

Title	SIMPLE PROOFS OF SOME THEOREMS IN BLOCK THEORY OF FINITE GROUPS
Author(s)	Murai, Masafumi
Citation	Osaka Journal of Mathematics. 2012, 49(4), p. 869-873
Version Type	VoR
URL	https://doi.org/10.18910/23420
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

SIMPLE PROOFS OF SOME THEOREMS IN BLOCK THEORY OF FINITE GROUPS

MASAFUMI MURAI

(Received June 25, 2010, revised February 10, 2011)

Abstract

We give simple proofs of Laradji’s theorem on blocks with central defect groups, Watanabe’s theorem on the Glauberman–Watanabe correspondences of blocks and Robinson’s theorem on defect groups of p -blocks of p -solvable groups attaining Brauer’s upper bound for the number of irreducible characters.

Introduction

In this paper all groups are finite groups. A block means a p -block for a fixed prime p . For a positive integer n , let $p^{v(n)}$ be the highest power of p dividing n . Laradji [7] has proved:

Theorem A. *Let Z be a central p -subgroup of a group G . Let χ be an irreducible character of G such that $v(\chi(1)) = v(|G : Z|)$. Then Z is a defect group of the block of G containing χ .*

Known proofs of this theorem ([7], [11], [13]) are rather complicated. Here we give a simple proof, which is analogous to the proof of Theorem 3.12 of [6].

Let S and G be groups such that S acts on G as automorphisms and that $(|S|, |G|) = 1$. Let B be an S -invariant block of G such that a defect group of B is centralized by S . In this situation Watanabe [15] has proved:

Theorem B. *Any irreducible character in B is S -invariant.*

Watanabe [15] has proved Theorem B by using a theorem of Dade [1]. Here we give a direct proof of Theorem B. Another direct proof, which uses the Glauberman correspondence, is found in Navarro [12].

Let B be a block of a group with a defect group D . A well-known conjecture of R.Brauer asserts that $k(B) \leq |D|$. For p -solvable groups, this conjecture has been proved by [4]:

Theorem C. *Let B be a p -block of a p -solvable group with a defect group D . Then $k(B) \leq |D|$. In particular, for a p -solvable group G with $O_{p'}(G) = 1$, we have $k(G) \leq |D|$, where D is a Sylow p -subgroup of G .*

As to the equality in Theorem C, Robinson [14] has proved:

Theorem D. *Let B be a p -block of a p -solvable group with a defect group D . If $k(B) = |D|$, then D is abelian.*

We simplify Robinson's proof by using a theorem of Gallagher [3].

1. Proof of Theorem A

Proof of Theorem A. As in [7], we may assume that χ_Z is faithful. Let Z act by multiplication on the set of all conjugacy classes of G . Let $\{K_i\}$ be a complete set of representatives of Z -orbits. As in the proof of Theorem 3.12 of [6], we obtain

$$\frac{|G : Z|}{\chi(1)} = \sum_i \omega_\chi(\hat{K}_i)\chi(x_i^{-1}),$$

where $x_i \in K_i$ for each i . This shows that $|G : Z|/\chi(1)$ is a rational integer, which is coprime to p by our assumption. Let K be a sufficiently large algebraic number field and let P be a prime ideal of K lying over p . Then there exists i such that $\omega_\chi(\hat{K}_i)\chi(x_i^{-1}) \notin P$. This implies that χ has height 0 (cf. [2, IV 4.4]). So, if D is a defect group of the block of G containing χ , then $|D| = |Z|$. Thus $D = Z$. This completes the proof. \square

2. Proof of Theorem B

Watanabe [15, Proposition 1] proves essentially the following, which is stronger than Theorem B.

Theorem B'. *Suppose that a group S acts on a group G as automorphisms. Let B be an S -invariant block of G such that a defect group D of B is centralized by S . Assume that $(|S|, |N_G(D)/DC_G(D)|) = 1$. Then any irreducible character in B is S -invariant.*

In this section we give a direct proof of Theorem B'. Let $\Gamma = SG$ be the semi-direct product.

For a block b of a normal subgroup Y of a group X , let $BL(X|b)$ be the set of blocks of X covering b .

Lemma 1. *Let the notation be as in Theorem B'. Assume in addition that S is cyclic.*

- (i) If S is a p' -group, then $|\text{BL}(\Gamma|B)| = |S|$.
- (ii) If S is a p -group, let \hat{B} be a unique block of Γ covering B . Then \hat{B} has a defect group R such that $R = DC_R(D)$.

Proof. (i) Let \tilde{B} be the Brauer correspondent of B with respect to D in $N_G(D)$. By the Harris–Knörr theorem [5], it suffices to show $|\text{BL}(N_\Gamma(D) | \tilde{B})| = |S|$. We note that $N_\Gamma(D) = S \ltimes N_G(D)$, \tilde{B} is S -invariant and D is a defect group of \tilde{B} .

