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Abstract
We describe a class of translation planes whose orders ghe dbrmq”, where
n is odd andq is an odd prime power 3. These planes have the property that a
translation complement fixes a triangle and acts tran$jtioa the set of non-vertices
of each side. The planes form an odd order analogue to theeplah Kantor—
Williams [17] which have even order. The construction of fhlanes is based on
a certain type of Dembowski—Ostrom polynomials.

1. Introduction

The main results of this note are summarized in the followtimgorem.

Theorem. Let g> 3 be a power of the odd prime, m an odd numbeQ <r <n
a number coprime to jhand 0, £1 # « € GF(Q). Then one can associate with the
qguadruple(q, n,r, @) a translation planeA of order ' such that the following holds.
(a) The kernel ofA has order q.
(b) Let G be a translation complement. Then G contains normafysuips G, H and
Z, such that|G : G| < 2, G/H ~ Gal(GFQ) : GF(p)[«]), H/Z =~ Cp, and Z 2 (Cyn_1 ¥
Cg-1). Moreover|G : G| = 2 iff there existso € Aut(GF()) with «® = —a.
(c) The groupgG fixes a triangle{L, Lo, L1} (here L denotes the line at infinity
Lo, L, are affine lines Let L° be any side of this triangle. Theahinduces a transitive
group on the set of non-vertices of.L
(d) The planeA is not a generalized André planeor a nearfield or a generalized
twisted field plangand not a a plane of Suetak22].
(e) For g and n fixed there exist preciseiyn)Mq/2 planes of this type. Herg denotes
the Euler function and lMthe number of orbits oAut(GF(q)) on GF() — {0, £1}.

Translation planes having a subgroup in the translationptement which fixes
a triangle and acts transitively on the non-vertices of esicle of the triangle have
been studied several times before. In [12] they are cdltehgle transitive and in
[17] nearly flag-transitive Chapter 70 of [2] gives a survey of the known planes with
this property.
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According to (d) of the theorem the planes of this result ave not among the
planes previously described with one exception: they cevetass of planes of order
q® of Suetake [23]. With respect to the automorphism group &hddtion these planes
are an analogue of the planes of Kantor—Williams [17]. It lisac that the construc-
tion of the Kantor-Williams planes can not be easily tramsfed into the case of odd
characteristic. Indeed our construction is completeljed#int: we use a certain type of
Dembowski—Ostrom polynomial (see the next section for tbfndion) as a basis for
the existence of our planes.

In the next section we introduce some notation and recallesbasic facts about
translation planes and linear groups. In Section 3 we cocistour planes and ver-
ify some elementary properties. Section 4 is concerned wilimorphisms and auto-
morphisms. This includes the computation of the automamhgroups, the solution
of the equivalence problem between two planes of our cladswancount numbers of
such planes. In the last section we exhibit connections ofctass of translation planes
with generalized twisted fields and with the flag transititangs of Kantor [14] and
Suetake [21].

2. Notation

For the remainder of this note will be a power of the odd prime andn will
be a positive odd integer. We set

K =GF@), F =GF@"), with prime field Ko = GF(p),
andno: F — K will be the norm. ByV we denote am-dimensionalK -space.

2.1. Spreads and translation planes. We assume that the reader is familiar with
the basics of finite translation planes (see [2], [5], [19][bt]). However for conve-
nience we recall the description of translation planes hyags and quasifields. Let
W =V x V. A spreadS in W is a set ofn-dimensionalK -spaces such that

W=[J)X, XnYy=0, for X,YeS, X#Y.
Xe8S

Then|S| = qg" 4+ 1. The corresponding affine plae= A(S) has as points the vectors
of W and as lines the cosets of the fibers®f Sometimes it is convenient to consider
such a plane as a projective plane, i.e. as ghgective extensianThe points of the
extension are the elements W together with symbolsX), X € S and the lines are
the line at infinity

Lo ={(X) | X € 5}

and lines of the form X + w) U {(X)}, X € S, w € W (i.e. X + w is the “affine part”
of this line).
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Spread sets. Concrete coordinatizations of spreads lead to spread Aetst Oc
3 € GL(V) U0 is called aspread setff det(T —T)#O0 for T,T" e X, T # T’ and
|| =q". Then

S=8EX)={V(@E)]U{NM|Tex}
is a spread where
V(o) =0xV and V(T)={(v,vT)|veV}.

Vice versa: using a suitable basis \0f any spread can be described by a spread set.
Suppose that two spreads defined Byand X’ share the fiberd/(0) and V(o)

and let D be a semilinear transformation mapping the first spread tmtosecond.

If D fixes bothV(0) and V(oo) we write D = diag(A, B) where A = Dy (), B =

Dv(~), and both fibers are identified in an obvious way with A fiber represented

by X € X is then mapped to the fiber of the second spread representédyB. If

D interchanges/(0) andV (co) we write

0O B
D= ( 0% )
Since ¢,vX)D = (w,wA1X"1B), w = vXA a fiber represented b is then mapped
to the fiber represented b 1X1B.

Translation complements. Denote byI'L(W) the group of invertible semilinear
operators orWW. Then

G ={T eTL(W) | ST = S}

is called thetranslation complemenof A. It induces in the obvious way a group of
collineations and the full automorphism group Afis the semidirect product oV
(identified with the group of translations) witB. In particular the automorphism group
is determined completely by the translation complement. a® define thdinear
translation complemenas

H={TeG|TeGLc(W)

where KC is the kernel of the plane. Clearlyy < G.

