
Title Improving Success Ratio of Object Search in
Highly- Dynamic Mobile P2P Networks

Author(s) Takeshita, Kei; Sasabe, Masahiro; Nakano,
Hirotaka

Citation IEICE Transactions on Communications. 2008, E91-
B(12), p. 3851-3859

Version Type VoR

URL https://hdl.handle.net/11094/23094

rights Copyright © 2008 The Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

IEICE TRANS. COMMUN., VOL.E91–B, NO.12 DECEMBER 2008
3851

PAPER Special Section on Peer to Peer Networking Technology

Improving Success Ratio of Object Search in Highly-Dynamic
Mobile P2P Networks

Kei TAKESHITA†a), Nonmember, Masahiro SASABE††b), and Hirotaka NAKANO†††c), Members

SUMMARY Mobile Ad Hoc Networks (MANETs) are temporal and
infrastructure-independent wireless networks that consist of mobile nodes.
For instance, a MANET can be used as an emergent network for commu-
nication among people when a disaster occurred. Since there is no central
server in the network, each node has to find out its desired information (ob-
jects) by itself. Constructing a mobile Peer-to-Peer (P2P) network over the
MANET can support the object search. Some researchers proposed con-
struction schemes of mobile P2P networks, such as Ekta and MADPastry.
They integrated DHT-based application-layer routing and network-layer
routing to increase search efficiency. Furthermore, MADPastry proposed a
clustering method which groups the overlay nodes according to their phys-
ical distance. However, it has also been pointed out that the search effi-
ciency deteriorates in highly dynamic environments where nodes quickly
move around. In this paper, we focus on route disappearances in the net-
work layer which cause the deterioration of search efficiency. We describe
the detail of this problem and evaluate quantitatively it through simulation
experiments. We extend MADPastry by introducing a method sharing ob-
jects among nodes in a cluster. Through simulation experiments, we show
that the proposed method can achieve up to 2.5 times larger success rate of
object search than MADPastry.
key words: mobile ad hoc network (MANET), distributed hash ta-
ble (DHT), clustering, local information sharing

1. Introduction

With the proliferation of mobile nodes, such as laptop
PCs, PDAs, and mobile phones, mobile ad hoc networks
(MANETs) have been attracting many users to construct
temporal wireless networks in various situations. For in-
stance, a MANET can be used as an emergent network for
communication among people when a disaster occurred and
existing infrastructures failed. In another case, participants
of a meeting, conference, or event can also build a temporal
information-sharing network over a MANET to exchange
their own information each other.

In a MANET, a source node can communicate with its
destination node through a multi-hop path. The path be-
tween them is determined by a routing protocol such as DSR
[1], AODV [2], and OLSR [3]. However, these protocols do

Manuscript received March 24, 2008.
Manuscript revised July 25, 2008.
†The author is with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565-0871
Japan.
††The author is with the Graduate School of Engineering, Osaka

University, Suita-shi, 565-0871 Japan.
†††The author is with the Cybermedia Center, Osaka University,

Toyonaka-shi, 560-0043 Japan.
a) E-mail: k-takest@ist.osaka-u.ac.jp
b) E-mail: sasabe@comm.eng.osaka-u.ac.jp
c) E-mail: nakano@cmc.osaka-u.ac.jp

DOI: 10.1093/ietcom/e91–b.12.3851

not provide the source node with the location of its desired
information (objects). Broadcast used in Gnutella [4] is a
simple scheme to find out the object. In broadcast, nodes
forward queries to all of their neighbors, which means that
broadcast does not rely on any routing protocol. Since all
nodes in the network are the targets of the search, the search
seems to success with a high probability. However, as the
network size becomes large or the number of queries in-
creases, the success ratio of object search decreases due to
packet collisions.

Conti et al. proposed an optimization of Gnutella
protocol for the use in MANETs [5] by integrating it
with OLSR. This is one of the cross-layer approaches be-
tween application layer and network layer. The cross-
layer approach achieves a good performance compared with
Gnutella. However, there still remains a problem of high
traffic load caused by broadcast with an increase of the net-
work size.

To efficiently discover objects over MANETs with low
search overheads, some researchers proposed construction
schemes of mobile P2P networks based on distributed hash
table (DHT) which can enable a unicast-based object search
[6]–[10]. Typical DHT schemes are Pastry [11], Chord [12],
Tapestry [13], etc. The main contribution of them is keeping
low search costs with an increase of the network size. More
precisely speaking, they guarantee O(log N) search costs,
namely hop count, for any object. Here, N is the network
size.