A slight modification of the proof of Proposition 1 of [15] shows that there exists an S -invariant block, b say, of $C_G(D)$ covered by \tilde{B} . It is clear that a block of $N_\Gamma(D)$ covers \tilde{B} if and only if it covers one of the blocks in $\text{BL}(C_\Gamma(D)|b)$. For each block $\beta \in \text{BL}(C_\Gamma(D)|b)$, there exists a unique block in $\text{BL}(N_\Gamma(D)|\tilde{B})$ which covers β . Thus it suffices to show the following:

- (1) $|\text{BL}(C_\Gamma(D) | b)| = |S|$;
- (2) No two distinct blocks in $\text{BL}(C_\Gamma(D) | b)$ are $N_\Gamma(D)$ -conjugate.

(1) Let ζ be the canonical character of b . Since b is S -invariant, so is ζ . Since $C_\Gamma(D) = S \ltimes C_G(D)$ and S is cyclic, there exists an extension of ζ to $C_\Gamma(D)$. Let \mathcal{E} be the set of extensions of ζ to $C_\Gamma(D)$. For any $\eta \in \mathcal{E}$, let $B(\eta)$ be the block of $C_\Gamma(D)$ containing η . Then $B(\eta)$ covers b . Since $C_\Gamma(D)/C_G(D)$ is a p' -group, $B(\eta)$ has defect group $Z(D)$. Therefore η is the canonical character of $B(\eta)$. In particular, $B(\eta) \neq B(\eta')$ if $\eta, \eta' \in \mathcal{E}$ and $\eta \neq \eta'$. Clearly any block of $C_\Gamma(D)$ covering b is of the form $B(\eta)$ for some $\eta \in \mathcal{E}$. Since $|\mathcal{E}| = |S|$, (1) follows.

(2) We claim first that any $\eta \in \mathcal{E}$ is $N_G(D)_\zeta$ -invariant, where $N_G(D)_\zeta$ is the inertial group of ζ in $N_G(D)$. Indeed, for any $x \in N_G(D)_\zeta$, we have $\eta^x \in \mathcal{E}$. Thus $\eta^x = \eta \otimes \lambda_x$ for a unique $\lambda_x \in \text{Irr}(C_\Gamma(D)/C_G(D)) = \text{Irr}(S)$. Since $[C_\Gamma(D), N_G(D)_\zeta] \leq C_G(D)$, λ_x is $N_G(D)_\zeta$ -invariant. Therefore the map $x \mapsto \lambda_x$ is a group homomorphism from $N_G(D)_\zeta$ to $\text{Irr}(S)$. Since this map is trivial on $C_G(D)$, it factors through $N_G(D)_\zeta/C_G(D)$. Since $(|S|, |N_G(D)_\zeta/C_G(D)|) = 1$, this map is a trivial homomorphism. Thus the claim is proved.

Now assume $B(\eta)^x = B(\eta')$ for $x \in N_\Gamma(D)$, $\eta, \eta' \in \mathcal{E}$. We may assume $x \in N_G(D)$. We have $\eta^x = \eta'$, so that $\zeta^x = \zeta$. Thus $x \in N_G(D)_\zeta$. Then $\eta = \eta'$ by the above, and (2) is proved. The proof of (i) is complete.

(ii) If $S = 1$, there is nothing to prove. So we assume $S > 1$. Let B' be the Harris–Knörr correspondent of \hat{B} over B in $N_\Gamma(D)$. Then B' and \hat{B} have a defect group in common. We have $N_\Gamma(D) = SN_G(D) = DC_\Gamma(D)N_G(D)$. So $N_\Gamma(D)/DC_\Gamma(D) \simeq N_G(D)/DC_G(D)$, which is a p' -group by assumption. Thus if β is a block of $DC_\Gamma(D)$ covered by B' , then a defect group R of β is a defect group of B' . Hence R is a defect group of \hat{B} . Now $D \leq R \leq DC_\Gamma(D)$, so that $R = DC_R(D)$. The proof is complete. \square

REMARK 1. As in the proof of Proposition 2 of [15], Lemma 1 (i) follows from [1].

REMARK 2. In Lemma 1, the conclusions of (i) and (ii) are in fact equivalent to the equality $S = S[B]$, where $S[B]$ is defined as in Proposition 1 of [15]. A proof will be given in a separate paper.

Proof of Theorem B'. We may assume that either S is a cyclic p' -group or a cyclic p -group.

Assume that S is a cyclic p' -group. Let ζ be any irreducible character in B . Let T be the inertial group of ζ in Γ . Since any block of Γ covering B contains an irreducible character lying over ζ , any block in $\text{BL}(\Gamma|B)$ is induced from a block in $\text{BL}(T|B)$ (cf. [10, Lemma 5.3.1 (ii)]). So $|\text{BL}(\Gamma|B)| \leq |\text{BL}(T|B)|$. Also, $|\text{BL}(T|B)| \leq k(T|\zeta) = |T/G| \leq |S|$, where $k(T|\zeta)$ denotes the number of irreducible characters of T lying over ζ . Thus Lemma 1 (i) yields $|T/G| = |S|$. Hence $T = \Gamma$ and ζ is S -invariant.

