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Abstract
We give simple proofs of Laradji's theorem on blocks with ttehdefect groups,
Watanabe’s theorem on the Glauberman—Watanabe corrempoesl of blocks and
Robinson’s theorem on defect groups pfblocks of p-solvable groups attaining
Brauer’s upper bound for the number of irreducible characte

Introduction

In this paper all groups are finite groups. A block meang-block for a fixed
prime p. For a positive integen, let p*™ be the highest power op dividing n.
Laradji [7] has proved:

Theorem A. Let Z be a central p-subgroup of a group G. Letbe an irredu-
cible character of G such that(x(1)) = v(|G : Z|). Then Z is a defect group of the
block of G containingy.

Known proofs of this theorem ([7], [11], [13]) are rather qolinated. Here we
give a simple proof, which is analogous to the proof of Theoi@12 of [6].

Let SandG be groups such th&acts onG as automorphisms and thag(,|G|) = 1.
Let B be anS-invariant block ofG such that a defect group & is centralized byS. In
this situation Watanabe [15] has proved:

Theorem B. Any irreducible character in B is S-invariant.

Watanabe [15] has proved Theorem B by using a theorem of DHdeHere we
give a direct proof of Theorem B. Another direct proof, whigkes the Glauberman
correspondence, is found in Navarro [12].

Let B be a block of a group with a defect group. A well-known conjecture
of R.Brauer asserts th&t(B) < |D|. For p-solvable groups, this conjecture has been
proved by [4]:
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Theorem C. Let B be a p-block of a p-solvable group with a defect group D.
Then KB) < |D|. In particular, for a p-solvable group G with ©(G) = 1, we have
k(G) < |D|, where D is a Sylow p-subgroup of G.

As to the equality in Theorem C, Robinson [14] has proved:

Theorem D. Let B be a p-block of a p-solvable group with a defect group D.
If k(B) = |D|, then D is abelian.

We simplify Robinson’s proof by using a theorem of Gallagf@&r

1. Proof of Theorem A

Proof of Theorem A. As in [7], we may assume that is faithful. Let Z act
by multiplication on the set of all conjugacy classes@f Let {K;} be a complete set
of representatives oZ-orbits. As in the proof of Theorem 3.12 of [6], we obtain

|G : Z|
x(1)

= 0, (Rx 6

where x; € K; for eachi. This shows thaiG : Z|/x(1) is a rational integer, which
is coprime top by our assumption. LeK be a sufficiently large algebraic number
field and letP be a prime ideal ofK lying over p. Then there exist$ such that
a)X(Ki)X(Xfl) ¢ P. This implies thaty has height O (cf. [2, IV 4.4]). So, iD is
a defect group of the block o& containing x, then|D| = |Z|. ThusD = Z. This
completes the proof. O

2. Proof of Theorem B

Watanabe [15, Proposition 1] proves essentially the fahow which is stronger
than Theorem B.

Theorem B. Suppose that a group S acts on a group G as automorphisms. Let
B be an S-invariant block of G such that a defect group D of B dstmlized by
S. Assume thaf|S|, [INg(D)/DCg(D)|) = 1. Then any irreducible character in B is
S-invariant.

In this section we give a direct proof of Theorem Bet I' = SG be the semi-
direct product.

For a blockb of a normal subgroupy of a group X, let BL(X|b) be the set of
blocks of X coveringb.

Lemma 1. Let the notation be as imMheorem B. Assume in addition that S
is cyclic.
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(i) If Sis a p-group, then |BL(I"|B)| = |S].
(i) If Sis a p-group let B be a unique block of covering B. TherB has a defect
group R such that R= DCg(D).

Proof. (i) LetB be the Brauer correspondent Bfwith respect toD in Ng(D).
By the Harris—Knérr theorem [5], it suffices to shdBL(N-(D) | B)| = |S|. We note
that N (D) = Sx Ng(D), B is Sinvariant andD is a defect group oB.

A slight modification of the proof of Proposition 1 of [15] sk that there exists
an S-invariant block,b say, of Cg(D) covered byB. It is clear that a block ofNr(D)
covers B if and only if it covers one of the blocks in BC{(D)|b). For each block
B € BL(Cr(D)|b), there exists a unique block in BN{(D)|B) which coversg. Thus
it suffices to show the following:

(1) IBL(Cr(D) | b)| = IS;
(2) No two distinct blocks in BLCr(D) | b) are Nr-(D)-conjugate.

(1) Let¢ be the canonical character bf Sinceb is S-invariant, so is¢. Since
Cr(D) = Sx Cg(D) and S is cyclic, there exists an extension ¢fto Cr(D). Let
£ be the set of extensions @f to Cr(D). For anyn € &, let B(n) be the block of
Cr(D) containingn. Then B(n) coversh. Since Cr(D)/Cs(D) is a p’-group, B(n)
has defect groupZ (D). Thereforen is the canonical character d&&(n). In particular,
B(n) # B(n') if n,n € £ andn # n'. Clearly any block ofCr-(D) coveringb is of the
form B(n) for somen € £. Since|&] = |9, (1) follows.

