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Chapter 1 

 

General introduction 
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1-1 Development of a novel plant transformation method using bioactive beads 

 

Genetic engineering of plants is regarded as one of the promising approaches to solve 

environmental and food problems. The improvement of crop productivity is important 

to avoid food problems. For example, the first genetically engineered food to be 

commercialized is FLAVR SAVR
TM

, which can maintain the quality and taste of tomato 

for long time (Kramer and Redenbaugh 1994). A variety of plant diseases give a serious 

deffect on the crop productivity. In order to achieve the resistance to these diseases, 

disease-resistant plants has been produced in many plant species, such as maize, papaya, 

potato, tomato, rice so far. (Gonsalves 1998; Tai et al. 1999; Song et al; 2003b; Wang et 

al. 2005; Khan et al. 2009) Abiotic stresses including drought, temperature extremes, 

and saline soils are also factors which affect the crop productivity. Genetic engineering 

has succeeded to enhance the abiotic stress tolerance in plants, which will lead to 

increase the crop productivity (Yamaguchi and Blumwald 2005; Umezawa et al. 2006; 

Bhatnagar-Mathur et al. 2008; Khan et al. 2009). As one of the other applications of 

transgenic technology, nutritionally enhanced plants have been produced. The 

representative example is “Golden rice”, in which β-carotene was accumulated in rice 

seeds (Ye et al. 2000). This approach will contribute to us by making the plants which 

promote our health. The plant transformation technology will facilitate the production of 

many kinds of useful plants. Several methods are now available for delivering 

exogenous DNAs into cells, for example Agrobacterium-mediated transformation, 

particle bombardment, and electroporation (Bhalla 2006; Rakoczy-Trojanowska 2002). 

Agrobacterium-mediated methods utilize the unique ability of this bacterium to 

introduce exogenous genes into plant cells. Particle bombardment involves bombarding 
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cells with DNA-coated gold or tungsten particles. Both of these methods have their 

respective merits or drawbacks. Particle bombardment is widely applicable, but DNA 

molecules can be fragmented during bombardment. It often results in the insertion of 

multiple gene copies and in complex rearrangements of transgenes (Hiei et al. 1994; 

Iyer et al. 2000). These events adversely affect the stability of the transgenes. In 

addition, the transformation efficiency of the particle bombardment is relatively low. 

Indirect DNA delivery via Agrobacterium-mediated transformation usually produces a 

higher frequency of a single copy of the transgene and results in higher transformation 

efficiencies, but plant species which are applicable to Agrobacterium-mediated 

transformation are still limited. It has also been reported that large DNA molecules (ca. 

100 kb) integrated by the Agrobacterium-mediated method tend to be rearranged, with 

duplications, deletions and insertions not only in the transgenic plants but also in 

Agrobacterium (Nakano et al. 2005; Song et al. 2003a). Thus, the 

Agrobacterium-mediated method may not be the best method for transformation with 

large DNA fragments. In addition, it requires the construction of a specialized vector, 

i.e., binary vector. Bacterial artificial chromosome (BAC) libraries cannot directly be 

used for transformation by the Agrobacterium-mediated method, except for the cases of 

binary bacterial artificial chromosome (BIBAC) techniques discussed below. 

Transformation with large DNA fragments, such as the insertion of BACs or 

yeast artificial chromosomes (YACs), would be useful for verifying the function of 

genes in the DNA insert (Ercolano et al. 2004; Somerville and Somerville 1999). Large 

DNA fragment insertion would also enable production of transgenic plants with 

complex phenotypes, particularly in the case of gene stacking or the engineering of 

metabolic pathways. A transformation technique for the introduction of large DNA 
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fragments is also a prerequisite in the development of plant artificial chromosomes. 

Introduction of long centromere repeats into plant chromosomes has contributed to the 

understanding of the functions of centromeres (Carlson et al. 2007; Phan et al. 2007; 

Ananiev et al. 2009). 

There have been some previous reports on plant transformation with large 

DNA fragments. Using particle bombardment, YACs have been introduced into tomato 

(Van Eck et al. 1995) and tobacco (Mullen et al. 1998). The use of specialized vectors 

for Agrobacterium, referred to as BIBACs, permitted the transformation of tobacco with 

a 150 kb insert (Hamilton et al. 1996). In rice, a 75 kb Aegilops squarrosa (the D 

genome donor to common wheat) genome insert containing the wheat isoamylase 1 

(TaISA1) gene has been inserted by the Agrobacterium method using a BIBAC vector 

(Kubo et al. 2005). The fragments of Aegilops squarrosa genome DNA were stably 

transmitted to offspring plants and the transgenes were expressed in rice. Phan et al. 

(2007) has succeeded in introducing a 150 kb BAC using the particle bombardment. 

However, the number of reports on successful transformation with large DNA fragments 

is quite limited. In addition, as mentioned above, the rearrangement of transgenes has 

often been observed. 

 Thus, there is a strong need to develop a novel method to introduce large 

DNA fragments into plant cells. A new transformation method that is simple in 

procedure with high transformation efficiency and physical stabilization of large sized 

DNAs in a solution, would be ideal to address the limitation of existing methods.  
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1-2 Grain hardness  

 

Grain hardness is one of the most important determinants of cereal end-product quality. 

In wheat (Triticum aestivum L.), the hardness has been reported to correlate with many 

flour properties such as particle size, starch damage, water absorption (Pomeranz and 

Williams 1990) and its direct effects on the end-product quality. For instance, soft wheat 

flour is generally used for cakes and cookies while hard wheat flour is used for making 

breads. To evaluate and manipulate the end-product quality more effectively, the 

molecular mechanisms of wheat grain hardness have attracted much interest in recent 

years.  

Friabilin was identified as the first molecular marker for grain softness. The 

friabilin was more abundant on the starch surface of soft textured wheat than that of the 

hard textured wheat (Greenwell and Schofield 1986). The amino acid sequence 

indicated that the friabilin was a mixture of puroindoline a (PINA) and puroindoline b 

(PINB) (Rahman et al. 1994). The proteins are encoded by the puroindoline a (Pina) 

and puroindoline b (Pinb) genes located on the hardness locus (Ha) on the short arm of 

chromosome 5D (Giroux and Morris 1998; Law et al. 1978). The two genes were shown 

to encode wheat endosperm-specific lipid binding proteins with a unique 

tryptophan-rich domain (Gautier et al. 1994). These proteins, PINA or PINB, can act 

independently to give the intermediated-soft textured grain or can function together to 

give a soft textured grain (Wanjugi et al. 2007).   

Rice does not have any homolog for Pina and Pinb. Therefore, the variation of 

rice grain texture is so small. This is the one of the reasons why the application of rice 

flour to processing foods is very limited at present. The creation of such variations in 
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rice endosperm texture should make it possible to develop a variety of new end products 

and food uses. 

 

1-3 Objectives of this study 

 

As described above, stable transgenic plants with large DNA fragments have not been 

obtained so far. In this study, the large DNA fragments containing Aegilops tauschii 

hardness genes have been introduced into rice using the bioactive beads method to 

produce the transgenic rice which has the novel characteristics in endosperm texture. 

The transgenic plants obtained were analyzed in the levels of DNA, RNA, and protein 

in Chapter 2. In Chapter 3, the author has focused on the homozygous transgenic plant 

9-1-6-3 expressing Pinb gene in successive generations and analyzed the influence of 

PINB on the ultrastructure of endosperm cells and physicochemical properties of rice 

flour in detail. The significance of the results obtained through the study is discussed 

and summarized in Chapter 4. The prospects for this study are also discussed in Chapter 

4. 
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Bioactive beads-mediated transformation of rice with large 

DNA fragments containing Aegilops tauschii genes 
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2-1 Introduction 

 

Transformation with large DNA fragments enables multiple genes to be introduced into 

plants simultaneously to produce transgenic plants with complex phenotypes. There 

have been some previous reports regarding transformation with large DNA fragments 

(Van Eck et al. 1995; Hamilton et al. 1996; Mullen et al. 1998; Phan et al. 2007). 

Generally speaking, however, the number of reports of successful transformation with 

large DNA fragments is limited and the technology has not been established well.  

We have developed a novel and efficient transformation method with the 

capacity to deliver large DNA fragments (Sone et al. 2002; Mizukami et al. 2003; Liu et 

al. 2004a; Liu et al. 2004b). The method employs calcium alginate microbeads (referred 

to as bioactive beads) to immobilize DNA molecules on the surface of the beads. 

Immobilized DNAs on the calcium alginate microbeads are physically stabilized and 

can be accumulated on a limited area of the cell surface when the beads are attached to 

cells. This makes it possible to efficiently introduce large DNA fragments. Polyethylene 

glycol (PEG) is additionally employed to introduce the DNA into cells, making the 

transformation efficiency 5- to 10-fold higher than that of PEG treatment only (Sone et 

al. 2002). The bioactive beads-mediated transformation is simple, low cost, and widely 

applicable. This method has been successfully applied to the transformation of yeast, 

tobacco BY-2, tobacco SR-1, egg plant, carrot, rice, and mammalian cells (Higashi et al. 

2004; Liu et al. 2004b). Chromosomal DNA of up to 450 kb has been introduced into 

yeast cells by this method (Mizukami et al. 2003). In plants, 124 kb of YAC has been 

introduced into tobacco BY-2 suspension culture cells (Liu et al. 2004a). However, it 

has not been yet demonstrated that this method can produce regenerated transgenic 
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plants containing large DNA inserts. 

