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1. 1 BRAEOHREER
SBOBRBEIRFICOWTIR, 1940FRR¥E, Clark' "V BEIEKEIC X
ZHEHOFEEARODVTHE LI 2D, BREZOAKIYIIIFFR
B E o D3, Phillipchuk! 227V 3 = A DOFERIE OBRKIE
KT7TNVI=oAET A ABOBESEERR%E. FfcPearson' ' "V NEBHARD
BRBRIEECFEE L 7V 2AROEEHRLAR L TZ0EABRKNELTOL
E2NFHOAEREZZRLTHODIETH S, Uk, Coa=—sBERED
EAHESBHRRERAC L, FATENCLEZ L OBELEED, HABRE I
T 3R & B ICBRBEBRNOZRANANERICED SN,
BREEREORECEERCGOLEMOMMAEE., HELOBHEE. &b
BHMOEHEER~NOHARE, HEAESICBRREFSOZER ORI,
Birkhoff & ! ic X 2R AEBEOKRMFENIMFTICLIDHShicsh, 15
RRBEOLRTRERNTH SV = v POFREBEC VTR, FEFERH. FERHER
ADBEEZRE L 7zBirkhof f! 2 DHGHRBRFICIREI NN, Z0DHK,
¥alsh' ¢, Cowan& HoltzmansS ' ik, FHME. Mo EEREL LUl
HHRBOHEARE L CHOOHEFE RV LRE KX V< v AR
PIREL. BECOEGR Y= » FRAEBBELTERZINTVWS, 8%
BHESHEOEARHE TORIEKREERE IC > W T, Crossland& Bahrani® ®’,
Cowan& Holtzman! °’, Kowalick& Hayo ' ' X 2 HmiI. EERHVIBAF I
HEENTHhy, ARCEBROHGEAE, HXLAOBHEE, BREEEFOX
BB RAEER EEATEER O L IZEAHE (Yelding window) & OBFHRN
HohcE e, £, B, R ES 'O RBENZENRFECL>T, B
M OREFEERDHNERERE BT 2L ip, REESEMO¥
BIEOVWTORERENERIRE -1, LT, Ch>OWEKEAEL TH
ERERBBER, BB T2 L RBOLED 7 5 » FARAR UYL 3 EMAERE
BRiE LT, BHARZIEALS2HE5LREANMOEY TH B,
BRABER. BRoB->MARBI 2V EA2HHELCKROLBEHES S,
HEEDPORETIEB Y 2 v b0y Y —= v 7ERIC L - THEBILE NI H
BRESHEBABRHREE Nic v BB EATIABEMEEECHY, BE
SEICILRHICEROBHFETH Z & RN, BEcBEVWHDRHIC LD,
EAHEEB L COXEOMHABILBOBRWIELBEATH S5, LN -T, 8BR
BT Table 1-1' "2 RT XD RFFBRILHE R REEEBEHOBEE N AiE L
0. &< I RREEE O I T B IRE T 5 5 BB NI IR 2 SEA.
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Table 1-1 Combination of metals jointed by explosive
welding(Ref. 1-12)

METALS ——>
/0
l TSI,

LOW € STEEL, AIST 1004 10 1020
MEDIUM C STEEL , ASTM A-28
MEQIUM C STEEL , ASTM A~
MEDIUM C STEEL, ASTM A- 21
LOW ALLOY STEEL, ASTM A~ 204
LOW ALLOY STEEL, ASTM A~ 302
LOW ALLOY STEEL,ASTM A- 387
ALLOY STEEL, AIS| 4130
ALLOY STEEL, A1S1 4340
TAINLESS STEEL, FERRITIC
TAINLESS STEEL, 300 SERIES X XX X
TAINLESS STEEL, 200 SERIES
HADFIELD STEEL

MARAGING STEEL

ALUMINUM AND Al ALLOYS
COPPER X X
BRASS X X
CUPRO-NICKEL X
BRONZE X
NICKEL AND NICKEL ALLOYS (&) x| |x X x[x
TITANIUM AND Y1 ALLOYS 6AL-4YV X X X

3¢[ 3¢| 2| 2[5 x> >
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x| ¢

I I ER S
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ZIRCONIUM AND ZIRCALLOYS X
WASTELLOY ALLOYS B.C.F (€} X Notes
::3:&%2;5‘&:?; . X @6 X L3 ® A blonk space meons bonding of that combination
ANTALUM LLOY 68 (2 % haos not been attempted. It does not mean those
OLD ALLOYS metals cannot be explosion bonded.
ILVER AND SLVER ALLOYS A » * * i
PLATINUM ; X ® Includes Inconel,” Monel,” and Incoloy,” registered
a%tx::gnix::::wo Cb ALLOYS X . : X frademarks of International Nickel Company
MAGNESIUM X
NICHROME X
TUNGSTEN X
TO NICKEL X
PALLADIUM ALLOY
ZINC X

|3

(© Registered frademark of Union Carbide Corporation

b5\ MBERIC XD BVEBELAMELRT 2 X5 REBEBOEA.
BIZE, Forv, TrIzoA IBELREFBEDHAGLEBIBVTD
HENRERESIEONS, £/, FMULOBRELIMTHCECEAHRT
PEONZHEEE S, ChoOR[IRMA T, EEAENOBEI M OB 5,
DEEEICHETE2HALID. 759 FEREZRI LD, #, SRoMEo
75y FEIMEIK b BRI TVE, HRAKBI2BE 7 5 » FlOERLRER
. 12,000 ~15, 000t i EL T, HARKOEEREZRLTWS 1D,

147

1. 2 BE7 5 PO EORMES

BE7 7 v Fllid, FBOLET S v b, BFAZEUCRET S~ M, BWK
BAKILEE., MARBERERZ EDOENESR. RICHE, BBRER L HH
INTWVW3S, 7, BRIBEINERZTEGSEHNOBARFTLLCLHERHIN
LIERBV, BEZ Sy FEBOXERFERAMEEHEEOTEBRER 2%
Table 1-2~Table 1-5IC/R¥,

AFVVRHEE T 5 v F#IX, AWBHRT I v b OKF/LEMEREE D
BREBEILHELT, A0CUTORETHREINBZELDILETS v b
DRIGESR. BRZBMBIEHINTWS, Table 1-2PI4 i  300°CLL F 0B
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Table 1—2 Application of SUS304 explosive clad steel to chemical

plant
Operation Plant Unit
temperature -
450°C Petroleum refining Hydrocatalytic desulfurization
plant unit (Heat exchanger)
330°C Vacuum distillation unit
(Rectifying column)
320°C Crude oil atmospheric
distillation unit
(Rectifying column)
300°C Paper making plant Digester
Polyamide plant Heat exchanger
200°C Polyester plant Reactor

T, BKEBEOZ NF L — 5 — LARZHEG, oY - BLUBEREOx
NEr -5 - EHREREORICESG. BEENERFORMELTRF ¥
VABIRE 7 7 v FEBROBIESEH ATV S,

Table 1-3 Application of aluminium explosive clad stleel
to chemical plant

Operation Plant Unit
temperature
260°C Aluminium electrolysis Busbar
plant
50°C Ship Transition joint of
' deckhouse and hull

TANI=T ARSI 7y FHOSERMEAMELTR, THI=Y L8RS S
YPDTNI =g AT RN EHHEGEREDEBRTFNRICMON TV BH,
CHPUACERUTORENEEHEREIATWS,

FHUBREZ 7 FilliZ. BOTEEHNRT L CEERETIHN60KE~300
JHE. BEREN00TC~450CEEL. A7 Y VRABMTREHTER VWA T3
75 FORIGIE, BELZEUERMET S v FORIGE. 7V 79 vET
5 FDORIGE. KEER TS v+ OGHBRELSDILFET S v P ERE I
bhiTwa,

