|

) <

The University of Osaka
Institutional Knowledge Archive

Title A Study of DNS Transport Protocol for Improving
the Reliability

Author(s) |, @&

Citation |KFRKZ, 2005 1EHIFHX

Version Type|VoR

URL https://doi.org/10.18910/2326

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

A Study of DNS Transport Protocol
for Improving the Reliability

oooogoogo
DNSOOOOoooooooooooo

December 2004

Kenji Rikitake
o0 00

A dissertation
submitted to the Graduate School
of Information Science and Technology
of Osaka University
in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Information Science

Summary

The goals of this dissertation are to show how critical the negative effects imposed by the current
512-byte limitation of UDP payload length in DNS (Domain Name System) transport protocol
are, and to propose solutions to work around the limitations in DNS operation while minimizing
the migration cost by using the existing protocol enhancements.

DNS is a distributed database of Internet, which binds the domain names to the actual
resource pointers such as IP addresses of Web servers and the name of mail exchanging hosts
of a domain. The reliability of DNS defines the reliability of the whole Internet, since many
application services, such as electronic mail and Web, are dependent on the authenticity of
domain names.

DNS has its own transport protocol. Most of the exchange between DNS resolvers
(clients) and servers complete in a single transaction. If the length of a payload is equal or
less than 512 bytes, UDP is used, but if it exceeds 512 bytes, the transfer is switched to TCP
after the UDP transfer is tried (RFC1035 Section 4.2.1). While this protocol design guarantees
the fundamental reliability of DNS, switching to TCP from UDP is redundant, and has become
a performance bottleneck for the expansion of DNS functions.

Recently the functional demands for DNS are changing a lot, from the day when it was
formally defined in 1987 in RFC1034 and RFC1035. The new functional enhancements include
the support for the emergence and migration to IPv6, DNSSEC for cryptographic authentication
of DNS, and the dynamic updates of DNS contents. These new enhancements have a common
characteristic to increase the length of payloads for each exchange. The average payload length
of DNS exchange is increasing as these new enhancements are gaining popularity.

As the average payload length of DNS exchange increases, the percentage of DNS ex-
change over TCP which carries the payloads larger than 512 bytes in the whole DNS exchanges
also gets larger. This increase causes the larger usage of the processing power and computa-
tional resource of DNS servers and caches. The switching to TCP also contributes to raise the
number of packets exchanged between the resolvers and servers, which results in more network
bandwidth consumption and higher packet-exchange performance demand for the network to

which large-scale DNS servers are connected, and less efficiency and reliability of the whole

il SUMMARY

DNS.

Some protocol enhancements to overcome the 512-byte limitation of DNS exchange over
UDP are proposed. EDNSO in RFC2671 defines an extension to indicate for a larger payload
length of each UDP exchange of DNS. T/TCP (Transactional TCP) in RFC1644 defines an
extension to TCP itself to reduce the number of packets for a transactional (single round-trip
exchange) use of TCP to reduce the numbers of packets while maintaining the reliability of
TCP. Many DNS operators claim the early deployment of these enhancements is important to
prevent the negative effect of the UDP payload-length limitation.

In this dissertation, the author first discusses the historical role of DNS, DNS operation
and Internet security, and the current issues in Chapter 1 as an introduction. The author also
explains the DNS architecture and the transport protocol in details in Chapter 2. The layering
of DNS protocols is explained, and the characteristics and functions of each protocol layer are
discussed, as well as the detailed transport protocol specification using existing implementa-
tions. The author also shows emerging functional demands to the DNS transport protocol as
newly-emerged enhancements are gaining popularity, and proposes the possible solutions.

The author analyzes the effect of payload-length increase of DNS in Chapter 3, using
the migration of IPv4 to IPv6 as an example, with the real-world traffic data and a simulation
which reflects the IP-address length increase from IPv4 to IPv6. The introduction of IPv6
changes the length and contents of DNS traffic due to the increased address length and other
enhancements. The author reviews how DNS protocols are affected by the IPv6 transition,
and shows the percentage of DNS answers exceeding the 512-byte UDP payload size limit,
including the additional records, increases from 0.04% to 1~3% with a simulation by packet-
length recalculation, using the real-world DNS traffic. The author then shows the quantitative
effectiveness of EDNSO to increase the acceptable payload size.

The author then proposes introducing T/TCP to reduce the overhead of TCP-based DNS
exchange to reduce the impact of current 512-byte limitation of UDP-based DNS exchange
in Chapter 4. The author evaluates the T/TCP by implementing the protocol to existing DNS
program codes and measuring the increase of efficiency using real-world ADSL Internet link
and a simulated link for a mobile Internet access. The author then shows a conclusion that
T/TCP is an effective alternative to improve the efficiency of DNS exchange, especially for
mobile Internet access with a minimal development overhead of protocol development.

Finally in Chapter 5, the author concludes this dissertation and discusses the direction
of future works, including how the DNS should evolve and the functions of transport protocol

required to maintain the reliability of DNS.

Contents

1 Introduction
1.1 The Historical Role of DNS and the Current Issues
1.2 DNS Operation and Internet Security
1.3 Outline of the Dissertation

2 DNS Architecture and the Transport Protocol
2.1 Introduction L e e e
2.2 DNS Protocol Layers and Transport Specification
2.2.1 DNSProtocol Layers
2.2.2 Server and Resolver Programs
223 Usersand Databases
2.2.4 DNS Transport Specification
2.2.5 UDP/TCP Choice: The 512-byte UDP Limitation
2.2.6 The Root Server’s Example of 512-byte UDP Limitation
2.3 Support for Migration from [Pv4 toIPv6 L.
2.3.1 IPv4/IPv6 Split Zone Data Spaces
2.3.2 Autoconfiguration and Updating DNS Database
2.4 Authentication of RRs and Payloads by DNSSEC
2.4.1 Past DNSSEC and The Limitation
2.4.2 DNSSEC based on Delegation Signer (DS)
2.5 Dynamic Update of DNS Contents
2.6 ConcludingRemarks o

3 DNS Payload Length Increase during Transition to IPv6
3.1 Introduction
3.2 The Increasing Trend of DNS Payload Length
3.2.1 Change of Type and Increase of Length of RRs Due to Migration to IPv6 . .
3.2.2 Other factors to Increase DNS Payload Length
3.2.3 How the DNS Payload Length Limitation Affects the Root Zone

iii

AN B~ = =

10
11
13
16
18
22
24
24
25
26
27
27
28
29
31

Y CONTENTS

3.3 Method of Real-World DNS Traffic Analysis 37
3.3.1 Collecting the Raw DNS TrafficData 38
3.3.2 Choosing the Datato Analyze 39

3.4 A Simulation of Transition PeriodtoIPv6 40
3.4.1 How the Payload Length Increase Is Simulated 40
3.4.2 Analysis of The SimulationResults 41

3.5 Solutions for Handling Larger Payload Length 44
3.5.1 Prediction from Simulation Results 47
3.5.2 Payload Length Extension and Effects of EDNSO 47
3.5.3 The Overhead Imposed by EDNSO 49
3.5.4 TCP Overhead and the Improvement by T/TCP 50
3.5.5 Using DNS Cache to Hide Extension-uncapable Servers and Resolvers . . . 53
3.5.6 Selecting IP Addresses to Answer foraQuery 53
3.5.7 Applying Selective-answering Strategy for IP Addresses of Root Zone . . . 54

3.6 ConcludingRemarks 56

4 T/TCP for DNS: A Performance and Security Analysis 57

4.1 Introduction L e 57

42 T/TCP and Traditional TCP 58
42.1 T/TCP Communication Model 59
422 T/TCPand TCPTimeLines 59
423 TAOTest 60
424 DoSImmunity 61
425 TIMEWAIT State 0 e e e e 62
4.2.6 Backward Compatibility 62
4277 T/TCPProgramming v v v v i ittt 64
4.2.8 Migrationlssues Lo 64
429 What T/TCP Provides for DNS 65

4.3 Evaluation of T/TCP 66
4.3.1 TestEnvironment 66
4.3.2 The Protocol Overhead 68
4.3.3 On Allocated Connection Blocks 68
434 OnPacketLossRates 69

44 ConcludingRemarks L o L 71

4.4.1 DNS for Mobile Equipments 72

4.4.2 Inter-firewall DNS Exchange
4.43 Future Works

5 Conclusion
5.1 ConcludingRemarks
52 Future Works

Acknowledgements
References

List of Publications by the Author

75
75
78

81

83

89

Chapter 1
Introduction

1.1 The Historical Role of DNS and the Current Issues

One of the most important and critical subsystems of the Internet Protocol Suite is DNS (Do-
main Name System). Many mission-critical applications depend on DNS for the domain name
resolution. For example, Electronic mail messages use domain names to choose the source and
destination addresses. The Web is fully dependent on the integrity of domain names to specify
the appropriate servers.

DNS has been a mandatory component of the Internet since the establishment in 1983 by
Mockapetris [1] and other Internet researchers and engineers. The main purpose of DNS was to
replace the HOSTS . TXT, a single-file text database which contained the mapping of the whole
Internet hosts and the corresponding IP (Internet Protocol) addresses.

Before DNS came into being, the host database of Internet was solely managed by up-
dating the HOSTS.TXT. Maintaining the HOSTS.TXT required a centralized management and
distribution, and as the scale of Internet grew up the management overhead became too high.
Instead of depending to a file, DNS is established to maintain a collective set of distributed
database to keep the integrity of domain name resolution, while the delegation of database
maintenance authority is given to each connected entity, an organization or an individual.

The current specification of DNS is revised by Mockapetris as described in Internet RFCs
(Request For Comments) RFC1034 [2] and RFC1035 [3], also supplemented by RFC1123 [4]
Section 6, RFC2181 [5], and many other RFCs.

Each database for a Internet-connected entity contains at least one Zone, a set of RRs
(Resource Records) which represents the hosts and other operation information of the domain
representing the entity. The zones are linked with the hierarchical delegation from the Root
Zone, with a set of top-down authorization of the domain name registries. The authorization
path also represents the political bodies of the governance of the Internet.

Figure 1.1 shows a typical example of the zone hierarchy which begins with the Root

1

2 CHAPTER 1. INTRODUCTION

(controlled by the administrators of ICANN) (’.” (Root Zone)
(name for

German entities)

(name for Japanese entities)

(names assigned to JPNIC) (name assigned by JPRS to
Osaka University)

(name assigned by JPNIC for Osaka University)

Figure 1.1 An example of domain name delegation tree

Zone. The Root Zone is under control of ICANN (Internet Corporation For Assigned Names
and Numbers), who also has the ultimate control over the TLDs (Top-Level Domains). Two
major categories exist in the TLDs: by country (separated by geographic regions) and by general
attributes (such as .com for commercial entities, etc.).

ICANN delegates the authority of assigning domain names to the country-level registries
such as JPNIC (Japan Network Information Center) and JPRS (Japan Registry Service), as well
as to the other registries, many of which are run by private companies.

Each endpoint entities must register their names to the registry of the adjunct upper-level
domain. The registration link also represents the delegation of authority for domain names. For
example, to use osaka-u.ac. jp, the name must be registered to JPNIC, which controls the
ac. jp, an attribute-based subdomain of jp. On the other hand, to use osaka-u. jp, the name
must be registered to JPNIC through JPRS, which has the authority granted from JPNIC for
assignments of non-attributal subdomains of jp.

Table 1.1 shows some examples of well-known DNS RR (Resource Record) types and
how they are used. DNS is essential to provide fundamental resource pointers for Internet,

including:

e bidirectional references between domain names and IP addresses;

e mail exchanger host for a domain, which acts as the mail receiver for the domain;

1.1 THE HISTORICAL ROLE OF DNS AND THE CURRENT ISSUES 3

Table 1.1 Some examples of DNS RR types

A IPv4 address assigned to a domain name (usually a host)
AAAA IPv6 address assigned to a domain name (usually a host)
CNAME | Canonical name for an alias
(used for specifying a service-based alias, such as www.osaka-u.ac. jp, fora
host which has another real host name)
MX Mail eXchanger host name for a domain
NS Authoritative name server host name
OPT Specifying options for EDNSO [6], negotiating protocol extension capabilities
PTR Domain name pointer for a [P-address-mapped domain name
(used for reverse lookups)
SOA Start of authority for a zone or a domain
(contains the serial number used for updating the zone data, name server host
name for the primary source of the zone data, contact mailbox, etc.)
TXT Generic text data associated with the name (used by various applications)

e aliases for other hosts, which enables to assign multiple reference names for a host which

provides multiple kinds of services;

e names of authoritative name servers, to show the proper path of domain namespace del-

egation of authority;

e extension of DNS protocol itself using EDNSO; and

e association of arbitrary text data to a domain name, which can be used by external appli-

cation services.

New protocol extensions to DNS have been brought into the specification, regarding the

recent changes of the Internet usage, including:

e support for IPv6 address and reverse-lookup references, including AAAA RRs and PTR

RRs to ip6.arpa [7] domain, which is essential to address resolution and host name

authentication;

e DNSSEC [8], to cryptographically authenticate RRs by attaching additional RRs of the

digital signatures; and
e DNS UPDATE [9], to dynamically update the Zone database by end nodes, designed for

reflecting the change of IP address in a mobile operation environment.

4 CHAPTER 1. INTRODUCTION

Those new extensions demand more secure and reliable data exchange between DNS
resolvers and servers, as the length of payload for each transaction increases and the content of

payload must not be altered in any way.

1.2 DNS Operation and Internet Security

DNS operation is a critical part of overall Internet security. The integrity and availability of
Internet depends on how DNS, the zones, and the RRs are managed. Improperly managed DNS
database often turns out to be a persistent problem of security, and difficult to properly fix for
the network administrators.

For example, the address-to-domain-name resolution of IP (Internet Protocol) fully de-
pends on DNS. The IPv4 (IP version 4) address resolution is performed by looking up the
in-addr.arpa domain database. If entries of the database are incorrect, the whole integrity of
this resolution method, is lost.

The availability of Internet also depends on the reliability of DNS contents and the data
transport. If a DNS RR contains a wrong, incomplete or maliciously spoofed (impersonated or
fabricated) content, or if a DNS transport protocol between the resolvers and servers is incor-
rectly or incompletely performed, the results are communication disruption by authentication
failures, or even worse hijacked connections whose clients are misdirected to the attacker’s
servers.

Many Internet application services heavily depends on DNS. For example, delivery of
electronic mail is dependent on DNS. MX records for a domain must point the correct servers
which handles the delivery for the domain. Otherwise, messages to the domain would not be
delivered, or would wrongly be delivered to another irrelevant host or be directed to an attacker
who intends to eavesdrop the contents of the messages.

HTTP [10] communication also depends on DNS. The authenticity of HTTP servers using
unencrypted plaintext communication depends solely on the authenticity of DNS RRs, which
tells the IP address of the servers to the clients. If an attacker could provide a spoofed DNS RR
for an HTTP server, access requests to the server are directed to the attacker’s server. This leads
to a conclusion that the phishing fraud of Internet could be much easily done if the DNS server
for the HTTP server is succeeded.

Even cryptographically-secure protocols are also dependent on DNS. TLS (Transport
Layer Security) defined by RFC2246 [11] and RFC3546 [12], a security enhancement using
encryption and cryptographic authentication primarily designed for HTTP and other applica-
tions based on TCP [13], does not guarantee if the TLS client connects to the authenticated

server by itself, and assumes that the authenticity of the server is guaranteed through DNS map-

1.2 DNS OPERATION AND INTERNET SECURITY 5

ping. While TLS prevents the server spoofing with its own cryptographic authentication, the
client still depends on DNS to reach the right server.

Theoretically speaking, to make DNS resistant to security attacks, the whole traffic must
be cryptographically authenticated and no spoofing will occur in any way. Unfortunately, the
current DNS is mostly not cryptographically authenticated, since most of the resolvers do not
support the authentication enhancement such as DNSSEC. IPsec [14], the still-evolving host-
level IP-layer encryption and authentication, is still not gaining majority support on the Internet,
and will not necessarily guarantee the end-to-end security between DNS resolvers and servers,
especially the communication are performed through DNS caches.

On the other hand, the current data transport protocol between DNS resolvers and servers
will encounter severe performance and reliability drawback when DNS contents are enhanced
and the length are getting longer, for meeting the recently-emerged requirements such as transi-
tion to IPv6 and introduction of DNSSEC and DNS UPDATE, due to the 512-byte limitation of
UDP [15] payload length (on RFC1035 Section 4.2.1) and the requirement of protocol fallback
to TCP.

One thing the author should emphasize is that research of DNS security is not necessar-
ily conducted on practical basis. For example, the mainstream of current research activities
conducted by the dnsext (DNS extension) working group of IETF (Internet Engineering Task
Force) are heavily directed towards introducing the public-key cryptographic authentication
called DNSSEC [8] into the data exchange between the DNS servers and resolvers. While
DNSSEC may help DNS programs to authenticate the exchanged data, it has many practical is-
sues to be solved such as that the trust delegation mechanism is claimed not to be robust enough
for the real-world deployment [16], and that the design is still subject to major changes [17].

Moreover, DNSSEC does not solve the major problems which DNS administrators cur-
rently face, since they are mostly based on non-cryptographic issues, such as the transport
layer security to retain tolerance against DoS (Denial-of-Service) attacks while maintaining the
availability of the service, the database content management, and the program code integrity
of the servers and resolvers. Without a solid non-cryptographic data transport, a securely-
authenticated link cannot be established. This means DNSSEC will not work without a non-
cryptographic transport which is capable to transfer larger DNS payloads of DNSSEC signature
RRs. In other words, DNS security would only be realized if the reliability and optimal per-
formance of the transport are established. The research target in this dissertation is to make a

reliable DNS transport as a foundation for upper-layer protocols, such as DNSSEC.

6 CHAPTER 1. INTRODUCTION

Described on Chapter 2
4 N
Problem: 512-byte UDP payload length limitation
L on DNS)
On Chapter 3
4 N\
Analysis: Analysis of DNS payload length increase
L during transition to IPv6)
On Chapter 3 On Chapter 4
Possible EDNSO for T/TCP for
Solutions: |UDP payload length increasing TCP
extension efficiency for DNS
Summarized
on Chapter 5

Goals: Extending the DNS payload limitation
and adding capability for new demands

Figure 1.2 Outline flow of the dissertation

1.3 Outline of the Dissertation

The goals of this dissertation are to show how critical the negative effects imposed by the current
512-byte limitation of UDP payload length in DNS (Domain Name System) transport protocol
are, and to propose solutions to work around the limitations in DNS operation while minimizing
the migration cost by using the existing protocol enhancements.

The remainder of this dissertation is organized as follows (Figure 1.2). The author ex-
plains the DNS architecture and the transport protocol in details in Chapter 2. The layering of
DNS protocols is explained, and the characteristics and functions of each protocol layer are dis-
cussed, as well as the detailed transport protocol specification using existing implementations.
The author also shows current requirements to the DNS transport protocol as newly-emerged
enhancements are gaining popularity, and proposes the possible solutions.

The author analyzes the effect of payload-length increase of DNS in Chapter 3, using
the migration of IPv4 to IPv6 as an example, with the real-world traffic data and a simulation

which reflects the IP-address length increase from IPv4 to IPv6. The introduction of IPv6

1.3 OUTLINE OF THE DISSERTATION 7

changes the length and contents of DNS traffic due to the increased address length and other
enhancements. The author reviews how DNS protocols are affected by the IPv6 transition,
and shows the percentage of DNS answers exceeding the 512-byte UDP payload size limit,
including the additional records, increases from 0.04% to 1~3% with a simulation by packet-
length recalculation, using the real-world DNS traffic. The author then shows the quantitative
effectiveness of EDNSO to increase the acceptable payload size.

The author then proposes introducing T/TCP to reduce the overhead of TCP-based DNS
exchange to reduce the impact of current 512-byte limitation of UDP-based DNS exchange
in Chapter 4. The author evaluates the T/TCP by implementing the protocol to existing DNS
program codes and measuring the increase of efficiency using real-world ADSL Internet link
and a simulated link for a mobile Internet access. The author then shows a conclusion that
T/TCP is an effective alternative to improve the efficiency of DNS exchange, especially for
mobile Internet access with a minimal development overhead of protocol development.

Finally in Chapter 5, the author concludes this dissertation and discusses the direction of
future works, including how the DNS should evolve and newly-required functions of transport

protocol to maintain the reliability of DNS.

Chapter 2

DNS Architecture and the Transport
Protocol

2.1 Introduction

DNS works with a set of protocols; there is no single DNS protocol, and many different kinds
of protocols involve in the DNS operation. DNS consists of multiple communication layers,
and the protocols are closely related and dependent on each other. The official documents of
DNS [2, 3] do not rigidly define the detailed behavior of each DNS programs either, and many
important parts of DNS are slightly but surely different between different implementations.

Practically speaking, DNS evolves as the de facto implementation development proceeds.
BIND (Berkeley Internet Name Daemon) [18] and the configuration files practically defines and
limits many aspects of DNS. BIND has been a testbed for various DNS extensions, including
DNSSEC and DNS UPDATE.

In this chapter, however, the author describes DNS using implementation-dependent ex-
planation methods as much as possible, other than the implementation-specific issues, since
quite a few other DNS servers such as djbdns [19] and NSD [20] have been emerging as
production-level alternatives to BIND. The author also emphasizes on explaining the set of
DNS data transport-related protocols for showing the effects of UDP 512-byte payload length
limitation, and showing how current DNS issues to be analyzed and evaluated in the later sec-
tions.

