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Abstract
Let ' be a chart with at most two crossings. In this paper, we shat ith
I' is a 2-minimal generalized-chart withn > 5, thenT" contains at leastil— 10
black vertices. And we show that if the closure of the surfacsd represented by
I is a disjoint union of spheres, thdn is a ribbon chart. Hence the closure is a
ribbon surface.

1. Introduction

S. Kamada introducedharts which correspond to surface braids [4], [5]. Charts
are oriented labeled graphs in a disk with three kinds ofiaestcalled black vertices,
crossings, and white vertices. Kamada also introdu€adoveswhich are local modi-
fications of charts in a disk. A C-move between two charts @eduan ambient isotopy
between the closures of the corresponding two surface rdidlo charts are said to
be C-move equivalenif there exists a finite sequence of C-moves which modifies one
of the two charts to the other.

A surface inR* is called aribbon surfaceif it is the boundary of an immersed
handlebody with singularities which are mutually disjoditks such that the preimage
of each disk is a union of a proper disk of the domain and a diskhe interior of
the domain, a handlebody. In the words of charts, a ribbofaseris the closure of
a surface braid which corresponds taibbon chart where a ribbon chart is a chart
which is C-move equivalent to a chart without white verti¢ép

Kamada showed that any 3-chart is a ribbon chart [4]. NagadeHirota extended
Kamada’s result: Any 4-chart with at most one crossing ishdbon chart [7]. We
showed that any-chart with at most one crossing is a ribbon chart [11].

For a setX in a space, leCI(X) be the closure of the se.

Let ' be a chart. Lele; ande, be edges of” which connect two white vertices
wy and w, where possiblyw; = w,. Suppose that the uniog U & bounds an open
disk E. ThenCI(E) is called abigon provided that any edge containing or w, does
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Fig. 1. The edges; ande, do not contain crossings.

not intersect the open disk (see Fig. 1). Sinces; and e, are edges of", they do
not contain any crossings.

Let I' be a chart. Letw(I'), f(I') and b(I") be the number of white vertices,
the number of free edges and the number of bigong$ inespectively. LetC(I") =
(w(I"), = f(I'), =b(I")). The tripletC(I") is called anextended complexitgf the chart
I' (see [4] for complexities of charts).

For each non-negative integé&r let c(I') be the number of crossings in a chart
I'andCy = {I" | ¢(I') < k}. A chartT" in Cy is said to bek-minimal if its extended
complexity is minimal among the charts i@ which are C-move equivalent to the
chartT" with respect to the lexicographical order of the triad of theegers [11].

We showed that if a 2-minimal 4-chart contains exactly twossings, then it con-
tains at least eight black vertices [9]. It is well known tlifathe closure of the surface
braid represented by a 4-chart is one sphere, then the obiataies exactly six black
vertices. Hence we showed that any 4-chart with at most twessings is a ribbon
chart if the chart corresponds to a surface braid whose i@osuone sphere [9]. We
give another proof of this theorem [13].

Let I be a chart. For each label, we denote by, the subgraph of* consisting
of edges of labem and their vertices. In this paper,

crossings are vertices dff but we do not consider crossings as
vertices of the subgrapfp,.

A chart I' with a white vertex is called @eneralized n-charif there exist two
non-negative integerp < q with n = q — p such that
(i) I does not have a white vertex except for<i < g, and
(if) the bothT'p;1 andI'q—1 have white vertices.

In this paper the following are main results:

Theorem 1.1. LetI’ be a2-minimal generalized n-chart. If B 5, thenI” contains
at least4n — 10 black vertices.

Theorem 1.2. LetT be a chart with at most two crossings. If the closure of the
surface braid represented Hy is a disjoint union of sphereshenT is a ribbon chart.
Hence the closure is a ribbon surface.
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The 2-twist spun trefoil is represented by a chart with sixtevivertices and three
crossings. It is well known that the 2-knot is not a ribbonface. By Theorem 1.2,
the chart representing the 2-knot must possess at least ¢hossings.

On the other hand, Hasegawa showed that if a chart repregemtR-knot is min-
imal, then the chart must possess at least six white verfifjesvhere a minimal chart
means its complexity (I"), — f(I")) is minimal among the charts C-move equivalent
to the chart with respect to the lexicographic order of pafréntegers. We know that
there does not exist a minimal chart with one, two nor thre@emertices. We show
that there does not exist a minimal chart with five white wexdi [8]. We show that
the minimal chart with four white vertices is a ribbon chant,a disjoint union of free
edges, hoops and a chart representing a “tufiigdink of Hopf link” [3] and [14].

Using the result in this paper, we get the following [15]: TIf is a chart with
at most three crossings and if the closure of the surfacel bbepresented by is a
disjoint union of spheres, theh is a ribbon chart, or a disjoint union of free edges,
hoops and a chart representing a 2-twist spun trefoil. Thartchith six white ver-
tices and three crossings representing a 2-twist spuniltiefdprimitive” k-minimal
chart in some sense fde > 3. We study the properties d&¢minimal charts and such
primitive charts.

