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Abstract
We consider the Wiener sausage up to timet associated with a closed ball. A

formula for the expected volume of the Wiener sausage is obtained in odd dimen-
sions. In these cases, we also find that the formula leads to the asymptotic expansion
for large t and each coefficient is represented by zeros of a modified Bessel function
of the second kind. Moreover we obtain a formula for the expected surface area of
the Wiener sausage.

1. Introduction

In connection with heat conduction problems, the volume of the Wiener sausage
on the time interval [0,t ] for a Brownian motion associated with a non-polar compact
set has been investigated for a long time. The expected volume of the Wiener sausage
is interpreted as the total energy flow from the non-polar set. For larget it is asymp-
totically equal to 2� t=log t in the two dimensional case, which is given in [16], andt
multiple of the capacity of the non-polar set in higher dimensions, which can be found
in [4] and [16]. In addition, Le Gall [11] provided several lower terms and Port [13]
discussed the same problem for a stable sausage.

Some results on limit theorems for the volume of the Wiener sausage have been
established. The law of large numbers was proved by Whitman in three or more di-
mensions, which is described in [8], and by Le Gall [9] in the two dimensional case.
Le Gall [11] also established the central limit theorem. Theresults concerning large
deviations are given in [1], [3] and [6]. Especially, the result on the Laplace transform
of the volume of the Wiener sausage given in [3] are very useful for the investiga-
tion on random Schrödinger operators and Brownian motions in random environments.
These are discussed in [15].

This article deals with the Wiener sausage associated with aclosed ball with radius
r in odd dimensional cases. Fort > 0 let Vr (t) be the expected volume of the Wiener
sausage up to timet . It is easy to evaluate it explicitly for dimension one. Thenour
interest turns to higher dimensional cases. The compact form of Vr (t) was given in
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[16] for dimension three. Recently Hamana [5] representedVr (t) by the complemen-
tary error function for dimensions five and seven. Section 3 is devoted to the formula
for Vr (t) in other dimensional cases. We succeed in representingVr (t) by zeros of a
modified Bessel function of the second kind.

Theorem 1.1. If d is odd and more than or equal to five, we have that

Vr (t) D Sd�1r
d�2

"

(d � 2)t

2
C

2(d � 2)r 2

d(d � 4)
C

2r 3

p

2� t

N
X

jD1

1

(zN
j )3

�

2r 5

p

2� t3

N
X

jD1

1

(zN
j )3

Z

1

0
x exp

�

�

r 2x2

2t
C zN

j x

�

dx

#

for r > 0 and t> 0, where Sd�1 is the surface area of d� 1 dimensional unit sphere,
N D (d � 3)=2 and zN

1 , zN
2 , : : : , zN

N are zeros of the modified Bessel function of the
second kind of order NC 1=2.

The main tool is the decomposition of the Laplace transform of Vr into several rational
functions. We remark that, ifw is one of zeros ofKNC1=2, the complex conjugate of
w is also a zero ofKNC1=2. This fact yields that two summations in the statement of
Theorem 1.1 are real.

Section 4 deals with the asymptotic expansion ofVr (t) as t !1 in five or more
dimensional cases. In addition, it can be proved that all coefficients are expressed by
zeros of the modified Bessel function. The explicit form ofVr (t) given in Section 3
plays an important role for calculations. Hamana [5] also proved thatVr (t) can be
represented as the absolutely convergent power series oft1=2 for any t > 0. The co-
efficients are given inductively in [5] and this implies thatwe can evaluate them ex-
plicitly in principle. Actually they have very complicatedforms. We obtain that the
coefficients in the power series expansion are also represented by zeros of the modified
Bessel function, which is also described in Section 4.

On the other hand, Rataj, Schmidt and Spodarev [14] proved that the expected sur-
face area of the Wiener sausage coincides with the first derivative of Vr (T) with respect
to the radiusr for fixed T > 0. Similarly to the expected volume, we obtain the ex-
plicit form and the power series expansion of the expected surface area in Section 5.
Unfortunately we could not succeed in giving the asymptoticexpansion for larget .

