u

) <

The University of Osaka
Institutional Knowledge Archive

. Communication Processing Techniques for
Title X .
Multimedia Servers

Maruyama, Mitsuru; Nishimura, Kazutoshi; Nakano,
Author (s) Hiro¥aka

: , IEICE Transactions on Communications. 1996, E79-
Citation |g(gy o "1039-1045

Version Type|VoR

URL https://hdl.handle.net/11094/23101

Copyright © 1996 The Institute of Electronics,

FI8NS | 1 formation and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

IEICE TRANS. COMMUN.,, VOL. E79-B, NO. 8 AUGUST 1996

1039

[PAPER Special Issue on Multimedia on Demand

Communication Processing Technlques for Multimedia

Servers*

Mitsuru MARUYAMA', Kazutoshi NISHIMURA'!, and Hirotaka NAKANO'", Members

SUMMARY Three techniques are proposed for reducing the
time required for protocol processing: protocol data unit man-
agement using page management, assembly and disassembly of
data packet header and contents in hardware, and rescheduling of
protocol processing. These techniques were shown to be feasible
by applying them to the TCP/IP over a fiber-distributed data in-
terface network. The maximum communication throughput was
91.6 Mbps; the total throughput for 64 sessions was 89.6 Mbps,
only 2% less than the maximum. These techniques will enable
the development of more efficient video-on-demand systems.

key words: high-speed protocol processing, multimedia commu-
nication, TCP/IP, FDDI

1. Introduction

Demand is growing for video-on-demand systems capa-
ble of simultaneously serving video and audio to client
terminals connected by a high-speed network, such as a
fiber-distributed data interface (FDDI) network or the
forthcoming broad-band integrated services digital net-
work (B-ISDN). The performance of a server’s commu-
nications processing unit during multiprocessing of pro-
tocols supporting high-speed communications is a vital
factor in the ability of such systems to simultaneously
serve multiple client terminals with real-time media.
Several researchers are working to clarify the over-
head in the transmission control protocol/internet pro-
tocol (TCP/IP) processing on general-purpose worksta-
tions[1]-[3]. Based on these results, reports have ap-
peared on methods of improving TCP/IP throughput of
an FDDI network, e.g.[4]. These methods use indepen-
dent hardware add-ons and processing methods within
the OS (operating system) for single-client connections
for computer communication. However, no reports have
appeared showing improvements in multiprocessing per-
formance through the use of communications processing
units for high-speed multimedia networks in the servers.
The main problem with the multiprocessing per-
formance of such units is that transmission efficiency is
reduced due to the overhead needed for switching be-
tween the protocol-processing tasks of multiple sessions.

Manuscript received December 20, 1995.
Manuscript revised March 22, 1996.
tThe author is with NTT Software Laboratories,
Musashino-shi, 180 Japan.
' The authors are with NTT Human Interface Lab-
oratories, Musashino-shi, 180 Japan.
“This paper was presented at NTT Software Labora-
tories.

Other vital issues are reducing the overhead for check-
sum calculation in TCP/IP processing and for trans-
ferring information between different memory spaces.
Improving the performance of basic one-to-one com-
munication is also required.

This paper describes two new hardware technolo-
gies for high-speed protocol processing: protocol data
unit (PDU) management using page management and
assembly and disassembly of data packet header and
contents in hardware. We have also developed a tech-
nique for improving the degree of multiplexing, called
rescheduling protocol processing, and a prototype com-
munications board that uses these new technologies; we
measured its processing performance and examined its
effectiveness by comparing its performance with that
currently achieved on general-purpose UNIX systems.

2. Target Protocol for Video-on-Demand System

Our prototype video-on-demand system is configured
with multiple the versa module europe (VME) boards
as shown in Fig.1; its main elements are shown in
Table 1[5]-[7].

We use FDDI for the low-layer protocol and the
widely used TCP/IP for the high-level communications

Client terminals

|

—n)

FDDI Network

S
Data

Readout

jntrol Unit
Communicatiéns

Control Unit Storage
: Lo jntrol Unit

Storage

Server

Fig. 1 Structure of prototype video-on-demand system.

