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Abstract
We give a necessary and sufficient condition for the existence of an n-end

catenoid of genus one with prescribed flux. By using the condition, we construct new
examples of families whose flux data go near to that of “the catenoid of genus one”.

1. Introduction

Let M be a compact Riemann surface, andXW M D M n{q1,: : : ,qn} ! R3 an n-end
catenoid, that is, a conformal minimal immersion with catenoidal ends at q1, : : : , qn 2

M . Let 
 j be a loop surroundingq j from the left, En a conormal such that (
 j , En) is
positively oriented, andds the line element ofX(M). Then theflux vectorat the end
q j is defined by the integral' j WD

R


 j
En ds. By the divergence formula, we get theflux

formula
Pn

jD1 ' j D 0. Let G W M ! S2
� R3 be the extended Gauss map ofX. Since

we assume that the endq j is catenoidal,G(q j ) must be parallel to' j . We define the
weight of the endq j by w(q j ) WD ' j =(4�G(q j )). Then the flux formula is rewritten
as follows:

(1.1)
n
X

jD1

w(q j )G(q j ) D 0.

Conversely, we can consider a problem of findingn-end catenoids that realize given
data G(q j ) andw(q j ) ( j D 1, : : : , n) satisfying (1.1). Umehara, Yamada and the first
author [8, Theorem 3.6], [9, Theorem 3.1] reduced the problem to a system of algebraic
equations, and proved that, for almost all flux datav1, : : : , vn 2 S2 and a1, : : : , an 2

Rn {0} satisfying
Pn

jD1 a j v j D 0, there existsX W M D

OCn {q1, : : : , qn} ! R3, an n-end
catenoid of genus zero, that satisfiesG(q j ) D v j andw(q j ) D a j ( j D 1, : : : , n), where
OC WD C[{1}. In the case that dimhv1, : : : ,vni D 2, Cosín and Ros [2] gave a necessary
and sufficient condition for the existence of Alexandrov embeddedn-end catenoids of
genus zero with prescribed flux, by using flux polygons.

On the other hand, in the case of higher genus, most of the known examples are
embedded and hence the flux vectors at the ends are parallel. For the case that the
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932 S. KATO AND H. MUROYA

flux vectors span at least a two-dimensional vector space, Berglund–Rossman [1] and
Rossman [14] constructed Jorge–Meeks type surfaces of genusone, andn-end catenoids
of higher genus whose symmetries are those of the Platonic solids, etc., and it seems
that there are few works for this case.

There are two possibilities for classes ofn-end catenoids of genus one (see §4). In
this paper, we consider one of the classes, that includes Costa’s examples, Berglund and
Rossman’s examples, and, in a weak sense, catenoid fences also. In the class, we gen-
eralize results in [8], and give an equation with respect to elliptic functions, which de-
scribes a necessary and sufficient condition for the existence ofn-end catenoids of genus
one with prescribed flux. Applying our equations, we also give new examples, which
enable us to observe the collapse ofn-end catenoids of genus one to “the catenoid of
genus one”, which actually does not exist (cf. [16]).

The authors thank Professors W. Rossman and S. Fujimori for helpful advices.
They also thank the referees for useful comments.

2. Flux of catenoidal or planar ends

Let OC WD C[ {1}. Let 5W S2
!

OC be the stereographic projection from the north
pole e3 WD

t (0, 0, 1). Then the inverse of this map is given by the following:

v(p) WD 5

�1(p) D
1

jpj2 C 1

0

�

2 Rep
2 Im p
jpj2 � 1

1

A.

Let M be a Riemann surface. Then, by theWeierstrass representation formula,
any conformal minimal immersionX W M ! R3 is given by

(2.1) t X(z) D Re
Z z

z0

(1� g2,
p

�1(1C g2), 2g)�,

whereg is a meromorphic function onM, and� is a holomorphic 1-form onM such
that the 1-formsg� and g2

� are also holomorphic onM, and� and g2
� have no com-

mon zeroes. We call (g, �) the Weierstrass dataof X. The functiong is the stereo-
graphic image of the Gauss mapG W M ! S2 of X, i.e. g WD 5 Æ G. The induced
metrics onM are given byX�(gR3) D (1C jgj2)2

j�j

2.
Conversely, for any Riemann surfaceM, any meromorphic functiong on M, and

any holomorphic 1-form� on M such thatg� and g2
� are also holomorphic onM,

the mapX given by (2.1) is a (branched) conformal minimal immersion on M.
The mapX given by (2.1) is well-defined onM if and only if

(2.2) Re
Z




(1� g2,
p

�1(1C g2), 2g)� D 0
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holds for any loop
 in M. Set

(2.3) Ri D Ri (
 ) WD
1

2�
p

�1

Z




gi
� (i D 0, 1, 2).

Then the condition (2.2) is rewritten as

(2.4) R0 � R2 2 R, R0 C R2 2
p

�1R, R1 2 R,

and this is equivalent to

(2.5) R0 C R2 D 0, R1 D R1.

Now, we have the following:

Theorem 2.1. Let X be a conformal minimal immersion from the universal cover
of a Riemann surface M toR3 given by(2.1), and let 
 be a loop in M. Let p be a
complex number satisfying

(2.6) p2R0 � 2pR1 C R2 D 0.

Then X is well-defined on a neighbourhood of
 in M itself if and only if it holds that

(2.7)

8

<

:

w WD �pR0 C R1 2 R,

w

�

WD �

1

2
(jpj2 � 1)R0 C NpR1 D 0.

Proof. By the definitions ofw andw�, we have

(2.8)

8

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

:

1

2
(R0 � R2) D �

pC Np

jpj2 C 1
w C

�(p2
� 1)

jpj2 C 1
w

�,

p

�1

2
(R0 C R2) D �

�

p

�1(p� Np)

jpj2 C 1
w C

p

�1(p2
C 1)

jpj2 C 1
w

�,

R1 D �

jpj2 � 1

jpj2 C 1
w C

2p

jpj2 C 1
w

�.

If we assume (2.7), then, by (2.8), we have (2.4).
Conversely, if X is well-defined on a neighbourhood of
 in M, then, by (2.4),

we have

(2.9)

0

B

�

�(pC Np) �(p2
� 1) Np2

� 1
p

�1(p� Np)
p

�1(p2
C 1)

p

�1( Np2
C 1)

�(jpj2 � 1) 2p �2 Np

1

C

A

0

�

w � Nw

w

�

Nw

�

1

A

D

0

�

0
0
0

1

A.
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Since the determinant of the matrix of the left-hand-side of(2.9) is 2
p

�1(jpj2C1)3 ¤
0, we getw � Nw D w

�

D Nw

�

D 0, namely, (2.7) holds.

Note here that, for any curvezD z(s) in M, the conormal is given by

t
En D � Im(1� g2,

p

�1(1C g2), 2g)�(z0(s)),

where s is the arclength parameter with respect tods2
D (1 C jgj2)2

j�j

2. Hence, it
holds that

t
' D � Im

Z




(1� g2,
p

�1(1C g2), 2g)�.

From the equality above and (2.2), it follows that

(2.10) t
' D �2�(R0 � R2,

p

�1(R0 C R2), 2R1).

We call ' the flux vectorof the loop
 . It depends only on the homology class of
 .
By (2.10), we have

(2.11) ' D

4�w

jpj2 C 1

0

B

�

pC Np

�

p

�1(p� Np)

jpj2 � 1

1

C

A

D 4�wv(p).

Let OM be a Riemann surface,q an interior point of OM , and setM WD

OM n {q}.
Consider a conformal minimal immersionXW M ! R3 which cannot be extended toq.
We call the image of a neighbourhood ofq the end q. It is well known that the end
q is embedded in a neighbourhood small enough, if its Weierstrass data (g, �) can be
meromorphically extended toOM, and the order of the endq is at most 2, where we
define the order of the endq by the maximum of the orders of the poleq of �, g�
and g2

� (cf. [5, 10, 16]).
Consider R0, R1, R2 as in (2.3) for a loop
 surroundingq once from the left.

If a conformal minimal immersionX given by (2.1) has an embedded end atq and
g(q) D p ¤1, then (g� p)2

� does not have a pole atq. Hence we have

0D Resq(g� p)2
� D R2 � 2pR1 C p2R0,

namely, (2.6) holds forp D g(q).
Now, by Theorem 2.1, we have the following:

Corollary 2.2. Let X be a conformal minimal immersion from the universal
cover of MD

OM n {q} to R3 given by (2.1). Set pWD g(q). If X has an end of
order at most2 at q, then X is well-defined on a neighbourhood of q in M itself
if and only if the condition(2.7) holds.
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In the case of genus zero, this fact was shown in [8].
For the loop
 as above, we call' D '(
 ) the flux vector of the endq, as we

have already mentioned in §1. We denote it by' D '(q). We call the endq catenoidal
(resp.planar) if the endq is of order at most 2 and'(q) ¤ 0 (resp.D 0).

By (2.11),'(q) is parallel to the limit normalG(q) D v(p), and we call the value
w D w(q) D '(q)=(4�G(q)) the weight of the endq. The weightw(q) is invariant
under the action of conformal coordinate transformations of OM and the orientation pre-
serving congruent transformations ofR3.

Let M be a compact Riemann surface,q1, : : : , qn distinct points onM , and set
M WD M n {q1, : : : , qn}. Then, for any conformal minimal immersionX W M ! R3,
by (2.10) and the residue theorem, we have the balancing formula, also called theflux
formula,

Pn
jD1 ' j D 0, where' j WD '(q j ). When X is non-branched, of finite total

curvature and all the ends ofX are embedded, we callX an n-noid. In particular, if
all the ends are catenoidal, then we callX an n-end catenoid. For anyn-noid, we have

(2.12)
n
X

jD1

w(q j )v(p j ) D 0,

where p j WD g(q j ).
Now, the inverse problem of the flux formula is stated as follows:

PROBLEM 2.3. Let p j be complex numbers or1. For any j , let a j be a real
number. Suppose that these numbers satisfy

(2.13)
n
X

jD1

a j v(p j ) D 0.

Does there exists ann-noid X W M D M n {q1, : : : , qn} ! R3 satisfying the follow-
ing condition?

(2.14) g(q j ) D p j , w(q j ) D a j , '(q j ) D 4�a j v(p j ) ( j D 1, : : : , n).

By Theorem 2.1 and Corollary 2.2, Problem 2.3 is reduced to a problem of finding
a conformal class ofM and (g, �) satisfying (2.7) withp D p j ( j D 1, : : : , n), and
satisfying (2.6) and (2.7) for a homology basis. For a general loop 
 , it is difficult
to determinep in advance. However, in the case thatX has some symmetry, we can
rewrite the condition (2.5) in a somewhat simpler form.

In this paper, we study Problem 2.3 in the case thatM is a torusT2.

3. The functions h(z, q) and h1(z, q)

In this section, we introduce the functionsh(z, q), h1(z, q), etc. We useh(z, q) to
describe the Weierstrass data (g, �) of n-noids in §4. To write down the global periods
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of the given data, we also needh1(z, q) in §6. We enumerate several properties of
h(z, q) and h1(z, q) in Lemmas 3.1–3.6, which we use repeatedly in the calculations
in §§7–9.

Let T2
WD C=(Z!1CZ!2), where we assume that!1,!2 2 C satisfy Im(!2=!1) >

0. Let C�

WD C n {0}. Set

(3.1) r WD exp

�

�2�
p

�1
!2

!1

�

, r 1=2
WD exp

�

��

p

�1
!2

!1

�

,

and define an equivalence relation onC� by

z� z0 , z0 D zrl for some l 2 Z.

Consider the covering map

zW C ! C� u 7! z(u) WD exp

�

2�
p

�1

!1
u

�

.

Then the mapz(u) naturally induces a biholomorphic map betweenT2
D C=(!1Z C

!2Z) and C�

=�. In some cases, it is more convenient to regard the torusT2 as the
quotient spaceC�

=�.
Set

h0(z, q) WD
C1

X

lD�1Il¤0

r l=2

z� qr l
,

h(z, q) WD
C1

X

lD�1

r l=2

z� qr l
D

1

z� q
C h0(z, q),

h1(z, q) WD
C1

X

lD�1Il¤0

lr l=2

z� qr l
,

wherer 1=2 is chosen as in (3.1). For simplicity, we denoteh0(z, 1), h(z, 1) andh1(z, 1)
by h0(z), h(z) and h1(z) respectively. Then it holds that

(3.2) h0(z, q) D
1

q
h0

�

z

q

�

, h(z, q) D
1

q
h

�

z

q

�

, h1(z, q) D
1

q
h1

�

z

q

�

.

We can expressh(z) in terms of elliptic functions. To see this, we mention that
the Weierstrass}-function satisfies

s

}(u) � }

�

!2

2

�

D

2�
p

�1

!1

(

1

z1=2
� z�1=2

C

1

X

lD1

�

r l=2z�1=2

1� r l z�1
�

r l=2z1=2

1� r l z

�

)
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(cf. [4, pp. 211 and 190]), and the Weierstrass� -function satisfies

}(u) � }

�

!2

2

�

D exp(�2u)
� (u � !2=2)2

� (u)2
� (!2=2)2

(cf. [4, p. 181 Satz 3, p. 183 Satz 2]), where�2 is the complex number associated with
the Weierstrass� -function:

�2 D � (uC !2) � � (u).

Hence we have

(3.3) z(u)h(z(u))2
D

�

!1

2�
p

�1

�2�

}(u) � }

�

!2

2

��

,

and

(3.4) h(z(u)) D
!1

2�
p

�1

(�1)

� (!2=2)
exp

��

�2

2
�

�

p

�1

!1

�

u

�

� (u � !2=2)

� (u)
.

By straightforward calculations, we see thath(z) and h0(z) have the following
properties:

Lemma 3.1. The functions h(z) and h0(z) satisfy the following:
(i) h(rz) D r �1=2h(z).
(ii) h(z�1) D �zh(z).
(iii) h(r 1=2) D 0.
(iv) h0(1)D 0.
In particular, in the case that r2 R, h(z) satisfies also the following:
(v) h(z) D �zh(z) (jzj D 1).
(vi) h(z) 2 z�1=2

p

�1R (jzj D 1).

As a corollary to Lemma 3.1, we also have the following lemma:

Lemma 3.2. The function h(z, q) satisfies the following:
(i) h(z, q) D �h(q, z).
(ii) h(rz, q) D h(z, rq) D r �1=2h(z, q).
(iii) h(z�1, q) D �zh(qz) D �q�1zh(z, q�1).
(iv) h(z�1, q�1) D �qzh(z, q).
In particular, in the case that r2 R, h(z, q) satisfies also the following:
(v) h(z, q) 2 (zq)�1=2

p

�1R (jzj D jqj D 1).

We also see thath1(z) has the following properties:
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Lemma 3.3. The function h1(z) satisfies the following:
(i) h1(rz) D r �1=2(h1(z)C h(z)).
(ii) h1(z�1) D zh1(z).
(iii) h1(�r 1=2) D (1=2)h(�r 1=2).
(iv) h1(�1)D 0.
In particular, in the case that r2 R, h1(z) satisfies also the following:
(v) h1(z) D zh1(z) (jzj D 1).
(vi) h1(z) 2 z�1=2R (jzj D 1).

As a corollary to Lemma 3.3, we also have the following lemma:

Lemma 3.4. The function h1(z, q) satisfies the following:
(i) h1(z, q) D h1(q, z).
(ii) h1(rz, q) D r �1=2(h1(z, q)C h(z, q)).
(iii) h1(z, rq) D r �1=2(h1(z, q) � h(z, q)).
(iv) h1(z�1, q) D zh1(qz) D q�1zh1(z, q�1).
(v) h1(z�1, q�1) D qzh1(z, q).
In particular, in the case that r2 R, h1(z, q) satisfies also the following:
(vi) h1(z, q) 2 (zq)�1=2R (jzj D jqj D 1).

Lemma 3.5 (resp. 3.6) gives another expansion ofh(z) (resp.h1(z)), which enables
us to get various estimates for special values of the function.

Lemma 3.5. For any z such thatjr j�1
< jzj < jr j, h(z) and h0(z) satisfy the

following:

h(z) D
1

z� 1
C h0(z) D

1

z� 1
�

1

z

C1

X

mD1

(zm
� z1�m)

1

r (2m�1)=2
� 1

.

Proof. For anyz such thatjr j�1
< jzj < jr j, we have

h0(z) D
C1

X

lD1

�

r l=2

z� r l
C

r �l=2

z� r �l

�

D �

1

z

C1

X

lD1

�

r l=2 zr�l

1� zr�l
� zrl=2 z�1r �l

1� z�1r �l

�

D �

1

z

C1

X

lD1

r l=2
C1

X

mD1

zm
� z1�m

(r l )m
D �

1

z

C1

X

mD1

(zm
� z1�m)

C1

X

lD1

(r (1�2m)=2)l

D �

1

z

C1

X

mD1

(zm
� z1�m)

1

r (2m�1)=2
� 1

.
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Lemma 3.6. For any z such thatjr j�1
< jzj < jr j, h1(z) satisfies the following:

h1(z) D �

1

z

C1

X

mD1

(zm
C z1�m)

r (2m�1)=2

(r (2m�1)=2
� 1)2

.

Proof. For anyz such thatjr j�1
< jzj < jr j, we have

h1(z) D
C1

X

lD1

�

lr l=2

z� r l
C

(�l )r �l=2

z� r �l

�

D �

1

z

C1

X

lD1

�

lr l=2 zr�l

1� zr�l
C zlr l=2 z�1r �l

1� z�1r �l

�

D �

1

z

C1

X

lD1

lr l=2
C1

X

mD1

zm
C z1�m

(r l )m
D �

1

z

C1

X

mD1

(zm
C z1�m)

C1

X

lD1

l (r (1�2m)=2)l

D �

1

z

C1

X

mD1

(zm
C z1�m)

r (2m�1)=2

(r (2m�1)=2
� 1)2

.