However, the topological structure of a MANET dy-
namically varies due to node mobility, participation, or de-
parture. It has been pointed out that the success ratio of
object search doesn’t improve when a DHT substrate is
simply constructed on the top of a MANET and a cross-
layer approach is significant [6]. To solve this problem,
Ekta [6], CrossROAD [10], and MADPastry [7] integrate
Pastry with DSR, OLSR, and AODV respectively to share
routing information between network layer and application
layer. On the other hand, Caesar et al. proposed virtual ring
routing (VRR) that is a network-layer routing protocol in-
spired by overlay routing protocol based on DHT. In VRR,
a node conducts unicast-based object search by forwarding
queries only to physically one-hop neighbors. Thus, VRR
can significantly reduce the traffic overhead compared with
broadcast-based schemes.

These techniques contribute to adaptability to the topo-
logical changes in a MANET and reduction of communica-
tion overheads in the system. However, Ekta and VRR con-

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers

3852
IEICE TRANS. COMMUN., VOL.E91–B, NO.12 DECEMBER 2008

struct a DHT substrate without taking into account physical
distance between nodes, namely hop count between them
in the underlying physical network. This causes undesir-
able long search latency and deterioration of success ratio
of object search. In this paper, we demonstrate that the fol-
lowing two methods can enhance the success ratio of object
search while suppressing the traffic overheads: a construc-
tion method of an overlay network with consideration of the
underlying physical network and a sharing method of ob-
jects among physically-close overlay nodes. The key idea
of both methods is the same, namely reducing physical hop
count to search for an object.

As the first method, we adopt MADPastry that pro-
poses a clustering method which groups overlay nodes by
taking into account the corresponding physical distance.
In MADPastry, queries are forwarded in a unicast manner
between nodes belonging different clusters. On the other
hand, nodes combine the unicast-based object search with a
broadcast-based one limited inside a cluster to quickly find
out the desired objects with relatively low search costs be-
cause the information on corresponding objects exist in the
cluster.

We further propose a method to share objects among
nodes in a cluster as the second method. Although the de-
tail of the method will described in Sect. 4, the object shar-
ing method can be easily realized by extending the beacon
mechanism used in the clustering method while suppress-
ing system overheads. Through simulation experiments,
we demonstrate that MADPastry is not sufficient to achieve
high system performance but the combination of MADPas-
try and the object sharing method drastically improves the
system performance.

The rest of the paper is organized as follows. In Sect. 2,
we describe overviews of related work. Section 3 reveals the
problems of MADPastry in highly dynamic environments.
Then, we introduce the proposed method and show the ef-
fectiveness through simulation experiments in Sect. 4. Fi-
nally, we conclude this paper and describe future work in
Sect. 5.

2. Related Work

In this section, we describe overviews of Pastry, AODV, and
MADPastry.

2.1 Pastry

Pastry is one of the structured P2P networks based on DHT.
Each node is randomly assigned a unique 128-bit identifier
(nodeId) that is generated by a hash function with its IP ad-
dress. Then, it is allocated into a circular overlay ID space
which ranges from 0 to 2128 − 1. Each object is also as-
signed a unique 128-bit object identification (objectId) by
using the same hash function to its name and allocated into
the same overlay ID space. NodeIds and keys are regarded
as a sequence of digits with base 2b where b is a configu-
ration parameter with typical value 4. Each node maintains

any pointer (a pair of objectId and IP address that stores
the object) whose objectId is the numerically closest to its
nodeId.

Each Pastry node maintains a routing table and a leaf
set. The Pastry’s routing table consists of log2b N (N is the
number of nodes in the network) rows each of which has
2b − 1 entries (a pair of nodeId and its IP address). n-th row
has entries whose nodeIds share the first n − 1 digits with
the present node’s nodeId. Since n-th digit has 2b possible
numbers, n-th row has 2b−1 entries. The leaf set L is a set of
nodes with the L

2 numerically closest larger nodeIds, and the
L
2 nodes with numerically closest smaller nodeIds, relative
to the present node’s nodeId.

To search for a key, each node forwards the query to the
node which has the nodeId sharing one more digit with the
key based on the routing table. If there is no appropriate en-
try, the node forwards the query to the node in the neighbor
or leaf set which has the nodeId sharing at least one more bit
with the key. Since the routing is normally processed every
digit, overlay hop count can be expressed as O(log2b N).

When the query arrives at a node whose nodeId is the
numerically closest to key, the search will success if the
node has a pointer about the key (a pair of objectId and IP
address of the node that maintains the corresponding ob-
ject). We should note here that a registration of a pointer
can be accomplished by the object owner using the same
mechanism as the query search.

2.2 AODV and Its Extended Versions

AODV is a reactive routing protocol in the network layer. In
the reactive routing protocol, a source node starts to estab-
lish a route to its destination node when it requires to send
data to the destination. Consequently, the reactive routing
protocol requires time to discover a route before data trans-
mission but also has adaptability to changes in the physical
topology.

