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Abstract
Let M be a positive quaternionic Kähler manifold of dimension 4m. In earlier

papers, Fang and the first author showed that if the symmetry rank is greater than
or equal to [m=2]C 3, then M is isometric toHPm or Gr2(CmC2). The goal of this
paper is to give a more refined classification result for positive quaternionic Kähler
manifolds (in particular, of relatively low dimension or with evenm) whose fourth
Betti number equals one. To be precise, we show in this paper that if the symmetry
rank of M with b4(M)D 1 is no less than [m=2]C2 for m� 5, thenM is isometric
to HPm.

1. Introduction and main results

A compact quaternionic Kähler manifoldM is a Riemannian manifold of real dimen-
sion 4m whose holonomy group is contained in the Lie groupSp(m)Sp(1) in SO(4m) for
m � 2. Such a manifold is calledpositive if it has the positive scalar curvature. It is
known that every quaternionic Kähler manifold is Einstein.So it is common to define
a 4-dimensional quaternionic Kähler manifold to be both Einstein with non-zero scalar
curvature and self-dual. While many complete, non-compact, non-symmetric quaternionic
Kähler manifolds with negative scalar curvature are known to exist, so far the only known
examples of compact positive quaternionic Kähler manifolds are symmetric (see some
similarities in [10] and [12] for positively curved Riemannian manifolds). Moreover, a
theorem of Alekseevsky asserts that there are no other compact homogeneous positive
quaternionic Kähler manifolds (e.g., see [1]).

According to a result of LeBrun and Salamon in [13], every positive quaternionic
Kähler manifoldM is simply connected and the second homotopy group�2 is a finite group
with 2-torsion, trivial orZ. More precisely,M is isometric toHPm (resp.Gr2(CmC2))
if �2(M) D 0 (resp.�2(M) D Z). So its second Betti number is always less than or equal
to 1. Furthermore, for such quaternionic Kähler manifolds of dimension 4m all odd Betti
numbers vanish, so that the Euler characteristic of the manifold is always positive. Recall
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also that there exists a nice relationship between Betti numbers of different degrees such as

m�1
X

iD0

2(6i (m� i � 1)� (m� 1)(m� 3))b2i D m(m� 1)b2m

(e.g., see [13] for more details).
On the other hand, it is also one of the interesting problems to classify positive quater-

nionic Kähler manifolds in terms of the rank of its isometry group. Strictly speaking, the
symmetry rank sym-rank(M, g) (or simply sym-rank(M)) of a Riemannian manifold with
a Riemannian metricg is defined as the rank of the isometry group Isom(M, g). Equiva-
lently, it can be defined as the largest numberr such that ar -dimensional torus acts ef-
fectively and isometrically onM. This concept was first introduced by Grove and Searle
in [6] in order to measure the amount of symmetry ofM.

It is not so hard to see that the symmetry rank sym-rank(M) of a positive quater-
nionic Kähler manifold of dimension 4m is less than or equal tomC1. In [2] Bielawski
classified positive quaternionic Kähler manifolds of dimension 4m with isometry rank
equal tomC 1. Moreover, in earlier papers [4] and [9], Fang and the first author gave
a classification result of positive quaternionic Kähler manifolds with certain symmetry.
That is, we showed that if the symmetry rank is greater than orequal to [m=2] C
3, then M is isometric toHPm or Gr2(CmC2). In fact, there have been some con-
crete classification results of positive quaternionic Kähler manifolds of low dimension.
For examples, Hitchin proved in [8] that every positive quaternionic Kähler 4-manifold
must be isometric toCP2 and S4. In case of dimension 8, Poon and Salamon showed
in [14] that every positive quaternionic Kähler manifold should be isometric toHP2,
Gr2(C4) or G2=SO(4), i.e., the Wolf spaces. Moreover, in [7] H. Herrera and R. Herrera
gave the classification of positive quaternionic Kähler 12-dimensional manifolds under
an isometricS1-action. As a consequence of their classification, such a manifold is iso-

metric toHP3, Gr2(C5) or BGr4(R7). HereBGr4(R7) means the oriented real Grassmann-
ian manifold of dimension 12.

