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Abstract

We give a necessary and sufficient condition for the exigteat an n-end
catenoid of genus one with prescribed flux. By using the damdiwe construct new
examples of families whose flux data go near to that of “therwaitd of genus one”.

1. Introduction

Let M be a compact Riemann surface, aidM = M\ {qy,...,0.} — R® ann-end
catenoid that is, a conformal minimal immersion with catenoidal erdqy, ..., q, €
M. Let yj be a loop surrounding|; from the left,i a conormal such thaty(, i) is
positively oriented, andis the line element ofX(M). Then theflux vectorat the end
0; is defined by the integrap; := /yJ nds By the divergence formula, we get tliiex

formula }__, ¢; = 0. Let G: M — §* C R® be the extended Gauss map %f Since

we assume that the eny is catenoidal G(q;) must be parallel tap;. We define the
weight of the endq; by w(q;) := ¢;/(47G(q;)). Then the flux formula is rewritten
as follows:

n

(1.1) > w(g))G(g;) = 0.

=1

Conversely, we can consider a problem of findmgnd catenoids that realize given
dataG(q;) andw(q;) (j =1,...,n) satisfying (1.1). Umehara, Yamada and the first
author [8, Theorem 3.6], [9, Theorem 3.1] reduced the prolile a system of algebraic

equations, and proved that, for almost all flux data. .., v, € S anday, ..., a €
R\ {0} satisfyingz’j‘:l ajvj =0, there existsX: M = é\{ql, ...,0n} = R®, ann-end
catenoid of genus zero, that satisfieéy;) = vj andw(q;) =a; (j =1,...,n), where

C := CU{o0}. In the case that difw,,...,vn) = 2, Cosin and Ros [2] gave a necessary
and sufficient condition for the existence of Alexandrov eddedn-end catenoids of
genus zero with prescribed flux, by using flux polygons.

On the other hand, in the case of higher genus, most of the rkrexamples are
embedded and hence the flux vectors at the ends are paratielth& case that the

2000 Mathematics Subject Classification. Primary 53C42pSaary 58E12.



932 S. KATO AND H. MUROYA

flux vectors span at least a two-dimensional vector spacegliBel-Rossman [1] and
Rossman [14] constructed Jorge—Meeks type surfaces of germsndh-end catenoids
of higher genus whose symmetries are those of the Platotitsssetc., and it seems
that there are few works for this case.

There are two possibilities for classesreend catenoids of genus one (see 84). In
this paper, we consider one of the classes, that include€@xamples, Berglund and
Rossman’s examples, and, in a weak sense, catenoid fersmeslralthe class, we gen-
eralize results in [8], and give an equation with respectlliptie functions, which de-
scribes a necessary and sufficient condition for the existefn-end catenoids of genus
one with prescribed flux. Applying our equations, we alscegiew examples, which
enable us to observe the collapsemsénd catenoids of genus one to “the catenoid of
genus one”, which actually does not exist (cf. [16]).

The authors thank Professors W. Rossman and S. Fujimori défpfui advices.
They also thank the referees for useful comments.

2. Flux of catenoidal or planar ends

Let C:=CU{oc}. Let IT: §* — C be the stereographic projection from the north
pole g5 := (0, 0, 1). Then the inverse of this map is given by the follayvin

2Rep
2Imp
Ipl?—1

v(p) =M Xp) = e+l

Let M be a Riemann surface. Then, by thi¢eierstrass representation formula
any conformal minimal immersioiX: M — R® is given by

(2.1) X(2) = Re/z(l — g% V=114 ¢, 29)n,
2o

whereg is a meromorphic function oM, andz is a holomorphic 1-form orM such
that the 1-formsgn and g%y are also holomorphic oM, and, and g?; have no com-
mon zeroes. We callg( n) the Weierstrass dataf X. The functiong is the stereo-
graphic image of the Gauss ma&p: M — S of X, i.e. g := ITo G. The induced
metrics onM are given byX*(ggs) = (1 + |9/%)?|n/>.

Conversely, for any Riemann surfadé, any meromorphic functioy on M, and
any holomorphic 1-formy on M such thatgny and g?; are also holomorphic oM,
the mapX given by (2.1) is a (branched) conformal minimal immersion M.

The mapX given by (2.1) is well-defined oM if and only if

2.2) Re/(l— & V=I(1+ ), 29)7 = O
Y
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holds for any loopy in M. Set

1
(2.3) R=R({):= /1

Then the condition (2.2) is rewritten as

/gin (i=0,1,2).
Y

(2.4) R-R eR, Ry+ R ev—1R, R €R,
and this is equivalent to
(2.5) Ri+ R.=0, R =R

Now, we have the following:

Theorem 2.1. Let X be a conformal minimal immersion from the universalecov
of a Riemann surface M t&% given by(2.1), and lety be a loop in M. Let p be a
complex number satisfying

(2.6) p’Ro — 2pR + R, = 0.

Then X is well-defined on a neighbourhoodyofn M itself if and only if it holds that

w:=-pRy+ R €R,
2.7) {

1 _
w* = —§(|p|2 —1Ro+ pR =0.
Proof. By the definitions ofw and w*, we have

1 p+p —(p?-1) ,
— —R) =-— +
2R R =~ g+ ey v

V-1 ~vV-1Up-p)  ~V-1p*+1)
;- R) = — *
7 (Rt R) T A T
Ipl>—1 2p
1t

(2.8)

*

pE+1" "

Ry =

If we assume (2.7), then, by (2.8), we have (2.4).
Conversely, ifX is well-defined on a neighbourhood ¢f in M, then, by (2.4),
we have

—(p+ p) —(p?-1) PF—1 W— 1w 0
(2.9) V=1p-p) V-Up*+1) V-LUF+1) ( w' )z(o)_
—(IpI? = 1) 2p -2p "

w
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Since the determinant of the matrix of the left-hand-sidé209) is 2/—1(|p|?+1)® #
0, we getw — w = w* = w* = 0, namely, (2.7) holds. ]

Note here that, for any curve = z(s) in M, the conormal is given by
fi=—1Iml-g? vV-1(1+ g%, 29)n(Z(9)),

where s is the arclength parameter with respectde® = (1 + |g|?)?|n|2. Hence, it
holds that

o= -im [@-g VIl ¢, 20
Y
From the equality above and (2.2), it follows that
(2.10) Ly = —21(Ry — Ro, V—1(Ry + Ry), 2Ry).

We call ¢ the flux vectorof the loopy. It depends only on the homology class jof
By (2.10), we have

4 pP+p
JT W _
pl?—1

Let M be a Riemann surface an interior point of M, and setM := M \ {q}.
Consider a conformal minimal immersiok: M — R® which cannot be extended tp
We call the image of a neighbourhood gfthe end g It is well known that the end
g is embedded in a neighbourhood small enough, if its Wegsstdatad, n) can be
meromorphically extended t¥, and the order of the end is at most 2, where we
define the order of the end by the maximum of the orders of the potgof n, gn
and g%y (cf. [5, 10, 16)).

Consider Ry, Ry, Ry as in (2.3) for a loopy surroundingq once from the left.
If a conformal minimal immersionX given by (2.1) has an embedded endgaand
g(g) = p # oo, then @ — p)?n does not have a pole at Hence we have

0=Reg(g— p)’n = R, —2pRy + p*Ry,

namely, (2.6) holds fop = g(q).
Now, by Theorem 2.1, we have the following:

Corollary 2.2. Let X be a conformal minimal immersion from the universal
cover of M= M \ {q} to R® given by (2.1). Set p:= g(q). If X has an end of
order at most2 at g, then X is well-defined on a neighbourhood of q in M itself
if and only if the condition(2.7) holds.
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In the case of genus zero, this fact was shown in [8].

For the loopy as above, we calp = ¢(y) the flux vector of the endj, as we
have already mentioned in 81. We denote itdy= ¢(q). We call the endy catenoidal
(resp.planar) if the endq is of order at most 2 ang(q) # O (resp.= 0).

By (2.11), ¢(q) is parallel to the limit normalc(q) = v(p), and we call the value
w = w(q) = ¢(q)/(4r G(q)) the weight of the endq. The weightw(q) is invariant
under the action of conformal coordinate transformatioh#/oand the orientation pre-
serving congruent transformations Bf.

Let M be a compact Riemann surfaag, ..., g, distinct points onM, and set
M := M\ {01, ..., 0.}. Then, for any conformal minimal immersiok: M — RS2,
by (2.10) and the residue theorem, we have the balancingufarmalso called thdlux
formula, Z'j‘:l ¢j = 0, whereg; := ¢(q;). When X is non-branched, of finite total
curvature and all the ends of are embedded, we cal an n-noid In particular, if
all the ends are catenoidal, then we cdllan n-end catenoid For anyn-noid, we have

n

(2.12) > w(@)v(py) =0,

j=1

where p; := g(dj).
Now, the inverse problem of the flux formula is stated as fadlo

PROBLEM 2.3. Let pj be complex numbers oso. For any j, let a; be a real
number. Suppose that these numbers satisfy

(2.13) > aju(p;) =0.
j=1

Does there exists an-noid X: M = M \ {qy, ..., 0.} — R? satisfying the follow-
ing condition?

(2.14) 9(@j) = pj, w(@y) =a;, (@) =4raju(p;)) (j=1,...,n).

By Theorem 2.1 and Corollary 2.2, Problem 2.3 is reduced toohlem of finding
a conformal class oM and @, n) satisfying (2.7) withp = p; (j = 1,...,n), and
satisfying (2.6) and (2.7) for a homology basis. For a gdnle@p y, it is difficult
to determinep in advance. However, in the case thathas some symmetry, we can
rewrite the condition (2.5) in a somewhat simpler form.

In this paper, we study Problem 2.3 in the case tHais a torusT?2.

3. The functions h(z, q) and hy(z, q)

In this section, we introduce the functioh$z, q), hi(z, q), etc. We uséh(z, q) to
describe the Weierstrass data §) of n-noids in 84. To write down the global periods
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of the given data, we also nedd(z, q) in 86. We enumerate several properties of
h(z, q) and hi(z, gq) in Lemmas 3.1-3.6, which we use repeatedly in the calaniati
in 887-9.

Let T2 := C/(Zwy + Zwy), where we assume thaty, w, € C satisfy Imgy/w;) >
0. LetC*:=C\ {0}. Set

(3.1) ro= exp(—Zn\/—lﬂ), ri/2.= exp(—yn/—lg),
w1 w1
and define an equivalence relation @i by

z~7 & 7Z =1z for some | €Z.

Consider the covering map

2 /-1
22.C—>C* umr z(u):= exp( l u).
w1
Then the mapz(u) naturally induces a biholomorphic map betwegh = C/(w1Z +

woZ) and C*/~. In some cases, it is more convenient to regard the tdrtiss the
guotient spaceC*/~.

Set
ho(z, q) := |_§¢0 Zr_'_/;l
@, o) = 20 =tz
hi(z q) := I_§¢o Zli;(/:ﬂ

wherer /2 is chosen as in (3.1). For simplicity, we dendig{z, 1), h(z, 1) andhy(z, 1)
by ho(2), h(z) and hy(2) respectively. Then it holds that

(3.2) ho(ZaQ)=%ho(§), h(z,q)=§h(§), hl(z,q)zéhl(g)_

We can expres$i(z) in terms of elliptic functions. To see this, we mention that
the Weierstrasg-function satisfies

(u) w2\ 27 ~/—1 1 +§: I«I/22—1/2 I-|/221/2
& \2) 7 o 22—z —\1-rlzl 1-rz
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(cf. [4, pp. 211 and 190]), and the Weierstrassunction satisfies

o(u—wy/2)

o (U)?o (w2/2f

o)~ p( %) = expa

(cf. [4, p. 181 Satz 3, p. 183 Satz 2]), wheygis the complex number associated with
the Weierstrasg-function:

N2 = ¢(U+ wz) — ¢ (u).

Hence we have

2
3.3) Z(u)h(z(u))* = (Zna:/l__l) (so(U) - @(%))
and
o (-1) 2w -1 o(U—w/2)
(3.4) h(z(u)) = e T A 0(@22) exp{( > o1 )U} ou)

By straightforward calculations, we see tHafz) and ho(z) have the following
properties:

Lemma 3.1. The functions [r) and hy(z) satisfy the following
(i) h(rz) =r=2n(z).
@iy h(zhH) =-zNh2).
(iiiy h(r?) =o.
(iv) ho(1) = 0.
In particular, in the case that re R, h(z) satisfies also the following
(V) h(@ =-zh(2) (Iz| = 1).
(Vi) h(z) € zY2J/=1R (|z] = 1).

As a corollary to Lemma 3.1, we also have the following lemma:

Lemma 3.2. The function Kz, q) satisfies the following
() h(z,q) = —h(a, 2).
(i) h(rz,q) = h(z,rq) =r~Y?h(z, q).
(i) h(z*, a) = —zh(q2 = —q~'zh(z g ").
(iv) h(z*, g™ = —qzhz q).
In particular, in the case that re R, h(z, q) satisfies also the following

(v) hz q) € (za) *V-1R (12| = |g| = 1).

We also see thal,(z) has the following properties:
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Lemma 3.3. The function k(z) satisfies the following
() ha(rz) = r2(ha(2) + h(2)).
(i) hi(z?) = zhy(2).
(iii) hy(=r*/?) = (1/2)h(-r"?).
(iv) hiy(-1)=0
In particular, in the case that re R, hi(2) satisfies also the following
(V) hi(2) = zh(2) (|2 = 1).
(vi) hi(2) € V2R (|z] = 1).

As a corollary to Lemma 3.3, we also have the following lemma:

Lemma 3.4. The function h(z, q) satisfies the following
() ha(z, q) = h(q, 2).
(i) hi(rz, q) = r *?(hy(z, ) + h(z, q)).
(iii) hi(z rq) =r"2(hi(z g) —h(z q)).
(iv) hi(z™, q) = zh(92) = g~'zhi(z, g7
() hi(z? g™ = azh(z q).
In particular, in the case that re R, hy(z, q) satisfies also the following
(V) hi(z, q) € (29 V?R (12| = |a| = 1).