In Chapter 2, I have reported the successful transformation of rice plants with 

large DNA fragments using the bioactive beads method. As rice is an important crop 

and is also a model plant among monocotyledons, the development of effective genetic 

engineering for this species is of considerable significance. The results presented in 

Chapter 2 demonstrate that the bioactive beads method can produce transgenic rice 

plants harboring large fragments of Ae. tauschii DNA.
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2-2 Materials and Methods 

2-2-1 Plant materials and culture methods 

Embryogenic calli were induced from mature rice kernels (Oryza sativa L. ssp. japonica 

cv. Nipponbare) as previously described by Otani and Shimada (1992).  

HY-1 cells from wheat (cv. Haruyutaka) were kindly provided by Prof. 

Shimada (Ishikawa Prefectural University). The calli were cultured on modified 

Linsmaier and Skoog (LS) medium (LS medium + 2 mg/l 2,4-D, 3% sucrose, 0.25% 

gellan gum, pH 5.8) at 26°C under light, and were sub-cultured once every 3 weeks. 

 

2-2-2 BAC DNA construction 

The pBI BAC 10-60 was constructed by introducing the partially-digested BAC10 clone 

(Turnbull et al. 2003) into the pBI101Hm vector (Clontech) with the 

hygromycin-resistance gene (HPT), and contains the Ae. tauschii genes for PINA, PINB, 

and GSP-1 (Suzuki et al., unpublished results)(Figure 2-1).  
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Figure 2-1 Schematic diagram of the construct, pBI BAC10-60, used in this 

transformation.  The pBI BAC 10-60 was constructed by introducing the 

partially-digested BAC10 clone (Turnbull et al. 2003) into the pBI101Hm vector 

(Clontech) with the hygromycin-resistance gene (HPT), and contains the Ae. tauschii 

genes for PINA, PINB, and GSP-1 (Suzuki et al., unpublished results). The HPT gene 

was used for selection of transgenic plants. 

 

2-2-3 Preparation of bioactive beads 

The bioactive beads were prepared according to the protocol described previously by 

Sone et al. (2002) with several modifications. BAC DNA was extracted using a Qiagen 

Plasmid Midi Kit (Qiagen, Tokyo, Japan). Ten microgram of the BAC DNA was used 

for preparing the bioactive beads. The BAC DNA solution was mixed with 450 μl of 

100 mM CaCl2. Nine hundred microliters of isoamyl alcohol was added to a 1.5-ml 

microtube containing 100 μl of 0.5% sodium alginate solution to form a water/oil 

emulsion. An ultrasonic disrupter (UR-20P; Tomy Seiko, Tokyo, Japan) set to maximum 

power was used for emulsification. After emulsification for 10 s, 500 μl of CaCl2 

solution containing the BAC was added immediately. The solution was then mixed 
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gently. The microtube was centrifuged at 5,000 rpm for 3 min to precipitate the 

bioactive beads. The upper isoamyl alcohol phase was removed, without removing the 

bioactive beads located around the interface. After adding 100 mM CaCl2, the solution 

was mixed gently and centrifuged at 5,000 rpm for 3 min in order to completely 

eliminate the isoamyl alcohol. This washing step was repeated at least twice, and the 

final volume was adjusted to 50 μl with 100 mM CaCl2. 

 

2-2-4 Transformation of rice protoplasts  

Rice protoplasts were isolated from mature kernel-derived suspension cells according to 

the protocol described by Otani and Shimada (1992). The transformation was performed 

according to the protocol described by Liu et al. (2004b) with several modifications. A 

protoplast suspension (500 μl) of 2 × 10
6
 cells/ml was transferred to a 15-ml glass 

centrifuge tube. The bioactive beads with BACs were gently mixed with the protoplast 

suspension, after which 825 μl of 40% (w/v) PEG CMS6 solution (40% PEG 6000, 0.4 

M mannitol, 0.1 M Ca(NO3)2・4H2O, pH 7~9; sterilized by passage through a 0.45-μm 

pore filter) was added, and the final concentration of PEG was adjusted to 24%. After 

10 min of PEG treatment, 815 μl of a 0.2 M CaCl2 solution (0.2 M CaCl2, 0.4 M 

mannitol, pH 5.8) was added to dilute the PEG, and mixed to disperse the protoplasts. 

This procedure was repeated three times after which the centrifuge tube was filled with 

W5 solution (Menczel and Wolfe 1984). The suspension was centrifuged for 1 min at 

800 rpm, and the precipitated protoplasts were washed again with W5 solution. The 

protoplasts were then suspended in 1 ml of R2P medium (R2 medium + 100 mg/l 

myo-inositol, 2 mg/l 2,4-D, 137 g/l sucrose, pH 6.0). 
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2-2-5 Regeneration of transgenic rice plants 

Rice plants were regenerated from protoplasts according to the protocol described by 

Hayashimoto et al. (1990) and Otani and Shimada (1992) with several modifications. 

The protoplast suspension was mixed with an equal volume of prewarmed (60°C) R2P 

medium containing 2.5% (w/v) Seaplaque
®
 agarose (Lonza, Switzerland). The agarose 

mixture was poured into a Petri dish that had been stored at –20°C. The solidified 

agarose block containing protoplasts was cultured in 5 ml of liquid R2P medium with 

wheat HY-1 nurse cells at 26°C in the dark with gentle shaking. After 14 d, the agarose 

blocks were transferred to liquid R2P medium containing 50 μg/ml hygromycin in order 

to select transformed colonies. After 14 or 28 d, the agarose blocks containing colonies 

of at least 1 mm in diameter were transferred to N6AS medium (N6 medium + 100 mg/l 

myo-inositol, 2 mg/l 2,4-D, 3% (w/v) sucrose, 0.3% agarose type I, pH 6.0) and 

maintained for 2 to 4 weeks until the colony size reached 2 mm in diameter. The 

hygromycin-resistant protoplast colonies were then transferred to regeneration medium 

[LS medium + 3% sucrose, 3% sorbitol, 2 g/l casamino acid, 1 g/l 2-(N-morpholino) 

ethanesulfonic acid (MES), 2 mg/l NAA, 1 mg/l kinetin, 0.4% gellan gum, pH 5.8] 

containing 50 μg/ml hygromycin and cultured at 26°C under a 16-h light/8-h dark 

photoperiod. The regenerated calli that formed shoots were transferred to LS 

hormone-free medium (LS medium + 3% sucrose, 0.25% gellan gum, pH 5.8) 

supplemented with 50 μg/ml hygromycin and maintained at 26°C under a 16-h light/8-h 

dark photoperiod until sufficient growth of the transgenic rice plants had been obtained. 

The plants were subsequently transferred to pots and grown in a greenhouse at 26°C. 

The fertility of the transgenic plants was assessed at the time of kernel harvest. Fertility 

was calculated as the proportion (%) of fertile kernels to all kernels. 
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2-2-6 PCR analysis  

Total DNA was isolated from the leaves of transgenic plants (T0, T2) using DNeasy 

Plant Mini Kits (Qiagen, Tokyo, Japan). PCR was then performed with primers for the 

HPT, NPTII, Pina, Pinb, and GSP-1 genes. The nucleotide sequences of the primers 

used for the PCRs are shown in Table 2-1 (Turnbull et al. 2003; Liu et al. 2004b). The 

thermal cycle conditions for the PCR were as follows: 95°C for 2 min, and then 35 

cycles of 95°C for 15 s, 50~55°C (depending on the genes, Table 2-1) for 30 s, and 

72°C for 40 s using Go Taq Green Master Mix (Promega, WI, USA).  

 

 

Table 2-1. Nucleotide sequences of primers used for PCR, RT-PCR analysis 

Target gene Primers 
Expected length of 

PCR product (bp) 

Annealing 

temperature (°C) 

Pina 
5'-ATGAAGGCCCTCTTCCTCATAGG-3' 

5'-TCACCAGTAATAGGCAATAGTGCC-3' 
450 50 

Pinb 
5'-ATGAAGACCTTATTCCTCCTA-3' 

5'-TCACCAGTAATAGCCACTAGGGAA-3' 
450 55 

GSP-1 
5'-GAATTGCGAGGAAGAGCAGC-3' 

5'-GCTAGTGATGGGGATGTTGC-3' 
328 55 

NPT II 
5'-GGCTATGACTGGGCACACCA-3' 

5'-GCGATACCGTAAACCACGAG-3' 
680 53 

HPT 
5'-GATGTAGGAGGGCGTGGATA-3' 

5'-AGCAATCGCGCATATGAAAT-3' 
348 55 

Actin 
5'-ACATCGCCCTGGACTATGAC-3' 

5'-TGGAATGTGCTGAGAGATGC-3' 
406 50 
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2-2-7 Hygromycin resistance test of transgenic kernels  

Transgenic kernels (T1, T2) were sown on LS hormone-free medium containing 50 

μg/ml hygromycin and cultured at 26°C under a 16-h light/8-h dark photoperiod. After 

14 d, the number of germinated hygromycin-resistant kernels was counted. 

 

2-2-8 Reverse transcription–PCR (RT-PCR) analysis 

Mature kernels were frozen in liquid nitrogen. Total RNA was extracted from these 

frozen kernels using TRIzol
®
 Reagent (Invitrogen, Carlsbad, CA, USA) according to the 

manufacturer’s protocol. The RNA solution was then treated with TURBO DNA-free 

DNase (Ambion, Austin, TX, USA). First-strand cDNA was synthesized using the 

First-Strand cDNA Synthesis Kit (GE Healthcare, Piscataway, NJ, USA) according to 

the manufacturer’s protocol. RT-PCR was performed with primers for the actin, GSP-1, 

and Pinb genes. The actin primers were used to confirm the successful cDNA 

preparation. The nucleotide sequences of the primers are listed in Table 2-1.  