4. Weierstrass data ofn-noids

Let T2
WD C=(Z!1 C Z!2). We choose a fundamental period (!1, !2) so that

Im(!2=!1) > 0. Let u1, : : : ,un be distinct points onT2, and setM WD T2
n{u1, : : : ,un}.

Let X W M ! R3 be ann-noid of genus one, and (g, �) its Weierstrass data.
AssumeG(u j )¤ v(1)D t (0,0,1), i.e.p j D g(u j )¤1, for any j D 1,:::,n. Since

X is well-defined onM, � must have a pole of order 2 at each endu j ( j D 1, : : : , n).
Then the sum of orders of poles of� is 2n, and the sum of orders of zeroes of� is
also 2n. On the other hand, sinceX has no branch point,� and g2

� have no common
zero on M. Hence the zeroes of� must coincide with the poles ofg, and the order
of � at any zero is the double of the order ofg at the same point as a pole. Now, we
see that the degree ofg must be equal to 2n=2D n, and that there exists1, : : : , sn, a
complete system of representatives of the poles ofg, and t1, : : : , tn, that of the zeroes
of g, which satisfys1 C � � � C sn D t1 C � � � C tn, and

g(u) D C1
� (u � t1) � � � � (u � tn)

� (u � s1) � � � � (u � sn)

for some nonzero constantC1. (Some of them may coincide with each other.)
Since all the polesu1, : : : , un of � and all the zeroess1, : : : , sn of � must be of

order 2, they satisfy 2(u1C � � � C un) � 2(s1C � � � C sn) mod (!1, !2), and hence there
exists an! D m1!1 Cm2!2 2 Z!1 C Z!2 satisfying

(4.1) 2(u1 C � � � C un)C ! D 2(s1 C � � � C sn).

Since we may choosesn C [m1=2]!1 C [m2=2]!2 as sn, we may assume

(4.2) ! 2 {0,!1, !2, !1 C !2}
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without loss of generality, where [mi =2] denotes the largest integer that does not exceed
mi =2. Here we also choosetn C [m1=2]!1 C [m2=2]!2 as tn.

Proposition 4.1. In the case that! D 0, the Weierstrass data(g, �) of an n-noid
X is given by

(4.3) g(u) D
P(u)

Q(u)
, � D �Q(u)2 du,

with

(4.4) P(u) D
n
X

jD1

c j � (u � u j )C c0, Q(u) D
n
X

jD1

b j � (u � u j )C b0,

where b1, : : : , bn, b0, c1, : : : , cn, c0 are complex numbers satisfying bj ¤ 0, c j D p j b j

( j D 1, : : : , n), and
Pn

jD1 b j D
Pn

jD1 c j D 0.

Proof. In the case that! D 0, we get

� D �

�

C2
� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)

�2

du

for some nonzero constantC2. Set

P(u) WD C1C2
� (u � t1) � � � � (u � tn)

� (u � u1) � � � � (u � un)
, Q(u) WD C2

� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)
.

Then both P(u) and Q(u) are meromorphic functions onT2, and the data (g, �) is
given by (4.3). SinceP(u) and Q(u) are elliptic functions of period (!1, !2) and
limu!u j (P(u)=Q(u)) D p j ( j D 1, : : : , n), they are described as (4.4).

Now, let us consider the case that! ¤ 0. In the case that! D !1 (resp.!1C!2),
if we replace (!1, !2) by (�!2, !1) (resp. (!1, !1 C !2)), then! is replaced by!2.
Hence, when! ¤ 0, we may assume! D !2 without loss of generality.

In this case, we have

� D �C3
2 � (u � s1)2

� � � � (u � sn)2

� (u � u1)2
� � � � (u � un�1)2

� � (u � un)� (u � un � !2)
du

for some nonzero constantC3. Since

� (u � un)

� (u � un � !2)
D � exp

�

�2

�

u � un �
!2

2

��

,
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where�2 D � (uC !2) � � (u), we get

� D �

�

C3
� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)
�

p

�1 exp

�

�2

2

�

u � un �
!2

2

���2

du.

Let z(u), r , r 1=2, h(z) be as in the previous section. Then we get

� D �

�

C3
� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)

�

p

�1 exp

�

�2

2

�

u � un �
!2

2

�

�

�

p

�1

!1
u

�

�

r

!1

2�
p

�1

�2

dz

D �

�

C4
� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)
� eC5u

�2

dz,

where we set

C4 WD C3

p

�1
r

!1

2�
p

�1
exp

�

�

1

2
�2

�

un C
!2

2

��

, C5 WD
�2

2
�

�

p

�1

!1
.

Set

QP(u) WD C1C4
� (u � t1) � � � � (u � tn)

� (u � u1) � � � � (u � un)
eC5u, QQ(u) WD C4

� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un)
eC5u.

Then both QP(u) and QQ(u) are meromorphic functions onC, and the Weierstrass data
(g, �) of X is given by

g(u) D
QP(u)
QQ(u)

, � D �

QQ(u)2 dz.

Set q j WD z(u j ),

b j WD
2�
p

�1

!1
q j � lim

u!u j

{ QQ(u)(u � u j )},

c j WD
2�
p

�1

!1
q j � lim

u!u j

{ QP(u)(u � u j )}

( j D 1, : : : , n� 1), and

P(z) WD
n
X

jD1

c j h(z, q j ), Q(z) WD
n
X

jD1

b j h(z, q j ).

Now, let us show that we can choosebn and cn such that P(z(u)) D QP(u) and
Q(z(u)) D QQ(u).
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Set

QQ1(u) WD QQ(u)e�C5u � (u � un)

� (u � un � !2=2)
,

Q1(u) WD Q(z(u))e�C5u � (u � un)

� (u � un � !2=2)
.

Since

QQ1(u) D C4
� (u � s1) � � � � (u � sn)

� (u � u1) � � � � (u � un�1)� (u � un � !2=2)

and s1 C � � � C sn D u1 C � � � C un�1 C un C (!2=2), QQ1(u) is an elliptic function of
period (!1, !2). On the other hand, by (3.2) and (3.4),

Q1(u) D
n
X

jD1

b j

q j
h(z(u � u j ))e

�C5u � (u � un)

� (u � un � !2=2)

D

n
X

jD1

b j

q j

!1

2�
p

�1

(�1)

� (!2=2)

� (u � u j � !2=2)

� (u � u j )

� (u � un)

� (u � un � !2=2)
,

and henceQ1(u) is also an elliptic function of period (!1, !2).
If un C !2=2 ¥ u j mod (!1, !2) ( j D 1, : : : , n � 1), then both QQ1(u) and Q1(u)

have only poles of order 1 atu1, : : : , un�1, un C !2=2. For any j D 1, : : : , n� 1,

lim
u!u j

(u � u j )Q1(u)

D lim
u!u j

(u � u j )b j h(z(u), q j )
� (u � un)

� (u � un � !2=2)
e�C5u

D b j lim
u!u j

(u � u j )
1

exp{(2�
p

�1=!1)u} � exp{(2�
p

�1=!1)u j }

� (u � un)

� (u � un � !2=2)
e�C5u

D

2�
p

�1

!1
q j lim

u!u j

{ QQ(u)(u � u j )} � lim
u!u j

1

(2�
p

�1=!1)q j

� (u � un)

� (u � un � !2=2)
e�C5u

D lim
u!u j

QQ(u)(u � u j )
� (u � un)

� (u � un � !2=2)
e�C5u

D lim
u!u j

(u � u j ) QQ1(u),

that is, the residues ofQ1(u) and QQ1(u) at u j coincide with each other. Now, by the
residue theorem, the residues atun C !2=2 also coincide with each other.

If un C !2=2� u j mod (!1, !2) for some j 2 {1, : : : , n� 1}, for instance, if such

j is n � 1, then both QQ1(u) and Q1(u) have poles of order 1 atu1, : : : , un�2, and a
pole of order 2 atun�1 � un C !2=2 mod (!1, !2). For any j D 1, : : : , n � 2, by the



M INIMAL SURFACES OFGENUS ONE 943

same reason as above, the residues atu j coincide with each other, and, by the residue
theorem, the residues atun�1 also coincide with each other. Moreover,

lim
u!un�1

(u�un�1)2Q1(u)

D lim
u!un�1

(u�un�1)2bn�1h(z(u),qn�1)
� (u�un)

� (u�un�!2=2)
e�C5u

Dbn�1 lim
u!un�1

(u�un�1)2

exp{(2�
p

�1=!1)u}�exp{(2�
p

�1=!1)un�1}

� (u�un)

� (u�un�!2=2)
e�C5u

D

2�
p

�1

!1
qn�1 lim

u!un�1

{ QQ(u)(u�un�1)} � lim
u!un�1

u�un�1

(2�
p

�1=!1)qn�1

� (u�un)

� (u�un�!2=2)
e�C5u

D lim
u!un�1

QQ(u)(u�un�1)2 � (u�un)

� (u�un�!2=2)
e�C5u

D lim
u!un�1

(u�un�1)2
QQ1(u),

that is, the coefficients of the term of order�2 of the Laurent expansion ofQ(u) and
QQ(u) at un�1 also coincide with each other.

Hence, in both cases,Q1(u) � QQ1(u) is a holomorphic function onT2. Therefore
Q1(u) � QQ1(u) must be a constant. Now, since

h(z(u), qn)
� (u � un)

� (u � un � !2=2)
e�C5u

D

1

qn

!1

2�
p

�1

(�1)

� (!2=2)

is a nonzero constant (cf. (3.2), (3.4)), we can choosebn so that Q1(u) � QQ1(u) � 0
and henceQ(z(u)) D QQ(u).

In the same way, we can choosecn so thatP(z(u)) D QP(u). In particular, we have
c j =b j D limu!u j (P(u)=Q(u)) D p j .

If we regard X as a map defined onC�

=�, then we get the following fact:

Proposition 4.2. In the case that!D !2, the Weierstrass data(g,�) of an n-noid
X is given by

(4.5) g(z) D
P(z)

Q(z)
, � D �Q(z)2 dz,

with

(4.6) P(z) D
n
X

jD1

c j h(z, q j ), Q(z) D
n
X

jD1

b j h(z, q j ),

where b1, : : : , bn, c1, : : : , cn are complex numbers satisfying bj ¤ 0, c j D p j b j ( j D
1, : : : , n).
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P(z) and Q(z) are not well-defined onC�

=�, but g and � are well-defined.
We remark here that the assertion above is valid also whenp j D 1 for some j .

In this case, we have only to setb j D 0 andc j ¤ 0.
We mention here that Kusner and Schmitt [11] observed a similar fact in terms of

spin structures, in the case that all the ends are planar.
In this paper, we study the case that! D !2. This class involves almost all known

examples of minimal surfaces of genus one all of whose ends are embedded ends. We
will discuss the case that! D 0 in the forthcoming paper [6].

As we mentioned in §1, Umehara, Yamada and the first author [8]reduced Prob-
lem 2.3 for genus zero to a certain system of algebraic equations. In §§5–6, we reduce
Problem 2.3 in the case thatM D T2 and! D !2 to equations which are described by
using elliptic functions.

5. Local period problems and relative weights

In the case that! D !2 in (4.1) (see (4.2)), as we discussed in §4, the Weierstrass
data (g, �) of any n-noid X is given by the form (4.5) with (4.6). This data automat-
ically satisfies the condition (2.6).

Sinceh0(1)D 0, the Laurent expansion ofP(z)Q(z) at q j r l is given by

P(z)Q(z)

D

c j b j r l

(z�q j r l )2
C

1

z�q j r l

 

c j r
l=2

C1

X

mD�1Im¤l

b j
r m=2

q j r l
�q j r m

Cb j r
l=2

C1

X

mD�1Im¤l

c j
r m=2

q j r l
�q j r m

Cc j r
l=2

n
X

kD1Ik¤ j

bkh(q j r
l ,qk)Cb j r

l=2
n
X

kD1Ik¤ j

ckh(q j r
l ,qk)

!

CO(1)

D

c j b j r l

(z�q j r l )2
C

1

z�q j r l

 

2c j b j

q j

C1

X

mD�1Im¤l

r (lCm)=2

r l
�r m

C

n
X

kD1Ik¤ j

(c j bkCb j ck)r l=2h(q j r
l ,qk)

!

CO(1)

D

c j b j r l

(z�q j r l )2
C

1

z�q j r l

 

2c j b j

q j
h0(1)C

n
X

kD1Ik¤ j

(c j bkCb j ck)h(q j ,qk)

!

CO(1)

D

c j b j r l

(z�q j r l )2
C

1

z�q j r l

n
X

kD1Ik¤ j

(c j bkCb j ck)h(q j ,qk)CO(1),
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In the same way, we also have

Q(z)2
D

b j
2r l

(z� q j r l )2
C

1

z� q j r l

n
X

kD1I k¤ j

2b j bkh(q j , qk)C O(1),

P(z)2
D

c j
2r l

(z� q j r l )2
C

1

z� q j r l

n
X

kD1I k¤ j

2c j ckh(q j , qk)C O(1).

Now, for each endq j ( j D 1, : : : , n), denote the correspondingR0, R1, R2, w, w� as
in (2.3) and (2.7) byR0 j , R1 j , R2 j , w j , w�

j respectively. Then we have

Lemma 5.1. The integrals R0 j , R1 j and R2 j are given by the following equalities:

R0 j D � ReszDq j Q(z)2 dzD �

n
X

kD1I k¤ j

2b j bkh(q j , qk),

R1 j D � ReszDq j P(z)Q(z) dz

D �

n
X

kD1I k¤ j

(c j bk C b j ck)h(q j , qk) D �

n
X

kD1I k¤ j

(p j C pk)b j bkh(q j , qk),

R2 j D � ReszDq j P(z)2 dz

D �

n
X

kD1I k¤ j

2c j ckh(q j , qk) D �

n
X

kD1I k¤ j

2p j pkb j bkh(q j , qk).

Henceforth, we use the notation “�” to describe equalities given by definitions
directly or formulas already given. By Corollary 2.2 and Lemma 5.1, any solution to
Problem 2.3 must satisfy the following equation for the local period problem:

(5.1)

8

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

:

w j � �p j R0 j C R1 j �

n
X

kD1I k¤ j

b j bk(p j � pk)h(q j , qk) D a j ,

w

�

j � �

1

2
(jp j j

2
�1)R0 j C p j R1 j

� �

n
X

kD1I k¤ j

b j bk(p j pkC1)h(q j , qk) D 0 ( j D 1, : : : , n).

For any data (g, �) as in (4.5) with (4.6), set

w jk WD b j bk(p j � pk)h(q j , qk), w

�

jk WD �b j bk(p j pk C 1)h(q j , qk)

( j , k D 1, : : : , n; j ¤ k).

When (g, �) realizes ann-noid X, we call w jk the relative weight of the end-pair
(q j ,qk) ( j ,k D 1,: : : ,n; j ¤ k) of X. As in the case of genus zero [7, Proposition 2.3],
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the values ofw jk are independent of the parametrizations. More precisely,

Proposition 5.2. The relative weightsw jk are invariant under the conformal trans-

formations ofC�

=� and the orientation preserving congruent transformationsof R3.

Proof. (1) If we chooseQq j D q j r l (resp. Qqk D qkr m) in spite of q j (resp.qk),

then the corresponding coefficientb j (resp.bk) is replaced byQb j D b j r l=2 (resp. Qbk D

bkr m=2), and hence it holds thatQb j Qbkh( Qq j , Qqk) D b j bkh(q j , qk).
(2) Consider a coordinate transformationQz WD �z for some� 2 C n {0}. Then

eachq j and b j are replaced byQq j D �q j and Qb j D
p

�b j respectively. Hence it holds

that Qb j Qbkh( Qq j , Qqk) D b j bkh(q j , qk).
(3) If we choose another fundamental period (Q!1, Q!2) such that Q!2 D c!1 C d!2

for some even numberc, and defineQz WD e2�
p

�1u= Q!1 and Qh(Qz) by using Qr D e�2�
p

�1 Q!2= Q!1,
then, since

Q!1

Qz
d QzD 2�

p

�1 duD
!1

z
dz

and
 

n
X

jD1

Qb j Qh(Qz, Qq j )

!2

d QzD �� D

 

n
X

jD1

b j h(z, q j )

!2

dz,

we have

 

n
X

jD1

Qb j Qh(Qz, Qq j )

!2
Qz

Q!1
D

��

2�
p

�1 du
D

 

n
X

jD1

b j h(z, q j )

!2
z

!1
,

and hence

�

Qb j
Q!1

2�
p

�1

1

Qq j

�2
Qz

Q!1
D lim

u!u j

�(u � u j )2
�

2�
p

�1 du
D

�

b j
!1

2�
p

�1

1

q j

�2 z

!1
.

Therefore we get

Qb j D

s

!1

Q!1
�

Qq j

q j
b j ,

where we set
p

q j WD e�
p

�1u j =!1 and
p

Qq j WD e�
p

�1u j = Q!1. On the other hand, since

1

Q!1

p

Qz(u) Qh(Qz(u)) D
1

2�
p

�1

s

}(u) � }

�

Q!2

2

�

D

1

2�
p

�1

s

}(u) � }

�

!2

2

�

D

1

!1

p

z(u)h(z(u))
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holds as an equality with respect tou (see (3.3)), we also have

1

Q!1

p

Qq j

p

Qz Qh(Qz, Qq j ) D
1

!1

p

q j
p

zh(z, q j ),

and hence
1

Q!1

p

Qq j

p

Qqk Qh( Qqk, Qq j ) D
1

!1

p

q j
p

qk h(qk, q j ).

