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Abstract
In the paper [12], Yang conjectured that a nonelementargreuip G of SL(2,C)
containing elliptic elements is discrete if for each elipelementg € G the group
(f, g) is discrete, wheref € SL(2,C) is a test map being loxodromic or elliptic.
By embedding SL(2C) into U(1, 1 H), we give an affirmative answer to this ques-
tion. As an application, we show that a nonelementary andlisorete subgroup of

Isom(H?) must contain an elliptic element of order at least 3.

1. Introduction

The discreteness of Mébius groups is a fundamental probldmghwhas been dis-
cussed by many authors. In 1976, Jgrgensen establishedlkhweifig discreteness cri-
terion by using the well-known Jgrgensen’s inequality [8].

Theorem J. A nonelementary subgroup G of Mobius transformations gainC
is discrete if and only if for each pair of elementsgfe G, the group( f, g) is discrete.

This result shows that the discreteness of a nonelementabjusli@roup depends
on the information of all its rank two subgroups. The abowaltehas been generalized
by many authors by using information of partial rank two swogs. For example,
Gilman [5] and Isochenko [7] used each pair of loxodromiaredats, Tukia and Wang
[10] used each pair of elliptic elements.

Sullivan [9] showed that a nonelementary and non-discretg®up is either dense
in SL(2,C) or conjugate to a dense subgroup of SIXR, This result gives an approach
to studying the discreteness of Mobius groups from the tapcéd aspect. Mainly us-
ing Sullivan’s result, Yang [11] obtained some generaiareg by the information of
the remaining four kinds of rank two subgroups.

Recently, Chen [3] proposed to use a fixed Mobius transfoonadis a test map
to test the discreteness of a given Mobius group. His resgjgests that the discrete-
ness is not a totally interior affair of the involved groupdaprovides a new point of
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view to the discreteness problem. Yang [12] generalizedesmaults by test maps (see
Theorems 2.4-2.7) and proposed the following conjecture.

Conjecture 1.1. Let G be a nonelementary subgroup $t(2, C) containing
elliptic elements and f a loxodrom{cesp. an ellipti¢ transformation. If for each elliptic
element ge G the group(f, g) is discretethen G is discrete.

In SL(2,R), since the trace is real, one can find a sequdiggg of distinct elliptic
elements inG such thatg, — |. In fact, this is a special case (i.e. dW(G) = 2)
of [4, Corollary 4.5.3]. Yang mainly used this fact to proveetfollowing theorem
(Theorems 2.9 in [12]).

Theorem Y1. Let G be a nonelementary subgroupSif(2,R) containing ellip-
tic elements and f a loxodromigesp. an ellipti¢ transformation. If for each elliptic
element ge G the group(f, g) is discrete then G is discrete.

For the general case in SL(@), Greenberg [6] gave an example such tkats
a loxodromic group and is not discrete with divh(G) = 3. This example indicates
that it is nontrivial to construct a subgroup generatedfbynd an elliptic element in
G which is nonelementary, in which one can apply Jgrgensergguality to obtain
a contradiction. However, in the case of SL(2, Yang also obtained the following
theorem (Theorems 2.11 in [12]).

Theorem Y2. Let G be a nonelementary subgroup if(2,C) containing ellip-
tic elements and f a loxodrom{gesp. an ellipti¢ transformation with|tr?(f)—4| < 1.
If for each elliptic element @& G the group(f, g) is discrete then G is discrete.

In this paper, we mainly use an embedding of SIq2,into U(1, 1; H) and then
apply Corollary 4.5.2 in [4] to prove Conjecture 1.1.

Theorem 1.1. Conjecture 1.1is positive.
In [13, Remark 2.7], Yang observed the following propositend gave an example
[13, Example 2.1] to show that fam > 4, there does exist a nonelementary and non-

discrete subgroup of IsorH(") with all elliptic elements having order 2.

Proposition 1.1. A nonelementary and nondiscrete subgrouplsgim(H?) must
contain an elliptic element of order at leaSt

Based on the above observations, he proposed the followinblgm in [13,
Remark 2.7].
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PrRoOBLEM 1.1. Whether there is a nonelementary and nondiscrete cuipgof
Isom(H?3) = PSL(2,C) which contains an elliptic element such that each of thes ha
order 2.

As an application of our embedding, we obtain the followihgdrem.
Theorem 1.2. The answer td’roblem 1.1is negative.

2. The unitary group and embedding principle

In this section, we will recall some facts about quaternionl dhe quaternionic
hyperbolic geometry. The reader is referred to [1, 2, 4] fareninformation.

Let H denote the division ring of real quaternions. Elementdohave the form
g =01+ qoi +qsj + qzk € H whereq € R and

iZ=j?=k*=ik = -1.

Let 0 = qp — Qi — O3] — g4k be theconjugateof g, and

Al = Vaa= yoZ + 63 + a2+

be themodulusof q. We definefi(q) = (q+0)/2 to be thereal part of g, and3J(q) =
(9 —q)/2 to be theimaginary partof q. Also q~* = q|q|~2 is the inverseof q. We
remark that for a complex number we havejc = ¢j.

Let H! be the vector space of dimension 2 ourwith the unitary structure
defined by the Hermitian form

(z, w) = W*Jz = wizy — W2y,

wherez and w are the column vectors iiif>* with entries g1, z,) and 1, w,) re-
spectively, -* denotes the conjugate transpose ang the Hermitian matrix

1 0
3= (0 _1).
We define aunitary transformation gto be an automorphisnil®?, that is, a linear
bijection such that

@ (9(2), gW)) = (z, w)

for all zandw in H*®, We denote the group of all unitary transformations by U{H)
Following [4, Section 2], let

Vo={zeH" —{0}: (z,2) =0}, V.= {zeH": (z,2) <0).
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It is obvious thatVp and V_ are invariant under U(1,;H). We defineV*® to be Vs =
V_U V. Let P: VS — P(V®) C H be the projection map defined by

z _
Pl ) =zz"t
2

We defineB = P(V_), the ball model of 1-dimensional quaternionic hyperbalpace.
It is easy to see thd@ can be identified with the quaternionic unit bé#l e H: |z| < 1}.