Quasifields. A quasifieldis an abelian group(, +) together with a multiplica-
tion Q x Q 3 (X, y) — X -y € Q such thatQ — {0} is a loop and the distributive law
(X+Yy)-z=x-z+y-z holds. If Q does not have a neutral element with respect to
the multiplication we speak of weak quasifieldLet  be a spread set as before and
¥:V — X a bijection withy(0) = 0. Define

Xy = xy(y).
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Then this multiplication turng/ into a weak quasifield. Conversely every weak quasi-
field multiplication onV can be associated with a spread set.

2.2. Oyama’s description of linear spaces and transformadins. It will be con-
venient to use a description of vector spaces and linearatpsrdue to Oyama [20].
We identify ann-dimensionalK -spaceV with F and denote vectors b), x € F. For
a € F and 0< k < n we define aK-linear mappingTk(a) by

(X)Tc(a) = (aqu).
The basic multiplication rule for such maps is
Te(@Ti(b) = Tt (a%b)

wherek +1 is read modulan. A K-endomorphisn of V has a unique representation

n—1
T=) T@) acF.
i=0

Let y be an automorphism of and T € Endk (V). Denote by {, T] the operator
on V defined by
[¥,T]: (v) = ()T.

Then [y, T] is a semilinear operator, i.e. semilinear with respecth® automorphism
yk. There is some ambiguity in this representatignand yt induce the same auto-
morphism onK for 7 € Gal(F : K). In fact theK-linear map ¢) + (v9) is the same
as T;(1). We remove this ambiguity by requiring € I' where

' is a set of coset representatives of Gal(Kp)/Gal(F : K).

Note that the latter group is isomorphic to Gél¢ Ky). Using this convention the
description of semilinear operators is now unique.

Singer cycles. Cyclic groups which act regularly on the non-trivial vectaf V
are calledSinger cyclesIn the Oyama representation they can be written in a simple
form: let F* = (w) then

C = (To(w))

is a Singer cycle. The normalizers 6f in GL(V) and I'L(V) are well known (for
instance [10], (11.7.3)):

No = NeLw)(€) = C(T1(1)), N = Nrw)(C) = Nofly, 1] | y €T}

Moreover:
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(1) Any Singer cycle in GLY) is conjugate taC.
(2) If T € GL(V) is irreducible then it is contained in a unique Singer cyelgich is
also the centralizer of in GL(V).

2.3. Dembowski—Ostrom polynomials. A polynomial P € F[X] will be called
a Dembowski—Ostrom polynomialr shortDO polynomialif it has the form

n-1

P= a;xi*.
ij=0

DO polynomials were introduced in [6] for the constructiohpbanar functions. But
see also [3], [4], [1] for other applications. We will be irgsted only in DO poly-
nomials of the form

P =apX?+a X" 4. 4@, X9,
In this caseP(X) = L(X)X where
L =aoX +a X9+ +an_y X9
is called thelinearized polynomial of P

3. Nearly flag-transitive translation planes and DO polynonials

Examples of nearly flag-transitive translation planes a@arfield planes, some gen-
eralized twisted field planes, some generalized André platiee planes of Suetake in
odd characteristic and the planes of Kantor and Williams vanecharacteristic. By
any measure the Kantor—Williams construction producesntiagority of such planes.
They have an order of the form” whereq is a 2-power anch is odd. Kantor and
Williams show that withn — oo the number of such planes grows rapidlynifis a
highly decomposed number.

Let g (in contrast to our general assumption) be for the momentvam @rime
power. A plane of Kantor and Williams of ordef’ has the following properties:
(KW1) The translation complement contains a group gralip>~ Cqy_1 which acts
fixed point freely onW and which fixes precisely two fibers &f, say X andY. The
representation oZ; on X is contragredient to the representationZf on Y.

(KW2) The plane admits a homology groufy ~ K* with coaxis X and axisY. More
precisely: leta € K* then the map defined by y for y e Y andx — ax for x € X
lies in the translation complement.

Of course the fixed triangle is the line at infinity and the twbes lines are rep-
resented by the fiberX andY and Z = Zy x Z; acts transitively on the set on non-
vertices of each side. Our aim is to

construct planes of orderq" satisfying (KW1) and (KW2) forodd ¢
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The group{To(X) | L € F*} is a Singer cycle orV. Taking X = V(0) andY =
V(o0) as the fixed fibers we can identify the grodp with

1) Zy = {T(») = diag(To(» ), To(1)) | » € F*}.
The homology group is represented as
2 Zo = {D(e) = diagEl, 1) | ¢ € K*}.
For the remainder of this note will denote a fixed non-square iK.
Lemma 3.1. A plane satisfyindkKW1) and (KW2) is associated with a spread set

X ={M(y)|yeF}

where
n-1

M(yY) = Ti(ay@+972)
i=0

if y is a square and if y is a non-square one has
n—-1 _
M(y) = D Tia g™ /2y ),

i=0

Conversely a spread set of the above form defines a plane which sati@fiésl)
and (KW2).

NOTATION. For a sequenca = (@, ..., a8,-1) € F" define a sett as in the
lemma. We say thak is defined by the sequence a

Proof of Lemma 3.1. LeE be the spread set associated with the plane Gagd
T =Y Ti(a) be in=. Then

V(T)DE) =V 'T), V(MTR) = V(To()T To()).

As
To(W)T To(A) = To(a022) + Ta(ar%™) + -+ - + Tooa(@n_1Ad" +Y)
this showsXZ = {To(A)T To(1), ¢ To(A)T To(X) | A € F}. Changing the notation somewhat

we obtain the spread set in the form as stated in the asseftitre lemma. Of course
our argument can be reversed so that the second assertinreis t ]
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QUESTION. Are there choices for the sequenaewhich produce spread sets,
i.e. guaranted — T' e GL(V) for T, T'e =, T # T?