Therefore we getQb j Qbkh( Qq j , Qqk) D b j bkh(q j , qk).
(4) Consider an orthogonal transformationP of R3 such that

F(� ) D 5 Æ PjS2
Æ5

�1(� ) D
�� C �


 � C Æ

.

Then eachp j and b j are replaced byQp j D F(p j ) and Qb j D b j =
p

F 0(p j ) respectively.

Hence it holds thatQb j Qbk( Qp j � Qpk) D b j bk(p j � pk).

We can rewrite the equation (5.1) by using the relative weights:

(5.2)

8

�

�

�

�

�

<

�

�

�

�

�

:

n
X

kD1Ik¤ j

w jk D a j ,

n
X

kD1Ik¤ j

w

�

jk

 

D

n
X

kD1Ik¤ j

w jk
p j pk C 1

pk � p j

!

D 0

( j D 1, : : : , n).

It is remarkable that this equation is quite the same as in thecase of genus zero.

6. Global period problems

In this section, we calculate the global period around the generators of the first
homology group ofT2. First, by a direct computation, we have

P(z)Q(z) D
n
X

jD1

c j h(z, q j )
n
X

kD1

bkh(z, qk)

D

n
X

jD1

C1

X

lD�1

c j r l=2

z� q j r l

n
X

kD1

C1

X

mD�1

bkr m=2

z� qkr m

D

n
X

jD1

n
X

kD1

C1

X

lD�1

C1

X

mD�1

c j r l=2

z� q j r l

bkr m=2

z� qkr m

D

n
X

jD1

C1

X

lD�1

c j b j

�

r l=2

z� q j r l

�2

C

n
X

jD1

C1

X

lD�1

C1

X

mD�1Im¤l

c j r l=2

z� q j r l

b j r m=2

z� q j r m

C

n
X

jD1

n
X

kD1I k¤ j

C1

X

lD�1

C1

X

mD�1

c j r l=2

z� q j r l

bkr m=2

z� qkr m
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D

n
X

jD1

C1

X

lD�1

c j b j r l

(z� q j r l )2

C

n
X

jD1

C1

X

lD�1

C1

X

mD�1Im¤l

c j b j r (lCm)=2

q j (r l
� r m)

�

1

z� q j r l
�

1

z� q j r m

�

C

n
X

jD1

n
X

kD1I k¤ j

C1

X

lD�1

C1

X

mD�1

c j bkr (lCm)=2

q j r l
� qkr m

�

1

z� q j r l
�

1

z� qkr m

�

.

In the same way, we also have

Q(z)2
D

n
X

jD1

C1

X

lD�1

b j
2r l

(z� q j r l )2

C

n
X

jD1

C1

X

lD�1

C1

X

mD�1Im¤l

b j
2r (lCm)=2

q j (r l
� r m)

�

1

z� q j r l
�

1

z� q j r m

�

C

n
X

jD1

n
X

kD1I k¤ j

C1

X

lD�1

C1

X

mD�1

b j bkr (lCm)=2

q j r l
� qkr m

�

1

z� q j r l
�

1

z� qkr m

�

,

P(z)2
D

n
X

jD1

C1

X

lD�1

c j
2r l

(z� q j r l )2

C

n
X

jD1

C1

X

lD�1

C1

X

mD�1Im¤l

c j
2r (lCm)=2

q j (r l
� r m)

�

1

z� q j r l
�

1

z� q j r m

�

C

n
X

jD1

n
X

kD1I k¤ j

C1

X

lD�1

C1

X

mD�1

c j ckr (lCm)=2

q j r l
� qkr m

�

1

z� q j r l
�

1

z� qkr m

�

.

We now assume 1� jq j j< jr j ( j D 1,: : : ,n). Let R be a positive number such that
R< 1 andq j r �1

� {z j R� jzj < 1} holds for any j D 1, : : : , n. Choose an argument
of r (see (3.1)) so that 0� argr < 2� , independent of the choice of a fundamental
period (!1, !2) in §4, and choose a unit complex numberz0 such thatq j r �t

¤ z0 for
0� t < 1 and j D 1, : : : , n. We consider the following two loops onM D C�

=�:


1 W z(t) D Re
p

�1t (0� t � 2�),


2 W z(t) D z0r
t
D z0jr j

te
p

�1t argr (0� t � 1).

In particular, in the case thatr is a positive real number,
2 is defined byz(t) D z0jr jt

independent of the choice of the signature ofr 1=2. The loops
1 and 
2 generate the
first homology group ofM .

To describe the integrals ofQ(z)2, P(z)2 and P(z)Q(z) on 
1 and 
2, we use
h(z, q) and h1(z, q).
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Lemma 6.1. The integrals R0(
1), R1(
1) and R2(
1) as in (2.3) are given by the
following equalities:

(6.1)

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

R0(
1) D
1

2�
p

�1

Z


1

(�Q(z)2) dzD �

n
X

jD1

n
X

kD1

b j bkh1(q j , qk),

R1(
1) D
1

2�
p

�1

Z


1

(�P(z)Q(z)) dzD �

n
X

jD1

n
X

kD1

1

2
(c j bk C b j ck)h1(q j , qk)

D �

n
X

jD1

n
X

kD1

b j ckh1(q j , qk),

R2(
1) D
1

2�
p

�1

Z


1

(�P(z)2) dzD �

n
X

jD1

n
X

kD1

c j ckh1(q j , qk).

Proof. We prove our assertion forR1(
1). Since

Z


1

c j b j r l

(z� q j r l )2
dzD 0

and

Z


1

�

1

z� q j r l
�

1

z� qkr m

�

dzD

8

�

�

<

�

�

:

2�
p

�1 (l < 0, m� 0),
0 (l < 0, m< 0),
0 (l � 0, m� 0),
�2�

p

�1 (l � 0, m< 0),

we have

1

2�
p

�1

Z


1

P(z)Q(z) dz

D

n
X

jD1

(

�1
X

lD�1

C1

X

mD0

c j b j r (m�l )=2

q j (1� r m�l )
�

C1

X

lD0

�1
X

mD�1

c j b j r (m�l )=2

q j (1� r m�l )

)

C

n
X

jD1

n
X

kD1I k¤ j

(

�1
X

lD�1

C1

X

mD0

c j bkr (m�l )=2

q j � qkr m�l
�

C1

X

lD0

�1
X

mD�1

c j bkr (m�l )=2

q j � qkr m�l

)

D

n
X

jD1

c j b j h1(q j , q j )C
n
X

jD1

n
X

kD1I k¤ j

c j bkh1(q j , qk)

D

n
X

jD1

n
X

kD1

c j bkh1(q j , qk) D
n
X

jD1

n
X

kD1

1

2
(c j bk C b j ck)h1(q j , qk).

If we consider the case thatb j D c j , then we get our assertions also forR0(
1)
and R2(
2).



950 S. KATO AND H. MUROYA

Lemma 6.2. The integrals R0(
2), R1(
2) and R2(
2) as in (2.3) are given by the
following equalities:

(6.2)

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

R0(
2) D
1

2�
p

�1

Z


2

(�Q(z)2) dz

D

�1

2�
p

�1

(

�

n
X

jD1

b j
2

q j
� log r � R0(
1)C

n
X

jD1

log q j � R0 j

)

,

R1(
2) D
1

2�
p

�1

Z


2

(�P(z)Q(z)) dz

D

�1

2�
p

�1

(

�

n
X

jD1

c j b j

q j
� log r � R1(
1)C

n
X

jD1

log q j � R1 j

)

,

R2(
2) D
1

2�
p

�1

Z


2

(�P(z)2) dz

D

�1

2�
p

�1

(

�

n
X

jD1

c j
2

q j
� log r � R2(
1)C

n
X

jD1

log q j � R2 j

)

.

Proof. We prove our assertion forR1(
2). Since
Z


2

c j b j r l

(z� q j r l )2
dzD

Z 1

0

c j b j r l

(z(t) � q j r l )2
z0(t) dt D

�

�

c j b j r l

z(t) � q j r l

�1

tD0

D �

c j b j r l

z0r � q j r l
C

c j b j r l

z0 � q j r l
D �

c j b j r l�1

z0 � q j r l�1
C

c j b j r l

z0 � q j r l
,

we have
C1

X

lD�1

Z


2

c j b j r l

(z� q j r l )2
dzD

C1

X

lD�1

�

�

c j b j r l�1

z0 � q j r l�1
C

c j b j r l

z0 � q j r l

�

D lim
N
C

!C1,N
�

!�1

N
C

X

lDN
�

�

�

c j b j r l�1

z0 � q j r l�1
C

c j b j r l

z0 � q j r l

�

D lim
N
C

!C1,N
�

!�1

�

�

c j b j r N
�

�1

z0 � q j r N
�

�1
C

c j b j r N
C

z0 � q j r N
C

�

D �

c j b j � 0

z0 � q j � 0
C

c j b j

z0 � 0� q j
D �

c j b j

q j
.

We also have
C1

X

lD�1

C1

X

mD�1Im¤l

c j b j r (lCm)=2

q j (r l
� r m)

Z


2

�

1

z� q j r l
�

1

z� q j r m

�

dz

D c j b j

C1

X

lD�1

C1

X

mD�1Im¤l

r (m�l )=2

q j (1� r m�l )

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � q j r m

�

z0(t) dt
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D c j b j

C1

X

lD�1

C1

X

mD�1Im¤0

r m=2

q j (1� r m)

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � q j r lCm

�

z0(t) dt

D c j b j

C1

X

mD�1Im¤0

r m=2

q j (1� r m)

C1

X

lD�1

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � q j r lCm

�

z0(t) dt,

and

C1

X

lD�1

C1

X

mD�1

c j bkr (lCm)=2

q j r l
� qkr m

Z


2

�

1

z� q j r l
�

1

z� qkr m

�

dz

D c j bk

C1

X

lD�1

C1

X

mD�1

r (m�l )=2

q j � qkr m�l

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � qkr m

�

z0(t) dt

D c j bk

C1

X

lD�1

C1

X

mD�1

r m=2

q j � qkr m

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � qkr lCm

�

z0(t) dt

D c j bk

C1

X

mD�1

r m=2

q j � qkr m

C1

X

lD�1

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � qkr lCm

�

z0(t) dt,

since both of these series are absolutely convergent series. In particular, if we set

z(t) WD z0r t
D z0jr jte

p

�1t argr for t 2 R, then it holds that

C1

X

lD�1

Z 1

0

�

1

z(t) � q j r l
�

1

z(t) � qkr lCm

�

z0(t) dt

D

C1

X

lD�1

Z 1

0

�

1

z(t)r �l
� q j

�

1

z(t)r �l
� qkr m

�

r �l z0(t) dt

D

C1

X

lD�1

Z 1

0

�

1

z(t � l ) � q j
�

1

z(t � l ) � qkr m

�

z0(t � l ) dt

D

C1

X

lD�1

Z

�lC1

�l

�

1

z(s) � q j
�

1

z(s) � qkr m

�

z0(s) ds

D lim
N
C

!C1,N
�

!�1

N
C

X

lDN
�

Z

�lC1

�l

�

1

z(s) � q j
�

1

z(s) � qkr m

�

z0(s) ds

D lim
N
C

!C1,N
�

!�1

Z N
C

N
�

�

1

z(s) � q j
�

1

z(s) � qkr m

�

z0(s) ds.

To compute this integral, let us define log(z � q j r l ) on a simply connected domain
C n {q j r t

j t � l }.
In the case that 0< argr < 2� , for any j D 1, : : : , n, set t j WD log

jr jjq j j, and
choose argq j so that 0< argq j � argz0r t j

< 2� , that is argz0 C t j argr < argq j <
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Fig. 6.1.

argz0C t j argr C 2� . For anyl 2 Z, it is natural to choose argq j r l
D argq j C l argr .

Define arg(z�q j r l ) on C n {q j r t
j t � l } so that arg(z0r

t 0jCl
�q j r l ) D argq j r l holds for

t 0j D (argq j � argz0)=argr . Then we have

argq j r
l
� 2� < arg(z0r

t
� q j r

l ) < argq j r
l (�1 < t < t 0j C l ),

arg(0� q j r
l ) D argq j r

l
� � ,

argq j r
l
C (N � 1)� � arg(z0r

t
� q j r

l ) < argq j r
l
C N�

(t 0j C l C (N � 1)�=argr � t < t 0j C l C N�=argr , N 2 N).

Now, log(z� q j r l ) WD logjz� q j r l
j C

p

�1 arg(z� q j r l ) is well-defined onC n {q j r t
j

t � l } (see Fig. 6.1).
In the case that argr D 0, for any j D 1, : : : , n, choose argq j so that 0< argq j �

argz0 < 2� , that is argz0 < argq j < argz0 C 2� . For any l 2 Z, define arg(z� q j r l )
on C n {q j r t

j t � l } so that arg(0� q j r l ) D argq j r l
� � D argq j � � . Then we have

argq j � 2� D argq j r l
� 2� < arg(z� q j r l ) < argq j r l

D argq j . Now, log(z� q j r l ) WD

logjz� q j r l
j C

p

�1 arg(z� q j r l ) is well-defined onC n {q j r t
j t � l }.

By using log(z� q j r l ) defined above, we see that

lim
N
C

!C1,N
�

!�1

Z N
C

N
�

�

1

z(s) � q j
�

1

z(s) � qkr m

�

z0(s) ds

D lim
N
C

!C1,N
�

!�1

[log(z(s) � q j ) � log(z(s) � qkr
m)]N

C

sDN
�

D lim
N
C

!C1

{log(z(N
C

) � q j ) � log(z(N
C

) � qkr
m)}

� lim
N
�

!�1

{log(z(N
�

) � q j ) � log(z(N
�

) � qkr
m)}.
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The first term satisfies

lim
N
C

!C1

{log(z(N
C

) � q j ) � log(z(N
C

) � qkr
m)}

D lim
N
C

!C1

[{logjz(N
C

) � q j j C
p

�1 arg(z(N
C

) � q j )}

� {logjz(N
C

) � qkr
m
j C

p

�1 arg(z(N
C

) � qkr
m)}]

D lim
N
C

!C1

log

�

�

�

�

z(N
C

) � q j

z(N
C

) � qkr m

�

�

�

�

C

p

�1 lim
N
C

!C1

{arg(z(N
C

) � q j ) � arg(z(N
C

) � qkr
m)}

D lim
N
C

!C1

log

�

�

�

�

1� q j =z(N
C

)

1� qkr m
=z(N

C

)

�

�

�

�

C

p

�1

�

lim
N
C

!C1

{arg(z(N
C

) � q j ) � argz(N
C

)}

� lim
N
C

!C1

{arg(z(N
C

) � qkr
m) � argz(N

C

)}

�

.

Since

cosjarg(z(t) � q j r
l ) � argz(t)j D

jz(t)j2C jz(t) � q j r l
j

2
� jq j r l

j

2

2jz(t)j � jz(t) � q j r l
j

D

1C j1� q j r l
=z(t)j2 � jq j r l

=z(t)j2

2 � 1 � j1� q j r l
=z(t)j

!

1C j1� 0j2 � j0j2

2 � 1 � j1� 0j
D 1 (t !C1),

it holds that

lim
t!C1

jarg(z(t) � q j r
l ) � argz(t)j D 0

for any j D 1, : : : , n and anyl 2 Z. Hence we have

lim
N
C

!C1

{log(z(N
C

) � q j ) � log(z(N
C

) � qkr
m)} D 0.

On the other hand, we have

lim
N
�

!�1

{log(z(N
�

) � q j ) � log(z(N
�

) � qkr
m)}

D log(0� q j ) � log(0� qkr
m)

D {logj�q j j C
p

�1 arg(�q j )} � {logj�qkr
m
j C

p

�1 arg(�qkr
m)}

D logjq j j C
p

�1(argq j � �) � logjqkr
m
j �

p

�1(argqkr
m
� �)

D log
q j

qk
�m log r .
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Hence we get
Z


2

P(z)Q(z) dz

D

n
X

jD1

�

�

c j b j

q j

�

C

n
X

jD1

c j b j

C1

X

mD�1Im¤0

r m=2

q j (1� r m)

�

m log r � log
q j

q j

�

C

n
X

jD1

n
X

kD1I k¤ j

c j bk

C1

X

mD�1

r m=2

q j � qkr m

�

m log r � log
q j

qk

�

D �

n
X

jD1

c j b j

q j
C log r

(

n
X

jD1

c j b j h1(q j , q j )C
n
X

jD1

n
X

kD1I k¤ j

c j bkh1(q j , qk)

)

�

n
X

jD1

n
X

kD1I k¤ j

c j bkh(q j , qk) log
q j

qk

D �

n
X

jD1

c j b j

q j
C log r

n
X

jD1

n
X

kD1

c j bkh1(q j , qk)

�

(

n
X

jD1

log q j

n
X

kD1I k¤ j

c j bkh(q j , qk)C
n
X

kD1

log qk

n
X

jD1I j¤k

c j bkh(qk, q j )

)

D �

n
X

jD1

c j b j

q j
C log r

n
X

jD1

n
X

kD1

1

2
(c j bk C b j ck)h1(q j , qk)

�

n
X

jD1

log q j

n
X

kD1I k¤ j

(c j bk C b j ck)h(q j , qk)

D �

n
X

jD1

c j b j

q j
� log r � R1(
1)C

n
X

jD1

log q j � R1 j .

If we consider the case thatb j D c j , then we get our assertions also forR0(
2)
and R2(
2).