An AODV routing table consists of multiple entries
each of which indicates a route to a destination node. When
a source node sends a packet to a destination node, it
searches for the corresponding entry in its routing table. If
it already has the entry, it sends the packet to the next-hop
node designated in the entry. Otherwise, a route nonexis-
tence occurs and the source node tries to discover a new
route to its destination node by broadcasting messages to
discover (route discovery messages). Any node who has an
entry of the destination node replies to the route discovery
message. The behavior of a relay node is the almost same as
that of the source node. Note that the relay node abandons
sending the packet if it has no entry for sending the packet.

Even if a node has an entry for the destination node,
it cannot necessarily send the packet to the next-hop node
due to a link disconnection that means the next-hop node
does not exist in its wireless transmission range. We call
this problem as a route disappearance. If the route disap-
pearance occurred, the node checks the position in the cur-
rent AODV route. If it is located on the former part of the

TAKESHITA et al.: IMPROVING SUCCESS RATIO OF OBJECT SEARCH IN HIGHLY-DYNAMIC MOBILE P2P NETWORKS
3853

Fig. 1 Routing example: Pastry vs. MADPastry.

route, it abandons sending the packet. Otherwise, it tries to
discover a new route to the destination node.

There are several studies on reducing the route disap-
pearances, such as AOMDV [14] and AODV-BR [15]. They
prepare alternative routes against the route disappearances
by storing all replies instead of only the fastest reply dur-
ing the route discovery. However, since the second or later
discovered routes are not reliable compared to the first dis-
covered route, the effect of storing multiple routes is not so
much higher.

2.3 MADPastry

MADPastry is an integrated scheme of Pastry and AODV. It
introduces the following two key ideas.

2.3.1 Updating Information by Overhearing Packets at
Nodes

In MADPastry, each packet contains AODV sequence num-
ber, nodeId, and IP address for each last node in the Pastry
and AODV routing. Whenever a node overhears or receives
any packet, it updates its AODV routing table, Pastry routing
table, and leaf set. It contributes to reducing maintenance
overheads and increasing adaptability to the changes in the
physical topology.

2.3.2 Clustering Nodes Taking into Account Their Physi-
cal Locations

MADPastry associates the node’s physical location with its
overlay’s location. A cluster is formed with physically-close
nodes by coordinating the first digit of their nodeIds with
that of the cluster head. Since the Pastry routing is processed
every digit, physical hop count can be reduced compared
with the original Pastry as shown in Fig. 1. Note that the
hop count in the overlay routing does not change.

Since there is no central server in a MANET, cluster
heads must be elected in a fully-distributed manner. MAD-
Pastry uses landmark keys to form clusters. It generates K

landmark keys that evenly divide the overlay ID space into
K sub spaces. For instance, for K = 16 (= 24), landmark
keys become 0800. . .000, 1800. . .000, · · · , E800. . .000,
F800. . .000.

A node whose nodeId is the numerically closest to a
landmark key becomes a cluster head and starts periodically
broadcasting a cluster-head beacon to all nodes in its clus-
ter, called cluster members. Whenever a node overhears or
receives a cluster-head beacon, it records the cluster head’s
nodeId and the physical hop count to the cluster head that are
included in the cluster-head beacon. A node periodically de-
rives the closest cluster head from the recorded list of cluster
heads. If the closest cluster head changes, the node moves to
the cluster managed by the closest cluster head. Since it has
to change the first digit of its own nodeId, changing clus-
ter forces the node into leaving and re-joining MADPastry
network.

Although the routing cross over different clusters is the
same as that in Pastry, MADPastry uses the leaf set for the
routing inside a cluster. If the leaf set includes a node hav-
ing a closer nodeId to key and a reachable AODV route, the
query is forwarded to the corresponding node. Otherwise,
the query is broadcasted inside the cluster. This mechanism
accomplishes effective search using the physical proximity
among cluster members.

3. Performance Evaluation of MADPastry under
Highly Dynamic Environments

3.1 Packet Disappearances Caused by Node Mobilities

It has been pointed out that the success ratio of object search
deteriorates as node velocities become high [7]. The main
reason is that packets tend to be lost due to the route nonex-
istence or route disappearances described in Sect. 2.2. Since
a lost packet is part of a query message or a message to ex-
change pointers, two kinds of disappearances occur: query
disappearances and pointer disappearances.

• Query disappearances
Query disappearances are further classified into the fol-
lowing two types.

