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Abstract
In this paper, of concern is the singular impulsive functional integral equations

subject to nonlocal conditions in a Banach space. Sufficientconditions, ensuring the
existence of solutions, are presented. An example is also given to illustrate the ap-
plications of the abstract results. Our results essentially extend some existing results
in this area.

1. Introduction

In recent years, the theory of various functional integral equations in Banach spaces
has been studied deeply due to their important values in sciences and technologies, and
many significant results have been established (see, e.g., [13, 16, 23, 24, 26, 29, 30] and
references therein). Let us point out that many systems involve memory effects can be
modelled by functional integral equations. Moreover, functional integral equations de-
scribe systems with continuously distributed memory over the entire past of the system;
consequently, they have features that are substantially different from those of memory-
less systems (i.e. ordinary or partial differential equations and differential inclusions), and
also very different from those of systems with concentratedmemory effects (i.e. delay-
differential equations, with either constant or variable delays). In particular, there has a
significant development in the research area of impulsive integral equations; see for in-
stance [4, 15]. Impulsive conditions arise in a variety of applications; as shown in, e.g.,
[2, 5, 21, 28], the dynamics of many evolutionary processes from some research fields are
subject to abrupt changes of states at certain moments of time between intervals of con-
tinuous evolution, such changes can be well-approximated as being instantaneous changes
as state, that is, in the form of “impulses”.
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Let X be a Banach space with normk�k. In the present paper we consider the sin-
gular impulsive functional integral equation involving a nonlocal condition in the form
(1.1)
8

�

<

�

:

u(t) D T(t)H (u)C
1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, u(s)) ds, 0� t � T , t ¤ ti ,

1u(ti ) D I i (u(ti )), i D 1, : : : , n,

in X, where{T(t)}t�0 is a compactC0-semigroup onX, 0< � < 1, 0< t1 < t2 < � � � <
tn < T are pre-fixed numbers,1u(ti ) represents the jump of the functionu at ti , which
is defined byu(tCi )�u(t�i ), whereu(tCi )D limh!0C u(ti Ch) andu(t�i )D limh!0� u(ti C
h) denote respectively the right and left limits ofu(t) at t D ti . H, F, I i (i D 1, : : : , n)
are appropriate operators to be specified later. As can be seen, H constitutes a nonlocal
condition and the integral equation in (1.1) is singular.

As usual, the solutiont ! u(t) with the points of discontinuity at the moments
ti (i D 1, : : : , n) follows that u(ti ) D u(t�i ), that is, at which it is continuous from
the left.

We adopt the following concept of solution for (1.1).

DEFINITION 1.1. By a solution of (1.1) we mean a functionu 2 PC([0, T ]I X)
satisfying the integral equation
(1.2)

u(t) D

8

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

:

T(t)H (u)C
1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, u(s)) ds, if t 2 J0,

T(t)H (u)C
1

0(�)

X

0<ti<t

Z ti

ti�1

(ti � s)��1T(t � s)F(s, u(s)) ds

C

1

0(�)

Z t

ti

(t � s)��1T(t � s)F(s, u(s)) ds

C

X

0<ti<t

T(t � ti )I i (u(t�i )), if t 2 Ji (i D 1, : : : , n).

We refer to Section 2 for a complete definition of the setPC([0, T ]I X), and to,
e.g., [7, Lemma 3.1] and [25, Lemma 3.3] for more details of Definition 1.1.

Interest in the problems incorporating nonlocal conditions stems mainly from the
observation that nonlocal conditions have better effects in treating physical problems
than the usual ones, see [8, 11, 12] and the references therein for more detailed infor-
mation about the importance of nonlocal conditions in applications. Here, it is worth
mentioning that much attention is attracted by questions ofexistence of solutions to the
impulsive functional integral equations with nonlocal conditions in recent years, where
the integral equations are regarded as mild solutions of thecorresponding impulsive
functional differential equations incorporating nonlocal initial conditions. For signifi-
cant works along this line, see, e.g., [1, 6, 9, 10, 14, 22] andthe references therein for
more comments and citations. However, it is easy to see that much of these research
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on the existence of solutions was done under the restrictionthat the impulsive itemI i

(i D 1,: : : ,n) are compact or Lipschitz continuous. This condition turnsout to be quite
restrictive and is not satisfied usually in practical applications. Thus, there naturally
arises a question: “whether there exists a solution for the impulsive functional integral
equations with nonlocal conditions when the impulsive itemloss the compactness and
Lipschitz continuity”.

In this paper, among others, we will give an affirmative answer to this question.
Some new ideas will be given to obtain the desired results. Sufficient conditions, en-
suring the existence of solutions for the singular impulsive functional integral equation
involving a nonlocal condition (1.1), are established. These conditions allows us to re-
lax the compactness and Lipschitz continuity on the impulsive item I i (i D 1, : : : , n).
In fact, in the proof of one of main results we only need to suppose the continuity and
the growth conditions on the impulsive item and nonlocal item and do not impose any
other conditions. The main tools in our study are approximating technique in terms of
the theory of compactC0-semigroup and the fixed point theorems due to Schauder and
Darbo-Sadovskii. Our results essentially extend some existing results in this area.

