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Abstract
In this paper it is proved that for any irrational� and some 0< � � 1.5=100,

there are infinitely many primesp such thatp C 2 has at most two prime factors
and k�pC �k < p�� which improves K. Matomäki’s result� < 1=1000.

1. Introduction

Let � be a irrational real number andkxk denote the distance fromx to nearest
integers. Earlier work about the distribution of the fractional parts of the sequence�p
was considered by I.M. Vinogradov [16] who showed that for anyreal number�, there
are infinitely many primesp such that if� D 1=5� ", then

k�pC �k < p�� ,(1)

where and below" > 0 is arbitrarily small. Later the exponent� was improved by
several authors (Harman [3, 4], Jia [8, 9], Heath-Brown and Jia [5]). So far the best
result is given by Matomäki with� D 1=3� ".

Let Pr denote an almost prime with at mostr prime factors, counted according to
multiplicity. The famous prime twins conjecture states that there exist infinitely many
primes p such thatpC 2 is a prime too. Up to now this conjecture is still open, but
many approximation to it established. One of the most interesting of them is due to
J.R. Chen [2], who showed in 1973 that there exist infinitely many primesp such that
pC 2D P2.

In [14] Todorova and Tolev considered the distribution of�p modulo one with
primes of the form specified above, and showed that for� D 1=100, there are infinitely
many solutions in primesp to (1) such thatp C 2 D P4. Later Matomäki [11] has
shown that this actually holds withpC 2D P2 and � D 1=1000.

In this paper, our purpose is to improve the range� and we shall prove the follow-
ing result.

2010 Mathematics Subject Classification. 11K60, 11N36.
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Theorem 1.1. Let � 2 R n Q, � 2 R and 0 < � � 1.5=100. Then there are in-
finitely many primes p satisfying pC 2D P2 and such that

k�pC �k < p�� .(2)

NOTATION. Let � be a real number with a rational approximationa=q satisfying
�

�

�

�

� �

a

q

�

�

�

�

<

1

q2
, where (a, q) D 1, and q � 1.

Here K � 1, k � H meansH < k � 2H and 0< � � 1.5=100. As usual let3(n) and
�(n) respectively denote Von Mangoldt’s function and Euler’s function. For simplicity
instead ofm � n (mod k), e2� i x we write m � n(k), e(x) respectively. LetterC is a
positive constant, which is not necessarily the same at eachoccurrence.

2. Some lemmas

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 ([11, Theorem 1]). For any well-factorable function� of level D,
we have

(3)

X

d�D
(d,c)D1

�d

X

k�H

ck

X

n�x
n�c(d)

3(n)e(�nk)

� H (log x)Cx3=4C"

�

x

q
C

q

H
C D2

C x7=9C4"
Cmin

�

D4C20",
x

D

��1=4�"

.

Lemma 2.2 ([10, 13]). Let x> 1, zD x1=u. Then for u� 1, we have

X

n�x
(n,P(z))D1

1D w(u)
x

log z
C O

�

x

log2 z

�

,

wherew(u) is determined by the following differential-difference equation
8

<

:

w(u) D
1

u
, if 1< u � 2,

(uw(u))0 D w(u � 1), if u � 2.

Lemma 2.3 ([13]). For any given constant A> 10, there exists a constant BD
B(A) > 0 such that

X

d�D

max
(l ,d)D1

max
y�x

�

�

�

�

�

�

�

�

X

k�E(x)
(k,d)D1

g(x, k)H (yI k, d, l )

�

�

�

�

�

�

�

�

�

x

logA x
,
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where

H (yI k, d, l ) D
X

kp�y
kp�l (d)

1�
1

�(d)

X

kp�y

1,

1

2
� E(x) � x1�# , 0< # � 1,

g(x, k) � dr (k), D D x1=2 log�B x.

Lemma 2.4 ([13]). Let the condition ofLemma 2.3be given and r1(y) be a posi-
tive function depending on x and satisfying r1(y) � x# for y � x. Then we have

X

d�D

max
(l ,d)D1

max
y�x

�

�

�

�

�

�

�

�

X

k�E(x)
(k,d)D1

g(x, k)H (kr1(y)I k, d, l )

�

�

�

�

�

�

�

�

�

x

logA x
.

Lemma 2.5 ([13]). Let the condition ofLemma 2.3be given and r2(y) be a posi-
tive function depending on x, y and satisfying kr2(y) � x for k � E(x), y � x. Then
we have

X

d�D

max
(l ,d)D1

max
y�x

�

�

�

�

�

�

�

�

X

k�E(x)
(k,d)D1

g(x, k)H (kr2(y)I k, d, l )

�

�

�

�

�

�

�

�

�

x

logA x
.