– Query disappearances in routing between clusters
Queries are forwarded in a unicast manner be-
tween clusters. Since nodes belonging to different
clusters are physically distant each other (Fig. 1),
the possibility of query disappearances tends to
increase in accordance with relatively large hop
count between them.

– Query disappearances in routing inside a cluster
Queries are also forwarded in a unicast manner
inside a cluster if the corresponding AODV route
exists. Otherwise, they are broadcasted inside a
cluster with the risk of packet collisions arising
from traffic load.

• Pointer disappearances

3854
IEICE TRANS. COMMUN., VOL.E91–B, NO.12 DECEMBER 2008

In Ref. [7], the authors did not accurately consider the
overheads and risks of cluster changes. Since each
node is responsible for pointers whose keys are the
closest to its nodeId, it must update pointers every clus-
ter change. However, such pointer updating may also
fail due to the route nonexistence or route disappear-
ances. Periodic re-registration of pointers by their cor-
responding object holders seems to reduce the pointer
disappearances from the network. However, the pointer
registration is conducted by the same mechanism as the
query routing and may also fail.

3.2 Simulation Experiments

We conducted simulation experiments to evaluate how the
above mentioned problems affected the search failure. We
modified the source code of MADPastry that was written as
a module of ns-2 [16] and was provided by the authors of
Ref. [7]. We used the same parameter settings as Ref. [7].
We set the Pastry parameter b as 4 that means an overlay
ID space is denoted as hexadecimal, and the MADPastry
parameter K which decides the number of clusters as 16.
Nodes moved in accordance with random waypoint model
[17] with pause time of 0 sec and speed of 1.4, 2.5, and
5.0 m/s, respectively. At the start of simulations, 250 nodes
were randomly allocated on a two-dimensional square space
whose node density was 100 nodes/Km2. MAC layer was
IEEE802.11 with transmission rate of 11 Mbps and trans-
mission range of 250 m. 1000 objects are distributed into
the Pastry network such that they evenly divide the overlay
ID space. Thus, each node is responsible for maintaining
four pointers. Each node sent a query for finding out an ob-
ject randomly chosen from the entire objects at intervals of
10 sec. In what follows, we call this interval a query interval.
In case that nodes conducted pointer exchanging (w/ pointer
exchange), object holders re-registered pointers relevant to
their objects at interval of 120 sec to reduce the disappear-
ances of pointers from the network. Note that the pointer
exchange was achieved by adding pointers to leave and join
messages of Pastry.

Like Ref. [7], the success ratio of object search is de-
fined as the ratio of the number of queries reaching nodes
whose nodeIds are the closest to keys to the whole num-
ber of queries if pointer exchanging is not considered (w/o
pointer exchange). On the other hand, we define the success
ratio of object search as the ratio of the number of queries
reaching nodes that have the corresponding pointers to the
whole number of queries in case of w/ pointer exchange.
The simulation time was 3600 sec and we show the average
of the latter 2000 sec simulation in the following results.

Figure 2 illustrates the success ratios of object search in
both cases: w/o pointer exchange and w/ pointer exchange.
Note that the results of w/o pointer exchange are the same
as shown in Ref. [7]. In case of w/o pointer exchange, the
success ratio shows a depreciation of 30% at the maximum.
This is mainly caused by query disappearances. On the con-

Fig. 2 Success ratio of object search of MADPastry when pointer
exchanging is considered.

trary, we find that additional 3–25% deterioration occurs in
case of w/ pointer exchange. This is because some point-
ers vanish during the processes of cluster changes. We also
find that the periodic re-registration of pointers cannot suf-
ficiently suppress the deterioration of success ratio of object
search. These results indicate that it is difficult for nodes
to reliably exchange information with others in highly dy-
namic environments. In addition, the node originating the
query has to retrieve the object based on the pointer infor-
mation, however, MADPastry did not evaluate this point.

4. Sharing Objects among Nodes in a Cluster

In highly dynamic environments where nodes move around
quickly, it is difficult to completely avoid AODV route
nonexistence and route disappearances that make queries
and pointers lost. In other words, reliable hop-by-hop data
transfer cannot be achieved in such situations. In this
section, we alternatively propose a method to share ob-
jects among cluster members which is an application-level
method to cope with query disappearances inside clusters
and object disappearances. The proposed method enables
a node to retrieve its desired object through one round trip
messaging differently from original MADPastry. Note that
the object sharing incurs additional overheads into the sys-
tem with an increase of the object size. We evaluate the
trade-off between the overheads and the system performance
in Sect. 4.2.2.