2. Notation and preliminaries

Let r be a positive number andB D {B(t)}t=0 be a Brownian motion onRd. The
Wiener sausage forB with radius r is the process defined as

Cr (t) D {x 2 Rd
I x C B(s) 2 Dr for somes 2 [0, t ]}
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for t = 0, whereDr is the closed ball with center 0 and radiusr . It is easy to see that
the expected volume ofCr (t), which was denoted byVr (t) in the previous section, is
represented as

Vr (t) D
Z

R

d

Px[�r 5 t ] dx,

where �r D inf{t = 0I B(t) 2 Dr } and Px is the probability measure of events related
to the Brownian motion starting fromx 2 Rd. For t > 0 let

Lr (t) D
Z

R

d
nDr

Px[�r 5 t ] dx.

It is obvious that

(2.1) Vr (t) D Lr (t)C
Sd�1r d

d

since the volume ofDr is equal toSd�1r d
=d.

According to the result in [7],Px[�r 5 t ] is the unique solution of the heat con-
duction problem

�u

�t
(t, x) D

1

2
�u(t, x)

for t > 0 and x 2 Rd
n Dr subject to the initial conditionu(0, x) D 0 for x 2 Rd

n Dr

and the boundary conditionu(t, y) D 1 for t > 0 and y 2 Dr . Hence Px[�r 5 t ] is
interpreted as the temperature at timet at the pointx 2 Rd. Then Lr (t) is the total
energy flow in timet from Dr into Rd

n Dr .
If d D 1, of course, we can evaluateLr (t) with the help of the formula

Px[�r 5 t ] D
Z t

0

jxj � r
p

2�s3
exp

�

�

(jxj � r )2

2s

�

ds

for jxj > r , which is given in [8]. Hence we obtain thatVr (t) D 2
p

2t=� C 2r . For
dimension three Spitzer [16] showed thatVr (t) D 2�r t C4r 2

p

2� tC4�r 3
=3. This can

be also derived directly by the following well-known formula:

Px[�r 5 t ] D
r (kxk � r )

kxk

Z t

0

1
p

2�s3
exp

�

�

(kxk � r )2

2s

�

ds

for kxk > r , which is described in [11] for example. The notationkxk has been used
to denote the Euclidean norm ofx 2 Rd.

In higher dimensions, we have no useful formula for the distribution of �r except
for the Laplace transform. It follows that

(2.2) Ex[e���r ] D
kxk�d=2C1Kd=2�1(kxk

p

2�)

r �d=2C1Kd=2�1(r
p

2�)
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for � > 0 andkxk = r , whereEx denotes the expectation under the probability measure
Px and K

�

is the modified Bessel function of the second kind of order�. This formula
can be found in [2] and [8].

Throughout this paper, for a suitable functionf , the notationL[ f ] denotes the
Laplace transform off and the inverse Laplace transform off is denoted byL�1[ f ].
With the help of (2.2), Hamana [5] showed that

(2.3) L[Lr ](�) D
Sd�1r d�1

p

2�3

Kd=2(r
p

2�)

Kd=2�1(r
p

2�)

for � > 0.
The remainder of this section is devoted to giving some properties of modified

Bessel functions. In general,K
�

is the function defined onC n {0} for each complex
number�. In this paper, however, it is sufficient to consider the casethat � is a half in-
teger since we treat odd dimensional cases. In these cases, it is well-known thatKnC1=2

has the following explicit form for each integern = 0:

(2.4) KnC1=2(z) D

r

�

2z
e�z

"

n
X

mD0

hn, mi

(2z)m

#

,

where the branch of
p

z is principal and

hn, mi D

8

<

:

(nCm)!

m! (n�m)!
if n = m,

0 if n < m.

In addition, the number of zeros ofKnC1=2 is n and each zero lies in the half plain
{z 2 C I Rez< 0}, denoted byC�. These are all described in [17]. Recall thatK

�

is
one of solutions of the modified Bessel differential equation

z2 d2
w

dz2
C z

dw

dz
� (z2

C �

2)w D 0.

Thus we obtain that all zeros ofK
�

are of multiplicity one by the uniqueness of the
solution of ordinary differential equations. This immediately implies thatKnC1=2 has
exactly n zeros with multiplicity one inC� for n = 1.

3. Formula for the mean volume of the Wiener sausage

We consider the case thatd is odd and not less than five. Our goal in this section
is to give a proof of Theorem 1.1. Recall thatN D (d� 3)=2 and thenN is a positive
integer. It follows from (2.3) that

(3.1) L[Lr ](�) D
Sd�1r d�1

p

2�3

KNC3=2(r
p

2�)

KNC1=2(r
p

2�)
.
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For t > 0 let Tr (t) D Lr (2r 2t). SinceL[Tr ](�) D (1=2r 2)L[Lr ](�=2r 2), then

(3.2) L[Tr ](�) D
Sd�1r d

p

�

3

KNC3=2(
p

�)

KNC1=2(
p

�)
.