FRE 7 7 PR, WKEKILT S v P ORZBRBIRREINI LS KB
IEMEESUILE TS v rc 2 fEbh Ty, ChlACHomMERLEOEN
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Table 1-4 Application of titanium explosive clad steel to chemical

plant
Operation Plant Unit
temperature
450°C Melamine plant Reactor
Ammonia heater
360°C Waste fluid control Reactor
v plant Heat exchanger
290°C Terephtholic acid plant Reactor
‘Petroleum refining Bottom cooler
plant | Fuel oil stopper
200°C Ik _ Column top condenser
Fractionating tower
Urea fertilizer plant Synthesis reaction column
Reactor
Acetaldehyde plant Heat exchanger
Terephtholic acid plant Reactor

Table 1-5 Application of copper explosive clad steel to chemical

plant
Operation Plant ~ Unit
temperature
350°C Tetoron plant Reactor (vibroseis)
320°C Petroleum refining Crude oil atmospheric
plant : distillation unit
(Column top exchanger)
125°C Sea water desalination Heat exchanger
plant

TWaZExAhL, ARCHKHSESEEE CREMEHERFEICETORES
PR BBHHINLTVS,

RicFig. 1-13 /b7 5 v P HBE 2 5 » FEOARERERSG ' %2RL
f2bDTH 5B,

W7 59 FEIIBXUREES 5 v FEITHR, TOBEAERRTFYVRT T



FETH B LT e
BE7 5 v FEiTiX, 27

YVAR, FEU WM Ty

FH AR EEF OB S TE

FEEINTVWE I ENERX

na,

LEDXS5BE7 5 ' 8. Copper and
M EFTEE2ILDL Copper alloy
BoT¥SBok¥75 v 28.2%
bAEMENE U CIAEF IR

BlIKEHIATHLARICH,

Mo o4, FDEHMREIK

B a2 ARINIHRIZEF Fig. 1-1 Production ratio by clad metal
EAEBVEVSTEWL, in chemical plants

Fig. 1-2i2. 19554E~19764F
OWEROILFET S v T

A L RGO A e
BRI b DTH B, NS
SRR I20HD 3 5, Su

579 D 53204 b3 B i< SRR 4 AL

2BETHEN, cholk
GbEMEDbODMHEN
WlEHE T BE3LDOTERE Y S
v FEIEBBE D DTV,
Zhioa USRI ER D
FR &R pHEER I,
FHWENI%, RVWT
7Y —TEE. BPEITTHIE,
BEBRESD5%. B0
WIIEN14%., @EEIC L

]

case

Fig. 1-2 Classification of corrosion

B SEVERRIR & BEAEIHR DL and fracture damage in chemical
BER->TW3B, plants

COILEFEHWER, FELTEBERBCRELTWBIERREINTED,
BEZ S5y FEIKHET ZER L D bAREBERPNIENBSHIECHIALEEZ S
N3, BOHEE, SRS X2 EMEE, BRECL3BERSVTHERR
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ZENVWZ B,

BE7 5 FllE L TROEHIREIBEHRI, GREBEETH S, SkiE
BREREATOESRAOBMICHPBENLBRIGEFHIR LES T b0 L
7 oh, ﬂﬁm%é&%;F%®%A%ﬁﬁ%d‘13%%K§?57%ﬁ
N 0EBREZ T 5EGHE TORBMEESTH Y BEOBEEGRE & BEL -
REHERTARENZEZONEINSTH S,
 RERTFO—-oTHBE7 5y FRHR BEDTCHEZEILCTV, 75 v
FTRBOWKARBARBEHF -V TO I oFoEfZRICR L, FTER%EIE
Wd b, |

1) IKFBCRREE OKRREEE) OBMREEF » Y RNV NX— 5 DIKE
ROBFE LR, RBHRROLOREHICE 5730 - 72(1967.3. 29 BH,
COBRZEBEIF » 2 NVAN—HAICIKRBT AEENKELTSISZ 7 v F
EHEHLTCED, ROLOAMERSISYZ 5 » FORFERTH -1, BOicE- 12
B, SISHloBER EBMBERBEOBERTEFOSRNEEL, T
SN » CSUSREIEZE L. BMARBARFTHSKIcE s ah, BHic
EVvr—nWRELHbDTH B, ZDEEIE., EERDORE., FIlhicE bR IR
M OB RGEREC X ZEIETOB VR Ui & 0 SUSHlOEEER & BB
EOBAMEHEORKBICEINNRE L, BEBETAR (FFHAH) o]
NSUSHABR IR > TRIEL. O Lt & EdhTuns 17,

2) RF—AYTz—3IVI-TYEZTTS Y PBWT, EEE1I5~
227 H ofdlical|] Y — 7 FM Db -7, V—7HMER. EF7 5 2 (125Cr-
0.5Mofil) &V 72 —<Fa—7 (HKA40) ORMEEHTFEDL 25Cr-0. 5Mo
MAME T, NITARRBETZERABLIARERIPRAONT 74— F
— 7RO ZOMEIEINRS SN, CORMBET R Inconel THEINT
B, LT, SINREMBEOHREBSICIIMBAINIC, TH- 12, Eho
FHRE LT, PIAERBIE I PEEOMIG. B & 735 B okiiER
BREBECIZALNOBEVEL, BXUBERCEITE27 YV —T0FHN1 25
Cr-0. SMofll/ARR ICy » TH U BEWRRIRICE R Lo a8,
3) MRMBFIALSHEEL TV IEMRICENEZN 2 CREARKE B,
FTEES155kef /en®ic @S 2 S EARTVWHEAR C U, A/NMEDL EORE
LR TRBTE2FERTHo7co FOERBERRTH O AFFER IS
- 72(1980. 4.1 1l ., CORIGEEFHETEE44CTHy . BRB LU
HE 754 FPRATF LV REH(SUSA05)EREY 5 v FEICEIfEE R T Wi, H
MERABIWERCX2 S, CORBBREBER NS T OFE—EI1XD309
BEBRTHERENTOLNOLTEY, COBEBRELBOR Y FiItii» TE W
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B -ORRZ2LIBRERAREELTVWAIERHS I TWSE, £L T,
XWHRABRE LT, BERBICA 2574 PRRTF VU RABOEEREE
AL RMEDHTREVWRELINRE L &, BB AERART].
SOREHREEKZRETOKZETWVEEREL N1,

hoDMEDEROFERIZ., WFhb R F v L 2l —REERHMOBES
BRENSEB LSS L UCBRERCHGELLEREC T & > TR
BREILL. OB IBEORLE. BILicE BB IR NELBIROTH EH
EhoD s ) —TOFEBEVELMDY, FhoRERLE-bDTH S, i
D75y FRICOVWTOREREHKHFCOVWTRBEEINTVIRVE, £—2
FFAVRRAF VR 5y FEIEEIRBEEZONATWS, T LT, 7
5y FEicik, LiItoBR KRBT 256, T OBERAERIASRATH
BAIABVEDLEMERMEOBRABRIE CHEH., THRAKBVWTLRAE
LIt KW RAESGBRECOENNEOT S L, BMRNERME L EE
T 2-0ERERICH>BIZEHREL H 5,

LizMoTy 779 FROESERREICHY 28N, BERLEREOR
ETEOLIET 2%, BEFNIBHT 3 I EREAEROMEMHFIL
EA2MT 5 L CTEERHEECH S, ok, EEOHEKRIG, Filkds0id
Yo w b e FUVIKEDBRIBRVOTAICE » CTHEABRTICENANFELE T 50
W, ERENLNRE LSS, BBCELIETOEMETFRT I LD,
T¥EREALDOH B EIATDH S,

1. 3 MECHWERERDOWIE

AMEOEHNIZ. TTREYZ S » FROSEMA. BN TE L CXRBENT
BORMBKALME I X 2 BEBRABOLIELZHS MM TEILETH S, 0
AT RICIR, BE 7 5 v FROBESERBIcBVWT, fifZ(LEiEC
FERRTTHIADEMEETRE. BHAE TROEAERREAE L T
BEHLEHLIVLEND 5, RHEEBETFONES 5 WRILHOEREZEREL
T. BOWE. CHPIH. AL E RIS aEINTnE 1722,