The goal of this paper is to give a more refined classification result for positive
quaternionic Kähler manifolds whose fourth Betti number equals one. To be precise,
in this paper we show the following theorem:

Theorem 1.1. Let M be a positive quaternionic Kähler manifold of dimension
4m with b4(M) D 1. If the symmetry rank of M satisfies

sym-rank(M) �
hm

2

i

C 2, m� 5,

then M is isometric toHPm.

Finally, a remark is in order. After having submitted this paper for publication, in
the subsequent paper [11] we were able to improve the lower bound of the symmetry
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rank in Theorem 1.1 by one for positive quaternionic Kähler manifolds of real dimen-
sion 4m� 40 (here,m is an even integer greater than or equal to 10) withb4 D 1. On
the other hand, note that Theorem 1.1 applies to any positivequaternionic Kähler mani-
fold of real dimension� 20 with b4(M) D 1, under the stated condition of symmetry
rank. The method of the paper [11] is to use a more delicate argument of Frankel type
to positive quaternionic Kähler manifolds with certain symmetry rank which works well
only for higher dimensional positive quaternionic Kähler manifolds. So we remark that
the methods of two papers are essentially of different nature.

We organize this paper as follows. In Section 2, we set up basic terminology and
prove several important results for the proof of our main theorem. In Section 3, we
give a proof of Theorem 1.1 through the stratification of the connected components of
the fixed point sets. Finally we remark that this paper is verymuch influenced by the
ideas in the papers [3] and [4].

2. Preparatory results

In this section we set up basic terminology and prove severalimportant results for
the proof of our main Theorem 1.1. Throughout this paper, allLie group actions on a
Riemannian manifold are assumed to be effective and isometric.

Now we begin with the connectedness theorem of Fang and the first author in [3]
and [9]. To do so, first recall that a mapf W N ! M between two manifolds is called
h-connectedif the induced mapf

�

W �i (N) ! �i (M) is an isomorphism for alli < h
and an epimorphism fori D h. If f is an imbedding this is equivalent to saying that
up to homotopyM can be obtained fromf (N) by attaching cells of dimension� hC1.

Theorem 2.1. Let M be a positive quaternionic Kähler manifold of dimension
4m. If N is a quaternionic Kähler submanifold of dimension4n, then the inclusion
N ,! M is (2n � mC 1)-connected. Furthermore, if there is a Lie group G acting
isometrically on M and fixing N pointwise, then the inclusion map is(2n �mC 1C
Æ(G))-connected, whereÆ(G) is the dimension of the principal orbit of G.

The first statement of Theorem 2.1 is due to Fang ([3], [4]), while its second state-
ment is the extension to the case with group action which is due to the first author
([9]). The latter can be also considered to be an extension ofthe connectedness the-
orem of Wilking in [15] and independently Fang, Mendonça, andRong in [5] for posi-
tively curved manifolds to positive quaternionic Kähler manifolds.

We also need the following lemma.

Lemma 2.2. Let M be a positive quaternionic Kähler manifold of dimension 4m
with an isometric Tm�1-action. Then there always exists an isolated fixed point of the
Tm�1-action.
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Proof. We will show this lemma by contradiction. To do so, suppose that there
exists a fixed point componentN of dimension 4 in the fixed point set under theTm�1-
action. If we use a stratification of the fixed point sets underthe Tk-subaction of
Tm�1-action we can consider a sequence of positive connected quaternionic Kähler sub-
manifolds as follows.

