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Abstract

We discuss constant mean curvature bubbletons in Euclilegrace via dressing
with simple factors, and prove that single-bubbletons areembedded.

Introduction

A key feature of an integrable system is the presence of agbedgc transform-
ation method which generates new solutions from old onegalticular even by start-
ing with a trivial solution one obtains a hierarchy of intatieg global solutions. For
the KdV equation one thus obtains the solitons via a Backlwmadsform. Solitons are
solitary traveling waves with localized energy that ardktavhen interacting with each
other. Many of the modern techniques in integrable systemasryhstem from classical
surface theory, developed by Backlund, Bianchi and Darbamrongst others for the
structure equations of special surface classes.

Away from umbilic points the structure equation of a constapan curvatureqmc)
surface is the sinh-Gordon equation, whose trivial sofutioves rise to the round cylin-
der. The term ‘bubbleton’ is due to Sterling and Wente [19{d dhe bubbletons are
the solitons of the sinh-Gordon equation. The single-betiolols are obtained by trans-
forming the round cylinder by a Bianchi—Backlund transforfime resulting transformed
cMmc cylinder globally looks like the round cylinder except fotaalized part in which
bubble-like pieces are glued into the underlying surfaee, Big. 1.1. A video of how
bubbles interact when they move through each other can reatdé5].

Recently the classical transformations have received antrent from the modern
point of view of dressing [2, 3, 4,5, 6,7,8, 11, 12, 14, 21].bBletons can be realized
by dressing the round cylinder by a class of very simple map#ied simple factors
[21]. By repeatedly applying the Bianchi—Béacklund tramsfation to the round cylin-
der one produces the ‘multi-bubbletons’ classified by #tgrand Wente [19]. While
graphics of bubbletons clearly suggest that they are notedddd (see Fig. 1.1), there
does not seem to be a direct proof of this fact in the litemtdn indirect proof when
the target is the 3-sphere is given in [10].

The purpose here is to prove that no member in the infinite Ifawi single-
bubbletons is embedded. This is done by showing that alllesingbbletons possess
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a planar curve which is not homologous to zero on the surficis. shown that this
curve has turning number at least three, which implies thatsurface cannot be em-
bedded. We reveal how the choice of the ‘singularity’ in tirapde factor is reflected
in the geometry of the resulting bubbleton. The monotonausece of the singular-
ities are indexed by an integét € N for K > 2, andK is the number of ‘bubbles’
of the bubbleton, ask — 1 turns out to be the turning number of the planar curve.

1. The round cylinder

If i =+/—1, then in the spinor representation of Euclidean 3-sfRiceve identify
R3 =~ su, via

iX3 X1 + iXo
(X1, X2, X3) = ( )

—X1 + iXo —1iX3

The extended frame of a round cylinder (up to isometry andacoral change of co-
ordinate) is

B CoSLy ir Y2 sinpu;
(1.0 F.(2) = ( irl/2 sin ;. COSw;,
where
(1.2) Wy, = pi(2) = %(Z)»fl/z +2.12).

The Sym-Bobenko formula [20, 1] for amc surface in Euclidean 3-spad®?® is a
formula of the immersion in terms of its extended frafe In our conventions [18],
the associated family with constant mean curvatdre R* is given by

(1.3) f.(2) = —2iAH*F(2F1(2)

where F; denotes the derivative with respect 1o If we pick one member of the as-
sociated familyf, with » € S and choose. = 1, and insert the extended frame (1.1)
of the round cylinder, we obtain

o i sirf(7x) — cosfrx) sin(rx) — wiy
falxy) = H l( cosfrx) sin(rx) — wiy —i sir(rx) )
1 sin(2r x)
~ 0 -2y )
1— cos(2rx)

This is clearly a round cylinder which is generated by a eiiiol thex; Xs-plane of radius
1/(2|H]) centered at the point (0,/(2H)) parallel translated along the,-axis. Any
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Fig. 1.1. Parts of a two-lobed single-bubbleton, and a multi
bubbleton with 2 and 3 lobes. Further graphics of bubbletzrs
be viewed at [16, 17].

curve x, = ¢ for some constant € R is not contractible on the cylinder. By restricting
the x-coordinate to any interval of length one we obtain an embdddund cylinder.

In general, or when the parametrization is less explicie oan describe the period
problem as follows. Suppose we have an extended fremand an associated family
of cmc surfaces as in (1.3). Then periodicity(z + 7) = f.(2) for all ze C can in
general not hold for alk € S. But if we fix Ao € S*, then periodicity reads

(1.4) Fl(z+1)F M z+ 1) = F (9F; (2.