In later sections, the author describes the protocol layers of DNS and the transport spec-
ification in Section 2.2, and shows a definition of the UDP 512-byte payload length limitation.
The author then focuses on emerging new issues and how they contribute to make the payload
length larger, such as supporting migration from IPv4 to IPv6 in Section 2.3, the RR authenti-
cation and DNSSEC in Section 2.4, and the dynamic update of DNS contents in Section 2.5.

The author concludes this chapter in Section 2.6.

10 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

The shaded areas
DNS User are the elements of DNS Database

(user software) | PNS Transport Protocol (Resource Records)

V

1\ resolver (client) server
Server and Resolver Programs: BIND, djbdns, NSD, etc.

The scope
ofissues |Application Layer: RFC1034/1035/1123, EDNS, DNSSEC

in this paper

\L Transport Layer: UDP, TCP, T/TCP

Network Layer: IPv4/v6, ICMPv4/v6, IPsec

Physical/Link Layer: Ethernet, ADSL, Wireless LAN, PHS

Figure 2.1 DNS protocol layers and the elements

2.2 DNS Protocol Layers and Transport Specification

In this section, the author describes the layers of DNS components and the protocols.

Figure 2.1 shows a simplified model of DNS component programs and protocols, de-
scribed as a stack of multiple layers. In this model, DNS provides a mechanism for the users
including other application programs to retrieve and update the database entries, or RR (Re-
source Records), located on the servers.

In this dissertation, the author defines the DNS Transport Protocol as a collective set of

protocols, of the shaded part of Figure 2.1, as follows:

o the TCP/IP transport layer protocols, including UDP and TCP;
e DNS application layer protocols, defines in RFC1034, RFC1035 and other extensions;
and

e implementation-specific behavior of actual servers and resolvers, including those of
BIND and djbdns.

DNS Transport Protocol defines the characteristics of DNS data transport between the

servers and resolvers, by the characteristics and behaviors of each protocol layer and element,

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 11

and the interaction between the elements and layers.

2.2.1 DNS Protocol Layers

The following is a list of description for each layer in Figure 2.1, from the bottom to the top:

2.2.1.1 Physical/link Layer
This layer consists of the physical media and the link-layer protocol of data exchange. The
upper layers should be able to reliably handle and to equally treat the physical media and the
link layer, which may have different latencies, bandwidths, and packet loss rates. These layers
should guarantee adequate reliability of data transfer required by the upper layers.

In this dissertation, the author assumes that the physical and link layers guarantee lower
enough packet loss rate and latency, and higher enough bandwidth to perform practical com-
munication between DNS servers and resolvers, so that the communication conditions of these

layers do not cause significant problems to the upper-layer communication.

2.2.1.2 Network Layer

This layer consists of the IP (Internet Protocol, both version 4 and version 6) and the related
protocol components, such as ICMP (Internet Control Message Protocol). In this layer the
upper-layer data could be split into fragment packets and reassembled, to keep the packet size
lower than the limit imposed by the physical/link layer.

One of the recent development on this layer is IP Security or [Psec [14], the cryptographic
authentication and data encryption capability of IP, is an important optional component. IPsec
is widely used for protecting IP packets from spoofing and monitoring, though it does not
guarantee the upper-layer data integrity, since it only protects host-to-host IP-level packets.

On DNS, the authentication feature of IPsec will largely contribute to ensure the data
integrity of DNS payloads and RRs, while the encryption feature of IPsec is not necessarily

required.

2.2.1.3 Transport Layer

This layer traditionally consists of two protocols: TCP (Transmission Control Protocol) [13]
and UDP (User Datagram Protocol). T/TCP [21] is a TCP enhancement for transactional data
exchange. UDP provides the functionality of selecting data flow between different application
services by assigning port numbers to each service, as well as the per-packet checksum to
ensure the data integrity of each packet. TCP adds the retransmission functionality to provide a
reliable communication between the application programs under data errors and packet losses.

UDP has no notion of connection, while TCP has. UDP has less control on the packet filters

12 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

and the proxy servers used at firewall devices. Reliability of this layer significantly affects the
overall security of DNS.

DNS programs must make the UDP service port open to the external hosts to communi-
cate with other programs. A host-level end-to-end latency-measurement tool [22] uses this wide
availability of DNS service to estimate the latency by getting access to nearby DNS servers.

The openness of the UDP service port for DNS makes the host which the DNS programs
are running prone and vulnerable to external UDP-based DoS attacks, since all UDP packets
must be directly handled by the DNS programs. DoS attacks to UDP ports are much easier than
those to TCP ports because the attackers do not have to maintain the connection states.

Recently some new transport protocols are developed. One of the notable protocols
is SCTP (Stream Control Transmission Protocol) [23, 24], which provides higher resistance
against flooding and masquerading DoS attacks by exchanging cookies before the actual com-
munication starts. An SCTP-based DNS exchange might be useful to prevent DDoS (Dis-
tributed DoS) attacks.

On the other hand, some useful protocol extensions developed in a long time ago are
rediscovered and gaining popularity. TCP MDS5 Checksum Option [25], published in 1992, was
not paid much attention until BGP (Border Gateway Protocol) [26], a core wide-area routing
protocol of Internet, had to be secured from widely-known attacks to TCP such as the Sequence
Number Attacks [27]. Cryptographically authenticating TCP packets is a good alternative to
prevent unwanted forgery of TCP-based data exchange between well-known large-scale DNS

servers and resolvers.

2.2.1.4 Application Layer
DNS server-resolver communication protocol is collectively defined by many Internet RFCs
(Request For Comments). The two important RFCs are RFC1034 [2], which specifies the
architecture of DNS, and RFC1035 [3], which specifies the implementation details of DNS.
RFC1123 [4] also specifies the DNS usage as a part of the Internet host requirements. Some
clarification based on the practical expertise is also given on a later document RFC2181 [5].
Some of the recent research proposals including the protocol extension frameworks called
EDNSO [6], DNSSEC, and the secure dynamic data update extension [28], have already been
put into the production-level DNS implementations. These proposals are designed for meeting
the demands of handling newly-emerged needs of IPv6, DNS authentication, and making DNS
from a near-read-only to read-and-write distributed database.
Most of the DNS programs especially those running in production-level computer sys-

tems, however, are still not capable of performing those under-development extensions of DNS.

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 13

So in the production-level systems, the overall security and reliability of DNS should yet be con-
sidered without the extensions, including DNSSEC, as of December 2004. The author discusses
the specific issues on DNSSEC later in Section 2.4.1.

2.2.2 Server and Resolver Programs

DNS program packages belong here. A DNS program package has its own resolver library
which provides programming interfaces to lookup DNS database, the database lookup programs
for administrative use, the cache programs for optimizing outbound DNS traffics, and the server

programs for providing the DNS database information.

2.2.2.1 BIND: The Reference Implementation
As of December 2004, the most popular package is BIND [18], which is bound to many operat-
ing system distributions. The latest stable releases are versions 4.9.11, 8.4.5, 9.2.4, though the
development release is version 9.3.0, as of December 2004. Use of older version are not recom-
mended, though many production system hosts are still using the version-8-based DNS software
and some even use the version-4-based software. BIND 9.3.0 has the latest implementations of
various extensions, including DNSSEC, DNS UPDATE, and EDNSO.

BIND, which has been a part of UNIX operating systems derived from BSD (Berkeley
Standard Distribution), has been the de facto standard of DNS implementation since global

DNS operation has begun in late 1980s, for many reasons as follows:

e Many of DNS servers have been, and still are, run on BSD-derived UNIX machines,
including FreeBSD [29], OpenBSD [30] and NetBSD [31];

e BIND is ported to many architectures, including popular non-BSD UNIXes such as
Linux [32] distributions;

e Most of existing programs solely use BIND’s resolver library as it is the operating system
standard; and

e Many Internet documents including RFCs use notations of BIND configuration files and

zone files for explaining the technical issues.

As a result of its overwhelming popularity as a DNS program, BIND has fallen victim
to various types of successful stack-smashing (buffer-overflow) and DoS attacks. For example,
a set of bugs on the BIND resolver library [33, 34, 35] forced major OS distributions such as
FreeBSD to upgrade [36]. Another set of bugs expose vulnerabilities of BIND DNS server
which allows to execute an arbitrary code or to crash the server program and/or the host op-

erating system [37, 38, 39]. Some versions of BIND has been discovered to be prone to DoS

14 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

$ORIGIN example.org. 1
@ 42m40s IN SOA dns® hostmaster (
1094215095 ; serial
4h33m4s ; refresh
34m8s ; retry
lw5d3hl6ml6s 7 expiry
42m40s) ; minimum
3D IN NS dns0®
dns@® 3D IN A XXX .XXX.XXX.Xx4
@ 3D IN NS dnsl
dns1 3D IN A XXX .XXX.XXX.XX5
1D IN MX 0 mx
mx 1D IN A XXX.XXX.XXX.Xx4
1D IN MX 0 mx
dns2 1D IN A XXX .XXX.XXX.XX6
1D IN MX 0 mx
dynhost 3D IN NS dns2
fixedhost 1D IN A XXX .XXX.XXX.XX7
\)

Figure 2.2 An example of BIND zone configuration file (output of nslookup program
of BIND Version 8)

attacks [40]. Regarding this vulnerability history, the author may suspect that BIND has a seri-

ous problem on the software development, if not on the quality of the code itself.

2.2.2.2 djbdns: A Secure Alternative

A package called djbdns [19] is popular for production-level systems whose operational secu-
rity is critical. While BIND uses the all-in-one approach for designing the server, djbdns uses
a modular approach of system design, providing different executable programs for different pur-
poses. This modularity makes djbdns highly configurable and managable for system adminis-
trators. For example, djbdns separates the cache for resolvers as the program dnscache and
the authoritative (non-recursive) server program tinydns, while most of BIND name servers
named contain both the cache and authoritative server functionalities in the same program.

Another operating characteristics of djbdns is that it does not assume explicit zoning as

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 15

example.org tinydns data)
line begins with .(dot) stands for
an authoritative NS RR (and the SOA RR)
.example.org:xxx.xxx.xxx.xx4:dns0.example.org.
.example.org:xxx.xxx.xxx.xx5:dnsl.example.org.
line begins with @(atmark) stands for a MX RR
@example.org: :mx.example.org.
line begins with + stands for an A RR
+mMx.example.org:xxx.XxXX.Xxx.xx4
@mx .example.org: :mx.example.org.
+dns2.example.org:xxx.XXxX.XXX.Xx6
@dns2.example.org: :mx.example.org.
line begins with + stands for an NS RR
for a delegated domain
&dynhost.example.org: :dns2.example.org.
+fixedhost.example.org:xxx.XXX.XXX.xx7
end of tinydns data
J

Figure 2.3 An example of tinydns database configuration file (the source of Figure 2.2)

in the BIND zone configuration files, but it rather serves a set of RRs pre-defined in a database,
not restricted in the domain name literal syntax. Figures 2.2 and 2.3 show the difference of the
configuration philosophy between the two software. The BIND’s file in Figure 2.2 configures a
zone example.org using the $ORIGIN directive, but the tinydns’s file in Figure 2.3 is rather
a plain listing of necessary RRs in a zone.

Known specific vulnerabilities of d jbdns has not been reported yet, as of December 2004.

djbdns does not support DNSSEC or EDNSO yet, as in the latest release djbdns-1.05.

2.2.2.3 NSD: An Authoritative-only Server

A package called NSD [20], an authoritative-only DNS server designed for a high performance
use such as in a Root Server, is also designed and under production-system use in Europe.
NSD supports DNSSEC and has declared the commitment to make it enable as the default
configuration, once DNSSEC is standardized.

16 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

resolvers cache servers

A some resolvers only use caches for DNS resolution

some resolvers access directly to servers

DNS servers could be accessed either directly from resolvers or
indirectly from caches, so keeping the integrity of data
among the servers and caches is a very difficult problem to solve

Figure 2.4 Variety of access methods from resolvers to servers with or without caches

2.2.3 Users and Databases

An entity connected to Internet with its own domain name must maintain the set of RRs of the
domain under the DNS servers of its control. DNS has a distributed network of databases, as
the servers form their network of delegation. Maintaining DNS database consistency among
the servers is critical for minimizing the lookup overhead and preventing illegitimate RRs to be
distributed.

Traditionally speaking, DNS contents were given statically by the zone administrator who
has the responsibility of maintaining a mapping database such as that of between IP addresses
and the host names, or mail exchanging host names to the hosts or subdomains within the
zone. DNS authoritative servers, which serves the contents of DNS database which mostly
consists of RRs, assumes that the database content updates are performed while the servers
are not running. This static nature of DNS database allows loosely-coupled distributed servers
and caches working simultaneously while providing the integrity of zone data, and allows the
freedom of choice to resolvers for using or not using the DNS cache for the name resolution as

shown in Figure 2.4.

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 17

While still most of the DNS databases are read-only and manually maintained by the
administrator, allowing dynamic updates on the database is being utilized by the network
sites which have dynamically-configured client hosts. DNS UPDATE [9] allows the update of
DNS database contents by a transport protocol message. TSIG authentication [41], as well as
DNSSEQC, are used to authenticate the sender of the content update message, as well as using
some non-cryptographic methods such as limiting the source IP address of the update message.

Vixie and Kato [42] describe that DNS can be used as a distributed dynamically-
updateable database for a real-time blackhole list [43] to block unsolicited electronic mail

messages, by combining the following extensions of DNS:

e DNS incremental zone transfer [44], which enables the zone transfer protocol of DNS to
send only the differences between the latest and the older versions;

e DNS NOTIFY [45], a protocol between servers in the master-slave relationship, by
which the master server advises the slave servers that the master’s data has been changed
and that the slaves should initiate the query for the database update; and

e DNS UPDATE, which enables the DNS clients to send the updated contents to the

SErvers.

DNS dynamic update, however, should only be allowed with extreme care, since it may
allow intruders to alter the DNS database contents. DNS also has a very complex reference
architecture as shown in Figure 2.4, because the resolvers can make an arbitrary choice for
using the caches. For example, in Figure 2.4 resolver A solely depends on cache I to looks up
the servers, while resolver C simultaneously uses both cache I and non-cache lookups. On the
other hand, resolver D does not use cache I at all and only directly look up the servers.

The variety of access methods from the resolvers to the servers of using or not-using the
caches indicates that a resolver may refer to older contents if it is not explicitly told to directly
look up the authoritative server without using a cache. While setting the TTL (Time-To-Live)
of and RR to zero prevents the RR from being cached, clearing TTL of RRs results in the
increase of processing load of the servers and reducing the efficiency gained by placing a cache
because of the increase of end-to-end tendency between the resolvers and servers. Unnecessary
reduction of TTL values should be avoided as much as possible to prevent increase of the
server processing load and the number of payloads exchanged between the servers and resolvers,
although a study [46] shows that the widespread use of dynamic, low-TTL A RR bindings

should not greatly increase DNS-related wide-area network traffic.

18 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL
Header including the flag for
(flags and RCODES, etc.) payload truncation
QNAME query
(queried domain name) ‘nformation
QTYPE and QCLASS (also included in

(queried RR data type and class)

answer payload)

answer section RRs
(directly answerable RRs)

answer
information

authority section RRs
(non—direct reference RRs)

(included in
all answers)

additional section RRs
(supplementaty information)

non—mandatory
answer section

Figure 2.5 DNS payload format

Table 2.1 An example of domain name compression

When osaka-u. jp is represented as follows (12 bytes):

offset 20 | 21 22 | 23 | 24 | 25|26 27 |28 |29 | 30 31

value 7010 | S| A | K|A| U2 Y] P 0(end)
offset 32| 33 34 35 | 36 | 37 | — representing www.osaka-u. jp
value 31 °W | ‘W | ‘W | PTR 20 compressed from 16 to 6 bytes

quoted literals (‘A’): character A of a label (dot-separated word) in a domain name

(note: DNS literals are not case-sensitive)

number only (2): length of a label, zero (0) means the end of the name

PTR and offset: 2-byte offset pointing the domain name starts from the offset value

2.2.4 DNS Transport Specification

In this section, the author describes the behavior and requirements of DNS transport protocol,
focused on the application payload format between the servers and resolvers, and the usage of

lower-level transports, TCP and UDP.

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 19

resolver server

()
wants to access example'com NS? has to answer

to the server for each query
for example.com NS = ns.example.com without referral

but needs to ask to other types of

NS and A RRs ns.example.com A? RRs if the
twice to the additional records
same server A =192.168.128.1 cannot be used

Figure 2.6 DNS name resolution without additional records

2.2.4.1 DNS Payload Format

Figure 2.5 shows the outline structure of DNS payloads. RFC1035 Section 4.1 defines the
format of payload (called message in the RFC), and each payload makes a single query, request
or answer. Each payload is carried in either a single UDP datagram or a single TCP connection.

The following is an explanation of the payload format:

e The header section is always present and includes fields to specify the number of other
sections, and flags containing the control information, such as the TC (Truncation) bit,
explained in Section 2.2.5.

e The question section includes the query information to the name server, with the fields of
a query type (QTYPE), a query class (QCLASS), and a query domain name (QNAME).
For Internet protocols, the query class has the fixed value of IN. Some of the common
query types are listed in Table 1.1. The QNAME is a DNS-specific format of domain
name string, which must use the compression of a domain name using 2-byte pointers
for previously-appeared upper-level part of another domain name, as shown in Table 2.1
(RFC1123 [4] Section 6.1.2.4).

e The answer section contains the RRs answering the question. If the answer does not
exist, the section contains no RR.

e The authority section contains the RRs that point towards one or more authoritative name
servers, especially when the answering DNS server does not have an authoritative answer
for the question.

e The additional section contains the RRs which relate to the query, but are not strictly
answers for the question. A proper use of additional section RRs will reduce the number
of queries.

Figure 2.6 shows an example of a query and answer session without using additional

20 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

resolver server

()
wants to access example'com NS? can answer

to the server to the query
NS = ns.example.com

for example.com with some
and obtains the A =192.168.128.1 additional records
answer at once (for ns.example.com) to help faster

name resolution

Figure 2.7 DNS name resolution with additional records

RRs for a query of NS RR, which needs two exchanges between the server and resolver.
On the other hand, Figure 2.7 uses an additional RR to send the A RR to tell the address
associated with the NS RR of the required answer, so only one exchange is required
instead of two.

RFC2181 [5] Section 10.3 specifies that additional section does not include any aliases
represented by CNAME RRs or A RRs associated with the CNAMESs. This means use
of CNAME:s should be avoided whenever possible.

Note that some DNS implementations misinterpret response payloads as query pay-
loads [47]. This may result in a message bouncing between servers and resolvers and cause a

query-response storm, which is a form of DoS attack.

2.2.4.2 Recursive and Non-recursive Name Resolution

To resolve a domain name for an RR, a program must recursively perform the name resolution
or server lookup to reach the authoritative server for a queried domain name, from the Root
Zone to the lower-level domains.

Figure 2.8 shows an example of the recursive query for the A RR(s) of www.osaka-u. jp
when no previous information has been given to the resolver. The resolver first asks to the Root
Servers, the authoritative servers of the Root Zone, to find out the names (and IP addresses)
of the Zone . jp, which is one level lower than the Root Domain. The resolver then tries to
find out the names (and IP addresses) of the authoritative servers of one-level-lower domain,
osaka-u. jp. Since an authoritative server of osaka-u. jp presumably knows the information
of www.osaka-u. jp, which is guessed from the domain name syntax, the resolver finally sends
a query for the A RR of www.osaka-u. jp to the authoritative server.

In Figure 2.8, the author assumes that the resolver is solely responsible for doing the

recursion by itself. In the actual DNS programs, however, some server-like programs such as

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 21

request for the A RR
of www.osaka—u.jp

¢

first, the resolver NS RR of .jp? an authoritative
asks to a server of an NS and A RR for server of
Root Zone the Root Zone

(if no information cached) an authoritative server of .jp

¢

second, the resolver NS RR of osaka—u.jp? an authoritative
asks tf) a server of an NS and A RR for ser?/er of
.Jp zone the .jp zone

(if no information cached) an authoritative server of osaka—u.jp

¢

finally the resolver A RR of www.osaka—u.jp? an authoritative
asks for the A RR of an A RR for www.osaka—u.jp server of

www.osaka—u.jp — - the osaka—u.jp zone
to the authoritative server(s) from an authoritative server of osaka—u.jp

¢

the answer for the A RR of
www.osaka—u.jp is obtained

Figure 2.8 DNS name resolution using recursive queries

caches should be able to perform the necessary recursion process, to simplify the function of
resolver by removing the recursion function. In fact, most client computers use this simplified
version of resolver called stub resolver, since many existing servers such as those of BIND have
traditionally been acting as caches for other servers. So the functionality of recursive query is
negotiable between the resolvers and servers, and is only allowed when the server accepts the
use. Some programs, such as tinydns of djbdns which only acts as an authoritative server for
a limited number of pre-configured zones, only accepts non-recursive queries to prevent DoS

attacks of queries to non-authoritative zone information.

2.2.4.3 DNS Transport Usage
DNS has two major forms of data exchange between the servers and resolvers, described in the
Section 4.2 of RFC1035 [3], as follows:

Zone Transfer: this occurs between two servers for replication of Zone, a set of RRs which
belongs to a domain name hierarchy, to obtain redundancy against a possible server

failure and to prevent disruption of availability of the RRs in a zone.