2. Preliminaries

Let n be a positive integer. Am-chart is an oriented labeled graph in a disk,
which may be empty or have closed edges without verticeseccaloops satisfying
the following four conditions:

(i) Every vertex has degree 1, 4, or 6.

(i) The labels of edges are ifi, 2,...,n—1}.

(iii) In a small neighborhood of each vertex of degree 6, ¢hare six short arcs, three
consecutive arcs are oriented inward and the other threewveard, and these six are
labeledi andi + 1 alternately for somé, where the orientation and label of each arc
are inherited from the edge containing the arc.

(iv) For each vertex of degree 4, diagonal edges have the $mmeé and are oriented
coherently, and the labelsand j of the diagonals satisfyi — j| > 1.

A vertex of degree 1, 4, and 6 is calledb&ack vertex a crossing and awhite vertex
respectively (see Fig. 2). Among six short arcs in a smalgimedrhood of a white
vertex, a central arc of each three consecutive arcs odénteard or outward is called
a middle arcat the white vertex (see Fig. 2 (c)). There are two middle arcas small
neighborhood of each white vertex.

C-moves are local modifications of charts in a disk (see [@],fpr the precise
definition). Kamada originally defined Cl-moves as follows C-I-M2 move and a
C-I-R2 move as shown in Fig. 3 are special cases of Cl-moveghartI" is obtained
from a chartl'” by a Cl-move if there exists a diskD such that
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Fig. 2. (a) a black vertex, (b) a crossing, (c) a white verteach
arc with three transversal short arcs is a middle arc.

X S5
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Fig. 3. For the C-IlI-1 move, the edge containing the blackese
does not contain a middle arc in the left figure.

() the two chartsI” and I’ intersect the boundary dD transversely or do not inter-
sect the boundary oD,

(i) TNnD®=T1"NnD¢° and

(i) neither of ' N D nor I'" N D contains a black vertex,

where (---)° is the complement of «(- - ).

Let I' be a chart. Anedgeof T" is the closure of a connected component of the
set obtained by taking out all white vertices and crossimgmfl". On the other hand,
an edgeof ', is the closure of a connected component of the set obtainetdKiyg
out all white vertices from',,. A closed edge of, is calleda ring if it contains a
crossing but does not contain a white vertex nor a black xerfe hoopis a closed
edge of ' without vertices (hence without crossings, neither). Amgesdf ' or Ty,
is called afree edgeif it has two black vertices. An edge df or I', is called a
terminal edgeif it has a white vertex and a black vertex. Note that free sdged
terminal edges may contain crossingslaf

To make the argument simple, we assume that the charts lieeoB-sphere instead
of the disk. In this paper,

all charts are contained in th@-sphere 3.
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We have the special point in the 2-sphe3g called the point at infinity denoted by
oo. In this paper, all charts are contained in a disk which dagscontain the point
at infinity oo.

A hoop is said to besimpleif one of the complementary domain of the hoop does
not contain any white vertices.

We can assume that alkyminimal chartsI” satisfy the following five assumptions
(cf. [10] and [11]):

AssumMmPTION 1. Any terminal edge of,, does not contain a crossing. Hence
any terminal edge of',, is a terminal edge of and any terminal edge df,, contains
a middle arc.

ASSUMPTION 2. Any free edge of', does not contain a crossing. Hence any
free edge ofl', is a free edge of".

AssumpTIiON 3. All free edges and simple hoops Ih are moved into a small
neighborhoodJ,, of the point at infinityco.

AssuMPTION 4. Each complementary domain of any ring must contain att leas
one white vertex.

AssuMPTION 5. Hence we can assume that the subgraph obtained Frooy
omitting free edges and simple hoops does not meet théJget And also we can
assume thafl" does not contain free edges nor simple hoops, otherwiseionendt
Therefore we can assume that if an edgd gfcontains a black vertex, then it is a ter-
minal edge and that each complementary domain of any hoapsirgs of ' contains
a white vertex, otherwise mentioned.

Furthermore as shown in [10], we can also assume the folpp@assumption:

ASSUMPTION 6. The point at infinityoo is moved in any complementary domain
of I.

For a setX in a space, leint(X), 3(X) be the interior, the boundary of the set
X respectively.

3. Tangles
For each graplG in S, let (see Fig. 4)

M(G) = the maximal subgraph d& without vertices of degree 1,

Out(G) = the complementary domain d¥1(G) containing the point at infinityo,
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: § M(G) §

mG) Brd(G)
Fig. 4. Out(G) and In(G) are shaded areas.

In(G) = (CI(Ou(G)))¢, and
Brd(G) = M(G) N CI(Out(G)).

Lemma 3.1 ([11, Lemma 5.1]). Let G be a connected graph ir’.SLet D be a
disk containing G. Then the following hold
(1) Out(G) is an open disk.
(2) Each connected component of®) is an open disk whose closure is a disk.
(3) A regular neighbourhood of (G) UG in  is a disk and so is a regular neigh-

bourhood of II{G) U G in D.
Let I' be a chart. For a subset in I', let

w(X) = the number of white vertices iX.

