
Title
Load-Balanced and Interference-Aware Spanning
Tree Construction Algorithm for TDMA-Based
Wireless Mesh Networks

Author(s) Tokito, Hiroshi; Sasabe, Masahiro; Nakano,
Hirotaka

Citation IEICE Transactions on Communications. 2010, E93-
B(1), p. 99-110

Version Type VoR

URL https://hdl.handle.net/11094/23092

rights Copyright © 2010 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010
99

PAPER

Load-Balanced and Interference-Aware Spanning Tree
Construction Algorithm for TDMA-Based Wireless
Mesh Networks

Hiroshi TOKITO†a), Nonmember, Masahiro SASABE††b), Go HASEGAWA†††c),
and Hirotaka NAKANO†††d), Members

SUMMARY Wireless mesh networks have been attracting many users
in recent years. By connecting base stations (mesh nodes) with wireless
connections, these network can achieve a wide-area wireless environment
with flexible configuration and low cost at the risk of radio interference
between wireless links. When we utilize wireless mesh networks as in-
frastructures for Internet access, all network traffic from mobile nodes goes
through a gateway node that is directly connected to the wired network.
Therefore, it is necessary to distribute the traffic load by deploying multi-
ple gateway nodes. In this paper, we propose a spanning tree construction
algorithm for TDMA-based wireless mesh networks with multiple gateway
nodes so as to maximize the traffic volume transferred between the mesh
network and the Internet (system throughput) by taking account of the traf-
fic load on the gateway nodes, the access link capacity and radio interfer-
ence. Through a performance evaluation, we show that the proposed algo-
rithm increases the system throughput regardless of the bottleneck position
and achieves up to 3.1 times higher system throughput than a conventional
algorithm.
key words: wireless mesh network, spanning tree, load balance, radio
interference

1. Introduction

Wireless mesh networks (hereafter, called mesh networks)
have been attracting many users in recent years [1], [2]. As
shown in Fig. 1, base stations (mesh nodes) connect with
each other via wireless connections in mesh networks. An
end node (station) connects to one of the mesh nodes located
within its transmission range. The station can communicate
with a gateway node, which is a mesh node directly con-
nected to the wired network, by means of multi-hop com-
munication with the help of mesh nodes on the path to the
gateway node. Here, the path is determined by the span-
ning tree construction algorithms [3], [4]. Mesh networks
can achieve a wide-area wireless environment with flexible

Manuscript received March 30, 2009.
Manuscript revised August 16, 2009.
†The author is with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565-0871
Japan.
††The author is with the Graduate School of Engineering, Osaka

University, Suita-shi, 565-0871 Japan.
†††The authors are with the Cybermedia Center, Osaka Univer-

sity, Toyonaka-shi, 560-0043 Japan.
a) E-mail: h-tokito@ist.osaka-u.ac.jp
b) E-mail: sasabe@comm.eng.osaka-u.ac.jp
c) E-mail: hasegawa@cmc.osaka-u.ac.jp
d) E-mail: nakano@cmc.osaka-u.ac.jp

DOI: 10.1587/transcom.E93.B.99

configuration and low cost, however they are also suscep-
tible to radio interference because mesh nodes depend on
wireless connections. Because of these favorable properties,
there have already been several experimental trials [5]–[9].

In the future, mesh networks are expected to become
a basic infrastructure for Internet access in areas with poor
wired network infrastructures, such as rural areas and iso-
lated islands. However, all network traffic from stations
must go through the gateway node [10]. Since the gateway
node is the single entry point for all traffic between the mesh
network and the wired Internet, the capacity of the gateway
node’s access link typically limits the capacity of the mesh
network.

Therefore, multiple gateway nodes must be deployed to
efficiently distribute the entire traffic load. In conventional
spanning tree construction algorithms [3], [4], a mesh node
selects the closest gateway node in terms of the path length
between the mesh node and gateway node. As a result, large
amounts of traffic may concentrate in some gateway nodes
and congestion occurs depending on the geographic distri-
bution of gateway nodes, mesh nodes, and stations. This
indicates that simply deploying multiple gateway nodes will
not result in effective load balancing. For better results, each
mesh node must select a gateway node to access the Inter-
net based on the traffic load and access link capacity of the
various gateway nodes. However, when a mesh node selects
a path that is longer than the shortest path, the potential for
radio interference in the mesh network increases. Conse-
quently, both load balancing among gateway nodes and sup-
pressing the radio interference are significant to maximize
the traffic volume transferred between the mesh network and
the Internet.

Here, the geographic distribution of traffic load in
the mesh network may change with time due to addi-
tion/removal of gateway/mesh nodes, arrivals/movements/
departures of stations, and changes of traffic demand for
stations. The path for each station should be reconstructed
as soon as these environmental changes occur. This means
that the time complexity for constructing the spanning tree
should be small as possible.

In this paper, to satisfy these requirements, we pro-
pose a spanning tree construction algorithm, called load-
balanced and interference-aware tree construction (LITC),
for mesh networks that have multiple gateway nodes and are

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



100
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

Fig. 1 Mesh network.

based on time division multiple access (TDMA). The pur-
pose of LITC is to maximize the traffic volume transferred
between the mesh network and the Internet while suppress-
ing the time complexity for constructing the spanning tree
as possible. LITC first constructs a spanning tree that mini-
mizes the radio interference in the mesh network necessary
for maximizing the traffic volume. Then, LITC reconstructs
the spanning tree in order to disperse the traffic load on the
gateway nodes, while taking account of the impact of the in-
crease in radio interference, in order to maximize the traffic
volume transferred between the mesh network and the Inter-
net. Through a performance evaluation, we show that LITC
can increase the amount of the traffic transferred between
the mesh network and the Internet regardless of the bottle-
neck position on the access link of the gateway node or on
the wireless link. We further show that LITC achieves up to
3.1 times higher than a conventional spanning tree construc-
tion algorithm.

The rest of this paper is organized as follows. In Sect. 2,
we describe the current standardization of mesh networks
and related work on spanning tree construction algorithms
that consider load balancing or radio interference in mesh
networks. In Sect. 3, we discuss the network model and the
performance metrics. We present the conventional and pro-
posed spanning tree construction algorithms in Sect. 4. In
Sect. 5, we show the effectiveness of our proposed algorithm
through several simulations. Finally, Sect. 6 gives the con-
clusions of this paper.