HOEE, LB CRRETR S+ T L TBEH TSI LOTH D,
REF O EEERT SDTH 5,

AFMLE e k. 2BPALDPCET I 2EMMETH > T, T OHHET
DIBBROBEREEINBECEI2EATH S, T LTEHEETRMER
BINTEPSBORBIRKERPELEIZIENEVN, 00X IRBPAKR
BRAHYEFORBBENZOREEZRLTVWE I ENEL,

HELBE . RESEPEBEORRIALEZES LIRS EIEA. B
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FHRAWKRADRZL » THERBIEH—RHEKIERAI LT 28R TH 5,

BOSHEE S 3, BA S BRESEMCRERECRER 268 TAVWKMHTS
BORBBENROATWT, H—RB#HEZT TR MU Lo BEILEY %24
KT BBRTH 5,

CNSOIEBMDI L THREZ 7 v FHOBEAERBOMBE/LIcEEEE
ROATTIEIE ., MBIUEROWLHIC K » CTHABRFOBERLHAMEZK T X
¥ 5AMYILE EEEBERARICE TlvwaeB 24k s ¥ 2 B TH %,

AP TR, AR OM E LTBE 2 S » FllE LTROZAIATL
HSUS3VAEE 7 5 » FEll, RIGHEHOBE LTV =9 A BE7 5 v F#lil,
AFYPLEL & RO HANBE E fr R ERICE B8 E LT, F2 Y BE7 T v
M EE D H T B

SUS304Je 7 5 » FEIIICB L C. EEMN T, WML E B X O HiFFI &
LR OMERR., BABRRA O TRBHIcL > THE LA MBEI/LTHD, 20D
HTHMBEITLRTH % C ORED 5 SUSI04H ~ O REMILEIC & 5 BEA G R
BOMERT &, SUSSHMBIRBOKKZENEZHOHAKTH 2, LiL.
SUSS04RE 7 5 v FHlOEEMBIC & bR HSHBE/Lic >k, HEHFIZD
B ZOHE VD HEREMADOEEZRILTVWEIDATH S, HEE
REDOSUSIUMAI TOC IOV TR XB2 A 7T F 54 Fickb, BABR
BCZOBEEOEVWHEBNGEAT Z I EFERINTVWEN, TEMNIC C A
FRELIF =2 RBRBVWE>TH B, Lz ->T, AFECR T FNBEIIC L -
THELZESERTO =7 o WIHBELIOEERMEBECTHRAEL, &bEH
BIUOBMEELROBELZOELBRERXB A I/ 0T FSAFDAERTH -
e, AR TRERBE T 7 X=RASESMBEBEELEXEA /72 T7F 549
WCHERCHIE L, TAMBICE bR S>EEME XBEITCTRBE LRE
Lico ZLT, CHIRIC 20T, CIREANRERZF TR, HaRRmcs
BESIFNRZBEEARICE - THMlT 2 2 & bEKH 1,

BH, CIHHICRET 2RROMEREE LTRRDOELIBLONRH 2, E
i COMEORR 2Kl (RMEEKT) TOoCBEIEL T, ¥ENi
B ->7fDiEChristoffel & Curran! 22 PFDTH Y. FDH%Eckel 22
Lo TEIEENP, HoOMFTR, BMXKBEROAZNR L L CFickdH 2
&, BIKRE DA BRI 2 AR & NBRR%E S0 TEMNB S X -5 —%
Bl lEiedhote, L L, HEEBERAAKBIBZA—RTFFA MlET7 251
AT ZOREZEDILERF v » VORI D, FickdH 2 BEHIANEKI LKW
DIFHLNITH B, —H. BMAARTCOCHBIHOWEIILEEF v+ VT
H 0 KRB A Sk B~ DHEEL (Up-hill diffusion) IKDWTIE,
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Darken! 24 2@ & L CMillion' 2%, Agren! ?®272 Eic &k » CTHHRMELY

PORBEINRTVWS, LI L. THhSOHBHMERTIZ. DarkenOERER%EZ L
DEHELTWEIERT HOT, MBERE HI000CLLETHD, L - T,
EEHRA - RFF 4 FMRETH B, AMAPIHRELTVE L3 BA—-RF
FA4PET 254 MHIcOWTHEDE - HMERT VL,

TNANI=TLARET S » FEIIBIL T, 500°CLA T ORI & 725 R#E
. Fel AIOHFUIC & » TEABERBcEWeBEMLEMZEKT 5 & T
b, LML, THI=9ABEZ Sy FRHROVTORROMARE R, &
REBHOLB Y = v F ORFCOMEIC & b5 > TRA T 2 IXEE ORI
B4 260 THD 127 IBiC & bR S MBELOBMER RV, Lad->T,
AR CRBMEIC X - CHEAERBICAE LS Fel Alb SR 38BHILEY
BE2, XB~x47uv7r 54 FLPREOTEESTEXERFricIRAEL.
REST B EEBILEBRLAYORE ICE XX TMBARE & MARE oL E:
BET L7,

BEFel AIDEHIARB VW LEEEHOAKIC >V TOHE R, SR
NDEBT VI = AR FRBEELIHERSG 2P 2 s onb LI,
BTNV =9 A LEMHSEOROEBRARERDER > bOTH S, AET
WK > LR CUTORBECRREFER SN TAVI =T LABGET T v
FEOBEARE® X > REHEBLEERAR L. HBE/LLEENICH Y & - 75
FRIT W, '

FHUBET 5y FRIRBEL TR, 500CUToHEE coBRABRED
MEETE, TI0C~300 CORBMIROESEANOMERTTH S I &N
BRI TC0uEN, COoOBERBCEARRETCOCEH L bR -
HEZILIcB T 2HERTV, LN > T AR TIR500°C~T750°CDIREE
FCBMBAR T F 7 VBB 7 5 v FROESERRIc>VWT, Bk
ZHBER, XB=4 707734 FRIZBREMEBLIUXERICX S
SRBOREIEZITV., EABARCEL288BIKREAISF & v ~DCORH
PIHIC L B2 DM, 55V Fel TiORIBIHM bEF A L CERSI N
OMEHLNMNCT B ETH D,

WHRDOF ek TiORKIGIEH BT 2 ARG ICO>VTI, EH! DV E2ED
ELTHE DI 3D RHE30, CHUSORERMF & v EskicBILTTH
D, TOULBEBELBF I v EyHIBVWLAF Y v akDfE T H800
CULERBILTHD, 8I0CUTENRE LAHEIRTW, ~

SHRINGEBEI 5y FEMIFREEFKEHINWIEE. ER. €EO
U TCHHINEILRBAETHY, BEDCBI 2RENEHCRELHZ S
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CREBFBOKLEH. 1L, BEoRAaft (vvov b Fo ) FEok>EK
BENELRBEZAESZFZERE 2, COLI>REE. AW T B
F7-SUSS0MRE 7 5 v Fil. $BES 7 5 v FBX U TNV IO GE I 5 v

F8#TIE, Table 1-6ic/R$ & 5 I1cSUS304EH. 7V 3 =9 A B L UHOERE®E

Table 1-6 Physical properties of materials

E a A
Material Xx10* (kg/mm?) X108 (1/7) cal/cm-sec-T
Base metal | Carbon steel 2.1 14.4(20~600T) | 0.17(0~1007)
Clad metal | Aluminium 0.7 25.6(20~300T) | 0.57(0~1007T)
Copper 1.2 17.7(20~500T) | 0.94(0~1007)
SUS304 1.97 18.4(0~5387) 0.052(0~1007)
Titanium 1.05 9.9(20~550) 0.041(0~1007)

