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Abstract
We give simple proofs of Laradji’s theorem on blocks with central defect groups,

Watanabe’s theorem on the Glauberman–Watanabe correspondences of blocks and
Robinson’s theorem on defect groups ofp-blocks of p-solvable groups attaining
Brauer’s upper bound for the number of irreducible characters.

Introduction

In this paper all groups are finite groups. A block means ap-block for a fixed
prime p. For a positive integern, let p�(n) be the highest power ofp dividing n.
Laradji [7] has proved:

Theorem A. Let Z be a central p-subgroup of a group G. Let� be an irredu-
cible character of G such that�(�(1))D �(jG W Zj). Then Z is a defect group of the
block of G containing� .

Known proofs of this theorem ([7], [11], [13]) are rather complicated. Here we
give a simple proof, which is analogous to the proof of Theorem 3.12 of [6].

Let SandG be groups such thatSacts onG as automorphisms and that (jSj,jGj)D 1.
Let B be anS-invariant block ofG such that a defect group ofB is centralized byS. In
this situation Watanabe [15] has proved:

Theorem B. Any irreducible character in B is S-invariant.

Watanabe [15] has proved Theorem B by using a theorem of Dade [1]. Here we
give a direct proof of Theorem B. Another direct proof, whichuses the Glauberman
correspondence, is found in Navarro [12].

Let B be a block of a group with a defect groupD. A well-known conjecture
of R.Brauer asserts thatk(B) � jDj. For p-solvable groups, this conjecture has been
proved by [4]:
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Theorem C. Let B be a p-block of a p-solvable group with a defect group D.
Then k(B) � jDj. In particular, for a p-solvable group G with Op0(G) D 1, we have
k(G) � jDj, where D is a Sylow p-subgroup of G.

As to the equality in Theorem C, Robinson [14] has proved:

Theorem D. Let B be a p-block of a p-solvable group with a defect group D.
If k(B) D jDj, then D is abelian.

We simplify Robinson’s proof by using a theorem of Gallagher[3].

1. Proof of Theorem A

Proof of Theorem A. As in [7], we may assume that�Z is faithful. Let Z act
by multiplication on the set of all conjugacy classes ofG. Let {K i } be a complete set
of representatives ofZ-orbits. As in the proof of Theorem 3.12 of [6], we obtain

jG W Zj

�(1)
D

X

i

!

�

( OK i )�(x�1
i ),

where xi 2 K i for each i . This shows thatjG W Zj=�(1) is a rational integer, which
is coprime to p by our assumption. LetK be a sufficiently large algebraic number
field and let P be a prime ideal ofK lying over p. Then there existsi such that
!

�

( OK i )�(x�1
i ) � P. This implies that� has height 0 (cf. [2, IV 4.4]). So, ifD is

a defect group of the block ofG containing� , then jDj D jZj. Thus D D Z. This
completes the proof.

2. Proof of Theorem B

Watanabe [15, Proposition 1] proves essentially the following, which is stronger
than Theorem B.

Theorem B0. Suppose that a group S acts on a group G as automorphisms. Let
B be an S-invariant block of G such that a defect group D of B is centralized by
S. Assume that(jSj, jNG(D)=DCG(D)j) D 1. Then any irreducible character in B is
S-invariant.

In this section we give a direct proof of Theorem B0. Let 0 D SG be the semi-
direct product.

For a blockb of a normal subgroupY of a group X, let BL(Xjb) be the set of
blocks of X coveringb.

Lemma 1. Let the notation be as inTheorem B0. Assume in addition that S
is cyclic.
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(i) If S is a p0-group, then jBL(0jB)j D jSj.
(ii) If S is a p-group, let OB be a unique block of0 covering B. ThenOB has a defect
group R such that RD DCR(D).

Proof. (i) Let QB be the Brauer correspondent ofB with respect toD in NG(D).
By the Harris–Knörr theorem [5], it suffices to showjBL(N

0

(D) j QB)j D jSj. We note
that N

0

(D) D SË NG(D), QB is S-invariant andD is a defect group ofQB.
A slight modification of the proof of Proposition 1 of [15] shows that there exists

an S-invariant block,b say, ofCG(D) covered by QB. It is clear that a block ofN
0

(D)
covers QB if and only if it covers one of the blocks in BL(C

0

(D)jb). For each block
� 2 BL(C

0

(D)jb), there exists a unique block in BL(N
0

(D)j QB) which covers�. Thus
it suffices to show the following:
(1) jBL(C

0

(D) j b)j D jSj;
(2) No two distinct blocks in BL(C

0

(D) j b) are N
0

(D)-conjugate.
(1) Let � be the canonical character ofb. Sinceb is S-invariant, so is� . Since

C
0

(D) D SË CG(D) and S is cyclic, there exists an extension of� to C
0

(D). Let
E be the set of extensions of� to C

0

(D). For any� 2 E , let B(�) be the block of
C
0

(D) containing�. Then B(�) coversb. Since C
0

(D)=CG(D) is a p0-group, B(�)
has defect groupZ(D). Therefore� is the canonical character ofB(�). In particular,
B(�) ¤ B(�0) if �, �0 2 E and� ¤ �

0. Clearly any block ofC
0

(D) coveringb is of the
form B(�) for some� 2 E . Since jE j D jSj, (1) follows.