Let I be a chart and a disk. The pairP NI, D) is called atangleif it satisfies
the following two conditions:
(1) oD does not contain any white vertices, black vertices norsings of the chart
r, and
(2) oD transversely intersects edges Iof

Let T" be a chart, D N T, D) atangle andG; =D NI (i =1,2,...). The
tangle © N T, D) is called aT -tangle of label n (tangle with at most three labels) if
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it satisfies the following two conditions:
(i) Gj =0 exceptforn—1<i<n+41.
(i) w(DNT)>1butD does not contain any crossing.
If In(G,) = @ then we say that th@ -tangle islinear. If Cl(In(Gy)) is a disk then we
say that theT-tangle iscellular.

Let (DN T, D) be aT-tangle of labeln. If an edgee of I', intersectsaD, then
en D is called anexceptional arcof the T-tangle.

Lemma 3.2 ([12, Lemma 4.2]). Any linear T-tangle in a k-minimal chart pos-
sesses at least two exceptional arcs.

Lemma 3.3. Let (D N T, D) be a linear T-tangle of label n with exactly two
exceptional arcs in a k-minimal chaft. Then we have
(1) each white vertex in D is contained in a terminal edge of laieand
(2) there exists a unique arc in D I'y connecting the two point8D N 'y, such that
all the white vertices in the arc are contained in terminages.

Proof. For (1). LetG be a connected component BfnT',. Since theT -tangle is
linear, G is a tree. Thert D N G consists of two points by Lemma 3.2. Now consider
the two pointsdD N T, as vertices ofG. Let B be the number of terminal edges &
which is equal to the number of black vertices@ W the number of white vertices
in G, and E the number of edges i®. Since each white vertex i is of degree 3,
we have ®V + (B + 2) = 2E. Since G is a tree, we have the Euler characteristic
(W+B+2)—E=1. Thus 3+ B+2=2(W + B+ 1). NamelyW = B. Since the
chart isk-minimal, each white vertex i is contained in at most one terminal edges
of label n by Assumption 1. Hence the equality = B implies that each white vertex
in G is contained in a terminal edge of label

For (2). By taking all terminal edges off froi®, we get a unique simple arc[]

4. Tiny cellular T-tangles

Lemma 4.1. Let(DNT,D) be a T-tangle of label n in a k-minimal chalit. Let
G be the closure of a connected componen{®i I'y) — CI(In(D N I['y)). If G is not
a terminal edgethen it is a tree containing at least two points in BRIN T'y) U 9D.

Proof. If G is an arc, therG is either a terminal edge or an arc containing two
points in Brd(D N I'y) U dD. Hence we can assume th@ is a tree containing a
white vertex.

Suppose thatG contains at most one point iBrd(D N I'y) U aD. Let D’ be a
regular neighborhood oEl(In(D N T'y)) in D, G' = GNCI(D — D’), and N a regular
neighborhood ofz’ in CI(D—D’). ThenNNTI', = G’ anddN NI, contains at most one
point. SinceG contains a white vertexp(N N I') > 1. SinceG’ is a tree,N is a disk.
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Since D N T, D) is a T-tangle of labeln, (N N I, N) is a T-tangle of labeln with
at most one exceptional arc. SinGis a tree, N N T, N) is linear. This contradicts
Lemma 3.2. Hencé& contains at least two points iBrd(D N I'y) U aD. L]

A tangle O, N T, D;) containsa tangle D, N I", Dy) provided thatD; D Ds.
Let I be a chart, andd N I", D) a cellular T-tangle of labeln. The tangle D N
I', D) is tiny provided that the closure of each componentRHHCI(In(DNI))) NI is
() an arc connecting a point iAD and a point inBrd(D N I'y), or
(i) a terminal edge of labeh.

NoOTE. For any cellularT-tangle of labeln, let X be the union of all the termi-
nal edges of labeh in D each of which intersect€l(In(D N I'y)), and N a regular
neighborhood ofCI(In(D NT,))U X in D. Then N NT, N) is a tiny cellularT-tangle
of label n.

Lemma 4.2. Let (D NT, D) be a non-linear T-tangle of label n with p excep-
tional arcs in a k-minimal charl". Then(D NT, D) contains a tiny cellular T-tangle
with at most p exceptional arcs.

Proof. Since D N T, D) is not linear,In(D N T,) # @. Let Z be a connected
component ofD N T’y such thatin(Z) contains a connected componentlofD N I'y).
ThenZ N oD consists of at mosp points.

Let D* = Cl(In(Z)) and Y the union of the closures of connected components of
Z—Cl(In(DNTy)) each of which is not a terminal edge (see Fig. 5). By Lemma(3),
D* = Cl(In(2)) consists of disjoint disks. And consists of disjoint trees.

SupposeY = §. Then the closure of a connected componenZefCl(In(D NTy))
is a terminal edge, an@l(In(2)) is a disk. LetN be a regular neighborhood &i(Z)U
Z in D. Then N N T, N) is a tiny cellularT-tangle without exceptional arcs. Hence
we have a desired result. We can assurmng 0.

Let g be the number of points iID*NY. Fori =1, 2,3,..., let

di = the number of connected componentsf containingi points inD*NY,

ti = the number of trees iy containingi points inD* NY.