The Weierstrass data (g, �) of an n-noid of the form (4.5) with (4.6) must satisfy
both the condition (5.1) and the condition (2.5) with (6.1) and (6.2). In the case that
M D T2 and! D !2, Problem 2.3 is reduced to a problem of findingq j , b j , c j ( j D
1, : : : , n) and r satisfying these conditions.
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Theorem 6.3. There exists an n-noid XW M D T2
n{q1, : : : ,qn} ! R3 of type! D

!2 satisfying(2.14) if and only if there exist qj , b j , c j D p j b j ( j D 1,: : : ,n) satisfying
(6.3)
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

w j �b j

n
X

kD1Ik¤ j

(p j� pk)bkh(q j ,qk)Da j

w

�

j ��b j

n
X

kD1Ik¤ j

(p j pkC1)bkh(q j ,qk)D0

9

>

>

>

>

>

=

>

>

>

>

>

;

( j D1,:::,n),

R0(
1)CR2(
1)��
n
X

jD1

n
X

kD1

(b j bkh1(q j ,qk)Cc j ckh1(q j ,qk))D0,

R1(
1)��
n
X

jD1

n
X

kD1

1

2
(c j bkCb j ck)h1(q j ,qk)2R,

R0(
2)CR2(
2)

�

�1

2�
p

�1

(

�

n
X

jD1

b j
2

q j
Clogr �

n
X

jD1

n
X

kD1

b j bkh1(q j ,qk)�
n
X

jD1

logq j �

n
X

kD1Ik¤ j

2b j bkh(q j ,qk)

C

n
X

jD1

c j
2

q j
�logr �

n
X

jD1

n
X

kD1

c j ckh1(q j ,qk)C
n
X

jD1

logq j �

n
X

kD1Ik¤ j

2c j ckh(q j ,qk)

)

D0,

R1(
2)�
�1

2�
p

�1

(

�

n
X

jD1

c j b j

q j
Clogr �

n
X

jD1

n
X

kD1

1

2
(c j bkCb j ck)h1(q j ,qk)

�

n
X

jD1

logq j �

n
X

kD1Ik¤ j

(c j bkCb j ck)h(q j ,qk)

)

2R,

and the degree of g given by(4.5) is n.

7. n-noids symmetric with respect to thex1x2-plane

We can show the following facts about symmetry of minimal surfaces, in the same
way as the condition for a minimal surface to be a double coverof a nonorientable
minimal surface (cf. [13]).

Proposition 7.1. Let X be a conformal minimal immersion intoR3, defined on
a Riemann surface M with the Weierstrass data(g, �). Then X is symmetric with re-
spect to the x1x2-plane (up to parallel transformations) if and only if (g, �) satisfies
the condition

(7.1) g Æ I D
1

g
, I �� D �g2

�

for some antiholomorphic involution IW M ! M, that is, I 2(z) D z and Iz D 0.
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In the case ofn-noids symmetric with respect to thex1x2-plane, the equation for
the global period problem in the previous section can be rewritten to a simpler form.

Assume thatM D T2
D C=(Z!1 C Z!2) satisfies!1 2 R

C

and!2 2
p

�1R
C

or
!2�!1 2

p

�1R
C

. If !2 2
p

�1R
C

, thenr > 1 andr 1=2
> 0. If !2�!1 2

p

�1R
C

, then
r > 1 andr 1=2

< 0. In both cases, it holds thath(z, q)D h(z,q), andh1(z, q)D h1(z,q).
Let X be an n-noid of genus one whose Weierstrass data (g, �) is of the form

(4.5) with (4.6). The data (g, �) satisfies the condition (7.1) withI (z) D z if and only
if Q Æ I (z) D �

p

�1P(z), that is

n
X

jD1

b j h(z, q j ) D �

p

�1
n
X

jD1

c j h(z, q j ).

To realize such ann-noid, we may assume thatr > 1 andq j , p j , b j , c j ( j D 1, : : : , n)
satisfy

(7.2)

8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

1� jq j j < r ( j D 1, : : : , n),
q j 2 R

C

, jp j j D 1 ( j D 1, : : : , N1),
q j 2 R

�

, jp j j D 1 ( j D N1 C 1, : : : , N1 C N2),
q j � R, q j D q j 0 , p j p j 0 D 1 ( j D N1 C N2 C 1, : : : , n),

�b j D

(

p

�1c j ( j D 1, : : : , N1 C N2)
p

�1c j 0 ( j D N1 C N2 C 1, : : : , n),

where N1 C N2 C 2N3 D n,

j 0 D

�

j C N3 ( j D N1 C N2 C 1, : : : , N1 C N2 C N3)
j � N3 ( j D N1 C N2 C N3 C 1, : : : , n).

In this case, Problem 2.3 is reduced to the following:

Theorem 7.2. There exists an n-noid XW M D T2
n {q1, : : : , qn} ! R3 satisfying

(2.14) and (7.1) with I (z)D z if and only if there exist qj , b j , c j D p j b j ( j D 1,: : : ,n)
satisfying(7.2) and
(7.3)
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

w j �b j

n
X

kD1Ik¤ j

(p j � pk)bkh(q j ,qk)Da j

w

�

j ��b j

n
X

kD1Ik¤ j

(p j pkC1)bkh(q j ,qk)D0

9

>

>

>

>

>

=

>

>

>

>

>

;

( j D1, : : : , N1CN2CN3),

P1 WD�2R1(
1)�
n
X

jD1

n
X

kD1

(p j C pk)b j bkh1(q j ,qk)D0,

P2 WD��
p

�1(R0(
2)CR2(
2))

��

n
X

jD1

b j
2

q j
C logr

n
X

jD1

n
X

kD1

b j bkh1(q j ,qk)�2
n
X

jD1

logjq j j

n
X

kD1Ik¤ j

b j bkh(q j ,qk)D0,
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and the degree of g given by(4.5) is n.

Proof. By the assumption (7.2) and Lemmas 5.1 and 6.1, it holds that
8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

�

n
X

jD1

c j
2

q j
D

n
X

jD1

b j
2

q j
, �

n
X

jD1

c j b j

q j
D

n
X

jD1

c j b j

q j
,

R2(
1) D �R0(
1), R1(
1) D �R1(
1),

R2 j D �R0 j , R1 j D �R1 j ( j D 1, : : : , N1 C N2),

R2 j D �R0 j 0 , R1 j D �R1 j 0 ( j D N1 C N2 C 1, : : : , n),

from which, and from Lemma 6.2, it also holds that

R1(
2) � R1(
2) D
�1

2�
p

�1

n
X

jD1

(log q j � R1 j C log q j � R1 j ).

Now, if w j D a j 2 R andw�

j D 0 hold for j D 1, : : : , N1 C N2 C N3, then they also

hold for j D N1C N2C N3C 1, : : : , n, and henceR1 j D R1 j holds for j D 1, : : : , n.
Therefore we have

�

R1 j D 0 ( j D 1, : : : , N1 C N2),
R1 j C R1 j 0 D 0 ( j D N1 C N2 C 1, : : : , n).

Since logjq j j D log jq j 0 j ( j D N1 C N2 C 1, : : : , n), we get

R1(
2) � R1(
2) D
�1

2�
p

�1

n
X

jDN1CN2C1

logjq j j � (R1 j C R1 j 0) D 0.

The data (g, �) satisfies the condition (7.1) withI (z) D 1=z if and only if Q Æ

I (z) D �zP(z), that is
n
X

jD1

b j

q j
h

�

z,
1

q j

�

D �

n
X

jD1

c j h(z, q j ).

To realize such ann-noid, we may assume thatr > 1 andq j , p j , b j , c j ( j D 1, : : : , n)
satisfy
(7.4)
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

1� jq j j < r ( j D 1, : : : , n),
jq j j D 1, jp j j D 1 ( j D 1, : : : , N1),
jq j j D jr 1=2

j, jp j j D 1 ( j D N1 C 1, : : : , N1 C N2),
jq j j ¤ 1, jq j j ¤ jr 1=2

j, q j q j 0 D r , p j p j 0 D 1 ( j D N1 C N2 C 1, : : : , n),

�

b j

q j
D

�

c j ( j D 1, : : : , N1),
c j 0r

�1=2 ( j D N1 C 1, : : : , n),
where N1 C N2 C 2N3 D n,

j 0 D

8

<

:

j ( j D N1 C 1, : : : , N1 C N2),
j C N3 ( j D N1 C N2 C 1, : : : , N1 C N2 C N3),
j � N3 ( j D N1 C N2 C N3 C 1, : : : , n).



958 S. KATO AND H. MUROYA

In this case, Problem 2.3 is reduced to the following:

Theorem 7.3. There exists an n-noid XW M D T2
n {q1, : : : , qn} ! R3 satisfying

(2.14) and (7.1) with I (z) D 1=z if and only if there exist qj , b j , c j D p j b j ( j D
1, : : : , n) satisfying(7.4) and
(7.5)
8

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

:

w j � b j

n
X

kD1Ik¤ j

(p j � pk)bkh(q j , qk) D a j

w

�

j � �b j

n
X

kD1Ik¤ j

(p j pkC1)bkh(q j , qk) D 0

9

>

>

>

>

>

=

>

>

>

>

>

;

( j D 1, : : : , N1CN2CN3),

P0

1 WD �

1

2
(R0(
1)CR2(
1)) �

n
X

jD1

n
X

kD1

b j bkh1(q j , qk)C
N1
X

jD1

n
X

kDN1C1

b j bkh(q j , qk) D 0,

P0

2 WD ��

p

�1(R1(
2)�R1(
2)) (D �2�
p

�1R1(
2))

� log r

(

1

2

n
X

jD1

n
X

kD1

(p j C pk)b j bkh1(q j , qk)

C

N1CN2CN3
X

jDN1CN2C1

n
X

kD1Ik¤ j

(p j C pk)b j bkh(q j , qk)

)

�

n
X

jD1

p j b j
2

q j
�2

N1CN2CN3
X

jDN1CN2C1

logjq j j

n
X

kD1Ik¤ j

(p j C pk)b j bkh(q j , qk) D 0,

and the degree of g given by(4.5) is n.

Proof. By the assumption (7.4) and Lemmas 3.2, 3.4, 5.1 and 6.1, it holds that

8

�

�

�

�

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

�

�

�

�

:

n
X

jD1

c j
2

q j
D

n
X

jD1

b j
2

q j
,

n
X

jD1

c j b j

q j
D

n
X

jD1

c j b j

q j
,

R2(
1) D R0(
1) �
n
X

jDN1C1

R0 j , R1(
1) D R1(
1) �
n
X

jDN1C1

R1 j ,

R2 j D �R0 j , R1 j D �R1 j ( j D 1, : : : , N1 C N2),

R2 j D �R0 j 0 , R1 j D �R1 j 0 ( j D N1 C N2 C 1, : : : , n),

from which, and from Lemma 6.2, it also holds that

R0(
2)C R2(
2) D
�1

2�
p

�1

(

� log r
n
X

jDN1C1

R0 j C

n
X

jD1

(log q j � R0 j � log q j � R2 j )

)

.
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Now, if w j D a j 2 R andw�

j D 0 hold for j D 1, : : : , N1 C N2 C N3, then they also

hold for j D N1C N2C N3C 1, : : : , n, and henceR0 j C R2 j D 0 and R1 j D R1 j hold
for j D 1, : : : , n. Therefore we have

�

R1 j D 0 ( j D 1, : : : , N1 C N2),
R0 j D R0 j 0 ( j D N1 C N2 C 1, : : : , n).

Since

logjq j j D

8

<

:

0 ( j D 1, : : : , N1),
1

2
log r ( j D N1 C 1, : : : , N1 C N2),

logjq j j C log jq j 0 j D log r ( j D N1 C N2 C 1, : : : , n),

we get

R0(
2)C R2(
2) D
�1

2�
p

�1

n
X

jDN1CN2C1

logjq j j � (R0 j � R0 j 0) D 0.

On the other hand, we also get

R1(
1) � R1(
1) D
n
X

jDN1C1

R1 j D �

N1
X

jD1

R1 j D 0.

8. Examples 1

Jorge–Meeks typen-noids of genus one invariant under the action of the dihedral
group Dn (n � 3) were constructed by Berglund–Rossman [1]. In this section, we con-
struct Jorge–Meeks type 2N-noids of genus one with alternating sizes of ends, and 2N-
noid fences, by applying Theorem 7.3. In particular, we construct examples such that
the ratio of the two weights of the alternating sizes of ends is negative. Throughout

this section, we use the notation�2N WD e2�
p

�1=2N .

EXAMPLE 8.1. Let N be an integer larger than 1, and setn WD 2N. Consider
the following flux data:

8

�

<

�

:

p j WD �2N
j�1 ( j D 1, : : : , 2N),

a j WD

�

a 2 R n {0} ( j : even),
Qa 2 R ( j : odd).

To find a surface realizing these data, it is natural to assumer > 1 and set
8

�

<

�

:

q j WD p j D �2N
j�1 ( j D 1, : : : , 2N),

b j WD

�

b¤ 0 ( j : even),
Qb ( j : odd).
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For j even, by using (3.2) and Lemma 3.1 (ii), we have

w

�

j D �b2
2N
X

kD2W evenI k¤ j

(�2N
j�1
�2N

k�1
C 1)h(�2N

j�1, �2N
k�1)

� bQb
2N�1
X

kD1W odd

(�2N
j�1
�2N

k�1
C 1)h(�2N

j�1, �2N
k�1)

D ��2N
1� j

(

b2
2N
X

kD2W evenI k¤ j

(1C �2N
j�k)h(�2N

j�k)

C bQb
2N�1
X

kD1W odd

(1C �2N
j�k)h(�2N

j�k)

)

D ��2N
1� j

(

b2
2N�2
X

kD2W even

(�2N
k
C 1)h(�2N

k)C bQb
2N�1
X

kD1W odd

(�2N
k
C 1)h(�2N

k)

)

D ��2N
1� j

(

b2
2N�2
X

kD2W even

(�h(�2N
�k)C h(�2N

k))C bQb
2N�1
X

kD1W odd

(�h(�2N
�k)C h(�2N

k))

)

D 0.

In the same way, forj odd, we also havew�

j D 0. For the loop
1, we have

P0

1 D b2
2N
X

jD2W even

2N
X

kD2W even

h1(�2N
j�1, �2N

k�1)C bQb
2N
X

jD2W even

2N�1
X

kD1W odd

h1(�2N
j�1, �2N

k�1)

C

Qbb
2N�1
X

jD1W odd

2N
X

kD2W even

h1(�2N
j�1, �2N

k�1)C Qb2
2N�1
X

jD1W odd

2N�1
X

kD1W odd

h1(�2N
j�1, �2N

k�1)

D b2
2N
X

jD2W even

2N
X

kD2W even

�2N
1�kh1(�2N

j�k)C bQb
2N
X

jD2W even

2N�1
X

kD1W odd

�2N
1�kh1(�2N

j�k)

C

Qbb
2N�1
X

jD1W odd

2N
X

kD2W even

�2N
1�kh1(�2N

j�k)C Qb2
2N�1
X

jD1W odd

2N�1
X

kD1W odd

�2N
1�kh1(�2N

j�k)

D b2
2N
X

kD2W even

�2N
1�k

2N
X

jD2W even

h1(�2N
j )C bQb

2N�1
X

kD1W odd

�2N
1�k

2N
X

jD2W odd

h1(�2N
j )

C

Qbb
2N
X

kD2W even

�2N
1�k

2N�1
X

jD1W odd

h1(�2N
j )C Qb2

2N�1
X

kD1W odd

�2N
1�k

2N�1
X

jD1W even

h1(�2N
j )

D b2
� 0C bQb � 0C Qbb � 0C Qb2

� 0D 0.

Hence we have only to consider the period problem forw j and P0

2.
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For j even, by using (3.2) and Lemma 3.1 (ii) again, we have

w j D b2
2N
X

kD2W even;k ¤ j

(�2N
j�1
� �2N

k�1)h(�2N
j�1, �2N

k�1)

C bQb
2N�1
X

kD1W odd

(�2N
j�1
� �2N

k�1)h(�2N
j�1, �2N

k�1)

D b2
2N
X

kD2W even;k ¤ j

(�2N
j�k
� 1)h(�2N

j�k)C bQb
2N�1
X

kD1W odd

(�2N
j�k
� 1)h(�2N

j�k)

D b2
2N�2
X

kD2W even

(�2N
k
� 1)h(�2N

k)C bQb
2N�1
X

kD1W odd

(�2N
k
� 1)h(�2N

k)

D b2
2N�2
X

kD2W even

(�h(�2N
�k) � h(�2N

k))C bQb
2N�1
X

kD1W odd

(�h(�2N
�k) � h(�2N

k))

D �2

 

b2
2N�2
X

kD2W even

h(�2N
k)C bQb

2N�1
X

kD1W odd

h(�2N
k)

!

.

In the same way, forj odd, we also have

w j D �2

 

Qb2
2N�2
X

kD2W even

h(�2N
k)C Qbb

2N�1
X

kD1W odd

h(�2N
k)

!

.

Set � WD Qa=a, � WD Qb=b, and

(8.1) CN WD

P2N�1
kD1W odd h(�2N

k)
P2N�2

kD2W evenh(�2N
k)

.

If w j D a ( j : even), Qa ( j : odd), then it holds that

(8.2) � D

�

2
C �CN

1C �CN
.

and hence

�

2
C (1� �)CN� � � D 0.

Solving this equation, we get a solution

� D

1

2

�

�(1� �)CN C

q

(1� �)2CN
2
C 4�

�

.
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In particular, if � > 0, then we have a positive solution�. Now, we can chooseb so
that w j D a ( j : even), Qa ( j : odd).