4.1 Detail of the Method

Each node sends its own objects (not pointers) to other clus-
ter members by slightly modifying the periodic beacon mes-
sage of MADPastry. Once receiving or overhearing the bea-
con message from other cluster members, the node stores
the objects in the message. Then, if the received beacon is
originated from the cluster head, the node forwards it to the
neighboring nodes to form the cluster. Otherwise, it discards
the beacon. Consequently, we can achieve object sharing
among cluster members. This simple method is effective in
terms of both improvement of search efficiency and reduc-
tion of traffic overheads as follows.

TAKESHITA et al.: IMPROVING SUCCESS RATIO OF OBJECT SEARCH IN HIGHLY-DYNAMIC MOBILE P2P NETWORKS
3855

• Improvement of search efficiency
Since cluster members are physically close each other,
each cluster member has chances to receive or overhear
queries reaching all other cluster members. If it pos-
sesses the object relevant to the overheard or received
query, it replies to the query instead of the destination
node. This not only increases the success ratio of object
search but also shorten the response time of the search.
Furthermore, multiplying objects can reduce the possi-
bility of object disappearances.
• Reduction of traffic overheads

MADPastry originally has a beacon mechanism in
which each node periodically sends a beacon to other
cluster members. This is essential to autonomously
form clusters in the network. The proposed method can
be accomplished by only adding objects to this beacon
message. The beacon size increases with the growth
of the number of objects and the object size. How-
ever, the number of objects and the object size seem to
be relatively small because the mobile P2P network is
mainly used as a temporal information sharing network
as mentioned in Sect. 1.

Since the object sharing method distributes replicated
objects into the network, there is a possibility that dupli-
cate responses to the same query occur. The duplicate re-
sponses can be avoided by caching the received or overheard
responses to the query at each node.

Replication also causes the consistency problem
among the replicated objects. The inconsistency among
replicated objects occurs when the owner of the correspond-
ing object updates the object. However, the effect of this in-
consistency is small because the object is shared only among
the original object holder and its neighboring nodes and
the renewal can be automatically detected at the neighbors
through the beacon exchange mechanism.

4.2 Simulation Experiments

We conducted simulation experiments to evaluate the effec-
tiveness of the proposed method. We used the same config-
urations described in Sect. 3 except for the following: Each
node did not maintain pointers but objects corresponding to
its overlay ID in MADPastry. We assumed text-based in-
formation sharing in emergent situations and set the default
object size to 250 bytes. We also evaluated the performance
of broadcast because it achieves higher success ratio of ob-
ject search than MADPastry in the highly dynamic environ-
ments [7]. In broadcast, nodes forward queries to all of their
neighbors except when they have the corresponding objects
or have already received or overheard queries to the corre-
sponding objects.

The success ratio of object search is defined as the ratio
of the number of queries reaching nodes that have the corre-
sponding objects to the whole number of queries†. We omit
the phase of sending object back to the nodes originating the
corresponding queries because it is the same between the

Fig. 3 Success ratio of object search (proposed method, MADPastry,
broadcast).

Fig. 4 Overall traffic (proposed method, MADPastry, broadcast).

three methods. Overall traffic is defined as the total amount
of bytes that the MAC layer receives from the network layer
at all nodes. Thus, it includes not only the query traffic but
also the maintenance traffic at both application and network
layers.

4.2.1 Basic Performance

Figures 3 and 4 depict the success ratios of object search and
the overall traffic in case of the proposed method, MADPas-
try with object exchange, and broadcast, respectively. We
find that the effect of object sharing increases as the node
speed becomes high. Specifically, the proposed method can
achieve up to 2.5 times larger success rate of object search
than MADPastry. The overall traffic of the proposed method
slightly increases compared with that of MADPastry be-
cause the proposed method shares objects among neighbor-
ing nodes.

The success ratio of object search of the proposed
method is about 16% lower than that of broadcast when
the node speed is 5.0 m/s. However, broadcast requires at
least twice as much overall traffic as the proposed method to
achieve almost the same success ratio of object search.

†This criterion does not take into account the superiority of
broadcast to other two methods in terms of partial matching search.
However, MADPastry and the proposed method can cope with the
partial matching by combining them with the existing methods
tackling the partial matching in DHT [18], [19].

3856
IEICE TRANS. COMMUN., VOL.E91–B, NO.12 DECEMBER 2008

Fig. 5 Success ratio of object search when change object size.

Fig. 6 Overall traffic when changing object size.

4.2.2 Effect of Object Size

In the proposed method, the overhead of object sharing in-
creases as the object size rises. Figures 5 and 6 illustrate
how the success ratio of object search and the overall traf-
fic change when the object size is set to 100, 250, 500, and
1000 bytes, respectively.