Lemma 3.5 (resp. 3.6) gives another expansioh(@j (resp.hi(z)), which enables
us to get various estimates for special values of the functio

Lemma 3.5. For any z such thafr|™ < |z] < |r|, h(2) and hy(2) satisfy the
following:

1 1% 1
hz) = —— +ho(2) = —1 - Z " e 1
m=

Proof. For anyz such thatr|~ < |z| < |r|, we have

+0 0 L1/2 172 +o0 - ~1 -
r r 1 12 Zr 2 Z°T
ho(Z):Z{z—r' +z—r'}:_22(r 1zt 2 1o

1=1 =1

+0o0 _

(/2 z" — 1 m_ l-m o (1-2m)/2y|
Z__Z Z (r)m Z_Ezl(z —Z )Z(r )

=1

1 m 1-m 1
-y 2:1(2 —Z )r(2m—1)/2_1' O
m=
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Lemma 3.6. For any z such thatr|™ < |z| < |r|, hi(2) satisfies the following

1 F> I p(@m-1)/2
h]_(Z) = _E Z]-(Z +z )—(I' em1)/2 — 1)2.
m=

Proof. For anyz such that|r|™! < |z| < |r|, we have

+00 1/2 \—l/2 +00 - —1p—|
Ir (=Nr 1 12 Zf 2 Z°T
@) =3+ | = (e A

=1 =1 -

+00

1 +00 2 Zm + Zlim 1 +00 L +00 (2my2y
2 : § : _ = § : m -m § : —2m
_E Ir W = S (Z + Z ) |(r )

=1 m=1 m=1 =1

1 L p (@m-1)/2
=-> n%:l(z +z )—(r = O

4. \Weierstrass data ofn-noids

Let T? := C/(Zw1 + Zwy). We choose a fundamental period:(w,) so that
Im(wz/w1) > 0. Letuy,...,u, be distinct points o2, and setM := T2\ {uy,...,up}.
Let X: M — R® be ann-noid of genus one, andy(n) its Weierstrass data.

AssumeG(u;) # v(co) =(0,0,1), i.e.p; = g(u;) # oo, for any j =1,...,n. Since
X is well-defined onM, »n must have a pole of order 2 at each end(j =1,...,n).
Then the sum of orders of poles gfis 2n, and the sum of orders of zeroes mfis
also 2. On the other hand, sinc¥ has no branch point; and g?; have no common
zero onM. Hence the zeroes of must coincide with the poles af, and the order
of n at any zero is the double of the order @fat the same point as a pole. Now, we
see that the degree of must be equal tor2/2 = n, and that there exisf, ..., s, a
complete system of representatives of the poleg,cdndt;, . . ., t,, that of the zeroes
of g, which satisfys; +---+s, =t +---+t,, and

ou—ty)---o(u—ty)

o) =G ) ou—s)

for some nonzero constaf;. (Some of them may coincide with each other.)

Since all the polesi,, ..., u, of n and all the zeroes, ..., s, of n must be of
order 2, they satisfy 24 +---+u,) = 2(S1 +-- -+ S) mod (1, wz), and hence there
exists anw = Myw; + Mhw, € Zw1 + Zw, satisfying

(4.1) 201+ U+ o=2++5).
Since we may chooss, + [My/2]w; + [M2/2]w, ass,, we may assume

(42) w € {Or w1, W2, W1 + 0)2}
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without loss of generality, wherer} /2] denotes the largest integer that does not exceed
m; /2. Here we also choosg + [my/2]w; + [Myp/2]w, ast,.

Proposition 4.1. In the case thato = 0, the Weierstrass daté&g, n) of an n-noid
X is given by
P(u)

_ " _ 2
= oW’ n=—Q(u)du,

(4.3) g(u)

with

(4.4) P =) ctu—u)+co, Q)= bjr(u—uj)+hy,

i=1 i=1

where R, ..., by, by, C1, ..., Cn, Co are complex numbers satisfying # 0, ¢; = p;b;
(i=1...,n,andy 7 b =" ¢ =0

Proof. In the case that = 0, we get

2
nz—(C a(u—sl)---a(u—sn)) du

Zo(u —Uy)---o(u—up)
for some nonzero constafl,. Set

oU—ty)---o(U—ty)

) G(u_sl)..-a(u—sn)
P(u) := Clczg(u —Up)---o(u—up)

2oU—up)---o(U—upy’

Q(u):=C

Then both P(u) and Q(u) are meromorphic functions ofi?, and the datag, n) is
given by (4.3). SinceP(u) and Q(u) are elliptic functions of period«f;, ;) and
limy .y, (P(U)/Q()) = p; (j =1,...,n), they are described as (4.4). ]

Now, let us consider the case thatZ 0. In the case thab = w; (resp.w1 + wy),
if we replace (1, wz2) by (—w2, w1) (resp. 1, w1 + wy)), thenw is replaced byw,.
Hence, whenw # 0, we may assume = w, without loss of generality.

In this case, we have

) ou—9)?---0o(u—s)?

—C d
S U —UD)Z 0 (U= Up1)? 0 (U — U)o (U — Up — )

for some nonzero constafiz. Since

oU—up) w3
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wheren, = ¢ (U + wy) — ¢(u), we get

N T (1 RS W

o(U—uUy)---o(u—up) 2

Let z(u), r, r'/2, h(z) be as in the previous section. Then we get

_ [~ olu=s)---0(u—s)
"= [C%(u—ul)---o(u—un)

x x/—_lexp{n—zz(u—un— %) - nfu}- lznéj/l__lrdz

—(c ou-s)--o(U—$) C5u)2dz,

CoU—uy)oU—Up)

where we set
[ w1 1 2 n /-1
Cy:=Cav—-1 |———expy—= u — )¢, Cgi= —=-— .
4 3 2m /=1 p{ 2772( nt 2)} ° 2 w1

— oU—t)--roU—ty) ¢y =z, . ~oU=s)---oU—%) ¢,
P(u)'_C1C4o(u—u1)---a(u—un)e ) Q(u)'_C4o(u—u1)---a(u—un)e .

Set

Then bothP(u) and Q(u) are meromorphic functions 06, and the Weierstrass data
(9, ) of X is given by

_PW 5wy
g(u) = 5w Q(u)“dz
Setq; := z(uj),
bj = z”fq,- - Jlim (QM)(u - uj)),
27/—1

o= =y fim (PU)(u - u)))

w1

(j=1,...,n=-1), and
j=1

P2 :=) cih(z.qj), Q@ :=) bjh(z q)).
j=1

Now, let us show that we can chood® and ¢, such thatP(z(u)) = P(u) and

Q(z(u)) = Q(u).
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Set
) s _Ca o(u—up)
Ql(u) = Q(U)e O—(u —Up — a)2/2),
B e o(u—up)
Q1(u) := Q(z(u))e o(U— Uy — wp/2)
Since

_ 3 oU—s1)---0(U—$)
Q(u) =C o(U—uUg)---0(U—Up1)o(U— Uy — wz2/2)

ands; + -+ S = U + -+ + Up_1 + Uy + (w2/2), Ql(u) is an elliptic function of
period (1, w,). On the other hand, by (3.2) and (3.4),

n

Qi(u) = Z b—]:h(Z(u — uj))e—csu o (U—un)

j—1 j o(U— Uy, —wy/2)

Z w1 (-1) oU—uj—w/2) o(u—up)
q,2nﬂa(wz/2) ou—uj) oU—Uuy—wy/2)

and henceQ:(u) is also an elliptic function of periodaf, wy).

If U 4+ w2/2 # uj mod (1, @2) (j =1,...,n— 1), then bothQ;(u) and Q4(u)
have only poles of order 1 aty, ..., Un_1, Uy + wp/2. For anyj =1,...,n—1,

Jim (U= up)Qu(v)

= JLmuj(u — Uj)bj h(z(u), qj)o_(uo—_(':;_ugz/Z)ecsu

= by Jim (u—u;) ! oU—Un) _cu
- expl (27 v—1/w1)u} — exp{(27 ~/—1/w1)u;} o (U — Up — @2/2)
27“/_% Jim {Q(U)(u —uj)}- L G(u — Un) g Csu

‘H“ (27 v/=1/w1)qj o (U — U — w2/2)

I|m Q(u)(u —uj) T ( :32/2)905”

= ul;mu_(u—u,-)ol(u),

that is, the residues of1(u) and Qi(u) at uj coincide with each other. Now, by the
residue theorem, the residueswat+ w,/2 also coincide with each other.

If Uy + w2/2 = u; mod (1, wp) for somej € {1,...,n—1}, for instance, if such
j is n—1, then bothQi(u) and Q1(u) have poles of order 1 aiy, ..., U, », and a
pole of order 2 atup ;1 = u, + w2/2 mod @1, wp). For anyj =1,...,n—2, by the
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same reason as above, the residues;atoincide with each other, and, by the residue
theorem, the residues af_; also coincide with each other. Moreover,

Jim - (u—un-1)*Qa(u)

T _ 2 O’(U - Un) —Csu

= uﬂm,l(u Un-1)“bn-1h(z(u), gn-1) _O_(u Un—w2/2)

bl (U—Up 1)? oU=tn) _cu

~ S U expl (2 V1 /w1)u) —exp{ (27 /= 1/w1)Un 1} 0 (U—Un—2/2)
27'[\/—_1 . ~ . U—Unp-1 o(u—un) —Csu

= n— I — Unp— . | °

o I QU —tn-)b I, (27 V/=1/w1)Gp—1 o (U—Un—w2/2)

o(u—up) _Cau

o(U—Uup—w2/2)

= lim (u- Un-1)*Qu(u),

= lim Q(U)(u—un-1)?

that is, the coefficients of the term of orde2 of the Laurent expansion d(u) and
Q(u) at u,_; also coincide with each other.

Hence, in both case®;(u) — Q.(u) is a holomorphic function off 2. Therefore
Q1(u) — Q1(u) must be a constant. Now, since

oU=Un) ey _ 1 o (-1
(U—up —w2/2) O 2r/—10(w2/2)

(z(u). o)~

is a nonzero constant (cf. (3.2), (3.4)), we can choaseso thatQ.(u) — Qi(u) = 0
and henceQ(z(u)) = Q(u).

In the same way, we can choosgso thatP(z(u)) = P(u). In particular, we have
Cj /by = limy_y;(P(u)/Q(u)) = p;.

If we regardX as a map defined o6*/~, then we get the following fact:

Proposition 4.2. In the case thato = w,, the Weierstrass datég,n) of an n-noid
X is given by

_P@

_ 2
(4.5) 90 = qq 1= Q@ dz
with
(4.6) P2 =) ch@zq) Q@ =) bhzq),
j=1 j=1
where I, ..., by, C1, ..., Cy are complex numbers satisfying # 0, ¢; = pjb; (j =

1,...,n).
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P(z) and Q(z) are not well-defined orC*/~, but g andn are well-defined.

We remark here that the assertion above is valid also whes oo for some j.
In this case, we have only to sbf =0 andc; # 0.

We mention here that Kusner and Schmitt [11] observed a a@irfalct in terms of
spin structures, in the case that all the ends are planar.

In this paper, we study the case that= w,. This class involves almost all known
examples of minimal surfaces of genus one all of whose enel€mbedded ends. We
will discuss the case that = 0 in the forthcoming paper [6].

As we mentioned in 81, Umehara, Yamada and the first authorej@jced Prob-
lem 2.3 for genus zero to a certain system of algebraic empmtiln 885-6, we reduce
Problem 2.3 in the case th = T2 andw = w», to equations which are described by
using elliptic functions.

5. Local period problems and relative weights

In the case thatr = w; in (4.1) (see (4.2)), as we discussed in 84, the Weierstrass
data @, n) of any n-noid X is given by the form (4.5) with (4.6). This data automat-
ically satisfies the condition (2.6).

Sincehg(1) = 0, the Laurent expansion d?(z)Q(z) at qu' is given by

P(2Q(2)

cbjr! 1 < rm/2 = rm/2
di di m=—o0;m#| 4 4 m=—oc; m#l 8l di

n n
+eir'2 " beh(gr' a)+br'? > thﬂﬂqo)+OﬂJ

k=1:k# ] k=Lik#]
_cyhyr! 1 (2cb; f remrz
(Z_qul)Z Z_qul qj m=—o00; m#l rl—l’m
n
+ Z (Cjbk+bjck)rl/2h(qirl’qk)>+o(1)
k=1:k#]
Cjbjrl 1 2Cjbj s
_ ho(1)+ (cjbk+bjc)h(g;,a) | +0O(1)
(z—qir")? =g\ g k=1:2k;éi s
cjb;r! 1 -
T L L | Z (cjbk+Dbjc)h(g;, a)+0O(1),

“(z—air")2 | z—a.
(Z=gir)*  z=qr K=1:k#]
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In the same way, we also have

bAZrI 1 n
Q2 = — + 2b;beh(a;, a) + O(L),
@ == gy Z_%ﬂb%%j,k(mqo (1)
5 CerI 1 n
P(2)" = + 2¢;cch(g;, o) + O(D).
(2 Z—qr2 " z—qr k_%ﬂ jcch(a;, ok) (1)
Now, for each endy; (j =1,...,n), denote the corresponding, Ry, Ry, w, w* as

in (2.3) and (2.7) byRoj, Rij, Rej, wj, wj respectively. Then we have

Lemma 5.1. The integrals B, Rij and R; are given by the following equalities

n
Roj = —Res—q Q(2*dz=— ) 2bjbxh(q;, q),
k=1; k#]j

Ry = — Res—q, P()Q(2) dz

n n
== > (g +belh@,a)=— > (pj+ pbjbch(a;, go).
k=1; K] k=1; K]
Roj = —Res_q P(2)?dz
n n
=— > 2cch(,a)=— Y 2p pdjbh(;, go).
k=1: K| k=1 k]

Henceforth, we use the notation=" to describe equalities given by definitions
directly or formulas already given. By Corollary 2.2 and Lren 5.1, any solution to
Problem 2.3 must satisfy the following equation for the logariod problem:

n
wj = —pjRoj + Ryj = Z bjbk(pj — ph(a;, a) = aj,
k=1: k]

1 _
(5.1) {uwl = —E(ijlz—l)ROJ + P Ryj

n
=— > byb(pypc+Dh(a;, o) =0 (G=1,...,n).
k=1 K

For any datad, ) as in (4.5) with (4.6), set

wik = bib(pj = PAN(@;, G). - wj 1= —bib(P P + 1)h(G;, k)
(Gok=1,....n ] #£K).

When @, n) realizes ann-noid X, we call wjx the relative weightof the end-pair
(@j,a) (j,k=1,...,n; j #k) of X. As in the case of genus zero [7, Proposition 2.3],
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the values ofwj, are independent of the parametrizations. More precisely,

Proposition 5.2. The relative weightsj are invariant under the conformal trans-
formations ofC*/~ and the orientation preserving congruent transformatiofsR®.