(2.1) x 2 N D N4
1 � N8

2 � � � � � N4(m�1)
m�1 � M,

where each quaternionic submanifoldN4i
i admits an isometricT i�1-subaction ofTm�1-

action on M. So, in particular,N D N4
1 is contained in positive quaternionic Kähler

strata N8
2 � N12

3 such that N12
3 admits an isometricT2-action. If N8

2 is isometric
G2=SO(4) then N should be isometric toCP2, since it is known that the only
4-dimensional positive quaternionic Kähler manifold inG2=SO(4) is CP2. But then we
claim that theT2-action on N12

3 should have a fixed point outsideN. Indeed, other-
wise the Euler characteristic� of N coincides with that ofN12

3 , i.e., �(N12
3 )D 3. This

implies that b6(N12
3 ) D 1. On the other hand, since we have the relationb6(N12

3 ) D
2b2(N12

3 ) (e.g., see [13]),b6(N12
3 ) should be even. This is a contradiction.

Next if N8
2 is isometric toHP2, then it follows from Theorem 2.1 that the inclu-

sion of N8
2 into N12

3 is at least 3-connected. HenceN12
3 is also isometric toHP3. But

then, since the Euler characteristic ofN8
2 (resp. N12

3 ) is 3 (resp. 4), there should be an
isolated fixed point of theT2-action onN12

3 outsideN8
2 . But that fixed point is also an

isolated fixed point of theTm�1-action on M. Hence we are done in this case. IfN8
2

is isometric toGr2(C4), then, as in the above case,N12
3 is isometric toGr2(C4). Since

the Euler characteristic ofN8
2 (resp. N12

3 ) is 6 (resp. 10), it follows from Theorem 0.1
of Frankel type in [3] there should be an isolated fixed point of the T2-action onN12

3

outsideN8
2 which is also an isolated fixed point of theTm�1-action onM.

Therefore we may assume that there is another fixed point component N 0 of
dimension� 4 outsideN in the fixed point set under theT2-action on N12

3 . But then
N 0 and N8

2 would intersect to each other by Theorem 0.1 of Frankel type in [3]. Hence
N 0 is contained inN8

2 . If we apply the Theorem 0.1 of Frankel type in [3] toN and
N 0 in N8

2 once again, we can easily derive a contradiction. This completes the proof
of Lemma 2.2.

Next we need the following Proposition 2.3 which will be useful to prove some
important results at several places of this paper. Its statement can be found in Prop-
osition 2.3 in [3] whose proof can be referred to the paper [7]of Herrera and Herrera.
However, their paper contains the proof for more general results. For the sake of reader’s
convenience, we briefly sketch a different and interesting proof which seems to be known
to experts.

To do so, first let us recall some definitions. LetG be a connected Lie subgroup of
the isometry group Isom(M). For anyx 2 M, the isotropy groupGx is a subgroup of
the holonomy group (Sp(m)Sp(1))x at x. So the isotropy representation is determined by
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two homomorphisms

�x W Gx ! Sp(m)x, N�x W Gx ! Sp(1)x.

We then say that an isometricG-action on M is of quaternionic typeif N�x W Gx !

Sp(1)x is trivial for any G-fixed point x 2 M (see [3], Section 2 for more details about
the torus action of quaternionic type on a quaternionic Kähler manifold).

Proposition 2.3. Let M be a positive quaternionic Kähler manifold of dimension
12 with an isometric Tr -action. If r D 4 or r D 3 and T3-action is of quaternionic
type then M is isometric toHP3 or Gr2(C5).

Proof. To show it, we consider the two cases, depending onb2(M). If b2(M) � 1
then it follows from a result of LeBrun and Salamon thatM is isometric toGr2(CmC2).
So we are done.

Now we assume thatb2(M) D 0. Note that theT r -action on M has only iso-
lated fixed points, sincer is greater than or equal to 3. At each isolated fixed point
x, by considering the isotropy representation on the tangentspace ofM at x we see
that there are exactly three positive quaternionic Kähler submanifolds of dimension 8
passing throughx and also three positive quaternionic Kähler submanifolds of dimen-
sion 4 passing throughx. Since every 8-dimensional positive quaternionic Kähler mani-
fold is known to be isometric to eitherHP2 or G2=SO(4) or Gr2(C4). If any one of
the 8-dimensional positive quaternionic Kähler submanifold is isometric toHP2 then
M should be isometric toHP3, since the inclusion of the 8-dimensional submanifold
into M is at least 3-connected by the connected Theorem 2.1. As in the proof of
Lemma 2.2, we can conclude that the 8-dimensional positive quaternionic Kähler sub-
manifold cannot be isometric toG2=SO(4).

