



|              |                                                                                                |
|--------------|------------------------------------------------------------------------------------------------|
| Title        | Formation of Periodic Nanostructures on Titanium Dioxide Film by Femtosecond Laser Irradiation |
| Author(s)    | Shinonaga, Togo; Tsukamoto, Masahiro; Nishii, Ryosuke et al.                                   |
| Citation     | Transactions of JWRI. 2012, 41(1), p. 25-28                                                    |
| Version Type | VoR                                                                                            |
| URL          | <a href="https://doi.org/10.18910/23158">https://doi.org/10.18910/23158</a>                    |
| rights       |                                                                                                |
| Note         |                                                                                                |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

# Formation of Periodic Nanostructures on Titanium Dioxide Film by Femtosecond Laser Irradiation<sup>†</sup>

SHINONAGA Togo\*, TSUKAMOTO Masahiro\*\*, NISHII Ryosuke\*\*\*, ITO Yuichiro\*, NAGAI Akiko\*\*\*\*, YAMASHITA Kimihiro\*\*\*\*, HANAWA Takao\*\*\*\*, MATSUSHITA Nobuhiro\*\*\*\*, GUOQIANG Xie\*\*\*\* and ABE Nobuyuki\*\*

## Abstract

*Periodic nanostructures formation on Titanium dioxide ( $TiO_2$ ) film by scanning of femtosecond laser beam spot is reported. Periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on  $TiO_2$  film by femtosecond laser irradiation for 1mm/sec at laser fluence from  $0.35\text{ J/cm}^2$  to  $0.65\text{ J/cm}^2$ . For 0.5mm/sec, they were formed at laser fluence from  $0.35$  to  $0.55\text{ J/cm}^2$ . Periodic nanostructures were also formed on large areas of the film. The period of Periodic nanostructures was 200 nm.*

**KEY WORDS:** (Femtosecond Laser), (Titanium dioxide), (Aerosol beam), (Periodic nanostructures)

## 1. Introduction

Metals are most widely used in medical devices. Titanium (Ti) is one of the most used biomaterials in metals, because of its excellent anti-corrosion and mechanical properties. However, Ti is an artificial material and has no biofunction. Thus, it is necessary to improve the bioactivity of Ti. It is well known that microstructures formation on Ti surface is one of the useful methods to improve its biocompatibility<sup>1)</sup>. Recently, coating of the titanium dioxides ( $TiO_2$ ) film on Ti plate has been also proposed to improve biocompatibility of Ti<sup>2)</sup>. We have developed a coating method of  $TiO_2$  film on Ti plate with an aerosol beam<sup>3-4)</sup>. Then, we proposed periodic microstructures formation on  $TiO_2$  film. Biocompatibility of the  $TiO_2$  film could be more improved than a bare  $TiO_2$  film.

The femtosecond laser is one of the useful tools for creating microstructures on metals<sup>5-7)</sup> and semiconductors<sup>8-9)</sup>. In our previous study, periodic nanostructures, lying perpendicular to the laser electric field polarization vector, were formed on Ti plate by femtosecond laser irradiation<sup>5-6)</sup>. Femtosecond laser induced periodic nanostructure is self-formed in the laser spot. Period of periodic nanostructures is about 600 nm. This is shorter than the wavelength of the femtosecond laser. Periodic nanostructures were also formed on  $TiO_2$

single crystal with femtosecond laser by another group<sup>8)</sup>. Then, the period of periodic nanostructures was about 200 nm. Hence, Periodic nanostructures could be formed on  $TiO_2$  film by femtosecond laser irradiation. It is necessary for biomaterials to form periodic nanostructures on large areas of the  $TiO_2$  film. Periodic nanostructures formation on Ti and  $TiO_2$  film by scanning of a femtosecond laser focusing spot has not been elucidated yet.

In this study, we try to create periodic nanostructures on large areas of  $TiO_2$  film by scanning of the femtosecond laser spot. The influence of the laser fluence and scanning speed for producing the periodic nanostructures was investigated. Period of periodic nanostructures of  $TiO_2$  film was also examined. After femtosecond laser irradiation,  $TiO_2$  film surface was observed by scanning electron microscope (SEM).

## 2. Experimental

$TiO_2$  film was produced on Ti plate by aerosol beam irradiation. An aerosol beam is produced by mixing the  $TiO_2$  particles and Helium ( $He$ ) gas. The  $TiO_2$  particles are accelerated by the flow of He gas and carried to the processing chamber through the tube and nozzle. After  $TiO_2$  particles impact with the substrate,  $TiO_2$  films are deposited on the substrate. Pure Ti plate was used for

† Received on June 18, 2012

\* Graduate Student

\*\* Associate Professor

\*\*\* School of Science and Engineering, Kinki University

\*\*\*\* Inst. of Biomat and Bioeng, Tokyo Med. and Dent. Univ.