If we define the monodromy matri¥; () with respect to the translation+ z + t
of F;, by

1.5) M (2) = Fi(z + 1)F, (2)
then the period problem (1.4) is equivalent to
(1.6) M,(z) = £1 and M, (r) = 0.

The monodromy matrix is not well defined, since it depends e dhoice of a base
point, and so is only defined up to conjugacy. However, thépmity conditions (1.6)
are invariant under conjugation.

Since we need some of the above in the special case of the wlinder, let us
specialize again to this case. W, is the extended frame (1.1) of a round cylinder, we
choose the base poit = 0 and note thaf, (0) = 1 for all » € C*. As before pick
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Ao = 1. The monodromy ofs; (z) with respect to the translation: z+—> z+ 1 is then
(1.7) M, (z) = Fu(1),

and a quick computation confirms theg(1) = —1 and F;(1) = 0.

2. Simple factors

There is a deformation technique in the theory of harmonig@snealleddress-
ing [4]. In particular, dressing by specific very simple mapsresponds to the classi-
cal Bianchi—Backlund transformation [14], and amounts ddiag ‘bubbletons’ to the
standard round cylinder—these simple maps are calletple factors[21]. Let us
briefly review the theory of simple factors in the contextaMc surfaces inR3. Let
7L C? — L be the hermitian projection onto a life € CPY, andz{* = 1 — . For
a € C*, set

a—A |
(21) 1//Ly06()‘) =1L + m?’[L .
To normalize we make the determinant equal to 1 and do a Grahmi8it factoriza-
tion at » = 0 to obtain (det/_ ,(0))>?y (0) = QR with Q € SU, and R € SL,
upper triangular with positive real entries on the diagodalsimple factoris a map of
the form

(2.2) hLe = (dety o) 72Q ML .

By Proposition 4.2 in [21] dressing by simple factors is &ipl and adapted to the

case at hand in Theorem 1.2 in [11]: Generally, suppose Rhas an extended frame,

andh_, a simple factor withw € C*, |a| < 1, andL € P. Then the dressed extended
frame is given by dressing on ancircle withr < |¢| < 1, and is

(2.3) hie#F.=h  Fht with [=F.@ L.

We next show that to obtain the single-bubbletons we can sthaliagonal simple fac-
tors with very specific singularities.

Lemma 2.1. Up to isometry and conformal coordinate change any single-

bubbleton can be obtained by dressing the round cylinder Isjnwle factor h , with
line L =[1:0], so of the form

[1—aAi 1 0
( ) L,Ot (X—)\, (0 o )" 1
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with real « € (0, 1) given by
(2.5) o =2K2-1-2K~VK2—1 for some integer K> 2.

Proof. If we want to dress the extended frame of the roundndeli, then we
will have to choose the lind. and the singularityr in such a way that the resulting
bubbleton remains periodic with the same period as the bndgrround cylinder. To
get the conditions o and @ we will need to look at the monodromy of the dressed
extended frame (2.3), with respect to the same translatian— z+1. SinceF;,(0)=1
for all A € C*, for the dressed frame we also have, #F;|,—0 =1 sincel = L for
z = 0. Hence with the monodrom, (z) in (1.7) of the round cylinder we obtain for
the bubbleton monodromy

(2.6) hLa#Filzm1 = huaMy(Dh(Y, <= M(@)'L = L.

Thus the condition on the lin& is that it has to be an eigenline (Mu,(r)t. Now
SU, acts transitively orCP* andhy, , = Uh, ,U~* for any U € SU,. Since dressing
by h. ., andUh_ ,U~! give the same surface up to isometry and conformal coomlinat
change, we may choose without loss of generality the line [1 : O].

The monodromy of an extended frame ofcac surface should be holomorphic
in A € C* and unitary fora € S. Clearly away fromi = «, 1/ we have

heo(1/7) = hih ()
sohp 4 Mk(r)h[}a is unitary on the unit circle, if we demand that
(2.7) lee| # 1.
Furtherh,_ Mk(r)h[}a is holomorphic for allx € C* away fromi = o, 1. To make
these two singularities removable, we impose the conditia M, (t) = F,(1) = £1,

or equivalently thaj, (1) = +1 for the functionu; in (1.2). This is equivalent to there
existing an integeK € Z such that

(2.8) a Y2 4 ol/?2 = 2K.
Rewriting this as a quadratic equation we obtain for eck Z two real solutions
(2.9) or =2K2 -1+ 2KVK2 -1,

First observe that_ = 7. Now ¥ ,+ = Y%, and

_ a—XA [1—alr 1 a—XA |[1—ar (0 -1
e = i e 1 = VeV amg Moe or U=(9 )
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But since

a—A [1—al

=-1 and —
1—arV a—A

0
oA
a=1

a—X2 [1—ai —0
a\Vi—aaV a—2 ) 7
dressing byh_, and h_ ., gives the same bubbleton up to isometry and conformal
coordinate change. Thus, and«_ give the same bubbleton, so we may omit the sub-

script, restrict to non-negative integeis> 0, and setx = «_, so thatx is as in (2.5).
Thena™ —a = (@2 4+ a?)(@~Y? — a/?) = 2K (@Y% —«/?), and consequently

a % — g% = 24 /K2 —1.