Assume that S is a cyclic p -group. Let \hat{B} and R be as in Lemma 1 (ii). Then by Lemma 4.14 (ii) of [8], any irreducible character in B is R -invariant. On the other hand, since \hat{B} is weakly regular with respect to G and B is Γ -invariant, RG/G is a Sylow p -subgroup of Γ/G by Fong's theorem. Thus $\Gamma = RG$. So any irreducible character in B is S -invariant. This completes the proof. \square

3. Proof of Theorem D

Theorem D is equivalent to the following theorem, cf. Remarks of [14].

Theorem D'. *Let G be a p -solvable group with $O_{p'}(G) = 1$ and $k(G) = |D|$, where D is a Sylow p -subgroup of G . Then D is abelian.*

Lemma 2 (Gallagher [3]). *Let N be a normal subgroup of a group G . Then $k(G) \leq k(G/N)k(N)$ and equality holds if and only if $C_G(x \bmod N) = C_G(x)N$ for all $x \in G$. Furthermore if equality holds, then every irreducible character of N is G -invariant.*

Proof. The first statement is (3) of [3]. If equality holds, then, as shown in the proof of (3) of [3, p.176], every conjugacy class of N is G -invariant. As is well-known, this implies that every irreducible character of N is G -invariant. \square

Proof of Theorem D'.. Let $N = O_{p,p'}(G)$. Then, since $O_{p'}(N) = O_{p'}(G/N) = 1$, by Theorem C and Lemma 2,

$$|D| = k(G) \leq k(G/N)k(N) \leq |G/N|_p |N|_p = |D|.$$

Thus equality holds throughout. So every irreducible character of N is G -invariant by Lemma 2. Then as in the proof of Lemma 3 of [14], we see $G = N$. Thus D is normal in G .

Let Φ be the Frattini subgroup of D . Then, as in Nagao [9], $O_{p'}(G/\Phi) = 1$. Thus by Theorem C and Lemma 2,

$$|D| = k(G) \leq k(G/\Phi)k(\Phi) \leq |G/\Phi|_p |\Phi| = |D|.$$

Thus equality holds throughout. Let $x \in D$. By Lemma 2, we have $C_G(x \bmod \Phi) = C_G(x)\Phi$. Since $D \leq C_G(x \bmod \Phi)$, we obtain $D \leq C_G(x)\Phi$. Thus $D = C_D(x)\Phi$ and $D = C_D(x)$. Since $x \in D$ is arbitrary, D is abelian. This completes the proof. \square

References

- [1] E.C. Dade: *Block extensions*, Illinois J. Math. **17** (1973), 198–272.
- [2] W. Feit: *The Representation Theory of Finite Groups*, North-Holland, Amsterdam, 1982.
- [3] P.X. Gallagher: *The number of conjugacy classes in a finite group*, Math. Z. **118** (1970), 175–179.
- [4] D. Gluck, K. Magaard, U. Riese and P. Schmid: *The solution of the $k(GV)$ -problem*, J. Algebra **279** (2004), 694–719.
- [5] M.E. Harris and R. Knörr: *Brauer correspondence for covering blocks of finite groups*, Comm. Algebra **13** (1985), 1213–1218.
- [6] I.M. Isaacs: *Character Theory of Finite Groups*, Academic Press, New York, 1976.
- [7] A. Laradji: *On characters with minimal defects*, J. Reine Angew. Math. **448** (1994), 27–29.
- [8] M. Murai: *Block induction, normal subgroups and characters of height zero*, Osaka J. Math. **31** (1994), 9–25.
- [9] H. Nagao: *On a conjecture of Brauer for p -solvable groups*, J. Math. Osaka City Univ. **13** (1962), 35–38.
- [10] H. Nagao and Y. Tsushima: *Representations of Finite Groups*, Academic Press, Boston, MA, 1989.
- [11] G. Navarro: *Characters and Blocks of Finite Groups*, Cambridge Univ. Press, Cambridge, 1998.
- [12] G. Navarro: *Actions and characters in blocks*, J. Algebra **275** (2004), 471–480.
- [13] G.R. Robinson: *Local structure, vertices and Alperin's conjecture*, Proc. London Math. Soc. (3) **72** (1996), 312–330.
- [14] G.R. Robinson: *On Brauer's $k(B)$ -problem for blocks of p -solvable groups with non-Abelian defect groups*, J. Algebra **280** (2004), 738–742.
- [15] A. Watanabe: *The Glauberman character correspondence and perfect isometries for blocks of finite groups*, J. Algebra **216** (1999), 548–565.

Meiji-machi 2-27
 Izumi Toki-shi
 Gifu 509-5146
 Japan
 e-mail: m.murai@train.ocn.ne.jp
 Passed away on July 2012