E : Young's modulus at 20T
a : Coefficient of thermal expansion

A : Heat conductivity

FBHEABMBRMO T itk TRE( RBOKRFIICE 735 FERIICIERE
REREC X ->TALEMIEHFORE T LRV TA, BEBE TR V-7
OFARBEL, £/, BEOEIEICE 735 BEBICIXFEERR & 3R 0BG
TNRBOTANRELB GRS, HhFIVEEI 59 FREITHRF Y VOB
R RHEBRMo i s~x/hNanizy, FidogE s 5 FEE REER
BLUBERE LG OBRIGNIPRAOTANREL S, IS5, Yvo b FD
VERITE, T =0 ARHFIRKICERBERERNKEWD, AbEME
B#MEDBRHNEFEOHER L 2BIENPROTARMEI WL LIS, &
LT, CNHDOBENIRRAVDTANERDEIN S LBFEFTHEEEZECTIED
bbb, COXIBBPRITOMBIT, BEI7 7 » FHIcL - TERETHBH I &N
BRI TwBRicb b od, MERAEIEE DRV, £/, 2O
EHEHY AL 7 VDR LUBEEA00E W LI000EDEBEE LT, #oRLE
DEABABOBERBREZIRME 1 O LTWwdicd &7, HABERE K
BT 5E CREFABRET > LR ERR WV,

Lo T, AMATEH. CHoDREI 5 v FIKDWTINBERE -4
SRS M, BEHOBRY 4 7 v efNd s ickd, BERRR B
FNRFEL, By A 7 VoW E bRVHBINNMEE L, EABERE
SAWIEYT 5 EARBRINICRITT 3 & & bic, B, BEIICX > CHEAER
WMOEOLEBMIERETZ0T A EINTIZG. GranongD BEHBMW T HE 3



HEouwcEHL, BEFREEZIET IR TFIROVTHEREMA 12,
BE7 5 v FHROX 3 BEAME QBT BT 2 EROHFTEIME XL WD
ME O BEST B¢ 2 E . 1950FERICA - Tloffins 73821739 k 5 —
HORBHERIBYIEEIZ SN TV, ZOBREBLOFE +O 14D R
NThy, BEFCBLIBFTRTE L CEERE, FREE, SR TORERE
M, #k X CKREEE., MEOBMEBLEEIMTENBIFonTws, TL
T, BEFHEER. BV 1 7 Vit > TRASTIBHOTHEH(A e ) DIE
BT B ERHO I E N, BETTIREE COY 4 7 VB EBHO T A
FHOBIBERRA 2 CRENTV S,
AeN:"2=C (1-1)

C ORRIE. ERNETEEO &BMFHIC > W TKY LD & &A% Coffin®
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Table 2-1 Chemical composition of materials(wt¥)

C Si Mn P S N1 Cr Mo

Carbon steel(]) 0.10 10.23}10.80}0.019}0.015| — — —
Carbon steel (]) 0.11 |0.24(0.7410.020|0.020 | — — —

‘| 5%Cr-0.5%Mo steel | 0.06 |0.47 |0.06 | — — 0.07 | 5.28|0.60
SUS304 (1) 0.072 1 0.75| — — — 8.80 | 18.41 | —
SUS304 () 0.072 1 0.63 | — — — 9.17 |1 18.28 | —

overlay clad steel
() Base metal of SUS304 roll clad steel
(D Clad metal of explosive clad steel
(§) Clad metal of roll clad steel

(1) Base metal of SUS304 explosive clad steel and 5%Cr-0.57Mo steel

\] / Detonator
N—"1 N1
N e
Buffer NN\ Explosive \NNNNNN N {1
SUS 304+ ) D s WP
Stand off— N N
N.../\“/ N1
o \"t::t o
Carbon steel N \5535 ©
G A S v GV G G G gy
Anvil VMVV
(a) Before welding A1
\ e
=1 AAARARRRNNY | 500
o~ 5%Cr—0.5%Mo steel
N Y Y RN \7‘/A AY Y AN
. N, N W, W . A . S S o
_ o
> Ve Gy S S ety S e — Carbon steel N

(b) In-progress of welding

Fig. 2-1 Set-up for explosive welding

Fig. 2-2 Overlay welding procedure
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Fig. 2-3 Dimension of heat treatment specimen(a) and
location(b) of microstructure observation

SUS 304
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| I—

Fig. 2-4 Location for measuremnt of decarburized band and carburized
band(SUS304 explosive clad steel, exposed 100hr at 550°C)
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Fig. 2-6 Microstructures of SUS304 explosive clad steel exposed various
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Fig. 2-8 Microstructures of SUS304 explosive clad steel exposed various
times at 700°C

500°CTH0BFEIMENY 2 &, AR ICHE LT~ 2 v Foguit R
WHREIEOKMIIEES L, MM 754 b RAshiz, LML, EEER
L 0 50unBE N /o REIHAR IS, BRABEOEF FOMBELILREZ LA ELENA
SNIEh - T, 100FRIRICC IR, BMERHFEDOFek v C LOBASTOKE W
CrzE8H T 28D EMSUSIUM~ILEFHBEH L. 72 54 o C RPN
BECOBERUTCETT 200, EET L5414 R LT7 254 b
BHICERT % /v— 5 4 FHKEL. $RbBHRBENESER L 0 100unfd
FHOWREAM THRRT 5, 5000 & MBI E K 35 ERIKENILS X5
DAIST, BMEABEFICI - CSUS04HMIc 3% W7 VI — VI D & D
BRI > TELBRINIHEE. $R3bbEERRIYOFTHAEENRA SN
L5185,



INBGEEE 2 600°Cicd 5 &, Fig. 2-TICRT & dic, SERRAR 4 CloikEfl i
RERERA SN, ZOBLBMAKMEEbEMLL, £L T, SOB#F%&@:
BRKBAND 7 = 74 M, #EBRRRAOBE 2T 5 R{LMIED TRD S
Lb\&Ebﬁhmﬁéﬁﬁﬁﬂbbntom%ﬁF%MMKMgz@&éb
KET 5L, SITI TR 7 = 54 FOHAALRA o, 5008 i3
RIB7 254 PREKEL TV,

iz, 10% 7 v sRIKBRICCERBE LIEEEABICH T 55083048 D
SRR EE AR 2 Fig. 2-9~Fig. 2-12IC7R '

BAEBEOE FIcBVWTIR, BABEF B L 72 SUS30480 1< BR8N & [EIFk 7245
bl DBUHB NS SN, UL, HEEBERL VBN - NETHIABRDOA
TA—RFF 4 PRRBPE TR I - 72, S500°CTURMEEOMBRTR, &
ERONVEFMBECTH 5 LEABERICBE LKA BRI S S,
ZLTC, BEBRIFEOMEHRE L A OSIS3Mic > W T H, HEENN
Ao, RO BEASHR I -7, HEABER LV 30un~60unll B
N7-SUS30ABICiZA — R 7+ 1 FRRABIUBREBEE X THE LT~
iR -> TRILMAITHE L CWE3oRE 50T, X5 BHHIEZ. SUS3048D
ARMTH 2 ERREMA LS EOMBELLEKTH 522, NEEE%
100BSRE & B < 4 5 EFIR L7s & 5 I REBEI I IR BLR B DS U % % L TSUS304
A TRRIEVPEEEREFORNACIRVBETCHE T 2L ki, &
BK%AF%BiﬁﬁAﬁﬁmﬁﬁLkﬁﬁﬁi@?NbﬁuiO%(%ﬁé

 HS DI BMKR#» > D CERHOLEEZIT TV, MAGE%:600CIc
m<?6&\EH%%#bmcﬁﬁgb%mﬁékbwﬁ@&??uﬁm%m\
FABIUOITROBE LI T 2033 5 FESBAFETCRIMAI BITHE L.
EABERIH > TIE20un~30unic b7 D BERIRAENR A & vl INBERR
Z100BFRICHEINT 5 &, Bl CRERR(YBOR LML, LT, &
DHEE XA 707 F 5 A FICTCOREITY &, Fig 2-12(e)lcRd &

SIEABEROSISMMMCCEEOY—/ BEAEL, BRI ENLZ LC
BEREBICHED L, TLTCEENS B 3BIZN30unTd .. LFEEM
ETHELABE B L, UFloRMUITHEBERRIXKE EESR, 25
BEFEZICKLEAIES L. GEROEFEIEMEICTH 2 LBERRILYO
BOENT 2DATH -1, w7 ulicd 3 L BRKBNTEREENER 2
:Eﬁ&énko ‘

BEABRECA L ZRIMORERITI -0, BRAEEOE .