Then we have

(1) iixdi:iixti:q.
i=1 i=1
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SinceY # @, we haveq > 1. SinceD* U Y is contractible, by Euler formula
we have

(2 Zdi+zti_q=l-
= =)

By using the equation (1) and the equation obtained by dogl#ach side of the equa-
tion (2), we have

Zidi + 2 3 ti—2q
i=1 i=1

Zidi —i-Ziti — (il x d; -i—ii Xti>
i=1 i=1 i=1 i=1

=Y (2-i)d+ Y @-iti=d—> (i—2d +t— ) (i—2k.
i=1 i=1 i=3 i=3

Thus we have

2

©) Di-2d+ )Y (-2 =dyi+t -2

i=3 i=3

By Lemma 4.1, if the closure of a connected componentM(I'y) — CI(In(D N
I'h)) is not a terminal edge, then it contains at least two paimt8rd(D N I'y) U aD.
This implies that for a connected componéhtof Y, if D* NG consists of one point,
then G contains a point imD. Thus each tree itY contributing tot; must contain a
point in aD. Since there are at mogt connected components of intersectingoD,
we havet; < p.

We shall show that there exists an integer J < p with d; # 0.

If p=1, thent; < 1. Since the left side of the equation (3) is non negative, we
haved; +t;—2> 0. Henced; > 2—t; > 2—1 = 1. Therefored; # 0. We can assume
p=2.

Suppose thati =0 fori = 1,2,..., p. By the equation (1), we havE ;2 i xd =
g > 1. Thus there exists an integ¢r> p > 2 with dj # 0. Hence for the left side of
the equation (3) we have

4) i(l —2)d; +i(i —2)t; > i(l -2)d>j—-2>p-2.
i—3 i—3 i)

On the other hand, for the right side of the equation (3) weshav

i+t —-2=1t—2.
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Fig.5. p=4,q =7, D; and D are disks inD* containing two
points in D* N'Y, D} is a disk in D* containing three points in
D*NY, Yy, Y, Y3 and Y, are trees inY containing one point
in D*NY, Ys is a tree inY containing three points iM* N'Y,
di=0,db=2,d3=1,t1=4,t, =0, t3 = 1.

Sincet; < p, we have
(5) di+t1-2=<p-—2.

We have a contradiction comparing (4) and (5). Thereforeetlexists an integer ¥
j < p with d; #0.

Since d; # 0 for some integer X j < p, there exists a connected component
N of CI(In(D N I'y)) such thatN intersects at mosp connected components i¥.
By Lemma 3.1 (2),N is a disk. LetX be the union of terminal edges B N 'y
intersectingN. Let N* be a regular neighborhood & U X. Then N* N T, N*) is a
tiny cellular T-tangle with at mostp exceptional arcs. O

5. To-tangles

Let I" be a chart. A tanglel¥ NI, D) is called anNS-tangle of label m(new
significant tangle) if it satisfies the following two conditis:
(i) If i #m, thenaD NT; is at most one point, and
(i) w(DNT)>1 andD contains at most one crossing.

Lemma 5.1 ([12, Theorem 3.5]). There does not exist any NS-tangle in a
k-minimal chartT".

Let (DNT',D) be aT-tangle of a charl". If s is the number of labels ifi | 9D N
Iy # @}, then theT-tangle is called als-tangle Thus aT-tangle means dp-tangle,
a T;-tangle, aT,-tangle or aTs-tangle.

NOTE. Since Tp-tangles andT;-tangles are NS-tangles, there do not exist any
To-tangles norT;-tangles in ak-minimal chart by Lemma 5.1.
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Lemma 5.2 ([12, Theorem 5.4]). Let (D N T", D) be a tiny cellular }-tangle of
label n in a k-minimal chartl” which possesses exceptional arcs.
(1) The tangle possesses at least two exceptional arcs.
(2) If the tangle possesses exactly two exceptional,dlen D contains at least two
terminal edges of label n.

Let I be a chart,X C I". Let

a(X) =min{i | T} N X # @},
B(X)=maxi | I N X # 0}.

Lemma 5.3 (Boundary condition lemma ([12, Lemma 4.1]))Let (D N T, D) be
a tangle in a k-minimal chart" such that D does not contain any crossing. Leta
a(dDNT) and b=pg(OGD NT). Then DNI} = @ except for a<i < h.

Lemma 5.4. Let(D N T, D) be a non-linear 3-tangle of label n in a k-minimal
chartI". If the T,-tangle possesses exactly two exceptional,dten the tangle possesses
at least two terminal edges of label n.

Proof. Since theT,-tangle possesses an exceptional arc, there exists arelinteg
ee{+1, -1} withoaDNT Cc ', UTh.. Thus we haveD N T C I'y U T, by the
Boundary condition lemma (Lemma 5.3). Hence the tan@len(l", D) contains a tiny
cellular T,-tangle ©’ N T, D’) with at most two exceptional arcs by Lemma 4.2.