Define a multiplication onF by x x y = z if (xX)M(y) = (2). The multiplication
has the form:

Z aixqi y(qi+1)/2' y e FZ’
() X*xy= iy i i (g

Z g ;(1_q )/qu y(q +1)/2’ y ¢ FZ‘

i=0

So a reformulation of our question asks as to whether or ristrtultiplication is the
multiplication of a weak quasifield.

Lemma 3.2. For a sequence & (&, ..., a,.1) € F" define a multiplication by
(3) and a DO polynomial by P=agX2+a; X9+ + .-+ a, 1 X9 '+1 whose linearized
polynomial shall be denoted by L. Then the multiplicatio iswltiplication of a weak
guasifield if
(1) The K-linear map F= x — L(x) € F is bijective.
) IP(F)=(q"-1)/2
3) P(F*)Nn¢P(F*) = 2.

Proof. We have to show that for # 0 the mapy — x x y is bijective and that
for y # 0 the mapx — X x y is bijective.

First we note: Ify = ¢s? thenx x y = ¢(x % $%). Moreoverx(x x %) = P(xs) and
X(X *y) = ¢ P(x9).

Assume firstx « y = x; * y for somey # 0. Since the multiplication is left dis-
tributive we have X — x;) * y = 0. Thus it is enough to show =0 if x x y = 0.

Assumex # 0. If y = w? is a square we have € " ;& x% w1, Dividing
by w we obtainL(xw) = 0, a contradiction because of (1). In the case ¢w? we
obtain L (xw) = 0, again a contradiction. Hencer x x Yy is bijective.

Assume nowy > X * Y is not bijective for somex # 0. Hencex xy = X x y;
for two vy, y;. Clearly, we may assumg # 0 # y;. Suppose firsly, y; € (F*)?, say
y =¢5% y1 = s2. Then P(xs) = X(X * y) = X(X * y1) = P(xs1). From (2) we deduce
s1 = £s (note P(2) = P(~2)). Hencey = y;. If y=¢s? y; = ¢s? we get similarly
¢P(xs) = ¢ P(xs) and againy = y;. Finally assumey = s?, y; = ¢s2. Thenx(x*y) =
X * (X x yp) implies P(xs) = ¢ P(xs), which contradicts (3). O

Define for 0<i < j < n by m;; the projection of the space En(V) in the Oyama
representation intd- x F by

(4) Endc(V) > To(ao) + Ta(ar) + - - - + Th1(@-1) = (&, aj) € F x F.
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Lemma 3.3. Let ¥ be defined by the sequence a
(a) Set W= (m;j(2))k fori, je{0,...,n=1},i # j. ThendimW < n iff one of
the following assertion holds

(1) & or a; =0.

(2 j=n—i.
(b) If X is additively closed then at most two entries of the sequanaee nontrivial.

Proof. (a) Clearly the assertion is true if (1) holds. Moreope +1)d™" = x1+d™
which shows that (2) also implies dilv < n.

Assume nowe; # 0 # a;, dimW < n. Then there exists & -linear mapl: F — F
such thatW = {(x, [(x)) | x € F}. The general form of such a function i$x) =
> =5 bixd". Inspecting= we obtain fori € F that

n-1
At = 1(@attd) = 3 bl ad
k=0
Define the polynomialQ by
n—i—1 . ) n—-1 . ) )
Q(X) = Z bkaiq K kgt 4 Z bkaiq N AT _a xi+al
k=0 k=n—i

Then dedQ <2q"1. But all A’'s in F are a zero ofQ, so Q = 0 follows. This implies
j =n—i (asi # j) and assertion (2) follows.
(b) Clearly, kX € ¥ for k € K. So if X is additively closed it is already a
K-space. We deduce from (a) that at most two entries of theesega are nontrivial.
0J

We also use:

Lemma 3.4. Let K be a field not of characteristiz and A be a K-linear oper-
ator such that A= al, n odd and a# 0, 1. Then the following holds
(@) The operatorl— A is invertible and(1—A)~! = (1/(1—a))(14+ A+ A%+ - -4+ A" 1),
(b) Set L=2(1— A)1—1. Then L is invertible and t*' =2(1 + A1 - 1.

Proof. The first assertion follows by the usual telescopirgument. As £ A)" =
—al we see thatl + A is invertible too with { + A ' = (1/(1+ a)(1 — A+ A2 —
A3 ... — AV2Z 4 AL Now

RA-AT-DERA+AT-1)=1+R

with
R=41-A1+ A —2(1-A T+ @@+ A™).
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Multiplying R with (1— A)(14 A) we observeR = 0 and therefore (A(— A1 -1)"1 =
2(1+ AL 1. O

The next result guarantees the existence of the desiredfigldss

Proposition 3.5. Let0 <r < n be a number and a be an element irf Buch
that it's norm with respect to the subfield of ordef*q is not +1. Define the linear
polynomials AB by AX) = X —aX¥ and B as the unique polynomial of degree
g"! such that x— B(x) is the inverse of the mapping & x — A(x) € F. Finally
define LX) = 2B(X) — X and the DO polynomial P by (X) = XL(X). Then P
satisfies the assumptions aEmma 3.2

Proof. It is enough to assume,() = 1 (otherwise the subfield of orde™"
takes the role ofK). The n-th power of the mapping — axd is the multiplication
X = no(@)x. Therefore the mapping — A(x) is invertible by Lemma 3.4. Asser-
tion (1) of Lemma 3.2 follows now from Lemma 3.4 (b).