2. Related Work

IEEE 802.11s and 802.16 working groups define an archi-
tecture and a protocol for mesh networks, respectively [11],
[12]. IEEE 802.11s assumes that a mesh network is com-
posed of approximately 30 wireless LAN access points. The
default routing method is the hybrid wireless mesh proto-
col (HWMP) [13], which is based on a modified ad hoc on-
demand distance vector (AODV) protocol [14] called radio
metric AODV (RM-AODV) [15]. If all the access points are
located on fixed points and the topology of the mesh net-
work does not change, HWMP applies proactive routing by
building a spanning tree. Each mesh node selects its par-
ent node by a metric based on the condition of wireless re-
source, that is, airtime, and does not consider the access link

capacity on the gateway node.
IEEE 802.16 standardizes the wireless metropolitan

area network (WMAN) mesh network. IEEE 802.16 sup-
ports two modes: point to multipoint (PMP) mode and mesh
mode. In the PMP mode, each mesh node directly commu-
nicates with the gateway node. In the mesh mode, each mesh
node communicates with the gateway node through multi-
hop communication by relaying its traffic to a mesh node
that is randomly selected among the available mesh nodes
within its transmission range. The proposed algorithm is ap-
plicable to both modes and can maximize the traffic volume
transferred between the mesh network and the Internet.

IEEE 802.11s and 802.16 mesh networks are built by
adding necessary information to route request (RREQ)/route
reply (RREP) messages and mesh network configuration
(MSG-NCFG)/mesh network entry (MSG-NENT) mes-
sages, respectively. The proposed algorithm requires infor-
mation of the traffic load on the gateway node and the ra-
dio interference in the mesh network. These information
can also be exchanged among mesh nodes by extending the
messages.

References [16]–[18] proposed routing metrics to in-
crease the throughput by taking account of load balancing
of communication between mesh nodes. Draves et al. [16]
proposed a routing metric as a function of average transmis-
sion time per packet, that is, the weighted cumulative ex-
pected transmission time (WCETT). Liu and Liao [17] pro-
posed normalized bottleneck link capacity (NBLC) as the
routing metric. NBLC is the function of the available time
that the channel assigned to the bottleneck link along a path
can use. Note that the available time is normalized by the
path length. By using these metrics, a mesh node can select
a path according to its traffic load. Koksak and Balakrish-
nan [18] proposed a routing metric based on the expected
transmission count (ETX) [19], which is the function of the
average number of transmissions including retransmission
per packet. The authors extended ETX to modified ETX
(mETX) in order to handle the transient nature of success-
ful packet transmission. Even under mesh networks with
unstable wireless conditions, mETX achieves high through-
put. Note that estimation of these metrics are based on
broadcast-based approaches which require O(n) communi-
cation overheads. Although these methods aim to maximize
the throughput of mesh nodes, not all consider the possibil-
ity of traffic congestion on the gateway node.

For load balancing in a mesh network with gateway
nodes, Chen et al. [20] and Nguyen et al. [21] proposed
spanning tree construction algorithms that focus on the
transmission time of a mesh node and the mesh nodes inter-
fered by its transmission, and the contention window size,
respectively. These algorithms distribute the traffic load on
a mesh node and the traffic load on a gateway node by re-
ducing the use of wireless links on which traffic is concen-
trated. Kuran et al. [22] proposed the spanning tree con-
struction algorithm for avoiding congestion by using the
queue length of the busy wireless link as an indicator for
detecting the start of congestion. In this algorithm, each



TOKITO et al.: LOAD-BALANCED AND INTERFERENCE-AWARE SPANNING TREE CONSTRUCTION ALGORITHM
101

mesh node changes its parent node when congestion occurs.
As a spanning tree construction algorithm for distributing
the traffic load on a gateway node, Lakshmanan et al. pro-
posed multi-gateway association (MGA) [23]. In MGA, a
mesh node determines the path to the gateway node based
on the amount of network resources on each link along the
path. Although these algorithms are effective when the wire-
less link connected to a gateway node is a bottleneck, they
do not assume that the access link capacity on a gateway
node is a bottleneck. In this paper, we propose a spanning
tree construction algorithm that maximizes the traffic vol-
ume transferred between the mesh network and the Inter-
net, regardless of the bottleneck position, by taking account
of not only the conditions of the wireless links but also the
conditions of the access links.

Alternatively, many researchers have been trying to im-
prove the throughput by considering the radio interference
in IEEE 802.16 mesh networks [24]–[26]. Jin et al. [24]
proposed a spanning tree construction algorithm that consid-
ers the relationship between the interference of the wireless
links and their traffic demand. Jiao et al. [25] focused on the
energy consumed by transmitting one-byte data to a parent
node. Each mesh node selects a parent node to minimize
the total energy consumed by all mesh nodes on the path.
As a result, the area in which a mesh node interferes with
the transmission from other mesh nodes decreases. Wei et
al. [26] also proposed a spanning tree construction algorithm
that minimizes radio interference in the mesh network by us-
ing blocking metric which represents goodness of a path in
terms of radio interference caused by the transmission along
with the path (See the details in Sect. 4.1.2). Since the block-
ing metric is easily observed, the proposed algorithm uses
the blocking metric when it constructs the spanning tree to
maximize the internal traffic volume of the mesh network.

3. System Model

In this section, we explain the model of a mesh network and
the performance metric.

3.1 Network Model

We assume a communication graph G = (V, E), where
V = {v1, . . . , vm, . . . , vn} is the set of mesh nodes (n ≥ m ≥ 1,
n is the number of mesh nodes, m is the number of gateway
nodes, and mesh nodes from v1 to vm are gateway nodes),
and E is the set of undirected wireless links li, j = (vi, v j).
Mesh nodes vi and v j have a undirected wireless link li, j
when the following conditions are satisfied:

‖vi − v j‖ ≤ ti, ‖v j − vi‖ ≤ t j (1)

where ‖vi − v j‖ is the distance between vi and v j and ti is
the transmission range of vi. Each mesh node has a path
to a gateway node, which is calculated by one of the span-
ning tree construction algorithms (we describe the details in
Sect. 4). Let us denote Tk = (Vk, Ek) as the spanning tree
whose root is the gateway node vk, where Vk and Ek are the

Fig. 2 An example of a mesh network discussed in this paper.

set of mesh nodes and the set of wireless links consisting of
the spanning tree, respectively. In addition, let us denote ck

as the capacity of the access link on a gateway node vk and
gi as the ID of the gateway node through which the traffic
from mesh node vi passes.