REMARK 1.1. As the reader will see, the hypotheses on the impulsive item and
nonlocal item in our theorems are reasonably weak and different from those in many
previous papers such as [1, 6, 9, 10, 14] (where the integral equations considered are
defined as mild solutions of the corresponding impulsive functional differential equa-
tions incorporating nonlocal initial conditions and the results obtained are based upon
stronger restrictions on the nonlocal item and the impulsive item), and the proofs pro-
vided are concise.

REMARK 1.2. Let us note that the approximating technique plays a keyrole in
the proof of our main results, which enable us to get rid of thecompactness or Lipschitz
continuity of impulsive item and nonlocal item. Furthermore, this approach can be eas-
ily extended to other functional integral equations involving impulsive conditions and
nonlocal conditions.

REMARK 1.3. We mention that in recent paper [25], the solutions of integral
equation (1.2) are defined as mild solutions of the followingimpulsive fractional func-
tional differential equation with nonlocal initial condition

(1.3)

8

<

:

cD�

t u(t) D Au(t)C F(t, u(t)), t 2 [0, T ] n {t1, t2, : : : , tn},
u(0)D H (u),
1u(ti ) D I i (u(ti )), i D 1, : : : , n,

where cD�

t , 0 < � < 1, is the Caputo fractional derivative of order� and AW D(A) �
X! X is the infinitesimal generator ofC0-semigroup{T(t)}t�0. However, from the re-
sults in [19] it is easy to see that this concept of mild solutions of (1.3) is not appropriate
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(though this fashion of definitions of mild solutions was used in some situations of pre-
vious research (see, e.g., [20])).

This work is organized as follows. In Section 2, we present some preliminaries
and assumptions. Section 3 is devoted to our main results andtheir proof. Finally in
Section 4, an example is given to illustrate the feasibilityof our abstract results.

2. Preliminaries

Throughout this paper, we letL(X) be the space of bounded linear operators from
X to X and M be a constant such that

M D sup
t2[0,TC1]

kT(t)kL(X).

Write

J0 D [0, t1], Ji D (ti , tiC1], i D 1, : : : , n,

with t0D 0, tnC1D T , and letui be the restriction of a functionu to Ji (i D 0,1,: : : ,n).
Consider the set of functions

PC([0, T ]I X)

D {u W [0, T ] ! XI ui 2 C(Ji I X), i D 0, 1, : : : , n, and u(tCi )

and u(t�i ) exist and satisfyu(ti ) D u(t�i ) for i D 1, : : : , n}.

Endowed with the norm

kukPC D max

�

sup
t2Ji

kui (t)kI i D 0, 1, : : : , n

�

.

It is easy to show that, with this norm,PC([0, T ]I X) is a Banach space (see [17]).
The following lemma will play an important role in this paper.

Lemma 2.1. A set B� PC([0, T ]IX) is precompact in PC([0, T ]IX) if and only
if, for each iD 0, 1, : : : , n, the set BjJ i

is precompact in C(J i I X).

For the sake of convenience, we put

�r D {u 2 PC([0, T ]I X)I ku(t)k � r , 8t 2 [0, T ]},

where r is any positive constant, and list the assumptions to be usedin this work
as follows:
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(HF ) F W [0, T ] � X! X is a Carathéodory function, and there exists a constant� 2

[0, �) and a positive functionfr ( � ) 2 L1=�(0, T I RC) such that for a.e.t 2 [0, T ] and
all x 2 X satisfyingkxk � r ,

kF(t, x)k � fr (t), and lim inf
r!C1

k fr (t)kL1=� (0,T)

r
D � <1.

(HH ) (i) H W PC([0, T ]I X)! X is continuous, there exists a nondecreasing function
8 W R

C

! R

C such that

kH (u)k � 8(r ),

for all u 2 �r , and

lim inf
r!C1

8(r )

r
D � <1.

(ii) There is an& 2 (0,t1) such that for anyu,w 2 PC([0,T ] I X) satisfyingu(t)D
w(t) (t 2 [& , T ]), H (u) D H (w).

(H 0

H ) There exists a positive constantL H such that

kH (u) � H (w)k � L Hku � wkPC,

for all u, w 2 PC([0, T ]I X).
(HI ) For every i D 1, : : : , n, I i W X ! X is continuous, there exists a nondecreasing
function 9i W R

C

! R

C such that

kI i (y)k � 9i (r ),

for all y 2 X satisfyingkyk � r , and

lim inf
r!C1

9i (r )

r
D 
i <1.

Define

C
�,�(t) WD

t���

0(�)

�

1� �

� � �

�1��

, t 2 [0, T ].

It is not difficult to see that limt!0C C
�,�(t) D 0.