The polynomialC(X) = X — a?X¥ defines by Lemma 3.4 an invertible operator
too. SinceP(X) = 2B(X)X — X2 we have forx € F the equation:

P(A(X)) = 2B(AMX))A(X) — A(X)* = A(X)(2x — A(x))
=x—axd)2x—x+ax¥)
= x2—a?(x®)" = C(x?).
This implies|P(F*)] = (9" — 1)/2 and (2) of Lemma 3.2 holds.
Assume that (3) of Lemma 3.2 does not hold. Then there existe F, u # v,
such that¢ P(u) = P(v). Write u = A(x) and v = A(y). Then
(P —a’()T) = ¢CP) = C(y?) = y* —a’(y)".
This implies¢x? — y? = a?(¢x? — y?)9 and hence
a” = ((x* =yt
Thereforeno(a?) = no(a)? = 1 contradicting our assumptions. []

REMARK. Takea € F such thatno(a) # 0, £1 and letr be a number coprime
to n. Define L as in Proposition 3.5. Using Lemma 3.4 we see that the linegp m
X  L(x) has the form

n—1

2 i . 14+no@) 2 O :
L_—l_no(a)gﬂ(a) —1= 1—no(a)1+1—no(a)§Tf(a)'




780 U. DEMPWOLFF AND P. MULLER

Since T, (a)! = T;, (al*9 +-+4""”) we can writeL in the form

n—1
L = Z Tir(air)
i=0
with
1+ nda) 2 1 r.. (j—=1r .
5 = — d a = ————alttat*d fi 0.
(5) 1 no@) and aj; 1—no(a)a or j >

The sequenca = (ay, . . ., a,-1) then defines by Lemmas 3.1, 3.2 and Proposition 3.5
a plane which satisfies (KW1) and (KW2).

DEFINITION. Let g be an odd prime powen be an odd number. ForQr <
n a number coprime tm anda € F = GF(@Q") an element such that the norm with
respect toK = GF(q) is not 0,41, and leta be the sequence defined as under (5).
The multiplication (3) is then a quasifield multiplicatiowe call this multiplication
of type (a, r). Similarly we call the associated spread set (see Lemmpahd the
associated plane also tfpe (a, r). For the spread set we use the symbol

Eavr .

REMARK. It is not necessary to choosecoprime ton. But if (n,r) =e> 1
we setK’ = GF(@®), 9 = g%, andn’ = n/e. ConsideringV = F as aK’-space and
replacing in our construction the pain,(@) by (n’, q') we obtain the same spread set.
So by assumingn,r) = 1 we do not loose any spread sets.

4. Isomorphisms and automorphisms

In this sectionq > 3 will denote a power of an odd prime and 1< n will be an
odd number. We will determine the translation complemenplahes of typer(a) and
study possible isomorphisms between members of this cladslaow that these planes
are not isomorphic to planes of other classes which shardasiproperties (nearly
flag transitive).

Lemma 4.1. LetX = X, be a spread set of typg@,r). Then the following holds
(@ Setz1=({S?1|Sex-0jUO ThenZ1=13 ,,.
(b) Let b be an element in Fsuch that a= b (mod (F*)91). Thenxz,, is equivalent
to Zpyr.

Proof. Assertion (a) follows from Lemma 3.4 (b) and the défini of spread sets
of type @, r).
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Assume nowa = be with e € (F*)91. Choosex € F such thatx¥ ! = e 1. Then

n-1 n—-1 )
To(X) (Z‘ Ti(a )) To() ' =) Ti(ax?™
i=0

i=0

where the sequenca = (ay, ..., a,_1) iS associated with the typea,(r). Let b =
(bo, ..., bn1) be the sequence associated withr(). Clearly no(@) = no(b). Hence
aoxqo‘1 = ag = bg. Moreover fori > 0 we have
ir _ 2 r (i—1)r ir _
a1 glta +tat g1
& 1—no(a)
2 r f g " 1ygl-Dr
= m(axq hy.@axd e . axd hat
_ 2 b1+qr +_"+q(\—1)r
1 —no(b)

=bir-

Since Top(x) commutes with allTo(y)’'s we deduce from the construction of the spread
sets thatTo(X)Zar To(X) ™t = Zp,. O

4.2. Some automorphisms. We collect some “obvious” automorphisms of a
plane of type &,r). The groupZ (see (1) and (2)) is already present via the con-
struction of the plane. In particular the plaisenearly flag transitive. Set

Aa = {0 € Aut(F) | a° = a (mod (F*)971)}.

As the norm map defines a Al}-epimorphism fromF*/(F*)4~1 onto K* and as
Gal(F : K) = {o € Aut(F) | yx = 1k} one has

Aa/Gal(F : K) ~ Gal(K : Kg[no(a)]).
Leta = (ag, ..., a,_1) be the sequence associated with the pajr). Pick o € A,

and write it aso = yt with y € I' and x* = x4 By the proof of Lemma 4.1 there
exists somex € F such that

To() <Z T(a )) To00 ™t = ) Tilan) = [, Tk(1)11<_2 T(a )) [y, (@}

This shows that diagf], Tc(X)],[y, Tk(X)]) is an automorphism. Denote such an element
by u, and observe that ther|-th power of u, is a kern homology. We set

G =2Z{uo | o € Ad}
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and denote byH the intersection ofG with the linear translation complement. Then
(as GalfF : K) € A4,)

Z ~Cyp1xCq1, H/Z=~Cn G/H~GalK : Ko[no(@)]),

as the quotien#{/Z is isomorphic to Gal : K). Our aim is to show thag is essen-
tially a full translation complement.
The following lemma will be used several times. Similar islesme can find in [17].

Lemma 4.3. Let p be a p-primitive divisor of §— 1 and S be a Sylovip-
subgroup of Z. Let P= diam(Py, P,) be a semilinear transformation which maps
a spread defined by, onto the spread defined by, s (in particular PalEa,r P, =
ps) and which normalizes S. Thery B [y, Tk(X)] and R, = [y, Tk(y)] for some
yel,0<k<n,and x ye F. If P is linear then B = T«(x) and R, = Tk(y).