Next we assume that all of the 8-dimensional positive quaternionic Kähler sub-
manifolds are isometric toGr2(C4). Then we first claim that the Euler characteristic
of M is equal to 10. Since all the fixed points are isolated, it suffices to show that the
action has 10 isolated fixed points. To see it, recall that at each isolated fixed pointx,
there are exactly three positive quaternionic Kähler submanifolds of dimension 8 pass-
ing through x and that each 8-dimensional positive quaternionic Kähler submanifold
contains two 4-dimensional positive quaternionic Kähler submanifolds passing through
x. In what follows, we call such a 4-dimensional positive quaternionic Kähler sub-
manifold a triangle, and its terminology seems reasonable in view of the moment map
image ofCP2 in symplectic geometry.

Now fix such an 8-dimensional positive quaternionic Kähler submanifold N iso-
metric Gr2(C4). Then N contains six isolated fixed point, calledverticesand denoted
v1, v2, : : : , v6, of the T r�1-subaction ofT r -action, since the Euler characteristic of
Gr2(C4) equals 6. We next show that there are exactly four more isolated fixed points
outsideN. To do so, letk be the number of vertices outsideN. Since there are exactly
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three triangles passing through each vertex and every triangle shares at least one vertex
in N, a simple combinatorial argument says that there is no triangle lying outsideN
and that there are at least 3k=2 triangles which does not lie inN. Thus we should
have 3k=2� 6, so thatk � 4. Finally since the Euler characteristic ofM is even, it is
easy to see that actuallyk D 4 and so we can finish the proof of the claim.

Next we assume that the Euler characteristic ofM equals 10. Then we show that
M is isometric toGr2(C5). We show it by provingb2(M) ¤ 0. If b2(M) D 0 then it
follows from b6(M) D 2b2(M) that b6(M) D 0. Recall next that the Euler character-
istic of M is given by the sum of the sign�1 associated to 10 isolated fixed points.
So in our case the signature is zero. Since the signature ofGr2(C4) equals 2, there are
exactly fourC1 and exactly two�1 vertices among the six verticesv1,v2,:::,v6. More-
over, since the signature ofM is zero, there are exactly three verticesv7, v8, v9 whose
sign are all�1. Again a simple combinatorial argument gives rise to a contradiction
to the signature ofM. This completes the proof of Proposition 2.3.

We also need the following Proposition 2.4 which is analogous to Theorem B in
[3]. Indeed, Fang proved the same result with a weaker assumption m � 2 on the
lower bound of the symmetry rank, but a stronger assumptionm � 10 on the dimen-
sion. A key ingredient with which we are able to weaken the dimension condition in
Theorem B of [3] is the refined connectedness Theorem 2.1 above.

Proposition 2.4. Let M be a positive quaternionic Kähler manifold of dimension
4m with an isometric Tm�1-action of quaternionic type. If m is greater than or equal
to 5, then M is isometric toHPm or Gr2(CmC2).

Proof. Since the Euler characteristic ofM is not zero, there exists a fixed point
x 2 M of the Tm�1-action. As in the proof of Lemma 2.2, if we use a stratifica-
tion of fixed point sets under theTk-subaction ofTm�1-action we can find a quater-
nionic Kähler manifoldN containingx which lies in the fixed point set under theS1-
subaction ofTm�1.

Now we need to consider two cases, depending on the codimension of the sub-
manifold N. If the codimension ofN in M is 4, then it follows from Theorem 1.2 of
Fang thatM is isometric toHPm or Gr2(CmC2). Hence we are done in this case.