Here, we describe the traffic demand for stations. First,
we assume the outbound traffic that goes from stations to
gateway nodes. The traffic demand di for mesh node vi is
defined as the sum of the traffic demand d(s)

i for connected
stations and the traffic demand d(r)

i for the mesh nodes from
which vi receives traffic. When we assume that stations are
uniformly located in the mesh network, each station con-
nects to the nearest mesh node, and the traffic volume from
each station is identical, we can derive d(s)

i as the function of
the size of the Voronoi area [27] of vi. Likewise, we define
d(r)

j→i as the amount of traffic which v j sends to vi on the wire-
less link l j,i. We further define Ni as the set of neighboring
mesh nodes of vi on the spanning tree. As a result, d(r)

i is
obtained as

∑
v j∈Ni

d(r)
j→i, the traffic demand di for vi becomes

d(s)
i +
∑
v j∈Ni

d(r)
j→i.

Next, we consider the inbound traffic that goes from
the gateway nodes to the stations. When we assume that
the amount of traffic sent to a station is identical among all
stations, the traffic volume which vi sends to the connected
stations becomes δd(s)

i , where δ is the ratio of the outbound
traffic volume to the inbound traffic volume. The derivation
of traffic demand for each mesh node is the same as that in
the case of outbound traffic. Hereafter, we assume only the
case of the outbound traffic for simplicity. Although we can
adopt other definition of traffic demand, the above assump-
tion seems to be valid in terms of fairness among stations.

Figure 2 shows an example of the mesh network dis-
cussed in this paper. In Fig. 2 (a), vk is a gateway node, and
vi and v j are mesh nodes. The dotted line is the wireless link.
The area separated by the solid line equals the Voronoi area
of each mesh node. li, j is the wireless link between vi and v j,
and l j,k is the wireless link between v j and vk. We can obtain
d(s)

j by calculating the size of the shaded area. Figure 2(b)
shows an example of the spanning trees that are constructed
on the topology in Fig. 2(a). On the spanning tree Tk rooted
by vk, dj and d(r)

j→k become d(s)
j +d(s)

i since v j relays the traffic
from vi. Furthermore, gi and g j become k.



102
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

We define the radio interference between wireless links
based on the request to send/clear to send (RTS/CTS) model
[28]. Figure 3(a) shows the case in which wireless link
li, j experiences interference by wireless link lp,q. Sup-
pose the situation in which vp sends an RTS message to vq
and another mesh node vi receives the RTS message. The
RTS/CTS model considers the communication from vp to vq
(link lp,q) and that from vi to v j (link li, j) to interfere with
each other. The interference caused by the exchange of a
CTS message is similar in Fig. 3(b). Therefore, the condi-
tion whereby lp,q interferes with li, j is denoted as follows:

‖vi − vp‖ ≤ γp, ‖v j − vp‖ ≤ γp,

‖vi − vq‖ ≤ γq, ‖v j − vq‖ ≤ γq. (2)

Here, γp is the interference range of vp, which is defined
as γp = tp × μ; μ is the constant number and is generally
estimated between 2 ≤ μ ≤ 4 [29]. Similarly, γq is the
interference range of vq. Eq. (2) indicates that lp,q interferes
li, j when vi or v j is located in the interference range of vp or
that of vq.

IEEE 802.11 MAC protocol is based on RTS/CTS. On
the other hand, IEEE 802.16 applies TDMA MAC protocol
without relying on RTS/CTS. It is noted that the situation of
the actual interference cannot be modeled exactly by the in-
terference model in IEEE 802.16 [30], which assumes that
an interference occurs only between nodes within two phys-
ical hop count. In this paper, we use RTS/CTS model since
it is one of the most famous interference models and can
define the interference between wireless links easily. We
should note here that the interference model in IEEE 802.16
can also be applied to our approach.

3.2 Performance Metric

In TDMA link scheduling [29], time slots are assigned to
each wireless link proportionally to its link weight based on
its traffic demand. When we assume that the link weight of
li, j is di→ j, the number of time slots fi, j assigned to li, j is
defined as follows:

fi, j = �α × di→ j	 (3)

where α (0 < α ≤ 1) is the quantization factor for suppress-
ing the total amount of time slots, called frame length f ,

Fig. 3 Interference based on the RTS/CTS model.

and �·	 is a ceiling function which maps a real number to the
next largest integer. f is the number of time slots needed
for all wireless links to be assigned time slots proportional
to their traffic demand. It requires a large time complexity
for calculating f . When we use the link scheduling based
on Ref. [29], the time complexity for calculating f becomes
O(n3). From the time slots assigned to each link, the utiliza-
tion uk of a gateway node vk is expressed as follows:

uk =
∑
v j∈Nk

f j,k

f
. (4)

From Eq. (4), the traffic rate on the wireless link l j,k (wireless
link throughput) becomes (( f j,k/ f ) × s) [bps], where s [bps]
is the wireless link capacity in the mesh network. Hence, the
rate λk [bps] of the traffic which vk can receive is expressed
as

λk = uk × s.

Similarly, the rate ρk [bps] of the traffic that vk can send to
the wired network (access link throughput) cannot exceed
the capacity ck [bps] of the access link of vk. Therefore, ρk

is given as follows:

ρk = min(λk, ck).

In this paper, we propose a spanning tree construc-
tion algorithm to maximize the total amount of access link
throughput on each gateway node, which is essentially the
system throughput ρ [bps] as follows:

ρ =
∑

1≤k≤m

ρk.

4. Spanning Tree Construction Algorithms

In this section, we explain conventional spanning tree algo-
rithms and our proposed spanning tree algorithm. Table 1
shows the notations used in this section.

Table 1 List of notations for spanning tree construction algorithms.

Notation Definition

G Communication graph
V Set of mesh nodes vi (1 ≤ i ≤ n)

E
Set of wireless links la,b (∀va, vb ∈ V satisfying
Eq. (1))

m Number of gateway nodes (1 ≤ m ≤ n)
Ni Set of vi’s neighboring nodes on the spanning tree
Tk Tree whose root is the gateway node vk
T Set of trees Tk

gi

ID of the gateway node through which the traffic
from vi passes

di Traffic demand for vi

ri

Sum of the wireless link throughput of the links
between vi and v∗ ∈ Ni

ck Access link capacity of the gateway node vk
xi, j Path length from vi to v j

yk,i vi’s parent node in Tk



TOKITO et al.: LOAD-BALANCED AND INTERFERENCE-AWARE SPANNING TREE CONSTRUCTION ALGORITHM
103

Algorithm 1 Shortest path tree construction (SPTC).
Input: G = (V, E)
Output: T

1: for all vi and v j such that 1 ≤ i ≤ m and m + 1 ≤ j ≤ n do
2: Construct Ti by calculating the shortest path from vi to v j.
3: end for
4: for all vi such that m + 1 ≤ i ≤ n do
5: gi = arg min1≤k≤m(xk,i).
6: Set vi’s parent node to yi,gi .
7: end for

Fig. 4 An example of blocking value.