If the object size is below 500 bytes, the success ra-
tio of object search does not almost change for each node
speed. On the contrary, the overall traffic linearly rises
with an increase of the object size and reaches almost the
same volume as the broadcast (Fig. 4) at the object size
of 1000 bytes. Thus, we can conclude that the proposed
method is more effective than broadcast if the object size
is less than 1000 bytes. An example of situations suitable
for the proposed method is information sharing in an emer-
gency where text-based information exchanges for safety
confirmation and condition report occupy the large portion
of traffic.

4.2.3 Effect of Request Rate

To reveal the performance of the MADPastry, proposed
method, and broadcast when changing the load on the sys-
tem, we ran simulations by setting the node speed to 1.4 m/s
and the query interval to 1, 3, 5, 10, 30, and 60 sec. The
other parameters were the same as those in Sect. 3.

Figures 7 and 8 depict the success ratio of object search
and the overall traffic of the three methods when the query

Fig. 7 Success ratio of object search when changing query interval.

Fig. 8 Overall traffic when changing query interval.

interval is changed. In case of the proposed method and
MADPastry, the success ratio of object search becomes the
maximum between three and ten seconds and gently dete-
riorates in the range of more than ten seconds. Since an
increase of the overall traffic gives nodes more chances to
update their AODV and Pastry routing tables, the risk of link
disconnections is reduced. However, the success ratio of ob-
ject search drastically deteriorates when the query interval is
set to 1 sec. This is because the system is under a heavy con-
gested state as shown in Fig. 8. Such a heavy congested state
is also found when the query interval is below 10 in case of
broadcast. Broadcast is effective when the query interval is
over 10 while the proposed method can achieve high success
ratio of object search even under situations with short query
intervals.

4.2.4 Effect of Object Popularity

In real P2P systems, the popularity of objects is likely to
follow a Zipf [20] distribution [21]. In a Zipf distribution,
the probability pi that a request for an i–th rank object occurs
is expressed as follows:

pi =
i−α

∑n
k=1 k−α

(1)

where n is the number of objects and α is a control param-
eter. In realistic cases, α is nearly one. In the following
simulation, we set a unique rank to each object randomly

TAKESHITA et al.: IMPROVING SUCCESS RATIO OF OBJECT SEARCH IN HIGHLY-DYNAMIC MOBILE P2P NETWORKS
3857

Fig. 9 Success ratio of object search at every ten rank under object
popularity following a Zipf distribution.

selected from 1 to 1000. The node speed and the object size
were set to 5.0 m/s and 8 bytes, respectively. The other pa-
rameters were the same as those in Sect. 3.

Figure 9 depicts the average success ratio of object
search every ten rank with the 95% confidence interval. The
success ratio of object search deteriorates as the rank be-
comes lower in MADPastry. On the contrary, it does not
deteriorate in the proposed method. Although the results for
high-rank objects in MADPastry oscillate, they will be sta-
ble by increasing the number of simulation runs.

In what follows, we discuss why these results occur.
The following two problems occur in a P2P system over a
MANET when the object popularity follows a Zipf distribu-
tion.

(i) For high-rank objects, the success ratio of object search
deteriorates because concentration of queries to their
object holders increases packet collisions.

(ii) For low-rank objects, the success ratio of object search
deteriorates because of the route nonexistence or route
disappearances.

The clustering method of MADPastry can absorb the second
problem, especially the route disappearances in the routing
between clusters, because a cluster has both high-rank and
low-rank objects and queries for the low-rank objects can
use routes established by the search for the high-rank ob-
jects in the same cluster. In addition, the proposed method
can reduce the first problem and the part of the second prob-
lem, that is route nonexistence and route disappearances in
routing inside a cluster, because a nodes can answer queries
for any cluster member.

4.2.5 Effect of the Number of Clusters

The number of clusters determines redundancy of objects
that affects the success ratio of object search. The smaller
the number of clusters, the larger the redundancy. However,
reducing the number of clusters also increases the overall
traffic because the number of messages generated by broad-
cast inside a cluster is proportional to a square of the number
of cluster members. In the above evaluations, we used 16 as
the number of clusters as in Ref. [7]. In this section, we in-
vestigate the system performance by changing the number

Fig. 10 Success ratio of object search when changing the number of
clusters.

Fig. 11 Overall traffic when changing the number of clusters.

of clusters as 2, 4, 8, 16, and 32. The node speed is set
to 1.4 m/s. The other parameters were the same as those in
section 3.

Figures 10 and 11 demonstrate that the success ratio of
object search and the overall traffic of the proposed method
when the number of clusters is changed. Changing the num-
ber of clusters does not almost affect the success ratio of
object search. On the other hand, the overall traffic mono-
tonically decreases and converges to a certain value with an
increase of the number of clusters.