On the other hand, if the codimension ofN in M is at least 8 then we can con-
sider a sequence of connected quaternionic Kähler submanifolds as follows.

(2.2) {x} D N0
1 � N4

2 � N8
3 � � � � � N4(m�2)

m�1 D N � M,

where for each 1� i � m�1 the quaternionic submanifoldN4(i�1)
i admits an isometric

T i -subaction ofTm�1-action on M. Observe that the codimension ofN in M is ac-
tually equal to 8 by considering the chain (2.2) more closely. Next if we apply the
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connectedness Theorem 2.1 to the above chain (2.2), we obtain

(2.3) �2(N8
2 ) � �2(N12

3 ) � � � � � �2(N4(m�2)
m�2 ) � �2(M),

provided thatm is greater than or equal to 5. Since the isotropy group of the sub-
manifold N4(m�2)

m�2 has rank 1 by construction,N12
3 can be assumed to admit an iso-

metric T3-action which is of quaternionic type. Thus it follows from Proposition 2.3
that N is isometric toHP3 or Gr2(C5). Thus by (2.3),�2(M) is either 0 orZ. Hence
M is also isometric toHPm or Gr2(CmC2) by the rigidity result of LeBrun and Salamon
in [13]. This completes the proof.

We close this section with the following lemma necessary forthe proof of The-
orem 1.1 which is an immediate consequence of Theorem 1.2 in [4].

Lemma 2.5. Let M be a positive quaternionic Kähler manifold of dimension 4m
(m� 3) with b4(M)D 1 which admits an isometric S1-action. If N is a positive quater-
nionic Kähler submanifold of codimension4 of M in the fixed point set of the S1-
action, then M is isometric toHPm.

Proof. It follows from Theorem 1.2 of [4] thatM is isometric to HPm or
Gr2(CmC4). Since b4(Gr2(CmC2)) is not equal to 1,M should be isometric toHPm.

3. Proof of Theorem 1.1

The goal of this section is to give a proof of our main Theorem 1.1. To do so, we
assume first thatm (m � 6) is even and letk D [m=2] C 2. We may assume without
loss of generality that there is no stratum of codimension 4 by Theorem 1.2 of Fang
in [4] or Lemma 2.5.

In what follows, we denote by Fix(Tk, M) the fixed point set under the action of
Tk on M. Let x be a fixed point ofTk-action on M, and let N be a positive quater-
nionic Kähler submanifold passing throughx of M of the lowest codimension� 8.
Then N should admit an isometricTk�1-subaction of theTk-action onM. For 1� i �
k, let Ni D Fix(T i , M)0 be a connected component of the fixed point set Fix(T i , M).
Then there is a chain of positive connected quaternionic Kähler submanifolds ofM
as follows.

(3.1) x 2 Nk � Nk�1 � � � � � N1 D N � M D N0.

Clearly each positive quaternionic Kähler manifoldNi admits an isometricTk�i -action
for each 0� i � k. Then we can show the following lemma.

Lemma 3.1. Either the Tk-action on M always has an isolated fixed point or M
is isometric toHPm.
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Proof. We assume thatM is not isometric toHPm. We shall show the lemma
by contradiction. So, suppose that there is no isolated fixedpoint under theTk-action.
Then we should have dimNk � 4 and so we have dimN1D dimN � 4k. By assumption,
we also have dimN1 � 4(m� 2). This implies that the inclusion ofN1 into M is at
least 6-connected by Theorem 2.1, since we have

2 �
1

4
dim N1 �

1

4
dim M C 2D

1

2
dim N1 �mC 2

� 2k �mC 1D 2
�m

2
C 2

�

�mC 2D 6.