For the loop
2, we have

P0

2 D b2

 

log r
2N
X

jD2W even

2N
X

kD2W even

�2N
k�1h1(�2N

j�1, �2N
k�1) � N

!

C bQb log r

 

2N
X

jD2W even

2N�1
X

kD1W odd

�2N
k�1h1(�2N

j�1, �2N
k�1)

C

2N�1
X

jD1W odd

2N
X

kD2W even

�2N
k�1h1(�2N

j�1, �2N
k�1)

!

C

Qb2

 

log r
2N�1
X

jD1W odd

2N�1
X

kD1W odd

�2N
k�1h1(�2N

j�1, �2N
k�1) � N

!

D b2

 

log r
2N
X

jD2W even

2N
X

kD2W even

h1(�2N
j�k) � N

!

C

Qb2

 

log r
2N�1
X

jD1W odd

2N�1
X

kD1W odd

h1(�2N
j�k) � N

!

C bQb log r

 

2N
X

jD2W even

2N�1
X

kD1W odd

h1(�2N
j�k)C

2N�1
X

jD1W odd

2N
X

kD2W even

h1(�2N
j�k)

!

D (b2
C

Qb2)

 

log r � N
2N
X

kD2W even

h1(�2N
k) � N

!

C bQb log r � 2N
2N�1
X

kD1W odd

h1(�2N
k)

D N(b2
C

Qb2)

(

log r

 

2N
X

kD2W even

h1(�2N
k)C

2bQb

b2
C

Qb2

2N�1
X

kD1W odd

h1(�2N
k)

!

� 1

)

D Nb2(1C �2)

(

log r

 

2N
X

kD2W even

h1(�2N
k)C

2�

1C �2

2N�1
X

kD1W odd

h1(�2N
k)

!

� 1

)

.

Note here that, for anym 2 Z,

2N
X

kD2W even

�2N
mk
D

�

0 if �2N
2m
¤ 1,

N if �2N
2m
D 1 i.e. mD l N for some l 2 Z,

2N�1
X

kD1W odd

�2N
mk
D

8

<

:

0 if �2N
m
¤ �1,

�N if �2N
m
D �1 i.e. mD (2l � 1)N for some l 2 Z,

N if �2N
m
D 1 i.e. mD 2l N for some l 2 Z.
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By Lemma 3.5 andh0(1)D 0, it holds that

2N�2
X

kD2W even

h(�2N
k) D

2N�2
X

kD2W even

1

�2N
k
� 1

C

2N
X

kD2W even

h0(�2N
k) � h0(1)

D

2N�2
X

kD2W even

1

�2N
k
� 1

�

2N
X

kD2W even

�2N
�k

C1

X

mD1

(�2N
km
� �2N

k(1�m))
1

r (2m�1)=2
� 1

D �

N � 1

2
�

C1

X

mD1

 

2N
X

kD2W even

�2N
(m�1)k

�

2N
X

kD2W even

�2N
�mk

!

1

r (2m�1)=2
� 1

D �

N � 1

2
� N

 

C1

X

lD0

1

r {2(l NC1)�1}=2
� 1

�

C1

X

lD1

1

r (2l N�1)=2
� 1

!

D �

N � 1

2
� N

C1

X

lD1

�

1

r {2l N�(2N�1)}=2
� 1

�

1

r (2l N�1)=2
� 1

�

D �

N � 1

2
� N

C1

X

lD1

r {2l N�(2N�1)}=2(r N�1
� 1)

(r {2l N�(2N�1)}=2
� 1)(r (2l N�1)=2

� 1)
.

By Lemmas 3.5 and 3.6, it also holds that

2N�1
X

kD1W odd

h(�2N
k) D

2N�1
X

kD1W odd

1

�2N
k
� 1

�

2N�1
X

kD1W odd

�2N
�k

C1

X

mD1

(�2N
km
� �2N

k(1�m))
1

r (2m�1)=2
� 1

D �

N

2
�

C1

X

mD1

 

2N�1
X

kD1W odd

�2N
(m�1)k

�

2N�1
X

kD1W odd

�2N
�mk

!

1

r (2m�1)=2
� 1

D �

N

2
� N

 

C1

X

lD0

1

r {2(2l NC1)�1}=2
� 1

�

C1

X

lD1

1

r [2{(2l�1)NC1}�1]=2
� 1

C

C1

X

lD1

1

r {2(2l�1)N�1}=2
� 1

�

C1

X

lD1

1

r (2�2l N�1)=2
� 1

!

D �

N

2
� N

C1

X

lD1

�

1

r {4l N�(4N�1)}=2
� 1

�

1

r {4l N�(2N�1)}=2
� 1

C

1

r {4l N�(2NC1)}=2
� 1

�

1

r (4l N�1)=2
� 1

�

D �

N

2
� N

C1

X

lD1

�

r {4l N�(4N�1)}=2(r N
� 1)

(r {4l N�(4N�1)}=2
� 1)(r {4l N�(2N�1)}=2

� 1)

C

r {4l N�(2NC1)}=2(r N
� 1)

(r {4l N�(2NC1)}=2
� 1)(r (4l N�1)=2

� 1)

�

,
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2N
X

kD2W even

h1(�2N
k) D �

2N
X

kD2W even

�2N
�k

C1

X

mD1

(�2N
km
C �2N

k(1�m))
r (2m�1)=2

(r (2m�1)=2
� 1)2

D �

C1

X

mD1

 

2N
X

kD2W even

�2N
(m�1)k

C

2N
X

kD2W even

�2N
�mk

!

r (2m�1)=2

(r (2m�1)=2
� 1)2

D �N

 

C1

X

lD0

r {2(l NC1)�1}=2

(r {2(l NC1)�1}=2
� 1)2

C

C1

X

lD1

r (2l N�1)=2

(r (2l N�1)=2
� 1)2

!

D �N

 

C1

X

lD0

r (2l NC1)=2

(r (2l NC1)=2
� 1)2

C

C1

X

lD1

r (2l N�1)=2

(r (2l N�1)=2
� 1)2

!

,

2N�1
X

kD1W odd

h1(�2N
k) D �

2N�1
X

kD1W odd

�2N
�k

C1

X

mD1

(�2N
km
C �2N

k(1�m))
r (2m�1)=2

(r (2m�1)=2
� 1)2

D �

C1

X

mD1

 

2N�1
X

kD1W odd

�2N
(m�1)k

C

2N�1
X

kD1W odd

�2N
�mk

!

r (2m�1)=2

(r (2m�1)=2
� 1)2

D �N

 

C1

X

lD0

r {2(2l NC1)�1}=2

(r {2(2l NC1)�1}=2
� 1)2

�

C1

X

lD1

r [2{(2l�1)NC1}�1]=2

(r [2{(2l�1)NC1}�1]=2
� 1)2

�

C1

X

lD1

r {2(2l�1)N�1}=2

(r {2(2l�1)N�1}=2
� 1)2

C

C1

X

lD1

r (2�2l N�1)=2

(r (2�2l N�1)=2
� 1)2

!

D �N

 

C1

X

lD0

r (4l NC1)=2

(r (4l NC1)=2
� 1)2

�

C1

X

lD1

r {4l N�(2N�1)}=2

(r {4l N�(2N�1)}=2
� 1)2

�

C1

X

lD1

r {4l N�(2NC1)}=2

(r {4l N�(2NC1)}=2
� 1)2

C

C1

X

lD1

r (4l N�1)=2

(r (4l N�1)=2
� 1)2

!

.

Combining these equalities, we have

1

Nb2(1C�2)
P0

2

D�

"

N logr

(

(1C�)2

1C�2

 

C1

X

lD0

r (4l NC1)=2

(r (4l NC1)=2
�1)2

C

C1

X

lD1

r (4l N�1)=2

(r (4l N�1)=2
�1)2

!

C

(1��)2

1C�2

 

C1

X

lD1

r {4l N�(2N�1)}=2

(r {4l N�(2N�1)}=2
�1)2

C

C1

X

lD1

r {4l N�(2NC1)}=2

(r {4l N�(2NC1)}=2
�1)2

!)

C1

#

.

Now, set� WD jr 1=2
j.
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First, let us consider the case that� D r 1=2
> 0. In this case, it holds that

1

Nb2(1C�2)
P0

2

D �

"

2N log �

(

(1C�)2

1C�2

 

C1

X

lD0

�

4l NC1

(�4l NC1
�1)2

C

C1

X

lD1

�

4l N�1

(�4l N�1
�1)2

!

C

(1��)2

1C�2

 

C1

X

lD1

�

4l N�(2N�1)

(�4l N�(2N�1)
�1)2

C

C1

X

lD1

�

4l N�(2NC1)

(�4l N�(2NC1)
�1)2

!)

C1

#

< 0,

and hence, we cannot find a well-defined 2N-noid of genus one satisfying the given
flux data. Each of these data realizes a fence of Jorge–Meeks type 2N-noids.

Secondly, let us consider the case that�� D r 1=2
< 0. In this case, it holds that

1

Nb2(1C �2)
P0

2

D 2N log �

(

(1C �)2

1C �2

 

C1

X

lD0

�

4l NC1

(�4l NC1
C 1)2

C

C1

X

lD1

�

4l N�1

(�4l N�1
C 1)2

!

C

(1� �)2

1C �2

 

C1

X

lD1

�

4l N�(2N�1)

(�4l N�(2N�1)
C 1)2

C

C1

X

lD1

�

4l N�(2NC1)

(�4l N�(2NC1)
C 1)2

!)

� 1.

For any� � 21=4N , since 1=(1� ��4N) � 2, it holds that

1

Nb2(1C �2)
P0

2

< 2N log �

(

(1C �)2

1C �2

 

C1

X

lD0

1

�

4l NC1
C

C1

X

lD1

1

�

4l N�1

!

C

(1� �)2

1C �2

 

C1

X

lD1

1

�

4l N�(2N�1)
C

C1

X

lD1

1

�

4l N�(2NC1)

!)

� 1

D 2N log �

�

(1C �)2

1C �2

�

1

�

1

1� ��4N
C

1

�

4N�1

1

1� ��4N

�

C

(1� �)2

1C �2

�

1

�

2NC1

1

1� ��4N
C

1

�

2N�1

1

1� ��4N

��

� 1

� 2N log �

�

(1C �)2

1C �2

�

2

�

C

2

�

4N�1

�

C

(1� �)2

1C �2

�

2

�

2NC1
C

2

�

2N�1

��

� 1

� 2N log �

�

(1C �)2

1C �2

4

�

C

(1� �)2

1C �2

4

�

�

� 1D 2N log � �
8

�

� 1.
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Hence, for any� > 512N2, we have

(8.3)
1

Nb2(1C �2)
P0

2 < 2N log � �
8

�

� 1< 2N
p

2�
8

�

� 1< 0.

Set cN WD (16N log 2)=25. SincecN > 1 for N � 3, it also holds that

(8.4)
1

Nb2(1C �2)
P0

2

�

�

�

�

�D4

> 2N log 4
(1C �)2

1C �2

4

(4C 1)2
� 1D cN

(1C �)2

1C �2
� 1> 0

if � > �N WD (�cN C
p

2cN � 1)=(cN � 1). For example,�3 is close to�1=8. For any
N � 3, �N < 0.

RegardCN defined in (8.1) as a function of�. Now, since

2N�2
X

kD2W even

h(�2N
k) D �N

(

1

2
�

1

2N
C

C1

X

mD1

�

�

1

�

2N(m�1)C1
C 1

C

1

�

2Nm�1
C 1

�

)

,

2N�1
X

kD1W odd

h(�2N
k) D �N

(

1

2
C

C1

X

mD1

(�1)m
�

1

�

2N(m�1)C1
C 1

C

1

�

2Nm�1
C 1

�

)

(cf. Lemma 3.5), we have

1

2
�

1

2N
�

1

� C 1
< �

1

N

2N�2
X

kD2W even

h(�2N
k) <

1

2
�

1

2N
�

1

� C 1
C

1

�

2N�1
C 1

,

�

1

N

2N�1
X

kD1W odd

h(�2N
k) >

1

2
�

1

� C 1
�

1

�

2N�1
C 1

.

If N � 3 and� > 2, then it holds that

1

2
�

1

2N
�

1

� C 1
>

1

2
�

1

6
�

1

3
D 0,

and
�

1

2
�

1

� C 1
�

1

�

2N�1
C 1

�

�

�

1

2
�

1

2N
�

1

� C 1
C

1

�

2N�1
C 1

�

D

1

2N
�

2

�

2N�1
C 1

> 0,

since

�

2N�1
C 1� 4N > 22N�1

C 1� 4N

> 1C (2N � 1)C
(2N � 1)(2N � 2)

2
C 1� 4N D 2N2

� 5N C 2

> 0.
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Hence, by (8.1), we haveCN(�) > 1,
As we mentioned before, for any� > 0, there exists a unique� > 0 satisfying

(8.2). If � D 0, then� D 0. On the other hand, for any� < 0, there exists a unique
� 2 (�1=CN(�),0) satisfying (8.2). In particular, it holds that� D �C�(1��)(CN(�)�
1)=(1C �CN(�)) < �. Therefore, for any� > �N , there exists a� satisfying (8.2),
(8.3), (8.4), and hence, by the intermediate value theorem,there exists a� > 4 such
that P0

2 D 0.
On the other hand, it does not hold forN D 2. We discuss the case thatN D 2

in the next section.
Now, let us show that the 2N-noids (or N-noids) constructed here have no branch

points. The Riemannian metric of each surface is given byds2
D (j�j C jg2

�j)2 with

� D �b2(�h(3)(z)C h(4)(z))2 dz,

g2
� D �b2(�h(1)(z)C h(2)(z))2 dz,

h(1)(z) WD
2N
X

kD2W even

h(z�2N
k)

D N

(

1

zN
� 1

C

C1

X

mD1

�

zN(m�1) 1

�

2N(m�1)C1
C 1

�

1

zNm

1

�

2Nm�1
C 1

�

)

,

h(2)(z) WD
2N�1
X

kD1W odd

h(z�2N
k) D h(1)(z�2N)

D N

(

�

1

zN
C 1

C

C1

X

mD1

(�1)m�1

�

zN(m�1) 1

�

2N(m�1)C1
C 1

C

1

zNm

1

�

2Nm�1
C 1

�

)

,

h(3)(z) WD
2N
X

kD2W even

�2N
kh(z�2N

k)

D N

(

zN�1

zN
� 1

C

C1

X

mD1

�

�

1

zN(m�1)C1

1

�

2N(m�1)C1
C 1

C zNm�1 1

�

2Nm�1
C 1

�

)

,

h(4)(z) WD
2N�1
X

kD1W odd

�2N
kh(z�2N

k) D �2Nh(3)(z�2N)

D N

(

zN�1

zN
C 1

C

C1

X

mD1

(�1)m
�

1

zN(m�1)C1

1

�

2N(m�1)C1
C 1

C zNm�1 1

�

2Nm�1
C 1

�

)

,

where we use the equality

h(z) D
1

z� 1
C

C1

X

mD1

�

zm�1
�

1

zm

�

1

�

2m�1
C 1

(1=r < jzj < r )
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(cf. Lemma 3.5). By the equalitiesh(z)D �z�1h(z�1), h(z)D ��h(�2z) (cf. Lemma 3.1
(ii), (i)), the estimates above, and the assumptionsN � 3, � > 2, we get the following
estimates:

h(1)(�) D ��

�1h(3)(�
�1) D h(3)(�)

D N

(

�

N�1

�

N
� 1

C

C1

X

mD1

�

�

1

�

N(m�1)C1

1

�

2N(m�1)C1
C 1

C

�

Nm�1

�

2Nm�1
C 1

�

)

> N

�

�

N�1

�

N
� 1

�

1

�

1

� C 1

�

D

N

�

�

1C
1

�

N
� 1

�

1

� C 1

�

> 0,

h(2)(�) D ��

�1h(4)(�
�1) D h(4)(�)

D N

(

�

N�1

�

N
C 1

C

C1

X

mD1

(�1)m
�

1

�

N(m�1)C1

1

�

2N(m�1)C1
C 1

C

�

Nm�1

�

2Nm�1
C 1

�

)

> N

�

�

N�1

�

N
C 1

�

�

1

�

1

� C 1
C

�

N�1

�

2N�1
C 1

��

D

N

�

�

1�
1

�

N
C 1

�

1

� C 1
�

�

N

�

2N�1
� 1

�

>

N

�

�

1�
1

�

N
�

1

� C 1
�

1

�

N�1

�

>

N

�

�

1�
1

8
�

1

3
�

1

4

�

> 0,

where we use

�

Nm�1

�

2Nm�1
C 1

>

�

Nm�1

2�2Nm�1
>

�

Nm�1

�

2Nm
>

�

N(mC1)�1

�

2N(mC1)�1
>

�

N(mC1)�1

�

2N(mC1)�1
C 1

.

We also haveh(1)(�) > h(2)(�), since

h(1)(�) � h(2)(�)

D N

(

1

�

N
� 1

�

1

�

N
C 1

C 2
C1

X

mD1

�

�

1

�

N(2m�1)

1

�

2N(2m�1)�1
C 1

C

�

N(2m�1)

�

2N(2m�1)C1
C 1

�

)

> N

�

2�N

�

2N
� 1

�

2

�

N

1

�

2N�1
C 1

�

>

N

�

N

�

2�
2

�

2N�1
C 1

�

> 0.

In the case that� D 0, by the symmetry of theN-noid, it cannot be branched at
any point.

In the case that� > 0, by the symmetry of the 2N-noid, it cannot be branched at
z¤ ��2N

2kr l , ��2N
2k�1r l (k, l 2 Z). Hence we have only to show thatzD �, ��2N are

not branch points. Since�h(3)(�) C h(4)(�) > 0 and �2N(�h(3)(��2N) C h(4)(��2N)) D
�h(4)(�)C h(3)(�) > 0, we get� D �b2(�h(3)(z)C h(4)(z))2 dz¤ 0 at zD �, ��2N .