Proof. (1) If we choosej; = qjr' (resp.Gk = qr™) in spite of g; (resp. ),
then the corresponding coefficiebf (resp.by) is replaced byB,— = b,—r'/2 (resp.by =
ber ™?2), and hence it holds thai;bkh(dj, dk) = bjbkh(g;, ax).

(2) Consider a coordinate transformati@gn= «z for somea € C\ {0}. Then
eachq; andb; are replaced byj; = aq; andb; = /ab; respectively. Hence it holds
that b bkh(d; , Gi) = by beh(a;, a)-

(3) If we choose another fundamental periag (@) such thatw, = cw; + dw;
for some even numbe, and defing := e V-1U/é1 andf(2) by usingi’ = e=27vV=12/1
then, since

dz = 27 v/ — du——

n 2 n 2
< b;h(z, qj)) dZ=-—n= (Z bjh(z, Qi)) dz,
j =1

leel

and

we have

n 2 _ 2
b)) 2o 1 z
(j_l bih(z, QJ)) o1 2nd=idu (Z bjh(z q; ) o1

and hence

(5' @1 1)22_"m —(u—u)2;7_(‘ w1 1)22
"ony/=14d;) @1 >y 27/—1du Yorv=1q;) w1’
Therefore we get

l~31‘ = ﬂ‘g_jbw

where we set/gj := &~ 1/“ and ,/q; := &Y Ui/ On the other hand, since

67)2 1 w2
VDR = o = o - 0( %) = 5= o - 5(Z)
= /(W)
1
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holds as an equality with respect to(see (3.3)), we also have
1 = e . 1
5 Vavahe 6) = - J/avzhe a),

and hence

1 — —~ . . 1
Eo—quT-\@h(qk, G)) = - /A /Ach(k, d;)-

Therefore we geb;bkh(qj, k) = bjbch(a;, av).
(4) Consider an orthogonal transformatiénof R® such that

:HO Ol_[_l :a§+ﬂ.
F(e) = Tlo Plg o (0 = S

Then eachp; andb; are replaced byp; = F(p;) and 6,— = b;//F’(p;) respectively.
O

Hence it holds thab;by(f; — k) = bjb(p; — px)-

We can rewrite the equation (5.1) by using the relative wisigh

n
Z Wik = aj,
k=1:k#] .
(5.2) n).
2”: v [ 2”: o PPEL
jk ik [ p]

k=1k#] k=1k#]
It is remarkable that this equation is quite the same as incHse of genus zero

6. Global period problems
In this section, we calculate the global period around theegeors of the first
homology group ofT2. First, by a direct computation, we have

P(2)Q(2) = Y _ cjh(z q)) Z bih(z, a)
j=1
n 400 bkrm/2

n +4oo CJr|/
Y Y ALy Y 2

j= 1|——oo k=1 m=—o0

X oor'2 prm2

Zif}:pwpwm

k=1 l=—0c0 m=—00

cjr'/2 bjrm?2

n +o00
ZC‘bJ(T) DIP I I

j=1l=—00 m=—o0: m#|
. d le’l/2 bkl'm/2

+ Z Z _qulz_qkrm

j=1k=1;k#] |=—00 M=—0c0
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_iz CJbJ
j=1l=-00 (Z—qr)2
. h.r(+m)/2
cibjr ( 1 1 )
+ J—
IX=;'=Z—OOm=—§::m¢| qi(r' —=rm \z—qir'  z—qrm

n n +00 +o00 Cj bkr(l+m)/2( 1 1 )

+Z Z Z qul_qkrm z—qu'_z—qkrm

j=1 k=1, k#]j |=—00c Mm=—c0

In the same way, we also have

=Y 2 (Z_q S

j=1l=—00

oo ijr(l+m)/2 1 1

j=11=—00 m=—o0; m#I|

+0o0
bj bkr (I+m)/2 1 1
+Z Z Z 2 q;r'—qkrm(Z—qu'_2—qkrm)’

j=1k=1:k#]j |=—00 m=—00

c;2r!
PP =) Y
=\, @ar)?
i 2¢(I4+m)/2
C] r ( 1 1 )
+ J—
jzll—zoom—_§m#| q»(rl_rm) Z—qj'rl z_qum

n Foo (1+m)/2
Cj Cl 1 1
I D D S ]

j=1 k=1 k] |=—00 m=—00

We now assume % |q;| < |r| (j =1,...,n). Let R be a positive number such that
R<1andqjr !¢ {z| R=<|z| <1} holds for anyj = 1,...,n. Choose an argument
of r (see (3.1)) so that & argr < 2, independent of the choice of a fundamental
period (1, @7) in 84, and choose a unit complex numkgrsuch thatqgjr —* # z, for
0O<t<landj=1,...,n We consider the following two loops okl = C*/~:

yiiz(t) = ReV1 (0<t < 2n),
va:zZ(t) = zort = zo|r eV 1A (0 <t <1).

In particular, in the case thatis a positive real numbetly, is defined byz(t) = z|r |!
independent of the choice of the signaturerdf. The loopsy: and y» generate the
first homology group of\.

To describe the integrals of(z)?, P(2)? and P(2)Q(2) on y; and y,, we use
h(z, g) and hi(z, q).



MINIMAL SURFACES OF GENUS ONE 949

Lemma 6.1. The integrals R(y1), Ri(y1) and R(y1) as in(2.3) are given by the
following equalities

(6.1)

n

1 n
Ror) = 5= /y Q@) dz=- g k; b;beh (@) ).

1 "1
Rin) = 2= | (-P@Q@)dz=~ ; kX; 5(Cibk+bjadhu(a;, )

=->_ > bjohi(a;, a),
j=1 k=1

1 n n

Relr) = 5—= m(—P(z)Z) dz=— le ; ciokha(aj, a)-

Proof. We prove our assertion fd#;(y1). Since

hr!
/ —CJbJr| - dz=0
Y1 (Z_qu)

and
21/-1 (<0, m=0),
/ 1 1 \g_Jo 1 <0, m<0),
a\zZ—qr' z—qam ] o0 (>0, m=0),
—27+/—=1 (>0, m<D0),
we have

1
/y P(2Q(2)dz

{ -1 +4o0 CJb r( —1)/2 +oo -1 CJb r(m |)/2}

_Z — ;(1- qi(L—rm) qu,(l rm-)

= |=0 m=—o0

|_\

LI by — MmNz
IRPIPIE D I

j=1k=1:k#] \I=—0c0 m=0 | Om——oo

cjbjha(a;, q,)+2 Z cjbxha(aj, ak)
= j=1k=1;k#]j

n

Cj beha(ay, o) = ) Z (CJ bi + bjci)ha(a;, ak)-

j=1 k=1 j=1 k= 1

S5

If we consider the case thdi; = c;, then we get our assertions also f&(y1)
and Rg()/g). []
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Lemma 6.2. The integrals B(32), Ri(y2) and R(y») as in (2.3) are given by the
following equalities

1
R = 5= | Qe dz
- Y2
-1 n bjz n
= —— — —_l M I j* j ’
27“/_—1{ ; a ogr Ro()/l)-l-; 09 q; ROJ}
1
Ri(y2) = m (-P(2Q(2)dz
- Y2
¢ S —ancj—bj—lo r-Ry( )+2n:|o - Ry
= o1 2 a g 1(V1 2 9q; - R (s
1
RZ(VZ) = 277.’\/_1 (_P(Z)z)dz
- Y2
N T B TR ~ oad: . R
_an{ ;qj logr Rz(y1)+;Iogq, RZJ}.

Proof. We prove our assertion fd#(y2). Since

cjb,-r' /1 c,—bjr' , |: Cjbjl"I ]1
————dz= —Z(t)dt: -
v @—qjr')? o (z(t) —qjr')? z(t) —qjr' Ji—o

oir! pir! pirl-1 bir!
cjbjr cibjr'  cjbyr cjbjr

zor —qir'  z—qir'  z—qr't zo—qyr!”

we have
+ + -
20.5 / Cjbjr||2d2= i(_ Cjbjrllll-l— cjbjr'l)
=) (Z—qjr!) N Lo qirT o —qjf
_ lim %(_ Cjbjl’lfl i Cjbjl’l )
N, —+00,N_.—>—00 —_qa.rl-1 _a.rl
=00, N\ Z—qpr 2 —qjr

. Cjbjl’N’fl Cjbjl’NJr
lim — N1 N
Ny —>+400,N_—>—00 Zo—Qqjr--— Zo—Qqjr-+

Cj bj -0 Cj bj _ Cj bj
2-0;-0  2-0-q a

We also have

> cibirtem2 1 1
O S e L
(=™ L\z=qrT T z—gyrm

|=—00 m=—co; m#|

+00 +00 r(m7|)/2 1 1 1
= Cjb; - Z(t) dt
’ J,;mm;m# a@—rm1 Jo (z(t)—qu' z(t)—q,-rm)
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rm/2

B . +o00 +00 1 , d
= Cjb; Z Z qJ(l—rm)[ (Z(t)—quI _Z(t) qr|+m)2(t) t

| =—00 m=—00; Mm#0

+00 rm/z +00 1 1 1
o2 Gamm 2 \so—an @ -gr) O

m=—o0; M#0

and

™= Cjbyr (+m/2 1 1 q
2 Z qir' — rim/(Z_erl_Z_rim) g

|=—00 M=—00
— r (m=1)/2 1 1 . /
C]bk'gom;oo 9 — Q™ /0 (Z(t)—QJr' B Z(t)_QKrm)Z(t)dt
+00 rm/2 1 1 1 /
) Clbk';—;om;oo — G /0 (Z(t)—qﬂ' - Z(t)_ri|+m)Z(t)dt
> m2 400 a1
r 1 1
| km;w %~ Gt _X_:oo o \z—ar 20— gr )7V

since both of these series are absolutely convergent seliegarticular, if we set
Z(t) ;= zor' = zo|r [fe¥~1a0r for t € R, then it holds that

400 1 1 . |
I—Zoo/O (Z(t)_qul B z(t)_qkr|+m)2(t)dt
+00 1 1 ) _I /
:'—ZOO/O (Z(t)r' —q;  Ztr T —gam ) z(t)dt
+o00 1 1 1 |
:'—ZOO/O (Z(t_')—qj - Z(t—l)—0|krm)z(t_l)dt

Foo a4l 1 1 /
_|_Zoo‘/_| (Z(S)—q,— B z(s)_qkrm)z(s)dS
. N+ —I+1 1 1 /
- N+_)+(I>|°r’T’]\L_)_°° Z /—I (Z(S) —qj N 2(s) — qkrm)z (s)ds

I=N_

= lim /N+ ! ! Z(s)ds
C NeotooN——oo Jyo \Z(8) =g Z(S) —qur™ '
To compute this integral, let us define lagf qu') on a simply connected domain
C\{grt [t=>1}.

In the case that G< argr < 2z, for any j = 1,...,n, sett; := log,|q;|, and
choose arg|; so that O< argq; — argzor'i < 2, that is arge + tj argr < argq; <
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7
ZoT’tf +€+7r/arg\r

zZoT

!
ZoT‘tj +£4+27 Jarg T

Fig. 6.1.

argzo +tj argr + 2z. For anyl € Z, it is natural to choose amgr' = argq; +1 argr.
Define argg—q;r') on C\ {qg;r! | t > 1} so that argfori*' —q;r') = argg;r' holds for
tj = (argq; —argzo)/argr. Then we have

argq;r' — 27 < arg@zor' —qjr') < argqjr' (—oo <t <tj +1),
arg(0— q;r') = argq;r' —,

argq;r' + (N — L)z < arg@zor' —q;r') < argq;r' + Nz

(t; +1+ (N —1)w/argr <t <tj +1+ Nx/argr, N € N).

Now, log@ — qgjr') := log|z — gjr'| + v/—1 argk — g;r') is well-defined onC \ {g;r" |
t > 1} (see Fig. 6.1).

In the case that amg= 0, for any j =1,...,n, choose arg; so that O< argq; —
argzo < 2w, that is argeg < argq; < argzp + 2. For anyl € Z, define arg(—q,—r')
on C\ {gjr* |t > 1} so that arg(6- qu') = argq,—r' —m = argq; — . Then we have
argq; — 27 = argq;r' — 27 < arge —q;r') < argqg;r' = argg;. Now, log —q;r') :=
log|z—q;r'| + v/~1 argl — q;r') is well-defined onC \ {q;rt |t >1}.

By using logg — q;r') defined above, we see that

lim / " ! ! Z(s)ds
N —+o00,N-——oc0 [y \ Z(S) — qj Z(s) — qr™

= lim ~_Tlog(z(s) —q;) —log(z(s) - ok ey

Ny —+00,N_—

Lim_ {10g(&(N,) - a;) — log(e(N.) — G ™)

= Nim_{log(z(N-) —q;) —log(z(N-) — akr ™)}
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The first term satisfies

Jlm_(log(N-) = ;) — log@(N.) — g ™)

WJim_[floglz(N.) — q| + V-large(N,) - qj)}

— {log|z(N) — g ™| + v/ ~L arg(N.) — gr™)}]
zZ(Ny) —qj
Z(Ny) —qer™
1—-0q;/z(Ny)
1—aer™/z(Ny)

+ V7| fim_(arg(N.) — )~ argz(N,)

lim log

N4 —+o00

+v-1 o Nim_(arg@(N,) —a5) - arg@(N,) — o ™)

lim Iog‘

N4 —+o00

~Jim {arge(N,) — g™ - argz(M)}]

Since
|2(t)]2 + |2(t) — q;r' |2 — |or' |2
2|z(t)] - |z(t) — q;r'|
1 [1—gir' /2P — lggr' /20 1+ [1—-02—[0]?

codarg(e(t) —qjr') — argz(t)| =

=1 (t ,
2.1 11— qr/z)] T T2 11— (= +00)
it holds that
Jim Jarg(e(t) — qjr') — argz(t)| = 0
forany j =1,...,n and anyl € Z. Hence we have

nm tlog(@(N+) — ;) —log(z(N+) — ™)} = 0.