3. Proof of Theorem 1.1

As in [14] we begin with a periodic function�(t) with period 1 such that

�(t)

�

2 (0, 1) if �1 < t < 1,
D 0 if 1 � t � 1�1,

and which has a Fourier series

(4) �(t) D 1C

X

jkj>0

g(k)e(kt)

with coefficients satisfying

(5)

g(0)D 1,

g(k) � 1, for all k,
X

jkj>H

jg(k)j � N�1,

where

1 D 1(N) D N�� and H D 1

�1 log2 N.(6)
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Next we will use sieve methods. As usual, for any sequenceE of integers weighted
by the numbersfn, n 2 E , we set

S(E , z) D
X

n2E
(n,P(z))D1

fn,

and denote byEd be the subsequence of elementsn 2 E with n� 0 (modd). We write

P(z) D
Y

p<z

p

and

V(z) D
Y

pjP(z)

�

1�
!(p)

p

�

.

Let further

C0 D
Y

p>2

�

1�
1

(p� 1)2

�

,

and we will use the following form of the linear sieve due to Iwaniec [6].

Lemma 3.1. Let 2� z� D1=2 and let sD log D=log z. If
(A1) jEdj D (!(d)=d)X C r (E , d), �(d) ¤ 0;
(A2)

P

z1�p<z2
!(p)=p D log(logz2=log z1)C O(1=log z1), z2 > z1 � 2,

where !(d) is a multiplicative function, 0 � !(p) < p, X > 1 is independent of
d. Then

S(E , z) � XV(z)(F(s)C o(1))C
X

l<L

X

djP(z)

�

C

l (d)r (E , d),

S(E , z) � XV(z)( f (s) � o(1))�
X

l<L

X

djP(z)

�

C

l (d)r (E , d),

where LD O(1), �� are well-factorable bounded functions of level D, f (s), F(s) are
determined by the following differential-difference equation

8

<

:

F(s) D
2e

s
, f (s) D 0, if 0< s� 2,

(sF(s))0 D f (s� 1), (s f(s))0 D F(s� 1), if s � 2,

where denote the Euler’s constant.
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So, if we defineA to be the sequence of integersn � N weighted by

an D

�

�(�(n� 2)C �) if n� 2 2 P ,
0 else.

Then to prove Theorem 1.1, it suffice to show that

S(A, N1=3) D
X

pC2�N
(pC2,P(N1=3))D1

�(�pC �) > 0.(7)

However, we cannot quite do that, but need to use a more sophisticated weighted
sieve method. Indeed following Cai (see [1], Lemma 5), letk D 1=12, l D 1=3.1, and
we consider

S�
X

n2A
(n,N1=12)D1

an

0

B

B

B

B

B

�

1�
1

2

X

N1=12
�p<N1=3.1

pjn

1�
1

2

X

nDp1 p2 p3

N1=12
�p1<N1=3.1

N1=3.1�p2<(N=p1)1=2

1�
X

nDp1 p2 p3

N1=3.1
�p1<p2<(N=p1)1=2

1

1

C

C

C

C

C

A

C O(N11=12).

Here we notice that the weight of n isan if and only if n has no prime factors< N1=3.1

in which case clearlynD P2. If the weight ofn is an=2, thenan has one prime factor
in the interval [N1=12, N1=3.1) and the third, fourth sum is 0. But this again implies that
n D P2. Thus the weight ofn is positive only if

n D P2, n� 2 2 P and k�(n� 2)C �k < N�� ,

and so it is enough to show thatS> 0.
Using the sieve notation, we can write

(8)

S� S(A, N1=12) �
1

2

X

N1=12
�p<N1=3.1

S(Ap, N1=12) �
1

2

X

N1=12
�p1<N1=3.1

N1=3.1
�p2<(N=p1)1=2

S(Ap1 p2, p2)

�

X

N1=3.1
�p1<p2<(N=p1)1=2

S(Ap1 p2, p2)C O(N11=12)

DW S1 �
1

2
S2 �

1

2
S3 � S4 C O(N11=12).
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Consider a square-free numberd. If 2 j d, then we writejAdj D jr (A, d)j � 1.
Otherwise we have by the Fourier expansion of�(n)

jAdj D
X

md�N
md�22P

�(�(md� 2)C �)

D

X

p�N�2
p��2(d)

�(�pC �)

D

X

p�N
p��2(d)

 

1C1

X

0<jkj<H

cke(�kp)C O(N�1)

!