Proof. By definition ofZ a generator ofs has the form diadp(w)™t, To(w)) with
w € F* of p-power order. Note that by Zsigmondy’s theorem [24] sucimps always
exist. By assumptiorP, and P, lie in the normalizer inCL(V) of (To(w)) which is
(see Subsection 2.2). Hence there exisy’ € I', 0 <k,| < n, and nontrivial elements
X,y € F such thatPy = [y, Tk(X)] and Py, = [y/, Ti(y)]. Since P is a semilinear
operator with respect t& we deducey = y’.

We claimk =1:

By Lemma 3.3 we have

dimg ﬂl,n—l(za,r) = dimg ﬂl,n—l(zb,s) =n.

Form the equation

[, Tk(x)rl(_z T (bi)) [y, T = 3 Tty

we deduce that there exist constan{sc, € F such that

n = dimg Nl,n—l([ya Tk(x)]_lza,r[)/: Tl(y)])

= dimg {(c2(u")?, (")) | (U, v) € Tkt 11 n—1+k—1 (Zar)}

Hencen = dimk my11-1 n—1+k—1 (Zar) and by Lemma 3.3 we have+1—1 =1—-k+1
(mod n). As n is odd we getk = I. ]

Lemma 4.4. Let K be the kernel of a plane of tyg@, r). Thenk ~ K.

Proof. Clearly,K1y ~ K is a subfield oflC. ThereforeX ~ GF(@™) for some
m < n. The multiplicative grougC* can be identified with the group &krn homologies
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i.e. the homologies whose axes are the line at infinity andsehzenters are the null
vector inW.

ChooseS as in Lemma 4.3. Then the restricti&} o) (Sv()) of Sto V(0) (V(c0))
normalizesKy ) (Kv(x)). By conjugationS induces a group of automorphisms if
which lie in Gal(C : K). Sincep > n + 1 > m these automorphisms are trivial, i.8.
centralizeskC.

For x € K* the restrictionscy gy andky () lie in the centralizer ofS, ) and Sy ()
respectively. By Subsection 2.2 these centralizersCariee. «k = diag(To(X), To(y)) for
suitably choserx, y € F. For ), Ti(b) € X, we must have

Z Ti(b) = To(x)™* (Z Ti (bi)) To(y) = Z Ti(xbry).

Sinceby # 0 we obtainx = y and sinceb; # 0 we also gexd ! = 1. Hencex € K1y
and we are done. O

Lemma 4.5. Let T = diag(Ty, T») be an element in the linear translation com-
plement normalizing Z. Then & H.

Proof. The groupZ acts transitively oL, — {(c0), (0)}. So adjustingT with an
element fromZ we may assume thak fixes V(M(1)). By Lemma 4.3 we can write
To = Tk(X) and Tx = Ti(y). On the other hand diag{(1), Te(1))™* € H fixes V(M(1)).
So adjustingT again we may even assurke= 0. Note thatTo(x) *(>_; Ti(ai)) To(y) =
> Ti(a (x H)9y). This implies (considering the first summandM{(1)) thatx = y and
considering the second summand we see 2179, HenceT is a kern homology and
lies therefore in?. [

Lemma 4.6. Let G be the translation complement and H the linear transtat
complement of a plane of tyge, r). The following holds
(@) One hasH = H() = Hx) and Go) = G(x) = G(0),(x0)-
(b) G = Gyq),con-

Proof. (a) We first claim:

(1) Assume thafl € G fixes the space¥ (0) andV(oo) and thatTy) € Gy (o)
and TV(oo) S g\/(oo). ThenT €G.

AdjustingT by an element frong we may assum@y gy = 1. Then by Lemma 4.3 we
can write Ty () = To(X) with x € F*. For)_; Ti(&) € Za, We have(}"; Ti(a))To(X) =
> Ti(xa) which impliesx € K. But thenT € Z. Next we claim:

(2) Hoye) = H: . B

SetH = H), () and assumed > H. Let T € H —H. By Lemma 4.5 we may
assume thafl does not normalizeZ. Note however that by Subsection 2.2 and Sub-
section 4.2 one ha®ly o) = Nz, (Zv(0) = Nerv)(C) (a similar statement holds for
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V(c0)). So by (1) not bothTy gy and Ty do normalizeZy ) and Zy () respect-
ively. By symmetry we may assume théty ) is a proper overgroup ofy(). By
[13] Hy() = GL(m, g¥) with n = km and m > 1. In particularH would contain an
element oft of order p = CharK such that dim Cy)(t) = (m—1)k. Ast has order
p we haveCy(x)(t) # 0. Hencet is planar. As a subplan€y(t) has order< gq"2.
But this is in conflict with dimx Cy g (t) = (m— 1)k. Now (2) follows.

(3) The groupE of elations with axisV(co) is trivial:

AssumeE # 1. ThenE acts fixed-point-freely orL,, —{(c0)}. SinceZ acts tran-
sitively on L, — {(c0), (0)} the group E Zis 2-transitive onL., — {(co0)}. This implies
|[E| =q", i.e. our plane is a semifield plane. Th&his additively closed contradicting
Lemma 3.3.

Assume nextH) > H. Then L, —{(co)} is an Hy-orbit and by (2) we deduce
|Heo) : H| = q". SetL = Cy,(V(o0)) < H). Let P be a Sylow p-subgroup ofL.
Then H) = LNy, (P) by a Frattini-argument. Note thall(, p) = 1 since a Sylow
‘P-subgroup ofH() must have at least two fixed-points an,, i.e. is conjugate to the
group S of Lemma 4.3. So we can assurSes Ny, (P). By elementary representation
theory 0# U = Cy,v(«)(P) (see [10], V, 5.16 for instance). IP would act non-
trivially on V/V(o0) then U would be a properS-invariant space, contradicting the
irreducible action ofS on V/V(c0). HenceP < E and by (3) we deduce thdt is a
p’-group. SinceHL is a p’-group too and#|y = |H)lp We getl < #H. This shows

L = Cy(V(0)) = Zo.