4.1 Conventional Algorithms

We explain the algorithm of shortest path tree construction
and that of interference-aware tree construction as conven-
tional spanning tree algorithms.

4.1.1 Shortest Path Tree Construction

Algorithm 1 shows the algorithm of shortest path tree con-
struction (SPTC). In SPTC, when there is more than one
shortest path from a mesh node to different gateway nodes
or to the same gateway node, a mesh node chooses one of
paths at random.

When SPTC uses Dijkstra’s algorithm [31] for calcu-
lating the shortest path tree, the time complexity of obtain-
ing the path between a mesh node and a gateway node is
O(n2). Therefore, the time complexity of SPTC is O(n2).
In this paper, we do not use the Dijkstra’s algorithm with
heap which reduces the time complexity of SPTC by O((n+
e) log n), where e is the number of wireless links.

4.1.2 Interference-Aware Tree Construction

Wei et al. [26] proposed a spanning tree construction algo-
rithm for routing in order to minimize radio interference
in a mesh network. The authors define blocking value bi

of a mesh node vi as the number of mesh nodes affected
by interference from vi’s transmission. Then they define
blocking metric Bi, j of the path from vi to v j as the sum of
bk of mesh nodes vk along the path. Each mesh node selects
the path that minimizes the blocking metric in order to de-
crease the radio interference and increase the wireless link
throughput.

Figure 4 illustrates an example of blocking value when

Algorithm 2 Interference-aware tree construction (ITC).
Input: G = (V, E)
Output: T

1: for all vi such that 1 ≤ i ≤ n do
2: Calculate bi.
3: end for
4: for all vi and v j such that 1 ≤ i ≤ m and m + 1 ≤ j ≤ n do
5: Construct Ti by calculating the path minimizing Bi, j.
6: end for
7: for all vi such that m + 1 ≤ i ≤ n do
8: gi = arg min1≤k≤m(Bk,i).
9: Set vi’s parent node to yi,gi .

10: end for

μ = 1. The dotted line is the wireless link. When we com-
pute the path from v1 to v7, we have three candidate paths:
v1 − v2 − v5 − v7, v1 − v3 − v6 − v7, and v1 − v3 − v4 − v6 − v7.
Since B1,7 of each path becomes 8, 10, and 12, respectively,
v1 selects v1 − v2 − v5 − v7 which has the lowest blocking
metric.

In this paper, we use a spanning tree construction
algorithm that minimizes the blocking metric, that is
interference-aware tree construction (ITC), for maximizing
the wireless link throughput. Algorithm 2 shows the ITC
algorithm.

bi of mesh nodes vi can be computed within O(n2).
When the spanning tree is constructed by Dijkstra’s algo-
rithm with bi as the edge cost of li, j, the time complexity of
obtaining the path becomes O(n2) (if ITC uses Dijkstra’s al-
gorithm with heap, the time complexity is O((n + e) log n)).
Consequently, the time complexity of ITC becomes O(n2).

Here, blocking metric of each node may dynamically
change according to the surrounding environments. In such
situations, we assume that each mesh node can obtain up-to-
date blocking metric by periodically applying the broadcast-
based estimation approach proposed in Ref. [32]. In this ap-
proach, each node simultaneously broadcasts probing pack-
ets with one of other nodes. After n−1 independent trials for
all of other nodes, the node can obtain the number of nodes
causing radio interferences, i.e., blocking metric.

4.2 Proposed Algorithm

We propose load-balanced and interference-aware tree con-
struction (LITC) algorithm.

LITC constructs a spanning tree for maximizing the
system throughput while suppressing the time complexity as
possible. To maximize the system throughput, it is the best
way to directly use the system throughput as the metric for
the parent node selection. However, this approach requires
O(n5) time complexity to construct a spanning tree including
the overhead for calculating the frame length, O(n3). There-
fore, LITC tries to avoid calculating the frame length in the
process of spanning tree construction as possible.

We show the algorithm of LITC in Algorithm 3. In
order to increase the system throughput, we need to take
account of both wireless link throughput and utilization of
access link. When a mesh node selects a path that is longer



104
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

Algorithm 3 Load-balanced and interference-aware tree
construction (LITC).
Input: G = (V, E) and h = 0
Output: T

1: Construct Ti (1 ≤ i ≤ m) by algorithm 2.
2: Calculate ri (1 ≤ i ≤ m).
3: for all vi such that 1 ≤ i ≤ m do
4: Define zi for keeping the bottleneck information.
5: if ri > ci then
6: zi = 0. // The access link of vi is a bottleneck.
7: else
8: zi = 1. // The access link of vi is not a bottleneck.
9: end if

10: end for
11: if zi of which the value is 0 exists then
12: Determine the order of changing parent nodes by algo-

rithm 4.
13: do
14: Dh = T .
15: for all vi and v j such that vi ∈ V and li, j ∈ E do
16: if ω decreases and the increase in the hop count is less

than h when v j becomes vi’s parent node then
17: Set vi’s parent node to v j.
18: end if
19: end for
20: h = h + 1.
21: while the system throughput increases.
22: T = Dh−1.
23: end if

than the shortest path to equalize the utilization of access
link, the wireless link throughput decreases according to the
increase in path length. It is important to suppress dete-
rioration of the wireless link throughput as possible while
making the utilization of the access link the same among
gateway nodes.

First, LITC maximizes the wireless link throughput by
using ITC. Then, if ri > ci at gateway node vi, the access link
on vi becomes a bottleneck. When there is more than one
gateway node on which the access link is a bottleneck, LITC
reconstructs the spanning tree so that the utilization of the
access links among gateway nodes becomes the same. For
this purpose, we define the bias of the utilization of access
links as follows:

ω =
1
m

m∑
i=1

(
di − ci

c
d
)2
. (5)

Here, d is the sum of the traffic demand for gateway nodes,
that is

∑
1≤i≤m di, and c is the sum of the access link capacity

of the gateway nodes, that is,
∑

1≤i≤m ci; di/ci indicates the
utilization of the access link on gateway node vi. Eq. (5) in-
dicates that each gateway node relays traffic whose volume
is proportional to its access link capacity, that is, (ci/c)d.
Each mesh node selects its parent node as one which min-
imizes ω in order to equalize utilization of the access links
among gateway nodes.

