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Abstract
We consider real versions of Brauer'sB( conjecture, Olsson’s conjecture and
Eaton’s conjecture. We prove the real version of Eaton'gexdare for 2-blocks of
groups with cyclic defect group and for the principal 2-ide®f groups with trivial
real core. We also characterifg-classes, real and ration@-classes of the defect
group ofB.

1. Introduction

Several authors have been investigating real classesaatbes and blocks of finite
groups, see e.g. [1, 2,5, 8,9, 11, 13, 14, 15, 17, 19, 20, 225)4 The aim of this note
is to formulate real versions of Brauer'sB) conjecture, see [3], Olsson’s conjecture,
see [28], and Eaton’s conjecture, see [10], for 2-blocks. give special cases when
we can prove the real versions of them. The last part of thepdpals with fusion
of elements of defect groups.

2. Notations and terminology

In this noteG will always denote a finite groupp a prime integer, which is 2 ex-
cept for the last section of the paper. L&, Kk, F) be ap-modular system, wher® is
a complete discrete valuation ring with quotient fi&ldf characteristic zero and residue
class fieldF of characteristicp. We assume thét and F are splitting fields of all the
subgroups of5. We may also assume thiais a subfield of the complex numbers. Com-
plex conjugation acts on II®). A character isreal if it is conjugate to itself, in other
words if it is real valued. An element & is real if it is conjugate to its inverse. An
elementx of a subgroupH of G we call H-real, if it can be conjugated to its inverse by
an element from the subgrou.

We say that theconjugacy class C is realf it is equal to the class of the in-
verse elements of the class. We use the notatiQiGJIfor the set of these classes.
A p-block Bis calledreal if it contains the complex conjugate of an irreducible ordi-
nary character (and hence of all irreducible characterghénblock. It is known, see
e.g. [23, Theorem 3.33], that a real 2-block always contaéas valued irreducible or-
dinary and Brauer characters, as well. We use the notatipp(®) and Irr,(B) for
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614 L. HETHELYI, E. HORVATH AND E. SZABO

the set of real valued irreducible ordinary characterssirand in B, respectively. Let
k:,(G) and k,(B) stand for the sizes of these sets. We use the notatiqi{B for the
number of real valued irreducible characters of height the p-block B. By Brauer’s
permutation lemma the number of real conjugacy classesefgtbupG is equal to
k-, (G). We use the notation BR | D) for the set ofp-blocks of G with defect group
D, D™ stands for then-th derived subgroup ob. For constructing examples we used
the GAP system, see [7], and we also describe these groupsthveiir GAP notation.

3. The real conjectures

Unless otherwise stated, lgt = 2. Let G be a finite group,B a real 2-block of
G with defect groupD.

Conjecture 1 (Weak real version of Brauer’s conjecturg&)e conjecture thak;,(B)
is bounded from above by the number of G-real elements of D.

Conjecture 2 (Strong real version of Brauer’s conjecturé)e conjecture thék; ,(B)
is bounded from above by the number qf(®)-real elements of D.

Conjecture 3 (Real version of Olsson’s conjectur&)e conjecture thakg,,(B) is
bounded from above by the number of(®)/D’-real elements of PD’.

Conjecture 4 (Real version of Eaton’s conjecturd)le conjecture tha[:i”=0 ki ro(B)
is bounded from above by the number gf(R)/D"*+Y-real elements of PD"+1),

REMARK 5. One could not replace in Conjecture 2 tRg(D) by D. The small-
est example is a group of order 24 which is the pullback of maps- C, and Qg —
C,, (with GAP notations it isSmal | Gr oup(24, 4)). In this group there are two 2-
blocks. The nonprincipal blocB has a normal defect group ~ C4, where there are
just two D-real elements, however, KB) = 4. (In fact in this group all characters in
Irr(G) are real). However, we do not know any such example for thecipal block,
or for blocks of maximal defect.

REMARK 6. If every irreducible character is real in the gro@® then we get
stronger versions of the non-real conjectures, see Remarkaihely k8) (ko(B),
Zi"zoki(B)) are bounded from above by the number of elements of thectdgfeup D
of B, (D/D’ or D/D™+D) that are real insidéNg(D) (Ng(D)/D’ or Ng(D)/D+D)
respectively. Of course Conjecture 4 implies Conjecture? and 3.