C’CIOB#FBﬁ&IOOB%F?foJ:UTOO CTIO%F?&IOOB%IHB'?]@BU?&ME’EF@Lt)‘%%

73y FEIIKOWT, RMZAOKHMBKBRICTHEBLERARZEN & B,



10 10

Fig. 2-9 Microstructures of bonded interface of SUS304 explosive clad
steel (as explosive clad)
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Fig. 2-10 Microstructures of bonded interface of SUS304 explosive clad
steel exposed 10hr and 100hr at 500°C
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Fig. 2-11 Microstructures of bonded interface of SUS304 explosive clad
steel exposed 10hr and 100hr at 600°C
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Fig. 2-12 Microstructures of bonded interface of SUS304 explosive clad
steel exposed 10hr and 100hr at 700°C
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Fig. 2-13 X-ray diffraction pattern of SUS304 explosive
clad steel(as explosive clad)
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Fig. 2-17 Microstructure and EPMA line analysis profiles of SUS304
explosive clad interface(as explosive clad)
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Fig. 2-22 Microstructures of bonded interface of 5%Cr-0. 5%Mo steel
overlay clad steel exposed 50hr at various temperatures
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Fig.3-1 Microstructure of aluminium explosive clad steel
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Fig. 3-2 Microstructures of bonded interface of aluminium explosive clad
steel exposed various times at 400°C
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Fig. 3-3 Microstructures of bonded interface of aluminium explosive clad
steel exposed various times at 500°C
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Fig. 3-5 Microstructures of bénded interface of aluminium explosive
clad steel -
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Fig. 3-7 X-ray scanning image and line analysis profiles of aluminium
explosive clad steel interface(as explosive clad)
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(a) X-ray scanning image (b) Line analysis profiles

Fig. 3-8 X-ray scanning image and line analysis profiles of aluminium
explosive clad steel interface(exposed 100hr at 500°C)
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Fig. 3-9 X-ray scanning image and line analysis profiles of aluminium
explosive clad steel interface(exposed 100hr at 600°C)
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Fig. 3-10 18-point matrix used quantitative
analysis(as explosive clad)

Table 3-3 Results of quantitative analysis(wt%) point-by-point
as shown in fig. 3-10

Location Point | Al Fe Phase Location Point| Al Fe Phase
Aluminium 1 100.0 | - Al Outside 11 68.6 | 32.0| FeAl,+Al
10 99.9 | - ‘ Al vortex (b) 12 68.3 | 32.0| FeAl,+Al
18 100.0 | - Al 13 59.6 | 38.7 | FeAl,
Carbon steel| 3 - 99.9 Fe 14 41.9 | 57.6 | FeAl+FeAl,
7 - 99.9 Fe 15 56.9 | 41.9 | FeAl,
9 - 99.9 Fe 16 69.1 ] 28.0| FeAl,+Al
Inside 4 44.5 | 56.2 | FeAl+FeAl, 17 69.1 | 37.8| FeAl,;+Al
vortex(a) 5 46.5 | 57.8 | FeAl+FeAl, | Outside 2 49.9 | 51.1 | FeAl+FeAl,
6 42.6 | 57.8 | FeAl+FeAl, vortex(c)
8 40.8 | 56.2 | FeAl+FeAl,
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Fig.3-11 18-point matrix used quantitative
analysis(exposed 100hr at 550°C)

Table 3-4 Results of quantitative analysis(wt%) point-by-point
as shown in fig.3-11

Location Point | Al Fe Phase Location | Point | Al Fe Phase
Aluminium 7 199.9 - Al Inside 4 50.8 | 49.2 | Fe,Al;
Carbon steel 1 - 100.0 Fe vortex 5 S546.4 | 46.1 Fe,Al

3 - 99.8 Fe 11 50.8 | 47.8 | Fe,Als

14 - 99.9 Fe OQutside 6 52.2 | 46.9| Fe,Al,
Inside 2 | 51.1 49,3 | Fe,Al ;+FeAl, | vortex 8 52.3| 46.9| Fe,Als
vortex 12 | 48.7 51.8 | FeAl ,+FeAl 9 56.1 44.0 | FeAl;+Fe,Aly

13 149.8 49.7 | Fe,Al,+FeAl, | - 10 S4.1 ] 46.1 | Fe,Als
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_Carbon steel

Carbon steel

Fig. 4-20 EPMA line analysis profiles and microstructures of titanium
explosive clad interface(as explosive clad)
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Table 4-2 Results of quantitative analysis(wt%) point-by-point
as shown in fig. 4-21

Point Ti Fe | Point Ti Fe | Point Ti Fe
1 21.3] 76.8 7 19.5 ] 82.1] 13 16.1| 86.8
2 22.8| 76.3 8 20.71 80.0] 14 = ¥ 100. D
3 22.41 76.8 g — |1 100.0} 15 100. 0
4 1.8] 96.8 ) 10 28.0 79.5] 16 21.8| 81.6
B 19.5 | 80.5| 11 ol. 7] 49.5} 17 3.3] 99.5
6 25.3 | 74.2) 12 - 100.0 | 18 100.0 -
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Table 5-1 Chemical composition of materials

Chemical composition (wt%)
Material C Si Mn P S Ni Cr | The other
Base metal; Carbon steel| 0.16 | 0.01 | 1.07 | 0.01 }0.012 - |-
Clad metal Aluminium N RN
Copper - - - - - - - 199.92Cu
SUS304 0.029 0.69 | 1.24 | 0.034 0.005 10.53 18.14
Titanium 0.01 ; <0.01 -~ - - - - 99.6<T1i




Table 5-2 Physical and mechanical properties of materials

E oy Or a A
Material x10* (kg/mm?) | (kg/mm?) | (kg/mm?) | x10°%(1/7) cal/cmesecsT |
Base metal| Carbon steel 2.1 25.3 45.3 14.4(20~600T)| - 0.17(0~1007T)
Clad metal] Aluminium 0.7 7.8 12.7 25.6(20~3007T)! 0.57(0~1007)
Copper 1.2 16.5 27.3 17.7(20~500T); 0.94(0~100T)
SUS304 1.97 4.4 64.6 18.4(0~538T) | 0.052(0~1007)
Titanium 1.05 24.9 38.6 9.9(20~550) | 0.041(0~1007)

E : Young s modulus at 20T

0 y: Yield stress or 0.2% proof stress
o +: Tensile strength

a : Coefficient of thermal expansion

A : Heat conductivity

Table 5-3 Ram tensile strength and shear strength
of explosive clad

Ram tensile strength | Shear strength
Clad metal kg /mm? kg/mm?
Aluminium 10.3 5.5
Copper 23.5 18.5
SUS304 45.8 39.2
Titanium 37.6 32.2
_ Aluminium o e naa
o = P
Carbon steel < b @ ¢
L 100 25 : 1 1‘@
o g0
O
o
__C_cipper or _SEOf} - [ S S SRR (- N@ { Specimen
Tel \ 2 Timer
Carbon steel N o 3 3 Limit switch
Te%e) 25 4 Counter
Titani (o) T 6 Mx'ts
itanium ' P otor
- = - s — - — Ti)—@ 7 Furnace
Carbon steel N - 8 Pyrometer
9 .
56 5 Cooling bath

Fig. 5-2 Mechanism of thermal fatigue

Fig. 5-1 Test specimens _
machine
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Fig. 5-13 Strain distributions during thermal cycling on iransverse
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Fig. 5-17 Deformation model of aluminium

CHHNAT A DA TH B, explosive clad steel during
. . thermal cycling
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Ric, T =9 A& clad steel after 200 thermal cycles
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Fig. 5-19 Deformation of copper explosive clad steel after thermal

cyeling (500°C)((a), (b), (¢) longitudinal side]
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Fig. 5-20 Deformation of copper explosive clad steel after thermal
cycling (70073%[§a§,(b),(e) longitudinal side;(c% failure
surface(copper);(d) failure surface(carbon steel))
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Fig. 5-21 Microstructures of copper explosive clad steel after 200
thermal cycles(400°C)
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Fig. 5-22 Variation of bending deformation during thermal

cycling (700°C)
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0re=Yy Ere/T+P/hy (5-4)
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20) Tk, Bl—NBEE BT 7V =0 s 8EY 5 » FEO1380]. SEE
7 5 v FED264[AITIE T, 5995 & ReFaToH » Lo BERBIRL TV 5,