On the other hand, we have
lim{log@(N-) — ;) —1og(z(N-) — akr ™)}
= log(0—q;) — log(0— aur™)
= {log|—q;| + V=1 arg(=q;)} — {logl—ar ™| + v~ arg{-ar ™))
= logla;| + v—1(argg; — x) — log|akr ™ — v/—1(arger ™ — 7)

q;
=log— —mlogr.
qu g
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Hence we get

/ P(2)Q(2)dz
Y2
+00 rm/z

_ Cle) - by (I ) q])
Z( +jz=:101 J Z QJ(l rm miogr qu]

m=—o0; M#0

+00 rm/z q]
+ cib —— [ mlogr —lo
Z Z LP» Qi_rim( 9 qu)

=1 k=1 k] m=—cc
Z ©i ‘+Iogr{zcjb hl(qj,qj)+z Z C;bkhl(qqu)}
j=1 k=1 k]
—Z Z c,bkh(qj,qk)log—
j=1 k=1; k]
Z Gibj +|OngZCkahl(qj k)
j=1 k=1
n n
—{Zlogqj > Cjbkh(erQk)+ZIOQQk > Cjbkh(qk.qj)}
j=1 k=1; k] k=1 j=Lj#k
n n
Z +Iogr22 (cjbk+b,ck)h1(qj Ok)
j=1 j=1 k= 1

n

log q; Z (cjbx + bjch(a;, ak)
j=1 k=1: k]
" b n
=— %—|OQF-R1()/1)+Z|09C“'RlJ"

=1 i=1

If we consider the case thdi; = c;, then we get our assertions also f&(y2)
and Rz()/z). ]

The Weierstrass datay,(n) of an n-noid of the form (4.5) with (4.6) must satisfy
both the condition (5.1) and the condition (2.5) with (6.1d&(6.2). In the case that
M =T? andw = w,, Problem 2.3 is reduced to a problem of findigg bj, ¢; (j =
1,...,n) andr satisfying these conditions.
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Theorem 6.3. There exists an n-noid XM = T2\ {au,...,qn} — R® of typew =
w, satisfying(2.14)if and only if there exist g b, ¢; = pjb; (j =1,...,n) satisfying
(6.3)

n
wi=bj Y (p—PIbKh(@;,q)=2;
k=1:k#]

n (]:11' 1n)1
wi=—b; Y (Pyp+1)bech(g;,q) =0
K=1ik#]
Ro(y1)+Re(r) =~ D (b bcha(a;, ak) +c;ccha(ay, ak)) =0,
- 1]=1k=1
Rl(Vl)E—;kg;E(Cjbk+bj0k)h1(q1',qk)GR,
Ro(r2) + Ra(y2)
T S o
= —» ——+logr- bjbkhi(aj,ak)— ) logq;- 2bjbch(d;, k)
2rv=11 =1 4 j=1k=1 =1 K=1:k# ]
n C2 n n n n
+) ——logr-) % cjcchu(@j, )+ ) loga;- Y 2¢iekh(; -qk)}
j=1 aj j=1k=1 j=1 k=1:k#]
=0,
-1 . ¢;b; L1
Ri(r2)= - L+ logr - 5(cjbk+bjck)ha(a;, ak)
27“/—1{ J; qj ;;2 e :

n n
—> logg;- > (cjbk+bjeoh(g; ,Qk)} €R,

j=1 k=1:k# |
and the degree of g given k#.5) is n.

7. n-noids symmetric with respect to thex;x,-plane

We can show the following facts about symmetry of minimalfaces, in the same
way as the condition for a minimal surface to be a double ca@fea nonorientable
minimal surface (cf. [13]).

Proposition 7.1. Let X be a conformal minimal immersion in®°®, defined on
a Riemann surface M with the Weierstrass dégan). Then X is symmetric with re-
spect to the xx-plane (up to parallel transformationsif and only if (g, ) satisfies
the condition

(7.1) gol ==, I"'n=—g%

Q| =

for some antiholomorphic involution:IM — M, that is 1%(z) = z and }, = 0.
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In the case ofn-noids symmetric with respect to thex,-plane, the equation for
the global period problem in the previous section can beit@mrto a simpler form.

Assume thatM = T2 = C/(Zw1 + Zw,) satisfiesw; € R, andw, € vV/—1R, or
wr—w1 € V—1IR,. If wp, € vV—1R,, thenr > 1 andr¥2 > 0. If w,—w1 € vV—1R,, then
r > 1 andr'/?2 < 0. In both cases, it holds tha{z, q) = h(z,7), andhi(z, q) = h1(z,7).

Let X be ann-noid of genus one whose Weierstrass dajanj is of the form
(4.5) with (4.6). The datag( n) satisfies the condition (7.1) with(z) = Z if and only
if Qol(z) = ++—1P(2), that is

n n
> bjh(z q) = £v-1) ch(z ).
j=1 j=1
To realize such am-noid, we may assume that> 1 andq;, pj, bj, ¢j (j =1,...,n)
satisfy

1<|gl<r (j=1,...,n),
d€Ry, Ipil=1 (j=1,..., Ny,
g €R., Ipjl=1 (j=Ni+1,...,Ni+ Ny,
g ¢R, G =0qy, piPpy=1 ((=Ni+N2+1,...,n),
V=Ig (j=1,..., N1+ Ny
:i:bJ': \/—_ .
=1¢; (j=N1+N2+1,...,n),
where N; + Ny + 2Nz = n,
.,_{j+N3 (j=N1+N2+1,...,N1+N2+N3)
"1 j=Ns (j=Ni+No+N3+1,...,n).

(7.2)

In this case, Problem 2.3 is reduced to the following:

Theorem 7.2. There exists an n-noid XM = T2\ {qy, ..., 0.} — R® satisfying
(2.14)and (7.1) with I(z) =z if and only if there existq b;, ¢; = pjb; (j =1,...,n)
satisfying(7.2) and
(7.3)

n
ijbj Z (pj—pk)bkh(QJ-qk)zaJ
k=LK | )
(j=1,...,Ny1+ N2+ Ng),

n
wi=-b; Y (Pypc+1beh(g;, o) =0
K=1:k#]
n

n
Pr:=—2Ri(y1) =) > (pj+ Pbjbcha(q;, a) =0,

j=1k=1

P, := —1v=1(Ro(y2) + Re(2))

n 2 n

b' n n n
—Z?+IogrZzbjbkhl(q;,qk)—zzlogmj| > bibh(g;,a0) =0,

j=1 1 j=1k=1 j=1 k=1:K#]
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and the degree of g given l{4.5) is n.

Proof. By the assumption (7.2) and Lemmas 5.1 and 6.1, itshtfidt

~ci? g by S cibj - b

; q; 2 aqj 2 dj ; q
Ro(y1) = —Ro(r1), Ru(y1) = —Ru(),
Rpj =—Roj, Rij=-Ry (j=1...,Ni+ Ny,
Roj = —Roj, Rij=—Rij (i =Ni+Na+1,...,n),

from which, and from Lemma 6.2, it also holds that

_ -1 & -
R -R = — logqg: - Ryj +logqi - Ryj).
1(r2) — Ralrd) = J—_l,-;( 9q; - Ryj +logq; - Ryj)
Now, if w; = a; € R and wT =0 hold for j =1,..., Ny + N2 + N3, then they also
hold for j = Ny + Np + N3+ 1,...,n, and henceRy; = Ryj holds forj =1,...,n.
Therefore we have
{R]_j:O (j =1,..., Np+ Np),
Rij + Ry =0 (j =Nz +Na+1,...,n).
Since lodaj| = log|gj| (j = N1+ N2+ 1,...,n), we get
-1 n
2w/ —1 Z

j=Ni+Nx+1

Ri(y2) — Ru(y2) = log|g;| - (Ryj + Rij) = 0. ]

The data ¢, n) satisfies the condition (7.1) with(z) = 1/z if and only if Q o
I (z2) = £zP(2), that is

n

n
> ﬁh(z, i) =+ gh(z ).

=1 dj j
To realize such am-noid, we may assume that> 1 andq;, pj, bj, ¢; (j =1,...,n)
satisfy
(7.4)

1§|qj|<r (j=1,...,n),
lgjl=1, Ipjl=1 (j=1,...,Ny),
lgjl =1r2, Ipjl=1 (j=Ni+1,...,N + Ny,
oyl # 1, lajl #IrY?, qiap =r, pjpy=1 (j=N1+Nz+1,...,n),
b {c—_,»l/2 (j=1.... N,
of Cjr (J=Ng+1,...,n),
where N; + Ny + 2Nz = n,
j (j=N1+l,...,N1+N2),
i’={j+N3 (J=Ni+No+1,..., N+ No+ Ng),
j—Nz (j=Ng+ N2+ N3+1,...,n).
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In this case, Problem 2.3 is reduced to the following:

Theorem 7.3. There exists an n-noid XM = T2\ {qy, ..., gy} — R? satisfying
(2.14) and (7.1) with 1(z) = 1/z if and only if there exist ;g bj, ¢; = pjb; (j =
., n) satisfying(7.4) and
(7.5)

n
wi=bj Y (pj—pJbkh(a;. o) = 3
k=1:k# | .
(i=1,..., Np+ N+ Ny),

g
Il

n
| =D Z (Pj Pk +1)bkh(qj, k) = 0
K=1iK# ]

n n Ny n
P = —%(RO(V1)+—R2(7/1)) =Y Y bibhi(a, a)+Y . Y bjbh(g;, a) =0,

j=1 k=1 j=1 k=N;+1

Py = —V=1(Ri(y2))—Ri(12) (= —27v—1Ru(12))

= Iogr{ Z Z(p, + pubjbkha(qj, k)

j=1k=1

+ 3> (pi+pIbjbxh(a;. o)

N1+ N2+ N3 n }
=Nt Npt+1 k=T ket |

N1+ N2+ N3

b n
_yo BB p‘ L2 Y loglgil Y (P + pobybeh(a;, a0) = O,
j=1

j=Ni+Np+1 k=L:k#]

and the degree of g given l{4.5) is n.

Proof. By the assumption (7.4) and Lemmas 3.2, 3.4, 5.1 ahdit6holds that

n Cjz n b Cjbj
) B D Z —Z—. ’
j=1 aj J:l j=1

o

Ro(y1) = Ro(y1) — Z Roj, Ri(y) =PRim)— > Ry,

j=Ni+1 j=Ni+1
R_Zj:_Rij R_lj:_le (jzl,...,N1+N2),
Rpj = =Ry, Ry =-Ryy (j=Ni+Na+1,...,n),

from which, and from Lemma 6.2, it also holds that

- -1 n n .
Ro(y2) + Ra(y2) = Zn—x/—_l{_ logr j:%ﬂ Roj + ;('09 gj - Roj —logq; - Rzi)}-



MINIMAL SURFACES OF GENUS ONE 959

Now, if wj =a; e R andwj =0 hold for j =1,..., Ny + N2 + N3, then they also
hold for j = Ny + Nz + N3 +1,...,n, and henceRy; + Ryj = 0 and Ry = Ry; hold
for j =1,...,n. Therefore we have

{lezo (j =1,..., N7+ Np),
Roj = Rojy (j =Ni+No+1,...,n).

Since
0 (G=1,..., Ny,
bm%|={%kmr (=Ni+1 ..., N+ N,
log|aj| +log|qgj/| =logr (j = N1+ Nz2+1,...,n),
we get

1 n
— Y. loglgj| - (Roj — Rojr) = 0.
27T _1 j=Ni+No+1

On the other hand, we also get

Ro(y2) + Ra(y2) =

n N;
ROD-RGI= Y. Ry==3 Ry=0. .

j=Ni+1 j=1
8. Examples 1

Jorge—Meeks typ@-noids of genus one invariant under the action of the diHedra
group D, (n > 3) were constructed by Berglund—Rossman [1]. In this sectiee con-
struct Jorge—Meeks typeN2noids of genus one with alternating sizes of ends, aNd 2
noid fences, by applying Theorem 7.3. In particular, we toies examples such that
the ratio of the two weights of the alternating sizes of erslségative. Throughout
this section, we use the notatigay := e2"V-1/2N,

ExaMPLE 8.1. LetN be an integer larger than 1, and set= 2N. Consider
the following flux data:

pii=¢n'" (j=1,...,2N),

. JaeR\ {0} (j: even),
" laeRr (j: odd).

To find a surface realizing these data, it is natural to assumel and set
q=pj=0n "t (J=1,...,2N),

b e b#0 (j: even),
""{6 (j: odd).
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For j even, by using (3.2) and Lemma 3.1 (ii), we have

2N

wi = —b? Z (Can'TH e 4 D™ 2
k=2: even k]
Nt _
—bb Z (Con' et 4+ Dh(ean? T 2o )
k=1: odd
. 2N . .
=~ {b2 > @+ Th(en '™
k=2: even k|

2N-1
+bb Y 1+ CZNjk)h(szjk)}

k=1: odd

2N-2 2N-1
=~ {b2 D @+ Dhiean) +bb Y (e + 1)h(§2Nk)}

k=2:even k=1: odd

2N-2 2N-1
= Y {b2 Z (—h(en™) + h(an®) + bb Z (—h(@n™) + h(zan')

k=2: even k=1: odd

=0.

In the same way, folj odd, we also haveu}‘ = 0. For the loopy;, we have

2N 2N _ 2N 2N-1 )
P = b’ Z Z ha(Zon' ™, ¢ant) + bb Z Z ha(Zan! ™, £
j=2: evenk=2: even j=2: evenk=1: odd
2N-1 2N-1 2N-1 )
+ bb Z Z hy(eon! ™% e ) + b2 Z Z ha(gan’ %, can®
j=1: oddk=2: even j=1: oddk=1: odd
2N 2N-1 )
Z Z ent *ha(ean ) +bb Y Y can ha(ean
j=2: evenk=2: even j=2: evenk=1: odd
2N-1 2N—-1 2N-1 _
+bb Y- Z et (e ) +B7 Y0 D et M
j=1:0ddk=2: even j=1: odd k=1: odd
2N 2N-1
Yo Nt Z hi(ean!) +0b )" oo Z ha(ean')
k=2: even j=2:even k=1: odd j=2:0dd

2N-1 2N-1 2N-1

2N
+bb D ot YT he)+B* YT vt Y ha(ean))

k=2: even j=1:0dd k=1: odd j=1:even

=b?>-0+bb-0+bb-0+b>-0=0.

Hence we have only to consider the period problemgrand P;.