4.2.6 Effect of Node Density

The node density also affects the system performance. If
the node density is low, collisions at the network layer de-
crease but the network connectivity deteriorates. In what
follows, we reveal the feasible area of the proposed method
and broadcast in terms of the node density. Figures 12 and
13 demonstrate that the success ratio of object search and the
overall traffic of the proposed method and broadcast when
the node density (nodes/Km2) is set to 62.5, 75, and 100. We
find that the success ratio of object search slightly decreases
with a decrease with the node density in both methods. On
the other hand, the collisions at the network layer (the de-
terioration of network connectivity) mainly but slightly af-
fect(s) the sift in the overall traffic in case of broadcast (the
proposed method).

If the node density further deteriorates, the connectiv-
ity of the MANET falls below one due to the occurrence of
nodes without neighboring nodes and fragmentation of the
network. In such situations, the proposed method cannot

3858
IEICE TRANS. COMMUN., VOL.E91–B, NO.12 DECEMBER 2008

Fig. 12 Success ratio of object search when changing node density.

Fig. 13 Overall traffic when changing node density.

construct an overlay network and depresses the success ratio
of object search. However, such networks with poor connec-
tivity can be regarded as one of delay/disruption/disconnect
tolerant networks (DTNs) in which the conventional store-
forward routing, including broadcast and the proposed
method, cannot work well [22]. Although store-carry-
forward routing has been studied in DTNs, such situations
are outside the scope of this paper.

5. Conclusion and Future Work

In this paper, we first explained the problems of MADPas-
try under high-mobility environments: lots of packet losses
occur due to link disconnections at the network layer. We
extended MADPastry by adding a method to share objects
among cluster members to make the system robust to the
node mobility. Through simulation experiments, we showed
that the proposed method could achieve up to 2.5 times
larger success rate of object search than MADPastry.

In addition, we investigated how the following param-
eters affected the system performance: the object size, the
query interval, the popularity of objects, the number of clus-
ters, and the node density. The proposed method is suitable
for text-based information sharing in which the object size
is less than 1000 bytes. The query interval affects the traf-
fic load on the system. A short query interval may cause
heavy congestion while a long query interval may induces
lots of AODV route disappearances. However, the proposed
method could work well at the moderate query interval. We
also showed that the proposed method can achieve high suc-

cess ratio of object search independently of the object popu-
larity. The appropriate number of clusters was 16 to achieve
high success ratio of object search with low overall traffic.
The proposed method can achieve high system performance
if the node density was over 62.5 nodes/Km2.

As future work, we would like to focus on load balanc-
ing among nodes. In MADPastry, landmark keys are uni-
formly distributed in the overlay network. However, each
cluster size depends on the physical node distribution. If
we can equalize the cluster size, the fairness in terms of the
number of processing queries per node can be improved and
the broadcast traffic can be further suppressed. In addition,
we plan to formulate a new metric to model the network
dynamics and extend the proposed method by taking into
account the metric. In this paper, we focused on only the
node velocities as a metric that represents the degree of net-
work dynamics. However, the network dynamics should be
modeled by the relationship among node speed, transmis-
sion range, and node density.

Acknowledgement

We would like to appreciate Post Doctor T. Zahn and Prof.
J. Schiller who provided us with the source code of MAD-
Pastry.

This research was supported by a Grant-in-Aid for
Young Scientists (B) 17700058 in Japan.

References

[1] D. Johnson, D. Maltz, and J. Broch, DSR: The dynamic source rout-
ing protocol for multihop wireless ad hoc networks, ch. 5, pp.139–
172, Addison-Wesley, 2001.

[2] C.E. Perkins and E.M. Royer, “Ad-hoc on-demand distance vector
routing,” Proc. Second IEEE Workshop on Mobile Computer Sys-
tems and Applications, pp.90–100, IEEE Computer Society, Feb.
1999.

[3] T. Clausen and P. Jacquet, “Optimized link state routing protocol
(OLSR),” RFC 3626, Oct. 2003.

[4] “Gnutella.” avairable at http://www.gnutella.com/
[5] M. Conti, E. Gregori, and G. Turi, “A cross-layer optimization

of gnutella for mobile ad hoc networks,” Proc. 6th ACM Interna-
tional Symposium on Mobile Ad Hoc Networking and Computing,
pp.343–354, May 2005.

[6] H. Pucha, S.M. Das, and Y.C. Hu, “Ekta: An efficient DHT substrate
for distributed applications in mobile ad hoc networks,” Proc. Sixth
IEEE Workshop on Mobile Computing Systems and Applications,
pp.163–173, Dec. 2004.

[7] T. Zahn and J. Schiller, “MADPastry: A DHT substrate for practi-
cably sized MANETs,” Proc. Fifth Workshop on Applications and
Services in Wireless Networks, June 2005.