MBVEREE %2 T00°C(Fig. 5-27) L200C LA SV 2 &, TOWEHFEMIIH1/20LL
FeED L 2n2E AR L o, BIRMMEIR VW T, v 7 nINICEIEKT 5
EFig. 5-26-(c)~(e) &Fig. 5-2T-(D)~ (DR & 2T, MBEE500°C TE
NI B L HE S, BAEABEEELAHEENEEL B,
T CTREAEAR TH -7, I 7 oRBENOMNBELZHET 2125, NE

(b) -
()
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- Fig. 5-26 Deformationoof SUS304 explosive clad steel after thermal
cycling§500 C)[(a), (b), (e) longitudinal side:(c) failure
surface SUS304);(d3 failure surface(carbon steel)]
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Fig. 5-27 Deformationoof SUS304 explosive clad steel after thermal
cycling(700(3)[ga),(b) (¢), (f) longitudinal side;(d)
failure surface(SUS304);(e) failure surface(carbon steel))
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Fig. 5-28 Microstrucgures of SUS304 explosive clad steel after ZOOﬁ thermal
cyeles(500°C)

Carbg%%steel

Fig. 5-29 Microstructures of SUS304 explosive clad steel after 200 thermal
cyeles(700°C)
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Fig. 5-31 Heating and cooling curves and yield stresses of SUS304
and carbon steel
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FZE(E)® 33, Fig. 5-34lcpd Lo icEBELEEbICBLaE T,

Stress ( kg/mm?2)
-5 . -IIO =S 0 S IIO
¥ 7/ T
//,/n’/ /
// ~—SUS 304
.l 700°C(Oy)
/// | <Bonded
/ y interface
----- 400°C //
"~ 3500°C 4 Carbon
—--— 600°C ‘ = steel
—— 700°C / £
4//1 -

Fig. 5-32 Stress distributions of SUS304 explosive clad
steel at various temperature
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Fig. 0-33 Strain distributions of SUS304 explosive clad
steel at various temperature
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Fig. 5-36 Deformationoof titanium explosive clad steel after thermal
cycling%400(3)[(a),(b),(e) longitudinal side;(c) failure
surface(titanium);(d) failure surface{carbon steel)]
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Fig. 5-37 Deformation of titanium explosive clad steel after thermal
cycllng§500(3)[(a) (h), (e), (f) longitudinal side; (d% failure

surface

titanium);(e) failure surface(carbon steel)
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Fig. 5-38 Deformation of titanium explosive clad steel after thermal
cyeling(600°C)((a), (b), (c¢) longitudinal side)
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MBRE Z500°C(Fig. 5-31) & 3§ 5 &, T DWRIEFHFpid 2900 F TR L1,
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(a) Surface

(b) 5mm depth B

Fig. 5-39 Microstructures of titanium explosive clad steel after 2000
thermal cycles(500°C)
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Fig. 5-40 X-ray scanning image of titanium explosive clad steel after
2000 thermal cycles(500°C)
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CTCREIRIETT ESIREMO A Pig 5-42 Stress and strain model during
223 ERTFEaND, F heating and cooling
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Fig. 5-44 Mechanical model used to

Fig. 4-43 Mode! in thermal cycling calculate stress and strain
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BMERMORIEEZh : EhokThiE. BEZ 5 » FBANBEHL TV
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Fig. 5-45 Heating and cooling curve used to calculate
stress and strain

INEZIBEE, BMBIUEGDLEMIAELZADTDOVOFTH( )b,
(&) ZfbiR, BERBRBEBEMNOITA%2a, e EThERANTEZ SN %,
(E)v=asT+ éo (5-17)
(¢)i=aT+é: (5-18)
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£v= 0 »/Eb (5-20)
—hH. GbEHMOBMNOT S ¢ .
3. (e BHEVTA(e) b &
T2 ) —70FH(e)DHITEL
b5,

(e)i=(ee)st+ (et (&) Fig. 5-46 Stress and strain curve to
(5-21) calculate stress and strain
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F9. HHEOFAR, M EARICEDEMOMBMARKEZE (L35 &
| (ee)e=0 ¢/E: | . A (5-22)
wRic, BHOFH R, BRIET) (00 ZELAHEBI>VWTOETIE 0
AR, Fig. 5-461/RT & D i Ludwick@RTCREZHbDE T 3,

0:=0otKe[(& )™ (5-23)
AG2DEEES &, BHOFEIR,
(8 f)p:[(o £t~ 0 o)/Kf]“nr““(U 1= 0 0)/Ef (5_24)

THAZoN%, CCTKEHMERK,. nBOTFABELIERTH S,
B#IC, 2V —70F3R3, ROLIRHFETRKD,
TRbL, BETIBVWT, t %0V —-7T0FAHE, 7YV —-70FTH
HEEABS LIZbDTHY, RATEE 3,
(e)e=F(&)cdt (5-25)
OB EER-RICEEOHRTH 2N, BEZMARDPBRVEEREIEFE-EL
BLENTE, Jt BEICERERITET 2 EThiEdt =(dt /dT)dT &
B3, LR ->TC, BEHEET , ~T..cAEL23 7Y —-70F33KRAICE 3,
(& )e= 1 (& Deldt /aT)dT (5-26)
T (dt /dT) B, AR TRIMBABLUCRHEEOF K TH 3,
7Y —7OFBRBHEEIRSOVWTE, RIS HEEFEORELZT, LR
NENTWS, KEH CiE. Mukherjee. Bird&Dorn® '@ 5 1DNREFE I Y
— T TERLUIRAEBHL 2,
(& e kKT/DGsb=A(l 0 ¢|/Ge)™ (5-27)
T, kitBoltzmannEH (1. 3805310 '®erg/°K =1.41x10 **kg-n/° K ).
DREET COHCIBHRE. G 3BIWrHE AR, b idBurgers~ 7 b VTK
B CRBMEORTFERDL/2 > 12 & Lz, ZLTC. AtmidMEic k-
THREBZEHTH Y. Mukherjee. BirdEDorn® 'V REBRIC KX VEFIEL 2{i%
BFIUto JBURMD % Doexp(-0RD) EB &, RGADNEEHT 2L, 7Y
—- 709 BEEI.

(& 1)e=A (0 ¢1/6:)™(G:b/kT)Doexp(-Q/RT) (5-28)
Exp, N(G-2802X(5-20)iclR AT B EkDB 7Y —-TVOIF BRI,
(& De=§1'A (0 ¢1/6)™(Geb/KT)Doexp(-Q/RT) (4 t /dT)dT (5-29)
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[ Je-obdy
[Ce)Ji=o=[Ce )e)e=t+[(E De]e=t (5-32)
L3, tIRERD 27 Y — 70 FHRAG-2) M TES TR LicLD
[(e dele=e=[A0 |/6G:)™(G:b/kT)Doexp(-Q/RT) ]t (5-33)
ThHdho, abEMOEB VT AE(e).=0:/ ELBUETE. b8
MoodakxkAicizs,

[Ce )e-t=0/Es+[A (10 |/G)™(Gb/KT)Deexp(-Q/RT) 1t (5-34)
WAt REROIETIE. REFFE (=00 L OERHG t Bk v 4
BRI LBROVEHELD

O tct=00{1/Eoth t/MoBo) =0 sct=t, (1/Both /N Bu)+

[A(lo¢|/G)™(Geb/kT)Doexp(-Q/RT)Jt (5-35)
&5,

WHIRIEAE LS GLEMOIIER, AG3DTHEA NS, LirL. Wi
BAEA t Bsfl oAt B CAHIT 2 BERTFig. 5-45IcR Lick S icdb 8 &
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BRBIEICEL-TERDT, |

Sy e edTHe o= 1 aodl+es (5-36)
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cnsoRicbidba. E. G, nREDHMEIEREB. —#icBEEE LD
KEALT 20, CCTREEFBEFBERS—EEL L, LIhL, ZNTHINS
HRADO—BRBAEBRENICRDZERBTERW, ZIT, i, AHIELE
bEMOBOBEREE20CE L. #OHEETOD (Gb/kT)Doexp(-Q/RT) D %
—E &L, Fig. b-4ATIKRT 7 —F v — bt LI > To ZFHEHL

T=20
e =0,0 =0
Input information
1.Thickness
h¢,hy Y
2 .Material properties ==rEEE§E]
Qcy @B EnyKeyny )
m,AG bD, /k |
3.Temperature range Calculate
T,=T,T,=T+20 0 o(Ty)
4.Elastic strain
(8)es(En)e
S {OFOO(TJ)l
Calculate

Thermal strain: ¢ ,

Mechanical strain: ¢,

Elastic Calculate
Output
dr;eryomﬁh

|

(8 f)e)(gh)o
T:=T,

J =0 ﬂ(TJ)+A(7!