REMARK 2.1. Note that the assumption (HH ) (ii) is the case when the values of
the solutionu(t) for t near zero do not affectH (u). A case in point was presented in
[12], where the operatorH is given as follows:

H (u) D
p
X

iD1

Ci u(si ),
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where Ci (i D 1, : : : , p) are given constants and 0< s1 < � � � < sp�1 < sp < C1

(p 2 N), which is used to describe the diffusion phenomenon of a small amount of
gas in a transparent tube.

3. Main results

Let m� 1 be fixed. Define an operator0� on PC(0, T I X) by

(0�u)(t)D

8

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

:

T

�

1

m

�

T(t)H (u)C
1

0(�)

Z t

0
(t�s)��1T(t�s)F(s, u(s)) ds, if t 2 J0,

T

�

1

m

�

T(t)H (u)C
1

0(�)

X

0<ti<t

Z ti

ti�1

(ti �s)��1T(t�s)F(s, u(s)) ds

C

1

0(�)

Z t

ti

(t�s)��1T(t�s)F(s, u(s)) ds

C

X

0<ti<t

T

�

1

m

�

T(t� ti )I i (u(t�i )), if t 2 Ji ,

where i D 1, : : : , n.
Firstly, we are in a position to show the following result.

Lemma 3.1. Let the hypotheses(HF ), (HH ) (i) and (HI ) hold. Then for every
m� 1, the operator0� has at least a fixed point um 2 PC(0, T I X) provided that

M

 

�C �C
�,�(T)(n1��C�

C 1)C
n
X

iD1


i

!

< 1.(3.1)

Proof. It is clear that0� W PC(0, T I X)! PC(0, T I X). In the sequel, we prove
that there is a positive number� such that0� maps�

�

into itself. In fact, if this is
not the case, then for each� 2 N, there would existu

�

2 �

�

and t
�

2 [0, T ] such that
k(0�u

�

)(t
�

)k > �. Thus, from Hölder inequality and the assumptions (HF ), (HH ) (i),
(HI ) we deduce that

� < k(0�u
�

)(t
�

)k

�













T

�

1

m
C t

�

�













L(X)

kH (u
�

)k C
1

0(�)

Z t
�

0
(t
�

� s)��1
kT(t

�

� s)kL(X)kF(s, u
�

(s))k ds

� M8(�)C
M

0(�)

Z t
�

0
(t
�

� s)��1 f
�

(s) ds

� M8(�)C MC
�,�(T)k f

�

kL1=� (0,T),
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for the case whent
�

2 J0, and

� < k(0�u
�

)(t
�

)k

�













T

�

1

m
C t

�

�













L(X)

kH (u
�

)k

C

1

0(�)

X

0<ti<t
�

Z ti

ti�1

(ti � s)��1
kT(t

�

� s)kL(X)kF(s, u
�

(s))k ds

C

1

0(�)

Z t
�

tk

(t
�

� s)��1
kT(t

�

� s)kL(X)kF(s, u
�

(s))k ds

C

X

0<ti<t
�

kT

�

1

m
C t

�

� ti

�

kL(X)kI i (u�(ti ))k

� M8(�)C
M

0(�)

k
X

iD1

Z ti

ti�1

(ti � s)��1 f
�

(s) ds

C

M

0(�)

Z t
�

tk

(t
�

� s)��1 f
�

(s) dsC M
k
X

iD1

9i (�)

� M8(�)C
M

0(�)

�

1� �

� � �

�1��

k f
�

kL1=� (0,T)

k
X

iD1

(ti � ti�1)���

C MC
�,�(T)k f

�

kL1=� (0,T) C M
k
X

iD1

9i (�)

� M8(�)C MC
�,�(T)k f

�

kL1=� (0,T)(n
1��C�

C 1)C M
n
X

iD1

9i (�)

for the case whent
�

2 Jk (k D 1, : : : , n). Dividing on both sides by� and taking the
lower limit as � !1 one has

M

 

�C �C
�,�(T)(n1��C�

C 1)C
n
X

iD1


i

!

� 1,

which contradicts (3.1). This means that for some positive integer� > 0, 0�(�
�

)��
�

.
Next, we shall prove that0� is continuous on�

�

. Let {uq}
1

qD1 � �� be a se-
quence such thatuq ! u as q!1 on PC(0, T I X). From the continuity ofF with
respect to second variable it is not difficult to see that

F(s, uq(s))! F(s, u(s)), a.e. s 2 [0, T ] as q!1.
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Also, from the assumption (HF ) note that

Z t

ti

(t�s)��1 f
�

(s) ds�

�

1��

���

�1��

(T� ti )
���

k f
�

kL1=� (0,T) (i D 0, 1, : : : , n, t � ti ),

Z ti

ti�1

(ti �s)��1 f
�

(s) ds�

�

1��

���

�1��

(ti � ti�1)���k f
�

kL1=� (0,T) (i D 1, : : : , n).

Hence, by the continuity of operatorsH , I i (i D 1, : : : , n), the Lebesgue dominated
convergence theorem gives that for eacht 2 [0, T ],

k(0�uq)(t) � (0�u)(t)k ! 0, as q!1,

which implies that

k(0�uq)(t) � (0�u)(t)kPC ! 0, as q!1.