By Lemma 5.2 (1), the tangleD{ N T, D’) possesses exactly two exceptional arcs.
By Lemma 5.2 (2), there exist at least two terminal edges lbélla in D. []

By Lemmas 3.3 and 5.4, we have the following corollary:

Corollary 5.5. Let (D NT, D) be a B-tangle of label n with exactly two excep-
tional arcs in a k-minimal charf". Then the following hotd
(1) The disk D contains at least one terminal edge of label n.
(2) If D contains exactly one terminal edge of labelthen(D N T, D) is linear.

6. Charts with at most three crossings

Let ' be a chart,D a disk. Letm be a label withD N T\, # @. A connected
componentG of D NIy, is atwo-color componendf label m in D provided that
(i) GnNaD consists of at most one point,
(i) there exists an integet € {+1,—1} such that all the white vertices i are con-
tained inT'pys, and
(i) G is not an arc contained in a terminal edge.
Note that a two-color component may contain a crossing.
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Lemma 6.1 ([12, Lemma 3.6]). LetI" be a k-minimal chart and D a disk. Then
for any two-color component G in ,0G U In(G) contains at least two crossings.

Let G be a graph. Then an edgein G is called acut edgeof G provided that
G — e is disconnected.

Lemma 6.2. LetT be a k-minimal chart and G a two-color component of label
m in a disk D such that
(1) GNnab =0, and
(2) G contains a cut edge.
ThenT contains at least four crossings.

Proof. Lete be a cut edge 0o6G. Since by Assumption 6 we can move the point
at infinity co to any complementary domain df, we can assume C CI(Out(G)).
Sincee is a cut edge ofG, CI(G — €) consists of two connected components, &y
and G,. Fori =1, 2 let N; be a regular neighbourhood @; U In(G;) and G| =
Ni N G. ThenN; is a disk by Lemma 3.1 (3). Thu§] is a two-color component in
Ni. Hence by Lemma 6.1, each &) UIn(G}) and G, U In(G}) contains at least two
crossings. Nowe C CI(Out(G)) implies N; N N, = @. Therefore" contains at least
four crossings. ]

Lemma 6.3. Let ' be a k-minimal chart with at most three crossings. ket
a(T") and B = B(I'). Then
(1) each ofl, and I'g is connected
(2) each of BrqI',) and BrdT's) is a simple closed curyeand
(3) Brd(I'y) N Brd(I'g) consists of two crossings.

Proof. LetG, be a connected component Bf. Let N be a regular neighbour-
hood of G, U In(G,). SinceG, is connectedN is a disk by Lemma 3.1 (3). Let
D* = CI(S> — N) where S is the 2-sphere. The®* is a disk, too.

Now «a = «(T") implies that any white vertices i, are contained im, N Ty 1.
Thus G,, is a two-color component of label in the disk N.

Since there are at most three crossings, does not contain a cut edge by
Lemma 6.2. By Assumption 55, is not a free edge. Thu§, is not a tree. Now
Cl(In(G,)) consists of disks by Lemma 3.1 (2). SinGg does not contain a cut edge,
Cl(In(G,)) consists of only one disk. Hence we have

0] Brd(G,) is a simple closed curve.

Suppose thaBrd(G,) contains at most one crossing. SinGg does not contain a
cut edge,dD* N (I' — ',41) is at most one point (see Fig. 6 (a)).

By Lemma 6.1,G, U In(G,) contains at least two crossings. Since there are at
most three crossingd)* contains at most one crossing.
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a+1

Fig. 6.

As mentioned in Assumption 6, by applying C-I-M2 moves we cashpthe neigh-
bourhoodU,, out from D* without increasing the complexity of the chart (see Fig.).(c
Then ©* N T, D*) is an NS-tangle. This contradicts Lemma 5.1. Therefore

(ii) Brd(G,) contains at least two crossings.

Since each connected componentI@f contains at least two crossings and since there
are at most three crossings, there exists only one connectieghonent inl',. Thus
G, =T,. ThusT, is connected.

SinceT, is connected and sincg, satisfies (i),I', satisfies (2).

Similarly we can show thal's is connected, satisfies (2) amtd(I's) contains at
least two crossings.

Since there are at most three crossirsi(I",) and Brd(I'g) must intersect. Since
Brd(I",) and Brd(T's) are simple closed curve8rd(I’,) N Brd(I'g) consists of an even

number of points. Since there are at most three crossBigkl',) N Brd(I's) consists
of two points. O
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Fig. 7. The shaded area is the diBk

7. 2-minimal charts

Lemma 7.1 ([11, Theorem 2]). Any n-chart with at most one crossing is a rib-
bon chart.

Let I be a chart andD a disk. Leta=«a(D NT) andb = (D NT). The disk
D is called anN-rectangleif it satisfies the following four conditions (see Fig. 7):
(i) D does not contain any crossing,
(i) both of 9D NT'y anddD N T, are connected,
(i) oaDNT cTaUTy, and
(iv) there exists an arc ifD N T" connecting a point irD N Ty and a point inD N Ty,
From now on throughout this section, we assume that
(i) T is a 2-minimal chart with exactly two crossings,
(i) T is not a ribbon chart, and
(i) « =a(l) and B = B(T).
By Lemma 6.3, each oBrd(I',) and Brd(I's) is a simple closed curve containing
the two crossings. Let

A, = the closure of the complementary domain of the simple clasete
Brd(I'y) such thatA, does not contain the point at infinityo,

Ag = the closure of the complementary domain of the simple clasede
Brd(I'g) such thatAg does not contain the point at infinity.