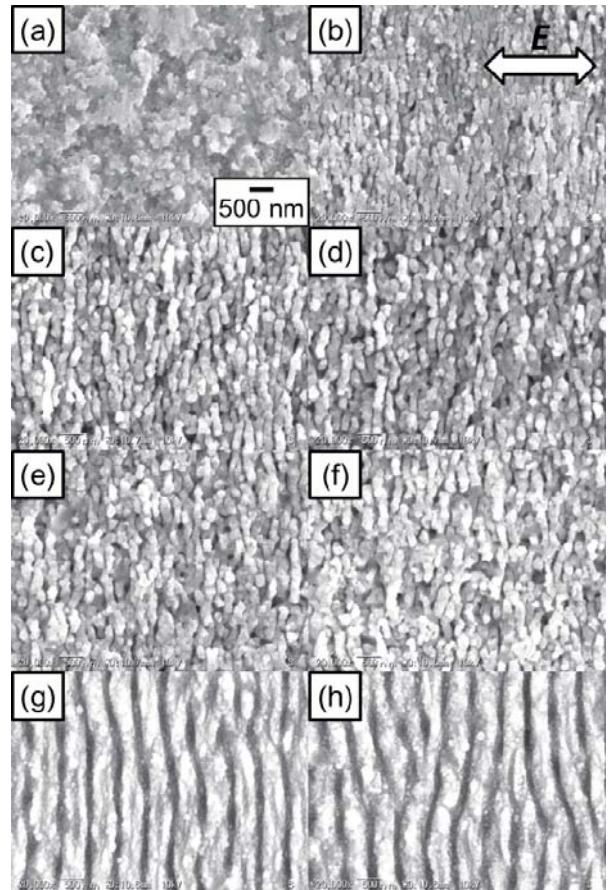
\*\*\*\*\* Mat. and St. Lab., Tokyo Inst. of Tech.

\*\*\*\*\* Inst. for Materials Research, Tohoku Univ.

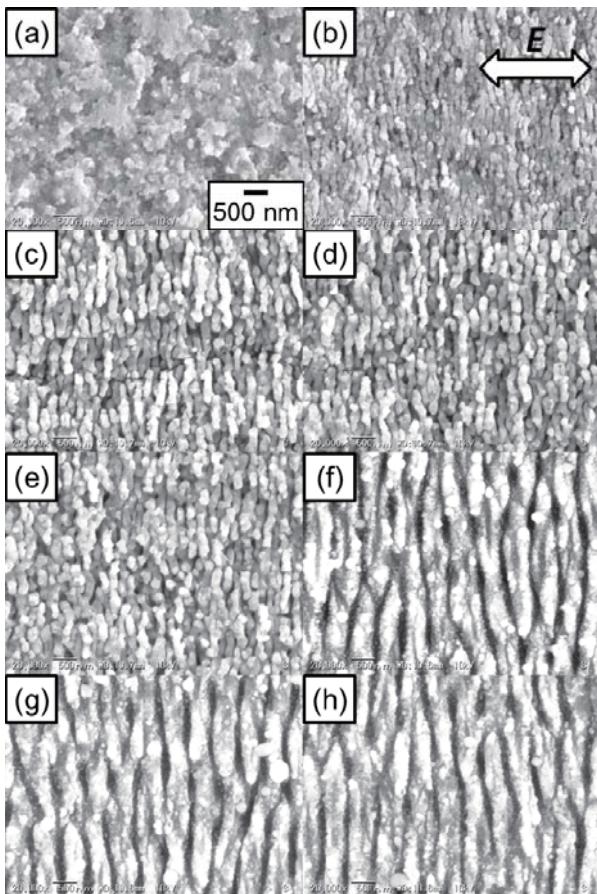
Transactions of JWRI is published by Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047, Japan

substrate in this experiment.