Output
Ur,(&f)o.?(& f)p
0}.,(8};)0

{

(5 f)s-!(sh)r’

T:=T,

Fig. 5-47 Flowchart to calculate thermal stress and strain
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(2) 0=0o(T)OEERG-3DOAHAI AN, BNV TH e %t BT
5, b LERNOT S e DESELEMEBM EORBERERZ L > TE
C7ELADBUTH e LODKREVEG(ew e DITBFHEIARICEID, o0&
e BB LI, .0 =0,THDEANT, ea< e THNIE, EbEMD
1% BERIGTT L DIARA0 7232 L(0 =0 0(T2)+A0 ). &w= & AR T
Z2FCEHEBCIVBOVRLABTACE L ToDfiEB &I LT,
(3) ROBEMRBEXLTR, B&7 7 FHOGLEMEMICIR
(1)l (o) DHEHVTANHVE->THBD, COVTHELROBEHRKT
HULROTAICE-T, @bEBMICREFLBIEOMELBE L, JERO (D
eHEH L,

5. 4. 2 BEI 5y FEOGOLEMIAELBIENEVT A

Pig. 5-48I3. 7V I =9 A1RE 7 5 » FHOMBEEF100CIc>WT, ¥
BRAGARRBRVWHDELT, TArIoy AU BIENEHELIZbDTH B,
Re, FEREHLAZERTZ V- FicBd 2 FHIX. Dorns® 'K D 12
Biictdo, BRI Pig 5-23Ic/RL7c L dic, BEEFRIKELBVERY
KETT2H0TREBVWE, RFTETREEELELCEHBNIETTIZ D E
L7:, Table 5-4i%. FTEICHWAMEER® 2 2RT,

Table 5-4 Parameters used in calculation(Aluminium explosive
clad steel)

h:/hy=0.3 Q=34kcal/mol

G;=2.7x10%kg/mm? m=4.4

K;=15.5kg/mm? AG;bD, /k=3.1x102¢ /sec

n ¢=0.5 dT/dt=0.5°C /sec (heating)

0 ¢=(8.06-0.02T) kg/mm? =50°C /sec {(cooling)
|a:-a x=11.2X10"¢/°C Hold time=25min

THI=Y AR, ZOREEREPEBMKREICHXTREWLD, BT
5 LHEMOIABFEEL. CORERCTTERED EFIC L SIROERMICIEMN
T35, LML, I00CLL LI ERELFICELBRSBARILTOETICLD,
120°CT6. 2ke/mn* DERAKEFEZRLIcRBADT 5, E51200CRL LT Y
—7TOEBICL D ERICORBLENEEN S, £ LT, MBAEETH %400
CT, BEAEBUZELIBARBEELTVWRWESITH S, —F., AiARE
DY, 7N =29 ADKHEER, BMEKEMICH~FL(HOWDH, T3
=g ADRIBOCICHHI LB Ic B W T HIREIZ F72400CCTH B, LT,
TNHNIZOARBRKEROSTEN MDY, ZORETCOBRRIGAELTVWS,
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Fig. 5-48 Calculated stress in aluminium
during heating and cooling

Strain (X10%)
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- 1 | 1
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Fig. 5-49 Calculated elastic and plastic
strain in aluminium during
heating and cooling
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HRECH21DTEL, 5% Fig. 5-50 Calculated stress and strain
SR HEIFICITT. 1410 * D g in carbon steel during
BEBRE O B & 10, ATX10- 4D heating and cooling
ERBHOTANEE T 5, BUOBELA LR ZE 2L, 150CIKET S E T
THI=g AERRKEICSD, BELRICE LR - CHEEE VT AL
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HEOFARBEDL, 20000CULETCR IV A 7 VDEICOTAYA 2 Vi B,
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Fig. 5-501%, M. BEIC X > THRIMICA L BB E O FAEERLIZLDT
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NoOERMNS, BH A4 7 Vv E2Z CHORBMIIEENICETH T I LRET S
ERBEEXNTH - 1,

MEGREE300°C, 500°CiIc 2V TCik, MB, KBHlIC & bR -> THRET BILT)
BXUBHOFAE., MABEOREEZITFTI0COEELBEFELETS -
fo, M OFAEHBAREEE L IBNT M ERL I,

Fig. 5-51&Fig. 5-5213, REIBEOLEBEZR BRIT S LEX SN 5 MBARE
500°COHRE 7 5 » F#lic>WT, 8 L RF % [E—RETHEL 72354 (Fig.
5-48) &L Fig. 5-23CESNAAHBR IR SO THERMOBENRR 25
A Fig. 5-4NIEH>VWT, FlKA L 2IENEZFE L HER(Fig. 54D %ZRT,
B, fTEHIHAVEHEERS 15 1903, Table 5-5iC/R" Y,

Table 5-5 Parameters used in calculation(Copper explosive
clad steel)

h: /h,=0.48 Q=41.7kcal/mol
G;=4.5x10°kg/mm? m=4.8

K;=46.4kg/mm? AG;bD, /k=1.23%x102° /sec
n ¢=0.34 dT/dt=0.5C /sec (heating)
0 0=(16.94-0.02T) kg/mm? =50°C /sec {(cooling)
a - -=3.3x10"¢/°C Hold time=25min

8l & WA AN E] — R TR Al
BIG6. &R OB R
233 3x10°¢/ CE7Hi=y
LIFE 7 7 v FEIORERARE
Z1L 2x10°8/°Cic /& €
¥, SOBRIE b TV =
g AlCHERTHEW KD,
2% 4 7 VP TRIINBEEEOD
300°CLLET 2 YV —T DR8I X
D, ELBHWORB LB, O
I 771 15ke/mm® & - 1ke /mn D [ -
2HEESTBHOATHD, FITH o 00 200 - 300 400 500

Stress (kg/mm?)

e S LA Temperafure (°C)
XL T, BEHIDZEWSE Fig. 5-51 galcula;cled stress in copper
. - uring heating and cooling
ERBLIGG. TVI=U Atg (Temperature is uniform through-
25 FEIICHWTR~T & out explosive clad steel)
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Fig. 5-52 Calgulated §tress in copper
during heating and cooling
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= 1 oyel
- [~—] Elastic strain ore olin
N 2 cyde
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Table 5-6 Parameters used in calculation{SUS304 explosive
clad steel)

h¢/h,=0.48 Q=67.9kcal/mol

G;=7.76x10%kg/mm? m=6.9

K;=156kg/mm? AG:bDy /k=5.71x10%* /sec

n =0.5 dT/dt=0.5°C /sec (heating)
0=(20.74-0.019T) kg/mm?* =50°C /sec (cooling)

a - »=4.0x10"%/C Hold time=25min
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B i3 9keg/mm 2 DEERIB I WNERB L Tz, CO X3 RIBIIREX v HnEd
3 EFIERIBTRED L, EMIEcE Ce®, FREIDTIE4200CTHRRT 5%
THEMT %, FLTC. S00CRLETR TNV = ABEY 5 FRICHES Y
5y FEIEREIRRIC, 19427V ERKEICIB—BEHRE S,