At this time, we prevent deterioration of the wireless
link throughput as possible. We first select mesh nodes rely-
ing on the gateway node with the highest utilization. Then,
we arrange the mesh nodes in ascending order of hop count

Algorithm 4 Determination of the order of mesh nodes
switching their parent node.
Input: G = (V, E).
Output: Order information.

1: for all vi such that m + 1 ≤ i ≤ n do
2: if cgi � max1≤k≤m(ck) then
3: Find the nearest gateway node vk that satisfies ck > cgi .
4: hi = xi,k.
5: else
6: hi = ∞.
7: end if
8: end for
9: Arrange the order of mesh nodes in ascending order of hi.

between the selected mesh node and the second closest gate-
way node. Based on this order, we switch the parent nodes
if system throughput increases. Algorithm 4 shows the algo-
rithm determining the order of mesh nodes switching their
parent nodes. In Algorithm 4, the order is determined ac-
cording to the following two steps.

1. Ascending order of the hop count from the gateway
node with larger access link capacity among mesh
nodes selecting a gateway node with the non-maximum
access link capacity.

2. The mesh nodes selecting the gateway node with the
maximum access link capacity.

Note that this approach cannot guarantee the degree of
the increase in the path length. To tackle this problem, LITC
suppresses an increase in the hop count caused by chang-
ing the parent nodes up to h. LITC repeats tree construc-
tion from h = 0 to the value that achieves maximum sys-
tem throughput since the optimal value of h varies accord-
ing to the network environment and is difficult to obtain in
advance.

The worst situation of time complexity for LITC occurs
when the access link on a gateway node is a bottleneck. In
this situation, the time complexity of LITC becomes O(n4)
since LITC needs to calculate the system throughput of
which the time complexity is O(n3) and repeat the tree con-
struction up to n times before system throughput reaches
maximum.

5. Performance Evaluation

In this section, through several simulations, we demonstrate
not only the effectiveness and but also the problems of the
proposed algorithm.

5.1 Simulation Model

Table 2 and Fig. 5 show the parameter settings used
in the evaluation. We used IEEE802.11b (11 Mbps) and
IEEE802.16 (70 Mbps) wireless link capacity which repre-
sents the situation where the wireless link is a bottleneck
and the access link on a gateway node is a bottleneck, re-
spectively, on the spanning tree constructed by SPTC. In



TOKITO et al.: LOAD-BALANCED AND INTERFERENCE-AWARE SPANNING TREE CONSTRUCTION ALGORITHM
105

Table 2 Parameter settings for performance evaluation.

Area of deployment 1 × 1
Number of simulations 100

Number of gateway nodes 4
Location of gateway nodes (see Fig. 5)

Number of mesh nodes except
gateway nodes 20, 40, 60, 80, 100

Location of mesh nodes Uniform distribution
Transmission range ti (see Algorithm 5)
Access link capacity 10, Cx [Mbps]

Wireless link capacity 11, 70 [Mbps]

Traffic demand d(s)
i for vi’s

connected stations
The size of Voronoi area of vi
(see the details in Sect. 3.1)

Quantization factor α 10−2

Ratio μ of interference range
to transmission range 2

Fig. 5 Location of gateway nodes.

Algorithm 5 Determination of transmission range of each
node.
Input: V .
Output: ti (m + 1 ≤ i ≤ n).

1: S = {φ}.
2: Add all gateway nodes to S .
3: repeat
4: U = {φ}.
5: for all v j ∈ S do
6: vi = argminvk∈V−S ‖v j − vk‖.
7: Add vi to U.
8: ui = ‖v j − vi‖.
9: wi = j.

10: end for
11: vi = argminvk∈U uk

12: Add vi to S .
13: ti = ui.
14: if twi < ti then
15: twi = ti.
16: end if
17: until S = V

addition, we deployed the gateway nodes on grids, as shown
in Fig. 5. Two gateway nodes randomly chosen among
the four were assigned the access link with 10 Mbps and
the remaining gateway nodes were assigned the access link
with Cx Mbps. We varied Cx from 2 to 10. Each mesh
node vi decides its transmission range ti according to Algo-
rithm 5 which provides vk with the path to the gateway node
while reducing interference to other nodes’ communication

Fig. 6 Transitions of throughput when the access link capacity of
gateway nodes varies.

as possible.
In the following, we also evaluate a spanning tree

construction algorithm that aims to equalize utilization of
the access links on gateway nodes, that is gateway load-
balanced tree construction (LTC), for comparison purpose.
LTC first constructs the spanning tree by using SPTC. Then,
a mesh node selects its parent node minimizing ω in the or-
der of Algorithm 4. Although LITC considers the impact of
the increase in the radio interference, LTC does not. Fur-
thermore, as the estimated maximum system throughput un-
der no time constraint, we also show the system through-
put of the spanning tree construction algorithm which di-
rectly uses the system throughput as the metric for the par-
ent node selection, that is throughput based tree construc-
tion (TTC). The order of calculating the system throughput
is O(n3). In addition, a mesh node checks the mesh nodes
within its transmission range in order to decide whether sys-
tem throughput increases. Therefore, the time complexity of
TTC becomes O(n5).

Hereafter, we show the results when the system
throughput becomes the maximum under the condition that
each gateway node does not receive grater traffic than its ac-
cess link capacity.

5.2 System Throughput

In this subsection, we demonstrate that LITC achieves
higher system throughput than other methods, independent
of the bottleneck position. Figure 6 shows averages with



106
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

Fig. 7 Transitions of throughput when the number of mesh nodes varies
(wireless link capacity = 70 Mbps, Cx = 2 Mbps).

95% confidence intervals of the system throughput for each
spanning tree construction algorithm when Cx varies and the
number of mesh nodes is set to 100.

As shown in Fig. 6(a), when the wireless link capacity
is 70 Mbps, the system throughput of LITC and LTC be-
comes almost the same as the estimated maximum and are
up to 3.1 times higher than those of SPTC and ITC. SPTC
and ITC decrease their system throughput due to the bottle-
neck on the access link with Cx Mbps. In contrast, LITC
and LTC can achieve system throughput close to the esti-
mated maximum since these algorithms work to construct
the spanning tree so that the gateway nodes receive traffic
corresponding to their access link capacities.