That is to say that0� is continuous on�
�

.
Finally, to be able to apply Schauder’s second fixed point theorem to obtain a fixed

point of 0�, we need to prove that0� is compact on�
�

. Let us decompose the op-
erator0� as follows:

0

�

D 0

�

H C 0
�

F C 0
�

I ,

where

(0�H u)(t) D T

�

1

m

�

T(t)H (u), t 2 [0, T ],

(0�Fu)(t) D

8

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

:

1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, u(s)) ds, if t 2 J0,

1

0(�)

X

0<ti<t

Z ti

ti�1

(ti � s)��1T(t � s)F(s, u(s)) ds

C

1

0(�)

Z t

ti

(t � s)��1T(t � s)F(s, u(s)) ds,

if t 2 Ji (i D 1, : : : , n),

(0�I u)(t) D
X

0<ti<t

T

�

1

m

�

T(t � ti )I i (u(ti )), t 2 Ji (i D 1, : : : , n).

From the assumption (HH ) (i) and the compactness ofT(t) for t > 0 we deduce that
0

�

H which maps�
�

into PC(0, T I X) is compact. Also, by the assumption (HF ) and
the compactness ofT(t) for t > 0 a standard argument yields that0�F jJ0 is compact
on �

�

.
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Let t 2 J1 be fixed and 0< "1 < min{t1, t � t1}. For u 2 �
�

, we define the map
0

�,"1
F by

(0m,"1
F u)(t) D

1

0(�)

Z t1�"1

0
(t1 � s)��1T(t � s)F(s, u(s)) ds

C

1

0(�)

Z t�"1

t1

(t � s)��1T(t � s)F(s, u(s)) ds

D

T("1)

0(�)

Z t1�"1

0
(t1 � s)��1T(t � "1 � s)F(s, u(s)) ds

C

T("1)

0(�)

Z t�"1

t1

(t � s)��1T(t � "1 � s)F(s, u(s)) ds.

Since T(t) for t > 0 is compact, for eacht 2 J1, the set

{(0�,"1
F u)(t)I u 2 �

�

, 0< "1 < min{t1, t � t1}}

is precompact inX. Moreover, fort 2 J1, from Hölder inequality and the assumption
(HF ) it follows that

k(0�Fu)(t) � (0�,"1
F u)(t)k �

1

0(�)













Z t1

t1�"1

(t1 � s)��1T(t � s)F(s, u(s)) ds













C

1

0(�)













Z t

t�"1

(t � s)��1T(t � s)F(s, u(s)) ds













�

M

0(�)

�

Z t1

t1�"1

(t1 � s)��1 f
�

(s) dsC
Z t

t�"1

(t � s)��1 f
�

(s) ds

�

� 2MC
�,� ("1)k f

�

kL1=� (0,T) ! 0 as "1! 0C.

Therefore, using the total boundedness we conclude that foreacht 2 J1, {(0�Fu)(t)Iu 2
�

�

} is precompact inX.
Note that

(0�Fu)(tC1 ) D
Z t1

0
(t1 � s)��1T(t1 � s)F(s, u(s)) ds.

The same idea can be used to prove that the set{(0�Fu)(tC1 )I u 2 �
�

} is precompact in
X. In fact, for each 0< "2 < t1, the compactness ofT(t) for t > 0 implies that

�

Z t1�"2

0
(t1 � s)��1T(t1 � s)F(s, u(s)) dsI u 2 �

�

�

D

�

T("2)
Z t1�"2

0
(t1 � s)��1T(t1 � "2 � s)F(s, u(s)) dsI u 2 �

�

�
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is precompact inX. Thus, the result that the set{(0�Fu)(tC1 )I u 2 �
�

} is precompact in
X follows from the estimate:













Z t1

0
(t1 � s)��1T(t1 � s)F(s, u(s)) ds�

Z t1�"2

0
(t1 � s)��1T(t1 � s)F(s, u(s)) ds













�













Z t1

t1�"2

(t1 � s)��1T(t1 � s)F(s, u(s)) ds













�

Z t1

t1�"2

(t1 � s)��1 f
�

(s) ds

� MC
�,�("2)k f

�

kL1=� (0,T)

! 0 as "1! 0C.

Next, we show the equicontinuity of{(0�Fu)( � )I � 2 J1, u 2 �
�

}. Let u 2 �
�

,
s1, s2 2 J1, s1 < s2 and Æ > 0 be small enough. We put

h1 D
1

0(�)

Z t1�Æ

0
(t1 � s)��1

kT(s2 � s) � T(s1 � s)kL(X)kF(s, u(s))k ds,

h2 D
1

0(�)

Z t1

t1�Æ
(t1 � s)��1

kT(s2 � s) � T(s1 � s)kL(X)kF(s, u(s))k ds,

and put

h3 D
1

0(�)

Z s1�Æ

t1

(s2 � s)��1
kT(s2 � s) � T(s1 � s)kL(X)kF(s, u(s))k ds,

h4 D
1

0(�)

