e0O0DODODOOOPDFOOOOOODOOO



98

070 0000O0ODOOO0OO0OO0OO0O000O0000 Large-Eddy Simulation

(f) T =12.0

Fig. 7.7: Time evolution of vortices indicated by @ = 100 isosurface (green) and
isosurface of fr, = 0.999 (white), with PDF model (front view).
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(f) T =12.0

Fig. 7.8: Time evolution of vortices indicated by @ = 100 isosurface (green) and
isosurface of fr, = 0.999 (white), with PDF model (top view).
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(b) ¢ = 0.3 (LES, without PDF model)

y[ (c) o = 0.3 (LES, with PDF model)

Fig. 7.9: Comparison of instantaneous contours of frkscs among LES with
and without PDF model, at T'= 32, z/H = 0.483.
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Fig. 7.10: Comparison of instantaneous contours of vsgs among LES with
and without PDF model, at T'= 32, z/H = 0.483.
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Fig. 7.11: Streamwise distribution of time-averaged cavity area passing through y—z
cross sections. (black: without PDF model, red: C' = 5, blue: C =7,

green: C' = 10)
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Fig. 7.12: Time evolution of fraction of cells at which p —3s < p, < p + 3s. (red:
C =5, blue: C' =7, green: C' = 10)
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Fig. A.1: Barotropic state law p = f(p) [35].
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Table A.1: Source terms in transport-equation based cavitation model [133].
Production (m¥) Destruction (m™) References
Cprod max(p — Dw, O)(]- - aL) CestPL min(p — Do, O)aL [39]
(0-5PLU002)too (0-5PLU002)thoo
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Cprod = 8 x 101 Clest =1
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C 1 C 1
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Fig. A.2: Treatment of the cavitation boundary [55].

Chirection

goboboooobobboooobbooobobboooobbooooooobboooobo
gobgoouooouooouooooobooonooouoobooobooon
0000000000 Chen & Heister (55|00 00000000000000O00O0O0OO
00 wake model OO O00O00OO0

Deshpande O [56|0 0000000000000 O0O00OODOOOOOOOOOO
bbb oooooogo
00000000000 0D000D00000DD0O0DooOgoogd “solid wall point”0 O
“cavity point” 00000000 OODO0O0OCOOODOODOOODOOODOOOOO
Oo0o0ooOoooo0o0oooooooooooboDo oooooOobOooOooOooooooon
gobooboooobooboboooboboooobobooobobobooobDbbouoooboboa
goboobooooobobooooobobuooobobboooobobbooobobobuoooboboa
oo ooouooouoooog
gogo

Tokumasu 0 [57] O Deshpande [56] 0 00 00000 Method of Characteristic O
oo uoobouooooooon

gooog
Urn = k(py — pr, — K7) (A.49)



A5 0000000

123

Table A.2: Overview of cavitation model based on the solution of N-S equation.

Type Cavitation model Reference
. Full R-P eq. [29] [30] [129]
Bubble dynamics
Reduced R-P eq. [45] [46] [47] [48] [49] [50]
. Transport eq. Empirical [39] [40] [41] [42] [43] [44]
One-fluid model —
Source Empirical [51] [52]
Barotropic p = 34] [35
Equation of state arotropic p = /(p) 34] [35]
p=1rfmY) [36] [130] [131] [132]
) . Eulerian-Lagrangian [31] [32]
Two-fluid model | Bubble dynamics - -
Eulerian-Eulerian [33] [127] [128]
Marker & cell | Interface tracking various B. C. [655] [56] [57]
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