Hence Hio)v(s) > Hv(e) and as above we deducelfy))v ) =~ GL(M, g¥), m > 1,
and mk = n. On the other hand

|(Hoo))V(oo)l = IH(oo)/L| = q”m =q"(q" - 1)n,

|H|
0
a contradiction.

(b) By (a) we have eitheH), )} = H Or |H), ) : HI = 2 (and elements in
Hi(0),0); — H interchange the points (0) andc).

AssumeH > Hj), o) then H is transitive onlL.. Since? is already transitive
on the nontrivial vectors of the fiberg(0) and V(c0) we see thatH is transitive on
the nontrivial vectors ofV. These groups have been classified by Hering [8], [9], and
Liebeck [18]. Since dinW = 2n andq > 3 one either hasd < I'L(1, p?™), q = pF,
or the socle ofH is isomorphic to Suf, g¥), km = 2n; Sp(2n, g¥), km = n. Here we
also use thaH must lie in GLg (W), since the kernel is isomorphic to Gfj(

The first case is impossible: d#l| > p?" — 1 the groupH contains a cyclic
normal subgroupC of order > (p?'" —1)/2fn. Then

ziicl _ pi—1
Z1NC|> > 2
1200 CL = i, ey T e
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as p > 3. Letc e H be an element whose order is mprimitive prime divisor of
p?f" — 1. Thenc has no fixed points orL,, and leaves the s€f(0), (co)} of fixed
points of Z; N C invariant. But|c| > 2fn + 1, a contradiction.

If SL(m, g¥) is the socle ofH the centralizer of a transvection W has order
g™k < g". This showsm = 2 and it is well known that our plane is desarguesian.
But a plane of typed, r) is not even a semifield plane, a contradiction. The case that
the socle ofH is Sp(an, g) leads to the same contradiction. This = Hj() o) -
Since H is normal inG and L. —{(0), (c0)} is an H-orbit we also getG = Gy(g), )

Lemma 4.7. Assume

[y, Tkl Sar [y, ()] = Sos.
(@) Thenr=s orr=n-s.
(b) Assume r=s. Then & = b (mod (F*)91), whereo = y o and r is defined by

X7 = x4,

Proof. (a) First we claim:
(1) There exists am’ € F* such that

z:a’,r = z:b,s-

Definea € F* by
[y, @I Zarly, )] = Za.

Then we get
To() " Zar To(y) = Zos.

Choosev € K* andz € F* such thatyx™! = z2v~1. Then
diag(To(2), To(z *v)) € Z

and
diag(To(x), To(y)) diag(To(2), To(z v)) = diag(To(c), To(c))

with « = xz and

To(@) 24, To(@) = Zps.
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On the other hand we compute wit¥(1) € X4, that

To(e) "M(1)To(e) = To(a)—l(ﬁo@ Z T (8) — 1) To(«)

2 i
= T Zi:n(a) -1

with

(2) r=sorr=n-s.
Set A=T,(a’) and B = Ts(b). Considering the the first summand in the represen-
tation of M(1) € X5, we see that there existszae K* such that

20— At -1=2z2@1-B)t-1).

This shows that { — A)~* commutes withz(1 — B)~* and therefore everA and B
commute. Multiply the above equation with £ A)(1 — B). We obtain

1-B+A—AB=12z(1-A+ B—AB)
and therefore
(1-21-1+2Ts(b) + L+ )T (@) — (1 — DT 45(@)%b) = 0.
This forces eithez =1,r =s, andA=B,orz=-1,r =n-s, andA= BL

(b) Assume now = s. Adjusting the given transformation by an element from
Z we can assume

[y, T ™ (Z Ti(a )) [y, T(y)] = Z Ti (o)

wherea = (ap, . . ., 8,-1) is the sequence associated &r() andb = (bo, ..., by_1) is
the sequence associated pr(). We compute the left hand side (note tHafu)Ty(v) =
Ti k(U v)) and obtain the equations (which will be used in the prodfehma 4.9 again)

1+no(@° _; _ 1+ no(b)

® PR

© 1—no(a)° Xy 1— no(b)

and

@) (aa)1+qr+...+q(i71)r X_qir . 2 b1+qr+"_+q(i—l)r, <0

1—no(a)” ~ 1—no(b)
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Eliminating y we remain with the equations

r... (i—21)r _qir 2 (i—21)r
(aa)1+q S RV R pi+d +-+q

—m , 1 >0,

2
1—no(a)°
where z = (1 + no(b))(1 — no(a)?)(1 + no(a)?)~*(1 — no(b))~*. Dividing the equation
for i = 2 by the equation for = 1 we get

®) 5=

which implies the claim. O

REMARK. Let A= T;(a). Then the proof of Lemma 4.7 shows12{ A)™* -1 =
—(2@1— A )1 —1). Since A =T, (@ 9") a spread of type#, r) is at the same
time of type &, n—r).

Lemma 4.8. Let G be the translation complement of a plane of ty@e). Then
Gy = G-

Proof. As the groupS (of Lemma 4.3) is characteristic if{ we see form
Lemma 4.6 (b) that we can apply Lemma 4.3 to ahybe in G. HenceT has
the form

T =diag(fy, T [¥, T(W)D).

Apply Lemma 4.7 (b) witha = b, i.e. a° = a (mod (F*)91) for ¢ = yt where
x* = x9°. Adjusting T with 1., we obtain by Lemma 4.5 an element # and we
are done. O

Lemma 4.9. Let G be the translation complement of a plane of typer) and
H the linear translation complement.
(@) Then H= H) =H and G,) =G.
(b) Either there exists an automorphism € Aut(K) with nda)® = —no(a) and
|G : G(oo)| = 2 holds or G= G(oo).