Z s1

s1�Æ

(s2 � s)��1
kT(s2 � s) � T(s1 � s)kL(X)kF(s, u(s))k ds,

h5 D
1

0(�)

Z s1

t1

((s1 � s)��1
� (s2 � s)��1) � kT(s1 � s)kL(X)kF(s, u(s))k ds

C

1

0(�)

Z s2

s1

(s2 � s)��1
kT(s2 � s)kL(X)kF(s, u(s))k ds,

for the case whens1 > t1, and

h6 D
1

0(�)

Z s2

t1

(s2 � s)��1
kT(s2 � s)kL(X)kF(s, u(s))k ds,

for the case whens1 D t1. Then, making use of the assumption (HF ) we obtain

h1 �
1

0(�)
kT(s2�s1CÆ)�T(Æ)kL(X)

Z t1�Æ

0
(t1�s)��1

kT(s1�s�Æ)kL(X) f
�

(s) ds

�

M

0(�)

�

1��

���

�1��

(t1
(���)=(1��)

�Æ

(���)=(1��))1��

�kT(s2�s1CÆ)�T(Æ)kL(X)k f
�

kL1=� (0,T),
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h2 �
2M

0(�)

Z t1

t1�Æ
(t1�s)��1 f

�

(s) ds� 2MC
�,�(Æ)k f

�

kL1=� (0,T),

h3 �
1

0(�)
kT(s2�s1CÆ)�T(Æ)kL(X)

Z s1�Æ

t1

(s2�s)��1
kT(s1�s�Æ)kL(X) f

�

(s) ds

�

M

0(�)

�

1��

���

�1��

((s2� t1)(���)=(1��)
� (s2�s1CÆ)

(���)=(1��))1��

�kT(s2�s1CÆ)�T(Æ)kL(X)k f
�

kL1=� (0,T),

h4 �
2M

0(�)

Z s1

s1�Æ

(s2�s)��1 f
�

(s) ds

�

M

0(�)

�

1��

���

�1��

((s2�s1CÆ)
(���)=(1��)

� (s2�s1)(���)=(1��))1��
k f

�

kL1=� (0,T),

h5 �
M

0(�)

Z s1

t1

((s1�s)��1
� (s2�s)��1) f

�

(s) dsC
M

0(�)

Z s2

s1

(s2�s)��1 f
�

(s) ds

�

M

0(�)

�

Z s1

t1

((s1�s)(��1)=(1��)
� (s2�s)(��1)=(1��)) ds

�1��

k f
�

kL1=� (0,T)

C

M

0(�)

�

1��

���

�1��

(s2�s1)���k f
�

kL1=� (0,T)

�

M

0(�)

�

1��

���

�1��

k f
�

kL1=� (0,T)

�{((s1� t1)(���)=(1��)
C (s2�s1)(���)=(1��)

� (s2� t1)(���)=(1��))1��
C (s2�s1)���},

h6 �
M

0(�)

Z s2

t1

(s2�s)��1 f
�

(s) ds� MC
�,�(s2� t1)k f

�

kL1=� (0,T).

This together with the fact that the compactness ofT(t) for t > 0 implies the continuity
in the uniform operator topology shows thathi (i D 1, : : : , 6) tend to zero ass2! s1

and Æ ! 0C.
Note that

k(0�Fu)(s2) � (0�Fu)(s1)k �

�

h1C h2C h3C h4C h5, if t1 < s1,
h1C h2C h6, if t1 D s1.

Therefore, we obtain that{(0�Fu)( �)I u 2�
�

} is equicontinuous onJ1. Hence, applying
the Arzela–Ascoli theorem we can conclude that0

�

F jJ1
is compact on�

�

. The same
idea can be used to prove that for eachi D 2, : : : , n, 0�F jJ i

is also compact on�
�

.

Finally, to prove the compactness of the operator0

�

I , we note that for everyt 2 J i

(i D 1, : : : , n),
�

T

�

1

m

�

T(t � ti )I i (u(ti )), u 2 �
�

�

�

�

�

�

J i
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is relatively compact inX due to the compactness ofT(t) for t > 0. And, a direct
calculation yields













T

�

1

m

�

T(t � ti )I i (u(ti )) � T

�

1

m

�

T(s� ti )I i (u(ti ))













D













T

�

1

m

�

T(s� ti )(T(t � s) � T(0))I i (u(ti ))













� M













(T(t � s) � T(0))T

�

1

m

�

I i (u(ti ))













for ti � s< t � tiC1, i D 1,:::,n. This together with the strong continuity ofT(t) yields
that on J i , i D 1, : : : , n, {T(1=m)T(t � ti )I i (u(ti )), u 2 �

�

} are equicontinuous. Thus,
the Arzela–Ascoli theorem indicates that the operator0

�

I is compact and hence0� is
compact on�

�

. Consequently, we can make use of Schauder’s fixed point theorem
to deduce that for eachm � 1, 0� has at least a fixed pointum 2 �� . The proof is
then complete.

We now return to the problem (1.1). One of our main results in this paper is the
following theorem.