Y

)

|

Y
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For j even, by using (3.2) and Lemma 3.1 (ii) again, we have

2N
wi=b" Y (@' = D@ )
k=2:evenk # j
2Nl _ _
+ bb Z (Can' ™t = Zan T Hh(gan! T )
k=1: odd
2N . A _2N-1 ' .
=b® > @ =Dh(en ™) +bb DY (™ = Dhizan ™)
k=2:evenk # j k=1: odd
2N-2 2Nl
=b* Y (e —Dh(en®) +bb Y (ean® — Dh(zan®)
k=2: even k=1: odd
2N-2 N1
=b* Y (~h(en ) —h@n ) +bb Y (—h(en ™) — h(zan®))
k=2: even k=1: odd
2N-2 _2N-1
=—2<b2 > h(en*)+bb Y h(;ZNk)).
k=2: even k=1: odd

In the same way, foj odd, we also have

N2 R
wj=_2<b2 Z h(¢on®) + bb Z h(Csz)>-

k=2: even k=1: odd

Setwo := &/a, B :=b/b, and

2N-1 K

“oqq N
(8.1) Cn = ;'\T}.zodd (¢on k)_
k=2: evenh(§2N )

If wj =a (j: even),a (j: odd), then it holds that

_ B?+BCy

(8.2) =T ho.

and hence
%+ (1—a)CyB —a =0.

Solving this equation, we get a solution

B = %{—(1—0{)CN + \/(1—a)2CN2 +4a}.
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In particular, ife > 0, then we have a positive solutigh Now, we can choosé so
that wj =a (j: even),a (j: odd).
For the loopy,, we have

2N 2N
Py =Db? <Iogr > e e ) - N)

j=2:even k=2: even

2N 2N-1

+ bblogr < Z Z oon“Tha(on' ™t oY)

j=2:even k=1: odd

2N-1
+ > Z Eon tha(eand 7, 2Nk_1)>

j=1:0dd k=2: even

) 2N-1  2N-1 _
+b2<logr Z Z oo tha(ean’ T o) — N)

j=1: odd k=1: odd

—b2<logr Z Z ha(con? ™) — )

j=2: even k=2: even

. 2N—-1 2N-1 .
+ b2<|Ogl' Z Z hl(é'ZNJ_k) - N)

j=1: odd k=1: odd

_ 2N—-1 2N—-1
+bb|ogr< S e+ Y3 bl k>)

j=2:even k=1: odd j=1:0dd k=2: even

N 2N-1
= (b? + b?) ('ogr Ny (o) - N) +bblogr 2N 5 ha(ean®)

k=2: even k=1: odd

" 2b6 at
:N(b2+b2){logr< > ha(6an') + = > hl(;mk))—l}

k=2: even k=1: odd
2N-1
= NP1+ 52){|09r < > ha(ean®) +7 5 Y (o k)) - 1}-
k=2: even k 1: odd

Note here that, for anyn € Z,

% QNmk:{o it N # 1,

N if v®™ =1 iie. m=IN for some | €Z,

—N if oy"=-1 i.e. m=(@2 —-1)N for some | €2Z,

2N-1 0 if oo™ # £1,
N if oovm=1 i,e. m=2IN for some | €Z.
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By Lemma 3.5 andp(1) = 0, it holds that

2N-2 2N—2
> ohea)= Y et Z ho(z2n®) — ho(L)
k=2: even k=2: even QN o k=2: even
2N—2 1 +o0 1
= — —k km k(1—m)
= Z K - Z {on Z(CzN — {oN )ﬁ
k=2 oven 52N 1 k=2: even o r@m-1/2 _ 1
_ _ (m-1k “mk
T2 Z( D & D o rem12 1
m=1 \k=2: even k=2: even
- 2 N(IZ r{2(lN+l)fl}/2_1_|Z r(2IN1)/2_1>
=0 —1
N _ 1 +0o0 1 1
=—— "N Z _
2 — r(@N-2N-1}}/2 _ 1 (@N-1)/2_1
N =1 Ix r(2N=@N-1)/2(pN-1 _ 1)

= - N E :
(2AN—(2N-1)}/2 _ (2N-1)/2 _
2 = (r D 1)

By Lemmas 3.5 and 3.6, it also holds that

2N-1 2N-1 1 2N-1
Z h(;ZNk) = Z k—l Z §2N Z(;ZN _{ZNk(l m))r(Zm 1)/2 _ 1
k=1 odd kelrodd 52N — k=1: odd m=1
+00 / 2N-1 2N-1 1
_ N (m=1k _ -mk)_ -
) DI N S B
m=1 \k=1: odd k=1: odd
N e 1 = 1
= _E - <Z r(2@N+1)-1/2 _ 1 - Z rR{@-DON+1}-1])/2 _ 1
1=0 =1

N = 1 1
=——-N>_ -
2 pAN-@N-1)}/2 1 (AN-2N-1)}/2 _ 1

+o00 1 +o00 1
+ ; r2@-ON-1/2 _1 ; r@2aN-1/2 _1

1 1
+ FAIN-@N+1)}/2 _ 1 p@AN-1)/2 _ 1)

N +oo r[41N—(4N—1)}/2(r N _ 1)
) {(r {4IN—(4N-1)}/2 _ 1)(r{4IN—(2N—1)}/2 —1)

+

pAN=@N+1)/2( N _ 7y
(r (AN=@N+1))/2 — 1) @N-1)/2 _ 1)
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< k —k k k(L r (m-1y/2
Z hi(¢an®) = Z N Z((zN ™+ &N (_m)m
k=2: even k=2: even m=1
=- e+ N ™ o
(@2m-1)/2 _ 1\2
m=1 \k=2: even k=2: even (I‘ 1)

( r (20N +1)-1)/ +o0 r (@N-1)/2 )
= E + E -
(2N +1)-1}/ 2 2IN-1)/2 _ 1\2

(rt (| -1/2 — 1) — (r¢ )2 — 1)

T @N+1)2 o @N-12
N2 e 1p * X o g )
Lo (r@N+D2 1 (r@N-D/2 _1)2

2N-1 2N-1 p (2m-1)/2
Z h1(con®) = Z ton K Z(Cszm-i- e m)m
k=1: odd k=1: odd m=1
__§< ZNXEl Eon ™ DK 4 2N231 8 mk) rem-u72
m=1 \k=1: odd - k=1: odd - (r(2m—1)/2_1)2
p12@N+1)-1)/ r 21@-1N+1)-11/2
(Z (r2@N+D-172 _ 1)2 Z (r2@DN+1-12 _ 1y

+o0 r2@-1)N-1)/2 +oo r 22IN-1)/2 )
- +
(2@-1)N-1}/2 _ 1)2 (22N-1)/2 _ 1\2
=Ry ¥ =0 1)

( [ @IN+1)/2 too r (4N-(2N-1)}/2
— _N -

@NTD2 _ 12 {4IN—(2N-1)}/2 _ 1)2
26 12 = 1)

Z (r{4IN @N+1)/2 — 1) Z (r@N-1)/2 _1)2

[ [AN=(2N+1)}/2 r 4N-1)/2 )

Combining these equalities, we have

1 !
N2(1+ B2) P2

1 2 [+oo r @IN+1)/2 +o0 r (AN-1)/2
—[Nlogr{(liﬁi (Z a1y * L a1y
1=0 =1
1-_B)2 (= [ {AN—(2N-1)}/2 r (4N-(2N+1)}/2
+ S22 (3 vyt L g +1].
1+8 - (rN-@N-1)/2_ 1y (r N-(@N+1)/2__ 1Y

Now, setp := |r%/?|.
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First, let us consider the case that=r2 > 0. In this case, it holds that

1 ’
Nb2(1+ B2) P2

_ A+pP (R p¥NL X pAnt
= —|:2N |09p{ 1+ p2 (2 (p4IN+1_1)2+; (pIN-1_1)2

1—B)2 (I AN—(2N—1) +oo AN—(2N+1)
+ (1_|_‘Z)2 (Z ( 44'(:\1—(2N—1)_1)2 +Z ( 4ﬁ\l—(2N+1)_1)2 +1
=1 p =1 p

< 0,

and hence, we cannot find a well-defineN-Roid of genus one satisfying the given
flux data. Each of these data realizes a fence of Jorge—Mepks2y-noids.
Secondly, let us consider the case that = r¥/? < 0. In this case, it holds that

1 !
NBR2(1 + B2) P2

_ L+BP (S PN X pint
= 2N Iogp{ 1+ p2 ; (p¥N+1 4 1Y + Z (p¥N-1 4 1)2

=1

(1- B)? +00 pAN=(@N-1) +00 pAN=@N+D)
+ + ~1.
1+ B2 ; (pIN-(N-1) 4 1)2 ; (pAN-(N+1) 1 1)2

For anyp > 24N since ¥(1— p~*N) < 2, it holds that

1 ’
NR2(1 + B2) P2

A+pP(s 1 1
< 2N Ing{ 11 g2 gpmNH +§p‘“”’l

(1_ﬂ)2 +o00 1 +00 1
+ 1+ B2 Z pAN-(2N-1) +Z 4AN—(2N+1) -1

=1 =1 P
1+82/1 1 1 1
=2Nlo —
g,o{ 14+82 \pl—p 4N = paN-171_ p-4N

1—p)? 1 1 1 1
+( ) __ 4L § _1
l—I—,BZ p2N+11_p4N p2N 11—,04N

A+pP(2, 2 \ (@-pP( 2 2
<2N Iogp{ 17 52 (;—i— p4Nl) + 1+ p2 (p2N+1 + ple)}—l
(L+B)4  (1-pP4

8
<2Nlo -+ —¢—1=2Nlogp-— —1.
gp{1+ﬂ2p 1+ﬁ2p} 9%
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Hence, for anyp > 512N?, we have

1

(8.3) NP2+ £2)

8 8
P, <2Nlogp-——-1<2Ny2p——-1<0.
o o

Setcy := (16N log 2)/25. Sincecy > 1 for N > 3, it also holds that

1

64 Npaim ™ »

A+p? 4 _ _ . @+p?

2N log 4 =CyN
Z AT T gy 1+ p2

-1>0

if B> Bn:=(—cn+ +v2cn —1)/(cy —1). For examplegs is close to—1/8. For any
N >3, By <O.
RegardCy defined in (8.1) as a function gf. Now, since

2N-2

1
Z h(§2Nk)=—N{———+Z( p2N(m= 1)+1+1 ZNm‘l—i-l)}’

k=2: even
2N-1

m 1
Z h(CZNk)=—N{ +Z( 1) ( 2N(m— 1)+1+1 2Nm—1+1)}

k=1: odd

(cf. Lemma 3.5), we have

2N-2
1 1 1 1 1 1 1
5 95N o+1 - N Z h(QNk)<____ T oI
2 2N ,o+1 szven 2N p+1 »p +1

2N-1

1 1 1
N Z h(en') > - - T N1 1
k=1: odd ptl p +1

If N>3 andp > 2, then it holds that
1 1 1 1 1 1

and
1 1 1 1 1 1 N 1
2 p+1 pN-141 2 2N p+1 pAN-141
1 2
= —-————— 0'
N pNTy1°
since

PPNt 1—aN > 2Nt 414N
(2N —1)(2N — 2)

> +1-4N =2N?-5N +2

>14+(2N-1)+

> 0.
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Hence, by (8.1), we hav€y(p) > 1,

As we mentioned before, for any > 0, there exists a uniqug > 0 satisfying
(8.2). If « =0, thenp = 0. On the other hand, for any < 0, there exists a unique
B € (—1/Cn(p),0) satisfying (8.2). In particular, it holds that= 8+ 8(1—8)(Cn(p)—
1)/(1 + BCn(p)) < B. Therefore, for anyx > By, there exists g8 satisfying (8.2),
(8.3), (8.4), and hence, by the intermediate value theotéere exists g > 4 such
that P, = 0.

On the other hand, it does not hold fof = 2. We discuss the case thht = 2
in the next section.

Now, let us show that the -noids (or N-noids) constructed here have no branch
points. The Riemannian metric of each surface is giverdsy= (|| + |g?n|)? with

n = —b?(Bh)(2) + hwy(2))? dz,
9%n = —b?(Bhw)(2) + he)(2)? dz,

2N
hw@ = > h(zzn®)

k=2: even

1 LN 1 1 1
— my_____ - - =
- N{ZN -1 + Z(Z p2N(m—1)+1 +1 zNm pZNm—l + 1)}’

m=1

2N-1

hi)(2) = Z h(zean) = hy(zean)

k=1: odd

V) Jio(—l)’“‘1 M-yt L1
N+l = pNM-1F1 11 " ZNm p2Nm1 177 ) [

2N
h@e)(2) = Z N n(zeon®)

k=2: even

N X 1 1 1
=N —+) (- + 2Nt | 7,
ZN 1 ZN(m-1)+1 pZN(m—1)+1 +1 pZNm—l +1
m=1
2N-1
ha(@ = D an*h(zzan®) = tonhe(zian)
k=1: odd

B A 1 1 w1 1
=N ZN +1 + Z(_l) ZN(m-1)+1 pZN(m—l)Jrl +1 +z p2NW1 +1 !
m=1
where we use the equality

1 &, 1 1
h(z)=ﬁ+ (Zm —Z—m)m A/r <lzf <r)

m=1
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(cf. Lemma 3.5). By the equalitid®(z) = —z*h(z 1), h(z) = —ph(p?2) (cf. Lemma 3.1
(i), (i), the estimates above, and the assumptibhs 3, p > 2, we get the following
estimates:

ha(p) = —p *he)(p !) = hg)(p)

N-1 +o0 Nm-1
1 1
=N{L 4 dol- R
,ON -1 pN(m71)+l pZN(mfl)le +1 pZNmfl +1

m=1

PNT1 1N 1 1
> N T 1 —1+ N1 o +1 > 0,
o pp+ o P o+

hy(e) = _Pilh(4)(p 1) = hy(p)

D+ Z( o S i
N(m D+ p2Nm-D+1 1 1 ' p2Nm1 4 1

prl 1 1 prl
N N “\ + N
oN+1 pp+1 p +1

1 i 1 oN
oN+1 p4+1 pANT_1

\

where we use

pNm-1 pNm-1 pNm-1 pNm+1-1 pNm+1-1

p2Nm-1 ] = 2p2Nm-1 = p2Nm = H2N(M+1)-1 = p2NmHDT 4 17

We also haven)(p) > h)(p), since

ha(p) — he)(p)

1 1 pN(Zm—l)
=N oN—1 o + 22( N(2m 1) pNE@m-1-1 4 1 + pANE@M-1)+1 4 1)

2pN 2 1 N 2
- N{m‘p—ww——ul} - (2= garg) -0

In the case tha = 0, by the symmetry of théN-noid, it cannot be branched at
any point.