Schematic diagrams of femtosecond laser irradiation are shown in **Figs. 1 (a)**. A commercial femtosecond Ti : sapphire laser system was employed in our experiments, which was based on the chirped pulse amplification technique. The wavelength, pulse duration, repetition rate, and beam diameter of the femtosecond laser were 775 nm, 150 fs, 1 kHz, and approximately 5 mm, respectively. The laser beam was focused on the  $\text{TiO}_2$  surface by using a lens with 100 mm focal length. The Gaussian laser beam had a diameter of 60  $\mu\text{m}$  (at the  $1/e^2$  intensity points) on the film. The laser beam was scanned on the  $\text{TiO}_2$  film surface by using the XY stage as shown in **Fig. 1 (b)**. Scanning speed was changed from 0.5 to 1 mm/s. Laser fluence was changed from 0.25  $\text{J/cm}^2$  to 0.85  $\text{J/cm}^2$  by controlling the energy attenuator. To form periodic nanostructures on large areas of the film, laser beam was also scanned on the  $\text{TiO}_2$  film surface by using the XY stage as shown in **Fig. 1 (c)**. Scanning speed, laser fluence and hatching distance was 1.0 mm/s, 0.35  $\text{J/cm}^2$  and 20  $\mu\text{m}$ , respectively. After the femtosecond laser irradiation, the film surface was




**Fig. 1** (a) Schematic diagram of experimental setup for femtosecond laser irradiation. (b) Scanning of the laser focusing spot. (c) Scanning of the laser focusing spot to create periodic nanostructures on large areas of the film.

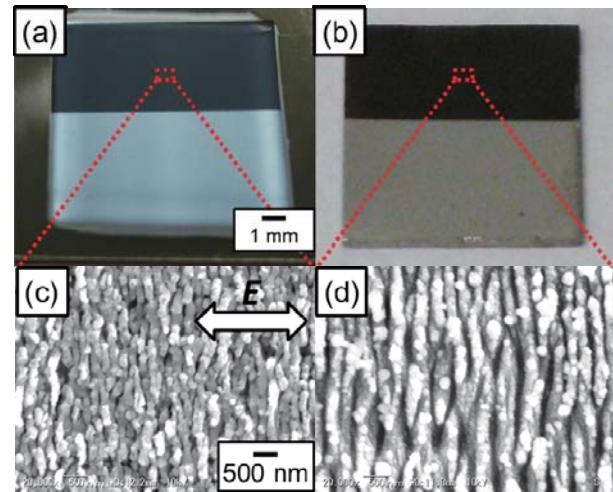

observed with an SEM.

### 3. Results and Discussion

SEM images of bare  $\text{TiO}_2$  film (no laser irradiated area) surface and femtosecond laser irradiated areas for 1 mm/sec at laser fluences of 0.25, 0.35, 0.45, 0.55, 0.65, 0.75 and 0.85  $\text{J/cm}^2$  are shown in **Figs. 2 (a), (b), (c), (d), (e), (f), (g) and (h)**, respectively. Periodic nanostructures were not formed on bare  $\text{TiO}_2$  film surface as shown in Fig. 2 (a). As Fig. 2 (b) shows, the topography of laser irradiated area was changed at 0.25  $\text{J/cm}^2$ . However, periodic nanostructures formation was not clearly observed. As Figs. 2 (c), (d), (e) and (f) show, periodic nanostructures, lying perpendicular to the laser electric field polarization vector  $E$ , were formed on the film surface at 0.35, 0.45, 0.55 and 0.65  $\text{J/cm}^2$ , respectively. The period of periodic nanostructures formed on the film 0.35  $\text{J/cm}^2$  was about 200 nm. It was not changed from 0.35 to 0.65  $\text{J/cm}^2$ . Over 0.75  $\text{J/cm}^2$ , the film was broken. But, periodic nanostructures were formed on Ti plate as shown in Figs. 2 (g) and (h). The period of periodic nanostructures formed on Ti was about 600 nm. These results show periodic nanostructures were



**Fig. 2** SEM images of (a) bare  $\text{TiO}_2$  film surface and  $\text{TiO}_2$  film surface after femtosecond laser irradiation for 1 mm/sec at the laser fluence of (b) 0.25, (c) 0.35, (d) 0.45, (e) 0.55, (f) 0.65, (g) 0.75 and (d) 0.85  $\text{J/cm}^2$ , respectively.




**Fig. 3** SEM images of (a) bare  $\text{TiO}_2$  film surface and  $\text{TiO}_2$  film surface after femtosecond laser irradiation for 0.5 mm/sec at the laser fluence of (b) 0.25, (c) 0.35, (d) 0.45, (e) 0.55, (f) 0.65, (g) 0.75 and (h) 0.85  $\text{J}/\text{cm}^2$ , respectively.

formed on the film by scanning of femtosecond laser spot for 1 mm/sec at laser fluence from 0.35 to 0.65  $\text{J}/\text{cm}^2$ .