REMARK 7. If every irreducible character of a group is real, it does not fol-
low that the normalizer of its Sylow 2-subgroup also has thisperty. LetG =
Smal | Gr oup(96, 185). This group has selfnormalizing Sylow 2-subgeoupn the
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principal block of G all the 14 irreducible characters are real valued, its Sylow
2-subgroup has also 14 irreducible characters, but only flthem are real. This ex-
ample also shows that an element can be real in one of the S¥subgroups, but
not real in an other Sylow 2-subgroup, since one can find oddetements in this
with that property. In this group all 32 elements of the Sylavgubgroup are real in
G, but only 28 of them are real iNg(S) = S.

In the next remark we show that the-analogue of Conjecture 1 is not true for
p > 2, and since the defect group is abelian the other Conjextre3 and 4 also
cannot hold:

REMARK 8. LetG = Mj;, p= 11 and letB be the principal block. ThefD| =
11, k,(B) = 3, but in D there is only oneG-real element. This group is also an
example for the fact that the number of real valued irredacdharacters can be dif-
ferent in the Brauer correspondent blocks with cyclic defgoup if p > 2. Letb €
BI(Ng(D) | D) be the Brauer correspondent & Then k,(b) = 1. If p =2 and
the defect group is noncyclic then Brauer correspondentkislanight have different
number of real valued irreducible characters: let us takeshme grougs, then the
principal 2-block has 6, however its Brauer correspondéotkohas 5 real valued ir-
reducible characters.

4. Nilpotent groups, symmetric groups and blocks with cental defect groups

Proposition 9 (The nilpotent groups). A stronger form ofConjecture 4 ifence3,
2 and 1) holds for nilpotent groups. If G is either 2group or abelian then in Con-
jecture 3there is equality.

Proof. If G is nilpotent then every 2-block is of maximal defect, and By the
only real 2-block of maximal defect is the principal blo&g. Then IrrBo) = Irr(G»),
where G, € SyL(G). Characters of height of G, are those of degree"2 This is
at most then-th character degree db,. By [12, Lemma 5.12], all irreducible char-
acters of height at most contain Go"*1) in their kernels, heanji”=O ki rv(Bo) <
|Irr,v(Gz/Gz(“+1))|, which is at most the number oGz/G(Z““)-reaI elements in
Gy/Go(MD), O

Proposition 10 (The symmetric groups). Conjecturesad 3 hold for the sym-
metric groups.

Proof. (a) Since every irreducible character of the symimgtoup is real valued
and since its Sylow 2-subgroup also has this property by Th&orem 4.4.8], Conjec-
ture 2 for the principal 2-blocks reduces in this case to the-real k@) conjecture,
which holds by [28]. In [26] it is proved that the defect groGpof each blockB of
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weightw of §, is isomorphic to the Sylowp-subgroup ofS;,, and there is a canonical
height preserving bijection between the irreducible cti@ras of B and that of the prin-
cipal block of S,,. Thus if p = 2 then inD each element is also real, and again by
[28], Conjecture 2 holds also for nonprincipal 2-blocksSf

(b) Olsson’s conjecture also holds f& by [28]. Thus by similar arguments as
above, Conjecture 3, also holds. O

REMARK 11. A positive answer to Eaton’s conjecture fay;, would imply a posi-
tive answer to Conjecture 4.

Proposition 12 (Blocks with central defect groups). Conjecture 4nd hence
Conjectures 1, 2and 3) holds for central defect groups. In fact we prove a slightly
stronger statementthe strong forms of the conjectures holds fblocks with defect
group D, where G= DCg(D):

Proof. LetB € BI(G | D) be a 2-block ofG, whereG = DCg(D). By [23,
Theorem 9.12]IBr(B)| = 1 and there is a bijection between I and Irr(B) map-
ping ¢ to 6., where6.(9) = ¢(92)0(92), if 9> € D, otherwise it is zero. Heré is
the unique character in If&) containing D in its kernel, and IBrB) = {#°}. More-
over ht(9;) = n iff ¢(1) = 2". If B is a real 2-block therd is a real valued charac-
ter and6, is real valued if and only it is real valued. Thusk(B) = k,(D) and
Yo kire(B) = 2o kiry(D) < [Irre,(D/DM+D)| by Proposition 9, this is at most the
number ofD/D™+V-real elements oD /DM, O

REMARK 13. It is easy to see that if the above conjectures are trutghéodirect
factors of a group then they are also true for the direct prbda tensor product of
characters is real iff each component is real, if we havedaflasse<C; € CI(By, D1)
and C; € CI(By, Dy), then the pairdy, c;) € C; x C, is a defect class oB; ® B,. The
defect of the charactey; ® x2 is the sum of the defects gf; and .. The height of
the product of characters is the sum of the heights. The numbeeal elements in
D; x D5 is just the product of the numbers of real elements in thecticemponents.