 

2-2-9 Southern blot analysis 

Total DNA was extracted from the young leaf tissue of transgenic and control rice 

plants using DNeasy Mini Kit (Qiagen, Tokyo, Japan). Total DNA (approximately 5 

μg) and BAC DNA were digested with HindIII, and fractionated on a 1% agarose gel. 

After electrophoresis, the DNA was transferred to nylon membranes (Roche Diagnostic 

Systems, Indianapolis, IN, USA). Hybridization was carried out in Hybri Easy Hyb 

(Roche Diagnostic systems) at 40°C. The membrane was washed twice in 2 × standard 

saline citrate (SSC), 0.1% SDS at room temperature for 5 min each, then twice in 0.5 × 
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SSC, 0.1% SDS at 68°C for 15 min each. The digoxigenin-labeled probes were 

prepared by PCR using PCR DIG Labeling Mix (Roche Diagnostic Systems). 

Detection of the hybridized probe was carried out according to the instructions in the 

manual supplied with a DIG Luminescent Detection Kit (Roche Diagnostic Systems) 

using CSPD as the substrate. The band intensities were analyzed with the Image J 

program (http://rsb.info.nih.gov/ij/download. html) (Abramoff et al. 2004). 

 

2-2-10 Fluorescence in situ hybridization (FISH) 

The details of chromosome preparation, probe labeling, in situ hybridization, and signal 

detection are as described in Akiyama et al. (2004), Fukui et al. (1994), and Ohmido et 

al. (1998) with the following minor modifications. For chromosome preparation, the 

root tips of rice were macerated with an enzyme mixture [1.33% Cellulase Onozuka RS 

(Yakult Pharmaceutical Industry Co. Ltd.,, Tokyo, Japan), 3.5% Macerozyme R-10 

(Yakult Pharmaceutical Industry Co. Ltd.,, Tokyo, Japan), 0.23% Pectolyase Y-23 

(Kyowa Chemical Products Co. Ltd., Osaka, Japan), 0.33 mM EDTA, pH 4.2] at 37°C 

for 40 min. For FISH, the slides were denatured at 85°C with 70% formamide in 2  

SSC for 90 s after pretreatment. 

Following hybridization, the digoxigenin (DIG)-labeled probes were detected 

using the Fluorescent Antibody Enhancer set for DIG detection (Roche Diagnostic 

Systems, Indianapolis, IN, USA) according to the manufacturer’s instructions. The 

slides were mounted in Vectashield (Vector Laboratories, Burlingame, CA, USA) 

containing 1.5 μg/ml DAPI and observed under an epifluorescence microscope (Carl 

Zeiss, Oberkochen, Germany) equipped with a cooled charged-coupled device (CCD) 

http://rsb.info.nih.gov/ij/download
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camera (Cool-SNAP TMHQ2; Photometrics Image Point, Tuscon, AZ, USA). Image 

processing was performed with the softwares: IPLab (Visitron Systems GmbH, 

Puchheim, Germany) and Adobe Photoshop version 7.0 (Adobe Systems Inc., CA, 

USA). 

 

2-2-11 Isolation of Triton X-114-soluble proteins, SDS-PAGE 

Triton-soluble proteins were isolated by phase partitioning of Triton X-114 according to 

the protocol described by Giroux and Morris (1998) with several modifications. 

Crushed whole kernels were added to 1% (v/v) Triton X-114 in Tris-buffered saline (10 

mM Tris, 150 mM NaCl, pH 7.5) at 4°C and were mixed for 30 min. After 

centrifugation at 10,000 × g for 5 min, the supernatant was transferred to a new tube and 

re-centrifuged. The supernatant was incubated at 65°C for 30 min and re-centrifuged at 

25°C. The lower detergent phase was transferred to a new tube and the phase 

partitioning was repeated. After phase partitioning, the proteins in the detergent-rich 

phase were precipitated with 80% (v/v) acetone. The pellets were washed with acetone 

and dried followed by the addition of SDS sample buffer (without reducing agents). 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 

performed by standard method (Laemmli method) using a 17.5% gel and visualized by 

silver staining.  

 

2-2-12 In-gel digestion 

Pieces of gel containing the proteins of interest were excised for in-gel digestion with 

trypsin according to the protocol as described previously by Gharahdaghi et al. (1999) 
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and Wilm et al. (1996). Briefly, gel pieces obtained from gel electrophoresis were 

destained by incubation in 1 ml of 25 mM ammonium bicarbonate in 30% acetonitrile. 

Gel pieces were then dehydrated in 100% acetonitrile and dried in a SpeedVac 

(Thermo Electron Corp., Waltham, MA, USA). For reductive alkylation, the gels were 

incubated for 1 h at 56°C in 25 μl of 10 mM dithiothreitol in 25 mM ammonium 

bicarbonate, then washed with 25 mM ammonium bicarbonate followed by replacement 

of the solution with 25 μl of 55 mM iodoacetamide in 25 mM ammonium bicarbonate 

and incubation for 45 min at 37°C in the dark. After washing with 25 mM ammonium 

bicarbonate, gel pieces were dehydrated in 100% acetonitrile and dried for 30 min in a 

SpeedVac. The dried gel pieces were then rehydrated for 45 min at 4°C in 5-30 μl of a 

solution of 50 mM ammonium bicarbonate containing 2-3 pmol of trypsin. After 

incubation for 16 h at 37°C, peptides were eluted with 50 μl of 5% trifluoroacetic acid 

in 50% acetonitrile for 10 min at room temperature. The second elutions of the peptides 

were performed with 25 μl of 5% trifluoroacetic acid in 50% acetonitrile for 10 min at 

room temperature. The first and second eluates were pooled.  

 

2-2-13 Protein identification by mass spectrometry  

Protein identification was performed by MS/MS ion searching using micrOTOF-Q. A 

mass spectrometer (Bruker Daltonics GmbH) equipped with UltiMate liquid 

chromatography (Dionex Corp., Sunnyvale, CA, USA) was also employed for the 

protein identification. Digested peptide solutions were concentrated on a (0.5 cm × 300 

μm i.d.) trapping column packed with C18 PepMap 100 (LC Packings, DIONEX) using 

buffer A (acetonitrile/water (5:95, v/v) with 0.1% formic acid) delivered at 25 μl/min. 

The trapping column was switched on-line with the analytical column after 5 min 
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loading time. Chromatographic separation of peptides was performed using a C18 

PepMap 100 column (15 cm × 75 μm i.d., LC Packings, DIONEX) and using a linear 

gradient of buffer B (a mixture of acetonitrile/water (95:5) with 0.1% formic acid) in 

buffer A as follows: from 10% to 45% of buffer B in 20 min, switched to 100% buffer B 

for 10 min, followed by 5 min re-equilibration with buffer A at a constant flow rate of 

0.3 μl/min.MS/MS spectra were analyzed using the MASCOT software employing the 

NCBI nr Database. Masses were compared with plant protein database at 0.4 Da mass 

tolerance. Identification was considered positive when high scores and three peptide 

sequences were obtained. 
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2-3 Results 

2-3-1 Transformation of rice with BACs using the bioactive bead method 

The rice plants were transformed with pBI BAC 10-60 using the bioactive beads 

method. The pBI BAC 10-60 contains a set of hardness genes, the NPTII gene and the 

HPT gene. In nearly all the Triticum and Ae. tauschii diploids studied to date, the 

hardness is controlled by a single locus comprised of the Pina, Pinb and GSP-1 genes 

(Bhave and Morris 2008). These three genes are called hardness genes. The pBI BAC 

10-60 covers the genomic region containing these three genes (Figure 2-1). Protoplasts 

were prepared from rice calli and mixed with bioactive beads containing the BAC DNA. 

A PEG solution was then added to the mixed solution in order to introduce the BAC 

DNA into the protoplasts. The regeneration of rice plants was performed according to 

the protocol described by Hayashimoto et al. (1990) and Otani and Shimada (1992) with 

several modifications. Transgenic plants were selected by hygromycin resistance 

(Figure 2-2A). Nine plants transformed with pBI BAC 10-60 were obtained. The 

transgenic rice plants exhibited no aberrant phenotypes and were indistinguishable from 

non-transgenic rice plants during plant growth (Figure 2-2B). However, the fertility of 

these plants was very low in the T0 generation. Most of the transgenic plants did not 

produce kernels, the exceptions being transgenic plants 9-1-6 and 9-1-10, which 

produced 5 and 3 kernels, respectively. These T1 kernels were tested for resistance 

toward hygromycin. Three out of five kernels from plant 9-1-6 and one out of three 

kernels from plant 9-1-10 exhibited hygromycin resistance. In the T1 transgenic plants 

derived from these kernels, the fertility recovered to approximately 90% (Table 2-2). As 

a result, more than 100 T2 kernels were obtained from each T1 transgenic plant. There 
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was no difference in morphological characteristics between non-transgenic and 

transgenic kernels (Figure 2-2C). A segregation test according to hygromycin resistance 

revealed a 3:1 ratio for transgenic plants 9-1-6-1, 9-1-6-2 and 9-1-10-1, suggesting the 

integration of transgenes at a single locus (Table 2-2). For transgenic plant 9-1-6-3, all 

tested T2 kernels exhibited hygromycin resistance. This result suggested that the HPT 

gene in T1 transgenic plant 9-1-6-3 was homozygous. 