D 1

�

Li N

�(d)
C R1(d)C R2(d)C O

�

N

d(log N)C

��

,

whereck � 1, and

R1(d) D
X

p�N
p��2(d)

1�
Li N

�(d)
,

R2(d) D
X

p�N
p��2(d)

X

0<jkj<H

cke(�kp).

Applying Bombieri–Vinogradov theorem (see [7], Theorem 17.1) implies that

X

d�N1=2
=logC N

jR1(d)j �
N

logA N
.

On the other hand, Lemma 2.1 implies that for a well-factorable function � of level
D < N1=2

=(H2 logC N), we get

X

d�D

�d R2(d) �
N

logA N
,

when N D q2, wherea=q is a convergent to� with a large enough denominator.
Therefore we apply Lemma 3.1 with

!(d) D

8

<

:

0 if 2 j d,
d

�(d)
otherwise,

X D 1 Li N, and D <

N1=2

H2 logC N
,
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to S1 and obtain

(9)

S1 � 1 Li N V(N1=12) f (6� 24�)(1C o(1))

D

8

1� 4�

�

log(5� 24�)C
Z 5�24�

3

1

t
dt
Z t�1

2

log(s� 1)

s
ds

�

C01N

log2 N
(1C o(1))

� 13.471
C01N

log2 N
.

Since (Ap)d D Apd, we can use Lemma 3.1 also toS2 by using the same method.
In this case one faces the sum

X

N1=12
�p<N1=3.1

X

d�D

�d R2(pd),

by Remark 10 in [11], the above sum is at most

�

N

logA N
,

then

!(d) D

8

<

:

0 if 2 j d,
d

�(d)
otherwise,

X D

1 Li N

�(p)
, and D <

N1=2

pH2 logC N
.

And applying partial summation, prime number theory, we have

(10)

S2 �
X

N1=12
�p<N1=3.1

1 Li N

�(p)
V(N1=12)F

�

6� 24� � 12
log p

log N

�

(1C o(1))

D 6
Z 1=3.1

1=12

F(6� 24� � 12t)

t
dt

C01N

log2 N
(1C o(1))

D 8

�

Z (1�8�)=4

1=12

dt

t(1� 4� � 2t)

�

1C
Z 5�24��12t

2

log(s� 1)

s
ds

�

C

Z 1=3.1

(1�8�)=4

1

t(1� 4� � 2t)
dt

�

C01N

log2 N
(1C o(1))

D 8

�

Z (1�8�)=4

1=12

dt

t(1� 4� � 2t)

Z 5�24��12t

2

log(s� 1)

s
ds

C

Z 1=3.1

1=12

1

t(1� 4� � 2t)
dt

�

C01N

log2 N
(1C o(1))

� 21.3643
C01N

log2 N
.



1000 S.-Y. SHI

For the sumS3, we write

S3 D
X

N1=12
�p1<N1=3.1

�p2<(N=p1)1=2

X

np1 p2�N
np1 p2�22P , (n,P(p2))D1

�(�(np1 p2 � 2)C �)

D

X

N1=12
�p1<N1=3.1

�p2<(N=p1)1=2

X

pDnp1 p2�2
1�n�N=(p1 p2), (n,P(p2))D1

�(�pC �)

�

X

N1=3.1
�p2<N11=24

X

1�n�N11=12
=p2

(n,P(p2))D1

X

pDnp1 p2�2
N1=12

�p1<min(N1=3.1,N=(np2))

1.

Let’s consider the set

E D

�

e eD np2, N1=3.1
� p2 < N11=24, 1� n �

N11=12

p2
, (n, P(p2)) D 1

�

.

By the definition of the setE , it is easy to see that for everye2 E , p2 is determined
by e uniquely. Let p2 D r (e), then we have

N1=3.1
� r (e) < N11=24 and er(e) < N.

Let

L D

�

l l D ep1 � 2, e2 E , N1=12
� p1 < min

�

N1=3.1,
N

np2

��

.