In the case thag > 0, by the symmetry of the I2-noid, it cannot be branched at
z# plon®r!, poon®r! (k,1 € Z). Hence we have only to show that= p, pon are
not branch points. Sincgh)(p) + h)(p) > 0 and &an(Bhe)(pien) + hey(eden)) =
Bhay(p) + hy(p) > 0, we getn = —b?(Bh)(2) + hw)(2))?dz # 0 atz = p, pion.

Also in the case that1 < —1/Cn(p) < 8 < 0, by the symmetry of the®-noid, it
cannot be branched at# pconr', pcon®r! (k,1 € Z). Hence we have only to show
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that z = p, pton are not branch points. Singéhyy(pson) + hey(pian) = Bhey(e) +
hw(p) > (1+ B)hey(p) > 0, we getg?n = —b*(Bhy(2) +h(2)?dz # 0 atz = peon.
Note here thaty|,—, = —b?(Bh@)(0) + hw(p))? dz = —b*(Bhy(p) + hx)(p))?dz =
9%1l2=p. Hence,ds?|,—, = 2[1||z=,. Setpy = —he)(p)/h@)(p). Then,n #0 atz=p
if B> By

Let us show thaiy < —1/Cn(p), that is,—pCn(p) > 1. By the definitions of
By and Cy(p),

h)(e) hizy(1)

—BNCin(p) = ,
N ha)(p) hay(2)
where we seh)(2) := Y a2 enh(22an®). Since
1 h ( ) pN—l 1 1 pN—l 1 1 pN—l
= - _z _ _ _ _
NOYVZ NI oo+l oIl p+1 p(pN+1) pN I+
1 1 11 p+1

> 0,

> — — — —
p+1 peN-1) p”—l p+1  p(eN—-1)

1 m 1
_—h(2)(1) > + Z( 1) ( 2N(m— 1)+1 + 1 p2Nm-1 4 1)
1 1 1 1 1 1 0
— > -0 — — — > y
T2 041 pNIx1 2 p+1 Nt
N(m—l) 1 1
0< —h(l)(P) + Z( 2N(M-1)+1 1 pNm p2Nm-1 1)
1 1 = 1 1 p+1
<pN—1+p+1+§2pN(m*”“_p+l p(pN — 1)’

m=1
1 1 1 1 1 1 N 1
2N p+1 pN-141 "2 2N p+1  pN-V

1 11 & 1 1
0< _Nh(l’)(l) “ 279N + Z(_pZN(m—l)—H +1 + p2Nm-1 4 1)
1
2

we get, forp > 4,

Zhe ) (~=he®) - (=hae) ) (-2 he @
() (~yhe) - (o) (-
()G )

1, p+l (1 1 11
p+1 pN-1)/\2 2N p+1 pN-1

_ 1 n p+1 p—1 2
“2N(p+1)  2Np(pN —1)  p(eN-1) pN-Lp+1)
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\)*\ |
>

a~1/7 a=0 a~-—1/9

Fig. 8.1.

1 p+1 p—1 2

2N +1) " 2Np(eN—1)  p(pN—1) N (p + DN —1)

N (p2+ p 4+ 1) — 2Np? 4+ 2N(1—2p2 N)

B 2Np(p + 1)(pN — 1)

__PeNEo2N) pAE 2N
2Np(p + D)(pN —1) ~ 2Np(p + D)(pN - 1)

> 0.

We conclude thatfor any Ne N, N > 3, and anya € (Bn, 0) U (0, +00), there
exists a Jorge—Meeks ty@@N-noid of genus one whose ratio of alternating weights of
ends isa. Fig. 8.1 shows some examples fir= 3.

We note here that the holes, the handles on the plane of symnietthe case
thata < O are larger than those in the case that 0.

9. Examples 2

Throughout this section, we assume- 1 andr/?2 < 0, and sep := |r¥/?| = —r1/2,
First, we describe the data of Costa’s family of 3-end catn¢cf. [3]) by using
our notation. This family collapses to three catenoids asnd. |

EXAMPLE 9.1. Consider the following flux data:

n:=3, pr:=1 p2=ps:=-1 ay=a+as

=1, o:=p, Qz:=-1,
by := Be™ V4, by = —BBrpY2e VA by = —ppse VA,
B, B2, B3 > 0.
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Then the surface given by these data is symmetric with régpédooth x; x,-plane and
X1Xz-plane, and we can apply Theorem 7.2. By the standard céitmulave see that
there exists a complex numbg@r such that the conditions); € R and wi =0 (j =

1, 2, 3) are automatically satisfied, and the nontrivial ¢orl is rewritten as follows:

2

1
{_'32 PL = (1+ B2° — B®)ha(1) — 2B2B83p"*h1(—p) = O,
— V=1872P, = (1 - B2 + Bs2)(2h1(2) log p — 1) + 4BB3p**hy(~p) log p = O.

It is equivalent with

B2% — B3® = 1—4hy(1) log p,

Bofls = h1(1)(1— 2hy(1) log p)
2 pY2hy(—p)

For anyr = p? > € (resp.r = p? = &), it holds that 1— 2hy(1)logp > 1 —
4h;(1) logp > 0 (resp. 1— 2h;(1) logp > 1 — 4h;(1) logp = 0) andh;(—p) > 0, and
hence there exists 84, B3) € (0, +00) x (0, +00) satisfying the equation above, and

a1 = 2{p**n(p)B2 — (—h(~1))Bs} p* > 0,
a, = 20"h(p)B2p* > 0,
ag = —2(—h(-1))Bsp* < 0.

In particular, ag/a; € (—1, —1/2) (cf. [3, Lemma 3]). Costa’s 1l-parameter family of
3-end catenoids collapses to three catenoidsgas, — —1/2.

In Example 9.2 below, we treat, by applying Theorem 7.2, #mmaining case of
Example 8.1. In Example 9.3, we give a complete proof of thetemce of two fami-
lies of 3-end catenoids, which were first observed in [1] bingigthe MESH program.
Schoen [16] proved that there is no catenoid of genus onecé{énthe data oh-noid
of genus one goes near to that of “the catenoid of genus ohef the surface must
collapse. The families oh-end catenoids of genus one we construct in Examples 9.2
and 9.3 enable us to observe such a phenomenon.

ExXAMPLE 9.2. To construct Jorge—Meeks type 4-noids of genus one Wiigh- a
nating sizes of ends, let us consider the following flux data:

n:=4,
pj = VDA — (Vo) (j=1,...,4),

q =12 RO (j=24),
"7 1a €R (j =1, 3).
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Set
q:=p"% q:=q"" (j=1,...,4),
by:=b#0, by:=b#0, bg:=—+/—1gb, bs:=—+/—1gb.

Then, by (3.2) and Lemmas 3.1-3.4, it holds that
. . 1 _
—h@“, ') = h(@’, ") = $h(q‘*k),

@) = (5 =1 ¥n( 3 ) =~ S (-an@) = chia)

. . 1 .
hi(@, g’) = hy(a’, g*) = $h1(q’*"),

s on(5) (o3 o2)
- —q—lz(q hu(a) — ah()) = é(—hl(q) 1 h(@).
M@ = (=) = Jh(-r"?) = Sh(a?)

and henceu}‘ (j =1, 2,3,4) andP, automatically vanish. Therefore we have only to
consider the period problem fav; (j =1, 2, 3, 4) andP; with

wy = wz = b? - 2v/—1qh(q?) — bb- 2+/2™™V-Y4n(q),

wa = wa = —b? - 2h(g?) — bb - 2+/2e™V=1/4h(q),

1 1 N N

> P1 = —Ri(y1) = —v—la(v —1qb? — b?) - 2hy(1) + bb- v/26Y=4(4h,(q) — h(a)).

Seto :=4d/a and B := e ™V-V4h/b. If wy = w3 = & and w, = wa = a, then it
holds that

., — B?ah@®) + v2ph(a)
h(@?) + v28h(q)

Solving (9.1) as an equation ¢f, we get a solution

(9.1)

_ v2(h(a?)/h(a)) _
(1—a) + V(1 - )2 + 22q(n(q?)/h(a))?

If « €(0,1), theng > 0. Now, we can choosk so thatw; = w3 =a andw,; = ws = a.
Set

B

N 1 1
Py = P =—
YT oyl YT U

Ru(y1) = 2(/32 + %)hl(l) + V3B(4hs(q) — h(@)).
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Now, let us show that, for any € (0, 1), there exists @ satisfying P; = 0.
First we give an estimate foP, from below atq = 2. Note here that

q2&-D
22 (q2(2k D112

<1 2@
"“‘”ZZ(‘” + g

hy(1) =

k=1
> 1 1
h k-1
@=g- 1;( qk)q2<”1>+ 1
k1 21
<—+22( )m (9>1)

(cf. Lemmas 3.5 and 3.6). It holds that

By > 4% hy(1) + v2B(4hy() — h(a))

2 (42 ., 6 q2&-1) 1
> ﬁﬂ{ — 20"t — - - }
;( Ja q")(qw D+1p q-1
42 6y ¢¢ 1
fﬂ{(\/ﬁ 2+q)(qz+1)2 q—l}'

Hence we have
5 4 11
P1|q=2 > \/Eﬂ{(‘]"i‘ 2+ 3)2—5 — 1} = x/iﬂ . —25 > 0.

Secondly, we give the asymptotic behaviour Bf asq — +oco. Note here that

(1 1\ (pm 1 1
k=1 _ & _ = -
"=9-1 k=1(q q") ngl @D~ g " O(qz)’
1 > . 1) e (-7 2 1
2y . %2 _ + —_ = il
= 1 1
hi(q) = - Z( ) Z q2m(2k 1) o2 + O(@)
k=1

(—=1)™m 1
hi(1) = _ZZZ 2@k ) (@)

klml
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By using these estimates, we also have
h@? 2 ( 1 )

= — + O e B
h(@ q 9

h@))* _ (1

q(h(q)) = O(q)’

’B_\/Qa 1 h(qz)_\/éa}_i_o(i)
1ot 11 2/ a)Path@)/h@)? h@  1-eag o2/’

aha(e) = hie) =~ + o(q—lz)

~ 200 1 1
P, =— — + 0l = ).
YT i saq (q3)
Hence, for anyx € (0, 1), there exists &, > 2 such thatl51|q:qa < 0.
Now, by the intermediate value theorem, there existg=a2 such thatP, = 0.
Any surface we construct here has no branch point. Indeedhé&ysymmetry of

the surface, it cannot be branchedzag —r', —qr' (I € Z). Hence we have only to
show thatz = —1 and—q are not branch points. Recall here that —Q(z)> dz and

! by (z\ ~~—1by [z V-1b, [z
Q(z):j;bjh(z, qj)=b1h(z)+azh(a)— ] 1h(¥)— 7 2h($).

from which it follows that

In particular, byh(—1/g%) = h(=1/p) =0,
Q(-1) = € *y(Bh(-1) + v2h(-q)),
1
Q(-a) = bz(ﬁﬂh(—q) + a““l))'
Sincep > 4, g = p¥? > 2 and hence

= 1 1 1

_ 1 k—1
h(-1)=-3+ 22(—1) et e R

h(—q) = ! +§( (gt + L L
a = q+1 — a gk ) q2@-1) 11
i (0 S)a)
- — _ =
q+1 q/g’+1

q2 (1 1 1 1 ) 0
<-—— - \1-———= - — ] <0,
(a+ 1@ +1) qa o>

Oy
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Fig. 9.1.

where we use the inequality

qk—l _ qk _ qk _ qk

Since g > 0, we getds? = (|| + |g?n|)? # 0 atz = —1 and —q.
We conclude thatfor any o« € (0, 1), there exists a Jorge—Meeks tygenoid of

genus one whose ratio of alternating weights of endg&.isFig. 9.1 shows the case
thata ~ 1/7.

ExAMPLE 9.3. In the case that = 3 and the surface is symmetric with respect
to a plane on which the flux vectors are arranged, if we asshatelt € R and|p;| =

1(j=1,2,3), then, byw}‘ =0 (j =1, 2,3), we have

bj = b(px + p)h(ak, a)

for some nonzero complex numblkeyr where (,k, 1) =(1,2,3) or (2,3,1) or (3,1, 2).
Substituting this, and by using Lemma 3.2 (i), we have

wj = —2b%h(an, G2)h(az, Ge)N(ds, A pj (P* — p?)  (j = 1,2, 3).
If a; (j =1,2,3) satisfyZ?=1 aju(p;) =0 anda; # 0, then it holds that

a: & ag = pu(p2® — Pa?) i Pa(ps® — pr?) : Pa(pe® — p2°).

Hence, we can choode so thatw; =a; (j =1, 2, 3).
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In this case, the periodB; and P, in Theorem 7.2 are given as follows:

1
Zp, =R
5P 1(v1)

B . % 2( ) (ql)
—qlqzq[ {pl(pz+ ) (qa)h(q2)+pz(p3+ po2n( 2 )n( 2

+ patp + prn( 2 () bruce)

+ (P1 + P2)(P2 + P3)(Ps + P1)
SUELELIE
(@) @nE) GGG
—P = 7 V=1(Ro(r2) + Re(12))
“aa (G ) () on e () )
+ (P + pz)zh(%) h(q—i)}(logr ha(1)— 1)
oo - (2(2) ()
o mn( ([
o on(2 ()

_ 2{Iog|q1|(p22 — p?) + 1oglaal (P — pi?)

+ loglas|(p2 —pzz)} (qz) (32) (gi)}

where we use (3.2), Lemma 3.1 (ii) and Lemma 3.3 (ii).

Here we consider the case that two of the flux vectors have ancomweight:
_ 1 2
pr:=1, p:=p, P3:=p, a&:&:a3=-2Rep:1:1, §n<argp<§n.

Set

1
=1 G:=r° gg:=r-°, 0<e<§.
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Then P, and P, satisfy the following:

% P, = b? - 4r %7 {(Re p)*h(r%)? + (Re p + 1)r h(r)?}hi(1)

+ Rep(Re p + 1){h(r)*ha(r *) — 2h(r )h(r *)ha(r)}],

—P, = b? - 4r*"—{(Re p)*h(r*)? + Rep(Re p + 1)r h(r<)?}(logr - hy(1) — 1)
—logr(Rep + 1){h(r€)*h1(r*) — 2 Reph(r)h(r>)hy(r )}
—2logr - e{(Re p)? — 1}h(r )?h(r %)].