Pig. 5-6213. OFAEIERLELLDTH %, WO TFAEIE. IBHE
EELTCED ., BE7 5y FRIREBEIGAPEELRWE LCHET 2 &,
MBBETREFOFBOTAN, F LT, AHBETRIROBE O F AR
FH L., CRAHFFICIZE 52X10 O3 5RHE VO TFANERE Lic, COREX
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NOBEEBVWTH, TORETCORMOBRICHLUT TH 0. WA
BICh b, Wb, AEHBRED660°CLI L TRITZT OEE TWRMORRIGT Ik
WEE R - oS, BT ZE R X 212 ZR LIRS, MR EEETH
2LELTCETELTHREEHUTH -T2,

MBEE500°CIZ > W Tk, SUS304SIZ500CIEBVWTHBRIGTREL . 7
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V- TRELEVD, BEAERY A I/ Vick > THEBEVDFAERES S,

SUS304%M & XS OBIERANE C X 2B O T A DL TH - 1,

Wi, KEBRRBOREEEL B,

iR 8 DBEARIG /1. Fig. 5-31C/8 L 72 & 5 ICEREA© SUS30488 i< Hb ~ THE |
S500°CULLETRIBEAERIEE BBV, LI L, EABREICHE ULBXE
DIFREWE G, BREOBRIGHULOGNBAMINTOHRENT
BROBHMERMIc > THHREIh TV, BRBREHEEcx$, b
Mt L3I NP0FAREELREFEIRVWEELOND, RERBOEMNIELL
BOBRBRENTOROWEBHMKREOWHOBEEIN/ NI RSB &, EABARIE
DRERIGFIDN, SUS304HH CHSH ic L ~EVHKBRBUEE &L il 3
LEABND, ChiBET Ly LEBOBHBEAICBVT HEEEHAL
THRBOBBEREEZMALTC 5 3 » 7 IRELIBRBICNTZBRT 2 5
EEILTH B 19,

R & RS TR AK. BARSRELE L. REBRETOBRRIGT
NERIRBE LI, LI ->T, BRIKBERMicAE LB NEELTHD, 0 F
ARRBBEERR S,

Bk BOWE%E ha, RIKBIRELZIENE o0& THIER (5-16)1

0d:hit+oshatos (he—ha) =0 (5-39)
EWD, Eio, BWRBELE U TORWEMKE OIS & BRE OIS i
0Ca=0rm (5-40)
DRERNRD 5,
Z LT, EABEATISUSIUMN EMIKEDOA DT DV THIIEL L,
aT+éi=a:iT+ea (5-41)
ADLEMTH 3SUS304M b L UK ORI O 941k, Ao L5 ichto
FTEH(e)es BHOVTA(e) 2V —T0V0FH(e)DHTEHELZONBZ LD E
L7,
er=(er)et (&) p+(e& 1) ; (5-42)
ga=(ea)et(ea) p+(€a)e (5-43)

Table 5-7 Parameters used in calculation(SUS304 explosive
clad steel, decarburized band)

h¢ /h,=0.48 Q=67.9kcal/mol
Gq=7.08x10°kg/mm? m=6.9

K4=64kg/mm? AG4bD, /k=1.06x10%° /sec
n «=0.2 dT/dt=0.5°C /sec (heating)
0 ¢=(14.5-0.025T) kg/mm? =50°C /sec (cooling)
a-a ,=4.0x10"¢ /°C Hold time=25min
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Fig. 5-64 Calculated stress in SUS304 dubring
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Fig. 5-67&Fig. 5-68i3. F 7 YBE 7 5 v FEHOMBEES00Cic>\W\W T,
M, BEICE BTV F 2 Y IELBIBNBLTOTAELTEZRLIZLDOTSH
l.()\ Table 5_85—11)5—17)5-18)‘i*)‘1-*/:}r£§ﬁ%/—_]:\--§—0

Table 5-8 Parameters used in calculation(Titanium explosive

clad steel)

h;/h,=0.14
Gr=4.55x10%kg/mm?
Ky=156kg/mm?*

n ¢=0.5

0 o=(25-0.038T) kg/mm?
as-a »=-4.5x10"% /°C

Q=51.9kcal/mol

m=5.3

AG:bD, /k=1.07x10%° /sec
-dT/dt=0.5°C /sec (heating)

=50°C /sec (cooling)
Hold time=25min

—145—



Strain (X10%)

-10
O

=L L | Elasti )

15 = Elastic strain 2 cydle.

| O|Plastic+creep | I ¢ycle
=201 @ | strain 2 cycle -
) 1 ] ] L 1 i |
0 100 200 300 400 500 o} 100 200 300 400 500
Temperature (°C) Temperature  (°C) ;
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194 7 vomBick T, YIHRBERIZZVWbDEL, 79 v Ol
RBENKEICHENETVWOT, MEAEEDRF I VRETLVI =D A, B
K USUS3044EE 7 7 v Pl & BB ICBRIGANFEAE L. 300°CT13ke/nn* D
BAEZRLEZE. BRIGTOE TS LTL0CULETD I V- T OEEIC X
D EIERIG T B L. 500°CTiddke/mn?DE[RIG ST E R B, & DILTTIZ R
FdicE o7V —7ick @b U, HEIBIEAEFICIZ0. Slke/mm* E/NXIRfE &
5, WHIBEICAS L, F7 3 EHEISDOIBHIICEDKRMEI D ECHBEIL,
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ZALIISUS304%7E 7 7 » FEIOMBEEES00°COBSE LHEMkIC, BV THD
ATHUHOTARLLEobU BRIk, LEN-T, F9 YicHRTKED
KEVWREMIHEHRECSZ EEZZON B,

CHNoDFHBEERLD, GOEMABT VI =9 A0HHDO L S i, BMRERIC
HRGEBENEL . AEERBPIREVWEDEMEEHLAESE Y 59 F#
TRIGHEEOEE LT, AbBMicA L3280 A, —Hioma. 4
HULBEXORELRBBEER L, LIL, AHEBEERRZ, HHFZEO
FELBEL T, WHBEZ 59 Fillb X USUS04EE 7 5 v FEOINBE
ET0CEPWTHITFEEORELBHNBOBRELSGAZE LB LU0
FHEHETIAERSBEEL LN,

5. 4. 3 WHEFEGOFEM

Table 5-91%. BIHIC &k » THELEKIES., B/NEHELOTHEHB X O
EBRTH entgﬁﬁavzbmonéﬂ%if@ﬁﬁ4awﬂﬁ(WE%ﬁ)
ERIELTRLEZLDOTH 3,

Table 5-9 Calculated quantities and number of cycles to failure

Clad Trax 0 max T{O max) O min T(0 min) | AE (torar NE
metal C kg/mm? T kg/mm? . c cycle

Aluminium | 300 6.59 80 -4.25 160 33.85x10 ¢ 700

400 6.54 100 ~4.54 160 44,05x10" + 311

500 5.48 140 -5.76 140 58.46x10" * 127

138

Copper 400 | 13.58 160 -8.23 300 22.54x10" * 400

500 | 12.77 200 -11.75 260 33.78x10" * 265

305

600 | 12.46 | 180 ~14.30 120 42.54x10" + 233

700 | 12.22 220 ~16.54 20 54.54x10" ¢ 105

o 118

SUS304 500 | 20.74 20 -5.35 500 13.45x10°% | 5995

600 | 18.57 200 -10.18 600 19.64x10° 4 1363

700 | 15.28 440 -14.89 460 28.37x10 ¢ 272

% 10.35 460 -15.62 400 13.18x10"
*x 7,14 460 | -4.90 400 22.87x10° ¢
Titanium | 400 1.80 400 ~14.75 20 15.96x10° ¢ | 5600
: 500 2.49 500 -20.65 20 22.04x10" + 2900

*: Considering factor of decarburized band

**: Decarburized band in SUS304 explosive clad steel
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