Note that whenK = 0, +1 thena = —1, 1, 1 respectively, and it is not hard to see
that o ¢ S* when |K| > 2. Hence the condition (2.7) tha&| # 1 requires that we
imposeK # 0, 1, and consequently we may restrict to the c&se 2. To see that
the singularities ak = «, 1/ are now apparent, we use L'Hopital’s rule to obtain

1—ax .
cosu; (1) P2 Y2 sin s (1)
lim h_o F (AT, = lim a— A

—A .
2T M2 sing (D) cosyu (1)
1—ai

_(O j::I_)-I-not (1 “)A"El—a_x 0 0

C(EL 0 L. ez (01
_( 0 j::L):I:not 4K (K 1) 0 o)

with sign depending on the parity ¢f. A similar computation, or usingmt =F1
shows that, = 1/« is also a removable singularity. O

To obtain any multi-bubbleton of finite type one can dress fiyige product] [hy
of simple factors, but we may use each inte¢er> 2 only once, since otherwise the
singularities are no longer removable in the dressed mamogr Hence on a multi-
bubbleton each lobe numb& can appear only once.

3. The main result

With the preparations of the preceding two sections we cangrove our main result.

Theorem 3.1. A single-bubbleton is not embedded.

Proof. From (2.3) the extended frame of a bubbletoi,is, F,\hEla with

==t 1\ COS/ly
@) ceme (L) = (L)
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Fig. 3.1. Planar curve on the 2-lobed single-bubbleton. a$ h
turning number 3. On the right, a magnified view of one of the
two small loops of the curve.

We next explicitly compute the parameter curye= 0 on a bubbleton. Since single-
bubbletons are immersions [19], parameter curves are isgdeMVe may set the mean
curvature toH = —1/2. Inserting the bubbleton frame into the Sym—Bobenko fdamu
(1.3) gives three terms

(3.2) ih, (i +ihe o FF thel, +ihc Fhvhe JF his himay—o.

In the following we will compute these three terms. First, ave forh, , in (2.4) that

K —i 0
o la/ -1 _
(3.3) nhL’ahL’ah:l_—z\/Kz__l( . ﬁ).

The second term is

) R 1 [ —isir(zx) —% sin(2rx)
(34) 11h|_'a FAF hL,g'k:l,yZO = E 1
5 sin(2rx) i sirf(rx)

If L =[a:b], then with respect to the standard basis@f the projectionz, is

o 1 laj> ab
T Jalz+ b2\ ab |2 )

Hence for the linel in (3.1) we obtain

|cOSte|? for=Y2 sin py, COSjiy
|cosua|? + a7 t[sinuq|?  [COSue|? + at]sin g |?

—ia Y2 sin ji, COSiLy a~Ysin e |?
|COSie |2 + a7t[sini, > |cOSi |? + a~tsin u,|?
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The functiony, defined in (1.2) evaluated at = « alongy = 0 readsu, = TKX.
Theny; () in (2.1) alongy = 0 computes to

Ui o (M)ly=0

ra? =20 + A+ (a?—1)rcos(K mx) i(a—21)/a(r+1)sin(Kx)
| 2@r—D)(@cog(Kax)+sir(Krx))  2(ar—1)(acof(KmX)+sinf(Kxx))
B i(o—1)/a(r +1)sin(K 7 ) a?—2ha + (02— 1)cos(Kwx)+1

 2(r—1)(@co(KX)+Si(KmX))  2(@h—1)(@coR(Krx)+sirA(Kmx))
Evaluating at» = 0 gives
a i(1— o)/ sin(2Kx)
o coR(Kmx) + sirf(Kmx)  2(a cof(Kmx) + sirf(Kmx))

i(a — 1)/a sin(2K ) a? 4 (? — 1) cos(Kmx) + 1
2(c coR(Krx) + sirf(Kmx))  2( cof(Kmx) + sif(Kx))

l/f[,o,(o)|y=0 =

Now dety ,(0)ly—0 = & # 0, and Gram—Schmidt oa /2y ,(0)ly—0 = QR gives

N i(a — 1) sin(Kxx)
Q= Ve +12 — (@ — 12 coR(2Knx) /(o — 1R sirP(2K 7 X) + 4o
B i(e — 1) sin(2r K x) 2a