As shown in Fig. 6(b), when Cx is 2 Mbps and 4 Mbps,
LITC achieves higher system throughput than the other al-
gorithms. In addition, the system throughput of ITC be-
comes high when Cx is larger than 6 Mbps. In Fig. 6(b),
the wireless link throughput is insufficient. Therefore, the
system throughput of SPTC and LTC, which do not take ac-
count of the radio interference, deteriorates due to the bot-
tleneck on the wireless link when Cx is larger than 6 Mbps.
In contrast, ITC and LITC achieve high system throughput
by reducing the radio interference during the tree construc-
tion. When Cx is 2 Mbps and 4 Mbps, the system through-
put of SPTC and ITC decreases since the bottleneck occurs
at the access link with Cx Mbps. At this time, the system
throughput of LTC deteriorates because of the limited wire-
less link throughput. In such a situation, LITC can realize
almost the same system throughput as the estimated maxi-
mum since LITC considers both the access link capacity of
gateway nodes and the radio interference in the mesh net-
work.

Figure 7 shows averages with 95% confidence intervals
of the system throughput of each spanning tree construc-
tion algorithm when the number of mesh nodes varies, Cx is
2 Mbps, and the wireless link capacity is 70 Mbps. We find
that LITC achieves almost the same system throughput as
the estimated maximum independent of the number of mesh
nodes. The system throughput of LITC and LTC deterio-
rates according to the decrease in the number of mesh nodes.
The smaller the number of mesh nodes is, the smaller the
number of candidate parent nodes for a mesh node. Thus,

Fig. 8 Execution time.

the number of mesh nodes switching their parent node de-
creases. In addition, the widths of the confidence intervals
of these algorithms become wide when there is a small num-
ber of mesh nodes. The location of mesh nodes tends not to
follow uniform distribution in this situation. As a result, the
system throughput of these algorithms varies depending on
the simulations. However, the system throughput of SPTC
and ITC does not vary irrespective of the number of mesh
nodes. The system throughput of these algorithms is sup-
pressed by the bottleneck on the access link with Cx Mbps.
Consequently, the system throughput of these algorithms be-
comes low without demonstrating their advantages.

5.3 Execution Time

We evaluate the execution time of LITC and TTC which can
achieve higher system throughput than other methods. Fig-
ure 8(a) illustrates the average execution time according to
the number of mesh nodes when Cx is 2 Mbps and the wire-
less link capacity is 70 Mbps. Figure 8(b) shows the execu-
tion time normalized by that in the case of 20 mesh nodes.
These results were measured by a PC with a Pentium(R) D
3.4 GHz CPU and 2 GB memory. Since the time complex-
ity of LITC is smaller than that of TTC, the execution time
of LITC is as much as 1/200 shorter than that of TTC. In
addition, Fig. 8(b) shows that the execution time of LITC is
similar to O(n3) despite the fact that the theoretic time com-
plexity of LITC is O(n4). Although the threshold of hop



TOKITO et al.: LOAD-BALANCED AND INTERFERENCE-AWARE SPANNING TREE CONSTRUCTION ALGORITHM
107

Fig. 9 Transitions of path length when the access link capacity of
gateway nodes varies.

count h in LITC can become n in theory, h is as much as 6
in this simulation, which is much smaller than n. Hence, as
a practical measure, LITC needs to repeat tree construction
several times to maximize the system throughput, and the
execution time of LITC remains at O(n3).

5.4 Path Length

We demonstrated that LITC contributes to increasing the
system throughput in Sect. 5.2. However, it also tends to
make the path length longer which results in the increase
in transmission delay. In this subsection, we evaluate the
transmission delay from the viewpoint of the path length.

Figure 9 depicts how the average path length between a
mesh node and a gateway node varies according to Cx when
the number of mesh nodes is 100. The average path length of
ITC is the same as that of SPTC, and the path length of LTC
is longer than that of SPTC. In ITC, a mesh node selects the
path minimizing the blocking metric. This means the path is
set as short as possible. Therefore, the average path lengths
of ITC and SPTC are the same. In contrast, LTC increases
the path length because a mesh node selecting the gateway
node with access link capacity Cx Mbps tries to select the
gateway node with access link capacity 10 Mbps.

As shown in Fig. 9(a), LITC increases the average path
length up to 1.75 times compared to that of SPTC and it
is almost the same path length as LTC since LITC tries to
distribute the traffic on the gateway nodes with access link
capacity Cx Mbps.

Fig. 10 Transitions of path length when the number of mesh nodes varies
(wireless link capacity = 70 Mbps, Cx = 2 Mbps).

As shown in Fig. 9(b), we find that the path length
of LITC lengthens in the case of Cx = 2 Mbps. When
Cx = 2 Mbps and 4 Mbps, the access link with Cx Mbps is
a bottleneck. LITC attempts to construct a spanning tree to
disperse the traffic on gateway nodes. Thus, the path length
of LITC becomes long. However, the path length of LITC is
not so long when compared to that of LTC since LITC sup-
presses the increase in the hop count caused by changing the
parent node up to h. The path length of LITC is similar to
that of SPTC in a case of Cx = 4 Mbps. This is because the
average of hop count threshold h is 0.19 whereas it is 1.95
in the case of Cx = 2 Mbps. Additionally, when Cx is more
than 6 Mbps, LITC constructs a spanning tree that is similar
to that constructed by ITC since the wireless link becomes
a bottleneck. Therefore, the path length of LITC becomes
almost the same as those of ITC and SPTC.

Figure 10 depicts how the average path length between
a mesh node and a gateway node varies according to the
number of mesh nodes when Cx is 2 Mbps and the wireless
link capacity is 70 Mbps. The path lengths of LITC and LTC
lengthen according to the increase in the number of mesh
nodes. When there is a small number of mesh nodes, the
number of candidate parent nodes that can increase the sys-
tem throughput may not exist. As a result, the path length
does not change much. When increasing the number of
mesh nodes, the path length lengthens according to the in-
crease in the number of mesh nodes changing their parent
nodes.

5.5 Trade-off between System Throughput and Real-Time
Properties

We have shown that LITC can maximize the system
throughput regardless of the bottleneck position but also
makes the path length slightly longer than that of SPTC in
the case of the bottleneck on an access link. The longer
path length emerges from larger hop count threshold h and
results in increase of transmission delay. The larger h also
requires much time complexity. In this section, we reveal
the trade-off between system throughput and realtime prop-
erties. Here, we focus on two kinds of realtime properties:
path length and time complexity for tree construction.