Theorem 3.1. Let the hypotheses inLemma 3.1and hypothesis(HH ) (ii) hold.
Then problem(1.1) has at least one solution.

Proof. We proceed in two steps.
STEP 1. We show that the set{um}1mD1 is precompact inPC(0, T I X).
Let � 2 (0,&) be fixed, where& is the constant in the assumption (HH ) (ii). Firstly,

from the compactness ofT(t) for t > 0 and the assumption (HH ) (i) it is not difficult
to see that for eacht 2 (0,T ], the set{T(t)T(1=m)H (um), m� 1} is precompact inX,
which together with the strong continuity ofT(t) yields that for the case whens1, s2 2

[�, t1], s1 � s2,












T(s2)T

�

1

m

�

H (um) � T(s1)T

�

1

m

�

H (um)













D













(T(s2 � �) � T(s1 � �))T(�)T

�

1

m

�

H (um)













! 0, as s2! s1,

uniformly for m� 1, and for the case whens1, s2 2 J i , s1 � s2 (i D 1, : : : , n),












T(s2)T

�

1

m

�

H (um) � T(s1)T

�

1

m

�

H (um)













D













(T(s2 � ti ) � T(s1 � ti ))T(ti )T

�

1

m

�

H (um)













! 0, as s2! s1,
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uniformly for m � 1. Therefore, in view of Arzela–Ascoli theorem we deduce that
the set{T(t)T(1=m)H (um), m � 1}j[�,t1] is precompact inC([�, t1]I X) and for each
i D 1, : : : , n, the set{T(t)T(1=m)H (um), m� 1}jJ i

is precompact inC(J i I X). Put

(Eum)(t) D

8

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

:

1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, um(s)) ds, if t 2 J0,

1

0(�)

X

0<ti<t

Z ti

ti�1

(ti � s)��1T(t � s)F(s, um(s)) ds

C

1

0(�)

Z t

ti

(t � s)��1T(t � s)F(s, um(s)) ds,

if t 2 Ji , i D 1, : : : , n.

Then, the same idea with the proof of Lemma 3.1 can be used to prove that the set
{Eum, m� 1}jJ0 is precompact inC(J0IX) and for eachi D 1,: : : ,n, {Eum, m� 1}jJ i

is precompact inC(J i I X).
In what follows, we consider the set

8

<

:

X

0<ti<t

T

�

1

m

�

T(t � ti ) I i (um(ti )), m � 1

9

=

;

, i D 1, : : : , n.

Notice that fort 2 J0,

um(t) D T(t)T

�

1

m

�

H (um)C
1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, um(s)) ds

D T(t)T

�

1

m

�

H (um)C (Eum)(t)jJ0.

Then, from the argument above we see that for any� � Q� < t1, {umI m � 1}j[ Q�,t1] is
precompact inC([�, t1]I X). Without loss of generality, we let

um! u in C([ Q�, t1]I X)(3.2)

as m!1, which implies in particular that

um(t1)! u(t1) in X,

as m! 1, that is, the set{um(t1)I m � 1} is compact inX. This together with the
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assumption (HI ) and the strong continuity ofT(t) concludes that












I1(u(t1)) � T

�

1

m

�

I1(um(t1))













�













I1(u(t1)) � T

�

1

m

�

I1(u(t1))













C













T

�

1

m

�

I1(u(t1)) � T

�

1

m

�

I1(um(t1))













�













I1(u(t1)) � T

�

1

m

�

I1(u(t1))













C MkI1(u(t1)) � I1(um(t1))k

! 0 as m!1,

which implies that the set{T(1=m) I1(um(t1))I m� 1} is relatively compact inX. Since
T(t) is compact fort > 0, for eacht 2 I 1 the set{T(1=m)T(t � t1) I1(um(t1))I m� 1}

is also relatively compact inX. On the other hand, fors1, s2 2 J1, s1 � s2, from the
compactness of the set{um(t1)I m� 1} and the strong continuity ofT(t) we get













T

�

1

m

�

T(s2 � t1) I1(um(t1)) � T

�

1

m

�

T(s1 � t1) I1(um(t1))













�













T

�

1

m
C s1 � t1

�













L(X)

k(T(s2 � s1) � I ) I1(um(t1))k

� Mk(T(s2 � s1) � I ) I1(um(t1))k

! 0, as s2! s1,

uniformly for m � 1. Therefore, in view of Arzela–Ascoli theorem we find that
{T(1=m)T(t � t1)I1(um(t1))I m� 1}J1

is precompact inC(J1I X). A similar argument
enable us to conclude that for eachi D 2, : : : , n,

(

X

0<ti<t

T

�

1

m

�

T(t � ti )I i (um(ti )), m� 1

)

�

�

�

�

�

Ji

is precompact inC(J i I X).
Finally, to prove that the set{um}1mD1 is precompact inPC(0,T IX), it will suffice

to show that the set
�

T(t)T

�

1

m

�

H (um),m� 1

�

�

�

�

�

[0,�]

is precompact inC([0,�]IX). Let & be the constant in the assumption (HH ) (ii). Write

Qum(t) D

�

um(t) if t 2 [& , T ],
um(&) if t 2 [0, & ].