1040
Table 1 Main elements of prototype system.
[Item | Function/Element [
media MPEG-1/2
coding rate 1.5/6 Mbps
storage 3.5-in. SCSI magnetic disks

search processing,

multiple readout,

video recording

commercial DOS/V PC with
MPEG-1/2 decoder, FDDI board

readout control unit

client terminal

communications
processing unit:
line FDDI DAS standard
line-control LSI chip FDDI MAC controller

host connection bus | VME (control), VSB (data)
board size VME triple height (9 U)
control processor 32-MIPS RISC, 128-KB cache
program memory 4-MB RAM, 2-MB ROM
communications buffer | 8 MB, 256-KB FDDI buffer
operating system Real-time OS

VSB: VME subsystem bus

protocol between the server and client terminals; this
permits the use of commercial hardware and software
at the client terminal end. Each of the layers (Fig.2)
is processed on the communications control board. A
UNIX OS socket is used for the interface with the other
control units.

This system uses the TCP’s flow control, sequence
control, and retransmit-on-error functions, as well as
various congestion control functions. The flow control
function is used to regulate the transmission rate from
the server in order to accommodate the video/audio
encoding bit rate. The video/audio encoding format is
MPEG-1/2 (Motion Picture Experts Group-1/2) com-
pression, and the sequence control and retransmit-on-
error functions are used for recovering missing packets
OT erTors.

The TCP/IP protocol can be implemented in a
variety of ways. This system is based on the 4.3BSD
tahoe[8] implementation.

3. Conventional Protocol Processing Performance

In this section we examine the performance of conven-
tional TCP/IP protocol processing by considering the
speed of protocol processing for single-client communi-
cations and the performance for multiplexed processing.
A conventional VME board with general-purpose real-
time operating system was used to evaluate the single-
client protocol processing speed and a UNIX worksta-
tion was used to test multiprocessing performance. We
chose the conventional VME board with the same CPU
type and same speed as our prototype board. The work-
station was chosen to have nearly the same CPU speed
as our prototype board.

IEICE TRANS. COMMUN., VOL. E79-B, NO. 8 AUGUST 1996

SNAP: sub-network access protocol
LLC: logical link control

' MAC: medium access control

PHY: physical layer protocol

PMD: physical layer medium dependent
SMT: station management

Processed on the communications control board

Fig. 2 Protocol layers.

Table 2 Sample study of protocol processing speed for TCP/IP
transmission and reception of a 4-KB packet.
Processing | Checksum Memory Protocol | Total
type calculation | movement (and time
management | others)
operations
(%) (%) (%) (usec)
socket
input/ — 91 9 581
output
TCP data
output 63 — 37 155
TCP ACK
output 14 — 86 28
TCP data
input 70 - — 30 140
TCP ACK
input 4 62 34 146

Measurement environme;nt: 32-MIPS RISC, 128-KB cache, 4-MB
RAM, real-time OS, Client terminal WS’s speed: 50.2 SPECint92

3.1 Protocol Processing Speed

Table 2 shows the results of a sample investigation of
TCP/IP processing speed on the conventional VME
board with a reduced instruction set computer (RISC)
CPU, tested with a logic analyzer. The limit on pro-
tocol processing speed was determined by the check-
sum calculation overhead, the complex protocol mem-
ory management, and the memory transfer overhead in
the socket layer[1]—[4]. By increasing the speed of these
it was possible to increase the basic single-client proto-
col processing speed. The TCP checksum is performed
by adding the complement of one to each 16-bit unit.
Overhead was generated by the CPU reading and cal-
culating all the data in both the data packet header and
contents.

Generally, the list structure called mbuf is used for

MARUYAMA et al: COMMUNICATION PROCESSING TECHNIQUES FOR MULTIMEDIA SERVERS

TCP memory management. This structure is used so
that data buffers can be linked together by using their
pointers, making it easy to allocate a variable-length
data buffer. When separating or combining data within
a protocol, however, allocating and opening the buffer
takes time due to the re-copying of the data. During
data transmission, the CPU copies data byte-by-byte
from the sequential user memory space to the chained
mbuf structure in the kernel space. During data recep-
tion, the reverse occurs: the CPU copies data byte-by-
byte from the kernel space to the user space. These both
take time[4].