 

 

 

 

 

 

Figure 2-2 Transformation of rice. (A) Selection of transgenic plants with hygromycin; 

(left) Non-transgenic rice calli, (right) Transgenic rice calli. (B) T0 transgenic rice 

plants; (left) Non-transgenic rice, (right) Transgenic rice. (C) Rice kernels of the T2 

generation; (left) Non-trasngenic kernels, (right) Transgenic kernels 
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Table 2-2. Fertility of T1 transgenic plants and HPT gene segregation in their progeny  

 * + resistance / non resistance -  

Transgenic plants Fertility (%) T2 segregation*   Ratio tested 
χ

2
 value      

(P value) 

Non-transgenic rice 98.4 +0/20-   

9-1-6-1 96.5 +17/3- 3:1 1.1 (0.30) 

9-1-6-2 90.1 +15/5- 3:1 0 (1.0) 

9-1-6-3 86.2 +20/0-   

9-1-10-1 84.5 +15/5- 3:1 0 (1.0) 

 

 

2-3-2 DNA analysis of transgenic plants  

The presence of transgenes in the genome of T0 transgenic rice was examined by PCR 

with gene specific primers. The results of the PCR analysis are shown in Table 2-3. The 

insertion of multiple transgenes was confirmed in all the transgenic plants. The results 

demonstrated that large DNA fragments were integrated into the rice genome. On the 

other hand, the deletion of some transgenes was also observed. The Pina gene was not 

detected in all transgenic plants. In transgenic plants 9-1-1, 9-1-2, 9-1-6 and 9-1-10, the 

NPTII gene was not detected. In transgenic plant 9-1-10, only the GSP-1 gene was 

detected. Although HPT gene also was not detected in this plant, the presence of HPT 

gene was confirmed by Southern blot analysis (Figure 2-3). These results suggest that 

some rearrangement of the integrated BACs had occurred during transformation. 

 Southern analysis was performed to check the copy number and integration of 

transgenes. The genomic DNA was digested with HindIII and hybridized with 

DIG-labeled probes for HPT gene and Pinb gene. As a result, all transgenic plants 

exhibited integration of the HPT gene (Figure 2-3A). The fragment size was the same as 
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size of digested pBI BAC DNA in all transgenic plants. Thus, the result suggests that 

intact insertion of this region may have occurred. Hybridization with the probe for Pinb 

gene also indicated that all transgenic plants contain the Pinb gene (Figure 2-3B). Their 

fragment sizes were the same as size of digested BAC DNA. This result suggests that 

the insert region containing Pinb gene was integrated as an intact fragment. In addition, 

the BAC DNA corresponding to 2 copies insertion into 5 μg rice genomic DNA was 

applied to electrophoresis in this experiment. Thus, based on their band intensities, the 

copy number of this region in these transgenic plants was presumed to be one. These 

results indicated that tested two fragments were introduced into rice plant as intact state. 

 

 

 

Table 2-3. Profiles of T0 transgenic plants as determined by PCR analysis  

+: gene detected, – : gene not detected 

  
Lines 

NPTII  

gene 

Pinb       

gene 

Pina       

gene 

GSP-1  

gene 

HPT   

gene 

Non-transgenic plant   – – – – – 

 Transgenic plants 

with pBI BAC10-60 

9-1-1 – + – + + 

9-1-2 – + – + + 

9-1-3 + + – + + 

9-1-4 + + – + + 

9-1-6 – + – + + 

9-1-7 + + – + + 

9-1-8 + + – + + 

9-1-9 + + – + + 

9-1-10 – – – + – 
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Figure 2-3 Southern blot analysis of T0 transgenic plants. Total DNA of rice plants was 

digested with HindIII and probed with (A) the HPT gene and (B) Pinb gene. Lane 1 : 

control plant, Lane 2 : transgenic plant 9-1-3, Lanes 3 to 7 : transgenic plants 9-1-6 to 

9-1-10, Lane 8 : pBI BAC DNA digested with HindIII. The amount of BAC DNA 

corresponds to two copies insertion of the transgene in rice genome. Arrows indicate the 

locations of the observed bands. 
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In order to examine the segregation of transgenes in the T2 transgenic plants, 

PCR analysis was performed to determine the presence of transgenes in the T2 

transgenic plants being homozygous for the HPT gene. Since PCR analysis of T0 

transgenic plant 9-1-6 revealed that the Pinb and GSP-1 genes were integrated in this 

plant, its progenies were investigated for segregation of the genes. The results are 

shown in Figure 2-4. Both genes were detected in all the tested T2 kernels harvested 

from T1 plant 9-1-6-3. These results indicate that both the Pinb and GSP-1 genes coexist 

with the HPT gene being homozygous in T1 transgenic plant 9-1-6-3. Furthermore, 

these results demonstrated that the large DNA fragment was maintained in transgenic 

plants and was stably inherited through several generations. 

 

 

 

Figure 2-4 PCR analysis of segregation of transgenes among T2 kernels of plant 9-1-6-3. 

Pinb gene and GSP-1 gene were amplified with primer sets specific for each gene. The 

templates used for each sample were as follows: lane 1 ; No template, lane 2 ; 

Non-transgenic rice, lane 3 ; Transgene donor plant, Ae. tauschii, lanes 4~13 ; T2 

Transgenic plants 9-1-6-3-1~10. 
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The presence of transgenes in the T2 transgenic plants was also investigated by 

FISH analysis. Chromosome specimens were prepared from the root tips obtained from 

the kernels of the T1 transgenic plant 9-1-6-3 and subjected to FISH analysis. PBI BAC 

10-60 was labeled with digoxigenin and used as a probe. Two pairs of green signals 

were detected at the telomeric region of homologous chromosomes that was predicted to 

be chromosome 2 or 3 based on their morophology (Figure 2-5) (Fukui and Iijima 1991). 

This result is consistent with the segregation results mentioned above (Table 2-2, Figure 

2-4), which indicate homozygosity of these transgenes in the T2 trangenic plants. It also 

suggests that the transgenes might be integrated at a single locus in the genome at the T0 

generation, although there might have been the other DNA insertions which were 

eliminated during T0 and T2 generations. 

 

 

Figure 2-5 FISH analysis of the kernels of the T1 transgenic plant 9-1-6-3. The two 

paired green signals indicate the integration sites of pBI BAC 10-60. Bar = 10 μm 
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2-3-3 Transgene expression analysis 

In order to analyze the expression of transgenes at the mRNA level, total RNA was 

extracted from the T2 kernels of plant 9-1-6-3 containing homozygous transgenes. The 

extracted RNA was subjected to RT-PCR. The expression of the Pinb and GSP-1 genes 

was investigated because the presence of both genes was detected by PCR. The actin 

gene was used as a positive control for the RT-PCR. A band of the expected size (446 

bp) was obtained using Pinb gene primers when cDNA from plant 9-1-6-3 were used as 

a template (Figure 2-6). This indicates that Pinb was expressed in the transgenic plants. 

On the other hand, no RT-PCR products of GSP-1 were observed in the transgenic 

plants. This result implies that the GSP-1 gene was not expressed probably due to 

deletion of the promoter region or gene silencing.  

 

 

 

Figure 2-6 RT-PCR analysis of the transgene expressions. Total RNA was extracted 

from frozen T2 transgenic kernels and subjected to DNase treatment. cDNA was 

synthesized from the solution. The templates used for RT-PCR were as follows: lane 1 ; 

No template, lane 2 ; cDNA of non-transgenic rice, lane 3 ; cDNA of transgenic plant, 

lane4 ; Total DNA of transgenic rice. The primer sets used are shown on the left.  
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In order to analyze the expression of the transgene at the protein level, Triton 

X-114-soluble proteins were extracted from T2 kernels of plant 9-1-6-3 and were 

subjected to SDS-PAGE. Similar loadings of protein in each lane were confirmed by 

Coomassie brilliant blue (CBB) staining (data not shown). With silver staining, an 

approximately 15-kDa specific band was observed in the transgenic plant, but not in 

non-transgenic plant (Figure 2-7). The molecular weight of this protein was consistent 

with that of PINB. To confirm that this band is the product of transgenes, mass 

spectrometry analysis was performed. Three peptide sequences were obtained and their 

sequences, LGGFFGIWR, DFPFTWPTK, QLSQIAPQCR, were matched with that of 

PINB. The mass spectra are shown in Figure 2-8. The obtained Mowse score was 161 

(in this experiment, individual ion scores >31 indicate identity or extensive homology 

(p<0.05)). Thus, the mass spectrometry confirmed that the obtained band was the 

product of one of transgenes, PINB.These results revealed that PINB was expressed in 

transgenic plant 9-1-6-3. The introduced BAC contains the native promoters and 

regulator regions of the target genes. Thus, these results also suggest that the promoter 

of the Pinb gene from Ae. tauschii is active in rice kernels. 
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Figure 2-7 Analysis of transgene expression at the protein level. Triton X-114-soluble 

proteins were extracted from kernels and were subjected to SDS-PAGE. The gel was 

staind by silver staining. lane 1: Ae. tauschii kernels, lane 2 : Non-transgenic rice 

kernels, lane 3 : T2 kernels of plant 9-1-6-3. Asterisk indicates the expected size of 

PINB and GSP-1. PINB was identified from an in-gel digested sample of the 15-kDa 

band (*) in lane 3. 
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(A) 

 

 

(B) 
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(C) 

 

Figure 2-8 Mass spectra of three peptides, (A) DFPFTWPTK, (B) LGGFFGIWR, and 

(C) QLSQIAPQCR.  
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2-4 Discussion  

 

The bioactive beads method was developed in 2002 (Sone et al. 2002; Mizukami et al. 