Proof. (a) follows from Lemma 4.6 and Lemma 4.8. MoreoveresitB = G or
|G : G()| = 2 and each collineation i — G, interchanges the fibeg(0) andV (oco).
AssumeT € G — G(). As we pointed out in Subsection 2.1 this shows that there
exist transformationd; and T, such thatT; X 1T, lies in Z,, for X € Z,,. With
other words the transformatiol = diag(T; %, T,!) maps the spread associated with
¥ar onto the spread associated wifh;,l = X_4, (see Lemma 4.1). Becausé =
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H0),0) IS @ normal subgroup i = Gy(g),); We can apply Lemma 4.3. This implies
that T has the form

9) T = diag(ly, Te(X)], [¥, Te(Y)])

with suitable chosenx,y e F, 0<k <n, andy € I'. Seto = yr wherex® = xd"
Adjusting T with an element fromZ we can even assume

[y, Tk(x)]1<Z Ti (a)) [y, T(y)] = Z Ti@x vy) = Z Ti(@)

with
_ 1 + nO(a)’ a| — 2 alJrqr +___+q(\—1)r ’ | > 0
1-no(a) 1—-no(a)

and thea’s are obtained from the's by replacinga by —a. By the proof of Lemma 4.7
(b) we get equations (6)—(8) whekeis replaced by-a. In particular—a® ! = x9 1,
This impliesno(a)® = —no(a). In particularox # 1. This showsH = H(y) in any
case. Then (a) and one part of (b) is verified.

To complete the proof of (b) assume now that there existAut(K) with no(a)® =
—no(a). By an abuse of the notation we denotedlso an extension af to an auto-
morphism ofF. Thena? = —ab with no(b) = 1. Hence there exists ane F such that
equation (8) holds (withb = —a). Then definey by equation (6) and by equation (9).
One checks that all equations (7) are true. It is clear ThahapsZ,, onto X 5, [

Lemma 4.10. For g and n fixed the following holds
(a) A plane of typga,r) is isomorphic to a plane of typéb, r) iff no(a)° = no(b) for
someo € Aut(K).
(b) The number of pairwise non-isomorphic planes of ty@eg) is equal to the num-
ber of orbits of Aut(K) on K — {0, +1}.

Proof. Since (b) follows immediately from (a) it suffices terify (a). Assume, that
the pairs &, r) and p, r) define isomorphic planes. As usual we can apply Lemma 4.3:
there existsx, y € F and ao € Aut(F) such that assumptions of Lemma 4.7 (b) are
fulfilled. Hencea” = b (mod (F*)%%). The norm mamo induces ao-isomorphism
from F*/(F*)9~! onto K*. Thereforeno(a)® = no(b).

Conversely, assumrao(a)® = no(b) for o € Aut(K) and denote by also an ex-
tension ofo to F. Thena’ = b (mod (F*)%1). Clearly, Z,, and 4, are equivalent.
The assumption follows from Lemma 4.1. ]

4.11. Proof of the theorem. Let A be an affine plane of ordey” and type
(a, r). The parameterx in the theorem stands fano(a). Assertion (a) of the the-
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orem follows from Lemma 4.4, (b) follows from Lemmas 4.8 and,4while (c) al-
ready follows from Subsection 4.2. Assertion (e) is a coneage of Lemma 4.10 and
the remark following Lemma 4.7. It remains to show asser{in

From Lemma 3.3 (b) we deduce thatis not a generalized twisted field plane and
it can not be a nearfield plane by the shape of it's translatmmplement.

Suppose thaA is a plane of Suetake. Then thigear translation complement has
an orbit of length 2 orL ., [22], Lemma 4.9, Theorem 4.13. However by Lemma 4.9
we know that an element i which interchanges (0) andx{) does not lie inH,

a contradiction.

Assume finally thatA is a generalized André plane. The homology group with
axis V(co0) and center (0) is according to Subsection 4.2 and Lemmaaj.thé group
Zo. But by [19], Theorem 11.7 or [7] this homology group congia subgroup of
order " — 1)/u whereu =lcm{g' —1|0<i <n, i | n}. Hence ap-primitive prime
divisor of g" —1 would divideq— 1. That is in conflict with Zsigmondy’s theorerhl

5. Connections with generalized twisted fields and flag trarive planes

In this section we show that our planes have close connectigth generalized
twisted field planes and certain flag transitive planes.

A map f: F — F is called planar if forg € F* the mappingAgz: F — F de-
fined by

Apg(x) = F(x+ B)— f(X)
is bijective. In the case that is a DO polynomial the multiplicatior: F x F — F
defined by
xxy=f(x+y)—f(xX)—f(y), x,yeF,

is the multiplication of a commutative presemifield (see ¢8][5], p. 245).

Lemma 5.1. Let P be a DO polynomial defined iaroposition 3.5
(@) Then P is planar.
(b) The presemifield defined by the polynomial P is isotopic to ld.fie

Proof. (a) The proof of (a) is a routine verification (note lemer the remark at
the end of the verification of part (b)).

(b) LetL and A have the meaning of (3.5). The presemifield multiplicati@s h
the formx x y = L(X)y + xL(y). Setx = A(u) andy = A(v) then a multiplication of
an isotopic presemifield is defined by:

uov = L(AU)A(v) + AU)L(A(V))
=u+au’)v—av?)+ v+ av’)(u—au)

= 2(uv — a?(uv)?).
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Sinceu o v is the image ofuy under the linear transformation — 2(x — a?x9') we

see that the multiplicatior is isotopic to the field multiplication irF. Clearly, the

arguments of this proof can be reversed so that one gets Hegtias of part (a) too.
O

The next proposition shows a connection to generalizedtedifields.