3.2 Multiprocessing Performance

With a UNIX workstation, the throughput for simulta-
neous transmissions from a server with active TCP/IP
sessions connected to multiple client terminals is as
shown in Fig. 3. The horizontal axis shows the number
of connections, and the vertical axis is the throughput.
The transmission throughput is the single-connection
processing performance multiplied by the number of
connections. The performance for a single connection
was approximately 34 Mbps; as the number of connec-
tions increased, the performance dropped sharply, so
with 50 connections throughput fell to 35% of that with
only one. The causes of this, which were also cited as
sources of protocol processing overhead by P. Druschel
et al. [3], were mainly the task-switching overhead due
to multiprocessing and the interrupt overhead due to
asynchronous reception.

The task-switching overhead with multiprocessing
arises because there is a server process running for each
client terminal. As the number of simultaneous pro-
cesses grows, context switching between the user and
kernel spaces becomes more frequent, which is overhead
in UNIX.

| |
100 | |

UNIX WS speed: 21.8 SPECint92

Socket size=48 KB

80 RIW size=48 KB

Client Terminal WSs speed: 50.2 SPECint92

N
Q
2 |
g 60 [
H
£ Peak 34 Mbps
3 /
g 0 4
o
§ 65% reduction

20

0
0 20 40 60

No. of sessions

Fig. 3 Multiprocessing performance on a general-use UNIX
workstation.

1041

The interrupt overhead due to asynchronous recep-
tion arises because interrupts are used to notify the OS
asynchronously of acknowledges (ACKs) and other re-
ception data from the client terminals, which causes the
OS to immediately initiate reception processing. With
TCP, when an ACK reception verifies normal reception
by the remote node, the transmission memory is cleared.
A context switch occurs in the kernel each time an ACK
is received. If the ACKs are received at irregular inter-
vals, efficient transmission becomes impossible because
the transmission processing is continuously interrupted.

4. Performance of Prototype Communications Pro-
cessing Board

In this section we describe several techniques for in-
creasing the protocol processing speed and a combined
technique for increasing the degree of multiplexing.

4.1 Techniques for Increasing Protocol Processing
Speed

The operation of our prototype communications board
during data transmission and reception is shown in
Fig.4. The board transfers the data from the storage
control unit across the data bus to the transmission data
buffer. In the same transfer cycle, the data is also trans-
ferred to the checksum calculation circuit. This circuit
then calculates the checksum of the content part. Based
on the IP address, the TCP port number, and other in-
formation, the control CPU performs TCP/IP header
processing including header checksum calculation and
writes the result to header memory. Next, the CPU cal-
culates the TCP checksum value from the header check-
sum and the content checksum. Then the assembly unit,
which has a direct memory access (DMA) function,
joins the header information to the data in the trans-
mission data buffer and transfers it to the FDDI MAC
controller.

When receiving data, the FDDI MAC controller
captures the data frames from the line. The disassembly
unit simultaneously writes the data to the reception data
buffer and header memory. The checksum calculation
circuit for reception also monitors the data in the bus for
the same period as the cycle when data is written to the
reception data buffer, and calculates the checksum. The
CPU begins analysis of the header at the same time that
the leading portion of the data packet is transferred to
header memory. When all of the received data is stored
in the reception data buffer, the reception checksum cal-
culation results are read and compared with the value
received in the header portion. Once verified, the data
is transferred to the host data bus by DMA processing.

The new techniques are described below.

1. PDU management using page management

Since our board treats continuous data streams,

1042

TIEICE TRANS. COMMUN.,, VOL. E79-B, NO. 8 AUGUST 1996

Assembly and disassembly
of header and contents in
hardware
__________ |
I
i
gom | Transmission N Assembly |
orage "| Data Buffer S| Unit
Control Unit | '
On-the-fly ! :] !
heck X
mechanism Checksum 1 :
Calculation PDU management | Header 1 | FDDI MAC
Circuit using page management | Memory || | Controller &> Line
Y | (™
I 1 !
|
I
! |
ToHost Reception L l Disassembly | 4
Data Buifer |~ 1| Unit N
I
|
e e e oo &
Message Control
From/To Host <Ssmsssseas Buffer CPU

Fig. 4 Prototype board operation during data transmission and reception.