We first intend to represent the right hand side of (3.2) as thesum of several ra-
tional functions of

p

�. For n = 1 andz 2 C let

(3.3) Hn(z) D
n
X

kD0

hn, n� ki

2n�k
zk.

Note that Hn is a monic polynomial of degreen. It follows from (2.4) and (3.3) that

(3.4) KnC1=2(z) D

r

�

2z

e�z

zn
Hn(z)

for n = 1. This yields that the ratio of modified Bessel functions canbe represented
as that of polynomials. Namely we obtain that

(3.5)
KnC3=2(z)

KnC1=2(z)
D

HnC1(z)

z Hn(z)
.

Therefore it is sufficient to consider the partial fraction decomposition of the right hand
side of (3.5) in the case thatn D N.

It follows from (3.4) that zeros ofHN coincide with those ofKNC1=2 including
multiplicities. Recall that we have writtenzN

1 , zN
2 , : : : , zN

N for the zeros ofKNC1=2, and
these are, of course, zeros ofHN . Since each zero is of multiplicity one,HN has the
following form:

HN(z) D
N
Y

jD1

(z� zN
j ).

In virtue of this factorization, we obtain that

(3.6)
HNC1(z)

z HN(z)
D 1C

�0

z
C

N
X

jD1

� j

z� zN
j

for some suitable sequence{� j }
N
jD0 of complex numbers. The following lemma is quite

useful for determining them.

Lemma 3.1. If w 2 C� is a zero of HN , then

(3.7) HNC1(w) D �wH 0

N(w).
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Proof. Note thatH1(z) D zC 1 and H2(z) D z2
C 3zC 3. Hence (3.7) is obvious

in the case thatN D 1.
We now prove (3.7) ifN = 2. It is sufficient to establish that

HNC1(z) � z2HN�1(z) D (2N C 1)HN(z),(3.8)

H 0

N(z)C z HN�1(z) D HN(z).(3.9)

It follows from (3.3) that the left hand side of (3.8) is equalto

NC1
X

kD2

�

hN C 1, N � kC 1i

2N�kC1
�

hN � 1, N � kC 1i

2N�kC1

�

zk

C

hN C 1, Ni

2N
zC

hN C 1, N C 1i

2NC1
.

It is obvious that the coefficient ofzNC1 is 0. For 25 k 5 N a simple calculation
shows that the coefficient ofzk is (2NC 1)hN, N � ki=2N�k, which coincides with the
coefficient of corresponding term in (2N C 1)HN(z). Moreover it is easy to see

hN C 1, Ni

2N
D (2N C 1)

hN, N � 1i

2N�1
,

hN C 1, N C 1i

2NC1
D (2N C 1)

hN, Ni

2N
.

Therefore we can conclude (3.8).
The proof of (3.9) is similar to that of (3.8). It follows from(3.3) that the left

hand side of (3.9) is equal to

zN
C

N�1
X

kD1

�

(kC 1)hN, N � k � 1i

2N�k�1
C

hN � 1, N � ki

2N�k

�

zk
C

hN, N � 1i

2N�1
.

It is easy to obtain that the coefficient ofzk is hN, N � ki=2N�k for 05 k 5 N.

By reduction of the fractions in the right hand side of (3.6) to a common denom-
inator, we have that

HNC1(z)

z HN(z)
D 1C

�0
QN

jD1(z� zN
j )C z

PN
jD1 � j

Q

i¤ j (z� zN
i )

z
QN

jD1(z� zN
j )

.

Then we may determine�0, �1, : : : , �N satisfying that

(3.10) HNC1(z) D z HN(z)C �0 HN(z)C z
N
X

jD1

� j

Y

i¤ j

(z� zN
i ).
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We put zD 0 in (3.10) and have that

hN C 1, N C 1i

2NC1
D �0

hN, Ni

2N
,

which yields that�0 D 2N C 1. For 15 k 5 N it follows from (3.10) that

(3.11) HNC1(zN
k ) D zN

k

n
X

jD1

� j

Y

i¤ j

(zN
k � zN

i ).