22 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

The zone transfer is performed solely over TCP, since the size of a zone information
set is much larger than a size of UDP payload, varying from several kilobytes to a few
megabytes. The zone transfer can be used among the authoritative servers, so the transfer
must be reliably performed.

RR Queries: this occurs between the servers and resolvers, to request and retrieve an RR for
a domain name. Most of the real-world traffic of the queries is over UDP, though TCP is
also allowed and supported by the majority of servers.

Some exchanges of control messages between servers, such as those of DNS NOFITY,

also use the form of RR query from the sender to the receiver of the message.

Technical details of the DNS transport functions are also defined in RFC1123 [4], which
defines host requirements connected to the Internet, and in RFC2181 [5], which clarifies the
DNS specifications.

In this dissertation, the author mostly discusses the RR query issues in the later sections,
since optimizing the resolver-server transaction for the larger payloads is the primary goal of
the research. The author will not discuss the details of the zone transfer, since it is functionally
the same as a file transfer over a single TCP link and has no limit of maximum size of transfer

for each connection, and it will not degrade the performance of the resolver-server transaction.

2.2.5 UDP/TCP Choice: The 512-byte UDP Limitation

Section 4.2.1 of RFC1035 explicitly restricts the size of UDP queries and answers to 512 bytes.
Section 6.1.3.2 of RFC1123 shows that a DNS server must service UDP queries and it should
service TCP queries, and allows private agreement of servers and resolvers to solely use TCP

for the queries.

2.2.5.1 Payload Truncation and UDP/TCP Limitations
Section 4.1.1 of RFC1035 specified the DNS header format. In the format, the TC bit is set when
a server sends a truncated reply, due to the length greater than that permitted on the transport.
The suggested behavior of the resolver which receives a UDP answer with the TC bit set is to
reissue the request to the server using TCP [48] all over again as shown in Figure 2.9, although
not all the implementations strictly comply with this sequence. This means that the query reply
longer than 512 bytes is always sent back by TCP, after waiting a UDP exchange solely for the
notification purpose.

For each UDP queries and answers, the length must be fit into a UDP datagram, which
is 9216 bytes on FreeBSD 4.10-RELEASE. The practical length, however, is restricted by the

size of maximum link-layer packet, since exceeding the size of the link-layer packet results in

2.2 DNS PROTOCOL LAYERS AND TRANSPORT SPECIFICATION 23

resolver server
create UDP query generate
query contents answer with
all RRs and
if not truncated UDP answer truncate if
pr.ocess answer (truncated to 512bytes >512 bytes
if truncated if >512bytes)
then ______ __ __ __ ____ . __
re-query TCP query generate
with TCP answer with
TCP answer all RRs
process untruncated
untruncated
answer

Figure 2.9 DNS resolver-server protocol fallback sequence from UDP to TCP

the fragmentation of the UDP datagram into multiple link-layer packets, and could degrade the
reliability of application-level exchange.

For each TCP queries and answers, the length of the payload represented by a 16-bit
unsigned integer is attached at the beginning of the actual query or answer being exchanged.
On IPv4, the maximum length of TCP payload allows the maximum length of 65533 bytes for

a DNS query and answer.

2.2.5.2 UDP/TCP Retransmission Strategies

DNS programs has its own retransmission and timeout algorithms for the UDP transport, since
UDP does not retransmit by itself. Using TCP instead of UDP eliminates the need of designing
the retransmission strategy, but at the cost of increase of minimum numbers of packets for each
exchange of DNS payloads.

For example, djbdns uses the timeout algorithm [49] of waiting 3, 11, and 45 seconds
respectively for each UDP recursive queries, and terminates the operation if nothing received
after retransmitting three times. This retransmission strategy works well when the packet loss
rate of the network is small. When the packet loss rate is very high, however, it may cause delay
of the completion of query processes, either succeeded or failed, since only four or less packets
are sent for each query.

On the other hand, BIND Version 8.3.7-REL resolver library included as a part of
FreeBSD 4.10-RELEASE, retries usually only twice and 5 times at maximum, with a fixed

24 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

length of interval time, usually 5 seconds and 30 seconds at maximum, configurable by the
caller of the library functions. While this strategy works well when the latency of the network
is small, the fixed-length interval may cause network congestion when the number of resolvers

for a server is very large.

2.2.6 The Root Server’s Example of 512-byte UDP Limitation

One of the most important examples which the UDP payload length limit affects the system
design of DNS is the case for the Root Servers. To avoid processing burdens being caused by
TCP queries, answers to the DNS queries for the Root Servers must be fit into 512 bytes. The
UDP size limitation means a restriction which only 13 IPv4 servers can be specified in the SOA
answer for the Root Domain, of 1 SOA, 13 NS and 13 A RRs, 493 bytes in total.

The limitation of the Root Zone RRs which can be included in a payload significantly
hampers the necessary change for the growth of DNS, such as increasing the processing perfor-
mance of the Root Server network by adding more addresses for load balancing and distribution,
and introducing IPv6 addresses to the Root Domain for the migration. If the number of Root
Servers were increased or some of the servers also announced the IPv6 addresses by the AAAA
RR, the answer could easily exceed the 512-byte size limit [48], so the query reply for the Root
Servers would not be able to be carried over UDP. The details of this problem is also discussed

in Section 3.5.7.

2.3 Support for Migration from IPv4 to IPv6

DNS must support IPv6, as Internet networks and hosts are currently on the way of migration
from IPv4 to IPv6. In this section, the author describes some of the key issues for DNS to
support migration from IPv4 to IPv6.

The major change for DNS RRs to support IPv6 is introduction of AAAA RR and ip6.
arpa domain for reverse lookups, described later in Section 3.2.1. Introduction of IPv6, how-
ever, creates many operational considerations and issues to solve, for many reasons including,

but not limited to, the following:

e [Pv6 network is, on the contrary from the popular belief, an independently-built network
from the IPv4, although many of the characteristics are common;

e Core Internet services including DNS must support the IPv6 objects and guarantee the
same level of accessibility and availability of services as well as those of IPv4; and

e [Pv4 and IPv6 coexists during the transition period, although many hosts do not support

IPv6 services for DNS yet, so they will try to access IPv6 information through IPv4, and

2.3 SUPPORT FOR MIGRATION FROM IPV4 TO IPV6 25

resolver resolver
IPv4 IPv6 IPv4 IPv6
server server server server
zone zone zone
database database database
(unified) for IPv4 for IPv6
If both IPv4 and IPv6 servers have If both IPv4 and IPv6 servers have
the same zone database, the zone data space different zone databases, the zone data space
split never occurs split may happen and some RRs are

only accessible from either one network or the other

Figure 2.10 Resolvers may see split zone data spaces through IPv4 and IPv6 networks

vice versa as well in the future when IPv6-only hosts take the majority of the Internet.

2.3.1 IPv4/IPv6 Split Zone Data Spaces

An example of one of the problems is split zone data spaces between zone data spaces which
can be seen from IPv4 and IPv6, also called as IPv4/IPv6 name space fragmentation [50, 51].
Since the accessible zone data through IPv4 and IPv6 are not necessarily the same, some IPv6-
only host may not find out a DNS RR which can be found through the access via IPv4.

Figure 2.10 shows a case of database unification problem for this issue. Completely unify-
ing the DNS database throughout IPv4 and IPv6 DNS servers is virtually impossible, since some
servers may only contain IPv4-specific RRs, while other servers may only contain IPv6-specific
RRs, so the referral chains between the servers may easily collapse when the communication
network does not exist between two specific servers, because of lack of support of [Pv4 or IPv6.
Durand and Thren [51] suggests the two administrative policies should be implemented to avoid

the split zone data spaces:

e cvery recursive name server should be either IPv4-only or dual stack (supporting IPv4
and IPv6); and

e every DNS zone should be served by at least one IPv4-reachable authoritative name

26 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

advertizing
the new host
information

configuration request DNS database
DHCP update request DNS
server server
IP address !

assigned for new host,
suggested DNS cache address,
etc.

new host

updating the
database contents

DNS
database

Figure 2.11 Updating DNS database from DHCP server

SErver.

With the policies mentioned above, DNS administrators should maintain the current prac-
tice that all DNS name spaces are accessible through the IPv4 network. IPv6-only hosts or stub
resolvers can access to the IPv4 DNS servers through a dual-stack DNS cache, so this will not

cause a major operational problem.

2.3.2 Autoconfiguration and Updating DNS Database

IPv6 also enforces autoconfiguration of host address, in both stateful and stateless mecha-
nisms. The stateful configuration means DHCP (Dynamic Host Configuration Protocol) for
IPv6 (DHCPv6) [52], as well as that for IPv4 [53], which each host asks the configuration in-
formation to a DHCP server at the boot time. The stateless configuration [54] means that the
host automatically defines the IPv6 address at the boot time using only the internal hardware-
related information and no external configuration for determining the IPv6 address.

Figure 2.11 shows an example of interaction between the host to be configured, DHCP
server, and DNS server. In either case of stateful or stateless configuration, interaction with

DNS should be done for providing the configuration service, including the following actions:

e notifying the suggested DNS non-stub resolver or cache address to the configured host
(usually from a DHCP server) for external DNS access; and
e updating the DNS zone database after authenticating and fixing the stateful or stateless

address of a host.

2.4 AUTHENTICATION OF RRS AND PAYLOADS BY DNSSEC 27

The details on updating DNS dynamically are discussed in Section 2.5.

2.4 Authentication of RRs and Payloads by DNSSEC

IP and upper-layer transports such as UDP and TCP do not provide protection against forgery
or alteration of the contents, which is a problem for DNS since forged RRs can be abused
for attacks such as redirection to malicious hosts or wiretapping of electronic mail messages.
Protecting DNS payloads and RRs from alteration or forgery attempts is crucial, while hiding
DNS payloads is not necessarily a requirement due to the public nature of DNS RRs, configured
for public access throughout the wide-area Internet.

Authenticating the DNS payloads and the RRs has become a key development goal for
many years. DNSSEC [8] is the primary extension for cryptographic per-RR authentication
within the DNS transport protocol, while cryptographic authentication on other layers such as
IPsec is also under development and deployment. In this section, the author describes DNSSEC

and its ongoing development status, and the limitation.

2.4.1 Past DNSSEC and The Limitation

As of December 2004, DNSSEC is still considered as a primary means to secure the DNS,
though the first protocol design has become historic and will no longer be widely deployed.

When it was first designed in 1999, basic elements of DNSSEC were as follows:

KEY RR, to distribute a (public) key associated with a DNS or domain name;
SIG RR, to provide signature for an RRset (set of RRs);

NXT RR, to show non-existence of a name in a zone; and

the requirement that a child zone needs to have its KEY RRs signed by its parent.

Using those basic elements, a zone-level authentication is performed by the public-key
cryptographic system, by making a chain of trust as the same path of zone delegation.

Two other signature schemes are proposed: TSIG in RFC2845 [41], and SIG(0) in
RFC2931 [55]. While SIG RR authenticates an RR of a DNS Zone with a public-key cryp-
tographic system, TSIG and SIG(0) authenticates each transaction. TSIG uses a shared-key
cryptographic system, while SIG(0) uses a public-key cryptographic system. While TSIG and
SIG(0) are primarily designed for protecting secure DNS update requests, Baba et al. [56]
propose an implementation using SIG(0) to authenticate the host or user of the resolver for the
access control of the DNS database.

DNSSEC, however, does not provide the protection against DoS attacks, as described

28

CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

in RFC2535 Section 2.1. For preventing DoS attacks, it is required to use other means than
DNSSEQC, such as those for the TCP, UDP or other TCP/IP transport layer protocols.

The author considers that the feasibility of wide-range DNSSEC deployment is low in the

above signatory schemes, while he is convinced that authentication of DNS RRs is crucial and

will become mandatory for future DNS, because of the following reasons:

TSIG is a shared-key system, and for the implementation, the key-distribution secu-
rity of the secret key has to be maintained. This will not work for multilateral inter-
organizational system such as the global Internet. Even using a public-key system such
as SIG(0) or SIG, millions of public keys have to be maintained for each second-level
domain name.

SIG and SIG(0) uses a public-key system, which is computationally resource-intensive,
and may impact the overall performance of DNS. For distributing the public keys whose
digits are long enough for giving enough protection, the length of RRs will increase and
may exceed the limit of 512 bytes for DNS UDP exchange. This may also hamper the
DNS performance as a whole.

The authentication model of DNSSEC assumes that the communication is performed di-
rectly between the resolvers and the servers. In a practical DNS configuration, however,
the resolvers use caches and indirectly exchange information between the servers. In this
cached model, TSIG and SIG(0) cannot provide the end-to-end authentication between
the resolvers and the servers. A similar problem may occur when handling a replicated

Zone data by DNS zone transfer.

2.4.2 DNSSEC based on Delegation Signer (DS)

DNSSEC has been under ongoing change from the past SIG-based scheme to a new scheme

using

Delegation Signer (DS) RR [57]. The DS changes the model as follows:

The zone administrator can sign the zone itself by using the Zone Signing Key (ZSK);
Key Signing Key (KSK) is introduced to sign the ZSK;

DS RR, which contains the digest of a public key that is allowed or used to sign the child
zone’s KEY RRset, is introduced; and

The parent zone authorizes the KSK of a child zone.

Figure 2.12 shows a DNS name resolution process of www.osaka-u. jp, similar to that

in Figure 2.8, but each record returned from the authoritative servers is with corresponding DS

RR and the signature for DS RR. The chain of DS RRs enforces authentication of the chain of

2.5 DYNAMIC UPDATE OF DNS CONTENTS 29

The public key for KSK of Root Zone is shared
among DS—enabled DNSSEC—capable resolver

request for the A RR
of www.osaka—u.jp

first, the resolver A RR of www.osaka—u.jp? an authoritative Root Zone KSK
asks to a server of server of | signing the ZSK

<—— Root Z ZSK
Root Zone NS of jp, DS of jp, SIG (DS) the Root Zone oot Zone

signing RRsets
d/ Nﬁlaﬁon of KSK

second, the resolver A RR of www.osaka—u.jp? an authoritative jp KSK
asks to a server of server of ¢ signing the ZSK
Jp zone - - the .jp zone ~——— jpZSK
NS of osaka—lslfg, (ll))SS)of osaka—u.jp, signing RRsets
\L authorization of KSK
finally the resolver A RR of www.osaka—u.jp? an authoritative osaka—u.jp KSK
asks for the A RR of server of | signing the ZSK
www.osaka—u.jp the osaka—u.jp zone <—— osaka-u.jp ZSK

to the authoritative server(s) A of www.osaka—u.jp, SIG (A) signing RRsets

’

the answer for the A RR of
www.osaka—u.jp is obtained securely

Figure 2.12 DNS name resolution with DS-based DNSSEC (based on a JPRS document [58])

NS RRs. The final A RR is with its SIG RR signed by the ZSK of osaka-u. jp, which has the
final authority for the name www.osaka-u. jp.

DS-based DNSSEC is not compatible with the past DNSSEC using SIG and KEY records,
so the servers, caches and resolvers must be updated for the change. BIND Version 9.3.0 and
NSD 2.1.5 claim support for the DS-based DNSSEC. The key distribution and update issues,
which are common problems to deploy public-key-based systems, are still needed to be exter-

nally solved.

2.5 Dynamic Update of DNS Contents

Dynamic update of DNS contents is essential to support DNS mapping to mobile hosts which
moves around different networks, and to reduce the administration overhead of maintaining one-
by-one IP address assignment to large number of client hosts, whose IP address and security
policy management is sufficient by treating them as a group and allowing IP address change of
each host.

DNS UPDATE [9] defines a DNS content update extension to add or delete RRs from

30 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

CATYV ISP (Ethernet equivalent)

Route to A1l: global address for CATV (for Host X)
address Al (A1 is dynamically allocated by the CATV ISP, not fixed)
Host X
Default Route T (An update is performed each time when Al is changed)
Host X DNS data update Host Y
(proxy server / % (serving dynamic
dual-home gateway) performed over DNS for Host X)
| the private network |
private network of Hosts X and Y
Host Y
Default Route
Route to T
Network B

Fixed Link ISP (using ADSL)

Figure 2.13 An example of dynamic DNS update using ssh

a specified zone, with prerequisites specified, and can specify a dependency upon either the
previous existence or non-existence of an RRset, or the existence of a single RR.

The operation of updating the zone database is performed by using the UPDATE opcode
which indicates the updating request, with the similar format of DNS payloads for the RR
queries and answers. The payload length issues of DNS RR queries and answers are equally
applicable to the UPDATE opcode.

The updating request of DNS UPDATE should be sent to the Primary Master server,
which is the master of all the authoritative servers for the zone, whose name is in the zone’s
MNAME field of SOA RR. Only one primary master server per zone is allowed.

To secure the update operation against forgery and alteration attacks, Secure DNS Dy-
namic Update [28] is proposed as an enhancement to DNS UPDATE. It incorporates the sig-
nature for entire payload or message using TSIG or SIG(0) secure transaction schemes, and
requires the use of signed UPDATE opcodes for all updating requests. While DNSSEC au-
thenticates each RR, Secure DNS Dynamic Update authenticates each updating requests and
answers.

Updating the DNS contents, however, are not only performed through (Secure) DNS UP-

2.6 CONCLUDING REMARKS 31

DATE. Dynamic DNS [59] uses HTTP or Secure HTTP requests to update A RR and MX RR of
a host name, and has been a popular service among non-fixed-IP address hosts, which consists
of the majority of dialup- or broadband-network-connected hosts. By providing a fixed name
for the same user while the IP address may change, the user can open her/his own servers to the
public without obtaining the fixed IP address by him/herself. Using (Secure) HTTP, the request
can be sent from networks protected inside firewalls running an HTTP proxy.

Figure 2.13 is another example of updating DNS database using dynamically-assigned IP
address, running at the author’s home since November 2001 [60, 61]. Host X in Figure 2.13,
which has the dynamically-assigned global IP address, explicitly performs the data update by
rewriting the database of a DNS server running in Host Y, using Secure Shell (ssh) protocol
based on OpenSSH [62] with the public-key authentication scheme. Host Y advertizes the A
RR for Host X so that Host X is accessible through the assigned address from the CATV ISP.
While this is not a solution for handling many dynamic-IP hosts, it is a practical solution for a

small system to add a globally-accessible address at a minimum cost.

2.6 Concluding Remarks

In this chapter, the author described the architectural issues of DNS and defined the trans-
port protocol being analyzed and evaluated in this dissertation, and described the emerging
new issues such as migration support from IPv4 to IPv6, RR and payload authentication using
DNSSEC, and dynamic update of DNS database.

Since the role which DNS plays becomes more and more versatile and complex, the
payloads it handles also become more complex and of larger size. While the system design of
Root Servers has already been affected as shown in Section 2.2.6, the number of RRs exchanged
in a single payload continues to increase, due to many reasons including addition of signature
RRs by DNSSEC, transactional authentication of each payload by TSIG and SIG(0), and the
simple increase of the complexity of systems connected to Internet.

The payload length will also increase as IPv6 becomes more popular. The cost of having
IP addresses allocated becomes much lower than that in the current limited IPv4 address space,
so more AAAA RRs will have to be exchanged in a single payload. The details are addressed
in Chapter 3.

The reliability of DNS exchange will become a more critical issue, as dynamically modi-
fying the DNS database contents becomes popular. Exchanges for DNS database update should
be protected with digital signature and a reliable lower-layer transport protocol such as TCP to
ensure the atomic transaction. On the other hand, the overhead of TCP is significant comparing

to that of UDP on operating a large-scale system using dynamic DNS update, so a faster reliable

32 CHAPTER 2. DNS ARCHITECTURE AND THE TRANSPORT PROTOCOL

protocol is desired.

In the following chapters, the author addresses the two specific problems, DNS payload
length increase and a faster reliable transport protocol implementation for DNS, through the
analysis of simulation of migration to IPv6, and the evaluation of implementing T/TCP to DNS

programs.

Chapter 3

DNS Payload Length Increase during
Transition to IPvé6

3.1 Introduction

The DNS transport protocol, which handles the query-and-answer exchange between DNS re-
solvers and servers, is designed upon an assumption that the length of data exchanges in each
query does not exceed a few hundred bytes. Under this assumption, the 512-byte limit of UDP
payload and the protocol fallback to TCP for a larger payload are imposed.

While the current assumption of DNS transport payload length works well on the current
Internet infrastructure mostly based on IPv4, the recent protocol enhancement trends, such as
the migration to IPv6, increase the length of payload and also increases the percentage of the
payloads larger than 512 bytes. For example, AAAA RRs, representing a 16-byte IPv6 address
for a domain name, will become a major portion of queried RRs instead of A RRs, representing
a 4-byte IPv4 address, which currently takes a major portion of DNS database answers. This
indicates that the payload length of DNS answers will increase as Internet migrates from 1Pv4
to IPv6.

The 512-byte payload limitation has already become a major operational issue of DNS.
The maximum number of Root Servers, the authoritative servers of the Root Zone information,
is only 13, due to this limitation. Increasing the number results in generating massive TCP
traffics being fallen back from the failed UDP requests, and is not practical. The IPv6 migration
of Root Servers will result in the same manners due to the larger requirement of data length to
represent the addresses. This issue is also applicable to all large-scale DNS servers serving the
same zones.