Then, from (3.2) we may assume, without loss of generality, that

Qum! u in PC(0, T I X),
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as m!1. Thus, from the continuity of operatorH and the strong continuity ofT(t)
we get













H (u) � T

�

1

m

�

H (um)













D













H (u) � T

�

1

m

�

H ( Qum)













�













H (u) � T

�

1

m

�

H (u)













C













T

�

1

m

�

(H (u) � H ( Qum))













�













H (u) � T

�

1

m

�

H (u)













C MkH (u) � H ( Qum)k

! 0 as m!1,

which implies that the set{T(1=m) H (um), m � 1} is relatively compact inX. This
together with the strong continuity ofT(t) concludes that fors1, s2 2 [0, �], s1 � s2,













T(s2)T

�

1

m

�

H (um) � T(s1)T

�

1

m

�

H (um)













�













(T(s2) � T(s1))T

�

1

m

�

H (um)













! 0 as s2! s1,

uniformly for m � 1. Consequently, we conclude that the set{T(t)T(1=m) H (um),
m � 1}j[0,�] is precompact inC([0, �]I X) and hence the set{um}1mD1 is precompact
in PC(0, T I X).

STEP 2. Since the set{um}1mD1 is precompact inPC(0, T I X), there is a sub-
sequence{um j } and there is au 2 PC(0, T I X) such thatum j ! u in PC(0, T I X) as
j !1. Note thatum j 2 PC(0, T I X) satisfies the integral equation

um j (t)D

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

T

�

1

m j

�

T(t) H (um j )C
1

0(�)

Z t

0
(t�s)��1T(t�s)F(s, um j (s)) ds,

if t 2 J0,

T

�

1

m j

�

T(t) H (um j )C
1

0(�)

X

0<ti<t

Z ti

ti�1

(ti �s)��1T(t�s)F(s, um j (s)) ds

C

1

0(�)

Z t

ti

(t�s)��1T(t�s)F(s, um j (s)) ds

C

X

0<ti<t

T

�

1

m j

�

T(t� ti ) I i (um j (t
�

i )), if t 2 Ji ,

where i D 1, : : : , n. Letting j !1 one has thatu is one solution of problem (1.1).
This completes the proof.
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Theorem 3.2. Let the hypotheses(HF ), (H 0

H ) and (HI ) hold. Then problem(1.1)
has at least one solution provided that

M

 

L H C �C�,�(T)(n1��C�
C 1)C

n
X

iD1


i

!

< 1,(3.3)

Proof. We proceed in two steps.
STEP 1. Let m� 1 be fixed. Consider the operator0�W PC(0,T IX)! PC(0,T IX)

which is defined by

(0�u)(t) D

8

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

:

T(t)H (u)C
1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, u(s)) ds, if t 2 J0,

T(t)H (u)C
1

0(�)

X

0<ti<t

Z ti

ti�1

(ti � s)��1T(t � s)F(s, u(s)) ds

C

1

0(�)

Z t

ti

(t � s)��1T(t � s)F(s, u(s)) ds

C

X

0<ti<t

T

�

1

m

�

T(t � ti )I i (u(t�i )), if t 2 Ji (i D 1, : : : , n),

we will prove that0� has a fixed point. Firstly, from Hölder inequality and the as-
sumptions (HF ), (H 0

H ), (HI ) we infer that fort 2 Jk (k D 1, : : : , n),

k(0�u)(t)k

� kT(t)kL(X)kH (u)k C
1

0(�)

X

0<ti<t

Z ti

ti�1

(ti � s)��1
kT(t � s)kL(X)kF(s, u(s))k ds

C

1

0(�)

Z t

tk

(t � s)��1
kT(t � s)kL(X)kF(s, u(s))k ds

C

X

0<ti<t













T

�

1

m
C t � ti

�













L(X)

kI i (u(ti ))k

� M(L H� C H (0))C MC
�,�(T)k f

�

kL1=� (0,T)(k
1��C�

C 1)C M
k
X

iD1

9i (�).

Therefore, an application of the same idea with the proof of Lemma 3.1 together with
condition (3.3) gives that there exists a positive number� such that0� maps�

�

into
itself. Moreover, similarly to the proof of Lemma 3.1 we can also deduce, in view of
the continuity ofF with respect to second variable andH , I i (i D 1, : : : , n), that 0�

is continuous on�
�

.
Now, we assume that the operators0�F , 0�I are defined by the same as in Lemma 3.1.

From the proof of Lemma 3.1 note that the operators0

�

F , 0�I are compact on�
�

.
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Write

(00H u)(t) D T(t)H (u), t 2 [0, T ].