5. Blocks with cyclic defect groups

For a blockB € BI(G) we consider the pairsx(6) with x € G a p-elementé €
IBr(b), whereb e BI(Cg(x)) such thatb® = B. As in [21], we call theG-conjugacy
classes of these pairs, denoted &y9)®, the columns of B A column(x,8)® is called
real if (x,0)® = (x71,0)®. In [21, Lemma 1.1] it is proved that. kB) is equal to the
number of real columns oB.

We will use Dade’s description [6, Theorem 68.1] pfblocks with cyclic defect
groups only for the special cage= 2:

Let B be a 2-block with cyclic defect group = (x) of order 2, D; = (xzi),
Ci = Cs(Di), Ni = Ng(Dy), fori =0,...,a—1. Let By € BI(Ng(D) | D) be the
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Brauer correspondent block &. Let by € BI(Cg(D) | D) with bg'o = Byp. Such blocks
are conjugate inNo. Similarly let by = by“, then every block ofC; that inducesB
is conjugate tob; in N;. Let ' be the unique irreducible Brauer characterbpffor
i =0,...,a—1. The inertia subgroup df in N; is C; fori =0,...,a—1, and also
[IBr(B)| = 1. Let IBr(B) = {¢}. First we prove:

Lemma 14. With the notation abovewe have that(x, 0°), (x, #°) for k odd
(x2,0%), (x%,61) for k odd ..., (x*, 6371, (x2*%, pa-1) for k odd and (1, $) are
representatives of the columns of B. f % the smallest power of x which is G-real
then representatives of the real columns of B are among tltodemns whose first
component is a power of?x

Proof. If the first components of two pairs generate diffeibgroups, then they
cannot be conjugate. Let us take the pajir ), wherey generatesD; and j < a.
Then the block ofyr is conjugate tob; in Nj, soy is conjugate tod! in Nj. The
conjugation takesy to another generator oD, i.e. to x2'k wherek is odd. If the
first component is 1, then the second component musp.be []

Corollary 15. Let G be a finite grouplet B be a real2-block with cyclic defect
group D. ThenConjecture lholds for G.

Proof. We use [21, Lemma 1.1], Lemma 14 and the notationseab®hen the
number of G-real elements irD is exactly 2.

We have that the representatives of real column8 @fre (1¢) and some of those
columns whose first component is an elementDpfand if it generatesD; then the
second component & . Their number is at most the number of elementDpf which
is 227, []

Corollary 16. Let D be a cyclic normaR-subgroup of G. TherConjecture 2
and henceConjecture 4also holds for blocks B BI(G | D).

REMARK 17. Using similar arguments for thp > 2 case, one gets for block
with cyclic defect groups that k(B) < I(B) - |{G-real elements irD}|. This could be
considered as some kind of real analogue of the so calledc&Tnaequality” in [27,
Proposition 2, p.272].

To prove Conjecture 2 for 2-blocks with cyclic defect groug wrill need the
following lemma (the p-analogue of it forp > 2 is not true, and ifp = 2, but the
defect group is noncyclic then the analogous result is nat &ither, see Example 8):
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Lemma 18. Let G be a finite grouplet B € BI(G | D) be a real 2-block with
cyclic defect group D and let 8= BI(Ng(D) | D) be its Brauer correspondent block.
Thenk:,(B) = k;,(Bo).

Proof. We use the same notation as in the introduction to daition. By [21,
Lemma 1.1] and Lemma 14 it is enough to prove thatx#, 6/) represents a real
column of the blockB, (recall thatd! € IBr(b;) and b; € BI(Cg(D;) | D)), and B,- €
BI(Nce(p;)(D) | D) = BI(Cng(p)(Dj) | D) is the Brauer correspondent bf containing
the single irreducible Brauer characi@r, then Q(ij, 6') belongs to a real column of
By and this correspondence defines a bijection of real columirByaand B.

Let ze G such that (§2%)%, 61%) = (x?*)~1, 67). Then6] < IBr(b;). This block’s
Brauer correspondent iflc;p,)(D) is E that contains the unique irreducible Brauer
characteri. Since blocks 0Cng(p)(Dj) that induceBy are conjugate ifNng)(Dj) =
Ng(D), there exists an elemea € Ng(D) with b;™ =b;. Thenb;* =b; andd ™ =
fi. But thenb;** =b;. But the inertia group ob; in N; is C;, thuszz € C; and so
(XZi k)zzl =X2jk, and 6(21 k)—lz(XZJ k)Zz(ijk)Zl, and hence éej k)zlyéj Zl):((xzjk)—l,é_J')_
Thus it represents a real column Bf. The remaining column oB containing (1¢) is

real and the corresponding column containingg(lLin By is also real. So we are done.
O

Now we have:

Theorem 19. Let G be a finite grouplet B € BI(G | D) be a2-block with cyclic
defect group D. TherConjecture 2and henceConjecture 4also holds for B.