In this chapter, the author discusses the issues which arises during the migration to IPv6
due to the DNS UDP payload length limitation, and quantitatively analyze how the issues affect
the DNS traffics by simulating the payload length of added or changed RRs during and after the

33

34 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

Table 3.1 Change in PTR RRs from IPv4 to IPv6

IPv4 | 111.222.123.234 — 234.123.222.111.in-addr.arpa

IPv6 | 0123:4567:89ab:cdef:1213:2324:3435:4647 —
7.4.6.4.5.3.4.3.4.2.3.2.3.1.2.1.f.e.d.c.b.a.9.8.7.6.5.4.3.
2.1.0.ip6.arpa

migration from IPv4 to IPv6, by using the real-world DNS database traffic data [63, 64]. The
author then proposes possible solutions such as EDNSO [6], a DNS protocol enhancement, and
comparatively evaluate the levels of improvement for each solution.

In the later sections, the author describes the details of increasing trend of DNS pay-
load length on Section 3.2, and the methodology to perform real-world DNS traffic analysis on
Section 3.3. On Section 3.4, the author explains the details of the simulation conditions and
algorithms used in the real-world DNS traffic analysis, and on Section 3.5 the author evaluates
possible solutions for handling the larger payload length. The author concludes this chapter on
Section 3.6 with a discussion of a roadmap for implementing DNS protocol enhancements to

handle the larger-length payloads.

3.2 The Increasing Trend of DNS Payload Length

In this section, the author describes the trend and causes of increasing length of DNS transport

protocol payloads and the transferred RRs, and how the trend affects the DNS traffic behavior.

3.2.1 Change of Type and Increase of Length of RRs Due to Migration to
IPv6

The following issues also shown in Figure 3.1 should be considered for change of type and

increase of length of RRs during the migration from IPv4 to IPv6:

e On DNS, an AAAA RR (RFC3596 [65] Section 2) is used for a reference of an IPv6
address from a domain name. In this chapter, the author solely focuses on AAAA RRs
to represent IPv6 addresses. The other proposed address resolution method using A6 and
DNAME RRs [66] is now considered experimental and the AAAA RRs are considered
preferable for the production deployment of IPv6 (RFC3363 [67] Section 2) after an
extensive discussion in IETF dnsext and ngtrans working groups [68].

As the migration from A RR to AAAA RR proceeds, the length of each RR representing

3.2 THE INCREASING TREND OF DNS PAYLOAD LENGTH 35

reference through A RR -

{ domain names

IPv4 addresses ’

AN

reverse—lookup
through PTR RR to in-addr.arpa

reference through AAAA RR

Vs

IPv6 addresses 1

AN

reverse—lookup through PTR RR to ip6.arpa

Figure 3.1 Change of RR reference methods by the migration from IPv4 to IPv6

IP address increases. While A RR for IPv4 (RFC1035 Section 3.4.1) defines 32-bit (4-
byte) address value to the RDATA field for a domain name, AAAA RR for IPv6 defines
128-bit (16-byte) address value instead.

e To perform reverse lookups, which is references from IP addresses to the corresponding
domain names, the domain in-addr. arpa is used for IPv4 addresses (RFC1034 Section
5.2.1). On IPv6, the domain ip6.arpa (RFC3596 Section 2.5) is used instead.

The length of PTR RRs for reverse lookups gets longer as the migration from IPv4 to
IPv6 proceeds. Table 3.1 shows that while the reverse-lookup domain name length for

IPv4 is 28 bytes in maximum, the length increases to 72 bytes maximum for IPv6.

As the length of RRs increase, the author predicts that the following changes will occur

for the queries and answers over DNS transport protocol:

e The length of RRs for IP-address lookups will change during the migration from IPv4 to
IPv6, proceeding through the phases of IPv4-and-1Pv6 coexistence and the completion
of the migration to IPv6 and the phasing out of IPv4, as follows:

— When an A RR for IPv4 address is replaced by an AAAA RR for IPv6 address, the
length increases by 12 bytes as the address length changes from 32 bits to 128 bits.
— To add a RR of IPv6 address for an IPv4 host, the length of RRs for the IP v4-and-v6
addresses of the host increases by at least 28 bytes. The increased portions consist of
the 2-byte domain index information compressed as described in RFC1035 Section
4.1.4, 10-byte header for the AAAA RR, and 16-byte RDATA of the AAAA RR

which contains the IPv6 address.

36 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

query MX | NS A
information RR | RR | RR

query MX | SIGRR| NS | SIGRR| A | SIGRR
information RR | forMX | RR | for NS RR for A

NN

signing MX RR signing NS RR signing A RR

Figure 3.2 How each RR is signed by the corresponding signature RR on DNSSEC

e The change of reverse-lookup namespace from in-addr.arpa to ip6.arpa will result
in the length increase of the payload, which contains the answer for the reverse-lookup
by 48 bytes maximum for each reverse-lookup query. This will not affect much on the
cumulative payload length, however, since the length of the domain name used for the
reverse lookup is compressed to 2-byte index information as described in RFC1035, and

the length of PTR RRs of the answers does not change.

3.2.2 Other factors to Increase DNS Payload Length

The following two factors, other than the migration to IPv6, contribute for increase of DNS Pay-
load Length. These factors are not direct results of the migration to IPv6, but are the results of
DNS functional enhancements and ongoing change of Internet usage, and should be considered

for finding out the future direction of DNS transport protocol.

e The introduction of DNSSEC [8] requires each RR to have an additional public-key
signature RR (SIG RR, shown in Figure 3.2). In RFC3226 [48] Section 2.1, the length
for the signature RR is predicted between 80 to 800 bytes, and most of the RRs are equal
or less than 200 bytes.

e It becomes more common that DNS servers return multiple numbers of RRs for a single
query is increasing. For example, in the Web virtual domain service, the same IP address
is shared for multiple domain names. In this case, a reverse-lookup request for a virtual-
domain IP address causes all corresponding domain names to be returned as multiple
PTR RRs. Another common example is to randomly return multiple IP address values for

a DNS query of a Web server domain name, for balancing the processing load throughout

3.3 METHOD OF REAL-WORLD DNS TRAFFIC ANALYSIS 37

Campus network core switches
(dual—path system for redundant operation)

Campus
internal The
networks Internet

P d

-~

traffic mirrored here

N
&C monitoring system)

Figure 3.3 System diagram for collecting DNS traffic

multiple hosts. These practices cause increase of the number of RRs to be returned to a

single DNS query.

3.2.3 How the DNS Payload Length Limitation Affects the Root Zone

In the current DNS operation, answers from the Root Servers, the set of DNS servers which
provides the zone information of the Root Zone, the top level of the DNS hierarchy, are most
affected by the DNS UDP payload length limitation of 512 bytes.

Currently the domain names of Root Servers have 13 names under root-servers.net
domain such as a.root-servers.net, whose third-level symbol is from a to m. Under the
current limitation of 512 bytes, no more Root Servers can be added, due to the operational
recommendation to restrict TCP queries to the Root Servers as little as possible for prevent-
ing the processing load increase. By this limitation, neither new server nor new IPv6 address
can be added or assigned to the Root Servers. The author discusses the detail of this issue in
Section 3.5.7.

3.3 Method of Real-World DNS Traffic Analysis

In this section, the author describes the method to collect the real-world traffic data of DNS and
the analysis of the collected data in details, for the further simulation of DNS payload length

change during the migration from IPv4 to IPv6.

38 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

Table 3.2 Numbers of DNS answers collected for the analysis

starting and ending numbers of TCP/
times of each measurement answers UDP
(JST: Japan Standard Time) TCP UDP (%)

28-NOV-2003 0836~2035JST | 7387 | 6249736 | 0.118
16-DEC-2003 0047~1246JST | 4581 | 2997881 | 0.153
Total 11968 | 9247617 | 0.129

Table 3.3 Numbers and percentage of characteristics in collected DNS answers with TCP

Characteristics 28-NOV-2003 16-DEC-2003

Single TKEY RR 6838 (92.6%) | 4018 (87.7%)
Non-TKEY RRs of length >512 51 (0.7%) 61 (1.3%)
Non-TKEY RRs of 1 <length <512 | 341 (4.6%) | 334 (7.3%)
Others 157 (21%) | 168 (3.7%)

(Iength values are in bytes)

3.3.1 Collecting the Raw DNS Traffic Data

Figure 3.3 shows the diagram of the system used to collect the raw DNS traffic data. In this
diagram, a monitoring system tapped into one of the two core switches which handled the
traffic between inside and outside of a large-scale campus network, of Osaka University. Each
core switch randomly forwarded the packets, and provided redundancy in case of a failure
of either one of the switches. The switch connected to the monitoring system duplicated the
packets using the mirroring function, and fed the mirrored traffic to the monitoring system.
The monitoring systems was connected to the switch through a 1000BASE-SX optical Ethernet
link, running FreeBSD [29] as the operating system and snort [69] as the packet-collecting
software. UDP packets of non-zero fragment offsets were ignored during the analysis.

The traffic monitoring was performed twice in the JST (Japan Standard Time) morning of
November 28th, 2003, and the late night of December 16th, 2003, each continued for 12 hours.
The analysis of each DNS packet was performed by tcpdump [70] with modification of support
detailed analysis of DNS-specific attributes.

3.3 METHOD OF REAL-WORLD DNS TRAFFIC ANALYSIS 39

3.3.2 Choosing the Data to Analyze

In this chapter, the author decides to analyze only the UDP packets over IPv4, whose source or
destination port numbers are 53, assigned to the DNS protocol. The analysis is only performed

on DNS answers, not on the queries. The following four list items are the reasons:

e In the real-world DNS operation, most of the DNS traffics are on IPv4, and the per-
centage of IPv6-only DNS traffic is very small. For example, Root Servers have no
IPv6 address assigned. Two of the four authoritative servers of ip6.arpa, the IPv6
reverse-lookup domain, can only be queried through IPv4. A guideline of IPv6 DNS op-
eration [51] suggests that all DNS servers should be capable to serve on IPv4 networks
to prevent name space fragmentation between IPv4 and IPv6 DNS name spaces.

e The frequency of RR queries and answers by TCP is 0.12%~0.16% of that by UDP as
shown in Table 3.2. About 9 out of 10 RR answers by TCP are TKEY RR [71], used for
secret-key exchange of DNSSEC TSIG authentication [41], as shown in Table 3.3. The
number of all of the other RR answers were between 500 to 600 for each traffic collected
twice, which is only 0.01%~0.02% of the number of total RR answers by UDP. The
author concluded that the RR answers by TCP could be excluded from the simulation of
the migration from IPv4 to IPv6.

e The length of DNS name must not exceed 255 bytes (RFC1035 Section 2.3.4). When
a DNS name is converted as QNAME embedded in a DNS query, 2 bytes are added,
so the maximum length is 257 bytes. The possible maximum payload length of a DNS
query is 273 bytes, adding 12 bytes of the header, 2 bytes of QTYPE and 2 bytes of
QCLASS fields (RFC1035 Section 4.1.2), much smaller than 512 bytes. This indicates
that excluding DNS queries does not affect the evaluation criteria of whether exceeding

512 bytes or not for each DNS payload.

Table 3.4 shows the percentage for each type of RRs in collected DNS answers. Compar-
ing the A and AAAA RRs shows that A RRs take more than 40% of the all RRs, while AAAA
RR take only 0.8% to 2% of the all RRs. This indicates that the RRs for IP addresses take the
major part of DNS answers, and that the migration to IPv6 has not much proceeded.

By collecting the payload length, the number and type of RRs contained for each DNS

answer payload, a simulation which verifies the prediction in Section 3.2.1 can be performed.

40 CHAPTER 3.

DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

Table 3.4 Percentage of RRs in collected UDP DNS answers

RR Type 28-NOV-2003 | 16-DEC-2003
A 40.17% 42.69%
AAAA 0.87% 1.95%
CNAME 0.94% 0.59%
MX 1.26% 1.73%
NS 35.64% 39.22%
OPT 16.32% 9.12%
PTR 0.84% 0.98%
SOA 3.96% 3.73%
Others < 0.01% < 0.01%
Number of total RRs 22642277 14460833

3.4 A Simulation of Transition Period to IPv6

In this section, the author predicts how the trend of DNS payload length will change during and
after the migration from IPv4 to IPv6, by simulation of performing recalculation of the payload

length to the real-world traffic data.

3.4.1 How the Payload Length Increase Is Simulated

The simulation of payload length increase is performed for the following two cases:

IPv4+IPv6 co-existing phase Assuming that each host represented by a domain name adds
one AAAA RR for each existing A RR during the co-existing phase of IPv4 and IPv6,
the payload length is increased by 28 bytes for each A RR in the collected DNS answer.

IPv6 migration-completed phase Assuming that each existing A RR is replaced by a newly-
assigned AAAA RR for each host represented by a domain name after completion of
the migration to IPv6, the payload length is increased by 12 bytes for each A RR in the

collected DNS answer.

The above simulation process is performed over all A RRs included in the answer section
and the additional section.
The simulation process does not consider the domain names which have already both A

and AAAA RRs assigned. The number of as the statistics in Table 3.4 shows, however, that the

3.4 A SIMULATION OF TRANSITION PERIOD TO IPV6 41

number of A RRs in the collected DNS answers are more than 20 times of that of AAAA RRs,
so the author considers performing simulation only on A RRs is sufficient to predict the overall
change of DNS answers.

RFC2181 [5] Section 9 suggests that if the payload length exceeds the limitation and the
TC bit of DNS header is set solely because of the RRs in the additional section which are not
requires to be sent together with the (required) answer section, the RRset (set of RRs) that will
not fit in the response should be omitted and the answer payload sent as is, with the TC bit
cleared, to make the length below or equal to the limit value of 512 bytes.

In this chapter, the simulation process are performed in the two set of cases, whether ARs
(Additional Records, RRs in the additional section of a payload) are contained or not contained
in the answer payload.

On the actual DNS operation, complete removal of ARs may cause malfunction on DNS
lookups [72]. The IP-address RRs contained as ARs are usually the addresses of NS RRs in
the same DNS answer payload, and are essential to reduce the total number of queries for the
address resolution. The author claims that the selective removal or choice of ARs should be
considered as a operational issue under the 512-byte payload length limitation and that the ARs
should be preserved as possible. In the later simulation and analysis, the author mainly focuses

on the cases where ARs are fully contained in DNS answer payloads.

3.4.2 Analysis of The Simulation Results

Table 3.5 shows the statistics of collected DNS answers and the result of simulation by adding
or replacing AAAA RR to A RR in the answers.

In either case removing or leaving ARs in the DNS answers, the mean value (u) and the
standard deviation (o) are increased after the addition or replacement of AAAA RR. In the
case when ARs are contained in the answer payloads, the percentage of payloads larger than
512 bytes is increased from less than 0.04% of the collected data to 1~3% after the simulation
is performed. In the case when ARs are removed in the answer payloads, the percentage of
payloads larger than 512 bytes is 0.001~0.002% of the collected data, about 1/10 ~ 1/20 of
that of the case when ARs are contained and becomes much smaller, but even in this case after
the simulation is performed the percentage increases to 0.06~0.14%.

According to the simulation results, in either case removing or leaving ARs in the DNS
answers, the percentage of payloads larger than 512 bytes after the simulation is increased to
20~100 times of that before the simulation.

Table 3.6 shows the classification of characteristics in RRs of collected UDP DNS an-

swers, such as the answer of the queried server itself, referring to other servers, or other protocol

42 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

Table 3.5 Statistics for the simulation results

for 6249736 samples of 28-NOV-2003
u o max | >512
raw data w/o AR 81.80 52.73 | 1149 | 0.001
raw data with AR 108.26 | 79.68 | 1192 | 0.023
AAAA+A w/o AR 89.14 | 66.66 | 3025 | 0.136
AAAA+A with AR | 149.01 | 142.28 | 3124 | 2.117
AAAA—A w/o AR 84.95 | 57.74 | 1953 | 0.075
AAAA—A with AR | 125.72 | 105.98 | 2020 | 1.124

for 2997881 samples of 16-DEC-2003

U o max | >512
raw data w/o AR 102.28 | 53.57 | 944 | 0.002
raw data with AR 137.90 | 87.16 | 1112 | 0.035
AAAA+A w/o AR 110.58 | 66.02 | 1485 | 0.128
AAAA+A with AR | 195.55 | 155.43 | 2285 | 2.772
AAAA—A w/o AR | 10584 | 57.82 | 973 | 0.064
AAAA—A with AR | 162.60 | 115.83 | 1533 | 1.656

(: mean value (bytes)

o unbiased standard deviation (bytes)
max: maximum payload length (bytes)
>512: % of payloads longer than 512 bytes
w/o AR: without Additional Records

errors. The percentage of the answers by the queried servers themselves is 20~28% of the total.
The percentage of the reference to other servers is 28~39% of the total, and the author claims
this indicates the difference of the payload length between the cases with or without ARs.

Table 3.7 shows the statistics of QNAME length in the collected DNS answers. The
number of samples for December 16, 2003, is 14 smaller than that shown in Table 3.5. The
14 packets are illegal ones from the same host and has no valid QNAME field, so they are not
counted as samples for the statistics.

The mean value of QNAME length is 22~23 bytes, 17~21% of the mean value of the
whole payload length. This indicates that the major portion of DNS payloads are notr QNAME

but other answer records.

3.4 A SIMULATION OF TRANSITION PERIOD TO IPV6 43

Table 3.6 Percentage of characteristics of RRs in collected UDP DNS answers

Characteristics 28-NOV-2003 16-DEC-2003

Answer with authority (1) 1730603 (27.7%) | 1070553 (19.5%)
Server errors (2) 1217000 (19.5%) 168369 (5.6%)
Referral to other servers (3) 1763301 (28.2%) | 1164987 (38.9%)
Others 1538432 (24.6%) | 593972 (19.8%)

(1) ancount>0 in the header, or RCODE in the answer shows NXDOMAIN or codes
related to DNS UPDATE [9], which means that the server itself replies the existence
or non-existence of the queried RR in the served zones

(2) Protocol errors such as SERVFAIL, FORMERR, NOTIMP

(3) nscount>0 and ancount=0 in the header

Table 3.7 Statistics for the QNAME length

u o | max
28-NOV-2003 (6249736 valid samples) | 22.49 | 5.65 | 193
16-DEC-2003 (2997867 valid samples) | 23.59 | 6.18 94

: mean value (bytes), o: unbiased standard deviation (bytes)

max: maximum QNAME length (bytes)

Figure 3.4 shows the distribution of QNAME in the collected DNS answers of December
16, 2003. The CDF (Cumulative Distribution Function) shows that the percentage of DNS
payloads whose QNAME length is equal to or larger than 43 bytes is less than 0.2% and very
rare.

Figure 3.5 shows the distribution of the number of A RRs for each of the collected DNS
answers of December 16, 2003. The author presumes that the reason why number of packets
which the number of RR is 13 outstands is that the number of RRs for frequently-accessed
zones such as the Root Zone and gTLD (generic Top Level Domain) zones (.com, .net, etc.)
is 13.

The author also observed a payload with 75 RRs, which actually contained fragmented
part of a payload longer than MTU (Maximum Transmission Unit). By performing the same
query again by TCP later resulted in the unfragmented complete answer which has 150 RRs
and 2665 bytes of payload length.

Some examples of payload length distributions for collected and simulated DNS answers

44 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

100
90
80
70
60
50

ratio (%)

CDF (%)

40
30
20
10

QNAME length for each payload (bytes)

Figure 3.4 QNAME length and the CDF for each DNS answer of 2997867 samples col-
lected on 16-DEC-2003

of December 16, 2003, are shown as follows; the raw collected data as Figure 3.6, the simulated
data with an AAAA RR added for each existing A RR as Figure 3.7, and the simulated data with
existing A RRs replaced by AAAA RRs as Figure 3.8. These figures show that the percentage
of payloads larger than 512 bytes increases when AAAA RRs are added or replace the existing
A RRs.

Figure 3.9 shows the CDFs of collected and simulated DNS answers, magnified to show
the difference of the percentage of over-512-byte payloads before and after the simulations.
While the percentage of over-512-byte payloads is less than 0.1% in the collected data, the
percentage increases to ~2.77% for the simulation data of AAAA RRs added to A RRs, and to
~1.66% for the simulation data of AAAA RRs replaced A RRs.

3.5 Solutions for Handling Larger Payload Length

In this section, the author evaluates proposed solutions for handling larger DNS payloads and

how effective they are.