Proposition 5.2. Let L be defined as ifProposition 3.5 Then Xy = {To(X)L +
LTo(X) | x € F} is the spread set of a generalized twisted field plane.

Proof. Let A be defined as in Proposition 3.5 and assume for the moment that
3o is a spread set. An isotopic presemifield is defined by theaspset (12)AXA.
As A = Tp(1)— T;(a) we see that a typical element of this spread set has the form

1 r r
EA(TQ(X)L + LTo(X))A = To(x) — T (aaq x4 ).
The associated multiplication of the presemifield has thenfo
X %y = xy—aa¥ x4y

which is the multiplication of a generalized twisted fiela€s[2], Section 10.3). Since
one can read the proof backwards the assumptionXpat a spread set is automatic-
ally fulfilled. O

NoOTATION. For the remainder of this section we assume

q:qor

i.e. q is an even power of the primp. The involutionz € Aut(F) (i.e. X = x%) in-
duces the involutory automorphism &f. We may assume € I (see Subsection 2.2).
Also we denote by

Fo=(F)% ! F={xeF|x?eFy,
the subgroups of ordeyj + 1 and 2¢7 + 1) in F*.

Lemma 5.3. Let G be the translation complement of a translation plansoas
ated with the parameter@, r).
(a) Assume n@)®* = —no(a). Then there exists an element @ a(F*)% such that
aj = —ag.
(b) Assume G contains an involution which interchangg®)\Vand V(oco). Then we
can assume a= —a and we can choose the involution as the semilinear mapping

e (X, y) = (Y5, X7).
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(c) The involution: of (b) is planar. The fixed fibers have the form
V(To(X)LTo(X)), X € Fl.
Proof. (a) By assumption there exigise (F*)9~! such thata® = —au. Hence
u’ = u~l. As |[(F*)97%| is odd there exists a € (F*)4! such thatv® = v~ and
v2 = u. Seta; = av.

(b) Using once again Lemma 4.3 the involution is represeirtethe form (see
Subsection 2.1)

R R R )
“([V,Tk(x)l 0 )

Then:?> = 1 implies y = 7, xy* = 1, and X = 0 (mod n). Thusk = 0 and from
Lemma 4.9 we deduceo(a)’ = —no(a). Using part (a) and Lemma 4.1 (b) we (replace
if necessary d, r) by the equivalent pairag, r)) may also assuma’® = —a. Since

[r,1L[r,1] =L

(see Lemma 3.4 (b)) we see that the involution

( [T?l] [Tbll )

also lies inG and interchange¥ (0) andV(c0).
(c) We assume now thak(y). = (y*, X*). Then

V(To(X)LTo(x)): = V([r, 1(To(Xx)LTo(x)) [z, 1]).
If x € F; thenx® = ex~1, ¢ = +1. Hence in this case

[z, W(To()LTo(x)) [z, 1] = €2To(x)LTo(x) = To(X)L To(X).

Set
o = {To(X)LTo(X) | X € F1}.
Then
iz = = Rl =g +1.
Therefore: is planar andXg is precisely the set of fibers being fixed by []

Lemma 5.4. The group G(:) acts transitively onXy, i.e. the fixed plane of is
a flag transitive plane of order{y
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Proof. SetZ = {diag(To(x), To(y)) | X, y € F*}. ThenZ < Z and
C5(1) = {diag(To(x), To(x")) | X € F*}.

If x € Fg thenx® = x1 while x® = —x 1 if x € F; — Fp. Sete, = 1 for x € Fy
and= —1 for x € F; — Fp. Then

diag(To(x), To(x")) = diag(To(x), To(x 1)) diag(, To(ex)) € Cz(1).
We conclude
{diag(To(x), To(x")) | x € F1} = Cz(1)

and Lemma 5.3 (c) shows the claim. O

We call the flag transitive planes from [14], [21], and [2],ebiem 67.6, p. 506 of
Kantor-Suetake typeMNe have:

Proposition 5.5. Le ¢ be a Baer involution as in.emma 5.3 Then the fixed
plane of: is a flag transitive plane of Kantor—Suetake type.

Proof. Let A and L have the meaning from Proposition 3.5. CleaGy (1) =
{(x, x%) | x € F}. If (x, x%) lies in V(L) we concludex® = 2A1(x) — x. Define the
linear mapg: F — F by g(x) = x — x* + a(x + x%)¥. Then

U = Cyu)(t) = {(x, X") | x € kerg}.

We identify F in an obvious way withCy(:) andU with kerg. Then we deduce from
Lemma 5.4 thatl = {Ux | X € F;} is a spread inF so that the pairK, 7) defines a
flag transitive plane of ordeg]. Obviously Img = {x € F | x” = —x}. Thusg(y) = 2y
for y € Im g which in turn impliesU = Im(g — 21) and hence

U={-y+ay |yeGF@)}.

This leads precisely to the description of a plane of Karffaretake type. ]

FINAL REMARKS. (a) Letqg be of the formp™ where p is a prime. Using the
Burnside formula one can express the numbgr of part (e) of the theorem by

1
Mg +3=—> o(d)p’
dim

(b) Kantor and Williams use in [15], [16], and [17], the rétet between sym-
plectic and orthogonal geometries in characteristic 2 deoto construct flag-transitive,



TRANSLATION PLANES VIA DEMBOWSKI-OSTROM POLYNOMIALS 793

semifield, and nearly flag-transitive translation planesis Telation between symplectic
and orthogonal geometry does not exist in odd characteribtevertheless one would
suspect that in odd characteristic one should be able totroohghe analogues of the
planes of Kantor and Williams by other methods. The presapepis a first step in
this direction.
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