Proof. Using Lemma 18 and Corollary 16, we have that ,(B)| = |Irr;,(Bo)]
is bounded from above by the number of thi(D)-real elements ofD, thus we
are done. O

6. Groups with odd real core

In [11] we defined theeal core RG) of G as the subgroup generated by the real
elements of odd order.
Our main result is the following:

Theorem 20. If |R(G)| is odd thenConjecture 4holds (hence alsaConjectures 3,
2 and 1) for the principal 2-block of G. In particular if any of the following cases
occur Conjecture 4holds for the principal2-block of G.
(&) The commutator subgroup’Gs 2-nilpotent.
(b) G = 0222(G). (In fact this is equivalent tdR(G)| being odd)
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(c) G is solvable and its Sylo®-subgroup is abelian.
Moreovey we may replace irConjecture 4Ng(D) by D.

Proof. If |R(G)| is odd then by [11]G = O» »2(G), in particularG is solvable.
Let By be the principal 2-block ofG. Then Irg,(Bg) = Irr,,(G/O02(G)). Let G =
G/0(G). ThenS e SyL(G) is normal.

STEP 1: For every real element there exists a 2-elemeigt such thatx9 = x

Let g = g0y if x%% = x~1, then an appropriate 2-power @f is already a
2'-element, which centralizes. Thus gy acts onx trivially, and we are done.

SteEP 2: R(G) = 1:

If x € G is a real element of odd order, then by Step 1 there is a 2-elfeme
inverting x. SinceS< G, [x, g] € SN (x) = 1. Thusx™! = x, and sox = 1.

STEP 3: Every real element iiG is a 2-element, hence it lies iB € Syb(G):

Let X = xoX» be a real element iG. Thenx, ixp~1 = x~1 = x9 = x,9%, 9, thus
X> and xy are both real. By Step X = 1.

Thus [Irr;,(Bo)| = [Im;,(G)| = [Ck(G)| = [{x € G | x rea}| = |{x € Se Syb(G) |
x real in S}.

We prove Conjecture 4 by induction an Letr = 0. An irreducible charactey €
Irr(By) is of height zero iff its degree is odd. We have that Irr(G), and x5 has only
linear constituents, henc® < ker(x). Thus k,(Bo) < |Irr,,(G/S)| = |CL(G/S)| <
l{x € G/S | x real in G/S}|. If there would be a real'2lement inG/S then by
Proposition 5.3 in [11] there would be a redl&2ement inG \ S, which is not the
case. Thus there are also no real element§ i whose 2part is not 1. Thus each
real element belongs t§/S, and by Step 1 this element 8/S-real. Thus we are
done forr = 0.

Let us suppose that Conjecture 4 is true fox n. If x € Irr(Bg) is of height
n, then its degree has 2-part.2Then all constituents ofs have degree 2 By [12,
Theorem 5.12], they contain in their kerned§'*Y, thus x also contains it in its ker-
nel. Similarly all irreducible characters @ of smaller height also contain it in their
kernels. Hence) [ ki ru(Bo) < [Irr,(G/SM )| = |ClL(G/SMY] < |{x € G/SM*D |
x real| = |{x € S/S™D | x real in S/SM"*V}|. Hence Conjecture 4 holds.

(@) SinceR(G) < G’ by [11], if G’ is 2-nilpotent, then R(G)]| is odd.
(b) This is equivalent tqR(G)| odd by [11].
(c) By the Hall-Higman lemmaS is normal, thus we have case (b). []

Corollary 21. If Se SyL(G) is normal thenConjecture 4holds for G since then
each block is of maximal defecand the only real2-block of maximal defect is the
principal block hence we can applfheorem 20 (h)
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7. Computer results

We have checked Conjecture 4 for the principal 2-block witARG[7] for the
small groups library. We also checked Conjecture 2 for thacjal 2-block for the
26 sporadic simple groups. For these blocks the respectimgctures were true.

We also checked Conjecture 2 and Conjecture 3 with the hel@AP for all
2-blocks of groups up to order 1536 except for groups of ard#36, 1048, 1112,
1192, 1304, 1352, 1384, 1432, 1448, where our computatiorhods did not work
(Conway polynomials are not yet known). We did not find any rdetexamples for
these conjectures among the investigated groups.