Let v; and v, be the crossings im". Let N; = N(v1) and N, = N(v,) be regular
neighborhoods ob; and v, respectively, andN = N; U N, (see Fig. 8). Let

P = (T, — INt(N)) N Ay, Ps = (I — Int(N)) N CI(AS),
P, = (I — Int(N)) N Aq, Py = (s — Int(N)) N CI(AS),
Q= (AN Ag)—IN(N), Qs = (CI(AZ) N CI(AS) — Int(N),

Q2 = (Ay NCI(AE)) — Int(N), Qa4 = (CI(AZ) N Ap) — Int(N).
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(a) d 8 (b) P 8
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Lemma 7.2. There are two N-rectangles among;QQ,, Qs and Q,. Moreover
among PR, P, P; and R, three of them contain white vertices.

Fig. 9.

Proof. We show our lemma by three steps.

Step 1. We claim thatP; or P, contains a white vertex. For, suppose that neither
P, nor P, contains a white vertex. Apply a C-I-M2 move between two piimt P,
along the arcP, further apply a C-I-R2 move so that we can eliminate the @ngss
v; and v, (see Fig. 9 (c)). Henc& can be modified to a chart without crossings by
C-moves. By Lemma 7.11" is a ribbon chart. This contradicts the assumption (ii) of
this section:T" is not a ribbon chart. Hence one & and P, contains a white vertex.
Without loss of generality we can assume tiatcontains a white vertex.

STep 2. We claim thatQ; or Q4 is an N-rectangle. For, suppose that neither
Q1 nor Q4 is an N-rectangle. Then far = 1, 4, there exists a simple atcin Q;
connecting a point iNMN; and a point indN, with [; N T' = @ (see Fig. 10). Let
D be the closure of the connected componentAgf— (I; U l4 U N) containing P;.
ThenaD NT c I',. Since P, ¢ D and sinceP; contains a white vertex, we have
w(D NT) > 1. SinceD does not contain any crossing) (O I', D) is an NS-tangle
of label @. This contradicts Lemma 5.1. Hence one @f and Q4 is an N-rectangle.
Without loss of generality we can assume tlagt is an N-rectangle.
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o
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Fig. 10.

STeEP 3. Hence both ofP; and P, contain white vertices. We can show that one
of P; and P, contains a white vertex by the same way as the one in Step lceHen
among Py, P,, P; and Py, three of them contain white vertices.

If P; contains a white vertex, then we can show that oneQgfand Qs is an
N-rectangle in the same way as the one in Step Z4ltontains a white vertex, then
we can show that one d@3; and Q4 is an N-rectangle in the same way as the one in
Step 2. Therefore two 0€;, Q2, Q3 and Q4 are N-rectangles. O

Lemma 7.3. Both of A, and AS contain white vertices of’; for any label i
(@ +2 =i =p—2),or both of Ay and A} contain white vertices of; for any label
i (c+2=<i=<p-2).

Proof. By Lemma 7.2, two ofQ;, Q2, Q3 and Q4 are N-rectangles. Without
loss of generality we can assume th@f is an N-rectangle. There exists an integer
in {2, 3, 4 such thatQ; is an N-rectangle.

For the casg = 2, we haveQ: C Ay andQz C CI(A%). SinceQq is an N-rectangle,
by the condition (iii) of N-rectanglesyQ, N I" C I', U I'g. By the condition (iv) of
N-rectangles, there exists an aran Q; N T" connecting a point iMQ,; N T, and a point
in dQ; N T's. Hence for each labeél (« + 2 <i < p — 2) there exists a white vertex in
I Ny. SincedQ, NI C T’y UTg, the white vertex of; is contained irint(Ag). Since
Q2 is an N-rectangle, in a similar way as the one above we can shatithere exists a
white vertex ofTj (@ +2=<1i < f—2)in Af.

For the casej = 3 or 4, we haveQ; C A, and Q; C CI(AY). Similarly we can
show that there exist white vertices bf for any labeli (@ +2<i <g—-2)in A,
and AY respectively. O

A connected componen®’ of a graphG is called asmall componenbf G if it
satisfies n(G') — G') N G = @. In Fig. 11, X is a small component oK UY, butY
is not a small component oK U Y.
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Fig. 11.

Lemma 7.4 ([12, Theorem 4.8]). Let " be a k-minimal chart. Let G be a small
component of", such that GU In(G) does not contain any crossing. Then G contains
at least two terminal edges of label n.

Proposition 7.5. (1) For any label i (¢+2 <i < B—2) the subgraph’; contains
at least four black vertices.
(2) f «+2< B, thenT,41 U T g1 contains at least six black vertices.

Proof. (1) By Lemma 7.3 we can assume that boti\gfand AS contain white
vertices ofI'; for any labeli (¢« +2=<i <8 -2).