Since we assumel? < 0 andp = —r¥/2 here, it holds that
1 X 1 1
h(z = — M ————— (Ir <z <),
@= 3+ () g @<t <D

+oo N 1 pZm—l
h]_(Z) = Z(Zm_ + Z—m)m (1/r < |Z| < I')
m=1

(cf. Lemmas 3.5 and 3.6). Sdtg(e, p) := ho(p%*)p¢, H(e, p) := h(p*)p¢, and
Hi(e, p) := hi(0*)p¢. Then

- 1
Ho(e, p) = ) (oo — p= @) — o
m=1 P mtl

H(G, 10) = + Ho(é, 10);

e_pfs

2m-1

[o¢]
Hy(e, p) = (em-e 4 ~(2m-1)e P _
1( IO) r;(p Y )(pzm_l + 1)2

In particular, by Lemma 3.1 (i), (ii) and Lemma 3.3 (i), (iijve have
H(G! 10) = —H(—G, p) = H(l_ €, IO) = Hl(ea IO) + Hl(l_ €, 10)
Set P, := P;-r/8b% and P, := P,-r/4b?logr. Then

P. = {(Rep)®H(2¢, p)? + (Rep + 1)H(e, p)*}H1(0, p)
+ Rep(Re p + 1){H(e, p)?Hi(2¢, p) — 2H(e, p)H(2¢, p)Hu(e, p)},

i 1
P, = Rep{RepH(2¢, p)* + (Rep + DH (e, 9)2}(H1(O’ =3 Iogp)

+ (Rep + 1){H(e, p)*Hi(2¢, p) —2Rep- H(e, p)H(2¢, p)Ha(e, p)}
+ 2¢{(Re p)? — 1} H (e, p)*H(2e, p).
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Note here that bottP; and P, take real values.

Now, we will show that, for anyp such that|p| = 1 and Rep € (—1/2, 0), there
exist € € (0, 1/2) and p € (1, +o0) satisfying P, = P, = 0. To show this, we re-
gard P; and P, as functions defined on a simply connected domain= {(¢, p) | € €
(0, 1/2), p € (1, +00)}, and consider the map := (P, P,): D — R2. By the homo-
topy argument (cf. Wohlgemuth [17], Sato [15]), for any lolojn D, if the winding
number of the imagé(l) ¢ R? around (0, 0k R? is not 0, then there exists a, ) in
the domain surrounded bysuch thatP(e, p) = 0. To apply this argument, we prove
the following claims:

Claim 1. Py > 0 or P, > 0 holds fore = 1/3 and p € (1, +00).
Claim 2. Py > 0 holds if p° = 2 and p € (4, +0).

Claim 3. For anye; € (0,1/9) small enoughthere exists g1 = pi(€1) such that
P1 < 0 holds fore € (€1, 1/2—€1) and p € (p1, +00).

Claim 4. There exist T, T,;", T, such thatl < T, < T," < T, and that for
any e; € (1/9, 1/6), there exists a, = p2(e2, Rep, T, T,7, T,) € (p1, +00) such that

P.>0 if pc <T;,
|51<O if p€ > T,
P, <0 if p¢ <T;

holds fore € (0, €2) and p € (p2, +00).

Claim 5. For anyes € (1/3,1/2—1/9), there exists a3 = ps(e3, Rep) € (p1,+00)
such thatP, < 0 holds fore € (€3, 1/2) and p € (ps, +00).

Claim 6. For any ps € (max{ps, 4}, +00), there exists ar, = €4(p4) € [1/3,1/2)
such thatP; > 0 holds fore € [e4, 1/2) and p € [4, pa].

Chooseps > p,. Letl; be the loop defined by joining the curvé&, p) | € =
1/3, p €[8,ps]}, {(e,0) | p© =2, p €8, ps]}, {(€,p) | € € [log2/logps, 1/3], p = ps}.
Then the winding number of1(l;) around (0, 0) is—1.

Chooseps > p3. Let |, be the loop defined by joining the curvé&, p) | € =
1/3, p € [8, pel}, {(€, p) | € € [1/3,€4), p = pe}, {(€, ) | € = €4, p € [27%, pg]},
{(e, p) | € € [1/3, €4], p¢ = 2}. Then the winding number offi(l;) around (0, 0) is 1.

Hence, by the homotopy argument, we conclude that there ®xds (¢, p) satis-
fying Pi(e, p) = Pa(e, p) = 0.

Now, let us prove the claims.
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Proof of Claim 1. Note here thaH(2/3, p) = H(1/3, p) and Hi(2/3, p) =
H(1/3, p) — H1(1/3, p). Then we have, for = 1/3,

. 1 \?
Pr=H (5, p) [{(Re P’ +Rep+ 1} Hi(0, p)

+ Rep(Rep+ 1)(H (% ,0) — 3H1(%, p))],

l5—1(2Re + 1)H ! 23Re H1(0, p) — 1
2_3 p 3110 p 1 !10 2|ng

st safi(2)-on(3)]

Since H(1/3, p) > 0 and Rep € (—1/2, 0), it holds that

1\ 2. 1 1 \% -

3 1
= {—2(Rep)? + Rep + 1}H4(0, p) + =(Re p)>— > 0.
2 log p

Hence at least one d?; > 0 and P, > 0 must hold. O

Proof of Claim 2. In the case that € (4, 8], note that R@ + 1 > (Rep + 1),
H1(2¢, p) = H(2¢, p) —H1(1—2¢,p) < H(2¢, p), and H(e, p) = Hi(e, p) + Hi(1—¢, p).
Then we have

P1 = {(Rep)’H(2¢, p)* + (Rep + 1)H (e, p)*}H1(0, p)
+ (—Rep)(Rep + 1){2H(e, p)H(2¢, p)Hi(e, p) — H(e, p)*Hi(2¢, p))
> {(Rep)*H(2¢, p)* + (Rep + 1)*H(e, p)*}Hi1(0, p)
+ (—-Rep)(Rep + 1)(2H(e, p)H (2, p)Hi(e, p) — H(e, p)*H(2¢, p)}
> (—Rep)(Rep + 1)H (e, p)H(2¢, p)(2H1(0, p) + 2Ha(e, p) — H(e, p))
= (—Rep)(Rep + 1)H(e, p)H(2¢, p)(2H1(0, p) + Ha(e, p) — Hi(1 — €, p)).

By the assumption, we have-Re p)(Rep-+1)H (e, p)H(2¢,p) > 0. On the other hand,
if p€ =2 andp € (4, 8], we also have,

2Hl(0! p) + Hl(ea 10) - Hl(l_ €, p)
+o00 2m-1 2m-1 —
= Z 44 221 4 o-em-1) _ (P ; (2 ; L
2 p (p?™1 4 1)

m=1

1 0 2 0 +00 0 2m—1 pzm_]_
4royZ P2y P2 N (P)y P
>( Tt p)(p+1>2 2\2) iy
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> 0.

—p?+13p—4 f 1)2'“1 _ —4*+37p-13 27
2(p + 1) 2 N 6(o + 1) ~ 6(p + 1)

m=2

Now we getP; > 0 for p¢ =2 andp € (4, 8].
In the case thap € [8, +o¢), we have

P = {(Rep)’H(2¢, p)? + (Rep + 1)H (e, p)*}H1(0, p)
+ (—Rep)(Rep + 1){2H (e, p)H(2¢, p)Ha(e, p) — H(e, p)*Ha(2e€, p)}

- (Rep+ DH(e, p)Z{Hl(o, )~ 2(-Re (2, p)}
1 2(-Rep)(Rep + DH(, p){H(ze, P)H(e, 0) = H(e, ) Ph(2e, p)}.

By the assumption, we have (Re-1)H(e,p)? > 0 and 2(-Re p)(Rep+1)H (e, p) > 0.
On the other hand, ip¢ = 2 andp € [8, +00), then we have

Hi(0, p) ~ S(-RePIFL(2<, p) > Hi(0, p) ~ (2%, )

— 1 oma (2m—1) pomt
S o Z@mtpgemyl L
P (=

e Dt 320

. 7p* — 3680% —512p — 256 - 3p*

120(0 + D202 —16)  ~ 16-120(p + D2(p2 —16) "

We also have
1

H(2¢, p)Hu(e, p) — éH(e. p)H1(2¢, p)

4 15 1 \5 12 &2\t
(24D 2P __21fiy (2

15 4p+1)2(p+17 6|3 “\op
_ p(8p® + 451p — 2932) - 1188 _
T2+ 1B —4) T 720 +1P(p—4)

() )

m=1

0.

Now we getP; > 0 for p¢ =2 andp € [8, +o0). O
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Proof of Claim 3. We have the following upper estimates Fbfe, p) etc.:

111
pE—p € 1— ,0726 pe’
+oo  (2m-1)e 1 1
0
HQ(E, p) < = (6 € (01 1))!
ot p2mfl 1— p72(lfe) plfe
1 1 1 1 2 1
H(Ey p) < 1— ,0_26 F + 1— p—2(1—€) p]__e < 1— p_ze ; (G € (01 1));
1 1
H(ZE! p) < 1 _ p_4E ? 1 _ p—2(1—26) pl—Ze (6 € (01 1/2))1
+o0 (2m—1)e 2
Hi(e, p) < 2 = (e €10, 1)),
n; p2mfl 1— p72(lfe) plfe

2 1
H1(0, —_——.
1( Io)< 1_)0_2,0

In particular, ife € (1, 1/2—¢;) and pt > 2, then we have

4 4 2 2 4
H(E,,O)<;<F, H(Ze'p)<F+ﬁ<ﬁi
4 4
Hi(e, p) < ——, Hi(0,p) < —.
P o
We also have the following lower estimates:
1 1 1 1
H(e, p) > = > >
pf —_ p—E l —_ p— € pe pE
2 p 11
Hi(2¢, 0) > p e@ T a4t

Now, if € € (€1, 1/2—¢;) and p* > 2, then we have

P = {(Rep)®H(2¢, p)*+ (Re p+1)H(e, p)*} H1(0, p)
+(—Rep)(Rep+1){2H(e, p)H(2¢, p)Hi(e, p)— H(e, p)*Hi(2¢, p)}
16 } 4

p* ) p
4 4 11 1
%Iol—e - szl—zg

16
< {(Re p)zﬁ +(Rep+1)

+(—Rep)(Rep+ 1){2}0;4E

1
= —m{(—Re p)(Re p+ 1)p*t —256(1— 2 Rep)(Re p+ 1)p** — 256(Rep)?}.
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Hence, for anye; > 0, if we set

p1=p1(€1, Rep)

B [ 128(1-2Rep)(Rep+1)++/{128(1-2Rep)(Rep+1)}2+256(—Rep)3(Re p+1)]1/2€1

B (—Rep)(Rep+1) '

then Py < 0 holds for anye € (e1, 1/2—€1) and p > ps. O
Proof of Claim 4. SeC := p¢. Thene =logC/log p. Assumee € (0, 1/4) and

p € (4, +00), and fix Rep. Setc(t) :=1/(1 - 1/t) =t/(t —1). For anyk € [0, 4),

since p2/C% = p2A-k9) - 24K it holds thatc(p?/C%) < ¢(2*%). Now, we have the
following upper estimates foH (e, p) etc.:

H(ke, p) =

Hake, p) = (C* +C™

1
Ck_CX + Ho(ke, p)

1

+00 1
= =t E (Ck(mel) _ ka(mel))
— C—
m=

Ck p2m—1 +1

1 +00 Ck 2m-1 1 ,02 Ck
S _ S — C —_ _
Ck_Ck‘l'Z(p) <ck_cxk T (CZK)p

m=1

1 C2k 1 ik C2k
< —Ck—C*k (1+ (CZK) P ) < —Ck—C*k (1+C(2 )7) (k;ﬁO),

p2m-1
k(2m-1) k(2m-1)
+Z(C +C )( 2m 11 1)

A

(0 + 1)2

<(Ck+cC™ +2 Z(Ck)zm 1
(o +1)2 o

3 C3k
=+ eng 1)2”‘:(&)?

k 2 2k
(e 1)2{“&(%) !
k k 4—k Czk
<@ e (14 Doz

2m—1 +o00 Ck 2m-1
Hl(kE,p) Z(Ck(Zm 1)+C k(2m— 1))— < 22(_)

(2m1+1)2 o

m=1 m=1

- Zc( é)jk) ct 2c(24—k)_
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We also have the following lower estimates:

(k # 0),

P
(p+1)%

1
k_C
Ha(ke, p) > (C*+C™)

H (ke,
(ke, p) > =

We will use these estimates with= 0, 1, 2. Set

8 4 25 10 32

A= C(8) = ?, A= C(4) = :—%, Az := §C(16) = 3, Ay = 20(16) = 1—5,
25 25 16 25 25 8
A5.= EC(8)= 7, A6= 2C(8)= 7, A; = EC(4)= E, A8= 2C(4)= é

First, we give an upper estimate fé%.

Pi={(Rep)*H (2, p)’+(Rep+1)H (e, p)*} H1(0, p)
+(—Rep)(Rep+1){—H (e, p)°Hi(2¢, p)+2H (€, p)H (2¢, p) Ha(e, p))

1 P
“(C—CIP(C+C 1 (p+17

X[{(Rep)z(1+A2%4)2+(Rep+1)(C+C1)2(1+A1%2)2}.2(1+A3p—12)

+(—Rep)(Rep+1){—(C+C1)2(C2+C2)

2\ 2 4\ 2 2\ 2
+2(C+C‘1)2(1+A1C—) (1+A2C—) (1+A5C—2) }]
P P P

1 o
(Pit+P14),

©(C—CAC+CT? (p+17

where we set
Pir := Rep(Rep + 1)(C + C H* + 2(Rep + 1)(1— 2 Rep)(C + C 12 + 2(Rep)?,

c* ct
Py = 2{(Re p)2A2(2 + A2)7 + 4(Rep+ 1)A1(2 + A]_)?}

1 C?
+ 2A3{(Re p)?(1 + Az)zﬁ +4(Rep+ 1)1+ Al)zﬁ}
C4
+ (—Rep+1)(Rep+ 1){8A1(1 + A))(1+ A5)7

o ct
+ 8Ax(1 + A5)7 + 8A5;}
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Choosee; € (0, 1/6). Since
P < |:2{(Re P)?Ax(2 + As) + 4(Rep + 1AL(2 + A1)}

+ 2A3{(Re p)?(1 + A2)2%1 +4(Rep+ 1)1+ Al)z%l}
(9.2)
+(—Rep+ 1)(Rep + 1){8A1(1 + A1+ As)

1 1

holds fore € (0, €2), P11 (€, p) converges to 0 ap — oo uniformly on (0,ep).
Secondly, we give a lower estimate f&%.
P1 = {(Rep)*H(2¢, p)* + (Rep + 1)H (e, p)’}Ha(0, p)
+ (-Rep)(Rep + 1){—H(e, p)*Hi(2¢, p) + 2H(e, p)H (2¢, p)Hu(e, p))

> 1 p
(C—-CH2AC+CH2(p+ 1)

x [2{(Re p)?> + (Rep + 1)(C + C™H?