8. B-classes andG-classes ofD

Let now p be an arbitrary prime number.
First we prove the following

Lemma 22. Let B be a p-block of G with defect group D. Then for every R
there exists ax € Irr(B) with x(x) # O.

Proof. Let us suppose by contradiction that there existslamentx € D with
x(X) =0, for every x € Irr(B). If we can prove that there exists a trivial SOUE&-
module M in this block with vertexD, then by [18, p. 175, Lemma 2.16] this is liftable
to a trivial sourceRG-module M and its character is nonzero on the elements of the
vertex of M, contradicting our assumption.

If D is normal in G then by [18, p.247, Lemma 10.3] all simple meduin B
are trivial source modules 8 with vertex D. If D is not normal then the Brauer
correspondenb € BI(Ng(D) | D) of B has the property that every simple modi#e
in it is a trivial source module with verte®. Let us lift a simpleF Ng(D)-module S
in b to an RNg(D)-module S. Then its Green correspondertt(S) is a trivial source
module with vertexD and by [4, p. 466, Theorem 59.97,(S) belongs to the bloclB.
So we are done. O

DEFINITION 23. LetB be ap-block of the finite groupG with defect groupD.
We say that two elements, y € D are in the sameB-class, iff for every irreducible
charactery € Irr(B), x(X) = x(y).

We have the following result:

Theorem 24. Let G be a finite group with p-block B BI(G | D). Then the B-
classes of the defect group D are exactly the G-clagdgéD) of D under conjugation.

Proof. If two elementsx, y € D are conjugate inG, then of course they are
also in the sameB-class. Let us suppose now thaty € D are in the sameB-class,
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but they are not conjugate iG. Then by the strong block orthogonality relation, see
[23, p.106, Corollary 5.11]2:)(6'”(8) x(X)x(y) = 0. Using thatx, y are in the same
B-class this gives Uix(x)e|rr(s)|X(X)|2 = 0. Hencey(x) = 0 for every x € Irr(B). By
Lemma 22, this is not possible. []

DEFINITION 25. Let B be a p-block of a finite groupG with defect groupD.
We say that the element € D is B-real if x(x) is real for everyy € Irr(B). An
elementx € D is B-rational, if x(x) is rational for everyy € Irr(B).

Corollary 26. Let Be BI(G | D) and let xe D. Then x is B-real iff it is real
in G.

Corollary 27. Let Be BI(G | D) and let xe D. Then x is B-rational iff it is
rational in G.

Corollary 28. Let F be a field containing Q. Let B BI(G | D) and let xe D.
Then x(x) € F for every x € Irr(G) if and only if x(x) € F for every x € Irr(B).

We have also the following

Theorem 29. Let Be BI(G | D). The restrictionsyp of x € Irr(B) to the defect
group D generate the vector space of the restrictions of athplex G-class functions
to D.

Proof. Let us choose representativese C; N D, i =1,...,t of G-conjugacy
classesC; intersectingD. We want to prove that if we restrict the character tablesof
to these columns and to those rows which belong to the bBckhen these columns
are independent. It implies that this submatrix has rarthkence, it has alsbindepend-
ent rows. But then any complex vector of lengtican be expressed by these rows and
we are done. Let us suppose that the above mentibreadumns are dependent. Then
there are coefficientss,...,«o, not all zero with the property thif;laix(xi) =0, for
all x € Irr(B). By [22, Lemma 4.6, Chapter 5] the subsum, whgre belong to any
p-section is also zero. But the-s all belong to differentp-sections, thus; x(x;) = 0
for everyi =1,...,t and everyy € Irr(B). By Lemma 22 we see that there is xo
where everyy € Irr(B) vanishes. Hence; =0 for alli =1,...,t. Thus the columns
of the above restricted matrix are independent and we are.don []

In this way we get another proof of the following:

Corollary 30. For a block Be BI(G | D), the number of G-conjugacy classes
|Clg(D)| of its defect groupis a lower bound for the numbédB).
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ExamMPLE 31. It is not true, however thaB-classes (henc&-classes) of the de-
fect groupD are the same ab-classes (henc®&lg(D)-classes) for the Brauer corres-
pondent blockb € BI(Ng(D) | D) even for 2-blocksB € BI(G | D) with cyclic de-
fect group. LetG = Smal | G oup(288, 375). Then the third 2-block has cyclic defect
group of order 8, it contains fous-real (henceB-real) elements and only twhlg(D)-
real (henceb-real) elements.
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