108
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

Figure 11 depicts the system throughput of LITC nor-
malized by the estimated maximum and the path length
of LITC normalized by that of SPTC according to the up-
per bound of h when the wireless link capacity is 70 Mbps
and Cx is 2 Mbps. Those parameters represent that the ac-
cess link is a bottleneck and the wireless link throughput
is enough. We increase h from 0 until whether the system
throughput is maximum or the value of h reaches the upper
bound. As shown in this figure, the larger h is, the larger
system throughput becomes. The system throughput with
h = 5 is 2.7 times higher than that with h = 0. The path
length with h = 5 is also 1.5 times higher than that with
h = 0. This indicates that there is a trade-off between sys-
tem throughput and path length when the access link is a
bottleneck. On the other hand, we obtained that average ex-
ecution time varied from 0.113 [s] for h = 0 to 0.144 [s]
for h = 5. The system throughput with h = 4 is almost the
same as the estimated maximum. Therefore, LITC does not
have to repeat tree construction many times and the execu-
tion time does not vary so much.

From above discussion, we need to set h properly de-
pending on the application requirements. For example, for
the applications sensitive to the transmission delay such as
media streaming, h has to be set to low as possible while
satisfying bit-rate constraint of the media streaming.

5.6 Summary

Table 3 summarizes the features of each spanning tree con-
struction algorithm. In SPTC, each mesh node selects the
shortest path to the gateway node. ITC constructs a spanning
tree that minimizes radio interference in the mesh network
and does not distribute the traffic on gateway nodes. Since

Fig. 11 Transitions of system throughput and path length when h varies
(wireless link capacity = 70 Mbps, Cx = 2 Mbps).

Table 3 Features of the spanning tree construction algorithms.

Spanning tree construction algorithm SPTC ITC LTC LITC

System Bottleneck on a wireless link low high low high
throughput Bottleneck on an access link low low high high

Path Bottleneck on a wireless link short short long short
length Bottleneck on an access link short short long long

Time complexity O(n2) O(n2) O(n2) O(n4) (in practice, about O(n3))

decreasing radio interference is closely related to shorten-
ing the path length, the path length of ITC is almost the
same as that of SPTC. However, SPTC and ITC decrease
the system throughput when the access link on a gateway
node becomes a bottleneck. LTC constructs a spanning tree
that distributes the traffic on gateway nodes and does not
consider radio interference in the mesh network. Hence,
LTC decreases system throughput when the wireless link
is a bottleneck. Furthermore, the path length of LTC be-
comes much longer than that of SPTC since there is a trade-
off between the increase in path length and the distribution
of traffic on gateway nodes. LITC considers both utilization
of the access link of gateway nodes and the radio interfer-
ence in the mesh network. As a result, LITC can maximize
the system throughput regardless of the bottleneck position:
either on the access link of a gateway node or on a wire-
less link. Furthermore, LITC suppresses the time complex-
ity and cuts down the time for constructing the spanning
tree compared to the tree construction algorithm using di-
rectly system throughput. The path length of LITC becomes
long as in LTC when LITC distributes the traffic on gateway
nodes.

6. Conclusion and Future Work

In this paper, we proposed a spanning tree construction algo-
rithm, called the load-balanced and interference-aware tree
construction (LITC) algorithm, for a mesh network with
multiple gateway nodes. The algorithm maximizes the traf-
fic volume transferred between the mesh network and the
Internet (system throughput). In LITC, each mesh node de-
termines its parent node by considering both radio interfer-
ence in the mesh network and the utilization of the access
links at gateway nodes. Through performance evaluation,
we showed that LITC achieved almost the maximum system
throughput regardless of the bottleneck position: either the
bottleneck on the access link of a gateway node or the bottle-
neck on a wireless link. We further showed that LITC could
increase the system throughput up to 3.1 times higher than
shortest path tree construction algorithm. Finally, LITC can
reduce the time complexity for constructing the spanning
tree by as much as 1/200 of that of TTC which is the tree
construction algorithm directly using the system throughput
as the metric.

As a remaining issue, we plan to design the protocol to
achieve LITC on a real system. Since LITC requires the in-
formation on traffic load of gateway nodes and that on radio
interference in the mesh network, we need some message
exchanging mechanisms for this purpose. It is preferable



TOKITO et al.: LOAD-BALANCED AND INTERFERENCE-AWARE SPANNING TREE CONSTRUCTION ALGORITHM
109

that these mechanisms are decentralized to improve scala-
bility to the number of mesh nodes.

We would also like to apply LITC to other wireless net-
works. For example, in a sensor network where the power
consumption of nodes is a critical issue, it is necessary to
distribute the traffic on not only sink nodes but also nodes
near the sink node. We expect that energy efficient routing
can be achieved by hierarchically applying LITC to each set
of nodes which is grouped according to hop count from the
sink node.

Acknowledgement

This research was supported by a Grant-in-Aid for Young
Scientists (B) 20700061 and a Grant-in-Aid for Scientific
Research (B) 19360173 in Japan.

References

[1] L.F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: A
survey,” Comput. Netw., vol.47, no.4, pp.445–487, March 2005.

[2] V. Navda, A. Kashyap, and S.R. Das, “Design and evaluation of
iMesh: An infrastructure-mode wireless mesh network,” Proc. IEEE
World of Wireless Mobile and Multimedia Networks, pp.164–170,
June 2005.

[3] IEEE 802.1D, “Standard for local and metropolitan area networks:
Media access control (MAC) bridges,” 1998.

[4] IEEE 802.1S/D15, “Draft standard for local and metropolitan area
networks: Amendment 3 to 802.1Q virtual bridged local area net-
works: Multiple spanning trees,” 2002.

[5] MeshDynamics, available at http://www.meshdynamics.com
[6] Tropos Networks, available at http://www.tropos.com
[7] Roofnet, available at http://pdos.csail.mit.edu/roofnet/doku.php
[8] BMN Lab wireless mesh networks research project, available at

http://www.ece.gatech.edu/research/labs/bwn/mesh
[9] MeshNetworks, available at http://www.meshnetworks.com

[10] J. Janqeun and M.L. Sichitiu, “The nominal capacity of wireless
mesh networks,” IEEE J. Wirel. Commun., vol.10, no.1, pp.8–14,
Oct. 2003.