It is easy to see that the right hand side of (3.11) is

zN
k �k

Y

i¤k

(zN
k � zN

i ).

Note that
Y

i¤k

(zN
k � zN

i ) D lim
z!zN

k

HN(z)

z� zN
k

D H 0

N(zN
k ).

Then Lemma 3.1 shows that

�zN
k H 0

N(zN
k ) D zN

k �k H 0

N(zN
k ).

Since all zeros ofHN are of multiplicity one,H 0

N(zN
j ) ¤ 0 for 15 j 5 N. Thus we

can conclude that�k D �1 for 15 k 5 N. This implies that we have finished showing
the following lemma.

Lemma 3.2. We have that

KNC3=2(z)

KNC1=2(z)
D 1C

2N C 1

z
�

N
X

jD1

1

z� zN
j

.

For an integern = 1 let

�

(d)
n D

N
X

jD1

1

(zN
j )n

.

We have remarked in Section 1 that, ifw is one of zeros ofKNC1=2, the complex
conjugate ofw is also a zero ofKNC1=2. Hence� (d)

n is real for eachn = 1. We are
now ready to establish the following proposition.
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Proposition 3.3. We have that

L[Tr ](�) D Sd�1r
d

"

2N C 1

�

2
C

1

(2N � 1)�
C

�

(d)
3

�

1=2
�

N
X

jD1

1

(zN
j )3(�1=2

� zN
j )

#

for � > 0.

Proof. For simplicity, letkd D Sd�1r d. By (3.2) and Lemma 3.2, we obtain that

(3.12) L[Tr ](�) D kd

"

1

�

3=2
C

2N C 1

�

2
�

1

�

3=2

N
X

jD1

1

�

1=2
� zN

j

#

.

The equality

1

z3(z� w)
D �

1

z3
w

�

1

z2
w

2
�

1

zw3
C

1

(z� w)w3

yields that the right hand side of (3.12) is equal to

kd

" 

1C
n
X

jD1

1

zN
j

!

1

�

3=2
C

2N C 1

�

2
C

N
X

jD1

1

(zN
j )2
�

C

N
X

jD1

1

(zN
j )3
�

1=2
�

N
X

jD1

1

(zN
j )3(�1=2

� zN
j )

#

.

ThereforeL[Tr ](�) is expressed by

(3.13)
kd(1C � (d)

1 )

�

3=2
C kd

"

2N C 1

�

2
C

�

(d)
2

�

C

�

(d)
3

�

1=2
�

N
X

jD1

1

(zN
j )3(�1=2

� zN
j )

#

.

It remains to evaluate� (d)
1 and � (d)

2 . The fact that�1 is the unique zero ofH1

shows that� (5)
n D (�1)n for each n = 1. This immediately implies the assertion of

Proposition 3.3 for dimension five. Thus we may concentrate on considering the higher
dimensional cases. Note thatN = 2 in these cases. The formula

(3.14)
H 0

N(z)

HN(z)
D

N
X

jD1

1

z� zN
j

shows that
N
X

jD1

1

zN
j

D �

H 0

N(0)

HN(0)
.
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Since HN(0) D hN, Ni=2N and H 0

N(0) D hN, N � 1i=2N�1, we have� (d)
1 D �1. This

implies that the first term of (3.13) vanishes. Applying (3.14) again, we have that

H 00

N(z)

HN(z)
�

�

H 0

N(z)

HN(z)

�2

D �

N
X

jD1

1

(z� zN
j )2

,

which yields that

�

(d)
2 D [� (d)

1 ]2
�

H 00

N(0)

HN(0)
D

1

2N � 1
.

This completes the proof of Proposition 3.3.

It is easy to give an explicit form ofVr (t). For � > 0 andw 2 C let

f (�) D
1

�

1=2
� w

.

It is well-known that

L�1[ f ](t) D
1

2
p

� t3

Z

1

0
x exp

�

�

x2

4t
C wx

�

dx,

which can be found in [13] for example. It follows from Proposition 3.3 that

Tr (t) D Sd�1r
d

"

(2N C 1)t

� (2)
C

1

(2N � 1)� (1)
C

�

(d)
3

� (1=2)t1=2

�

1

2
p

� t3

N
X

jD1

1

(zN
j )3

Z

1

0
x exp

�

�

x2

4t
C zN

j x

�

dx

#

,

where� is the gamma function. Recall thatTr (t) D Lr (2r 2t). In virtue of (2.1), we
can immediately derive the assertion of Theorem 1.1.