Leti be a label withe +2 <i < f—2. NowdA, C Ty, o #i anda + 1 # i
imply A, NT; = 0. Let G; be a small component ok, N T;. ThenG; is a small
component ofl; in Int(A,). Sincelnt(A,) does not contain any crossing, neither does
G UIn(Gj). By Lemma 7.4,G; contains at least two terminal edges of labeHence
Int(A,) contains at least two terminal edges of label

Similarly we can show that\$ contains at least two terminal edges of label
HenceT; contains at least four black vertices.

(2) Sincea +2 < B, we havex + 1 # g —1. By Lemma 7.2, three oPy, P,
P; and P, contain white vertices. Without loss of generality we casuase that all of
P, P, and P; contain white vertices.

Since P, contains a white vertex ane, C A, N T, the diskA, contains a white
vertex of'g_1. SincedA, C Ty, @ # —1 anda +1# -1, we havedA, NT'p_1 =
@. In a similar way to (1) we can show th#t(A,) contains at least two terminal
edges of labep — 1.

Since P; contains a white vertex ane, C Ag N T, the diskAg contains a white
vertex of I'yy1. Similarly we can show thaint(Ag) contains at least two terminal
edges of labelr + 1.

Since P; contains a white vertex anBs; C CI(A;’,)HFD,, the open diskAg contains
a white vertex ofl’,,;. Similarly we can show tha,ﬁg contains at least two terminal
edges of labelr + 1.

Thereforel', 11 U I'g_1 contains at least six black vertices. ]
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Proposition 7.6. Both of ', and I'; contain at least two black vertices.

Proof. LetD; be a regular neighborhood @ U In(P,) in S* — Int(N; U Ny)
(i=1,2,3,4). By Lemma 3.1 (3)D; is a disk. By Lemma 7.2, three d?;, P,, Ps
and P, contain white vertices. Without loss of generality we casuase that all of
P;, P, and P; contain white vertices.

Fori =1, 3, we haveoD; N I" C I'y, U I'y11. By the Boundary condition lemma
(Lemma 5.3),D; NT'j = @ except forj € {o, « + 1}. Similarly fori = 2, 4, we have
Di NT; =0 except forj € {B, p —1}.

Since P, (i = 1, 3) contains a white vertex[X N I", D;) is a Tp-tangle of label
a with two exceptional arcs. By Corollary 5.5 (1), the digk (i = 1, 3) contains at
least one terminal edge of label Hencel', contains at least two black vertices.

Since P, contains a white vertex,0> N T, D) is a T,-tangle of labelg with two
exceptional arcs. By Corollary 5.5 (1), the difk contains at least one terminal edge
of label B.

Suppose that the disR, contains exactly one terminal edge of lalgel By Corol-
lary 5.5 (2), O, N T, Dy) is linear. Lete; and e, be the two exceptional arcs of
(D2NT, Dy). By Lemma 3.3,D,N Ty consists of the two arcs;, e; and the terminal
edge. Letw be the white vertex in the terminal edge. Since the termidgkecontains
a middle arc atw by Assumption 1, both oé; ande, contain inward arcs ab or out-
ward arcs atw. Hence P, contains a white vertex. Henc®{ N T, Dy) is a Tp-tangle
of label B with two exceptional arcs. By Corollary 5.5 (1), the difk, contains at
least one terminal edge of labgl Hencel's contains at least two black verticed.]

8. Proof of Theorems 1.1 and 1.2

Lemma 8.1. Let C be a hoop or a ring in a k-minimal chaft. Suppose that
C contains exactly s crossings with<s3. ThenI" contains at least s 4 crossings.

Proof. LetU; andU, be the connected components $f— C. Then each ofJ;
and U, contains a white vertex by Assumptions 3 and 4.

Suppose that; (i = 1, 2) contains at most one crossing. There are at most three
edges transversely intersecti®® Let N; be a disk inU; such thatU; — N; is a
very thin open annulus. Then we can assume ttyatontains a white vertex and that
oN; NT consists of at most three points. Then for the edges intiengeg€N; there are
two cases:

(1) the labels of the edges are different each other, and

(2) at least two labels of the edges are same.

In each case,Nj NI, N;j) is an NS-tangle. This contradicts Lemma 5.1. Hekge
contains at least two crossings. Herctecontains at leass + 4 crossings. ]

The following corollary is a direct result of the above lemma
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Corollary 8.2. LetI be a k-minimal chart with at most three crossings. Then
contains neither hoop nor ring.

Proof of Theorem 1.1. Sinc€ is a generalizedch-chart, w(I') > 1. Sincel is
a 2-minimal chart," contains at most two crossings andis not a ribbon chart. By
Lemma 7.1,I" contains exactly two crossings. By AssumptionI5does not contain
any free edge. By Corollary 8.2 contains neither hoop nor ring. Let = «(I'),
B = B(). Thenw(l'y) > 1, w(I'g) = 1. Sincel is a generalizedh-chart, we have
B—a=n-—2.