Hence by a theorem of Whitehead we haveb4(N1) D b4(M) D 1.
Next we show that we may assume that the difference dimN1� dim N2 is greater

than or equal to 8. To see it, if we assume that there is a connected positive quater-
nionic Kähler submanifold of codimension 4 inN1 whose isotropy group is a circle of
the Tk�1-action onN1. Then sinceb4(N1) D 1, by Lemma 2.5N1 is isometric toHPl

for some l � m� 2. This in turn implies that�2(M) D 0, so thatM is isometric to
HPm. Thus we have a contradiction. Hence we can conclude

dim N1 � dim N2 � 8.

This implies dimN1 � 4m� 8. Since dimN2 � 4(k � 1), we can also show that the
inclusion of N2 into N1 is also at least 6-connected, since we have

2 �
1

4
dim N2 �

1

4
dim N1C 2� 2(k � 1)� (m� 2)C 2

D 2
�m

2
C 2� 1

�

�mC 4D 6.

Hence again we haveb4(N2) D b4(N1) D 1. A similar argument as above shows that

dim N2 � dim N3 � 8, dim N3 � 4(m� 6), and dimN3 � 4(k � 2).

Repeating this arguments, fori � 0 we have the following relations:

(3.2) dimNi � dim NiC1 � 8, dim Ni � 4(m� 2i ), and dimNi � 4(k � i C 1).

Moreover, from (3.2) we have

2C
1

2
(k � i C 1)� 2C

1

8
dim Ni � k � i .

Thus we have

k � i D
m

2
C 2� i � 5, i.e., 0� i �

m� 6

2
.
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In case ofm D 6, by the assumption on the symmetry rank,M admits an iso-
metric T5-action. It is also true by the above discussion that there exists a positive
quaternionic submanifoldN of codimension at least 8 (i.e., of dimension at most 16)
with the symmetry rank at least 4. But as in the previous case the codimension ofN in
M must be exactly 8. Thus dimN5 D 0. But it is impossible in view of the assumption
we started with.

Next we need to deal with the case of evenm � 8. If m is greater than or equal
to 8, again there exists a chain of positive connected quaternionic Kähler submanifolds
of the form

(3.3)
Nk � Nk�1 � � � � � N(m�2)=2 � N(m�4)=2

� N(m�6)=2 � N(m�8)=2 � � � � � N1 D N � M D N0,

where dimNi � dim NiC1 � 8 for 0 � i � (m � 8)=2 and N j admits an isometric
Tk� j -action for each 0� j � k. By the connectedness Theorem 2.1 as above, we
have b4(Ni ) D b4(M) D 1 for 0 � i � (m � 6)=2. Furthermore, since the dimension
Nk is assumed to be at least 4, it follows from the chain (3.3) that the difference
dim Ni �dim NiC1 is, in fact, exactly same as 8 for 0� i � (m�8)=2. HenceN(m�6)=2

has dimension 24, admits an isometric at leastT5-action, and satisfiesb4(N(m�6)=2)D 1.
But then theT5-action onN(m�6)=2 has an isolated fixed point by Lemma 2.2, and this
isolated fixed point is also an isolated fixed point of theTk-action on M. This is a
contradiction to our assumption. Alternatively, by considering the chain (3.3) directly,
we can show thatNk would be actually an isolated fixed point. This is again a con-
tradiction to the assumption that there is no isolated fixed point. This completes the
proof of Lemma 3.1.

Now let x be such an isolated fixed point ofTk-action onM as in Lemma 3.1. Then
we may assume without loss of generality that there is a positive quaternionic Kähler
submanifoldN of M passing throughx whose dimension is no more than 4(m� 2). By
assumption, in this case we have dimNk D 0 and thus dimN1 � 4(k � 1).