2003; Liu et al. 2004b). This method was successfully utilized to deliver chromosomal 

DNA of up to 468 kb into yeast cells (Mizukami et al. 2003). In the present study, large 

DNA fragments were introduced into rice plants using the bioactive beads method. 

Although we have previously demonstrated the transient transformation of several plant 

species by the bioactive beads method, the present report is the first demonstration of 

producing stable transgenic plants transformed with large DNA fragments. Furthermore, 

Liu et al. (2004a) succeeded in co-transformation of two kinds of plasmid DNA into 

tobacco SR-1, which indicates the possibility of co-transformation with large DNA 

fragments by the method. Co-transformation allows simultaneous introduction of 

multiple genes without exceeding the maximum size of transgenes allowed for each 

plasmid, and its application facilitates genetic engineering of plants. Co-transformation 

with several kinds of BAC DNAs is in progress. 

 PCR, segregation, and FISH analyses revealed that plant 9-1-6-3 contained 

homozygous transgenes at a single locus. These results also indicated that transgenes 

were stably inherited in the successive generations. Furthermore, FISH analysis also 

indicated that pBI BAC 10-60 was integrated into the telomeric region of a chromosome. 

This result is consistent with the general observation that the integration of transgenes 

occurs preferentially at subtelomeric and telomeric region, which are typically gene-rich 

(Szabados et al. 2002; Alonso et al. 2003; Chen et al. 2003; Sallaud et al. 2004). On the 

other hand, Kim et al. (2007) reported that insertion of transgenes occurred randomly, 

but the selection pressure might shift the recovery of insertions into gene-rich or 
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transcriptionally active regions of a genome. Our results might reflect selective pressure 

during cell growth.  

FISH analysis is the preferred tool to confirm insertion of large DNA fragments 

since large DNA fragments are more easily detected than small fragments by FISH. 

Moreover, FISH results can provide the information as to whether the transgene inserted 

into the chromosome is homozygous or heterozygous. That is, in the case of large DNA 

insertion, segregation analysis for confirmation of homozygous status is not required, 

transgenic breeding program can be shortened by omitting one generation of cultivation 

for the segregation test.  

With the exception of low fertility in the T0 generation, the transgenic plants 

exhibited no other abnormal phenotypes through T0 to T2 generations. Given that a 

decrease in fertility has previously been observed in transgenic rice plants generated by 

tissue culture (Bhat and Srinivasan 2002; Larkin and Scowcroft 1981), this is thought to 

be due to somaclonal mutation during the regeneration process. Transgene expression 

might also influence the fertility of transgenic plants since introduced genes are 

expressed in an endosperm-specific manner in Ae. tauschii. However, in the present 

study, fertility was recovered in the T2 plants, which expressed the Pinb gene. It 

indicates that the sterility was not caused by the introduced transgenes.  

The expression of the Pinb gene was also confirmed in the T2 generation by 

RT-PCR and mass spectrometry. The introduced BAC contained the native promoters 

and regulator regions of the target genes; therefore, this result indicates that the 

promoter of the Pinb gene derived from Ae. tauschii can function in rice kernels. It has 

also been reported that 388 bp of the upstream region of the Pinb gene derived from 

Triticum aestivum can also function as a promoter that directs tissue-specific expression 
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in rice kernels (Digeon et al. 1999). Given that the sequence of 600 bp of the upstream 

region of the Ae. tauschii Pinb gene is 93% identical to that of the T. aestivum Pinb gene 

(Turnbull et al. 2003), this result is not unexpected. Kubo et al. (2005) have 

demonstrated that the promoter of the Ae. tauschii isoamylase1 (ISA1) gene can 

function in rice kernels. However, the expression of the GSP-1 gene could not be 

demonstrated despite the presence of the GSP-1 gene being detected by PCR analysis. It 

could be due to a random breakage in promoter region or transgene silencing (Iyer et al. 

2000). More detailed analysis of the introduced DNA fragments will be required. 

Southern analysis using whole BAC DNA as probe was also performed to get 

the additional information about the rearrangement level of introduced BAC DNA. 

However, clear bands could not be obtained. When the whole BAC DNA was used as 

probe, smear signals were observed not only in transgenic plants, but also in 

non-transgenic plants. It suggests that the repetitive sequences in BAC DNA hybridized 

to the sequences in rice genome. More detailed Southern analysis, extended DNA fiber 

FISH, and sequencing analysis will be required to investigate the rearrangement of 

introduced DNA fragments. 

In this study, transgenic plants which contain Pina gene were not obtained. 

However, the transgenic plants which contain Pina gene have been obtained in 

co-transformation experiments with two kinds of BAC DNAs (data not shown). Thus, 

the Pina gene can be transferred into rice cells by bioactive beads method. It remains 

unknown if the deletion of Pina gene in this study occurred as the result of random 

deletion or the specific structure of genomic DNA near Pina gene, which made it easy 

to remove the Pina a gene during the integration into plant genomes. To increase the 

number of transgenic lines will be necessary in order to check if the phenomenon 
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observed in this study was accidental, i.e., the result of random deletion. 

Northern analysis gives the detailed information on the mRNA structure. 

However, Northern analysis was not performed in this study because of the following 

three reasons. First, the expression of mRNA was confirmed by RT-PCR. Second, the 

full length Pinb mRNA was detected by using the primer sets designed at the terminal 

sequences of Pinb gene. Third, the result of mass spectrometry indicated the expected 

molecular weight of PINB. However, there is still possibility that the length of Pinb 

gene mRNA was different from the expected length. In fact, only a part of GSP-1 gene 

mRNA could also be expressed in transgenic rice. Northern analysis would have been 

needed to investigate the expression of transgenes in more detail. 

Based on the aforementioned results, the author has indicated that the bioactive 

beads method has a potential to transform rice plants with large DNA fragments. 

However, the further improvements and trials will be necessary to achieve the intact 

transfer of large DNA fragments into plant cells. The capacity to deliver large DNA 

fragments will facilitate the engineering of plants by multiple gene transfer. This 

approach is likely to be useful for the introduction of families of genes related to 

phenotypic properties such as metabolic pathways. Furthermore, this method should 

contribute to the development of plant artificial chromosomes. The development of new 

transformation method is considered to be necessary for the introduction of long 

centromeric repetitive DNA sequences. In addition, alternative transformation methods 

will be required to introduce constructed autonomous plant artificial chromosomes into 

plant cells because Agrobacterium-mediated method will not transfer T-DNA without 

integrating it into the plant genome. The bioactive beads method can be a powerful tool 

for this purpose. Autonomous plant artificial chromosome delivering large DNA 
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fragment will offer simultaneous multiple gene transfer, and enable us to overcome 

position effects and the rearrangement of transgenes in plant genomes.  
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2-5 Summary 

 

Transformation with large DNA molecules enables multiple genes to be introduced into 

plants simultaneously to produce transgenic plants with complex phenotypes. In this 

study, a large DNA fragment (ca. 100 kb) containing a set of Ae. tauschii hardness 

genes was introduced into rice plants using a novel transformation method, called 

bioactive beads-mediated transformation. Nine transgenic rice plants were obtained 

and the presence of transgenes in the rice genome was confirmed by PCR and FISH 

analyses. The results suggested that multiple transgenes were successfully integrated in 

all transgenic plants. The expression of one of the transgenes, Pinb, was confirmed at 

the mRNA and protein levels in the T2 generation. Our study indicates that the bioactive 

bead method is capable of producing transgenic rice plants carrying large DNA 

fragments. This method will facilitate the production of useful transgenic plants by 

introducing multiple genes simultaneously. 
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Chapter 3 

 

The effects of puroindoline b on the ultrastructure of 

endosperm cells and physicochemical properties of transgenic 

rice  
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3-1 Introduction 

 

Wheat grain hardness is controlled by the hardness locus (Ha) on the short arm of 

chromosome 5D (Law et al. 1978). A 15 kDa complex of the Ha termed friabilin was 

found to be related with endosperm texture, which was more abundant on soft wheat 

starch than on hard wheat starch (Greenwell and Schofield 1986). PINA and PINB have 

been identified as the components of friabilin based on their N terminal sequences 

(Rahman et al. 1994). The Pina and Pinb genes have been cloned and were shown to 

encode wheat endosperm-specific lipid binding proteins with a unique tryptophan-rich 

domain (Gautier et al. 1994). This tryptophan rich domain has been considered as being 

responsible for the strong affinity of PINs to polar lipids (Marion et al. 1994). It has 

been suggested that these lipid/protein interfaces play an important role in the texture of 

wheat endosperm by preventing the adhesion between the starch granules and 

surrounding protein matrix (Morris 2002). Promoter analysis has shown that Pina and 

Pinb genes are expressed only in the endosperm (Wiley et al. 2007)  and 

immunostaining studies have shown that PINs are localized on the starch granule 

surface (Wiley et al. 2007; Feiz et al. 2009). Based on these studies, it has been 

considered that PINs bound to lipid on the starch granule surfaces prevent the starch 

granules from being packed tightly, resulting in the soft grain texture. 

PINA and PINB have 60% homology in their amino acid sequence. Some 

studies showed that PINA has a greater role for grain hardness than PINB (Corona et al. 