(2) We claim first that any� 2 E is NG(D)
�

-invariant, whereNG(D)
�

is the inertial
group of � in NG(D). Indeed, for anyx 2 NG(D)

�

, we have�x
2 E . Thus�x

D � 


�x for a unique�x 2 Irr(C
0

(D)=CG(D)) D Irr(S). Since [C
0

(D), NG(D)
�

] � CG(D),
�x is NG(D)

�

-invariant. Therefore the mapx 7! �x is a group homomorphism from
NG(D)

�

to Irr(S). Since this map is trivial onCG(D), it factors throughNG(D)
�

=CG(D).
Since (jSj, jNG(D)

�

=CG(D)j) D 1, this map is a trivial homomorphism. Thus the claim
is proved.

Now assumeB(�)x
D B(�0) for x 2 N

0

(D), �, �0 2 E . We may assumex 2 NG(D).
We have�x

D �

0, so that� x
D � . Thus x 2 NG(D)

�

. Then� D �

0 by the above, and
(2) is proved. The proof of (i) is complete.

(ii) If S D 1, there is nothing to prove. So we assumeS > 1. Let B0 be the
Harris–Knörr correspondent ofOB over B in N

0

(D). Then B0 and OB have a defect group
in common. We haveN

0

(D) D SNG(D) D DC
0

(D)NG(D). So N
0

(D)=DC
0

(D) '
NG(D)=DCG(D), which is a p0-group by assumption. Thus if� is a block ofDC

0

(D)
covered byB0, then a defect groupR of � is a defect group ofB0. HenceR is a defect
group of OB. Now D � R� DC

0

(D), so thatRD DCR(D). The proof is complete.

REMARK 1. As in the proof of Proposition 2 of [15], Lemma 1 (i) followsfrom [1].
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REMARK 2. In Lemma 1, the conclusions of (i) and (ii) are in fact equivalent to
the equalitySD S[B], where S[B] is defined as in Proposition 1 of [15]. A proof will
be given in a separate paper.

Proof of Theorem B0. We may assume that eitherS is a cyclic p0-group or a cyc-
lic p-group.

Assume thatS is a cyclic p0-group. Let� be any irreducible character inB. Let
T be the inertial group of� in 0. Since any block of0 covering B contains an irredu-
cible character lying over� , any block in BL(0jB) is induced from a block in BL(T jB)
(cf. [10, Lemma 5.3.1 (ii)]). SojBL(0jB)j � jBL(T jB)j. Also, jBL(T jB)j � k(T j� ) D
jT=Gj � jSj, where k(T j� ) denotes the number of irreduciblle characters ofT lying
over � . Thus Lemma 1 (i) yieldsjT=Gj D jSj. HenceT D 0 and � is S-invariant.

Assume thatS is a cyclic p-group. Let OB and R be as in Lemma 1 (ii). Then
by Lemma 4.14 (ii) of [8], any irreducible character inB is R-invariant. On the other
hand, since OB is weakly regular with respect toG and B is 0-invariant, RG=G is
a Sylow p-subgroup of0=G by Fong’s theorem. Thus0 D RG. So any irreducible
character inB is S-invariant. This completes the proof.

3. Proof of Theorem D

Theorem D is equivalent to the following theorem, cf. Remarks of [14].

Theorem D0. Let G be a p-solvable group with Op0(G) D 1 and k(G) D jDj,
where D is a Sylow p-subgroup of G. Then D is abelian.

Lemma 2 (Gallagher [3]). Let N be a normal subgroup of a group G. Then
k(G) � k(G=N)k(N) and equality holds if and only if CG(x mod N) D CG(x)N for
all x 2 G. Furthermore if equality holds, then every irreducible character of N is
G-invariant.

Proof. The first statement is (3) of [3]. If equality holds, then, as shown in the
proof of (3) of [3, p. 176], every conjugacy class ofN is G-invariant. As is well-
known, this implies that every irreducible character ofN is G-invariant.

Proof of Theorem D0.. Let N D Op, p0(G). Then, sinceOp0(N) D Op0(G=N) D 1,
by Theorem C and Lemma 2,

jDj D k(G) � k(G=N)k(N) � jG=NjpjNjp D jDj.

Thus equality holds throughout. So every irreducible character of N is G-invariant by
Lemma 2. Then as in the proof of Lemma 3 of [14], we seeG D N. Thus D is
normal in G.
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Let 8 be the Frattini subgroup ofD. Then, as in Nagao [9],Op0(G=8)D 1. Thus
by Theorem C and Lemma 2,

jDj D k(G) � k(G=8)k(8) � jG=8jpj8j D jDj.

Thus equality holds throughout. Letx 2 D. By Lemma 2, we haveCG(x mod 8) D
CG(x)8. Since D � CG(x mod 8), we obtainD � CG(x)8. Thus D D CD(x)8 and
D D CD(x). Sincex 2 D is arbitrary, D is abelian. This completes the proof.
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