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH 45

for 2997881 samples of 16-DEC-2003

2.059
le+07 Frr—1 | | | | | | :
Te+06 [} oo S SR S SRR AR AR
L 100000 et {{ T} SRR R SRR R A
2 SR , , , , ,]
4 - i
2 UL e o] T . .. L T o
g 10000 fr - ; : ; : : : ;
S L]
£ 1000 AT s R R R T
E Hl . X R X X X X X 4
E .
= 11 H
100 et
10 |
(LT
0 10 20 30 40 50 60 70 80

(Number of A RRs / u=2.059, 0=2.582)
Figure 3.5 Numbers of A RRs for each DNS answer of 2997881 samples collected on 16-DEC-2003

for 2997881 samples of 16—DEC-2003 / sampled data

513
1le+06 = T T T T T T T T
100000 EH| {111 = —
E 10000:—"" "—
S |
Q‘ - -
S 1000 H SR
E L | 4
< L
g - = i
10 H| 1 R R
I | [I | I I |

0 256 512 768 1024 1280 1536 1792 2048 2304
payload length (bytes)

Figure 3.6 DNS answers of 2997881 samples collected on 16-DEC-2003

46 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

for 2997881 samples of 16-DEC-2003 / AAAA RR added to A RR

513
1le+06 F= T ! T T T T T T
100000 -_____-____—
% 10000 £ |1 SRR R i i
A L | 4
2 - L
Q_‘ - —_ -
S 1000 & i E I I
5] -]
Ra) M _
g = HIHTL i
2 100 F - SRS
R AAAAGRRRAAAM G H --------- H_
1_ —H I I |

0 256 512 768 1024 1280 1536 1792 2048 2304
payload length (bytes)

Figure 3.7 Result of a simulation adding an AAAA RR to each A RR for the DNS an-
swers of 2997881 samples collected on 16-DEC-2003

for 2997881 samples of 16-DEC-2003 / AAAA RR replaced A RR

513
1le+06 = T T T T T T T T
100000 £ {11 _"__—
% 10000 £ — [
i/]
g M=
o L || 4
T 1000 F N
E L | i
E - __ .
10 H|H- IR R R PR
1_ | I I |

0 256 512 768 1024 1280 1536 1792 2048 2304
payload length (bytes)

Figure 3.8 Result of a simulation replacing each A RR to an AAAA RR for the DNS
answers of 2997881 samples collected on 16-DEC-2003

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH

47

for 2997881 samples of 16-DEC-2003

513
100 I/J//T I ki Ui ‘.I.//'ﬁ
o8 T
~ 96 _:
§ Jl
m r
®
94
92 -
Originally sampled data
: AAAA added to A
: AAAA replalced A==
90 L [|
400 500 600 700 800
payload length (bytes)

Figure 3.9 The CDF of DNS answers for 2997881 samples collected on 16-DEC-2003

and the simulation results

3.5.1 Prediction from Simulation Results

The result of the simulation in Section 3.4 shows that the percentage of DNS UDP payloads
larger than 512 bytes increase from less than 0.04% to 1~3% during and after the migration
from IPv4 to IPv6. This causes higher attempt rate of TCP retransmission of the larger payloads,

and affects all DNS servers, so workarounds to reduce the impact should be established.

3.5.2 Payload Length Extension and Effects of EDNS0

An extension of DNS transport protocol called EDNSO [6] is proposed to cope with the limita-
tion of 512-byte maximum UDP payload length of DNS by RFC1035. EDNSO defines a pseudo
RR called OPT, which does not accurately fit into a definition of RR since it does not carry a
pointer or a related data of a domain name. In this chapter, however, the author calls it as OPT
RR since it has the data format of RRs.

On the EDNSO protocol procedure, the servers and resolvers exchange the maximum
length of UDP payloads which they can handle using the OPT RR so that they can exchange
over-512-byte payloads.

48 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

queries with OPT RR

server

EDNSO—-capable ’

answers with OPT RR
(>512 bytes per payload)

EDNSO-capable
resolver

queries with OPT RR

EDNSO—-unsuppoted
server

OPT-RR-ignored answer
(<= 512bytes per payload)
or SERVFAIL
(resolver will retry without OPT RR)

Figure 3.10 EDNSO negotiation sequence between the servers and resolvers

The protocol negotiation procedure of EDNSO is as follows, also shown in Figure 3.10:

e An EDNSO-capable resolver sends a query with OPT RR to tell the server the maximum
payload length which the resolver can handle;

o If the server which receives the query is EDNSO-capable, then the server responds the
answer with OPT RR to show that the server recognizes the proposed maximum payload
length by the resolver;

o If the server is not EDNSO-capable, it either simply ignores the OPT RR, or returns an
error code such as SERVFAIL;

e The resolver can find out whether the server is EDNSO-capable or not by checking the

existence of OPT RR in the response or by receiving the error code from the server.

Table 3.8 shows the status of EDNSO support among popular DNS servers. BIND [18],
NSD [20], and Microsoft’s Windows 2003 Server [73] are capable to handle EDNSO and can
configure the supported maximum payload length in the source code or by a runtime parameter.
On the other hand, djbdns [19] does not support the EDNSO extension.

Table 3.9 shows the usage details of EDNSO and the specified maximum payload length
from the collected DNS payloads. More than half of the whole answers are with OPT RRs
showing the EDNSO capability of the server. More than 2/3 of the answers have the UDPsize
(acceptable maximum payload length) of 4096 bytes. According to these results, the author
predicts that EDNSO will become a popular DNS extension in the near future.

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH 49

Table 3.8 EDNSO support of popular DNS servers

Server name and the versions EDNSO-capable? maximum length
(yes/no) (bytes)
BIND 8 and 9 (since 8.3.0) yes 4096
djbdns-1.05 no N/A
NSD 1 and 2 yes 4096
DNS Server of Windows Server 2003 yes 1280

(maximum payload length values shown are the default values, configurable in the

source-code or by a runtime parameter)

Table 3.9 Usage details of EDNSO and the specified payload length

for 3694918 answers of 28-NOV-2003 with
OPT RRs (43.97% of 6249736 answers)
UDPsize 512 | 1280 2048 4096
numbers 13 | 1399 | 706497 | 2987009
% <0.01 | 0.038 19.12 80.84
for 1318187 answers of 16-DEC-2003 with
OPT RRs (59.12% of 2997881 answers)
UDPsize 512 | 1280 2048 4096
numbers 1| 1126 | 434632 | 882428
% <0.01 | 0.085 32.97 66.94

The author also considers that the small amount of payloads larger than 512 bytes shown

in Figure 3.6 indicates that some DNS exchanges have already been extended with EDNSO.

3.5.3 The Overhead Imposed by EDNS0

Each OPT RR used for EDNSO to transmit extended maximum payload length values consumes
11 bytes without any other extended fields. The size of OPT RR, however, affects very little to
the overall payload length, provided that the length of other RRs are much larger than the OPT
RR.

According to the measurement and simulation results shown in Table 3.5, the case which

the payload length exceeds 4096 bytes rarely happens. The author claims that if all DNS UDP

50 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

payloads could carry 4096 bytes as the maximum length by an EDNSO extension, almost all the
TCP retransmission of DNS payloads during or after the migration from IPv4 to IPv6 could be
suppressed.

For implementing EDNSO on DNS resolvers and servers, the memory area consumed for
the data buffers of DNS payloads increases as the maximum payload length gets larger, but
these buffer area will not become a significant processing overhead since they can be released
immediately after the DNS query-and-answer transaction is complete.

For example, BIND version 9.2.3 has fixed-length buffer length for transmitting and re-
ceiving the DNS payloads regardless of EDNSO extension. The internal data structure for
EDNSO has the total size of 60 bytes for the 1386 architecture, which consists of the mem-
bers of the structure ns_client called udpsize and opt, and the structure dns_rdataset
used to store the OPT RR.

Assuming the internal data structure, if the server needed to keep 100000 simultaneous
processing states, the memory area required for storing the states would be ~6Mbytes, which
can be stored without significant performance overhead on the modern computer hardware.

The UDP payload length increase enabled by EDNSO will result in fragmentation of a
UDP datagram to multiple IP packets due to the limitation of IP MTU length as shown in
Figure 3.11.

IPv6 defines the minimum value of MTU to 1280 bytes (RFC2460 [74] Section 5). A
unfragmented IPv6 packet of minimal configuration, with the IPv6 basic header (40 bytes as in
RFC2460 Section 3) and the UDP header (8 bytes), can contain 1280 — (40 + 8) = 1232 bytes
of the UDP data payload. If the UDP payload of IPv6 exceeds 1232 bytes, each IPv6 packet
must be sent with the fragment header attached by the host since on IPv6 the routers will simply
discard the oversized packets without the fragment header.

The simulation results of AAAA RRs added to A RRs including ARs, which gives the
largest payload length, shows that the percentage of payload length larger than 1232 bytes is
~(0.006% of the data based on the collected traffic of November 28, 2003, and is ~0.018% of
the data based on the collected traffic of December 16, 2003. Considering that ~3% of the DNS
answer payloads become larger than 512 bytes after performing the simulation, ~99% of the
UDP packets carrying the payloads larger than 512 bytes is predicted to be delivered without

fragmentation.

3.5.4 TCP Overhead and the Improvement by T/TCP

DNS transport protocol falls back from UDP to TCP when the payload length exceeds 512
bytes. Due to the 3-way handshake procedure of TCP, a DNS exchange over TCP requires at

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH 51

IPv6 packet
IPv6 UDP UDP data (2000 bytes)
header header
40 bytes 8 bytes

first fragment of
IPv6 packet (max. length: 1280 bytes)

L IPv6 fragment UDP
T header header header | UDP data (1225 bytes)
40 bytes 7 bytes 8 bytes

~<— second fragment packet (822 bytes) ——

IPv6 fragment
T header header | UDP data (775 bytes)
40 bytes 7 bytes

Figure 3.11 An example of IPv6 UDP fragmentation

least 5 packets. On UDP, only 2 packets are required instead.

Introducing T/TCP [21], a TCP protocol enhancement, reduces the number of packets
for each exchange from 5 to 3 for the second and later exchanges between the same pair of
resolver and server [75]. The traffic overhead of TCP fallback of DNS transport protocol can
be reduced using T/TCP, as well as shortening the timeout period of disconnection to =~ 1/8th
of the traditional non-T/TCP timer value [21].

The features of T/TCP can be enabled by setting a run-time flag on FreeBSD, and can also
be used on Linux [76]. The memory area overhead for T/TCP is minimal even if it exists, since
T/TCP-capable operating system such as FreeBSD reserves T/TCP-specific memory structure
for the TCP processing code.

T/TCP retains the reliability of TCP by the retransmission algorithm of TCP, and it has
no requirement of application-level retransmission due to the fragmentation of the payload.
Extensive use of TCP for TKEY RR exchange as shown in Table 3.3 is due to the requirement
to reliable communication for key exchange of DNSSEC.

The author considers T/TCP is even more useful for exchanging DNSSEC payloads over

52 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

legacy DNS No direct exchange
resolvers between legacy and extended
DNS programs allowed

(extensions
unsupported)

extension—

suppored
DNS servers

" extension—
capable
DNS cache

(increasing efficiency of DNS transport by
adding extension capabilities to legacy resolvers)

Figure 3.12 Increasing DNS transport efficiency by putting legacy resolvers behind an
extension-capable cache

IPv6. Depending solely on EDNSO and the UDP payloads may result in fragmentation of
the UDP datagrams. RFC3226 Section 3 requires DNSSEC-capable servers and resolvers to
be able to handle at least 1220 bytes of payload length as the minimum, and suggests being
able to handle the payloads of 4000 bytes or more. Since the minimum guaranteed length
of unfragmented UDP payload on IPv6 is 1232 bytes, only 13 more bytes than the minimum
length are needed for a DNSSEC payload to cause IP-level fragmentation over IPv6, so the
possibility of IP-level fragmentation of DNSSEC payloads over IPv6 is much higher than the
non-DNSSEC payloads over IPv6.

The examples in DNSSEC’s RFC2535 Section 5.4 show that 640-bit (80-byte) SIG (sig-
nature) RR is attached for each RR to be signed. The header for each SIG RR is at least 20
bytes even when the signer’s name is compressed as described in RFC1035 Section 4.1.4, so
the minimum length of each SIG RR is 100 bytes. Considering the example of the Root Zone, if
the all 13 NS RRs representing the 13 Root Servers are signed, the corresponding SIG RRs con-
sume 1300 bytes by themselves and have already exceeded the limit of maximum 1232 bytes

for unfragmented UDP payload of 1Pv6.

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH 53

List of reachable
addresses for

the same host
Randomly—chosen

ARR #1 RRs to pack into
A RR #2 \mited size of payload
ARR#3 ARR #1
A RR #4 A RR #4 sent back to
ARR#5 A RR #6 the resolver
ARR #6 / AAAA RR #4

AAAARR #1

AAAARR #2

AAAA RR #3

AAAA RR #4

Figure 3.13 Choosing A and AAAA RRs ramdomly to fit them into a limited size of DNS payload

3.5.5 Using DNS Cache to Hide Extension-uncapable Servers and Re-
solvers

Most of the existing DNS resolvers and servers are not capable to handle protocol extensions of
EDNSO as in Section 3.5.2 and T/TCP as in Section 3.5.4. Those legacy resolvers and servers
can be hidden behind a extension-capable DNS cache and use the cache as a protocol converter
and relay program as shown in Figure 3.12. Mandating the usage of DNS cache for legacy
DNS programs is a practical workaround for daily DNS operation to prevent the performance

degradation caused by the DNS UDP payload length limitation.

3.5.6 Selecting IP Addresses to Answer for a Query

To prevent increasing of the payload length and avoiding protocol fallback of the current DNS
UDP payload length limitation, the server selectively change the RRs to answer if multiple RRs
are included.

For example, tinydns, a non-recursive DNS server program of djbdns, limits the num-
ber of A RRs in the answer to 8 and randomly choose the A RRs if the multiple A RRs should
be answered for the queried name. For RRs representing IP addresses such as A and AAAA
RRs, the host should respond in the same way whichever the IP address is used for a connection,

so narrowing the choice of address-representing RRs will not cause an operational problem, as

54 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

shown in Figure 3.13.

This sort of selective-answering strategy is effective to reduce the length of payload of
DNS answers. Omitting the ARs specified in RFC2181 as described in Section 3.4 is another
example of the same strategy to reduce the payload length by not sending the RRs which can
be excluded from the answer RRs.

On the other hand, the selective-answering strategy is not applicable for RRs which cannot
be omitted such as TXT RRs. The selective-answering of address-representing RRs is not
unlimitedly applicable either from the DNS-operational point of view, since it is suggested that
at least two or more address-representing RRs should be answered as ARs for an NS RR for
stable DNS operation [72]. Durand, Thren and Savola [50] also claim that omitting ARs based
on the transport of the query would be problematic. So this selective-answering strategy is
nothing more than an operating practice of DNS, and should not be considered as a permanent

workaround.

3.5.7 Applying Selective-answering Strategy for IP Addresses of Root
Zone

The selective-answering strategy of IP addresses explained in Section 3.5.6 is applicable to
all DNS zones including the Root Zone. In this section the author discusses the condition
and limitation of returning RRs for multiple servers for queries to the Root Zone. The author
assumes that each Root Server has the one A RR and one AAAA RR at most, and that no
exclusion of valid RRs occurs when answering the set of NS, A, and AAAA RRs for the same
server.

The payload length of query for the SOA RR of Root Zone takes 12 bytes for the header,
5 bytes for the question section. In the authority section 75 bytes are needed for the SOA RR,

including:

o the uncompressed domain name such as a.root-servers.net;

e 13 bytes for the first NS RR as the returned domain name of the authoritative server is
compressed as a 2-byte index referring to that in the SOA RR; and

e 15 bytes each for the second and later NS RRs, whose partial name root-servers.net
in the returned domain name is compressed as a 2-byte index, referring to that of a

previous RR.

For the additional section, each A RR requires 16 bytes and an AAAA RR requires 28
bytes, providing that the domain name is compressed as those in the authority section.

Table 3.10 shows the maximum values of the number of servers within the limit of 512-

3.5 SOLUTIONS FOR HANDLING LARGER PAYLOAD LENGTH 55

Table 3.10 The number of servers n within the limit of 512-byte payload length

Types of RRs returned payload length | maximum n
A RRs only for IPv4-only networks 90 +31n 13
pairs of A RR and AAAA RRs for IPv4+IPv6 networks 90 + 59n

AAAA RRs only for after-migrated-to-IPv6 networks 90 + 43n 9

byte payload length, calculated from the conditions previously mentioned.

The Root Servers are required to selectively choose the number of RRs included in the
answer as in the list above. The processing load of the servers would not be fully balanced and
certain specific servers would have more load, if the selective choice is biased. To balance the
load, randomly choosing the servers is required.

Some popular implementations of DNS servers such as those in BIND and djbdns refer
the 13 IPv4 addresses of the Root Servers as fixed values and load them in the start-up sequence.
An issue arises to decide which set of values takes precedence over the other set, between the
fixed values given at the start-up sequence and the values cached through DNS lookups. A
possible solution is that the start-up fixed values are used when no Root Zone information is
cached in the server program, and that the cached information takes precedence over the fixed
values if it exists. By following this solution updated information from the Root Servers are
used to look up the Root Zone even if the start-up fixed values are obsolete. BIND works as
previously described.

Similar calculation can be performed for non-Root zones. QNAME length of the do-
main name of the zone should be more seriously considered since the maximum length of the
QNAME is 257 bytes, while for the Root Zone the QNAME length is only 1 byte. JPRS [72]
calculates the requirement for the authoritative servers of jp domain, and the result for the max-
imum number of the authoritative servers which can be included in a 512-byte-maximum UDP
payload with both A and AAAA RRs, is 3. This indicates that the maximum number of RRs
which can be answered in a single payload is affected by the length of the name in a DNS zone.

Vixie and Kato [77] have performed a simulation for estimating how many AAAA RRs
could be added to the current set of Root Servers with 13 names under a common parent domain
root-servers.net, and 13 A RRs for the IPv4 addresses. They conclude that adding 2 to 5
IPv6 address (AAAA) RRs would not have a significant negative operational impact on the
domain name system, by allowing selective response in the ARs, which consists of the A and
AAAA RRs.

56 CHAPTER 3. DNS PAYLOAD LENGTH INCREASE DURING TRANSITION TO IPV6

3.6 Concluding Remarks

In this chapter, the author has presented that the percentage of DNS answers exceeding the
512-byte UDP payload size limit, including the additional records, increases from 0.04% to
1~3% during and after the migration from IPv4 to IPv6 with a simulation by packet-length
recalculation, using the real-world DNS traffic data taken from a large-scale campus network.

The author has also presented the effectiveness of EDNS0, a DNS protocol enhancement
to prevent performance degradation by protocol fallback to TCP, and setting the maximum
payload length to 4096 bytes by EDNSO effectively prevents the DNS protocol fallback to TCP
after the migration to IPv6 completes.

The author also discussed the effectiveness of T/TCP, a TCP enhancement, to prevent per-
formance degradation by increase of number of packets exchanged during the resolver-server
exchanges over TCP, and the usefulness of the T/TCP for DNSSEC-based resolver-server ex-
changes over IPv6.

Limiting the payload length by selectively choosing the RRs to answer to a DNS query
was also discussed, although the author claimed that the method should not be considered as a
solution and rather treated be a practical workaround to cope with the current 512-byte limita-
tion of DNS UDP payload length.

The author proposed the following three action items should be realized as soon as possi-
ble over the whole Internet to prevent unnecessary fallback to TCP of DNS transport protocol

and to reduce the DNS server workload:

1. promoting the EDNSO and making the maximum length practically allowed for DNS
UDP payload large enough to accept further increase of DNS payloads and the RR
length;

2. hiding the legacy non-EDNSO resolvers and servers behind EDNSO-capable servers and
caches to reduce the possibility of TCP fallback of DNS transport protocol; and

3. introducing T/TCP to improve the efficiency of TCP exchange itself for DNS.

The further research issues to be resolved include the measurement of DNS traffics on
Root Servers and large-scale Internet service providers [78, 79], and the measurement and esti-

mation of computational overhead and network workload of EDNSO and T/TCP.

Chapter 4

T/TCP for DNS: A Performance and
Security Analysis

4.1 Introduction

Internet systems nowadays are always under continuous and persistent attacks, as the social
and business activities become dependent on Internet. All Internet services are the targets of
the intruders to exploit. DNS is of no exception. DNS security is critical for the stability of
Internet.

Reliable communication transport for DNS is essential to establish an authenticated DNS
exchange by DNSSEC. While extending the UDP payload length by EDNSO is effective for
reducing the overhead imposed by the larger payloads generated by DNSSEC, improving the
efficiency of TCP transport for DNS exchange is also essential to reliably exchange authenti-
cated RRs.

In this chapter, the author focuses on the transport security issues from an administrative
point of view, and proposes an alternative DNS transport with T/TCP (Transactional TCP) [80,
21], for improving the overall security of the DNS. The author describes how T/TCP helps
ensuring the transport security of DNS, by showing the practicality of replacing the current DNS
queries of UDP with T/TCP, through the performance analysis and evaluation. As T/TCP is an
extension of TCP, it preserves many advantages of TCP to UDP, such as reliable error-free data
exchange, sophisticated retransmission algorithm, and the more detailed traffic controllability
on the firewalls.

In the later sections, the author describes the T/TCP fundamentals and the advantages to
traditional TCP in Section 4.2, and the evaluation results of T/TCP used as a DNS transport in
Section 4.3. The author concludes this chapter on Section 4.4 with a discussion of the possible

application fields of T/TCP to improve DNS reliability and the security.

57

58

CHAPTER 4.

T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

client

setup
connection

SYN

SEerver

2RTT accept ‘
+ sending FIN+ACK + query | connection
processing a quety received the quer
time ACK query

N

received the
answer;

ACK

close connection

client

connect and
sending a query

IRTT +
processing time

_____________ o

received the
answer;

sending back the answer

close request received
close connection also

Figure 4.1 Traditional TCP time line

SYN+FIN+PSH + query

SYN+ACK

+ answer
FIN+PSH

close connection

Figure 4.2 T/TCP time line

4.2 T/TCP and Traditional TCP

Server

accept connection
and received query

sending back the answer

close request received
close connection also

In this section, the author describes the fundamentals of T/TCP and how it differs from the
traditional transport protocols, UDP and TCP.

T/TCP is an extension of TCP. The concept model of T/TCP [80] was proposed in 1992
and later updated by the functional specification [21] in 1994. Stevens [81] gives a detailed
analysis of T/TCP as a book chapter. As of March 2003, FreeBSD and Linux operating systems

4.2 T/TCP AND TRADITIONAL TCP 59

have T/TCP-compatible kernels.