4. Asymptotic expansion and power series expansion

In this section we again consider odd dimensional cases. Since the compact forms
of Vr (t) in one and three dimensions have been given in Section 2, it is sufficient to
consider higher dimensional cases.

One of our purpose in this section is to establish the following theorem.



862 Y. HAMANA

Theorem 4.1. Let r > 0 be fixed and M be a given integer which is not less
than (d � 5)=2. If d is odd and not less than five, we have that

Vr (t) D Sd�1r
d�2

"

(d � 2)t

2
C

2(d � 2)r 2

d(d � 4)
C

2r 3

p

2� t

M
X

nD(d�5)=2

n�
(d)
2nC3

tn

#

C O

�

1

t MC3=2

�

as t!1, where0 D 1 and n D (�1)nr 2n(2n� 1)!! for n = 1.

Before giving a proof of Theorem 4.1, we consider five and seven dimensional
cases. Ifd D 5, we have shown that� (5)

n D (�1)n for n = 1. Hence it follows from
Theorem 4.1 that, ifd D 5,

Vr (t) � S4r
3

"

3t

2
C

6r 2

5
�

r

2

�

�

r 3

t1=2
�

r 5

t3=2
C

3r 7

t5=2
�

15r 9

t7=2
� � � �

�

#

.

If d D 7, then N D 2. Since H2(z) D z2
C 3zC 3, both 1=z2

1 and 1=z2
2 are zeros of

3z2
C 3zC 1. Hence we have� (7)

1 D �1 and � (7)
2 D 1=3. The Newton formula yields

that {� (7)
n }1nD1 is the solution of

8

�

<

�

:

anC2 C anC1 C
an

3
D 0 (n = 1)

a1 D �1, a2 D
1

3
.

In particular,� (7)
3 D �

(7)
9 D 0. It follows from Theorem 4.1 that, ifd D 7,

Vr (t) � S6r
5

"

5t

2
C

10r 2

21
�

r

2

�

�

r 5

9t3=2
�

r 7

9t5=2
C

35r 11

81t9=2
�

35r 13

27t11=2
C � � �

�

#

.

We begin to prove Theorem 4.1. Recall that we have already derived the explicit
form of Vr (t). According to Theorem 1.1, it is sufficient to consider

Z

1

0
x exp

�

�

r 2x2

2t
C zx

�

dx

for z 2 C�, which is denoted byGr (t, z). If d D 5, we need to treat the case that
M D 0. SincejGr (t, z)j is dominated by

Z

1

0
xe�jRezjx dx D

1

jRezj2
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uniformly for t > 0, Theorem 4.1 can be immediately obtained by Theorem 1.1 if
d D 5 and M D 0.

We concentrate on considering the case thatM is positive and not less than
(d � 5)=2. The Taylor theorem implies that

e�x
D

M�1
X

nD0

(�1)n

n!
xn
C RM (x)

for x > 0, whereRM (x) D xMe��x
=M! for some� 2 [0, 1]. Then it follows that

(4.1) Gr (z, t) D
M�1
X

nD0

(�1)nr 2n

n! (2t)n

Z

1

0
x2nC1ezx dxC

Z

1

0
RM

�

r 2x2

2t

�

xezx dx.

Since Rez < 0, the integral in the first term of (4.1) can be evaluated and thus we
obtain that the first term of (4.1) is equal to

M�1
X

nD0

(�1)nr 2n(2nC 1)!

n! (2t)nz2nC2
D

M�1
X

nD0

(�1)nr 2n(2nC 1)!!

tnz2nC2
.

The estimate of the second term of (4.1) is easy. Indeed, we have that

�

�

�

�

Z

1

0
RM

�

r 2x2

2t

�

xezx dx

�

�

�

�

5

r 2M

M! (2t)M

Z

1

0
x2MC1e�jRezjx dx

by the fact thatjRM (x)j 5 xM
=M! for x = 0. Therefore it follows that

Gr (z, t) D
M
X

mD1

(�1)m�1r 2m�2(2m� 1)!!

tm�1z2m
C O

�

1

t M

�

,

which yields that

r 5

p

2� t3

N
X

jD1

Gr (zN
j , t)

(zN
j )3

D

r 3

p

2� t

M
X

mD1

(�1)m�1r 2m(2m� 1)!! � (d)
2mC3

tm
C O

�

1

t MC3=2

�

.