2001; Capparelli et al. 2003). Some studies showed that addition of PINB was more 

effective at reducing the grain hardness (Hogg et al. 2004) and that PINB was the 

limiting factor in a sense because it assists PINA in binding to starch (Swan et al. 2006). 
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Recently, Wanjugi et al. (2007) has indicated that PINA or PINB can act independently 

leading to intermediate-textured
 
grain or can function together to give a soft grain 

texture. 

Rice (Oryza sativa L.) is an important cereal and is also a model plant among 

monocotyledons. In addition, rice does not contain PinA and PinB homologs. These 

characteristics make it a good model cereal to investigate the effect of PINs on the other 

cereals. Krishnamurthy and Giroux (2001) have already reported that expression of 

wheat Pins in transgenic rice enhances grain softness. However, the ultrastructure of 

transgenic rice endosperm cells has not been investigated. Examining the effect of PINs 

on the structure of plant endosperm cells will be useful to understand the functions of 

PINs in more detail. Furthermore, it will also help to collect additional knowledge to 

manipulate the grain hardness in other cereals. 

 As described in Chapter 2, I have introduced the Ae. tauschii genomic region 

containing the hardness genes into japonica rice cv. Nipponbare using a bioactive beads 

method and obtained the homozygous transgenic rice stably expressing the Pinb gene. 

In this study, the homozygous transgenic rice expressing Pinb gene in T4 generation was 

used to investigate the effect of the Pinb gene on the ultrastructure of the rice 

endosperm cells. In addition, I also assessed the physicochemical properties of 

transgenic rice flour to characterize the transgenic rice.
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3-2 Materials and Methods 

 

3-2-1 Plant materials 

The embryogenic rice calli induced from mature kernels (O. sativa L. ssp. japonica cv. 

Nipponbare) were transformed as described in Wada et al. (2009). The T4 kernels 

derived from the homozygous transgenic rice (line 9-1-6-3) expressing Ae. tauschii 

Pinb gene were used throughout the study. Three transgenic and three non-transgenic 

plants were grown in pots containing fertilized granulated soils (Kureha, Tokyo, Japan) 

in the greenhouse at 30°C at same time in the summer of 2008. The non-transgenic 

plants which did not go through tissue culture but were nearly identical to transgenic 

plants in terms of their seed size, protein content (data not shown), amylose content, the 

shape and the size of isolated starch granules (as described in Results section) were used 

as control in this study.   

 

3-2-2 RT-PCR analysis 

RT-PCR was carried out as mentioned in Wada et al. (2009). RT-PCR was performed 

with primers for the actin and Pinb genes. The actin primers were used to confirm the 

cDNA synthesis. The nucleotide sequences of the primers are as follows: actin F, 

ACATCGCCCTGGACTATGAC; actin Re, TGGAATGTGCTGAGAGATGC; Pinb F, 

ATGAAGACCTTATTCCTCCTA; Pinb Re, TCACCAGTAATAGCCACTAGG GAA. 

The thermal cycle conditions for the RT-PCR were as follows: 95°C for 2 min, and then 

35 cycles of 95°C for 15 s, 50°C (for actin primer) or 55°C (Pinb primer) for 30 s, and 

72°C for 40 s.         
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3-2-3 Isolation of Triton X-114 soluble proteins, SDS-PAGE 

Triton-soluble proteins were isolated by phase partitioning of Triton X-114 as described 

in Wada et al. (2009). The pellet was dissolved in SDS sample buffer (4% SDS, 10% 

sucrose in 125 mM Tris-HCl, pH 6.8). SDS-PAGE was performed by standard method 

(Laemmli method) using a 20% gel and visualized by silver staining using Sil-Best 

Stain-Neo (NACALAI TESQUE, Inc., Kyoto, Japan) according to the manufacturer’s 

instructions. 

 

3-2-4 Scanning electron microscopy (SEM) 

Two kinds of samples were prepared; one was the whole grains of milled rice and 

another was isolated starch granules. For the whole grains, individual grains were 

fractured by the razor blade with a slight pressure on the top of the grain. Fractured rice 

grains were immediately mounted on the specimen stage, and the fractured surface of 

rice grains was directed upward. The samples were then coated with osmium (3 nm in 

thickness) in an osmium plasma coater, HPC-15 (Vacuum Device Inc., Mito, Japan) and 

were observed under a SEM, S-5200 (Hitachi, Tokyo, Japan) at 15 kV. Seven seeds 

were used for SEM observation. The isolated starch granules were prepared according 

to the protocol described by Fujita et al. (2003). Dried seeds of non-transgenic and 

transgenic plants were dehulled, and the outer layer of the seed was removed using a 

rice polisher (Twinbird corporation, Niigata, Japan). And then the milled rice was 

ground into powder with mortar and pestle. The morphology of starch granules was 

examined under a SEM. The projected surface areas of each granule were measured 

using the Image J program (http://rsb.info.nih.gov/ij/) to analyze the size distribution of 

isolated starch granules (Abramoff et al. 2004).  
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3-2-5 Transmission electron microscopy (TEM)   

Using a razor blade, individual mature grains were first cut transversely at the mid 

region of endosperm, and then were cut longitudinally. These blocks were fixed with 

gas from 5% glutaraldehyde in 0.2 M cacodylate buffer (pH 7.4) for a week at room 

temperature, and postfixed by 2% osmium tetraoxide gas overnight at room temperature. 

The blocks were then dehydrated through the graded ethanol series, followed by n-butyl 

glycidyl ether (QY-1) and embedded in Qutol-651 (NISSHIN EM Co., Ltd. Tokyo, 

Japan). Sections were cut with a diamond knife on an ultramicrotome, ULTRACUT E 

(Leica Biosystems Nussloch GmbH, NuBloch, Germany), and examined under a 

JEM-1200EX electron microscope (JEOL, Tokyo, Japan) with an accelerating voltage 

of 100 kV. Three seeds were used for TEM observation. 

 

3-2-6 Damaged starch assay 

The quantity of damaged starch from rice flour was measured using the Megazyme 

starch damage assay kit (Megazyme Int’l Ltd., Bray, Ireland) according to the 

manufacturer’s protocol. The analysis was performed in duplicate and the values are 

averages of three independent experiments. 

 

3-2-7 Flour size distribution assay  

The milled rice was ground to flour using the vibrating sample mill, model TI-100 

(CMT Co., Ltd., Tokyo, Japan) according to the manufacturer’s instructions. The flour 

particle size distribution was measured with a laser diffraction system, HELOS & 

RODOS (Sympatec GmbH, Clausthal-Zellerfeld, Germany) according to the 
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manufacturer’s protocol. The median diameter calculated was chosen to characterize the 

flour particle size. The analysis was performed in duplicate. 

 

3-2-8 Quantification of apparent amylose content 

The apparent amylose content was measured based on an iodine colorimetric assay 

(Juliano 1971) using an Auto Analyzer II (Bran+Luebbe, Norderstedt, Germany). The 

standard curve was constructed using different amounts of potato amylose (Sigma 

Chemical Co., St. Louis, USA) and starch extracted from glutinous rice. Starch 

extraction was performed as described in Yamamoto et al. (1981). The reference sample 

Nipponbare whose amylose content is 19.2% (supplied by Bran+Luebbe, Norderstedt, 

Germany) was used to correct the errors derived from rice components other than the 

starch. The sample analyses were repeated in triplicate.  

 

3-2-9 Analysis of pasting properties  

The pasting properties of the flour were measured using the Rapid Visco-Analyzer 

(RVA) model 3D (Newport, Sydney, Australia). The aqueous rice flour suspensions 

(14% w/w) were prepared using 3.5 g of rice flour and 25 ml of distilled water. The 

applied temperature program was as follows: (1) hold at 50 °C for 1 min; (2) from 50 to 

95 °C for 4 min; (3) hold at 95 °C for 7 min; (4) from 95 to 50 °C for 4 min; and (5) 

hold at 50 °C for 3 min. The program was initiated by mixing at 960 rpm at 50 °C for 10 

s and 160 rpm was used for the rest of the program. The parameters recorded were 

initial gelatinization temperature, peak viscosity, hot paste viscosity, final viscosity, 

breakdown and setback. Rice flour samples were analyzed in triplicate. 
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3-3 Results 

 

3-3-1 Expression analysis of the transgenic rice in T4 generation 

Expression of Pinb gene was confirmed at the RNA and protein levels, respectively. At 

the RNA level, the expression of Pinb gene under the Ae. tauschii PinB promoter was 

detected only in kernels, not in leaves (Fig. 3-1A). At the protein level, an 

approximately 15 kDa specific band was observed in transgenic rice by silver staining 

(Fig. 3-1B). This result was consistent with the previous result obtained with the 

transgenic rice in T2 generation, in which the PINB was identified from the 15 kDa 

specific band (Wada et al. 2009). These results indicated that PINB was expressed 

stably in the transgenic rice kernels used in this study. 
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Figure 3-1. Expression analysis of Pinb RNA (A) and PINB protein (B). (A) Total RNA 

was extracted from the frozen T4 transgenic leaves or kernels and subjected to DNase 

treatment. cDNA was synthesized from the solution. The templates used for RT-PCR 

reaction were as follows: lane 1: No template, lane 2: Non-transgenic rice leaf cDNA, 

lane 3: Non-transgenic rice kernel cDNA, lane 4: Transgenic rice leaf cDNA, lane 5: 

Transgenic rice kernel cDNA, lane 6: Transgenic rice genomic DNA. The primer sets 

used are shown on the left. (B) Triton X-114-soluble proteins were extracted from 

kernels and were subjected to SDS-PAGE and the gel was silver stained. lane 1: 

Non-transgenic rice kernels, lane 2 : Transgenic rice kernels. Arrow indicates the 

expected size of PINB. 
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3-3-2 SEM observation of the fractured surface   

To investigate the effects of Pinb gene on the structure of rice endosperm cells, the 

transversely fractured surface of milled rice was observed under SEM. As shown in Fig. 