4.2.1 T/TCP Communication Model

T/TCP is designed for a transactional use between a connection-based client-server communi-

cation, which proceeds as the following sequence:

e The client sends a request to the server;
e Then the server sends back the reply;

e The exchange completes and the link is disconnected.

Some of the suggested applications of T/TCP include HTTP (Hypertext Transfer Proto-
col), RPC (Remote Procedure Call), and DNS queries [81].

In this chapter, however, the word transactional is solely limited to explain the commu-
nication attribute which T/TCP assumes. The readers are advised that the word transactional
does not mean that the T/TCP itself meets the all requirements of database transactions. For
example, a T/TCP exchange could be duplicated in a certain extreme case such as when the
server host crashes and reboots before sending back the reply for a request from a client. Also,
the protocol does neither support the rollback operation, which is required for the two-phase
commit sequence, nor guarantees the atomicity of the client-server exchange. Those database-
specific properties should be performed by the application programs and protocols, and are out

of the scope of this dissertation, since DNS database queries allow duplicate answers.

4.2.2 T/TCP and TCP Time Lines

Using traditional (non-transactional) TCP for the transactional model of Section 4.2.1 sequence
requires two round-trip exchanges. Figure 4.1 shows the time line of traditional TCP. It shows
that the first of the two exchanges is solely for setting up a TCP connection, while the second
one is actually used for the data exchange.

On the other hand, using T/TCP requires only one round-trip exchange, which is the same
as in the UDP case. Figure 4.2 shows the time line of T/TCP. It shows that the first packet sent
from the client to the server carries the query data as well as the connection request. Putting
the query data on the same packet for the connection request is performed by using the CC
(Connection Count) options of TCP, introduced by T/TCP, to indicate the support and to avoid

duplicate old connections, as described in Section 4.2.3.

60 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

4.2.3 TAO Test

A TCP server needs to find out whether a received packet with the SYN flag set really means a
new connection. Traditionally this is performed by performing the three-way handshake shown
in Figure 4.1, as the client and server acknowledge SYN request with each other.

On T/TCP, a mechanism called TAO (TCP Accelerated Open) is introduced to allow a
T/TCP server to know that a SYN request from a T/TCP client is new, without the three-way
handshake. An identifier called connection count (CC), a 32-bit integer, is assigned to each
connection that a host establishes. The CC cache is maintained per each peer host.

Three new TCP options, CC, CCnew and CCecho, are defined for T/TCP as follows:

e The CC option carries the CC value in an initial SYN segment of the T/TCP client, or in
the other segments if the other end sent a CC or a CCnew option with SYN.

e The CCnew option only appears in an initial SYN segment, when the client needs to per-
form the traditional three-way handshake while indicating the support of T/TCP.

e The CCecho option only appears in the SYN+ACK segment of a three-way handshake
(from a T/TCP server), and echoes the received connection count value of a CC or CCnew

option to tell that the server understands T/TCP.

Each T/TCP host performs the following procedure, called the TAO test, to decide

whether to use TAO or not when a SYN request is received:

e When no cached value of CC is found for a peer host or a CCnew option is received, a
three-way handshake is performed with the CC options and the CC values are exchanged,
and the CC cache for the peer host is initialized.

e If a CC value is cached for a peer host, verification of a CC option in the received packet
is performed:

— If no CC option is found, the CC cache is cleared and the connection falls back to
the three-way handshake sequence.

— If a CC option is found with the received packet, verification for the value of re-
ceived connection count by comparing it to the cached value. If the received value
is greater, the SYN is recognized as a new one and accepted without the three-way
handshake. If not, the CC cache is cleared and the connection falls back to the

three-way handshake sequence.

When the TAO test fails, the data payload carried with the initial SYN request of the
T/TCP is not passed to the application software. By performing the TAO test, T/TCP can avoid

4.2 T/TCP AND TRADITIONAL TCP 61

duplicate old connections without performing the three-way handshake every time.

T/TCP has the overhead for each pair of connected hosts to initialize the per-host CC
cache of both on the client and the server. This initialization is, however, only required to
perform for the first transaction between the two. Once the CC cache is properly initialized, the
client and server pair will use the accelerated handshake sequence for the second and the later
transactions, as long as the CC update is properly continued without external interference such
as an intrusion attack of a spoofed host.

T/TCP CC cache consumes some amount of memory, though it is predictable and does
not impact the system performance unless the available memory space for the kernel is limited.
For example, on FreeBSD 4.7-RELEASE, the T/TCP-specific memory resources are listed as

follows:

e A kernel 4-byte counter tcp_ccgen is allocated for each kernel to give CC values per
each connection;

e For each host, two 4-byte variables called tao_cc, tao_ccsent, and a 2-byte variable
called tao_mssopt, total 10 bytes, are allocated, as a per-host cache;

e For each TCP connection, three 4-byte variables called cc_send, cc_rcvd, and t_

starttime, total 12 bytes, are allocated, as a part of the TCP control block.

For example, when 10000 hosts and 100 simultaneous T/TCP connections per each host
are connected (1000000 connections total), the total number of bytes consumed is (4 + 10 X
10000 + 12 x 100 x 10000) = 12100004 bytes. The memory block of this size is practically
affordable for the PC servers which has usually a few hundred megabytes of the main memory

installed.

4.2.4 DoS Immunity

T/TCP has some immunity against simple DoS attacks which UDP does not, by performing the

TAO test for each transaction. Here are some scenarios:

e For example, in case of a simple DoS attack of multiply sending the same packet, UDP
has no mechanism of rejection. On the other hand, when using T/TCP, the TAO test fails
from the second and later received packets, as it mandates that the CC value must mono-
tonically increase for each transaction. The failure of TAO test leads into the protocol
fallback to the traditional three-way handshake procedure. Without the completion of
the handshake, the data payload in a transaction request packet will not be transferred to

the application software.

62 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

e In case of a distributed DoS attack, meeting the requirement of monotonic increase of the
CC value for each transaction at the server for a successful attack is highly improbable
unless the sequence of received packets from the attacking hosts is thoroughly controlled.

e When the attackers use an spoofed source address of IP packets to anonymize them-
selves, the first CC initialization sequence of the TAO test will not be completed, and the
data payload will not be accepted. If the host specified by the spoofed source address

exists, the host sends an RST packet as the reply for a non-existent connection.

These examples show that the T/TCP does not have a weakness of UDP which blindly
accepts all incoming packets. While T/TCP does not authenticate the data payload itself and
may exchange a larger number of packets than UDP does in case of a successful DoS attack,
the protection of the TAO test gives an advantage to T/TCP from UDP against a DoS attack.

Some of the firewall products have employed the stateful analysis and inspection of traffic,
which means the firewall internally verifies the protocol sequence of TCP. Enhancing this to

verify the CC counts would be helpful for handling T/TCP through a firewall.

4.2.5 TIME_WAIT State

T/TCP has another feature to shorten the time spent in TCP TIME_WAIT state which is to com-
plete full-duplex closing of a connection and to allow old duplicate TCP segments to expire.

The amount of time spent in the TIME_WATIT is traditionally specified as twice the MSL
(Maximum Segment Lifetime). On FreeBSD 4.6.2-RELEASE and the 4.7-RELEASE, the de-
fault MSL is 30 seconds, so the length of TIME_WAIT state for the traditional TCP is 60 seconds.

On the other hand, T/TCP specifies the length of TIME_WAIT as eight times the RTO
(Retransmission Timeout) when the connection duration is less than the MSL. RTO is a dynamic
value estimated using the measured round-trip time on the network link with a pre-defined
minimum value. For example, the minimum RTO estimated by FreeBSD 4.6.2-RELEASE
and the 4.7-RELEASE is 1 second. So the length of TIME_WAIT state of T/TCP is shortened
approximately to 8 seconds, when the actual RTT of the link is much smaller than 1 second.

A smaller length of TIME_WAIT state means a smaller size requirement to the network
control block, and an increase of number of TCP connections which a server host can simulta-

neously handle.

4.2.6 Backward Compatibility

As T/TCP is an extension of TCP, it is backward-compatible with the traditional TCP. When the

server is T/TCP-aware, it can identify the client is T/TCP-aware or not, since a T/TCP-aware

4.2 T/TCP AND TRADITIONAL TCP 63

T/TCP client non—T/TCP server
connect and
sending a query | SYN+FIN+PSH + query

IRTT SYN+ACK accept connection
B & ; but discarding data
FIN
greater value of ACK
1RTT, or

error timeout time - T protocol error occurs — ~ 7

...................... FIN+PSH + query

IRTT + <ACK/ received the query
processing time sending back the answer
IN+PSH + answer

i answer received;

close connection ACK close request 'recelved
ek - close connection also

Figure 4.3 Time line of T/TCP client and non-T/TCP server on FreeBSD 4.6.2-RELEASE

client will send a TCP connection request with a CC option, while a traditional TCP client does
not. Figure 4.1 applies in the case of a traditional TCP client and a T/TCP-aware server.

A fallback procedure must be followed in case of a T/TCP-aware client and a tradi-
tional non-T/TCP server. Figure 4.3 shows the procedure and the time line of FreeBSD 4.6.2-
RELEASE. In this case, the SYN cache [82] of the server discards the data payload on the first
packet, to avoid TCP SYN-flooding, a popular DoS attack which intends to consume the mem-
ory area allocated for the network control blocks. The server does not recognize the CC options
either, so the first packet the client sends is treated only as a connection request. While this
behavior is practically acceptable to protect the server from the possible SYN-flood attacks, it
has an adverse effect of forcing the client to wait for an additional error timeout period for each
transaction. Nevertheless, the backward compatibility of T/TCP to the traditional TCP is still
retained.

Note that in either time line figures of Figures 4.1 or 4.2, the meaning of the ACK bit in TCP
header is left unchanged. The packet filtering rules of allowing only established connections of

TCP are applicable to T/TCP with no need to change.

64 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

4.2.7 T/TCP Programming

Modifying existing network programs to be T/TCP-compatible is a straightforward task, since
the protocol details are all implemented in the kernel of the operating system. For example, on
BSD-derived operating systems, a flag in the include file <sys/socket.h> contains the flag
MSG_EOF to show the T/TCP support. An example of the necessary changes in FreeBSD [83] is

as follows:

e On the server side, using setsockopt () system call for adding TCP_NOPUSH option to
the listening socket is required to avoid unnecessary fragmentation of TCP segments.

e On the client side, the connect ()-write()-and-shutdown() flow of system calls to
initiate TCP connection and sending the query data must be replaced by a sendto()
system call with MSG_EOF flag, since the T/TCP connection is implicitly established by
the sendto () system call. The TCP_NOPUSH socket option is required as well.

To enable or disable the T/TCP functionality of a FreeBSD host, the administrator sets
the kernel MIB (Management Information Base) variable of net.inet.tcp.rfcl1644 to 1 or

0, respectively. This value can be dynamically changed without rebooting the host.

4.2.8 Migration Issues

A few migration issues as follows should be considered on using T/TCP:

e The default state of T/TCP functionality is disabled in FreeBSD 4.6.2-RELEASE, as
the document [21] is still considered experimental in the IETF and the standardization
process.

e The system administrators must be aware that all TCP-related security attacks are also
applicable to T/TCP.

e Some systems with a high security concern is configured to simply ignore the TCP pack-
ets with the SYN+FIN flags to avoid revealing the protocol stack of the operating system.
In this case, T/TCP packets do not get through.

e The migration should begin with the server-side first, to avoid the error-timeout issue

described in Section 4.2.6.
The following is the perspective of the author to these migration issues:

e The reason that IETF status of T/TCP is experimental is that the usage is limited to

a single-query-and-single-answer transactional application. DNS database query will

4.2

T/TCP AND TRADITIONAL TCP 65

largely benefit from T/TCP especially when the query result no longer fits into a UDP
packet because of increasing IPv6 address usage. The author believes some actual de-
ployment of T/TCP for DNS is essential, since T/TCP has already been implemented
and ready to be used.

As T/TCP is an extension of TCP, T/TCP is also prone to the security attacks to TCP. The
author considers, however, that the security risk imposed by the introduction of T/TCP
is minimized by a proper security protection such as the TAO test.

When a system rejects all the SYN+FIN packets, no T/TCP connection request and the re-
ply can be used to communicate with the system. Avoiding usage of T/TCP is a practical
workaround for such a system.

The reason the author suggests to migrate first from the servers is that the programming
needed for the migration is small, such as by enabling the TCP socket option of TCP_
NOPUSH on FreeBSD.

4.2.9 What T/TCP Provides for DNS

The author proposes T/TCP as a replacement of the existing DNS UDP transport. The author

considers that the migration from UDP to T/TCP is feasible by the following reasons:

e T/TCP has the immunity against DoS attacks by the TAO test, as described in Sec-

tion 4.2.3.

T/TCP is backward-compatible with TCP as described in Section 4.2.6. This ensures the
connectivity during the migration phase, when T/TCP and TCP DNS hosts coexist.
T/TCP has already been implemented in the production-level server operating systems
such as FreeBSD and Linux, so for these systems the migration cost is small. Using
these systems as DNS caches is a practical workaround for non-T/TCP systems, which
are mostly running resolvers only.

The programming cost for migration of a TCP program is small, as described in Sec-
tion 4.2.7. The author needed less than 100 source code lines to modify djbdns [19]
to make it T/TCP-compatible. The protocol stack implementations of T/TCP can be
obtained as free software such as FreeBSD and Linux, and the detailed reference is
available as a book [81].

66 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

* example quoted from function socket_send4()
* of socket_send.c in djbdns-1.05 by Daniel J. Bernstein
* modified by Kenji Rikitake

:‘:/

/* sendto() system call for UDP */

sendto(s,buf,len,®, (struct sockaddr *) &sa,sizeof sa);

/* sendto() system call adapted for T/TCP

with TCP_NOPUSH and MSG_EOF flags for T/TCP */
setsockopt (s, IPPROTO_TCP,TCP_NOPUSH, &opt,sizeof opt);
sendto(s,buf,len,MSG_EOF, (struct sockaddr *) &sa,sizeof sa);

Figure 4.4 Comparison of sendto() system call for UDP and T/TCP, for writing a
T/TCP client (resolver for DNS) program in C

4.3 Evaluation of T/TCP

In our research, the author tested T/TCP as a DNS transport by modifying the program code of
djbdns and measuring the performance and behavior. In this section, the author describes the

details and the results of the performed experiments.

4.3.1 Test Environment

The software packages chosen for the experiment are listed as follows:

e FreeBSD 4.6.2-RELEASE and the 4.7-RELEASE as the operating systems, for the sta-
bility of the T/TCP implementations:
e djbdns as the DNS software, for the highly-modularized structure;

e dummynet [84], for simulating random packet loss and high-latency links.
The modification details of djbdns for the T/TCP support are listed as follows:

e adding a function to set the TCP_NOPUSH socket flag, and an interface to sendto()
system call for djbdns socket library (examples shown in Figures 4.4 and 4.5 [19],

4.3 EVALUATION OF T/TCP 67

* example quoted from function socket_bind4_reuse()

* of socket_bind.c in djbdns-1.05 by Daniel J. Bernstein
* modified by Kenji Rikitake

:‘:/

/* the variable s is passed to bind() system call */

int opt = 1; /* opt is used for enabling an option */

/% option for enabling the local address reuse */
setsockopt (s, SOL_SOCKET,SO_REUSEADDR, &opt,sizeof opt);
#ifdef MSG_EOF /* T/TCP */

/% adding TCP_NOPUSH option to ensure the T/TCP usage */
setsockopt(s,IPPROTO_TCP,TCP_NOPUSH, &opt,sizeof opt);
#endif /* MSG_EOF */

Figure 4.5 modification of bind() system call using setsockopt() for UDP and
T/TCP, for writing a T/TCP server program in C

including the minimal modification for the client (resolver for DNS) and server code);

e changing the DNS resolver interface functions called from the djbdns programs to use
T/TCP instead of traditional TCP; and

e changing dnscache, the DNS cache program, to use T/TCP for accepting the connec-

tions and external lookups.
The conditions of DNS query time measurements are as follows:

e dns_resolve(), a DNS resolver function of djbdns, is called for each query. A modi-
fied version is used to perform TCP-only DNS queries. DNSCACHEIP, The environment
variable is set to choose the appropriate dnscache to test.

e Each query contains a request to the NS RRs of the Root Domain (" . "), which dnscache
can answer solely by referring to a configuration file root/IP/@, with no external or
internal lookup.

e Choosing the T/TCP or traditional TCP is done as explained in Section 4.2.7.

68 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

Table 4.1 Total elapsed time of 1000 sequential DNS queries to a dnscache server (in seconds)

local | Ether | ADSL
RTT (ms) | ~0.04 | ~0.4 | 60~70

UDP 022 | 240 | 67.77
T/TCP 0.52 | 870 | 74.70
TCP 0.53 | 8.92 | 138.80

RTT: Round-Trip Time

4.3.2 The Protocol Overhead

Table 4.1 shows the result of measuring the difference of query processing time between UDP,
T/TCP and TCP for different types of links. The author used a local interface, a I00BASE-TX
Ethernet, and an ADSL (Asynchronous Digital Subscriber Link) of an Internet service provider.

For the local interface and Ethernet links, UDP is the fastest, since the number of packets
exchanged for each query differs; 2, 5, and 6 for UDP, T/TCP, and TCP, respectively. On the
other hand, the testing of the ADSL link shows that the overhead of T/TCP to UDP is only 10%
of the total time, while TCP takes about twice as much as UDP does. This is consistent with
the time line explanation on Section 4.2.2, as in the ADSL case, the RTT (Round-Trip Time) is
much larger than the query processing time, and becomes a major portion of the total elapsed

time.

4.3.3 On Allocated Connection Blocks

The author performed a test on how the number of allocated sockets (connection blocks)
changes between TCP and T/TCP. The author performed 10000 queries of each transport pro-
tocol by 10 concurrent processes of 1000 sequential queries (total 10000) each, and measured
how the number of active connection blocks from the beginning of the queries. The author
evaluated how the TIME_WAIT value affects to the total processing time of the simultaneous
query connections. The host used for this test has only 8000 connection blocks available to
the cache program, acting as a DNS server. The server and the clients were connected through
the local interface.

Figure 4.6 shows the result. In the beginning, the number of the allocated socket in-
creased at the rate of ~1900 queries/sec, but after the connection blocks were used up by the
query-generation processes, they waited until the first TIME_WAIT period expires; the suspended

queries were processed later as the connection blocks became free after the TIME_WAIT state

4.3 EVALUATION OF T/TCP 69

10000 simultaneous connections

(maximum number of the allocated blocks: 7930 (TCP), 7927(T/TCP))
8000 r e

|
TCP —o—
T/TCP --+-:

7000

6000

5000

4000

3000

2000 [t Hiit-

number of allocated connection blocks

1000 -

140
elapsed time (sec)

Figure 4.6 How the TIME_WAIT value affects the number of allocated connection blocks
for 10000 simultaneous connections

completion. For an application which accepts a large amount of queries, using T/TCP instead
of TCP will reduce the total waiting time of queries to approximately two-fifteenth (8RTO /
2MSL = 8 / 60), which is shown in Figure 4.6 as the length of time from the beginning of the
test to when the number of allocated connection blocks starts falling from the largest value (=8
seconds on T/TCP, 60 seconds on TCP). This behavior is consistent with the explanation on
Section 4.2.5, which suggests the length of the TIME_WAIT value shortened from 60 seconds to
~8 seconds by the protocol change from the traditional TCP to T/TCP.

4.3.4 On Packet Loss Rates

The author performed a test to evaluate how the random packet loss rate affects the query success
rates of UDP and T/TCP. Since UDP exchange takes 59 seconds as the maximum value by the
retransmission algorithm in Section 2.2.4, the value of T/TCP timeout to determine the success
of query is extended from the default value of 10 to 60 seconds on both the server and the
resolver sides. The author used two hosts connected with a 100BASE-TX link and dummynet
for simulation. 1000 concurrent queries were conducted for each random packet loss rate value.

Two delay cases, none and 500 milliseconds for simulating mobile access environment were

70 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

&0 1000 concurrent queries with no delay
T T T T

|
UDP —o—
T/TCP -+

failed queries (%)

60

packet loss rate (%)

Figure 4.7 Query failure rates of UDP and T/TCP of 1000 concurrent queries for link with no delay

conducted to evaluate how the delay affects the query failure rates.

Figures 4.7 and 4.8 show the results. In either delay-time case, UDP and T/TCP showed
little difference for how the rate of failed queries increased as the packet loss rate did. This
suggests that the 500-millisecond delay time has little effect for the measured failure rate values.
The author observed that on some packet loss rate values, the query failure rate values did not
monotonically increased, such as those of T/TCP on the packet loss rate of 25%. The author
considers this behavior as a result of probabilistic bias and divergence, since in the result of
a preliminary test using 100 concurrent queries, the author observed much higher values of
non-monotonic value changes.

UDP and T/TCP showed no failed queries when the packet loss rates < 5%. As the packet
loss rate increased, the difference between UDP and T/TCP results also increased, and the query
failure-rate values of UDP were always larger than those of T/TCP. At the packet loss rate >
30%, the values of query-failure rates for UDP is about twice as much as those of T/TCP.

The results indicate T/TCP is effective for decreasing the worst-case failure rate for DNS
queries in the networks of high packet loss rates.

The author also evaluated how the difference of query completion time between the suc-
cessful queries of T/TCP and UDP changes as the packet loss rate increases. 100 concurrent

queries were conducted for each random packet loss rate value.