V0 + 12 — (@ —12cog(2Knx) /(o — 12 SiP(2K ) + 4o

Putting everything together gives that® |,_o = /dety; 7' Q is equal to

V2Ju((@+1)—1)-(@—=1)(A +1)cos(K X)) ~ i(o?=1)sin(Kx)
Vi—avai-1,/-cos(& nx)(a—1P+a(e+6)+1 Vi—aJar=1y/(a—1psir(2K 7X) + 4o
iv2(@?-1)isin(2K7x) V2a((a+1)(A=1)+(@-1)(+1)cos(K7x))

Vi—avar-1y/-cosEnx)a—12+a(e+6)+1 Vi-avar-1y/—cos( nx)(@—12+a(e+6)+1

Differentiating with respect to. gives thatthélyzo,A:l is equal to

V2 Ja(a+1) iVoa—1(a+1)sin(&Krx)
V—(a—12/—cos(Kmx)(@—1)>+a(e+6)+1 2v1—a v/ (a—1)sirP(2K 7x)+4a
ivVa—1(+1)sin(Xrx) V2 Ja(a+1)

V2-2uy/—cosKax)(a—12+a(@+6)+1  —(a—1)>y/—cos(Emx)(@—12+a(a+6)+1
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and consequently

h hLa|y 0,r=1

a? 4 (e + 1)? cos(Kmx) — 1 i/a(a + 1) sin(Kmx)
| 2Ccos@mx)(@—12+a2-1)  cos(Kmx)(a— 1 +a?-1
B i Ja(e + 1) sin(2K 7x) o + (@ + 1) cos(K mx) —

cosS(Kax)(a—12 +a2—-1 2(cos(Kax)(a —1)2 + a2 —1)

Thus the final contribution to the curse= 0 comes from

. . L iu —v
(35) nhL,a F)Lh/tyi.hl:,a FA th,];Jt|y:O~}‘:l = ( v —iu )

with the real valued functions and v given by

_ (ot D)fe—T)cos(@ Kx)—a—1)((y/a—1Poos(ar(K + 1)+ (ya + 1P cos(ar(K ~1))+2(z—1)cos(2rx)
i 2e—D)e—1P cos(4er))+a2+6a+1) |
(e +1)((v/a—1)Psin(@r(K +1)x)— (Vo + DPsin(@r (K 1)x)+2(e—1)sin(2rx))((«—1)cos(@ K x)-a—1)

2e-1)(@-1H- COS(4rKX))+a2+6a+1) .

V=

Inspection of the three summands in (3.2) computed in (§3%) and (3.5) show that
the y = 0 curve on the bubbleton is a planar curve, since the offatiatjterms do
not have an imaginary part. Combining these terms then dgivesplanar curvex —
(X(x), Z(x)) with

X(x) = sin(inx)
(@+1)((Va=17sin(2r (K +1)x)=(Ja+17sin(2r (K - 1)X)+2(=1)sin(2rx))((@—1)cos(Zr K x)-a-1)
2( 1)3cos(4er) (@-1)((@+6)+1) '
Z(x)—((a ~1)cos(2rK x)—(a+12)((a—1)cos(2r (K +1)x)+ (Ja +1)cos(2r (K —1)x) +2(@—1)cos(2rx))
2=1)(@-1%(- cos(4er))+a(a+6)+1)
Sirf(x) K
2 2JKkE1

The turning number of this immersed planar curve [0:1R?, X - (X(x), Z(x)) com-
putes to

dx=2K -1

1 1 X(X)Z"(x) = X"(X)Z/(X)
21 / X2(x) + Z'%(x)

Since K > 2, the planar curve has self intersections, and thus thelétobis not
embedded. Plots of the curves fr = 2, 3, 4, 5 are shown in Figs. 3.1 and 3.2[]
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Fig. 3.2. Planar curves on the 3, 4 and 5-lobed single-btdnde
with turning numbers 5,7,9 respectively. What appear tousps

on the immersed curves are in fact small loops, as in the curve
in Fig. 3.1.

One can also dress a multiply wrapped round cylinder by snfiattors and ob-
tain topologically different single-and multi-bubble®rthan if one just dresses the em-
bedded cylinder. But if the undressed cylinder is embedtteeh the dressed cylinder
again has embedded ends [19, 9, 13]. Hence far away from thields) one can take
a planer cross section of a bubbleton and get a curve thamigsalcircular with turn-
ing number equal to one. Flowing this curve towards a bubtbteeiorms into a space
curve which at one instance becomes planar and has turnimgpetuat least three. The
fact that single-bubbletons have a smooth closed planamatue line, or equivalently
a reflective symmetry is what makes our proof work for singlébletons. It would
be interesting to extend the result and find a more concepieadf that also works
for multi-bubbletons.
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