Also in the case that�1< �1=CN(�)< � < 0, by the symmetry of the 2N-noid, it
cannot be branched atz¤ ��2N

2kr l ,��2N
2k�1r l (k, l 2 Z). Hence we have only to show
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that z D �, ��2N are not branch points. Since�h(1)(��2N) C h(2)(��2N) D �h(2)(�) C
h(1)(�) > (1C�)h(2)(�) > 0, we getg2

� D �b2(�h(1)(z)Ch(2)(z))2 dz¤ 0 at zD ��2N .
Note here that�jzD� D �b2(�h(3)(�) C h(4)(�))2 dz D �b2(�h(1)(�) C h(2)(�))2 dz D
g2
�jzD� . Hence,ds2

jzD� D 2j�jjzD� . Set� 0N WD �h(2)(�)=h(1)(�). Then,� ¤ 0 at zD �

if � > �

0

N .
Let us show that� 0N < �1=CN(�), that is,�� 0NCN(�) > 1. By the definitions of

�

0

N and CN(�),

��

0

NCN(�) D
h(2)(�)

h(1)(�)

h(2)(1)

h(10)(1)
,

where we seth(10)(z) WD
P2N�2

kD1W evenh(z�2N
k). Since

1

N
h(2)(�) >

�

N�1

�

N
C 1

�

1

�

1

� C 1
�

�

N�1

�

2N�1
C 1

D

1

� C 1
�

1

�(�N
C 1)

�

�

N�1

�

2N�1
C 1

>

1

� C 1
�

1

�(�N
� 1)

�

1

�

N
� 1

D

1

� C 1
�

� C 1

�(�N
� 1)

> 0,

�

1

N
h(2)(1)D

1

2
C

C1

X

mD1

(�1)m
�

1

�

2N(m�1)C1
C 1

C

1

�

2Nm�1
C 1

�

>

1

2
�

1

� C 1
�

1

�

2N�1
C 1

>

1

2
�

1

� C 1
�

1

�

2N�1
> 0,

0<
1

N
h(1)(�) D

1

�

N
� 1

C

C1

X

mD1

�

�

N(m�1)

�

2N(m�1)C1
C 1

�

1

�

Nm

1

�

2Nm�1
C 1

�

<

1

�

N
� 1

C

1

� C 1
C

C1

X

mD2

1

�

N(m�1)C1
D

1

� C 1
C

� C 1

�(�N
� 1)

,

0< �
1

N
h(10)(1)D

1

2
�

1

2N
C

C1

X

mD1

�

�

1

�

2N(m�1)C1
C 1

C

1

�

2Nm�1
C 1

�

<

1

2
�

1

2N
�

1

� C 1
C

1

�

2N�1
C 1

<

1

2
�

1

2N
�

1

� C 1
C

1

�

2N�1
,

we get, for� > 4,
�

1

N
h(2)(�)

��

�

1

N
h(2)(1)

�

�

�

1

N
h(1)(�)

��

�

1

N
h(10)(1)

�

>

�

1

� C 1
�

� C 1

�(�N
� 1)

��

1

2
�

1

� C 1
�

1

�

2N�1

�

�

�

1

� C 1
C

� C 1

�(�N
� 1)

��

1

2
�

1

2N
�

1

� C 1
C

1

�

2N�1

�

D

1

2N(� C 1)
C

� C 1

2N�(�N
� 1)

�

� � 1

�(�N
� 1)

�

2

�

2N�1(� C 1)
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� � 1=7 � D 0 � � �1=9

Fig. 8.1.

>

1

2N(� C 1)
C

� C 1

2N�(�N
� 1)

�

� � 1

�(�N
� 1)

�

2

�

N�1(� C 1)(�N
� 1)

D

�

NC1
C (�2

C � C 1)� 2N�2
C 2N(1� 2�2�N)

2N�(� C 1)(�N
� 1)

>

�

2(�N�1
� 2N)

2N�(� C 1)(�N
� 1)

>

�

2(4N�1
� 2N)

2N�(� C 1)(�N
� 1)

> 0.

We conclude that,for any N 2 N, N � 3, and any� 2 (�N , 0)[ (0,C1), there
exists a Jorge–Meeks type2N-noid of genus one whose ratio of alternating weights of
ends is�. Fig. 8.1 shows some examples forN D 3.

We note here that the holes, the handles on the plane of symmetry, in the case
that � < 0 are larger than those in the case that� > 0.

9. Examples 2

Throughout this section, we assumer > 1 andr 1=2
< 0, and set� WD jr 1=2

j D �r 1=2.
First, we describe the data of Costa’s family of 3-end catenoids (cf. [3]) by using

our notation. This family collapses to three catenoids as a limit.

EXAMPLE 9.1. Consider the following flux data:

n WD 3, p1 WD 1, p2 D p3 WD �1, a1 D a2 C a3.

Set
8

�

<

�

:

q1 WD 1, q2 WD �, q3 WD �1,

b1 WD �e�
p

�1=4, b2 WD ���2�
1=2e��

p

�1=4, b3 WD ���3e��
p

�1=4,
�, �2, �3 > 0.
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Then the surface given by these data is symmetric with respect to both x1x2-plane and
x1x3-plane, and we can apply Theorem 7.2. By the standard calculation, we see that
there exists a complex number� such that the conditionsw j 2 R andw�

j D 0 ( j D
1, 2, 3) are automatically satisfied, and the nontrivial condition is rewritten as follows:

8

<

:

1

2
�

�2P1 � (1C �2
2
� �3

2)h1(1)� 2�2�3�
1=2h1(��) D 0,

�

p

�1��2P2 � (1� �2
2
C �3

2)(2h1(1) log� � 1)C 4�2�3�
1=2h1(��) log � D 0.

It is equivalent with
8

�

<

�

:

�2
2
� �3

2
D 1� 4h1(1) log�,

�2�3 D
h1(1)(1� 2h1(1) log�)

�

1=2h1(��)
.

For any r D �

2
> e2� (resp. r D �

2
D e2� ), it holds that 1� 2h1(1) log� > 1 �

4h1(1) log� > 0 (resp. 1� 2h1(1) log� > 1� 4h1(1) log� D 0) and h1(��) > 0, and
hence there exists a (�2, �3) 2 (0,C1) � (0,C1) satisfying the equation above, and

8

�

�

<

�

�

:

a1 D 2{�1=2h(�)�2 � (�h(�1))�3}�
2
> 0,

a2 D 2�1=2h(�)�2�
2
> 0,

a3 D �2(�h(�1))�3�
2
< 0.

In particular, a3=a2 2 (�1, �1=2) (cf. [3, Lemma 3]). Costa’s 1-parameter family of
3-end catenoids collapses to three catenoids asa3=a2 ! �1=2.

In Example 9.2 below, we treat, by applying Theorem 7.2, the remaining case of
Example 8.1. In Example 9.3, we give a complete proof of the existence of two fami-
lies of 3-end catenoids, which were first observed in [1] by using the MESH program.
Schoen [16] proved that there is no catenoid of genus one. Hence, if the data ofn-noid
of genus one goes near to that of “the catenoid of genus one”, then the surface must
collapse. The families ofn-end catenoids of genus one we construct in Examples 9.2
and 9.3 enable us to observe such a phenomenon.

EXAMPLE 9.2. To construct Jorge–Meeks type 4-noids of genus one with alter-
nating sizes of ends, let us consider the following flux data:

8

�

�

�

�

<

�

�

�

�

:

n WD 4,

p j WD e2�
p

�1( j�1)=4
D (

p

�1) j�1 ( j D 1, : : : , 4),

a j WD

�

a 2 R n {0} ( j D 2, 4),
Qa 2 R ( j D 1, 3).
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Set
(

q WD �

1=2, q j WD q j�1 ( j D 1, : : : , 4),

b1 WD Qb¤ 0, b2 WD b¤ 0, b3 WD �

p

�1q Qb, b4 WD �

p

�1qb.

Then, by (3.2) and Lemmas 3.1–3.4, it holds that

�h(qk, q j ) D h(q j , qk) D
1

qk
h(q j�k),

h(q3) D h

�

r

q

�

D r �1=2h

�

1

q

�

D �

1

q2
(�qh(q)) D

1

q
h(q),

h1(qk, q j ) D h1(q j , qk) D
1

qk
h1(q j�k),

h1(q3) D h1

�

r

q

�

D r �1=2

�

h1

�

1

q

�

C h

�

1

q

��

D �

1

q2
(qh1(q) � qh(q)) D

1

q
(�h1(q)C h(q)),

h1(q2) D h1(�r 1=2) D
1

2
h(�r 1=2) D

1

2
h(q2),

and hencew�

j ( j D 1, 2, 3, 4) andP2 automatically vanish. Therefore we have only to
consider the period problem forw j ( j D 1, 2, 3, 4) andP1 with

w1 D w3 D Qb2
� 2
p

�1qh(q2) � Qbb � 2
p

2e��
p

�1=4h(q),

w2 D w4 D �b2
� 2h(q2) � bQb � 2

p

2e��
p

�1=4h(q),

1

2
P1 D �R1(
1) D �

p

�1
1

q
(
p

�1q Qb2
� b2) � 2h1(1)C Qbb �

p

2e�
p

�1=4(4h1(q) � h(q)).

Set � WD Qa=a and � WD e��
p

�1=4
Qb=b. If w1 D w3 D Qa andw2 D w4 D a, then it

holds that

(9.1) � D

�

2qh(q2)C
p

2�h(q)

h(q2)C
p

2�h(q)
.

Solving (9.1) as an equation of�, we get a solution

� D

p

2�(h(q2)=h(q))

(1� �)C
p

(1� �)2
C 2�q(h(q2)=h(q))2

.

If � 2 (0,1), then� > 0. Now, we can chooseb so thatw1 D w3 D Qa andw2 D w4 D a.
Set

QP1 WD
1

2b2
p

�1
P1 D �

1

b2
p

�1
R1(
1) D 2

�

�

2
C

1

q

�

h1(1)C
p

2�(4h1(q) � h(q)).
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Now, let us show that, for any� 2 (0, 1), there exists aq satisfying QP1 D 0.
First we give an estimate forQP1 from below atq D 2. Note here that

h1(1)D 2
1

X

kD1

q2(2k�1)

(q2(2k�1)
C 1)2

,

h1(q) D
1

X

kD1

�

qk�1
C

1

qk

�

q2(2k�1)

(q2(2k�1)
C 1)2

,

h(q) D
1

q � 1
C

1

X

kD1

�

qk�1
�

1

qk

�

1

q2(2k�1)
C 1

<

1

q � 1
C 2

1

X

kD1

�

qk�1
�

1

qk

�

q2(2k�1)

(q2(2k�1)
C 1)2

(q > 1)

(cf. Lemmas 3.5 and 3.6). It holds that

QP1 � 4
�

p

q
h1(1)C

p

2�(4h1(q) � h(q))

>

p

2�

(

1

X

kD1

�

4
p

2
p

q
C 2qk�1

C

6

qk

�

q2(2k�1)

(q2(2k�1)
C 1)2

�

1

q � 1

)

>

p

2�

��

4
p

2
p

q
C 2C

6

q

�

q2

(q2
C 1)2

�

1

q � 1

�

.

Hence we have

QP1jqD2 >
p

2�

�

(4C 2C 3)
4

25
� 1

�

D

p

2� �
11

25
> 0.

Secondly, we give the asymptotic behaviour ofQP1 as q !C1. Note here that

h(q) D
1

q � 1
�

1

X

kD1

�

qk�1
�

1

qk

�

1

X

mD1

(�1)m

q2m(2k�1)
D

1

q
C O

�

1

q2

�

,

h(q2) D
1

q2
� 1

�

1

X

kD1

�

q2k�2
�

1

q2k

�

1

X

mD1

(�1)m

q2m(2k�1)
D

2

q2
C O

�

1

q4

�

,

h1(q) D �

1

X

kD1

�

qk�1
C

1

qk

�

1

X

mD1

(�1)mm

q2m(2k�1)
D

1

q2
C O

�

1

q3

�

,

h1(1)D �2
1

X

kD1

1

X

mD1

(�1)mm

q2m(2k�1)
D O

�

1

q2

�

.
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By using these estimates, we also have

h(q2)

h(q)
D

2

q
C O

�

1

q2

�

,

q

�

h(q2)

h(q)

�2

D O

�

1

q

�

,

� D

p

2�

1� �

1

1C
p

1C (2�=(1� �)2)q(h(q2)=h(q))2

h(q2)

h(q)
D

p

2�

1� �

1

q
C O

�

1

q2

�

,

4h1(q) � h(q) D �

1

q
C O

�

1

q2

�

,

from which it follows that

QP1 D �

2�

1� �

1

q2
C O

�

1

q3

�

.

Hence, for any� 2 (0, 1), there exists aq
�

> 2 such that QP1jqDq
�

< 0.

Now, by the intermediate value theorem, there exists aq > 2 such that QP1 D 0.
Any surface we construct here has no branch point. Indeed, bythe symmetry of

the surface, it cannot be branched atz ¤ �r l , �qr l (l 2 Z). Hence we have only to
show thatzD �1 and�q are not branch points. Recall here that� D �Q(z)2 dz and

Q(z) D
4
X

jD1

b j h(z, q j ) D b1h(z)C
b2

q
h

�

z

q

�

�

p

�1b1

q
h

�

z

q2

�

�

p

�1b2

q2
h

�

z

q3

�

.

In particular, byh(�1=q2) D h(�1=�) D 0,

Q(�1)D e�
p

�1=4b2(�h(�1)C
p

2h(�q)),

Q(�q) D b2

�

p

2�h(�q)C
1

q
h(�1)

�

.

Since� > 4, q D �

1=2
> 2 and hence

h(�1)D �

1

2
C 2

C1

X

kD1

(�1)k�1 1

q2(2k�1)
C 1

< �

1

2
C 2

1

q2
C 1

< 0,

h(�q) D �

(

1

qC 1
C

C1

X

kD1

(�1)k
�

qk�1
C

1

qk

�

1

q2(2k�1)
C 1

)

< �

�

1

qC 1
�

�

1C
1

q

�

1

q2
C 1

�

< �

q2

(qC 1)(q2
C 1)

�

1�
1

q
�

1

q2
�

1

q3

�

< 0,
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Fig. 9.1.

where we use the inequality

qk�1

q2(2k�1)
C 1

>

qk

2q2(2k�1)C1
>

qk

q2(2kC1)
>

qk

q2(2kC1)
C 1

.

Since� > 0, we getds2
D (j�j C jg2

�j)2
¤ 0 at zD �1 and�q.

We conclude that,for any � 2 (0, 1), there exists a Jorge–Meeks type4-noid of
genus one whose ratio of alternating weights of ends is�. Fig. 9.1 shows the case
that � � 1=7.

EXAMPLE 9.3. In the case thatn D 3 and the surface is symmetric with respect
to a plane on which the flux vectors are arranged, if we assume that q j 2 R and jp j j D

1 ( j D 1, 2, 3), then, byw�

j D 0 ( j D 1, 2, 3), we have

b j D b(pk C pl )h(qk, ql )

for some nonzero complex numberb, where (j , k, l ) D (1, 2, 3) or (2, 3, 1) or (3, 1, 2).
Substituting this, and by using Lemma 3.2 (i), we have

w j D �2b2h(q1, q2)h(q2, q3)h(q3, q1)p j (pk
2
� pl

2) ( j D 1, 2, 3).

If a j ( j D 1, 2, 3) satisfy
P3

jD1 a j v(p j ) D 0 and a j ¤ 0, then it holds that

a1 W a2 W a3 D p1(p2
2
� p3

2) W p2(p3
2
� p1

2) W p3(p1
2
� p2

2).

Hence, we can chooseb so thatw j D a j ( j D 1, 2, 3).



976 S. KATO AND H. MUROYA

In this case, the periodsP1 and P2 in Theorem 7.2 are given as follows:

1

2
P1 D �R1(
1)

D

b2

q1q2q3

�

�

�

p1(p2 C p3)2h

�

q2

q3

�

h

�

q3

q2

�

C p2(p3 C p1)2h

�

q3

q1

�

h

�

q1

q3

�

C p3(p1 C p2)2h

�

q1

q2

�

h

�

q2

q1

��

h1(1)

C (p1 C p2)(p2 C p3)(p3 C p1)

�

�

h

�

q2

q3

�

h

�

q3

q1

�

h1

�

q1

q2

�

C h

�

q3

q1

�

h

�

q1

q2

�

h1

�

q2

q3

�

C h

�

q1

q2

�

h

�

q2

q3

�

h1

�

q3

q1

���

,

�P2 D �

p

�1(R0(
2)C R2(
2))

D

b2

q1q2q3

��

(p2 C p3)2h

�

q2

q3

�

h

�

q3

q2

�

C (p3 C p1)2h

�

q3

q1

�

h

�

q1

q3

�

C (p1 C p2)2h

�

q1

q2

�

h

�

q2

q1

��

(log r � h1(1)� 1)

� 2 logr

�

(p2 C p3)(p3 C p1)h

�

q2

q3

�

h

�

q3

q1

�

h1

�

q1

q2

�

C (p3 C p1)(p1 C p2)h

�

q3

q1

�

h

�

q1

q2

�

h1

�

q2

q3

�

C (p1 C p2)(p2 C p3)h

�

q1

q2

�

h

�

q2

q3

�

h1

�

q3

q1

��

� 2

�

logjq1j(p2
2
� p3

2)C logjq2j(p3
2
� p1

2)

C logjq3j(p1
2
� p2

2)

�

h

�

q1

q2

�

h

�

q2

q3

�

h

�

q3

q1

��

,

where we use (3.2), Lemma 3.1 (ii) and Lemma 3.3 (ii).