By Proposition 7.6, U I'g contains at least four black vertices. Singe- (o +
2)=n—-4>5-4=1> 0, we havex + 2 < 8. By Proposition 7.5 (2)[4+1U g1
contains at least six black vertices. By Proposition 7.5 {d) any labeli (¢ +2<i <
B —2) I'i contains at least four black vertices. We have thaf, Uy 43U ---UTg 5
contains at least 46(—2)— (« + 2) + 1) black vertices. Since 4(—2)— (e +2)+1) =
4(B—a—3) =4(n—5), we have the number of black verticesiof 4(n—5)+4+6 =
4n — 10. O

By [4, Remarks 8 (2)] we have the statement (1) in the follgvMi@mma.

Lemma 8.3. Let " be an n-chartand & the closure of the surface braid ob-
tained fromr .
(1) Let b be the number of black vertices Iof Thenx(S) =2n-—Dh.
(2) Let L%(F) be the(n + p + g)-chart obtained fromI" by shifting all labels i to
i + p. Then the closure of the surface braid obtained fn%ﬁ“) contains at least
p + g+ 1 components.
(3) Leta = (') and 8 = B(I'). Then& contains at least A B + o — 1 components.

Proof. We shall show the statement (2). ®tbe the closure of a surface braid
obtained fromL%(F). Then the surfacs is § with p parallel spheres in front o&-
and g parallel spheres behin§- (cf. [6, p.183]). ThereforeS contains of at leasp +
g + 1 components.

We shall show the statement (3). LBt be the 8 —« + 2)-chart obtained fronT"
by shifting all labelsi to i —« 4+ 1. Then edges of', and edges of's change edges
of I and edges of’;_, , respectively. Hence(I'") =1 andB(I"") = B —a + 1.

LetI' = tgjfl”l(l“’). Since B—a+2)+(e—1)+(n—pB—1)=n, the chartl’” is an
n-chart. Since edges df; and edges of;_, ; change edges df;; and edges of’;
respectively, the charf” is the same as the chdrt Since ¢—1)+(h——-1)+1=
n—pg+a—1, S contains of at leash — 8 + « — 1 components by the statement (2)
in this lemma. O
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Lemma 8.4. LetI” be an n-chart and™” the n-chart obtained front™” by omit-
ting all the free edges. Leﬁ% and A&u be the closures of the surface braids obtained
from I'” and I'” respectively. If§- is a disjoint union of sphereshen so is§.

Proof. Since the charf’ is obtained by adding free edges to the chaft the
surface §- is obtained by attaching 1-handles from the surf&e Since & is a
disjoint union of spheres, so S ]

Kamada showed that far = 1, 2, 3 anyn-chart is a ribbon chart [4]. We showed
that if a 2-minimal 4-chart contains exactly two crossintjgn it contains eight black
vertices [9]. By the similar argument as above, we have thieviong remark:

REMARK 8.5. LetI’ be ak-minimal chart. Lete = «(I") and g = B(I').
(1) If B—a <1, thenI is a ribbon chart.
2) If p—a =2 and if ' is a 2-minimal chart with exactly two crossings, then it
contains eight black vertices.

Proof of Theorem 1.2. Leh be the integer such that is ann-chart. LetI" be
a 2-minimal generalized'’-chart C-move equivalent t&'. If " contains at most one
crossing, then by Lemma 711" is a ribbon chart, so i§'.

Suppose that contains exactly two crossings. By Corollary 812, contains nei-
ther hoop nor ring. LefT” be then-chart obtained fronT” by omitting all the free
edges. Sincd” is a 2-minimal generalizea'-chart, I'” is a 2-minimal generalized
n’-chart.

Let « = (') and B = B(I'”). SinceI'” contains neither hoops, rings nor free
edges, both of"j and I'y contain white vertices. SincE” is a generalizedv'-chart,
we haven’ = g —a + 2.

Let §, § and & be the closures of surface braids obtained fropT” and I'”
respectively. Sincd™ is C-move equivalent td”, §- is ambient isotopic td5- (cf. [6,
Theorem 18. 20]) The closurg- is a disjoint union of spheres, and so $. By
Lemma 8.4,5 is a disjoint union of spheres.

Sincel” is ann-chart, by Lemma 8.3 (3%~ contains at least— 8+« — 1 spheres.
Sincen’ = B —a + 2, § contains at leash — n’ + 1 spheres. By Lemma 8.3 (1)
2h—n"+1) < X(A&”) = 2n — (the number of black vertices @f”). HenceI'” contains
at most 2" — 2 black vertices.

Supposen’ = 4. Sincen’ = 8 — o + 2, we have —«a = 2. By Remark 8.5 (2),
the chart contains at least eight black vertices. Henteontains at least eight black
vertices. On the other hand since’2 2 =2 x 4 — 2 = 6, the chartl'” contains at
most six black vertices. This is a contradiction.

Supposen’ > 5. By Theorem 1.1, the chafff” contains at leastm — 10 black
vertices. On the other hand the chért contains at mosti2 —2 black vertices. Hence
4n’ —10< 2n' — 2. Hencen’' < 4. This is a contradiction.
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Thereforen’ < 3. Sincen’ = g —« + 2, we have —a < 1. By Remark 8.5 (1),

chart is a ribbon chart. Hend# is a ribbon chart, so i§". [
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