Reception/Transmission data buffer

T each page
Pages - 1] Offset
effgcivefield:] | Effective Length

Cluster Address
ololoolol[old
+
Cl Ma
heforplask Cluster 0
1l [il1[llo]

Cluster No

|
|
|
|
|
|
|
;
MEMMM v Cluster 1 i
i
|
]
[
|
|
|
|
|
|
|

Gyclic Page Counter

X (NI o |~ (W=

Fig. 5 Memory management architecture.

such as MPEG, that can be divided into fixed seg-
ment size, the PDU management functions can con-
sist of page management and a simple counter.
The reception and transmission data buffers, as
-shown in Fig.5, are data areas divided into pages
of fixed size. The contents of each page are man-
aged according to their offset addresses and effec-
tive lengths. The method for allocating and clear-
ing each page number is administered according to
the cluster address and cluster mask.

The effective bits of the cluster address are specified
according to the cluster mask, and thus the size of
the pages allocated in a cluster can be changed au-
tomatically. This enables application-specific page
allocation. To specify a page number in a cluster, a
cyclic page counter is used, which can be achieved
with simple counter hardware.

An example of this method is shown in Fig.5. In
this example, each cluster controls four pages be-

cause the cluster mask has six bits.

Using these pages, managed by their offset and ef-
fective length, and the method for allocating and
clearing memory, complex buffer management can
be replaced by the mbuf chain. To perform PDU
management using this page management method,
this prototype board uses two programmable LSI
logic chips.

Assembly and disassembly of header and contents
in hardware

The assembly and disassembly units (Fig. 4) consist
of two LSI programmable chips that separate and
reassemble the data packet header (LLC, SNAP, IP,
and TCP header) and contents in hardware. The
board architecture physically separates the memory
for the contents and header portions of the pro-
tocol and automatically reassembles and separates
them during DMA data transfer. In this way, data
transfer never competes with the CPU for memory
access, even when the CPU is performing header
operations.

. On-the-fly checksum calculation mechanism

This mechanism is in the TCP layer and is part of
the checksum calculation unit that calculates the
transmission and reception checksums during data
transfer (Fig.4). This mechanism implements the
TCP checksum algorithm in hardware. It samples
the data in the bus during the memory transfer cy-
cle and calculates the checksum values within the
same cycle. The control CPU reads and uses the
calculated results, which are stored in the register
after transfer. When fragmentation occurs and a
segment is divided into several parts, which is rare,
the checksum of each part is calculated by the con-
trol CPU. Furthermore, since error detection meth-
ods may differ if other protocols are implemented,

MARUYAMA et al: COMMUNICATION PROCESSING TECHNIQUES FOR MULTIMEDIA SERVERS

this prototype board has a calculation circuit that
uses a programmable LSI logic chip.

4.2 Combined Technique for Increasing the Degree of
Multiplexing

Pipeline protocol processing draws upon the parallel
nature of multiple transfers by ordering the memory
transfer and CPU protocol processes. Specifically, dur-
ing transmission, protocol processing is divided into
three stages: (a) data input, (b) protocol processing,
and (c) output processing. These are achieved through
pure pipeline operations. Stage (b) corresponds to CPU
processing time. If this pipeline operation is an ideal,
the overhead of copying data and protocol processing
is negligible. To further facilitate this pipelining, our
board uses a general-purpose real-time operating sys-
tem for fast task switching and combines “reschedul-
ing protocol processing” with “reducing task-switching
overhead by reducing the number of tasks used”.

1. Rescheduling protocol processing

The processing of ACK signals received at irregu-
lar intervals and the consequent clearing of memory
are delayed so they do not affect pipeline opera-
tions. As shown in the upper part of Fig. 6, data is
received asynchronously from the line during trans-
mission. When an ACK is received and the result-
ing clearing of memory occurs, all the CPU time
is utilized and protocol processing ((b) in the fig-
ure) is delayed. As a result, the output operation
(c) is delayed. With rescheduling, the lower part of
Fig. 6, when an interrupt arrives, only enough pro-
cessing is performed to confirm that it is an ACK
packet and to set a flag that an interrupt has oc-
curred. ACK processing is postponed until normal
protocol processing has finished. After normal pro-
tocol processing, the flagged ACKs are processed.
This prevents degradation in pipeline performance.