(2) We claim first that any) € £ is Ng (D), -invariant, whereNg (D), is the inertial
group of ¢ in Ng(D). Indeed, for anyx € Ng(D),, we haven* € £. Thusn* = n ®
Ax for a uniqueiry € Irr(Cr(D)/Cg (D)) = Irr(S). Since Cr(D), Ng(D):] < Cs(D),
Ax IS Ng(D),-invariant. Therefore the map — Ay is a group homomorphism from
Ng (D), to Irr(S). Since this map is trivial o€g(D), it factors throughNg (D), /Cs(D).
Since (8], INg(D);/Cs(D)|) = 1, this map is a trivial homomorphism. Thus the claim
is proved.

Now assumeB(n)* = B(y’) for x € N(D), n,n" € £&. We may assume& € Ng(D).
We haven* =/, so that¢* = ¢. Thusx € Ng(D),. Thenn = n’ by the above, and
(2) is proved. The proof of (i) is complete.

(i) If S=1, there is nothing to prove. So we assu@e- 1. Let B’ be the
Harris—Knarr correspondent @& over B in Nr-(D). ThenB’ and B have a defect group
in common. We haveNr(D) = SNs(D) = DCr(D)Ng(D). So Nr(D)/DCr(D) =~
Ng(D)/DCg(D), which is ap’-group by assumption. Thus f is a block of DCr(D)
covered byB’, then a defect grouRR of 8 is a defect group oB’. HenceR is a defect
group of B.NowD <R< DCr(D), so thatR = DCr(D). The proof is complete. []

REMARK 1. Asin the proof of Proposition 2 of [15], Lemma 1 (i) folloireom [1].
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REMARK 2. In Lemma 1, the conclusions of (i) and (ii) are in fact eqlent to
the equalityS = S[B], where §B] is defined as in Proposition 1 of [15]. A proof will
be given in a separate paper.

Proof of Theorem B We may assume that eith&ris a cyclic p’-group or a cyc-
lic p-group.

Assume thatS is a cyclic p’-group. Let¢ be any irreducible character iB. Let
T be the inertial group of in I'. Since any block of" covering B contains an irredu-
cible character lying over, any block in BL("|B) is induced from a block in BLY|B)
(cf. [10, Lemma 5.3.1 (ii)]). SdBL(I'|B)| < |BL(T|B)|. Also, |BL(T|B)| < k(T|¢) =
|IT/G| < |S|, wherek(T|¢) denotes the number of irreduciblle charactersTofying
over¢. Thus Lemma 1 (i) yield$T /G| = |S|. HenceT =T and¢ is Sinvariant.

Assume thatS is a cyclic p-group. LetB and R be as in Lemma 1 (ii). Then
by Lemma 4.14 (ii) of [8], any irreducible character Biis R-invariant. On the other
hand, sinceB is weakly regular with respect t6& and B is T'-invariant, RG/G is
a Sylow p-subgroup ofl'/G by Fong'’s theorem. Thu§ = RG. So any irreducible
character inB is S-invariant. This completes the proof. [l

3. Proof of Theorem D

Theorem D is equivalent to the following theorem, cf. Rersaok [14].

Theorem D. Let G be a p-solvable group with J4G) = 1 and KG) = |D|,
where D is a Sylow p-subgroup of G. Then D is abelian.

Lemma 2 (Gallagher [3]). Let N be a normal subgroup of a group G. Then
k(G) < k(G/N)k(N) and equality holds if and only if &x mod N) = Cg(x)N for
all x € G. Furthermore if equality holdsthen every irreducible character of N is
G-invariant.

Proof. The first statement is (3) of [3]. If equality holdseth as shown in the
proof of (3) of [3, p.176], every conjugacy class bf is G-invariant. As is well-
known, this implies that every irreducible characterMfis G-invariant. ]

Proof of Theorem D. Let N = Oy »(G). Then, sinceOy(N) = Op(G/N) =1,
by Theorem C and Lemma 2,

ID| = k(G) = k(G/N)Kk(N) = [G/N[p|N[, = [D].

Thus equality holds throughout. So every irreducible cti@raof N is G-invariant by
Lemma 2. Then as in the proof of Lemma 3 of [14], we $8e= N. Thus D is
normal in G.
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Let & be the Frattini subgroup dd. Then, as in Nagao [9]0,(G/®) = 1. Thus

by Theorem C and Lemma 2,

ID| = k(G) = k(G/P)k(®) = |G/P|p|®| = |D|.

Thus equality holds throughout. Lete D. By Lemma 2, we hav&€g(x mod @) =
Cs(X)®. SinceD = Cg(x mod @), we obtainD < Cg(x)®. Thus D = Cp(x)® and
D = Cp(x). Sincex € D is arbitrary, D is abelian. This completes the proof. []
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