Also the unit sphere irH is dB = P(Vy) and the center of the ball is9 P((l))

If g= (‘z‘ 3) € U(1, L H) then, by definition,g preserves the Hermitian form.
Hence

w*Jz = (z, w) = (gz, gw) = W*g*JgZ

for all zandw in V. Letting z andw vary over a basis foV we see that]l = g*Jg.
From this we findg~! = J~1g*J. That is:

(25 (% %)

@) laj=1d|, |bl=]c|, |a®—|c2=1, ab=¢cd, ac=bd.

and consequently,

As in [1, 2], we can regard U(1; H) as the isometries of real hyperbolic 4-space,
whose model is the unit ball in the quaterniols SL(2,C), the isometries of real
hyperbolic 3-space, can be embedded as a subgroup of L), ds following:

f eSLR2,C)— TfTleU(, L H),

where

Let f = (g g) e SL(2,C). Then

f:TfT—lzg(_lj _1’)(‘2 g)(]l jl)eU(l,:L']HI).

We mention that our model is slight different from the model[#4], where the

1 O). It follows from (1) that both models define the

Hermitian matrix isJ = ( 0 1
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same unitary group. This difference just exchanges theriane outer of the same
unit sphere of those two models.
The following lemma is crucial to us.

Lemma 2.1 (cf. [4, Corollary 4.5.2]). Let G be a subgroup dfi(1,n;H) such that
(a) G does not leave invariant a point inHg; or a proper totally geodesic submanifold
of Hy
(b) the identity is not an accumulation point of the elliptic ralents in G. Then G
is discrete.

Using the same notation as in [4], for any totally geodesiensanifold M € H,
we denote byl (M) the subgroup of U(In; H) which leavesM invariant. By [4, Prop-
osition 2.5.1], the proper totally geodesic submanifolfisHg are equivalent to one of
the four types:HZ, H and H(T).

By [4, Lemmas 4.2.1,2], we have the following lemma.

Lemma 2.2. Let ge U(1, 1, H). Then
(i) the elements g | (H}) are of the form

g=Ar, AceU(,LR), reH, |A=1
(i) the elements g | (HZ) are of the form
g=A AcU(, LC);

(iii) the elements g | (H(I)) are of the form

a b
3) g= (_Eb Ea) €U, LH), &=+1,
Lemma 2.3. Let G be a subgroup o8L(2,C). Then TGT* is a subgroup of
UL, LH). If g = (g 3) €G and TGT! C I(H1)) then either
() a,deR and hceiR, or
(i) a,deiR and b ceR.

Proof. If g = (a b) € G and TGT ! c I(HY(I)), thenTgT ! is of form (3).

cd
By our embedding and the fagt = ¢j, Vc € C, we can verify that the cases= 1
ande = —1 correspond to cases (i) and (ii), respectively. []

By Lemma 2.3, we have the following corollary.

Corollary 2.1. If G is dense inSL(2,C), then the smallest totally geodesic sub-
manifold which is invariant under G= TGT~! can not be H(I).
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3. The proofs of Theorems 1.1 and 1.2

We also need the following lemma, which is a direct conseqeienf the well-
known proposition in [9, Section 1].

Lemma 3.1. Let G be a nonelementary subgroup Sif(2,C). Then either
(i) G is discreteor
(i) G is dense inSL(2,C), or
(i) G is conjugate to a dense group BL(2,R).

The proof of Theorem 1.1. Suppose th@tis nonelementary and not discrete.
We may assume thds is dense in SL(2C) by Theorem Y1 and Lemma 3.1, where
G, =TGT™

Let M(G;) be the smallest totally geodesic submanifold which is iilaré under
G1. By our embeddingG; is a nonelementary and non-discrete subgroup of UH)1
Applying conjugation if necessary, we may assume that\d(G;). SinceG; is nonele-
mentary, M(G;) # Hgz. SinceG is dense in SL(2C), M(G1) # H(I). By [4, Prop-
osition 2.5.1],M(Gy) is one of the two typesHZ and H.

Suppose thaM(G;) = HE. By Lemma 2.2 and the fact that PU(L,Q) is iso-
morphism to PSL(2R), we can get the desired contradiction similarly as in theopr
of Theorem Y1.

Suppose thaM(G;) = HA. By Lemma 2.1, we can find a sequer(eg} of distinct
elliptic elements inG; such that

Oh — |.

Sinceg, € G; and T~'g,T € G C SL(2,C) has the same order, we get a sequence
{T1g,T} of distinct elliptic elements irG such thatT~'g,T — |. By the same rea-
soning as in Theorem Y1, we can get the desired contradiction

The proof is complete. [l

The proof of Theorem 1.2. Suppose th@t is nonelementary and not discrete.
We may assume thds is dense in SL(2C) by Proposition 1.1.

Taking the same notations as in the proof of Theorem 1.1, wdedr to consider
the caseM(G;) = Hi. By Lemma 2.1, the identity is an accumulation point of the
elliptic elements inG;. Therefore we get a sequengg,} of distinct elliptic elements
in G such thatg, — |I. This implies that there exist an elliptic element with arde
greater than three.

The proof is complete. ]
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