[11] The IEEE 802.11 Working Group for WLAN Standards, available at
http://grouper.ieee.org/groups/802/11/

[12] The IEEE 802.16 Working Group on Broadband Wireless Access
Standards, available at http://grouper.ieee.org/groups/802/16/

[13] IEEE 802.11 TGs, “Joint SEE-Mesh/Wi-Mesh Proposal to 802.11
TGs,” Feb. 2006.

[14] C. Perkins, E.B. Royer, and S. Das, “Ad hoc on-demand distance
vector (AODV),” RFC 3561, July 2003.

[15] S. Takeda, K. Yagyu, H. Aoki, and Y. Matsumoto, “Multi-interface
oriented radio metric on-demand routing protocol for layer-2 mesh
networks,” IEICE Technical Report, RCS2005-58, July 2005.

[16] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-
hop wireless mesh networks,” Proc. ACM Mobile Computing and
Networking, pp.114–128, Oct. 2004.

[17] T. Liu and W. Liao, “Capacity-aware routing in multi-channel
multi-rate wireless mesh networks,” Proc. IEEE Communications,
pp.1971–1976, June 2006.

[18] C.E. Koksal and H. Balakrishnan, “Quality-aware routing metrics
for time-varying wireless mesh networks,” IEEE J. Sel. Areas Com-
mun., pp.1984–1994, Nov. 2006.

[19] D.D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” IEEE J.
Wirel. Netw., pp.419–434, July 2005.

[20] L. Chen, Y. Tseng, D. Wang, and J. Wu, “Exploiting spectral reuse in
routing, resource allocation, and scheduling for IEEE 802.16 mesh

networks,” IEEE Trans. Veh. Technol., vol.58, no.1, pp.301–313,
March 2008.

[21] L.T. Nguyen, R. Beuran, and Y. Shinoda, “A load-aware routing met-
ric for wireless mesh networks,” Proc. IEEE Symposium on Com-
puters and Communications, pp.429–435, July 2008.

[22] M.S. Kuran, G. Gur, T. Tugcu, and F. Alagoz, “Cross-layer routing-
scheduling in IEEE 802.16 mesh networks,” Proc. ACM MOBILe
Wireless MiddleWARE, Operating Systems, and Applications, Feb.
2008.

[23] S. Lakshmanan, K. Sundaresan, and R. Sivakumar, “On multi-
gateway association in wireless mesh networks,” Proc. IEEE Wire-
less Mesh Networks, pp.64–73, Sept. 2006.

[24] F. Jin, A. Arora, J. Hwang, and H.A. Choi, “Routing and
packet scheduling for throughput maximization in IEEE 802.16
mesh networks,” submitted for publication, available at http://
www.seas.gwu.edu/˜hchoi/publication/wireless/802.16mesh.pdf

[25] W. Jiao, P. Jiang, R. Liu, and M. Li, “Centralized scheduling tree
construction under multi-channel IEEE 802.16 mesh networks,”
Proc. Global Telecommunication Conference, pp.4764–4768, Nov.
2007.

[26] H.Y. Wei, S. Genquly, R. Izmailov, and Z.J. Haas, “Interference-
aware IEEE 802.16 WiMAX mesh networks,” Proc. IEEE Vehicular
Technology Conference, pp.3102–3106, May 2005.

[27] A. Okabe, B. Boots, and K. Sugihara, Spatial tessellations: Concepts
and applications of Voronoi diagrams, 1992.

[28] M. Alicherry, R. Bhatia, and L.E. Li, “Joint channel assignment and
routing for throughput optimization in multiradio wireless mesh net-
works,” IEEE J. Sel. Areas Commun., vol.24, no.11, pp.1960–1971,
Nov. 2006.

[29] W. Wang, Y. Wang, X. Li, W. Song, and O. Frieder, “Efficient
interference-aware TDMA link scheduling for static wireless net-
works,” Proc. 12th Annual International Conference on Mobile
Computing and Networking, pp.262–273, Sept. 2006.

[30] H. Zhu and K. Lu, “On the interference modeling issues for coordi-
nated distributed scheduling in IEEE 802.16 mesh networks,” Proc.
Broadband Communications, Networks and Systems, pp.1–10, Oct.
2006.

[31] E.W. Dijkstra, “A note on two problems in connection with graphs,”
Numerische Mathematik, vol.1, no.6, pp.269–270, 1959.

[32] J. Padhye, S. Agarwal, V.N. Padmanabhan, L. Qiu, A. Rao, and
B. Zill, “Estimation of link-interference in static multi-hop wireless
networks,” Proc. ACM SIGCOMM Conference on Internet Mea-
surement, Oct. 2005.

Hiroshi Tokito received the M.E. degree
from Osaka University, Osaka, Japan, in 2009.
He will be assigned as a researcher of Mitsubishi
Electric Corp., Tokyo, Japan. His research inter-
ests include ubiquitous networking.



110
IEICE TRANS. COMMUN., VOL.E93–B, NO.1 JANUARY 2010

Masahiro Sasabe received the M.E. and
Ph.D. degrees from Osaka University, Osaka,
Japan, in 2003 and 2006, respectively. He is cur-
rently an Assistant Professor with the Depart-
ment of Information and Communication Tech-
nology, Osaka University. From 2004 to 2007,
he was an Assistant Professor with the Cyber-
media Center, Osaka University. His research
interests include P2P/overlay networking and
ubiquitous networking. He is a member of the
IEEE.

Go Hasegawa received the M.E. and D.E.
degrees from Osaka University, Osaka, Japan,
in 1997 and 2000, respectively. From 1997 to
2000, he was a Research Assistant of Graduate
School of Economics, Osaka University. He is
currently an Associate Professor of Cybermedia
Center, Osaka University. His research work is
in the area of transport architecture for future
high-speed networks. He is a member of the
IEEE.

Hirotaka Nakano received the B.E., M.E.
and D.E. degrees in Electrical Engineering from
Tokyo University, Tokyo Japan, in 1972, 1974
and 1977, respectively. He joined NTT Lab-
oratories in 1977 and has been engaged in re-
search and development of videotex systems,
and multimedia-on-demand systems. He had
been an executive manager of the Multimedia
Systems Laboratory of the NTT Human Inter-
face Laboratories from 1995 to 1999. After-
wards, he served as the head in the Multimedia

Laboratory of the NTT DOCOMO until 2004, and now he is an Professor
of Cybermedia Center, Osaka University. His research work is in the area
of ubiquitous networks. He is a member of the IEEE and the institute of
Image Information and Television Engineers of Japan.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