Then

N1=3.1
< e< N11=12 for e2 E

and

jE j � N11=12,
X

l2L, l�N1=3.1

1� N11=12,

and also we have

S3 � S(L, z)C O(N11=12) for z� N1=3.(11)

We write

z2
D D D N1=2 log�B N,

then

(12) S(L, z) � 8
C0jLj

log N
C R3 C R4,
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where

R3 D
X

d�D
(d,N)D1

�

�

�

�

�

�

�

�

X

e2E
(e,d)D1

0

B

B

�

X

N1=12
�p1<min(N1=3.1,N=e)

ep1�2(d)

1�
1

�(d)

X

N1=12
�p1<min(N1=3.1,N=e)

1

1

C

C

A

�

�

�

�

�

�

�

�

,

R4 D
X

d�D, (d,N)D1

1

�(d)

X

e2E
(e,d)>1

X

N1=12
�p1<min(N1=3.1, N=e)

1.

Let

Q(k) D
X

eDk, e2E

1,

then

R3 D
X

d�D

�

�

�

�

�

�

�

�

X

N1=3.1
<k<N11=12

(k,d)D1

Q(k)

0

B

B

�

X

N1=12
�p1<min(N1=3.1,N=k)

kp1�2(d)

1�
1

�(d)

X

N1=12
�p1<min(N1=3.1,N=k)

1

1

C

C

A

�

�

�

�

�

�

�

�

,

R4 D
X

d�D

1

�(d)

X

N1=3
<k<N11=12

(k,d)>N1=3.1

X

N1=12
�p1<min(N1=3.1,N=k)

1.

It is easy to show

Q(k) � 1.

Then we have

R4 �
X

d�D

1

�(d)

X

N1=3.1
<k<N11=12

(k,d)>N1=3.1

N

k

� N
X

d�D

1

�(d)

X

hjd, h�N1=3.1

X

k<N11=12

(k,d)Dh

1

k

� N log N
X

d�D

1

�(d)

X

hjd, h�N1=3.1

1

h

� N log N
X

N1=3.1
�h�D

1

h�(h)

X

d�D=h

1

�(d)

� N2.1=3.1 log2 N,

(13)

and

R3 � R5 C R6 C R7,(14)



1002 S.-Y. SHI

where

R5 D
X

d�D, (d,N)D1

�

�

�

�

�

�

�

�

X

N1=3.1
<k<N2.1=3.1

(k,d)D1

Q(k)

0

B

B

�

X

p1<N1=3.1

kp1�2(d)

1�
1

�(d)

X

p1<N1=3.1

1

1

C

C

A

�

�

�

�

�

�

�

�

,

R6 D
X

d�D, (d,N)D1

�

�

�

�

�

�

�

�

X

N2.1=3.1
<k<N11=12

(k,d)D1

Q(k)

0

B

B

�

X

kp1<N
kp1�2(d)

1�
1

�(d)

X

kp1<N

1

1

C

C

A

�

�

�

�

�

�

�

�

,

R7 D
X

d�D, (d,N)D1

�

�

�

�

�

�

�

�

X

N1=3.1
<k<N11=12

(k,d)D1

Q(k)

0

B

B

�

X

p1<N1=12

kp1�2(d)

1�
1

�(d)

X

p1<N1=12

1

1

C

C

A

�

�

�

�

�

�

�

�

.

Due to Lemma 2.3–2.5,

Rj �
N

log4 N
, j D 5, 6, 7.(15)

By Lemma 2.2 and prime number theorem, we have

(16)

jLj D
X

e2E

X

N1=12
�p1<N1=3.1

1

D

X

N1=12
�p1<N1=3.1

�p2<(N=p1)1=2

X

1�n�N=(p1 p2)
(n,P(p2))D1

1C O(N11=12)

< (1C o(1))
X

N1=12
�p1<N1=3.1

�p2<(N=p1)1=2

w

�

log(N=(p1 p2))

log p2

�

N

p1 p2 log p2

C O(N11=12)

�

�

Z 1=3.1

1=12

dt

t

Z (1�t)=2

1=3.1

ds

s(1� t � s)

�

N

log N
.

By (11)–(16), we obtain

S3 � 8

�

Z 1=3.1

1=12

dt

t

Z (1�t)=2

1=3.1

ds

s(1� t � s)

�

C01N

log2 N
(1C o(1))

� 5.52946
C01N

log2 N
.
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We also use the same idea toS4,

(18)

S4 � 8

�

Z 1=3

1=3.1

dt

t

Z (1�t)=2

t

ds

s(1� t � s)

�

C01N

log2 N
(1C o(1))

� 0.018745
C01N

log2 N
.

Combining (7)–(10), (17) and (18), then we obtain

S> S1 �
1

2
S2 �

1

2
S3 � S4 �

1N

log2 N
,

which concludes the proof of Theorem 1.1.
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