Here we consider the case that two of the flux vectors have a common weight:

p1 WD 1, p2 WD p, p3 WD Np, a1 W a2 W a3 D �2 Rep W 1 W 1,
1

2
� < arg p <

2

3
� .

Set

q1 WD 1, q2 WD r � , q3 WD r 1�� , 0< � <
1

2
.



M INIMAL SURFACES OFGENUS ONE 977

Then P1 and P2 satisfy the following:

1

2
P1 D b2

� 4r 2��1[{(Re p)2h(r 2�)2
C (Re pC 1)r ��h(r �)2}h1(1)

C Re p(Re pC 1){h(r �)2h1(r 2�) � 2h(r �)h(r 2�)h1(r �)}],

�P2 D b2
� 4r 2��1[�{(Re p)2h(r 2�)2

C Re p(Re pC 1)r ��h(r �)2}(log r � h1(1)� 1)

� log r (Re pC 1){h(r �)2h1(r 2�) � 2 Reph(r �)h(r 2�)h1(r �)}

� 2 logr � �{(Re p)2
� 1}h(r �)2h(r 2�)].

Since we assumer 1=2
< 0 and� D �r 1=2 here, it holds that

h(z) D
1

z� 1
C

C1

X

mD1

�

zm�1
�

1

zm

�

1

�

2m�1
C 1

(1=r < jzj < r ),

h1(z) D
C1

X

mD1

�

zm�1
C

1

zm

�

�

2m�1

(�2m�1
C 1)2

(1=r < jzj < r )

(cf. Lemmas 3.5 and 3.6). SetH0(�, �) WD h0(�2�)�� , H (�, �) WD h(�2�)�� , and
H1(�, �) WD h1(�2�)�� . Then

H0(�, �) D
1

X

mD1

(�(2m�1)�
� �

�(2m�1)�)
1

�

2m�1
C 1

,

H (�, �) D
1

�

�

� �

��

C H0(�, �),

H1(�, �) D
1

X

mD1

(�(2m�1)�
C �

�(2m�1)�)
�

2m�1

(�2m�1
C 1)2

.

In particular, by Lemma 3.1 (i), (ii) and Lemma 3.3 (i), (ii),we have

H (�, �) D �H (��, �) D H (1� �, �) D H1(�, �)C H1(1� �, �).

Set QP1 WD P1 � r =8b2, and QP2 WD P2 � r =4b2 log r . Then

QP1 D {(Re p)2H (2�, �)2
C (Re pC 1)H (�, �)2}H1(0, �)

C Re p(Re pC 1){H (�, �)2H1(2�, �) � 2H (�, �)H (2�, �)H1(�, �)},

QP2 D Re p{Re pH(2�, �)2
C (Re pC 1)H (�, �)2}

�

H1(0, �) �
1

2 log�

�

C (Re pC 1){H (�, �)2H1(2�, �) � 2 Rep � H (�, �)H (2�, �)H1(�, �)}

C 2�{(Re p)2
� 1}H (�, �)2H (2�, �).
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Note here that bothQP1 and QP2 take real values.
Now, we will show that, for anyp such thatjpj D 1 and Rep 2 (�1=2, 0), there

exist � 2 (0, 1=2) and � 2 (1,C1) satisfying QP1 D QP2 D 0. To show this, we re-
gard QP1 and QP2 as functions defined on a simply connected domainD WD {(�, �) j � 2
(0, 1=2), � 2 (1,C1)}, and consider the mapP WD ( QP1, QP2) W D ! R2. By the homo-
topy argument (cf. Wohlgemuth [17], Sato [15]), for any loopl in D, if the winding
number of the imageP(l ) � R2 around (0,0)2 R2 is not 0, then there exists a (�,�) in
the domain surrounded byl such thatP(�, �) D 0. To apply this argument, we prove
the following claims:

Claim 1. QP1 > 0 or QP2 > 0 holds for � D 1=3 and � 2 (1,C1).

Claim 2. QP1 > 0 holds if �� D 2 and � 2 (4,C1).

Claim 3. For any �1 2 (0, 1=9) small enough, there exists a�1 D �1(�1) such that
QP1 < 0 holds for � 2 (�1, 1=2� �1) and � 2 (�1,C1).

Claim 4. There exist T�1 , TC

1 , T�

2 such that1 < T�

1 < TC

1 < T�

2 and that, for
any �2 2 (1=9, 1=6), there exists a�2 D �2(�2, Rep, T�

1 , TC

1 , T�

2 ) 2 (�1,C1) such that

8

<

:

QP1 > 0 if �� < T�

1 ,
QP1 < 0 if �� > TC

1 ,
QP2 < 0 if �� < T�

2

holds for � 2 (0, �2) and � 2 (�2, C1).

Claim 5. For any �3 2 (1=3,1=2�1=9), there exists a�3 D �3(�3,Rep) 2 (�1,C1)
such that QP2 < 0 holds for � 2 (�3, 1=2) and � 2 (�3, C1).

Claim 6. For any �4 2 (max{�3, 4},C1), there exists an�4 D �4(�4) 2 [1=3, 1=2)
such that QP1 > 0 holds for � 2 [�4, 1=2) and � 2 [4, �4].

Choose�5 > �2. Let l1 be the loop defined by joining the curves{(�, �) j � D
1=3, � 2 [8,�5]}, {(�,�) j �� D 2, � 2 [8,�5]}, {(�,�) j � 2 [log2= log�5, 1=3], � D �5}.
Then the winding number of5(l1) around (0, 0) is�1.

Choose�6 > �3. Let l2 be the loop defined by joining the curves{(�, �) j � D
1=3, � 2 [8, �6]}, {(�, �) j � 2 [1=3, �4], � D �6}, {(�, �) j � D �4, � 2 [21=�4, �6]},
{(�, �) j � 2 [1=3, �4], �� D 2}. Then the winding number of5(l2) around (0, 0) is 1.

Hence, by the homotopy argument, we conclude that there exist two (�, �) satis-
fying QP1(�, �) D QP2(�, �) D 0.

Now, let us prove the claims.
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Proof of Claim 1. Note here thatH (2=3, �) D H (1=3, �) and H1(2=3, �) D
H (1=3, �) � H1(1=3, �). Then we have, for� D 1=3,

QP1 D H

�

1

3
, �

�2�

{(Re p)2
C Re pC 1}H1(0, �)

C Re p(Re pC 1)

�

H

�

1

3
, �

�

� 3H1

�

1

3
, �

���

,

QP2 D
1

3
(2 RepC 1)H

�

1

3
, �

�2�

3 Rep

�

H1(0, �) �
1

2 log�

�

C (Re pC 1)

�

H

�

1

3
, �

�

� 3H1

�

1

3
, �

���

.

Since H (1=3, �) > 0 and Rep 2 (�1=2, 0), it holds that

H

�

1

3
, �

�

�2
QP1 � Re p

�

1

3
(2 RepC 1)H

�

1

3
, �

�2��1
QP2

D {�2(Rep)2
C Re pC 1}H1(0, �)C

3

2
(Re p)2 1

log �
> 0.

Hence at least one ofQP1 > 0 and QP2 > 0 must hold.

Proof of Claim 2. In the case that� 2 (4, 8], note that RepC 1> (Re pC 1)2,
H1(2�,�)D H (2�,�)�H1(1�2�,�) < H (2�,�), and H (�,�)D H1(�,�)CH1(1��,�).
Then we have

QP1 D {(Re p)2H (2�, �)2
C (Re pC 1)H (�, �)2}H1(0, �)

C (�Re p)(Re pC 1){2H (�, �)H (2�, �)H1(�, �) � H (�, �)2H1(2�, �)}

> {(Re p)2H (2�, �)2
C (Re pC 1)2H (�, �)2}H1(0, �)

C (�Re p)(Re pC 1){2H (�, �)H (2�, �)H1(�, �) � H (�, �)2H (2�, �)}

� (�Re p)(Re pC 1)H (�, �)H (2�, �)(2H1(0, �)C 2H1(�, �) � H (�, �))

D (�Re p)(Re pC 1)H (�, �)H (2�, �)(2H1(0, �)C H1(�, �) � H1(1� �, �)).

By the assumption, we have (�Re p)(RepC1)H (�,�)H (2�,�) > 0. On the other hand,
if �� D 2 and� 2 (4, 8], we also have,

2H1(0, �)C H1(�, �) � H1(1� �, �)

D

C1

X

mD1

�

4C 22m�1
C 2�(2m�1)

�

�

�

2

�2m�1

�

�

2

�

�2m�1�
�

2m�1

(�2m�1
C 1)2

>

�

4C 2C
1

2
�

�

2
�

2

�

�

�

(� C 1)2
�

C1

X

mD2

�

�

2

�2m�1
�

2m�1

(�2m�1
C 1)2
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>

��

2
C 13� � 4

2(� C 1)2
�

C1

X

mD2

�

1

2

�2m�1

D

�4�2
C 37� � 13

6(� C 1)2
�

27

6(� C 1)2
> 0.

Now we get QP1 > 0 for �� D 2 and� 2 (4, 8].
In the case that� 2 [8, C1), we have

QP1 D {(Re p)2H (2�, �)2
C (Re pC 1)H (�, �)2}H1(0, �)

C (�Re p)(Re pC 1){2H (�, �)H (2�, �)H1(�, �) � H (�, �)2H1(2�, �)}

> (Re pC 1)H (�, �)2

�

H1(0, �) �
2

3
(�Re p)H1(2�, �)

�

C 2(�Re p)(Re pC 1)H (�, �)

�

H (2�, �)H1(�, �) �
1

6
H (�, �)H1(2�, �)

�

.

By the assumption, we have (RepC1)H (�,�)2
> 0 and 2(�Re p)(RepC1)H (�,�)> 0.

On the other hand, if�� D 2 and� 2 [8, C1), then we have

H1(0, �) �
2

3
(�Re p)H1(2�, �) > H1(0, �) �

1

3
H1(2�, �)

D

C1

X

mD1

�

2�
1

3
(42m�1

C 4�(2m�1))

�

�

2m�1

(�2m�1
C 1)2

>

�

2�
1

3

�

4C
1

4

��

�

(� C 1)2
�

1

3

C1

X

mD2

�

4

�

�2m�1

D

7�4
� 368�2

� 512� � 256

12�(� C 1)2(�2
� 16)

�

3�4

16 � 12�(� C 1)2(�2
� 16)

> 0.

We also have

H (2�, �)H1(�, �) �
1

6
H (�, �)H1(2�, �)

>

�

4

15
C

15

4

1

� C 1

�

5

2

�

(� C 1)2
�

1

6

(

2

3
C

C1

X

mD1

�

2

�

�2m�1
)

C1

X

mD1

��

4

�

�2m�1

C

1

�

2m�1

�

D

�(8�2
C 451� � 2932)

72(� C 1)3(� � 4)
�

1188�

72(� C 1)3(� � 4)
> 0.

Now we get QP1 > 0 for �� D 2 and� 2 [8, C1).
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Proof of Claim 3. We have the following upper estimates forH (�, �) etc.:

1

�

�

� �

��

D

1

1� ��2�

1

�

�

,

H0(�, �) <
C1

X

mD1

�

(2m�1)�

�

2m�1
D

1

1� ��2(1��)

1

�

1��
(� 2 (0, 1)),

H (�, �) <
1

1� ��2�

1

�

�

C

1

1� ��2(1��)

1

�

1��
<

2

1� ��2�

1

�

�

(� 2 (0, 1)),

H (2�, �) <
1

1� ��4�

1

�

2�
C

1

1� ��2(1�2�)

1

�

1�2�
(� 2 (0, 1=2)),

H1(�, �) < 2
C1

X

mD1

�

(2m�1)�

�

2m�1
D

2

1� ��2(1��)

1

�

1��
(� 2 [0, 1)),

H1(0, �) <
2

1� ��2

1

�

.

In particular, if � 2 (�1, 1=2� �1) and ��1
> 2, then we have

H (�, �) <
4

�

�

<

4

�

�1
, H (2�, �) <

2

�

2�
C

2

�

1�2�
<

4

�

2�1
,

H1(�, �) <
4

�

1��
, H1(0, �) <

4

�

.

We also have the following lower estimates:

H (�, �) >
1

�

�

� �

��

D

1

1� ��2�

1

�

�

>

1

�

�

,

H1(2�, �) > �

2� �

4�2
D

1

4

1

�

1�2�
.

Now, if � 2 (�1, 1=2� �1) and ��1
> 2, then we have

QP1 D {(Re p)2H (2�, �)2
C (Re pC1)H (�, �)2}H1(0, �)

C (�Re p)(Re pC1){2H (�, �)H (2�, �)H1(�, �)�H (�, �)2H1(2�, �)}

<

�

(Re p)2 16

�

4�1
C (Re pC1)

16

�

2�1

�

4

�

C (�Re p)(Re pC1)

�

2
4

�

�

4

�

2�1

4

�

1��
�

1

�

2�

1

4

1

�

1�2�

�

D �

1

4�1C4�1
{(�Re p)(Re pC1)�4�1

�256(1�2 Rep)(Re pC1)�2�1
�256(Rep)2}.
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Hence, for any�1 > 0, if we set

�1D�1(�1, Rep)

WD

�

128(1�2Rep)(RepC1)C
p

{128(1�2Rep)(RepC1)}2
C256(�Rep)3(RepC1)

(�Rep)(RepC1)

�1=2�1

,

then QP1 < 0 holds for any� 2 (�1, 1=2� �1) and � > �1.

Proof of Claim 4. SetC WD �

� . Then � D log C=log �. Assume� 2 (0, 1=4) and
� 2 (4,C1), and fix Rep. Set c(t) WD 1=(1 � 1=t) D t=(t � 1). For anyk 2 [0, 4),
since�2

=C2k
D �

2(1�k�)
> 24�k, it holds thatc(�2

=C2k) < c(24�k). Now, we have the
following upper estimates forH (�, �) etc.:

H (k�, �) D
1

Ck
� C�k

C H0(k�, �)

D

1

Ck
� C�k

C

C1

X

mD1

(Ck(2m�1)
� C�k(2m�1))

1

�

2m�1
C 1

<

1

Ck
� C�k

C

C1

X

mD1

�

Ck

�

�2m�1

<

1

Ck
� C�k

C c

�

�

2

C2k

�

Ck

�

<

1

Ck
� C�k

�

1C c

�

�

2

C2k

�

C2k

�

�

<

1

Ck
� C�k

�

1C c(24�k)
C2k

�

�

(k ¤ 0),

H1(k�, �) D (Ck
C C�k)

�

(� C 1)2
C

C1

X

mD2

(Ck(2m�1)
C C�k(2m�1))

�

2m�1

(�2m�1
C 1)2

< (Ck
C C�k)

�

(� C 1)2
C 2

C1

X

mD2

�

Ck

�

�2m�1

D (Ck
C C�k)

�

(� C 1)2
C 2c

�

�

k

C2k

�

C3k

�

3

< (Ck
C C�k)

�

(� C 1)2

�

1C 2c

�

�

k

C2k

�

(� C 1)2

�

2

C2k

�

2

�

< (Ck
C C�k)

�

(� C 1)2

�

1C
25

8
c(24�k)

C2k

�

2

�

,

H1(k�, �) D
C1

X

mD1

(Ck(2m�1)
C C�k(2m�1))

�

2m�1

(�2m�1
C 1)2

< 2
C1

X

mD1

�

Ck

�

�2m�1

D 2c

�

�

2

C2k

�

Ck

�

< 2c(24�k)
Ck

�

.
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We also have the following lower estimates:

H (k�, �) >
1

Ck
� C�k

(k ¤ 0),

H1(k�, �) > (Ck
C C�k)

�

(� C 1)2
.

We will use these estimates withk D 0, 1, 2. Set

A1 WD c(8)D
8

7
, A2 WD c(4)D

4

3
, A3 WD

25

8
c(16)D

10

3
, A4 WD 2c(16)D

32

15
,

A5 WD
25

8
c(8)D

25

7
, A6 WD 2c(8)D

16

7
, A7 WD

25

8
c(4)D

25

6
, A8 WD 2c(4)D

8

3
.

First, we give an upper estimate forQP1.

QP1D{(Rep)2H (2�,�)2
C(RepC1)H (�,�)2}H1(0,�)

C(�Rep)(RepC1){�H (�,�)2H1(2�,�)C2H (�,�)H (2�,�)H1(�,�)}

<

1

(C�C�1)2(CCC�1)2

�

(�C1)2

�

��

(Rep)2

�

1CA2
C4

�

�2

C(RepC1)(CCC�1)2

�

1CA1
C2

�

�2�

�2

�

1CA3
1

�

2

�

C(�Rep)(RepC1)

�

�(CCC�1)2(C2
CC�2)

C2(CCC�1)2

�

1CA1
C2

�

�2�

1CA2
C4

�

�2�

1CA5
C2

�

2

�2��

<

1

(C�C�1)2(CCC�1)2

�

(�C1)2
(P1TCP1C),

where we set

P1T WD Re p(Re pC 1)(C C C�1)4
C 2(RepC 1)(1� 2 Rep)(C C C�1)2

C 2(Rep)2,

P1C WD 2

�

(Re p)2A2(2C A2)
C4

�

C 4(RepC 1)A1(2C A1)
C4

�

�

C 2A3

�

(Re p)2(1C A2)2 1

�

2
C 4(RepC 1)(1C A1)2 C2

�

2

�

C (� Re pC 1)(RepC 1)

�

8A1(1C A2)(1C A5)
C4

�

C 8A2(1C A5)
C6

�

C 8A5
C4

�

2

�

.
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Choose�2 2 (0, 1=6). Since

(9.2)

P1C <

�

2{(Re p)2A2(2C A2)C 4(RepC 1)A1(2C A1)}

C 2A3

�

(Re p)2(1C A2)2 1

4
C 4(RepC 1)(1C A1)2 1

4

�

C (� Re pC 1)(RepC 1)

�

8A1(1C A2)(1C A5)

C 8A2(1C A5)C 8A5
1

4

��

�

1

�

1�6�2

holds for � 2 (0, �2), P1C(�, �) converges to 0 as� !C1 uniformly on (0,�2).
Secondly, we give a lower estimate forQP1.