For 0.5 mm/sec, SEM images of bare  $\text{TiO}_2$  film surface and femtosecond laser irradiated areas at laser fluences of 0.25, 0.35, 0.45, 0.55, 0.65, 0.75 and 0.85  $\text{J}/\text{cm}^2$  are shown in **Figs. 3 (a), (b), (c), (d), (e), (f), (g) and (h)** respectively. As Fig. 3 (b) shows, topography of laser irradiated area was changed at 0.25  $\text{J}/\text{cm}^2$ . However, periodic nanostructures were not clearly formed on the film. As Figs. 3 (c), (d) and (e) show, periodic nanostructures, lying perpendicular to the laser electric field polarization vector  $E$ , were formed on the film surface at 0.35, 0.45 and 0.55  $\text{J}/\text{cm}^2$ , respectively. The period of periodic nanostructures formed on the film at 0.35  $\text{J}/\text{cm}^2$  was about 200 nm. It was not changed from 0.35 to 0.55  $\text{J}/\text{cm}^2$ . Over 0.65  $\text{J}/\text{cm}^2$ , the film was broken. But, periodic nanostructures were formed on Ti plate as shown in Figs. 3 (f), (g) and (h), respectively. The period of periodic nanostructures formed on Ti was about 600 nm. These results show periodic nanostructures were formed on the film by scanning of femtosecond laser spot for 0.5 mm/sec at laser fluence from 0.35 to 0.55  $\text{J}/\text{cm}^2$ .

To create periodic nanostructures on large areas of the film, we tried to form periodic nanostructures on



**Fig. 4** Optical and SEM images of periodic nanostructures formation on large areas: (a) and (c) on  $\text{TiO}_2$  film, (b) and (d) on Ti plate.

the  $\text{TiO}_2$  film surface in 10 mm  $\times$  5 mm by scanning of the femtosecond laser spot as shown in Fig. 1 (c). Optical and SEM image of  $\text{TiO}_2$  film surface after scanning of femtosecond laser beam spot for 1mm/sec at 0.35  $\text{J}/\text{cm}^2$  was shown in **Figs. 4 (a) and (c)**. As Figs. 4 (a) and (c) show, periodic nanostructures were clearly formed on film surface in 10 mm  $\times$  5 mm. The period of periodic nanostructures formed on  $\text{TiO}_2$  film was about 200 nm. We also created periodic nanostructures on Ti plate with the same condition. Optical and SEM images of the Ti surface after scanning of a femtosecond laser beam spot for 1mm/sec at 0.35  $\text{J}/\text{cm}^2$  are shown in **Figs. 4 (b) and (d)**. As Figs. 4 (b) and (d) show periodic nanostructures were produced on Ti plate in 10 mm  $\times$  5 mm. The period of periodic nanostructures formed on Ti was about 600 nm. The period of periodic structures formed on  $\text{TiO}_2$  film and Ti plate was very different by scanning of femtosecond laser spot. It was suggested that mechanism of periodic nanostructures formation is very different from  $\text{TiO}_2$  film and Ti plate.

#### 4. Summary

We tried to create periodic nanostructures on large areas of  $\text{TiO}_2$  film. Periodic nanostructures were formed for 1 mm/sec at laser fluence from 0.35 to 0.65  $\text{J}/\text{cm}^2$ . For 0.5mm/sec, they were formed at laser fluence from 0.35 to 0.55  $\text{J}/\text{cm}^2$ . Periodic nanostructures were also formed on large areas of the film. The period of Periodic nanostructures was about 200 nm. It was very different from  $\text{TiO}_2$  film and Ti plate.

#### Reference

- 1) H. Yoshikawa and K. Sugamoto: The Review of Laser Engineering, 32, 2, (2004) 126, in Japanese.
- 2) Xuanyong Liu, Paul K. Chub and Chuanxian Ding: Materials Science and Engineering, R 47, (2004) 49-121.
- 3) J. Akedo, M. Ichiki, K. Kikuchi and R. Maeda: Sens. Actuators A, 69 (1998) 106-112.
- 4) M. Tsukamoto, T. Fujihara, N. Aba, S. Miyake, M. Katto,

## Formation of Periodic Nanostructures on Titanium dioxide film by femtosecond laser irradiation

T. Nakayama and J. Akedo: Jpn. J. Appl. Phys., 42, (2003) L120-L122.

5) M. Tsukamoto, K. Asuka, H. Nakano, M. Hashida, M. Katto, N. Abe, and M. Fujita: Vacuum, 80, (2006), 1346-1350.

6) M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka and N. Abe: J. Phys. Conf. Ser., 59, (2007), 666-669.

7) K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita and S. Sakabe: Phisical Review B, 82, (2010), 165417-1 - 165417-5.

8) S. K. Das, D. Dufft, A. Rosenfeld and J. Bonse: Journal of Applied Physics, 105, (2009), 084912-1 – 084912-5.

9) D. Dufft, A. Rosenfeld, S. K. Das and J. Bonse: Journal of Applied Physics, 105, (2009), 034908-1 – 034908-9.