3-2A and 3-2B, two types of endosperm cell morphology were observed depending on 

the position where the cleavage occurred. In the area where the cleavage occurred 

between cells, the surface was smooth and individual cells could be identified by angled 

shape (Fig. 3-2C and 3-2D). In the area where the cleavage occurred within cells, the 

surface was rough and the individual cells could not be identified because of the 

disruption of cell morphology (Fig. 3-2E and 3-2F). In this area, partially split 

compound starch granules exposing individual starch granules with sharp angles and 

edges were observed in various shapes and sizes. 

In non-transgenic rice, the tightly packed compound starch granules were 

observed in the area where the cleavage occurred between cells (Fig. 3-2C). All of the 

spaces between compound starch granules were filled with matrix material. In contrast, 

the spaces between each compound starch granules were observed in the transgenic rice 

expressing Pinb gene (Fig. 3-2D). The compound starch granules varied in sizes and 

were not tightly packed. The matrix material did not fill the spaces between compound 

starch granules. Instead, air spaces surrounded the compound starch granules. In the 

place where the cleavage occurred within cells, no difference was observed between 

non-transgenic and the transgenic rice (Fig. 3-2E and 3-2F). 
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Figure 3-2. SEM observation of rice endosperm cells. (A,B) Low magnification view of 

transversely fractured surface of milled rice of (A) Non-transgenic rice and (B) 

Transgenic rice. Arrowheads indicate the intracellularly cleaved site. Bars: 100 μm. 

(C,D) Higher maginification view of intercellularly cleaved site of (C) Non-transgenic 

rice and (D) Transgenic rice. (C) Compound starch granules (circles) are embedded 

within matrix material in non-transgenic rice. Intracellularly cleaved sites are also 

observed. (D) Starch compound granules (circles) are surrounded by airspaces 

(arrowhead). Bars: 20 μm. (E,F) Higher magnification view of intracellularly cleaved 
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site of (E) Non-transgenic rice and (F) Transgenic rice. Partially split compound starch 

granules (PS) exposing individual starch granules with sharp angles and edges are 

observed. Bars: 20μm.  

 

3-3-3 SEM observation of isolated starch granules 

The morphology and size of isolated starch granules were investigated by SEM. As 

shown in Fig. 3-3, no clear difference was observed between non-transgenic rice and the 

transgenic rice. Both of them consisted of polygonal starch granules with sharp angles 

and edges. To analyze the size distribution of isolated starch granules, the projected area 

of each starch granule was calculated. The result indicated that their differences were 

not significant statistically (p = 0.11, t-test). 
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Figure 3-3. Morphology and size of isolated starch granules. (A,B) The morphology of 

isolated starch granules from (A) Non-transgenic rice and (B) Transgenic rice. Both are 

polygonal in shape with sharp angles and edges, indicating no differences between them. 

St indicates starch granules. Bars: 5 μm. (C) Size distribution of isolated starch granules. 

The projected surface area of each granule was measured with Image J program 

(http://rsb.info.nih.gov/ij/download.html). The projected surface areas of approximately 

400 starch granules were measured. Non-transgenic rice and the transgenic rice showed 

no significant difference (p = 0.11, t-test) 

http://rsb.info.nih.gov/ij/download.html
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3-3-4 TEM observation of rice endosperm cells 

To facilitate a more detailed observation of the ultrastructure of endosperm cells in the 

transgenic rice, the central region of rice grain was observed under a TEM. Endosperm 

cells were typically occupied by compound starch granules (Fig. 3-4A and 3-4B). In 

non-transgenic rice, compound starch granules were compacted together, making it 

difficult to distinguish the individual compound starch granules (Fig. 3-4A). Most of the 

compound starch granules were surrounded by the space in the transgenic rice and 

individual compound starch granules could be identified even when numerous 

compound starch granules were present within a small area (Fig. 3-4B).  

Each compound starch granules consisted of a number of starch granules. In 

both non-transgenic and the transgenic rice, the spaces between starch granules were 

sometimes observed. 
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Figure 3-4. TEM observation of starch endosperm cells from (A) Non-transgenic rice 

and (B) Transgenic rice. The endosperm cells are filled with compound starch granules 

(circle). (A) In non-transgenic rice, compound starch granules are tightly packed and 

sometimes fused together. (B) In transgenic rice, compound starch granules have spaces 
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between each other. They are not fused together, allowing us to distinguish the shape of 

each compound starch granule. Arrows indicate the spaces between compound starch 

granules. St indicates starch granules. Bars: 10 μm.  

 

3-3-5 Flour particle size, starch damage and apparent amylose content 

Many studies have reported that PINB confers grain softness which correlates with flour 

size distribution and starch damage (Beecher et al. 2002; Brites et al. 2008; Martin et al. 

2008; Martin et al. 2007). Therefore, the flour size distribution and starch damage of the 

transgenic rice were analyzed. As shown in Table 3-1, the transgenic rice showed 

smaller particle size (Median value: 74 ± 2.4 μm) than non-transgenic rice (100.7 ± 5.1 

μm). The starch damage was higher in the transgenic rice (8.6 ± 0.2%) than in 

non-transgenic rice (7.9 ± 0.1%). The apparent amylose content was not different 

between them, 14.2% in non-transgenic rice and 14.3% in the transgenic rice. 

 

 

Table 3-1. Differences in median flour particle size, starch damage and apparent 

amylose content between non-transgenic and transgenic rice 

  
Median       

particle size (μm)
b
 

Starch damage (%)
c
 

Apparent    

amylose content (%)
d
 

Non-transgenic rice 100.7 ± 5.1 7.9 ± 0.1 14.2 ± 0.1 

Transgenic rice 74.9 ± 2.4  8.6 ± 0.2 14.3 ± 0.1 

Difference
a
 - 25.8＊＊ 0.7＊ 0.1 

a 
Difference between non-transgenic and transgenic rice. 

b 
Brown rice kernels were 

ground into flour in duplicate and particle size was calculated. 
c
 Starch damage was 

measured in duplicate and the values are averages of three independent experiments.
 d 

The analysis was repeated in triplicate. ＊, ＊＊ 
Significantly different at 0.05 and 0.01 

levels, respectively (t-test). 
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3-3-6 Pasting properties of transgenic rice flour 

Table 3-2 shows the pasting viscosity profile of non-transgenic and the transgenic rice. 

The transgenic rice showed lower viscosity during gelatinization than non-transgenic 

rice. The statistically significant differences are as follows; -73 RVU (Peak viscosity), 

-29 RVU (Hot past viscosity), -43 RVU (Breakdown), -35 RVU (Final viscosity). The 

setback, peak time and initial gelatinization temperature values were not different 

between non-transgenic and the transgenic rice. The pasting viscosity profile was also 

analyzed in T3 generation, which showed the similar differences in pasting viscosity 

profile between non-transgenic and the transgenic rice (data not shown).  

  

 

 

Table 3-2. Pasting properties of non-transgenic and the transgenic rice 

  
Median         

particle size (μm)
b
 

Starch damage (%)
c
 

Apparent amylose 

content (%)
d
 

Non-transgenic rice 100.7 ± 5.1 7.9 ± 0.1 14.2 ± 0.1 

Transgenic rice 74.9 ± 2.4  8.6 ± 0.2 14.3 ± 0.1 

Difference
a
 - 25.8＊＊ 0.7＊ 0.1 

Pasting properties were measured in triplicate. 
a 
Difference between non-transgenic and 

the transgenic rice. ＊, ＊＊, 
Significantly different at 0.05 and 0.005 levels, respectively 

(t-test).  
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3-4 Discussion 

 

In this study, the homozygous transgenic rice in T4 generation was used to investigate 

the effect of PINB on the ultrastructure of the endosperm cells and physicochemical 

properties of the rice flour. The expression of Pinb gene was confirmed by RT-PCR and 

SDS-PAGE in T4 generation as well as in T2 generation as reported in Wada et al. (2009). 

The results indicated that the Ae. tauschii authentic promoter of Pinb gene can function 

in rice as a seed-specific promoter.  

The transgenic rice endosperm exhibited a loosely packed structure under SEM. 

The spaces between compound starch granules were observed at the intercellularly 

cleaved site. In wheat, PINs have been reported to localize on the protein matrix and the 

surface of starch granules. They prevent the adhesion between starch granules, resulting 

in a softer grain texture (Morris 2002). Therefore, the loosely packed structure in the 

transgenic rice may suggest that PINB also functions in rice in the similar way as in 

wheat, preventing each compound starch granules from being packed tightly. However, 

the intracellularly cleaved site exposing the polygonal starch granules showed no clear 

differences between non-transgenic and the transgenic rice.  

PINs also influence the sizes of each starch granule in wheat. Studies of 

different types of wheat granules indicated that softer textured flours have larger 

granules than hard textured flours (Gaines et al. 2000). In this study, the morphology 

and size distribution of isolated starch granules in the transgenic rice were found to be 

not different from those of non-transgenic rice. The differences of the effect of PINB on 

the sizes and morphology of isolated starch granules can be explained by the 

developmental differences between rice and wheat endosperm. In rice endosperm, 
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multiple polygonal granules develop within a single amyloplast. They are compressed 

together to form compound starch granules which have the appearance of a single 

granule. In wheat endosperm, each granule develops into individual amyloplasts. This 

structural difference could give the difference in PINB localization, providing the 

different effect on the isolated starch granules.  