Hence we can conclude thatVr (t) is equal to

(4.2) Sd�1r
d�2

"

(d � 2)t

2
C

2(d � 2)r 2

d(d � 4)
C

2r 3

p

2� t

M
X

nD0

n�
(d)
2nC3

tn

#

C O

�

1

t MC3=2

�

.

It remains to see that the summation onn in the right hand side of (4.2) begins
from (d�5)=2. However it has been already proved by Le Gall [11] under thegeneral
situation. This completes the proof of Theorem 4.1.
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REMARK 4.2. Recall thatd D 2N C 3. The Newton formula implies that

(4.3)

(

�

(d)
n C a1�

(d)
n�1 C a2�

(d)
n�2 C � � � C an�1�

(d)
1 D �nan if 1 5 n 5 N,

�

(d)
n C a1�

(d)
n�1 C a2�

(d)
n�2 C � � � C aN�

(d)
n�N D 0 if n = N C 1,

whereak D 2k
hN, N � ki=hN, Ni for 15 k 5 N. It is easy to see by (4.3) that� (d)

3 is
equal to�1 if d D 5 and 0 if d = 7. In seven or more dimensions, we expect to show
that � (d)

2nC1 D 0 for 15 n 5 N � 1 and that� (d)
2NC1 ¤ 0 by only (4.3) without using the

result by Le Gall. However we could not succeed in showing them.

We now discuss the coefficients in the power series expansionof Vr (t). In virtue
of (2.1), we may concentrate on consideringLr (t). If d is odd and not less than five,
Hamana [5] recently proved that

(4.4) Lr (t) D
Sd�1r d�1

p

2

1

X

nD1

�

(d)
n tn=2

for any t > 0 and that the right hand side of (4.4) converges absolutely,where{�(d)
n }1nD1

is the sequence of real numbers defined as

(4.5) �

(d)
n D

�

(d)
n�1

(
p

2r )n�1
� (n=2C 1)

and the sequence{�(d)
n }1nD0 is determined by

1

2k

�

d � 1

2
, k

�

D

k
X

jD0

1

2k� j

�

d � 3

2
, k � j

�

�

(d)
j

for k = 0.
Another purpose in this section is to represent�

(d)
n by zeros of a modified Bessel

function. Recall thatzN
1 , zN

2 , : : : , zN
N are zeros ofKNC1=2. Let

(4.6) ÆN D max
15 j5N

jzN
j j.

SincezN
j ¤ 0 for any 15 j 5 N, we have thatÆN > 0. Lemma 3.2 shows that

KNC3=2(z)

KNC1=2(z)
D 1C

2N C 1

z
�

1

z

N
X

jD1

1

X

nD0

�

zN
j

z

�n

D 1C
N C 1

z
�

1

X

nD1

�

(d)
n

znC1
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for jzj > ÆN , where

�

(d)
n D

N
X

jD1

(zN
j )n.

This implies that

L[Tr ](�) D Sd�1r
d

"

1

�

3=2
C

d � 1

2�2
�

1

X

nD1

�

(d)
n

�

(nC4)=2

#

for � > Æ

2
N . Note that� (d)

n is real for eachn = 1. SinceL[Lr ](�) D 2r 2L[Tr ](2r 2
�),

we have that

(4.7) L[Lr ](�) D
Sd�1r d�1

p

2

"

1

�

3=2
C

d � 1

4r 2
�

2
�

1

X

nD3

�

(d)
n�2

(
p

2r )n�1
�

(nC2)=2

#

for � > Æ2
N=2r 2.

On the other hand, Hamana [5] proved that there is a constant� > 0 such that

(4.8) L[Lr ](�) D
Sd�1r d�1

p

2

1

X

nD1

�

(d)
n � (n=2C 1)

�

n=2C1

for � > �. By the comparison of corresponding coefficient in (4.7) and(4.8), we obtain
the following theorem.

Theorem 4.3. Let r > 0 be fixed. If d is odd and not less than five, we have that

(4.9) Vr (t) D Sd�1r
d

1

X

nD0

�

(d)
n tn=2

for any t> 0 and that the right hand side of(4.9) converges absolutely, where

�

(d)
0 D

1

d
, �

(d)
1 D

1

r

r

2

�

, �

(d)
2 D

d � 1

4r 2

and

�

(d)
n D �

�

(d)
n�2

(
p

2 r )n
� (n=2C 1)

for n = 3.