Cc2\?2 c*
+ (—-Rep)(Rep + 1){—(c +Cch%c? + c2)(1 + A17) (1 + A7?)

+2(C + cl)z}}

> 1 p
(C=CHAC + C2 (p+ 17

(Pur — PL),

where we set

(o c8
P, :=(—Rep)(Rep + 1){8A1(2 + A+ A7)? + 8A7?}
Since
1 1
(9.3) P.— < (—Rep)(Rep+ 1){8A1(2 + A1+ A7) + 8A7§}m

holds fore € (0, €2), P1_(€, p) converges to 0 ap — +oo uniformly on (0,¢7).
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Thirdly, we give an upper estimate fd#,.

P, = (—Rep){(-Re p)H(2¢, p)*— (Re p+1)H(e, p)?} (Hl(o’ =3 Iog,o)

+(Rep+1){H(e, p)*Hi(2¢, p) +2(~Re p)H (e, p)H(2¢, p)Hale, p))
—2¢{1—(Re p)®}H(e, p)*H (2, p)
1
= 2C—C12(C+C-Y2logp

[2(—Re p)2(1+ A —) Nm&

+(-Re p){—(—Re P)+(Rep+1)(C+ C1)2(1+ Al%z)z}

C2 C2
+2(Rep—|—1){(C+C 1)2(1+A17) A87

2 4\ 2
+2(-Re p)(c+c1)(1+ Al%) (1+ Az%) Ae%} log p
c+cC
~41-(Rep)) o -

-1
7 log p}

1
(Por + P2y),

~ 2(C—C D2(C+C YZlogp

where we set

P,r := (—Rep)(Rep + 1)(C + C )% + 3(Rep)? —
) log p c*
P, = 2(—Rep)4(1 + AZ)A47 + 4(—Rep)(Rep + 1)A(2 + Al)7

c4l
+2(Rep + 1){4(1+ A2 Ag——29°

2
+4(-Rep)(L+ AL+ Ag)AgC 097 ':)’g p}

Since
(9.4)

1
P, < [2(—Re P)?(1 + A2)A; + 4(—Rep)(Rep + 1)A1(2 + A1) o0 4

log p

+ 2(Rep + 1){4(1+ A1)?Ag + 4(—Rep)(1 + A)(L + A2)A6}] X P

holds fore € (0, €2), P>, (¢, p) converges to 0 ap — +oo uniformly on (0,¢5).
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Now, we get

17 -
PlT — Pl— < (C — C_l)z(c + (:_1)2M
1Y

P1 < Pir + Pry,
2C—-CH(C +CYlogp - Py < Por + Pay.

Note here that@ + C~%)? is monotone increasing o8 < (1, +o0).

Since Py7 is a polynomial of € + C~1)? of degree 2, its top coefficient satisfies
Rep(Rep + 1) < 0, and Pi7|cic-12=4 = 2(Rep + 2)* > 0, there exists a unique
(C + C™1?2 > 4 satisfying P,y = 0. Denote the value o€ > 1 satisfying P;t = 0
by T;.

On the other hand, sind&r is a polynomial of C + C~%)? of degree 1, its top co-
efficient satisfies{Re p)(Rep+1) > 0, andPar|(cyc-1y2—4 = —(Rep)’—4(Rep+1) <0,
there exists a uniquec(+- C1)? > 4 satisfyingP,r = 0. Denote the least value 6f > 1
satisfying Pt = 0 by Ta.

Moreover, since

_ {2—(Rep)’}(Rep + 2)

Pitlc=t, = 0,
irle=, Rep(Rep + 1) =

we haveT; < T,.
ChooseT,, T;", T, so that 1< Ty < T < T;" < T, < T and Pirlc=1; <
2(Rep + 2)° = Pit|c—1. Then, for anye; € (0, 1/6), there exists a

p2 = pa(e2, Rep, T, T, T5) € (p1, +00)

such that

|51>0 if p¢<T,,
{F~’1<O if p¢> T,
P, <0 if p¢ < T,
holds fore € (0, €2) and p € (p2, +00).
Indeed, since there existsTa € (1, T;) such thatP;t is monotone increasing for
C € [1, To], and monotone decreasing far € [To, +00), it holds thatPyr > Pir|c=1;
for C € [1, T), and that|Pir| > [Pirc_1;+| for C € [T,", +00). By €2 < 1/6 and
(9.2), (9.3), there exists ar- such thatP,_ < Pit|c=1 holds forp > pr-, and there
exists apr: such thatPy, < |Pir|c_t+| holds forp > pr:.
On the other hand, sincer < —Rep(Rep+ 1){T, +(T;) 1}2+3(Rep)?—4, and
the right-hand-side is monotone increasing @yrit holds that|P,t| > |— Rep(Rep +
1){T; + (T;)™2 + 3(Rep)? — 4|. Hence, bye, < 1/6 and (9.4), there exists ar;
such thatP,, < |- Rep(Rep+ 1){T, + (T,)™}? + 3(Rep)? — 4| holds forp > pr..
Therefore if we sep, := maxX{or, P11 H then we get our assertion. ]
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Proof of Claim 5. SeiC := p%/2=¢, Thene = 1/2 —logC/ log p. Assumee e
(1/3,1/2) andp € (4,400), and fix Rep. Let c(t) be as before. Note here thafC? =
p% > 2.23 52 p?/C* = p* > 4.223 > 4, andC?p = p21+9) > 4. Set

Bi:=4c(2)=8, Bp:=c4)= g, Bs :=2c(4) = 7

Now, we have the following upper estimates fidl(e, p) etc.:

H(e, p) = Hi(1 — €, p) + Hu(e, p)

+00 )01/2 2m-1 C 2m-1
=21\ T\ om

m=1 p

1 2m-1 pZm—l
1/2y2m-1
+(Cp™9)™ = + (Cpl/z) }(pZm_1+ 17
2m-1
C C
1/2y2m-1__ =

= 4Z(C ey - 42( 1/2) = 4c (CZ) < Blm,

1
H(ZE,,O) = H(1—2€, p) = Z—H + HO(l—ZE, p)

1 ) 1
_ - @n-1)  ~—@Em-1y_  +
_C C2+Z(C c )Zm—1+1

m=1

1 p?\ C* 1 L

+o00 p2m_1 ) 1 1
Hi(0,p) =2 ) ———= < 2c(p°)— < Ay—,
00) r; iy = 2, <A

+00 p1/2)2m1 1

+00 ,01/2 2m-1 C 2m—1 p2m,1
m=1

m=1

+00 1 2m-1 1
— § _ 2
=2 (m) ZC(C p)C 12 < B3Cp1/2,
m=1

1

p2m71

Hi(2¢, p) = H(1 — 2¢, p) — Hi(1 — 2¢, p) < H(1 — 2¢, p)

We also have the following lower estimate:

H(2¢, p) >
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Now, we give an upper estimate fét,.

P, = (-Rep){(—Re p)H(2¢, p)? — (Rep + L)H(e, p)?} (Hl(o' P~ 3 Ic:)l-gp)

+ (Rep+ 1){H(e, p)*Ha(2¢, p) + 2(—Re p)H (e, p)H(2¢, p)Ha(e, p)}
— 2e{1— (Rep)’}H (e, p)*H(2e, p)

1
~ 2(C—CY2%(C +C Y2logp

| -(Rep? + 2(Repf(L + B A

2
+ (—Rep)(Rep + 1)(C2-C?)? Blzc—
P

C?log p

+ 2(Rep + 1){((:2 —C2)B%(1+ By)

+ 2(—Re p)(C2— C2)By(1 + By) Bg'of’) p ”

1

2 ’
< 2C_CUAC + Ciflogy| REPVF Pk

where we set

g Ct

|
Py, = 2(Rep)’(L + BZ)ZA4¥ +(-Rep)(Rep + B —

C*log p C?log p}
p .

+2(Rep + 1){ B12(1 + Byp) + 2(—Rep)Bi(1 + By)B3

Choosees € (1/3, 1/2). Since

P < [Z(Re P)*(1 + B2)*As + (-Rep)(Rep + 1)312|Og 2

4 2(Rep + 1)(B2(1 + By) + 2(-Re p)Bi(1+ By) Bs}] % p~5*2Jog

holds fore € (e3, 1/2), P, (€, p) converges to 0 ap — +oo uniformly on (e, 1/2).
Therefore, for anys € (1/3,1/2), there exists a3 = p3(e3, Rep) € (o1, +00) such
that P, < 0 holds fore € (e3, 1/2) and p € (p3, +00). O

Proof of Claim 6. Note here that
P, > (—Rep)(Rep + 1)H(e, p)H(2¢, p)(2H1(0, p) + Ha(e, p) — Hi(1 — ¢, p)).

By the assumption, we have-Rep)(Rep + 1)H(e, p)Hi(2¢, p) > 0. Fix ps > 4.
Since H;(0, p) + Hi(e, p) — Hi(1 — €, p) is a continuous function ofi(e, p) | € €
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[1/3, 1/2], p € [4, p4]}, @and H1(0, p) > 0 on {(1/2, p) | p € [4, p4]}, there exists an
€4 = ea(pa) € [1/3, 1/2) such thatP; > 0 holds fore € [es4, 1/2) and p € [4, pa]. O

Any surface we construct here has no branch point. To segewigishave only to
show that #1(1) = 3. Recall here thag is given by

(o = D Pbih@a) 3, Bhe )
-1 bih(z a;) >3 1 bih(z q))’

where

=1 G=p* aq=p"",
B — ~(p+ Dh(p*) ~(p+Dh(p*) 4,
by =~—1by, by = 2Reph(o™) ' = 2 Reph(p®) p by
Since
b1/(z— 1) + brho(z, aw) + X_, bjh(z, q;)

9@2) = V-1 B ,
b1/(z— 1) + biho(z, a1) + >_j_, bjh(z, q;)

it holds thatg(1) = v/—1by/b; = p; = 1. The denominator of is

3 _
_ (p + Dh(p*) z (p + Dh(p%) z
j; bih(z, q;) = bl{h(z) ~ S ReDh(o* o2 Reph(p‘k)p?eh(pk) +5 Reph(p‘k)ph(ka)}’

and the numerator of is

3 —
b —h (p + Dh(p*) z (P + Dh(p*) z
; bjh(z, q;) = bl{h(z) ~ 2Reph(p*)pr h(pk) +5 Reph(p‘k)ph(pZZE)}'

Since

(P + 1h(p™)
2 Reph(p*)p*
(Rep + 1)h(p*)
(—Re p)h(p*)p?

(p + Dh(p*)

1-2¢
)t S Reph(o®)p

3
byt " bih(p, q5) = h(p) -
=1

h(p71+26)

= h(p) + h(o*~*) > 0,

and

(Rep + 1)h(p*)

1-2¢
(CReph(o®)pr @ )= 0

3
b > bih(p, q)) = h(p) +
j=1
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it holds thatg(p) = +~/—1b;/b; = 1. Here we used the fact thiafp) > 0 andh(p'~%) >
0. On the other hand, since

3
Y byh(-1,qj)
j=1

(P + Dh(p*) (p + h(p*)

(—Rep)h(p*)

=MD = 3 Repneea ") T 2 Rephpe, ")
B (Rep+ Dh(s®)
= h(-1) + Wh(_pz ) <0,
and
3 2¢
5 3 Bn-La) =D+ Bep+ o) <o,

it also holds thatg(—1) = ~/—1b;/b; = 1. Here we used the fact tha(—1) < O for
p >4, andh(—p%*) < 0 for € € (0,1/2) andp¢ > 2. Indeed, ifp > 3, then it holds that

1 w1 1 1
h(-1) = ——+2Z( 1) s —§+2p+1<o.

On the other handh(—p%) is expressed as follows.

1 (—1)k 1
2e\ __ k—1 26(k 1)
h(=p™) = - 2€+1+Z{( 1) p2ek }p2kl_|_1

+00 1)k +00

1 1
— k( 2e(k-1)
- Z( o) ( ‘ + Zek)p2kl+ 1

=1 k=1

+

p2@D) 4 1 +00 p(1-29@-1) 1

1-
— k k
B k—l(_l) {1_ W}pzd‘ Z(_ Ve

Since this is an alternating series and the first term is hagaitis enough foh(—p%) < 0
that the following inequality holds for any positive odd noenk.

1— p—(l—ZE)(Zk—l) 1 1— p—(1—2€)(2k+1) 1
1+ p @D pk ] + p@+D)  p2e(ktl)
25(1 0 —(1-2¢)(2k— l))(1+ 0 (2k+l)) _ (1 0 —(1- 25)(2k+1))(1+ P —(2k— l))

= p2(FD)(1 + p=@k-1))(1 4 p—@k+D)) > 0.
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€ <1/3 €>1/3

Fig. 9.2.

If k=1 andp* > 4, then it holds that
p2€(1_ p—(1—2e)(2k—l))(1+ ,0_(2k+1)) _ (1_ p—(l—Ze)(2k+1))(1+ p—(2k—1))
— (1 _ p—(1—2€))(1 + p—l)(pZG + 026—2 11— 2p—(1—2€) _ p—2(1—25))
- (L= p L4 o Ya-4) =0,

If k>3 andp® > 4, then it holds that
p2€(1_ p—(l—Ze)(Zk—l))(1+ p—(2k+1)) _ (1_ p—(l—ZG)(2k+1))(1+ p—(2k—l))
. 4(1_ p—(l—Ze)(Zk—l)) _2(1_p—(l—2€)(2k+1))

—(1-26)(2k
_ 4(w _ (12e)(2k1))

> 4(p~ (212 _ (—(1-29@2k-1) -

We conclude thatfor any « € (0, 1), there exist twa3-end catenoids of genus one
whose ratio of weights of ends ig; : w, : w3 =« : 1: 1. Both surfaces are symmetric
with respect to the common two planes orthogonal to eachr.offig. 9.2 shows the
case thatxr = 1/5.
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