4.4 CONCLUDING REMARKS 71

&0 1000 concurrent queries with 500msec delay
T T T T

|
UDP —o—
T/TCP -+

failed queries (%)

60

packet loss rate (%)

Figure 4.8 Query failure rates of UDP and T/TCP of 1000 concurrent queries for link with 500ms delay

Figure 4.9 shows the numbers of successful packets for UDP categorized by the retries.
It indicates that more than 90% of the successful UDP queries completes within single retry at-
tempts. Note that the completion time for many of failed queries are shorter than the successful
queries, due to the retransmission algorithm described in Section 2.2.5.2.

Figure 4.10 shows the distributions of the completion time in T/TCP queries. It indicates
that the minimum completion time increases as the packet loss rate does, but T/TCP still retains
the TCP characteristics of exponential distribution of the packet retransmission. Note that on
T/TCP the completion time of failed query is always longer than that of the successful queries,

since TCP will retry until a given timeout is reached.

4.4 Concluding Remarks

In this chapter, the author proposed to use T/TCP as a DNS transport, evaluated the protocol
by an implementation, and showed that T/TCP is an effective alternative to enhance the over-
all system security by increasing the reliability of the query processing especially for mobile
equipments, and giving another choice of configuring firewalls.

The author lists some possible application fields of T/TCP to improve DNS Security. The

key issues are to avoid UDP queries whenever possible, for minimizing the risk of UDP-related

72 CHAPTER 4. T/TCP FOR DNS: A PERFORMANCE AND SECURITY ANALYSIS

100 concurrent UDP queries
T T T T T T T T =

0 Ho%

20%
30%
40%
40 [50%

DXO+ ¢

30 - N

query completion time (sec)

10 - N

0 10 20 30 40 50 60 70 80 90 100
successful query samples sorted in time order from left to right

Figure 4.9 Completion time of successful UDP queries for 100 concurrent queries on
500ms delay link for different packet loss rates

attacks and to increase the rate of successful queries, while minimizing the overhead and the

risk of attacks newly imposed by the T/TCP.

4.4.1 DNS for Mobile Equipments

DNS lookups from mobile equipments, such as from a notebook computer in a car using a
cellular phone link, often fails because of the high packet loss rate. As shown in Section 4.3.4,
T/TCP work better than UDP in such a case. Even in a lower packet loss rate, T/TCP has only
10% of query time overhead than UDP in a wide-area network environment which has the RTT
of > 60 milliseconds, as shown in Section 4.3.2 and described in Section 4.2.2. Changing the
current UDP queries to T/TCP is a practical solution for mobile equipments, since it eliminates
a requirement for UDP protocol stack and gives more control on the firewall between Internet

and the networks of the equipments.

4.4.2 Inter-firewall DNS Exchange

DNS has become the only mandatorily-required UDP protocol which a firewall connected to
the public Internet must support for non-private exchange. While simply prohibiting the UDP

queries may work, it will increase the consumption of the server host resources, as TCP ex-

4.4 CONCLUDING REMARKS 73

100 concurrent T/TCP queries
T T T T N T T =

50

— T
10% © V)
20% + & X &
30% O
1o [90% X |
50% .

query completion time (sec)

successful query samples sorted in time order from left to right

Figure 4.10 Completion time of successful T/TCP queries for 100 concurrent queries on
500ms delay link for different packet loss rates

change requires the connection blocks inside the operating system kernel. As shown in Sec-
tion 4.3.3, T/TCP shortens the timeout state length, which largely affects the Maximon pro-
cessing capability of a server host, to 2/15 of the traditional TCP. This will reduce the average
resource consumption of the server host. And as shown in Section 4.3.2, T/TCP is a practical
solution to replace UDP DNS lookups on an ADSL or other kinds of similar networks of larger
latencies, which many of the end-user Internet sites use. The zone transfer exchange of DNS
will benefit from T/TCP for the fast startup and earlier closing of connections as well. If the
workload increase due to the T/TCP resource consumption is of concern, the practices for Web

servers are applicable to reduce the impact.

4.4.3 Future Works

The author considers two major issues should be discussed for the further works: the detailed
security analysis on T/TCP, and how T/TCP affects other applications, especially those based
on UDP.

Chapter 5
Conclusion

5.1 Concluding Remarks

DNS is one of the core subsystems of the Internet. Every user of Internet takes DNS for granted
since almost every object including URL (Uniform Resource Locator) [85], e-mail address, and
host names are built into DNS using domain names.

DNS is, however, a set of distributed servers connected through Internet itself, and retains
the surprisingly high availability despite of the pervasive mistakes and failures of configura-
tion on each DNS server, resolver, and other components, which may affect the availavility of
zone information [46, 86]. The author believes that the simplicity and robustness of DNS data
transport is the key of this high availability, which leads into the reliability and the security as a
goal.

In this dissertation, the author focused on the transport protocol issues, and specifically
chose the UDP payload size limitation of DNS to find out how largely it might affect the mi-
gration or evolution from IPv4 to IPv6, and how the limitation could be worked around while
minimizing the migration cost by using the existing protocol enhancements, such as EDNSO and
T/TCP, and showed that those enhancements are effective to solve the payload size problem, if
widely and properly installed into the actual production systems.

The quality of DNS subsystems are heavily dependent on the personal skills of the ad-
ministrator. The author, who has been a DNS administrator for more than 12 years since 1992,
have had very hard time negotiating DNS-related issues with other administrators, since each
of them has a different view from the others. A working document among IETF dnsop Work-
ing Group [50] also shows that it was very hard to reach for a rough consensus between DNS
administrators.

Many operating documents such as RFCs and work-in-progress documents such as
Internet-drafts are available for describing DNS as a set of reliable references, which is also

publicly available and easily accessible through Internet. On the other hand, finding a journal

75

76 CHAPTER 5. CONCLUSION

application software
(resolvers, caches, servers)

cryptographic security layer]
(DNSSEC, Secure DNS UPDATE) < What IETF DNS—related WGs are working on

reliable transport layer

(UDP with EDNS0, TCP enhanced by T/TCP) [~ ‘vhat the author tried to establish
using the methodologies of this dissertation

Without reliable transport, no cryptographic security is realized

Figure 5.1 Reliable transport has a higher priority for development than a cryptographic
security protocol

research paper related to the topics of this dissertation was not an easy task because of many
reasons including that still a large number of DNS issues are remained to be solved, and that
writing a document for a whole DNS requires a broad knowledge and skills of actual DNS
operation and behavioral characteristics.

One of the reasons that DNS administration is dependent on the administrator is that
description of DNS is not formally done only by RFCs but with a great help from practical
expertise built into running source code and the skills of the administrators. Even if an apparent
solution is found on DNS, making it as a part of production-level system may take many years,
since the change of DNS core protocols should be very carefully planned and executed. A
good example is the failure of historic SIG-based DNSSEC deployment, due to lack of the
key management and distribution specification, took almost 7 years from January 1997 when
the first proposal was published as RFC2065 (now superseded by RFC2535), to the DS-based
DNSSEC was proposed in December 2003 as RFC3658. In this dissertation, the author set
DNSSEC out of scope of the analysis and evaluation, since no cryptographic security protocol
would work without a reliable transport foundation, as shown in Figure 5.1.

The author believes, nevertheless, that showing possible solutions, their analysis and eval-
uation, are what the researchers of Internet should do and practice, rather than proposing theo-
retical models which are theoretically complete but have very little chance to be actually chosen
for a production-level system.

In this dissertation, the author intended to describe the ongoing issues and perform fact-
based analysis using the real-world traffic data, and evaluating new protocols by implementing
them with his own hands. The author believes that the current trends of DNS-related working
groups and Japanese DNS administrators as of December 2004 are heavily biased to BIND-

based mindset, which could lead into an unfair evaluation to other DNS implementations. The

5.1 CONCLUDING REMARKS 77

author rather tried to explain his views by referring to RFC and djbdns, a practical alternative
to BIND while maintaining high compatibility with BIND and RFC specifications, which he
has been using for the production systems since the first version was released.

In Chapter 1, the author described the importance of DNS as a core subsystem of Internet,
by showing the historical role, newly-emerging protocol extensions, and how DNS interacts
with other protocols. The author also discussed the security issues and the overall outline of
this dissertation.

In Chapter 2, the author described the architecture of DNS and the transport protocol,
by showing the protocol layers and the descriptions in Section 2.2, including the history of
popular implementations and the behavior of resolvers with or without caches for looking up
the servers. In Section 2.2.4, the details of DNS transport protocol was explained, focused
on the following subjects: payload format, recursive and non-recursive queries, the usage of
transport, the algorithm of choosing UDP or TCP as the lower-layer transport protocol in the
TCP/IP protocol suite, the Root Server’s limitation imposed by the 512-byte UDP payload
length limitation, and the UDP retransmission protocol performed by the application program.
In Section 2.3, the migration issues from IPv4 to IPv6 was described, of the split zone data
spaces and the autoconfiguration support. In Section 2.4, details of DNSSEC authentication
extension was described as well as how the newly-introduced DS-based DNSSEC works. In
Section 2.5, dynamic DNS update mechanisms, including DNS UPDATE were discussed. The
author claimed all of these newly-emerged extensions would contribute to increase the length
of DNS payloads.

In Chapter 3, the author discussed the issues during the migration from IPv4 to IPv6 due
to the DNS UDP payload length limitation, and quantitatively analyzed how the issues affect
the DNS traffics by simulating the payload length of added or changed RRs during and after the
migration from IPv4 to IPv6, by using the real-world DNS database traffic data from a large-
scale campus network of Osaka University. The author then proposed possible solutions such as
EDNSO, and comparatively evaluated the levels of improvement for each solution. The author
concluded that the percentage of DNS answers exceeding the 512-byte UDP payload size limit,
including the additional records, increases from 0.04% to 1~3% during and after the migration
from IPv4 to IPv6 with a simulation by packet-length recalculation. The author also presented
the effectiveness of EDNSO to prevent performance degradation by protocol fallback to TCP,
and setting the maximum payload length to 4096 bytes by EDNSO effectively prevents the DNS
protocol fallback to TCP after the migration to IPv6 completes. The author also discussed the
effectiveness of T/TCP, to prevent performance degradation by increase of number of packets

exchanged during the resolver-server exchanges over TCP, and the usefulness of the T/TCP for

78 CHAPTER 5. CONCLUSION

DNSSEC-based resolver-server exchanges over IPv6. The author also claimed that the limiting
the payload length by selectively choosing the RRs to answer for a DNS query should not be
considered as a solution and rather treated be a practical workaround to cope with the current
512-byte limitation of DNS UDP payload length.

In Chapter 4, the author described the T/TCP fundamentals as a TCP extension and the
advantages to traditional TCP, including the DoS immunity added by T/TCP comparing it to
UDP. The evaluation results of T/TCP used as a DNS transport was shown in Section 4.3, using
the criteria of the protocol overhead and allocated connection blocks of the host, and measured
that the response time for a query was reduced from 100% (twice as much) in traditional TCP
to 10% more in T/TCP of that of UDP in a higher-latency link, and that TIME_WAIT length
was reduced from from 60 to 8 seconds for FreeBSD 4.7-RELEASE. The author concluded
that T/TCP was effective for providing DNS service for mobile equipments, inter-firewall DNS
exchange, and other kinds of generic replacement of UDP DNS lookups.

The author hopes that the results of analysis, evaluation and experimentation given in this

dissertation provides examples of the design and operation of the future DNS protocols.

5.2 Future Works

The long-term goal of this dissertation is to develop DNS with sufficient security to protect it
against forgery or alteration of the RRs, as well as making it reliable enough to support future
expansion of the servers and resolvers. The author also believes that gathering security-related
information from DNS exchange is a practical and effective tool for monitoring the Internet
activities and preventing furure security incidents. The author believes that the following issues
should be investigated to make DNS secure and make it also a tool for making Internet more

securc€.

(1) Validation of effectiveness of EDNS0 and T/TCP on wide-area networks

For proving the effectiveness of EDNSO and T/TCP on DNS proposed in this dissertation, val-
idation through experiments on a large-scale wide-are network is essential. Performance mea-
surement of actual running servers at large-scale ISPs (Internet Service Providers) and DNS
server operating sites is needed to prove whether the proposed protocols are really effective or
not. Computer simulation without generating actual traffic is also useful to fine-tune the proto-
col parameters before testing it on the production-system network. Protocols other than EDNSO
and T/TCP, such as SCTP, should also be evaluated in the same manners as well. DoS immunity

analysis using the actual or simulated attacks should also be performed.

5.2 FUTURE WORKS 79

(2) Estimation of large-scale DNSSEC deployment and the DNS payload
length increase

Since more and more hosts are dependent on DNS, such as Internet telephony or VoIP (Voice-
over-IP) systems, the authentication of domain names is crucial for successfully deploying the
service to the public. The VoIP systems are dependent on DNS to map IP addresses to the
phone numbers, such as ENUM [87]. To provide a reliable service which no attacker can alter
the mapping between the phone numbers and IP addresses, combining ENUM with DNSSEC
is the best current practical solution. This means the average length of DNS payloads will be
sharply increased as the VoIP systems become more popular. Analysis of the payload length
and the effects to the DNS servers, such as that performed for a case of migration from IPv4 to

IPv6, should be thoroughly done for a system design of VoIP services.

(3) Establishment of secure DNS monitoring method and the analyzing al-
gorithms

DNS servers, especially of those running in ISPs, are practical points of monitoring Internet
activity trends. The author conducted a behavioral analysis of DNS and TCP connections [88],
and have found out that DNS query answers of the A RRs are highly likely to be followed
by the TCP connection attempts to a given address among the A RRs. An anti-worm filtering
approach [89] is proposed to block worms which does not depend on DNS server lookups,
since most of the legitimate TCP traffics are using DNS. Discovering this sort of relationship
between DNS traffic and other protocol traffics is useful for monitoring Internet and preventing
the security incidents. Methodology of efficiently collecting DNS exchange data and analyzing
the traffic securely without disclosing the privacy-related information such as a flow-graph-
based analysis [90] should be established, especially for an effective multi-point monitoring of

DNS server response times and the impact of server performance factors [91].

Acknowledgements

I would like to thank Professor Shinji Shimojo, of Cybermedia Center at Osaka University, for
his overall and primary supervision, countless suggestions, and constructive comments on my
research activities and writing this dissertation.

I would like to express my gratitude to Professor Shojiro Nishio, Professor Toru Fujiwara,
Professor Norihisa Komoda, and Professor Fumio Kishino, of the Department of Multimedia
Engineering in the Graduate School of Information Science and Technology at Osaka Univer-
sity, Associate Professor Ken-ichi Baba of Cybermedia Center at Osaka University, and Asso-
ciate Professor Motonori Nakamura of Academic Center for Computing and Media Studies at
Kyoto University, for their support on numerous suggestions for revising this dissertation.

My sincere appreciation goes to Dr. Hiroki Nogawa, Deputy Director of Information Cen-
ter for Medical Sciences at Tokyo Medical and Dental University, for his active partnership role
in my research during his career in Cybermedia Center at Osaka University.

I would also like to thank the members and alumni of the Shimojo Laboratory members
of Cybermedia Center at Osaka University. Among the alumni, Mr. Toshiharu Otsuka and
Mr. Kenji Nakano helped me a lot by performing prototype experiments of the research. My
appreciation also goes to Assistant Professor Susumu Date of Department of Bioinformatics
Engineering in the Graduate School of Information Science and Technology at Osaka Univer-
sity, and Dr. Yasushi Takagi of NTT Network Service Systems Laboatories, for providing their
expertise and suggestion of writing doctoral dissertations.

My acknowledgement also goes to the operation staff members of ODINS (Osaka
Daigaku Information Network System) for their kind assistance to build a traffic monitoring
system in their network facility.

A major portion of this research was funded and supported by the KDDI R&D Laborato-
ries, with the help of the Security Laboratory members. I would like to thank Mr. Tohru Asami,
the president and CEO, for his continuous support and giving me a chance to study again as a
doctoral candidate.

I would also like to thank Mr. Koji Nakao, the director of Information Security Depart-

ment of KDDI Corporation and the group leader of Security Advancement Group in National

81

82 ACKNOWLEDGEMENTS

Institute of Information and Communication Technology (NICT), for his suggestions and man-
agemental support.

My appreciation also go to the current and former Security Laboratory members of KDDI
R&D Laboratories, including Mr. Toshiaki Tanaka, Dr. Fumiaki Sugaya, Mr. Yutaka Miyake,
Mr. Yasuyuki Watanabe, and Dr. Keisuke Takemori.

I would like to show my sincere respect to Mr. Paul Vixie, an author of BIND DNS Server
and the CEO of Internet Software Consortium, for his kind support and constructive criticisms
to my research and operational activities.

My deep respect also goes to Dr. Akira Kato, Associate Professor at the University of
Tokyo, for his constructive criticisms based on expertise and knowledge on DNS, Internet mail,
and other operation of Internet services, during revision of this dissertation.

My sincere respect also goes to Dr. Daniel J. Bernstein, Associate Processor of Depart-
ment of Computer Science in University of Illinois at Chicago, and also the author of djbdns,
for enlighting me by providing an alternative reliable working set of DNS tools and software.

I would like to thank Dr. Eiiti Wada, Professor Emeritus at the University of Tokyo and
the Research Director of I1J Research Laboratory, for his leadership and patience while I was
studying as a member of Information Processing Laboratory in Graduate School of Information
Engineering at the University of Tokyo. My appreciation also goes to the laboratory alumni.

I would also like to thank Dr. Shin-ichi Nakagawa and Dr. Hiroyuki Ohno of NICT, and
Dr. Mieko Kimura of Takeda Research Institute of Life Science and Medicine, for realizing me
the importance of obtaining the degree of Ph.D.

My appreciation also goes to Mr. Kazuo Hirono of Profile Co. Ltd., who has been a long-
time mentor of my research activities, and to Mr. Yutaka Sakurai of Cisco Systems K. K., for
his continuous encouragement and support during my research activities.

This dissertation is typeset with the IATEX style file designed by Dr. Haruhiko Okumura
of Course for Information Science Education in Faculty of Education at Mie University. His
IATEX expertise largely contributed to improve the typeset quality of this dissertation.

Finally I must show my deepest gratitude to my family members, first to my father
Tsuneji, who suddenly passed away on August 22nd, 2004, who taught me the fundamental
discipline and principles of doing scientific research as well as the other essential rules of life;
also to my mother Kiyoko, who raised me with her courteous parentalship and emotional sup-
port; and to my wife Kyoko, Associate Professor of Faculty of Language and Culture at Osaka
University and a German language specialist, who always encourages me to keep on doing my

job with her happiest smile, wise suggestions, and continuous assistance every day.

References

[1] Mockapetris, P. V.: Domain names — concepts and facilities (1983). RFC883 (superceded
by RFC1034).
[2] Mockapetris, P. V.: Domain names — concepts and facilities (1987). RFC1034 (also
STD13).
[3] Mockapetris, P. V.: Domain names — implementation and specification (1987). RFC1035
(also STD13).
[4] R. Braden (Editor): Requirements for Internet Hosts — Application and Support (1989).
RFC1123.
[5] Elz, R. and Bush, R.: Clarification to the DNS Specification (1997). RFC2181.
[6] Vixie, P.: Extension Mechanisms for DNS (EDNSO0) (1999). RFC2671.
[7] Thomson, S., Huitema, C., Ksinant, V. and Souissi, M.: DNS Extensions to support IP
version 6 (2003). RFC3596.
[8] Eastlake, D.: Domain Name System Security Extensions (1999). RFC2535.
[9] Vixie, P., Thomson, S., Rekhter, Y. and Bound, J.: Dynamic Updates in the Domain Name
System (DNS UPDATE) (1997). RFC2136.
[10] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and Berners-Lee,
T.: Hypertext Transfer Protocol — HTTP/1.1 (1999). RFC2616.
[11] Dierks, T. and Karlton, P. L.: The TLS Protocol Version 1.0 (1999). RFC2246.
[12] Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. and Wright, T.: Transport
Layer Security (TLS) Extenstions (2003). RFC3546.
[13] Postel, J.: Transmission Control Protocol (1981). RFC793 (also STD7).
[14] Kent, S. and Atkinson, R.: Security Architecture for the Internet Protocol (1998).
RFC2401.
[15] Postel, J.: User Datagram Protocol (1980). RFC768 (also STD6).
[16] Gilmore, J.: AS IF: draft-ietf-dnsext-ad-is-secure-03.txt (2001). The Risks Digest Vol. 21:
Issue 56, http://catless.ncl.ac.uk/Risks/21.56.html#subj7.
[17] Vixie, P.: a message of IETF dnsext Working Group Mailing List (2002). Message-1Id:
<20021121053500.8C17737A037@as.vix.com>, accessible from IETF Web site

83

84 REFERENCES

http://www.ietf.org/.

[18] Internet Software Consortium: BIND. http://www.isc.org/bind/.

[19] Bernstein, D. J.: djbdns. http://cr.yp.to/djbdns.html.

[20] NLnet Labs: Name Server Daemon (NSD). http://www.nlnetlabs.nl/nsd/.

[21] Braden, R.: T/TCP — TCP Extensions for Transactions Functional Specification (1994).
RFC1644.

[22] Gummadi, K. P., Saroiu, S. and Gribble, S. D.: King: Estimating Latency between Arbi-
trary Internet End Hosts, Proceedings of the Second ACM SIGCOMM Internet Measure-
ment Workshop (IMW2002), pp. 5-18 (2002). ISBN 1-58113-603-X/02/0011.