TEM observation clearly supports the results of SEM observation. The shape of 

each compound starch granules could easily be identified because the boundary of 

compound starch granules was clear. This would be the effect of PINB on the surface of 

the compound starch granules, preventing the adhesion between compound starch 

granules. 

The difference of viscosity profile also could be attributed to the interaction of 

PINB with rice starch granules. The starch granule structure, lipid and protein in rice 

endosperm have been reported to affect the pasting property (Hamaker and Griffin 

1993; Xie et al. 2008).The apparent amylose content was not different between 

non-transgenic and the transgenic rice, which indicates that the viscosity changes were 

not due to the change of apparent amylose content. Instead, the decrease of peak 

viscosity in the transgenic rice might be due to the association of PINB with the surface 

of compound starch granules. PINB localized to the starch surface could inhibit the 

access of water to starch or swelling of starch, which would lead to the decrease in 

viscosity during gelatinization in the transgenic rice. 

The other well known characteristics of soft textured grain are the smaller flour 

particle size and less starch damage compared with hard textured grain (Bhave and 

Morris 2008; Brites et al. 2008). As expected, the transgenic rice showed smaller 

median flour particle size than non-transgenic rice. However, the starch damage was 
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similar between non-transgenic and transgenic rice. Usually flours with the smaller 

flour particle size have higher starch damage under the same milling conditions (Sun et 

al. 2007). In this study, the difference of flour particle sizes was significant (25.8 μm). 

Therefore, it could be possible that PINB suppressed the increase of starch damage in 

the transgenic rice otherwise the starch damage might be higher.  

The observed characteristics of the transgenic rice mentioned above suggest 

that (1) the expression of PinB gene reduces the grain hardness in japonica rice and (2) 

PINB functions at the surface of compound starch granules, not of polygonal starch 

granules in rice endosperm. 

The similar relationship between hardness and endosperm structure has been 

reported in wheat (Xia et al. 2008) and barley (Brennan et al. 1996). In wheat, 

knock-out of PinA resulted in hard texture, in which the starch granules have rougher 

appearance with more protein matrix adhered to surface than soft textured wheat. In 

barley, soft textured cultivars, which show good malting quality, have a lower degree of 

starch-protein binding than hard textured cultivar. Thus, the observed relationship 

between hardness and endosperm structure is common in these three grains. 

Feiz et al. (2009) reported that PINs overexpression in wheat resulted in 

increased seed-bound polar lipids and hypothesized that PINs stabilize bound polar 

lipids on the surface of starch granule membranes preventing breakdown during seed 

desiccation and maturation. The polar lipids are considered to be from the ripened 

remnants of amyloplast. Thus, it suggests that PINs are related to the degradation of 

amyloplast membrane. Our results support their hypothesis because the association of 

PINs with lipids derived from amyloplasts should occur on the surface of compound 

starch granules in rice which has compressed multiple starch granules within a single 
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amyloplast. However, further experiments such as immunohistochemical staining using 

anti-PINB antibody will be necessary to confirm the localization of PINB in rice 

endosperm. 

This is the first report that investigates the ultrastructure of endosperm and 

physicochemical properties of japonica rice expressing Pinb gene. Krishnamurthy and 

Giroux (2001) introduced Pinb gene into japonica rice cultivar M202 and observed 

differences in flour particle size distributions and starch damages. Comparing their work 

with our present study, differences in the results could be attributed to the differences in 

the promoter used and the grinding method employed. In this study, I used the Ae. 

tauschii Pinb promoter, while Krishnamurthy’s group used the maize ubiquitin promoter, 

giving a different expression level of Pinb gene. The maize ubiquitin promoter is the 

promoter which shows high-level gene expression in monocot cells (Christensen and 

Quail 1996). Unlike the maize ubiquitin promoter, the Ae. tauschii Pinb promoter 

showed the endosperm-specific expression as well as T. aestivum Pinb promoter did 

(Digeon et al. 1999). Furthermore, I applied a stronger grinding method than the method 

they used, resulting in smaller flour particle sizes and higher starch damage.  

The japonica rice mutant, Suweon 464 (Kim et al. 2004), a waxy rice variety 

(Ibanez et al. 2007), and a brewer’s rice (Tamaki et al. 2007) also have the spaces 

between starch granules as in the transgenic rice obtained in this study. However, some 

properties such as the morphology of isolated starch granules, ultrastructure of 

endosperm cells and viscosity profile during gelatinization are distinct to this transgenic 

rice obtained. Thus, the transgenic rice reported here has the novel characteristics and 

could possess different processing properties from the cultivated rice reported so far. 

The creation of such variations in rice should make it possible to develop new end 
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products and food uses. Furthermore, the same strategy could be applied to manipulate 

the endosperm texture of other cereals. The softer texture and smaller flour particle sizes 

in cereals would have the advantages in such as saving the milling costs and increasing 

the feed efficiency in cattle and broiler chickens (Carr et al. 2002; Swan et al. 2006). 

The successful manipulation of endosperm texture of cereals would contribute to yield 

numerous benefits for the future agriculture and food industry. 
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3-5 Summary 

 

Endosperm texture is an important factor to determine the end-product quality. The 

texture of wheat (Triticum aestivum L.) endosperm is controlled by Pina and Pinb genes 

which are both absent in rice (Oryza sativa L.). It has been reported that the endosperm 

texture of rice can be modified by Pin genes. The mechanism, however, by which 

puroindolines affect the ultrastructure of rice endosperm cells remains to be investigated. 

In this study, we observed the ultrastructure of endosperm cells and the morphology of 

isolated starch granules of the transgenic rice expressing the Pinb gene. SEM and TEM 

observations indicated that compound starch granules were embedded within the matrix 

material in non-transgenic rice, Nipponbare, whereas they were surrounded by spaces in 

the transgenic rice. The morphology and size of each starch granule were not different 

between non-transgenic and the transgenic rice. However, the transgenic rice flour 

showed smaller particle size, higher starch damage, and lower viscosity during 

gelatinization than that of non-transgenic rice. These results confirm that PINB reduces 

the grain hardness in rice. Moreover, the results also suggest that PINB functions at the 

surface of compound starch granules, and not of polygonal starch granules in rice 

endosperm.
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Chapter 4 

 

 General conclusion
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In this study, a transgenic rice which has a softer endosperm texture has been produced 

using the bioactive beads-mediated transformation. The large DNA fragments 

containing a set of Ae. tauschii hardness genes (Pina, Pinb, GSP-1) were introduced 

into rice genome and the effects of the Pinb gene on the ultrastructure of endosperm 

cells and rice flour were investigated. 

In Chapter 2, it was mentioned that the bioactive beads method has a potential 

to be a powerful tool to introduce large DNA fragments into rice. The PCR, Southern 

blot, and FISH analyses indicated that the multiple transgenes were introduced 

simultaneously and inherited into the next generations successfully. Segregation 

analysis revealed that the homozygous transgenic rice (plant 9-1-6-3) was obtained. In 

the homozygous transgenic rice, the BAC DNA was integrated at the telomeric region 

of chromosomes. The expression of Pinb gene was confirmed by RT-PCR and mass 

spectrometry. The results mentioned above indicate that the bioactive beads method can 

be used to transfer the large DNA fragments into rice. The endosperm-specific 

expression of Pinb gene was shown in the T4 generation as described in Chapter 3. The 

strategy applied in this study is to introduce the authentic genomic region concerned 

with the grain hardness into plants. This genomic region also contains the native 

promoter region for each gene. The endosperm-specific expression of transgene 

indicates that the strategy is applicable to produce the transgenic plants with 

tissue-specific expression of transgenes.  

In Chapter 3, the endosperm structure of transgenic rice expressing Pinb was 

observed under SEM and TEM. The transgenic plants showed the loosely packed 

endosperm structure in which the compound starch granules were surrounded by air 

space instead of protein matrix. The results suggest that PINB functions at the surface of 
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compound starch granules, thus, preventing the adhesion between each compound 

starch granules. The studied characteristics of transgenic rice flour (smaller flour 

particles than those of Nipponbare, suppression of starch damage increase in transgenic 

rice) showed that the transgenic plants have a softer grain texture than Nipponbare. 

Based on the SEM and TEM observations, the soft texture has been considered to be the 

result of weak adhesion between compound starch granules.  

Due to the lack of variation in rice grain texture compared with wheat grain, 

the application of rice flour has been limited. The introduction of hardness genes is one 

of the good approaches to make more variation in rice grain texture because 

non-transgenic rice does not contain hardness genes. The soft textured rice would have 

different processing properties and the higher quality as animal feed. In addition, the 

successful manipulation of endosperm texture in cereals using hardness genes would 

contribute to yield and benefit for the future agriculture.   

My study has raised the possibility that the bioactive beads method facilitates 

the production of transgenic plants with large DNA fragments. The bioactive beads 

method does not require the construction of binary vectors which are required for 

Agrobacterium-mediated transformation. Therefore, the BAC clones in the libraries 

which have been established already can directly be used for bioactive bead-mediated 

transformation.  

Therefore, it is concluded that the bioactive beads method has a potential to be  

a powerful tool to introduce large DNA fragments into plants and it can produce a novel 

transgenic plants, such as the soft textured rice which would possess different 

processing properties and applications, as indicated by the results obtained in this study.
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