We first assume thatm is greater than or equal to 8. Thus there is a chain of
positive connected quaternionic Kähler submanifolds as in(3.3) such that dimNi �

dim NiC1 � 8 for 0� i � (m� 6)=2. As in the proof of Lemma 3.1, we see that the
difference dimNi �dimNiC1 equals 8 for 0� i � (m�6)=2. Moreover, by construction,
for 0� i � (m� 6)=2 the inclusion ofNi into Ni�1 is at least 6-connected (N

�1 is as-
sumed to be an empty set), so that we haveb4(Ni ) D b4(M) D 1 and�2(Ni ) � �2(M).
Hence form� 8 we have a positive quaternionic Kähler submanifoldN of dimension
24 whose fourth Betti number equals 1 and the symmetry rank isat least 5. On the
other hand, since the isotropy group ofN1 has rank one, theTk�1-action on N1 can
be assumed to be of quaternionic type without loss of generality. Therefore theT5-
subaction on the 24-dimensional quaternionic Kähler manifold is also of quaternionic
type. Hence the proof of Theorem 1.1 for the case ofm � 8 now follows from Prop-
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osition 2.4 and the assumptionb4(M) D 1.
Now it remains to consider the case ofmD 6. For this case, it suffices to prove

the following lemma.

Lemma 3.2. Let M be a positive quaternionic Kähler manifold of dimension 24
with b4(M) D 1 and the symmetry rank� 5. Let N be a positive quaternionic Kähler
manifold of codimension at least8 with an isometric T4-action as above. Then M is
isometric toHP6.

Proof. First note that by considering the chain (3.1) the codimension ofN in M
is exactly 8. Then we need to consider the following two cases, depending on the
second Betti numberb2(N). If b2(N) � 1 then it follows from the theorem of LeBrun
and Salamon thatN should be isometric toGr2(C6). Since by construction�2(N) �
�2(M) and�2(Gr2(C6))� Z, we have�2(M)� Z. But this implies thatM is isometric
to Gr2(CmC2) by the theorem of LeBrun and Salamon again. Sinceb4(Gr4(CmC2)) is
strictly greater than 1, this case does not occur.

Next assume thatb2(N) D 0. Then the isometricT4-action has an isolated fixed
points as before. Thus for each fixed pointx 2 M, there are exactly four positive
quaternionic Kähler submanifolds of dimension 12 equippedwith an isometricT3-action
passing throughx, and exactly six positive quaternionic Kähler manifolds ofdimension
8 equipped with an isometricS1-action passing throughx. According to the classifi-
cation of positive quaternionic Kähler manifolds by Herrera and Herrera in [7], every
12-dimensional positive quaternionic Kähler manifoldN 0 with an isometricS1-action is

isometric to eitherHP3 or BGr4(R7) or Gr2(C5). If N 0 is isometric toHP3, then�2(M)
is trivial, so thatM should be isometric toHPm. Hence we are done. IfN 0 is isometric

to BGr4(R7), then it follows from Proposition 2.3 thatN 0 would be isometric to either
HP3 or Gr2(C5), which does not make any sense at all. Thus it remains to consider the
case thatN 0 is isometric toGr2(C5). But in this case�2(N 0) D �2(M) is isomorphic to
Z. HenceM is isometric toHPm or Gr2(CmC2). But sinceb4(Gr2(CmC2)) is not equal
to 1, M should be isometric toHPm. Note that instead of using the result of Herrera
and Herrera in [7] as above, one may directly use Proposition2.3 to show thatM is
isometric toHPm. This completes the proof of Lemma 3.2.

The proof for the case of oddm� 5 is completely parallel to that of evenm� 6.
So let us highlight only the points different from the case ofevenm. First of all, since
m is odd, we need to letkD (mC3)=2D [m=2]C2. Then the inclusion fromNiC1 into
Ni in the proof of Lemma 3.1 is now at least 5-connected for 0� i � (m�5)=2. Then
we can use a 20-dimensional positive quaternionic Kähler manifold with b4D 1 and the
symmetry rank at least 4 in order to finish the proof form � 7. Finally we also need
to consider the casemD 5 which is analogous to Lemma 3.2. But in this case there
is a 12-dimensional positive quaternionic Kähler submanifold N 0 with the T3-subaction
of quaternionic type. Hence we can apply Proposition 2.3 together with the assumption
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b4(M) D 1 to conclude thatM is indeed isometric toHP5. This completes the proof
of Theorem 1.1.
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