[23] Stewart, R., Xie, Q., Morneault, K., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina,
I., Kalla, M., Zhang, L. and Paxson, V.: Stream Control Transmission Protocol (2000).
RFC2960.

[24] Stone, J., Stewart, R. and Otis, D.: Stream Control Transmission Protocol (SCTP) Check-
sum Change (2002). RFC3309.

[25] Rivest, R.: The MD5 Message-Digest Algorithm (1992). RFC1321.

[26] Rekhter, Y. and Li, T.: A Border Gateway Protocol 4 (BGP-4) (1995). RFC1771.

[27] Bellovin, S.: Defending Against Sequence Number Attacks (1996). RFC1948.

[28] Wellington, B.: Secure Domain Name System (DNS) Dynamic Update (2000). RFC3007.

[29] The FreeBSD Project: FreeBSD. http://www.freebsd.org/.

[30] The OpenBSD Project: OpenBSD. http://www.openbsd.org/.

[31] The NetBSD Project: NetBSD. http://www.netbsd.org/.

[32] Linux Headquarters Inc.: LinuxHQ. http://www.linuxhq.com/.

[33] CERT/CC: Buffer Overflows in Multiple DNS Resolver Libraries. CERT Advisory CA-
2002-19, http://www.cert.org/advisories/CA-2002-19.html.

[34] CERT/CC: Multiple vendors’ Domain Name System (DNS) stub resolvers vulnerable to
buffer overflows. CERT Vulnerability Note VU#803539, http://www.kb.cert.org/
vuls/id/803539.

[35] CERT/CC: Domain Name System (DNS) stub resolver libraries vulnerable to buffer over-
flows via network name or address lookups. CERT Vulnerability Note VU#844360,
http://www.kb.cert.org/vuls/id/844360.

[36] The FreeBSD Project: Buffer Overflow in Resolver. FreeBSD Security Advisory
FreeBSD-SA-02:28.resolv.

[37] CERT/CC: Multiple Vulnerabilities in BIND. CERT Advisory CA-2002-31, http://
www.cert.org/advisories/CA-2002-31.html.

[38] CERT/CC: ISC BIND 8 fails to properly dereference cache SIG RR elements with invalid

85

expiry times from the internal database. CERT Vulnerability Note VU#581682, http:
//www.kb.cert.org/vuls/id/581682.

[39] CERT/CC: Cached malformed SIG record buffer overflow. CERT Vulnerability Note
VU#852283, http://www.kb.cert.org/vuls/id/852283.

[40] CERT/CC: Denial-of-Service Vulnerability in ISC BIND 9. CERT Advisory CA-2002-15.

[41] Vixie, P., Gudmundsson, O., Eastlake, D. and Wellington, B.: Secure Key Transaction
Authentication for DNS (TSIG) (2000). RFC2845.

[42] Vixie, P. and Kato, A.: Modern DNS as a Coherent Dynamic Universal Database, IEICE
Trans. Commun. (Japanese Edition), Vol. J87-B, No. 10, pp. 1534-1541 (2004).

[43] Vixie, P. and Mail Abuse Prevention System, LLC: MAPS Realtime Blackhole List (RBL)
Overview. http://www.mail-abuse.com/services/mds_rbl.html.

[44] Ohta, M.: Incremental Zone Transfer in DNS (1996). RFC1995.

[45] Vixie, P.: A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) (1996).
RFC1996.

[46] Jung, J., Sit, E., Balakrishnan, H. and Morris, R.: DNS Performance and the Effectiveness
of Caching, Proceedings of the First ACM SIGCOMM Internet Measurement Workshop
(IMW2001), pp. 153-167 (2001). ISBN 1-58113-435-5/01/0011.

[47] National Infrastructure Security Co-ordination Centre: Vulnerability Issues in Imple-
mentations of the DNS Protocol. NISCC Vulnerability Advisory 758884/NISCC/DNS,
http://www.cert.org/advisories/CA-2002-19.html.

[48] Gudmundsson, O.: DNSSEC and IPv6 A6 aware server/resolver message size require-
ments (2001). RFC3226.

[49] Bernstein, D. J.: User’s guide to name resolution. http://cr.yp.to/djbdns/
resolve.html.

[50] Durand, A., Thren, J. and Savola, P.: Operational Considerations and Issues with IPv6
DNS (2004). INTERNET-DRAFT draft-ietf-dnsop-ipv6-dns-issues-08.txt.

[51] Durand, A. and Thren, J.: DNS IPv6 transport operational guidelines (2004). INTERNET-
DRAFT draft-ietf-dnsop-ipv6-transport-guidelines-02.txt.

[52] R. Droms (Editor), Bound, J., Volz, B., Lemon, T., Perkins, C. and Carney, M.: Dynamic
Host Configuration Protocol for IPv6 (DHCPv6) (2003). RFC3315.

[53] Droms, R.: Dynamic Host Configuration Protocol (1997). RFC2131.

[54] Thomson, S. and Narten, T.: IPv6 Stateless Address Autoconfiguration (1998). RFC2462.

[55] Eastlake, D.: DNS Request and Transaction Signatures (SIG(0)s) (2000). RFC2931.

[56] Baba, T., Kusaka, T., Yamaoka, M. and Matsuda, S.: Implementation and Estimation of a
Domain Name System with Access Control, IPSJ SIG Technical Report 2004-CSEC-24,

86 REFERENCES

Vol. 2004, No. 22, pp. 99-104 (2004).

[57] Gudmundsson, O.: Delegation Signer (DS) Resource Record (RR) (2003). RFC3658.

[58] Japan Registry Service (JPRS): DNSSEC Cho-Nyumon (DNSSEC for the Dummies)
Version 1.1 (2004). http://etjp.jp/about/wg/dnssec/dnssec-cho-nyumon.pdf
(written in Japanese).

[59] Dynamic Network Services, Inc.: DynDNS.org — Developers — Update Specifications.
http://www.dyndns.org/developers/specs/.

[60] Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Practical DNS Support for
Dialup ADSL, Proceedings of IPSJ Computer Security Symposium 2001 (CSS2001), 1PS]
Symposium Series, Vol. 2001, No. 15, IPSJ, pp. 73-79 (2001).

[61] Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Security Issues on Home
Teleworking over Internet, IEICE Technical Report IA2001-20, Vol. 101, No. 440, pp.
9-16 (2001).

[62] The OpenBSD Project: OpenSSH. http://www.openssh.org/.

[63] Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: DNS Transport Size
Issues in IPv6 Environment, Proceedings of the 2004 International Symposium of Appli-
cations and the Internet (SAINT2004) Workshops, pp. 141-145 (2004). ISBN 0-7695-
2050-2/04.

[64] Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: An Analysis of DNS
Payload Length Increase during Transition to IPv6, IEICE Trans. Commun. (Japanese
Edition), Vol. J87-B, No. 10, pp. 1552-1563 (2004).

[65] Thomson, S. and Huitema, C.: DNS Extensions to support IP version 6 (1995). RFC1886.

[66] Crawford, M. and Huitema, C.: DNS Extensions to Support IPv6 Address Aggregation
and Renumbering (2000). RFC2874.

[67] Bush, R., Durand, A., Fink, B., Gudmundsson, O. and Hain, T.: Representing Internet Pro-
tocol version 6 (IPv6) Addresses in the Domain Name System (DNS) (2002). RFC3363.

[68] Austein, R.: Tradeoffs in Domain Name System (DNS) Support for Internet Protocol
version 6 (IPv6) (2002). RFC3364.

[69] M. Roesch et al.: Snort. http://www.snort.org/.

[70] TCPDUMP Public Repository: tcpdump. http://www. tcpdump.org/.

[71] Eastlake, D.: Secret Key Establishment for DNS (TKEY RR) (2000). RFC2930.

[72] Japan Registry Service (JPRS): On Maximum Number of DNS Servers (2003). http:
//jprs.jp/tech/jp-dns-info/2003-07-10-max-number-of-dns-server.html
(written in Japanese).

[73] Microsoft Corporation: Using Extension Mechanisms for DNS (EDNSO).

87

http://www.microsoft.com/resources/documentation/WindowsServ/2003/
standard/proddocs/en-us/sag_DNS_imp_EDNSsupport.asp.

[74] Deering, S. and Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification (1998).
RFC2460.

[75] Rikitake, K., Nakao, K., Nogawa, H. and Shimojo, S.: T/TCP for DNS: A Performance
and Security Analysis, IPSJ Journal, Vol. 44, No. 8, pp. 2060-2071 (2003).

[76] L. Ren and J. Zhang: T/TCP for Linux. http://ttcplinux.sourceforge.net/.

[77] Vixie, P. and Kato, A.: DNS Response Size Issues (2004). INTERNET-DRAFT draft-ietf-
dnsop-respsize-01.txt.

[78] Kato, A. and Sekiya, Y.: Analysis of DNS Traffic at a DNS Server in an ISP, IEICE Trans.
Commun. (Japanese Edition), Vol. J87-B, No. 3, pp. 327-335 (2004).

[79] Sekiya, Y., Cho, K., Kato, A. and Murai, J.: Research of Method for DNS Performance
Measurement and Evaluation Based on Benchmark DNS Servers, IEICE Trans. Commun.
(Japanese Edition), Vol. J87-B, No. 10, pp. 1542—-1551 (2004).

[80] Braden, R.: Extending TCP for Transactions — Concepts (1992). RFC1379.

[81] Stevens, W. R.: Part 1: TCP for Transactions, TCP/IP Illustrated, Volume 3, Addison—
Wesley, pp. 3-158 (1996).

[82] Lemon, J.: Resisting SYN flood DoS attacks with a SYN cache. http://people.
freebsd.org/" jlemon/papers/syncache.pdf.

[83] The FreeBSD Project: The ttcp(4) man page. Available as a part of FreeBSD distribu-
tions.

[84] Rizzo, L.: Dummynet: a simple approach to the evaluation of network protocols, Com-
puter Communication Review, Vol. 27, No. 1, pp. 31-41 (1997).

[85] Berners-Lee, T., Masinter, L. and McCahill, M.: Uniform Resource Locators (URL)
(1994). RFC1738.

[86] Pappas, V., Xu, Z., Lu, S., Massey, D., Terzis, A. and Zhang, L.: Impact of Configuration
Errors on DNS Robustness, Computer Communication Review, Vol. 34, No. 4, pp. 319-
330 (2004). Proceedings of SIGCOMM 2004.

[87] Faltstrom, P. and Mealling, M.: The E.164 to Uniform Resource Identifiers (URI) Dy-
namic Delegation Discovery System (DDDS) Application (ENUM) (2004). RFC3761.

[88] Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: Behavioral Analysis
of DNS and TCP Connections, Proceedings of IPSJ Computer Security Symposium 2003
(CSS2003), IPS] Symposium Series, Vol. 2003, No. 15, IPSJ, pp. 521-526 (2003).

[89] Okamoto, T.: Packet Filtering Using DNS Responses against Worm Propagation, /PSJ
Journal, Vol. 45, No. 10, pp. 2407-2415 (2004).

88 REFERENCES

[90] Cranor, C. D., Gansner, E., Krishnamurthy, B. and Spatscheck, O.: Characterizing large
DNS traces using graphs, Proceedings of the First ACM SIGCOMM Internet Measurement
Workshop (IMW2001), pp. 55-67 (2001). ISBN 1-58113-435-5/01/0011.

[91] Liston, R., Srinivasan, S. and Zegura, E.: Diversity in DNS Performance Measures, Pro-
ceedings of the Second ACM SIGCOMM Internet Measurement Workshop (IMW2002),
pp- 19-31 (2002). ISBN 1-58113-603-X/02/0011.

List of Publications by the Author

A. Journal Papers

1. Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: An Analysis of DNS
Payload Length Increase during Transition to IPv6, IEICE Trans. Commun. (Japanese
Edition), Vol. J87-B, No. 10, pp. 1552-1563 (2004).

2. Rikitake, K., Nakao, K., Nogawa, H. and Shimojo, S.: T/TCP for DNS: A Performance
and Security Analysis, IPSJ Journal, Vol. 44, No. 8, pp. 2060-2071 (2003).

3. Takemori, K., Rikitake, K., Miyake, Y. and Nakao, K.: Implementation of Dynamic
Diversion Mechanisms for Secure and Effective Logging on Intrusion Trap System, IPSJ
Journal, Vol. 44, No. 8, pp. 1838-1847 (2003).

B. International Conference Papers

1. Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: DNS Transport Size
Issues in IPv6 Environment, Proceedings of the 2004 International Symposium of Appli-
cations and the Internet (SAINT2004) Workshops, pp. 141-145 (2004). ISBN 0-7695-
2050-2/04.

2. Takemori, K., Rikitake, K., Miyake, Y. and Nakao, K.: Intrusion Trap System: An
Efficient Platform for Gathering Intrusion-related Information, Proceedings of the 10th
International Conference on Telecommunications (ICT2003), IEEE, pp. 614-619 (2003).
ISBN 0-7803-7661-7.

3. Rikitake, K.: Breaking Barriers to Popularize Internet Streaming Broadcast, Proceedings
CD-ROM of INET2000 The Internet Global Summit, Internet Society (2000). ISBN 1-
891562-09-6, http://www.isoc.org/inet2000/cdproceedings/8g/8g_1.htm.

4. Rikitake, K.: MENVPRIV: A User-Controllable Privacy-Enhanced E-Mail Network,
Program Book of Abstracts, International Conference on Privacy, pp. 152—153 (1997).
Montreal, Québec, Canada.

5. Rikitake, K.: MAILFEED: A POP3-based Inter-domain Mail-Forwarding System, The
Proceedings of Internet Conference 1996, JSSST, pp. 3—10 (1996). JSSST Symposium

89

90

LIST OF PUBLICATIONS BY THE AUTHOR

Proceeding Series No.3, ISSN 1341-870X.

C. Domestic Conference Papers

1.

10.

11.

Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: Internet Security
Management on Teleworking Environment, Proceedings of the Sixth Japan Telework

Society Conference, Japan Telework Society, pp. 85-90 (2004).

. Rikitake, K.: DNS Reliability and the Security Issues, The Summary Symposium of De-

veloping Human Resource for Building Secure Networks, Cybermedia Center, Osaka
University, pp. 101-115 (2003).

. Rikitake, K., Nogawa, H., Tanaka, T., Nakao, K. and Shimojo, S.: Behavioral Analysis

of DNS and TCP Connections, Proceedings of IPSJ Computer Security Symposium 2003
(CSS2003), IPSJ Symposium Series, Vol. 2003, No. 15, IPSJ, pp. 521-526 (2003).

. Rikitake, K., Sugaya, F., Nakao, K., Nogawa, H. and Shimojo, S.: Resource Consump-

tion Analysis of DNS Servers against DoS Attacks, IPSJ SIG Technical Reports 2003-
QAI-8, Vol. 2003, No. 68, pp. 51-54 (2003).

. Rikitake, K., Nakao, K., Nogawa, H. and Shimojo, S.: Securing Public DNS Communi-

cation, IPSJ SIG Notes 2003-CSEC-20, Vol. 2003, pp. 179-184 (2003).

. Rikitake, K., Takemori, K., Miyake, Y., Nakao, K., Nogawa, H. and Shimojo, S.: Design

of Robust DNS by Intrusion Detection, Proceedings of IPSJ Computer Security Sym-
posium 2002 (CSS$2002), IPSJ Symposium Series, Vol. 2002, No. 16, IPSJ, pp. 17-22
(2002).

. Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Secure Gateway Sys-

tem Design for Home Teleworking, IPSJ SIG Notes 2002-CSEC-17, Vol. 2002, pp. 1-6
(2002).

. Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Secure Teleworking over

Wireless Internet, IEICE General Conference Symposium SB-12-3, IEICE (2002).

. Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Defending Servers by

Randomizing Listening Port Numbers, IPSJ SIG Notes 2001-CSEC-15, Vol. 2001, pp.
7-12 (2001).

Kikuchi, T., Asami, T., Rikitake, K., Nagata, H. and Hamai, T.: Reverse-Path-Based Fil-
tering against IP Address Spoofing, Proceedings of IPSJ Computer Security Symposium
2001 (CSS2001), IPSJ Symposium Series, Vol. 2001, No. 15, IPSJ, pp. 191-196 (2001).
Takemori, K., Rikitake, K., Kiyomoto, S., Tanaka, T. and Nakao, K.: Implementation
and Evaluation of Intrusion Trap System, Proceedings of IPSJ Computer Security Sym-

91

12.

13.

14.

15.

16.

posium 2001 (CSS2001), IPSJ Symposium Series, Vol. 2001, No. 15, IPSJ, pp. 415420
(2001).

Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Practical DNS Support
for Dialup ADSL, Proceedings of IPSJ Computer Security Symposium 2001 (CSS2001),
IPSJ Symposium Series, Vol. 2001, No. 15, IPSJ, pp. 73-79 (2001).

Rikitake, K., Kikuchi, T., Nagata, H., Hamai, T. and Asami, T.: Security Issues on Home
Teleworking over Internet, IEICE Technical Report IA2001-20, Vol. 101, No. 440, pp.
9-16 (2001).

Rikitake, K., Kikuchi, T., Nagata, H., Hashimoto, K. and Asami, T.: Solving Man-
agement Issues of Inexpensive Internet-VPN Teleworking (written in Japanese), Human
Interface Society HIS2001 Symposium Proceedings, Human Interface Society, pp. 593—
596 (2001).

Takemori, K., Rikitake, K., Kiyomoto, S., Tanaka, T. and Nakao, K.: Design and Imple-
mentation of Intrusion Trap System, IPSJ Symposium Series, Vol. 3, IPSJ, pp. 495-496
(2001). Paper 2G-1.

Rikitake, K., Kikuchi, T., Nagata, H. and Asami, T.: Information Security Management
under Teleworking Environment (written in Japanese), IPSJ 63rd National Convention
Proceedings, Vol. 3, IPSJ, pp. 625-628 (2001). Paper 2B-2 (awarded as a Best Paper of

the Convention).

D. Books and Magazine Articles

(All books and articles here are written in Japanese)

1.

Rikitake, K.: Understanding Security Technology for Enterprise Internet (2001). Nikkei
Computer Magazine, Nikkei Business Publications, Inc., October 8, 2001 — March 25,

2002 issues, 13 articles in series.

. Rikitake, K.: Risk Assessment for the Internet Era (2001). Nikkei Computer Maga-

zine, Nikkei Business Publications, Inc., April 9, 2001 — September 24, 2001 issues, 13

articles in series.

. Rikitake, K.: Reconsidering TCP/IP as A Solution (2000). ASCII Network Magazine,

ASCII Publishing, March 2000 — December 2000 issues, 10 articles in series.

. Rikitake, K.: Carelessly-implemented Copy Protection Hampers Popularization of Inter-

net Streaming (2000). H. Ohsawa (ed.), Internet Streaming, Kyoritsu Shuppan, p. 221,
ISBN 4-320-02978-X.
Rikitake, K.: Understanding Latest Internet Technologies (2000). Nikkei Computer

92

LIST OF PUBLICATIONS BY THE AUTHOR

10.

11.

12.

13.
14.

15.

16.

17.

Magazine, Nikkei Business Publications, Inc., January 3, 2000 — September 25, 2000

issues, 20 articles in series.

. Rikitake, K.: TCP/IP Network Management (1999). ASCII NT Magazine, ASCII Pub-

lishing, August 1999 — November 1999 issues, 4 articles in series.

. Rikitake, K.: Learning Internet Troubleshooting (1999). Nikkei Computer Magazine,

Nikkei Business Publications, Inc., April 12, 1999 — September 27, 1999 issues, 13

articles in series.

. Rikitake, K.: Learning Practical Internet Technologies (1998). Nikkei Computer Maga-

zine, Nikkei Business Publications, Inc., October 12, 1998 — March 29, 1999 issues, 13
articles in series.

Rikitake, K.: Basic TCP/IP Technology (1999). ASCII NT Magazine, ASCII Publishing,
January 1999 — June 1999 issues, 6 articles in series.

Rikitake, K.: The “Standardization” of Internet (1999). Dr. Dobb’s Journal Japan,
Shoeisha, January 1999, pp. 20-26 .

Rikitake, K.: Learning Basic Internet Technologies (1998). Nikkei Computer Magazine,
Nikkei Business Publications, Inc., April 11, 1998 — September 28, 1998 issues, 13
articles in series.

Rikitake, K.: qgmail Basics and Configuration (1998). Dr. Dobb’s Journal Japan,
Shoeisha, January 1998, pp. 134-146.

Rikitake, K.: Professional Internet, Ohmsha (1998).

Rikitake, K.: Internet Kaleidoscope (1997). Internet@ASCII Magazine, ASCII Publish-
ing, May 1997 — August 1998 issues, 16 articles in series.

Rikitake, K.: Understanding Internet in 3 Minutes (1996). Internet@ASCII Magazine,
ASCII Publishing, May 1996 — April 1997 issues, 12 articles in series.

Schneier, B., K. Rikitake (Japanese Translation Supervisor) and N. Michishita (Japanese
Translator): E-Mail Security (Japanese Version), Ohmsha (1995).

Rikitake, K.: Internet Community, Ohmsha (1994).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /JPN <FEFF005000720065007300730020007100750061006c006900740079002c0020004100630072006f00620061007400200033002e00300020002800500044004600200031002e00320029002c00200065006d00620065006400640065006400200066006f006e00740073002c002000490053004f002000410034002000700061007000650072>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