2. Reducing task-switching overhead by reducing the
number of tasks used

If task switching occurs frequently, it consumes
CPU time and delays the pipeline cycle. In our
board, the individual server tasks for each of the
client terminals are combined into a single task
so that operation occurs without task switching.
Tasks that should be processed within a set time
are processed sequentially, without status manage-
ment within the task, so that task switching is not
required.

1043

|
m Without rescheduling

Time

With rescheduling

pipeline pitch '
L XN pata input

L . Protocol processing
E Output processing
N /cK processing

Fig. 6 Rescheduling of protocol processing.

5. Performance Evaluation

5.1 Improving Single Protocol Processing Perfor-
mance

We evaluated the performance of our prototype com-
munications board for the transmission of 4 KB of data
and reception of ACK packets. A 14-fold improvement
over conventional methods in checksum calculation per-
formance was achieved in the transmission of 4-KB data
(Fig.7). The time needed to process the other TCP/IP
protocol tasks was reduced by 21% as a result of using
assembly and disassembly of data packet header and
contents in hardware and PDU management using page
management. The time needed for memory clearing of
ACK packets was reduced by about 64% as a result of
using PDU management using page management. The
nominal time for memory transfer was reduced by 40%
in the transmission of 4-KB data as a result of using
PDU management using page management; the actual
improvement is much higher because the pipelined func-
tioning lets memory transfer occur in parallel with CPU
processing. It takes an average of 340us to transmit
4KB of data when using the pipeline pitch in Fig. 6.
Since the data-input transfer rate from the data path
was 321 us, the protocol processing overhead was only
19 us. Clearly, an average transmission rate within the
board of 96 Mbps is attainable using our techniques.

5.2 Improving Multiprocessing Performance

The multiprocessing performance of our board is shown
in Fig.8. The data was collected from the prototype
board transmitting simultaneously to a number of off-
the-shelf workstations via a network analyzer. The fig-
ure shows the results for multiple simultaneous trans-
fers to the workstations. With only one connection,
only 55Mbps was reached with or without reschedul-

IEICE TRANS. COMMUN.,, VOL. E79-B, NO. 8 AUGUST 1996

1044
Transmission of 4-KB data
100
Dri\ller
' TCP/IP Socket
Conventional case . 97
08 g ,| Checksum 5. ! Memory Transfer
E Jtadod _ 777 40% 7
| : reduced " -7 i reduced e
— -7 1 P
Protolype board “Parallel operations—’l 423
0.92
Reception of ACK packet
100
Driver TCP/IP Checksum
Conventional case +
242 303 Iz-sl 427
[) R LT
: : reduced ///// redlioedr -
Prototype board 24.2 I 252 |23| 15.2
Values shown are relative to the conventional case
Fig. 7 Single-protocol processing performance.
100 — !t‘ with a high degree of multiplexing. They were de-
C n
o refnte signed with the goal of creating a video-on-demand sys-
--- 4 tem. The data transfer rate was measured for a proto-
> 80 9% redulction type communications board using these techniques con-
é [nected to several workstations over an FDDI network.
= 60 With rescheduling The main results were as follows:
= I WA [— " 3
® Without rescheduling e By using our techniques, we achieved a single-
E 40 1 connection TCP/IP protocol processing p'erfor-
o SPEGIne2 mance within the board of 96Mbps, with a
o 7] Client Terminal WSs speed: 50.2 int
] S S e KB ¥ throughput peak of 91.6 Mbps.
F 907 R/W size= 48 KB
e The time needed to process the TCP/IP was re-
duced by 21-64% as a result of using assembly and
0 disassembly of data packet header and contents in
0 20 40 60

No. of sessions

Fig. 8 Multiprocessing performance on the prototype board.

ing. This is due to limitations imposed by the commer-
cial workstations’ performance. The throughput peak
with rescheduling was is 91.6 Mbps with 13 connec-
tions and it decreased only 2% with 64 connections. On
the other hand, the throughput peak without reschedul-
ing was 91.2 Mbps with 8 connections and it decreased
9% with 64 connections. Applying rescheduling gave a
throughput drop with 64 connections that was 7% better
than without rescheduling. These results show that by
rescheduling protocol processing, pipelining can pro-
vide near-ideal operation.