Then from the assumption (H 0

H ) it follows that

k(00H u)(t) � (00Hw)(t)k � kT(t)kL(X)kH (u) � H (w)k

� M L Hku � vkPC, for u, w 2 �
�

,

which yields that

k(00H u)(t) � (00Hw)(t)kPC � M L Hku � vkPC, for u, w 2 �
�

.(3.4)

That is, 00 is Lipschitz continuous on�
�

. Since the condition (3.3) implies that
M L H < 1, the operator0� D 00HC0

�

FC0
�

I is an�-contraction on�
�

. Therefore, ap-
plying the Darbo-Sadovskii’s fixed point theorem [3] we deduce that for eachm� 1,
the operator0� has at least a fixed pointum 2 �� .

STEP 2. Consider the set{um}1mD1. Since for eachm � 1, um satisfies the inte-
gral equation

um(t) D T(t)H (um)C
1

0(�)

Z t

0
(t � s)��1T(t � s)F(s, um(s)) ds, for t 2 J0,

from our hypotheses it is not difficult to see that for eacht 2 (0,t1], the set{um(t)}1mD1

is relatively compact (cf. the proof of Lemma 3.1). This yields in particular that there
is a subsequence{um j (t1)}1jD1 and there is au0 such that

um j (t1)! u0 in X,

as j !1, which together with the strong continuity ofT(t) and the continuity ofI1

implies that












I1(u0) � T

�

1

m j

�

I1(um j (t1))













�













I1(u0) � T

�

1

m j

�

I1(u0)













C MkI1(u0) � I1(um j (t1))k

! 0, as j !1.

That is, the set{T(1=m j ) I1(um j (t1))}1jD1 is relatively compact inX. SinceT(t) for t >
0 is compact, for eacht 2 J0 the set{T(1=m j )T(t � t1) I1(um j (t1))}1jD1 is also relatively
compact inX. Moreover, from the compactness of the set{T(1=m j ) I1(um j (t1))}1jD1 and



682 R.-N. WANG, Y. WANG AND D.-H. CHEN

the strong continuity ofT(t) note that fors1, s2 2 J1, s1 � s2,












T

�

1

m j

�

T(s2 � t1) I1(um j (t1)) � T

�

1

m j

�

T(s1 � t1)I1(um j (t1))













� kT(s1 � t1)kL(X)













(T(s2 � s1) � I )T

�

1

m j

�

I1(um j (t1))













� M













(T(s2 � s1) � I )

�

T

�

1

m j

�

I1(um j (t1))

�













! 0, as s2! s1,

uniformly for j � 1, which implies that the set{T(1=m j )T( � �t1)I1(um j (t1))I � 2

J1, j � 1} is equicontinuous onJ1. Hence, using the Arzela–Ascoli theorem we
have that the set{T(1=m j )T(t � t1)I1(um j (t1))I j � 1}jJ1

is precompact inC(J1I X).

By a similar argument it follows that for eachi D 2, : : : , n,
{
P

0<ti<t T(1=m)T(t �

ti )I i (um(ti )), m� 1
}
�

�

Ji
is precompact inC(J i I X).

Let �( � ) stand for the Hausdorff measure of noncompactness (see [3]). Then from
the argument above and (3.4) we have

�({um j }
1

jD1) � M L H�({um j }
1

jD1),

which together with the fact that the condition (3.3) implies that M L H < 1 yields that

�({um j }
1

jD1) D 0.

That is to say that the set{um j }
1

jD1 is precompact inPC(0, T IX). Thus, we may sup-
pose without loss of generality that

um j ! u in PC(0, T I X)

as j !1, and the same reason with the last proof of Theorem 3.1 can conclude that
the limit u is one solution of problem (1.1). This completes the proof.

4. An example

In this section, we present an example, which does not aim at generality but indi-
cates how our theorems can be applied to concrete problem.

Let � D 1=2, X D L2[0, � ], and the operatorsAW D(A) � X 7! X be defined by

D(A) D {u 2 XI u, u0 are absolutely continuous,u00 2 X, and u(0)D u(�) D 0},

AD
�

2

�x2
.
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Clearly, A generates a strongly continuous semigroup{T(t)}t�0 on X and the semi-
group generated byA is compact, analytic andkT(t)kL(X) � e�t for all t � 0 (see
[18, 27]).

Define

F(t, u(t, x)) D
sinu(t, x)

t1=3
,

I i (u(t�i , x)) D
u(t�i , x)

1C u(t�i , x)
,

H (u( � , x)) D u0(x)C
p
X

iD1

Ci u(si , x),

where Ci (i D 1, : : : , p) are given constants, and 0< s1 < � � � < sp�1 < sp < T and
0< t1 < t2 < � � � < tn < T are pre-fixed numbers.

Then, the hypotheses (HF ), (HH ) and (HI ) hold with

1

3
< � <

1

2
, fr (t) D t�1=3,

9i (r ) D 1 (i D 1, : : : , n), 8(r ) D ku0kL2[0,� ] C r
p
X

iD1

jCi j,

� D 0, 
i D 0 (i D 1, : : : , n), � D

p
X

iD1

jCi j.

Hence, whenjCi j (i D 1, : : : , p) are small enough such that the condition (3.1) is
satisfied, the corresponding problem has at least one solution due to Theorem 3.1.
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