QP1 D {(Re p)2H (2�, �)2
C (Re pC 1)H (�, �)2}H1(0, �)

C (�Re p)(Re pC 1){�H (�, �)2H1(2�, �)C 2H (�, �)H (2�, �)H1(�, �)}

>

1

(C � C�1)2(C C C�1)2

�

(� C 1)2

�

�

2{(Re p)2
C (Re pC 1)(C C C�1)2}

C (�Re p)(Re pC 1)

�

�(C C C�1)2(C2
C C�2)

�

1C A1
C2

�

�2�

1C A7
C4

�

2

�

C 2(C C C�1)2

��

>

1

(C � C�1)2(C C C�1)2

�

(� C 1)2
(P1T � P1�),

where we set

P1� WD (�Re p)(Re pC 1)

�

8A1(2C A1)(1C A7)
C6

�

C 8A7
C8

�

2

�

.

Since

(9.3) P1� < (�Re p)(Re pC 1)

�

8A1(2C A1)(1C A7)C 8A7
1

2

�

1

�

1�6�2

holds for � 2 (0, �2), P1�(�, �) converges to 0 as� !C1 uniformly on (0,�2).
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Thirdly, we give an upper estimate forQP2.

QP2 D (�Re p){(�Re p)H (2�, �)2
� (Re pC1)H (�, �)2}

�

H1(0, �)�
1

2 log�

�

C (Re pC1){H (�, �)2H1(2�, �)C2(�Re p)H (�, �)H (2�, �)H1(�, �)}

�2�{1� (Re p)2}H (�, �)2H (2�, �)

<

1

2(C�C�1)2(CCC�1)2 log �

�

�

2(�Re p)2

�

1C A2
C4

�

�

A4
log �

�

C (�Re p)

�

�(�Re p)C (Re pC1)(CCC�1)2

�

1C A1
C2

�

�2�

C2(RepC1)

�

(CCC�1)2

�

1C A1
C2

�

�2

A8
C2

�

C2(�Re p)(CCC�1)

�

1C A1
C2

�

��

1C A2
C4

�

�2

A6
C

�

�

log �

�4{1� (Re p)2}
CCC�1

C�C�1
log �

�

<

1

2(C�C�1)2(CCC�1)2 log �
(P2T CP2C),

where we set

P2T WD (�Re p)(Re pC 1)(C C C�1)2
C 3(Rep)2

� 4,

P2C WD 2(�Re p)2(1C A2)A4
log �

�

C 4(�Re p)(Re pC 1)A1(2C A1)
C4

�

C 2(RepC 1)

�

4(1C A1)2A8
C4 log �

�

C 4(�Re p)(1C A1)(1C A2)A6
C2 log �

�

�

.

Since
(9.4)

P2C <

�

2(�Re p)2(1C A2)A4 C 4(�Re p)(Re pC 1)A1(2C A1)
1

log 4

C 2(RepC 1){4(1C A1)2A8 C 4(�Re p)(1C A1)(1C A2)A6}

�

�

log �

�

1�4�2

holds for � 2 (0, �2), P2C(�, �) converges to 0 as� !C1 uniformly on (0,�2).
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Now, we get

P1T � P1� < (C � C�1)2(C C C�1)2 (� C 1)2

�

QP1 < P1T C P1C,

2(C � C�1)2(C C C�1)2 log � � QP2 < P2T C P2C.

Note here that (C C C�1)2 is monotone increasing onC 2 (1,C1).
Since P1T is a polynomial of (C C C�1)2 of degree 2, its top coefficient satisfies

Re p(Re p C 1) < 0, and P1T j(CCC�1)2
D4 D 2(Rep C 2)2 > 0, there exists a unique

(C C C�1)2
> 4 satisfying P1T D 0. Denote the value ofC > 1 satisfying P1T D 0

by T1.
On the other hand, sinceP2T is a polynomial of (CCC�1)2 of degree 1, its top co-

efficient satisfies (�Re p)(RepC1)> 0, andP2T j(CCC�1)2
D4 D�(Rep)2

�4(RepC1)< 0,
there exists a unique (CCC�1)2

> 4 satisfyingP2T D 0. Denote the least value ofC > 1
satisfyingP2T D 0 by T2.

Moreover, since

P1T jCDT2 D

{2� (Re p)2}(Re pC 2)2

Re p(Re pC 1)
< 0,

we haveT1 < T2.
ChooseT�

1 , TC

1 , T�

2 so that 1< T�

1 < T1 < TC

1 < T�

2 < T2 and P1T jCDT�

1
<

2(RepC 2)2 D P1T jCD1. Then, for any�2 2 (0, 1=6), there exists a

�2 D �2(�2, Re p, T�

1 , TC

1 , T�

2 ) 2 (�1,C1)

such that
8

<

:

QP1 > 0 if �� < T�

1 ,
QP1 < 0 if �� > TC

1 ,
QP2 < 0 if �� < T�

2

holds for � 2 (0, �2) and � 2 (�2, C1).
Indeed, since there exists aT0 2 (1, T1) such thatP1T is monotone increasing for

C 2 [1, T0], and monotone decreasing forC 2 [T0,C1), it holds thatP1T > P1T jCDT�

1

for C 2 [1, T�

1 ), and thatjP1T j >
�

�P1T jCDTC

1

�

� for C 2 [TC

1 , C1). By �2 < 1=6 and
(9.2), (9.3), there exists a�T�

1
such thatP1� < P1T jCDT�

1
holds for� > �T�

1
, and there

exists a�TC

1
such thatP1C <

�

�P1T jCDTC

1

�

� holds for � > �TC

1
.

On the other hand, sinceP2T < �Rep(RepC1){T�

2 C(T�

2 )�1}2
C3(Rep)2

�4, and
the right-hand-side is monotone increasing forC, it holds thatjP2T j > j� Re p(RepC
1){T�

2 C (T�

2 )�1}2
C 3(Rep)2

� 4j. Hence, by�2 < 1=6 and (9.4), there exists a�T�

2

such thatP2C < j� Re p(Re pC 1){T�

2 C (T�

2 )�1}2
C 3(Rep)2

� 4j holds for � > �T�

2
.

Therefore if we set�2 WD max{�T�

1
, �TC

1
, �T�

2
}, then we get our assertion.
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Proof of Claim 5. SetC WD �

1=2�� . Then � D 1=2 � log C= log �. Assume� 2
(1=3,1=2) and� 2 (4,C1), and fix Rep. Let c(t) be as before. Note here that�=C2

D

�

2�
> 2 � 21=3

> 2, �2
=C4

D �

4�
> 4 � 22=3

> 4, andC2
� D �

2(1��)
> 4. Set

B1 WD 4c(2)D 8, B2 WD c(4)D
4

3
, B3 WD 2c(4)D

8

3
.

Now, we have the following upper estimates forH (�, �) etc.:

H (�, �) D H1(1� �, �)C H1(�, �)

D

C1

X

mD1

��

�

1=2

C

�2m�1

C

�

C

�

1=2

�2m�1

C (C�1=2)2m�1
C

�

1

C�1=2

�2m�1�
�

2m�1

(�2m�1
C 1)2

< 4
C1

X

mD1

(C�1=2)2m�1 1

�

2m�1
D 4

C1

X

mD1

�

C

�

1=2

�2m�1

D 4c

�

�

C2

�

C

�

1=2
< B1

C

�

1=2
,

H (2�, �) D H (1� 2�, �) D
1

C2
� C�2

C H0(1� 2�, �)

D

1

C2
� C�2

C

C1

X

mD1

(C2(2m�1)
� C�(2m�1))

1

�

2m�1
C 1

<

1

C2
� C�2

�

1C c

�

�

2

C4

�

C4

�

�

<

1

C2
� C�2

(1C B2�
1�4�)

<

1

C2
� C�2

(1C B2),

H1(0, �) D 2
C1

X

mD1

�

2m�1

(�2m�1
C 1)2

< 2c(�2)
1

�

< A4
1

�

,

H1(�, �) D
C1

X

mD1

��

�

1=2

C

�2m�1

C

�

C

�

1=2

�2m�1�
�

2m�1

(�2m�1
C 1)2

< 2
C1

X

mD1

�

�

1=2

C

�2m�1 1

�

2m�1

D 2
C1

X

mD1

�

1

C�1=2

�2m�1

D 2c(C2
�)

1

C�1=2
< B3

1

C�1=2
,

H1(2�, �) D H (1� 2�, �) � H1(1� 2�, �) < H (1� 2�, �) <
1

C2
� C�2

(1C B2).

We also have the following lower estimate:

H (2�, �) >
1

C2
� C�2

.
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Now, we give an upper estimate forQP2.

QP2 D (�Re p){(�Re p)H (2�, �)2
� (Re pC 1)H (�, �)2}

�

H1(0, �) �
1

2 log�

�

C (Re pC 1){H (�, �)2H1(2�, �)C 2(�Re p)H (�, �)H (2�, �)H1(�, �)}

� 2�{1� (Re p)2}H (�, �)2H (2�, �)

<

1

2(C � C�1)2(C C C�1)2 log �

�

�

�(Re p)2
C 2(Rep)2(1C B2)2A4

log �

�

C (�Re p)(Re pC 1)(C2
� C�2)2B1

2 C2

�

C 2(RepC 1)

�

(C2
� C�2)B1

2(1C B2)
C2 log �

�

C 2(�Re p)(C2
� C�2)B1(1C B2)B3

log �

�

��

<

1

2(C � C�1)2(C C C�1)2 log �
{�(Re p)2

C P0

2C},

where we set

P0

2C WD 2(Rep)2(1C B2)2A4
log �

�

C (�Re p)(Re pC 1)B2
1

C6

�

C 2(RepC 1)

�

B1
2(1C B2)

C4 log �

�

C 2(�Re p)B1(1C B2)B3
C2 log �

�

�

.

Choose�3 2 (1=3, 1=2). Since

P0

2C <

�

2(Rep)2(1C B2)2A4 C (�Re p)(Re pC 1)B1
2 1

log 4

C 2(RepC 1){B1
2(1C B2)C 2(�Re p)B1(1C B2)B3}

�

� �

�6�3C2 log �

holds for � 2 (�3, 1=2), P0

2C(�, �) converges to 0 as� !C1 uniformly on (�3, 1=2).
Therefore, for any�3 2 (1=3, 1=2), there exists a�3 D �3(�3, Rep) 2 (�1,C1) such

that QP2 < 0 holds for� 2 (�3, 1=2) and� 2 (�3,C1).

Proof of Claim 6. Note here that

QP1 > (�Re p)(Re pC 1)H (�, �)H1(2�, �)(2H1(0, �)C H1(�, �) � H1(1� �, �)).

By the assumption, we have (�Re p)(Re p C 1)H (�, �)H1(2�, �) > 0. Fix �4 � 4.
Since 2H1(0, �) C H1(�, �) � H1(1 � �, �) is a continuous function on{(�, �) j � 2
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[1=3, 1=2], � 2 [4, �4]}, and 2H1(0, �) > 0 on {(1=2, �) j � 2 [4, �4]}, there exists an
�4 D �4(�4) 2 [1=3, 1=2) such that QP1 > 0 holds for� 2 [�4, 1=2) and� 2 [4, �4].

Any surface we construct here has no branch point. To see this, we have only to
show that #g�1(1)D 3. Recall here thatg is given by

g(z) D

P3
jD1 p j b j h(z, q j )
P3

jD1 b j h(z, q j )
D

p

�1

P3
jD1 b j h(z, q j )

P3
jD1 b j h(z, q j )

,

where

q1 D 1, q2 D �

2� , q3 D �

2�2� ,

b1 D
p

�1b1, b2 D �

( NpC 1)h(�2�)

2 Reph(�4�)
b1, b3 D

(pC 1)h(�2�)

2 Reph(�4�)
�

1�2�b1.

Since

g(z) D
p

�1
b1=(z� 1)C b1h0(z, q1)C

P3
jD2 b j h(z, q j )

b1=(z� 1)C b1h0(z, q1)C
P3

jD2 b j h(z, q j )
,

it holds thatg(1)D
p

�1b1=b1 D p1 D 1. The denominator ofg is

3
X

jD1

b j h(z, q j ) D b1

�

h(z) �
( NpC 1)h(�2�)

2 Reph(�4�)�2�
h

�

z

�

2�

�

C

(pC 1)h(�2�)

2 Reph(�4�)�
h

�

z

�

2�2�

��

,

and the numerator ofg is

3
X

jD1

b j h(z, q j ) D b1

�

h(z) �
(pC 1)h(�2�)

2 Reph(�4�)�2�
h

�

z

�

2�

�

C

( NpC 1)h(�2�)

2 Reph(�4�)�
h

�

z

�

2�2�

��

.

Since

b1
�1

3
X

jD1

b j h(�, q j ) D h(�) �
( NpC 1)h(�2�)

2 Reph(�4�)�2�
h(�1�2�)C

(pC 1)h(�2�)

2 Reph(�4�)�
h(��1C2�)

D h(�)C
(Re pC 1)h(�2�)

(�Re p)h(�4�)�2�
h(�1�2�) > 0,

and

b1
�1

3
X

jD1

b j h(�, q j ) D h(�)C
(Re pC 1)h(�2�)

(�Re p)h(�4�)�2�
h(�1�2�) > 0,
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it holds thatg(�)D
p

�1b1=b1 D 1. Here we used the fact thath(�) > 0 andh(�1�2�) >
0. On the other hand, since

b1
�1

3
X

jD1

b j h(�1, q j )

D h(�1)�
( NpC 1)h(�2�)

2 Reph(�4�)�2�
h(���2�)C

(pC 1)h(�2�)

2 Reph(�4�)�
h(���2C2�)

D h(�1)C
(Re pC 1)h(�2�)

(�Re p)h(�4�)
h(��2�) < 0,

and

b1
�1

3
X

jD1

b j h(�1, q j ) D h(�1)C
(Re pC 1)h(�2�)

(�Re p)h(�4�)
h(��2�) < 0,

it also holds thatg(�1)D
p

�1b1=b1 D 1. Here we used the fact thath(�1) < 0 for
� > 4, andh(��2�) < 0 for � 2 (0,1=2) and�� > 2. Indeed, if� > 3, then it holds that

h(�1)D �

1

2
C 2

C1

X

kD1

(�1)k�1 1

�

2k�1
C 1

< �

1

2
C 2

1

� C 1
< 0.

On the other hand,h(��2�) is expressed as follows.

h(��2�) D �

1

�

2�
C 1

C

C1

X

kD1

�

(�1)k�1
�

2�(k�1)
�

(�1)k

�

2�k

�

1

�

2k�1
C 1

D

C1

X

kD1

(�1)k

�

2�k
�

C1

X

kD1

(�1)k
�

�

2�(k�1)
C

1

�

2�k

�

1

�

2k�1
C 1

D

C1

X

kD1

(�1)k
�

1�
�

2�(2k�1)
C 1

�

2k�1
C 1

�

1

�

2�k
D

C1

X

kD1

(�1)k
1� ��(1�2�)(2k�1)

1C ��(2k�1)

1

�

2�k
.

Since this is an alternating series and the first term is negative, it is enough forh(��2�)< 0
that the following inequality holds for any positive odd numberk.

1� ��(1�2�)(2k�1)

1C ��(2k�1)

1

�

2�k
�

1� ��(1�2�)(2kC1)

1C ��(2kC1)

1

�

2�(kC1)

D

�

2�(1� ��(1�2�)(2k�1))(1C ��(2kC1)) � (1� ��(1�2�)(2kC1))(1C ��(2k�1))

�

2�(kC1)(1C ��(2k�1))(1C ��(2kC1))
> 0.
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� < 1=3 � > 1=3

Fig. 9.2.

If k D 1 and�2�
> 4, then it holds that

�

2�(1� ��(1�2�)(2k�1))(1C ��(2kC1)) � (1� ��(1�2�)(2kC1))(1C ��(2k�1))

D (1� ��(1�2�))(1C ��1)(�2�
C �

2��2
� 1� 2��(1�2�)

� �

�2(1�2�))

> (1� ��(1�2�))(1C ��1)(4� 4)D 0.

If k � 3 and�2�
> 4, then it holds that

�

2�(1� ��(1�2�)(2k�1))(1C ��(2kC1)) � (1� ��(1�2�)(2kC1))(1C ��(2k�1))

> 4(1� ��(1�2�)(2k�1)) � 2(1� ��(1�2�)(2kC1))

D 4

�

1C ��(1�2�)(2kC1)

2
� �

�(1�2�)(2k�1)

�

� 4(��(1�2�)(2kC1)=2
� �

�(1�2�)(2k�1)) > 0.

We conclude that,for any � 2 (0, 1), there exist two3-end catenoids of genus one
whose ratio of weights of ends isw1 W w2 W w3 D � W 1 W 1. Both surfaces are symmetric
with respect to the common two planes orthogonal to each other. Fig. 9.2 shows the
case that� D 1=5.
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