6. Conclusion

We have developed several communications protocol
processing techniques that increase processing speed

hardware and PDU management using page man-
agement.

e By using an on-the-fly checksum calculation circuit,
the speed of checksum calculations in TCP proto-
col processing was increased 14-fold over that of

conventional methods.

By rescheduling protocol processing, performance
degraded by only 2% during multiprocessing,
even with 64 simultaneous connections, and the
throughput drop with 64 connections was 7% better
than without rescheduling.

Our techniques are not restricted to use with FDDI
networks; they are also suitable for connections using
B-ISDN or over high-speed LANs.

Acknowledgments
The authors thank all of their associates at the Multi-

media Systems Laboratory for their assistance with this
study.

MARUYAMA et al: COMMUNICATION PROCESSING TECHNIQUES FOR MULTIMEDIA SERVERS

References

[1] D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An
analysis of TCP processing overhead,” IEEE Communica-
tion Magazine, pp.23-29, June 1988.

[2] C. Papadopoulos and G.M. Parulkar, “Experimental eval-
uation of SUNOS IPC and TCP/IP protocol implemen-
tation,” TEEE/ACM Transactions on Networking, vol.1,
no.2, pp.199-216, 1993.

[3] P. Druschel, M.B. Abbott, M.A. Pagels, and L.L. Peter-
son, “Network subsystem design,” IEEE Network Maga-
zine, vol.7, no.4, pp.8—17, 1993.

[4] C. Dalton, G. Watson, D. Banks, C.Calamvokis, A. Ed-
wards, and J. Lumley, “Afterburner: A network-independ-
ent card provides architectural support for high-perform-
ance protocols,” IEEE Network Magazine, vol.7, no.4,
pp.36—43, 1993.

[5] K. Nishimura, T. Mori, Y. Ishibashi, and N. Sakurai,
“System architecture for digital video-on-demand services,”
Proc. IEEE ICIP ’ 92, pp.602—606, 1992.

[6] T. Mori, K. Nishimura, Y. Ishibashi, and H. Nakano,
“Video-on-demand system using optical mass storage sys-
tem,” JJAP, vol.32, Part 1, no.11B, pp.5433-5438, 1993.

[7] H. Sakamoto, K. Nishimura, Y. Ishibashi, and H. Nakano,
“Multimedia integrated switching architecture for visual
information retrieval systems,” Proc. IS&T/SPIE Elec-
tronic Imaging ’ 93, vol.1908, pp.123—132, 1993.

[8] S.J. Leffler et al., “The Design and Implementation of the
4.3BSD UNIX Operating System,” ISBN 0-201-06196-1,
Addison-Wesley, 1989.

[9] M. Maruyama, H. Sakamoto, Y. Ishibashi, and K.
Nishimura, “High-speed hardware architecture for high-
definition videotex system,” Journal of Electronic Imaging,
vol.1, no.4, pp.349-357, 1992,

Mitsura Maruyama Senior Research
Engineer in the Global Computing Lab-
oratory, NTT Software Laboratories. He
is currently studying fast-protocol pro-
cessing systems. Since joining the ECL
system in 1985, he has been engaged
in research and development of a high-
definition videotex system and video-on-
demand systems. He received an M.S.
degree in electrical engineering from the
University of Electro Communication in
1985. He is a member of the IEEE Computer Society and the
Information Processing Society of Japan.

Kazutoshi Nishimura Research Gr-
oup Leader in the Multimedia Systems
Laboratory, NTT Human Interface Lab-
oratories. He is currently engaged in
research on video-on-demand systems.
Since joining the ECL system in 1973, he
has been involved in research and devel-
e opment of a magnetic tape recording sys-
Q tem and an optical recording system: He
L received his B.S. degree from Kumamoto
University in 1973. He is a member of the
Japan Society of Applied Physics.

1045

Hirotaka Nakano Executive Man-
ager, Multimedia Systems Laboratory in
the NTT Human Interface Laboratories.
He is currently engaged in research and
development on video information sys-
tems. Since joining the ECL system in
1977, he has been engaged in research and
development of picture production sys-
tems and videotex systems. He received
a Ph.D. degree from the University of
Tokyo in 1977.