We remark that�(d)
n D ��

(d)
n�1 for n = 2, which can be derived by (4.5) and

Theorem 4.3.
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5. Expected surface area of the Wiener sausage

Let T > 0 be fixed. The notationSr (T) is used to denote the expected surface area
of Cr (T). Rataj, Schmidt and Spodarev [14] proved that

(5.1) Sr (T) D
�

�r
Vr (T)

for any r > 0 in two and three dimensions. In four or more dimensional cases, the
formula (5.1) holds at least for almost allr > 0. In particular, ifd D 3, they remarked
that Sr (T) D 2�T C 8r

p

2�T C 4�r 2. This can be also obtained by the formula for
Vr (T) given in [16].

Theorem 5.1. If d is odd and more than or equal to five, we have that

Sr (T) D Sd�1r
d�3

"

(d � 2)2T

2
C

2(d � 2)r 2

d � 4
C

2(dC 1)r 3

p

2�T

N
X

jD1

1

(zN
j )3

�

2(dC 3)r 5

p

2�T3

N
X

jD1

1

(zN
j )3

Z

1

0
x exp

�

�

r 2x2

2T
C zN

j x

�

dx

C

2r 7

p

2�T5

N
X

jD1

1

(zN
j )3

Z

1

0
x3 exp

�

�

r 2x2

2T
C zN

j x

�

dx

#

at least for almost all r> 0.

Proof. Theorem 1.1 and (5.1) imply that it is sufficient to consider the deriva-
tive of Gr (z, T) with respect tor . We can easily show this theorem with the help of
the formula

(5.2)
�

�r
Gr (z, t) D �

r

T

Z

1

0
x3 exp

�

�

r 2x2

2T
C zx

�

dx

for z 2 C� and r > 0. This formula can be obtained by a standard argument for justi-
fication of the interchange of differentiation and integration. Indeed, we have that

�

�

�

�

�

�r
x exp

�

�

r 2x2

2T
C zx

�

�

�

�

�

5

Rx3

T
e�jRezjx

for 0 < r < R with a given R > 0. The right hand side is an integrable function
which is independent ofr . This yields that (5.2) is valid for 0< r < R. Since R> 0
is arbitrary, the formula (5.2) holds for anyr > 0.

In addition, we can representSr (T) as the power series ofT1=2.
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Theorem 5.2. If d is odd and not less than five, we have that

(5.3) Sr (T) D Sd�1r
d�1

1

X

nD0

(d � n)�(d)
n Tn=2

at least for almost all r> 0 and that the right hand side of(5.3) converges absolutely.

Proof. Forn = 0 let �n(r ) D �

(d)
n r d. Then it follows from (4.9) that

�

�r
Vr (T) D Sd�1

�

�r

1

X

nD0

�n(r )Tn=2.

We need to justify the interchange of differentiation and summation. The definition of
�n(r ) immediately shows that

�

0

0(r ) D r d�1, �

0

1(r ) D

r

2

�

(d � 1)r d�2, �

0

2(r ) D
(d � 1)(d � 2)

4
r d�3

and

�

0

n(r ) D �

(d � n)� (d)
n�2

(
p

2 r )n
� (n=2C 1)

r d�1

for n = 3. This yields that�0n(r ) D (d�n)�(d)
n r d�1 for eachn = 0. Moreover it follows

from (4.6) that

j�

0

n(r )j 5
N(n� d)

� (n=2C 1)

�

ÆN
p

2

�n 1

r n�dC1

for n = d. Hence the estimate

j�

0

n(r )jTn=2
5

2Nrd�1
0

� (n=2)

�

Æ

2
NT

2r 2
0

�n=2

is valid for n = d and r > r0 with a givenr0 > 0. The sum of the right hand side on
n over [d, 1) converges, which yields that

(5.4)

�

�r

1

X

nD0

�n(r )Tn=2
D

1

X

nD0

�

0

n(r )Tn=2

D r d�1
1

X

nD0

(d � n)�(d)
n Tn=2

for r > r0. Sincer0 > 0 is arbitrary, the formula (5.4) holds for allr > 0. This means
that we finished proving (5.3).
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