[8] M. Caesar, M. Castro, E.B. Nightingale, G. O’Shea, and A.
Rowstron, “Virtual ring routing: Network routing inspired by
DHTs,” Proc. 2006 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, pp.351–
362, Sept. 2006.

[9] H. Pucha, S.M. Das, and Y.C. Hu, “Ekta+: Opportunistic multiplex-
ing in a wireless DHT,” Proc. First International Workshop on De-
centralized Resource Sharing in Mobile Computing and Network-
ing, pp.69–71, July 2006.

[10] F. Delmastro, “From pastry to CrossROAD: CROSS-layer ring over-
lay for ad hoc networks,” Proc. Third IEEE International Conference

TAKESHITA et al.: IMPROVING SUCCESS RATIO OF OBJECT SEARCH IN HIGHLY-DYNAMIC MOBILE P2P NETWORKS
3859

on Pervasive Computing and Communications Workshops, pp.60–
64, March 2005.

[11] A.I.T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
object address, and routing for large-scale peer-to-peer systems,”
Proc. IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware 2001), pp.329–350, Nov. 2001.

[12] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions,” Proc. 2001 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, pp.149–
160, Aug. 2001.

[13] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An in-
frastructure for fault-tolerant wide-area address and routing,” Tech.
Rep. UCB/CSD-01-1141, EECS Department, University of Califor-
nia, Berkeley, April 2001.

[14] M.K. Marina and S.R. Das, “Ad hoc on-demand multipath distance
vector routing,” SIGMOBILE Mob. Comput. Commun. Rev., vol.6,
no.3, pp.92–93, July 2002.

[15] S.J. Lee and M. Gerla, “AODV-BR: Backup routing in ad hoc
networks,” Proc. IEEE Wireless Communications and Networking
Conference (WCNC 2000), pp.23–28, Sept. 2000.

[16] “The network simulator ns-2.” avairable at http://www.isi.edu/
nsnam/ns/

[17] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and Mobile
Computing, vol.2, no.5, pp.483–502, Aug. 2002.

[18] J. Aspnes and G. Shah, “Skip graphs,” Proc. Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp.384–393, Jan.
2003.

[19] C. Schmidt and M. Parashar, “Enabling flexible queries with guaran-
tees in P2P systems,” IEEE Internet Comput., vol.8, no.3, pp.19–26,
2004.

[20] G.K. Zipf, Human Behaviour and the Principle of Least Effort: An
Introduction to Human Ecology, Addison-Wesley, 1949.

[21] K. Sripanidkulchai, “The popularity of GnutellaQueries and its im-
plications on scalability,” White Paper, avairable at http://www-
2.cs.cmu.edu/˜kunwadee/research/p2p/gnutella.html, 2001.

[22] S. Farrell and V. Cahill, Delay- and Disruption-Tolerant Networking,
Artech House, Norwood, MA, USA, 2006.

Kei Takeshita received the M.E. degree
from Osaka University, Osaka, Japan, in 2008.
He will be assigned as a researcher of NTT lab-
oratories, Tokyo, Japan. His research interest in-
cludes mobile P2P networking and human inter-
face.

Masahiro Sasabe received the M.E. and
Ph.D. degrees from Osaka University, Osaka,
Japan, in 2003 and 2006, respectively. He is cur-
rently an Assistant Professor with the Depart-
ment of Information and Communication Tech-
nology, Osaka University. From 2003 to 2004,
he was a Research Fellow with 21COE-JSPS,
Japan. From 2004 to 2007, he was an Assistant
Professor with the Cybermedia Center, Osaka
University. His research interests include QoS
architecture for multimedia distribution system,

P2P communications, and ubiquitous networking. Dr. Sasabe is a member
of the Institute of Electrical and Electronics Engineers.

Hirotaka Nakano received the B.E., M.E.,
and D.E. degrees in electrical engineering from
Tokyo University, Tokyo, Japan, in 1972, 1974,
and 1977, respectively. From 1999 to 2004, he
served as the head in the Multimedia Labora-
tory, NTT DOCOMO, where he is currently a
Professor with the Cybermedia Center, Osaka
University, Osaka, Japan. In 1977, he joined
NTT Laboratories, Tokyo, Japan, where he was
engaged in research and development of video-
tex systems and multimediaon- demand sys-

tems. From 1995 to 1999, he was an Executive Manager of the Multimedia
Systems Laboratory, NTT Human Interface Laboratories. His research ar-
eas include ubiquitous networks. Dr. Nakano is a member of the Institute
of Image Information and Television Engineers of Japan, and the Institute
of Electrical and Electronics Engineers.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

