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Abstract
We study finite time quenching for the radial solutions of a system of heat equa-

tions coupled at the boundary condition. This system exhibits simultaneous and non-
simultaneous quenching. In particular, three kinds of simultaneous quenching profiles
are obtained for different nonlinear exponent regions and appropriate initial data.

1. Introduction

In this paper we study quenching phenomena for heat equations

(1.1) ut D 1u, vt D 1v, x 2 �, t 2 (0, T),

with coupled boundary conditions

(1.2)
�u

�n

�

�

�

�

��

D �v

�p,
�v

�n

�

�

�

�

��

D �u�q, x 2 ��, t 2 (0, T),

and positive initial data

u(x, 0)D u0(x), v(x, 0)D v0(x), x 2 �,

where p, q > 0 and� � R

N (N � 2) is a bounded smooth domain. Throughout this
paper we assume that

u0(x), v0(x) 2 C2(�), 1u0(x), 1v0(x) � 0, x 2 �.

In the radial symmetric case with� D B1 D {x j jxj < 1}, let r D jxj and
u0(x) D u0(r ), v0(x) D v0(r ). Then the radial solutionsu(r, t) and v(r, t) satisfy the
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following equations,

(1.3)

8

�

�

�

�

<

�

�

�

�

:

ut D urr C
N � 1

r
ur , vt D vrr C

N � 1

r
ur , (r, t) 2 (0, 1)� (0, T),

ur (0, t) D 0, ur (1, t) D �v

�p(1, t), t 2 (0, T),
vr (0, t) D 0, vr (1, t) D �u�q(1, t), t 2 (0, T),
u(r, 0)D u0(r ), v(r, 0)D v0(r ), r 2 [0, 1].

Similarly, we have

u0(r ), v0(r ) � 0, ut (r, 0), vt (r, 0)� 0, 0� r � 1.

For the convenience, we assume that

u00(r ) � 0, v

0

0(r ) � 0, 0� r � 1.

The study of quenching (in general the solution is defined up to t D T but some
term in the problem ceases to make sense) began with the work of Kawarada [11] ap-
peared in 1975. In that paper he studied the semi-linear heatequation as a singular
reaction at levelu D 1. He proved that not only the reaction term, but also the time
derivative blows up whereveru reaches this value, see also [1]. Quenching problems
have been studied by many authors, see [2, 4, 5, 9, 10] and the references therein.

In [7], Ferreira, Quiros and Rossi studied the one-dimensional case of (1.1) and
found that, due to the absorption generated by the boundary condition at x D 0, the
solutions decrease to zero at this point. If they vanish in finite time t D T0, the bound-
ary conditionux(0,t)D �v�p(0,t) andvx(0,t)D �u�q(0,t) for 0< t < T blows up and
the solution, being classical up tot D T , no longer exists (as a classical solution) for
greater times, thus the maximal existence time of a classical solution is T D T0. They
characterized in terms of the parameters involved when non-simultaneous quenching
may appear. They obtained that ifp, q � 1 quenching is always simultaneous, while
if p < 1 or q < 1 non-simultaneous quenching indeed occurs. Moreover, if quench-
ing is non-simultaneous they found the quenching rate, which surprisingly depends on
the parameter in the flux associated to the other component. Also, the only quenching
point is the origin.

In [8], Hu and Yin considered the profile near the blowup time for the solutions
of the following problem:

(1.4)

8

�

�

�

�

<

�

�

�

�

:

�u

�t
D 1u for x 2 �, t > 0,

�u

�n
D up for x 2 ��, t > 0,

u(x, 0)D u0(x) for x 2 �

where� is a bounded domain inRn with boundary��, n is the exterior normal vector
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on ��, p > 1 andu0(x) � 0. Under the assumptions ofu0, they obtained the blowup
rate u(x, t) � C(T � t)�1=[2(p�1)], wherex 2 �� and C > 0.

In [6], Fila and Levine studied the quenching problem for thescalar case

(1.5)

8

<

:

ut D uxx, (x, t) 2 (0, 1)� (0, T),
ux(0, t) D 0, ux(1, t) D �u�q(1, t), t 2 (0, T),
u(x, 0)D u0(x) > 0, x 2 [0, 1],

and obtained thatu(1, t) Ï (T � t)1=[2(qC1)], where f Ï g means thatc1 f 6 g 6 c2 f
holds for t close to T and some positive constantsc1, c2. We will use this notation
throughout this paper.

Pablo, Quiros and Rossi [13] firstly distinguished non-simultaneous quenching from
simultaneous one. They considered a heat system coupled viainner absorptions:

(1.6)

8

<

:

ut D uxx � v
�p, vt D vxx � u�q, (x, t) 2 (0, 1)� (0, T),

ux(0, t) D vx(0, t) D ux(1, t) D vx(1, t) D 0, t 2 (0, T),
u(x, 0)D u0(x), v(x, 0)D v0(x), x 2 [0, 1],

where minx2[0,1] u(x, t) D u(0, t), minx2[0,1] v(x, t) D v(0, t) under certain assumptions
on the initial datau0, v0 > 0. For the coupled equations (1.6), the following quenching
rates were proved in [13]:
(a) If quenching is non-simultaneous and, for instance,v is the quenching component,
then v(0, t) Ï (T � t) for t close toT .
(b) If quenching is simultaneous, then fort close toT :

1. u(0,t) Ï (T � t)(p�1)=(pq�1), v(0,t) Ï (T � t)(q�1)=(pq�1), if p,q > 1 or p,q < 1;
2. u(0, t), v(0, t) Ï (T � t)1=2, if p D q D 1;
3. u(0, t) Ï jlog(T � t)j�1=(q�1), v(0, t) Ï (T � t)jlog(T � t)jq=(q�1), if q > pD 1.
For the system

(1.7)

8

�

�

<

�

�

:

ut D uxx, vt D vxx, (x, t) 2 (0, 1)� (0, T),
ux(0, t) D 0, ux(1, t) D �v

�p(1, t), t 2 (0, T),
vx(0, t) D 0, vx(1, t) D �u�q(1, t), t 2 (0, T),
u(x, 0)D u0(x), v(x, 0)D v0(x), x 2 [0, 1],

the finite time quenching results from the coupled singular nonlinear boundary flux by
Zheng and Song [14], other than the situation in the model of (1.6) with coupled nonlinear
absorption terms. The quenching in (1.7) may be either simultaneous or non-simultaneous.
This is determined by particular ranges of nonlinear exponents and initial data. They
showed that{x D 1} is the only quenching point and there are three kinds of simultaneous
quenching rates in time can be briefly described in the following conclusions:
1. u(1, t) Ï (T � t)�=2, v(1, t) Ï (T � t)�=2 for p, q > 1 or p, q < 1;
2. u(1, t) Ï (T � t)1=4, v(1, t) Ï (T � t)1=4 for p D q D 1;
3. u(1, t) Ï jlog(T � t)j�1=(q�1), v(1, t) Ï (T � t)jlog(T � t)jq=(q�1) for 1D p < q,
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where� D (p� 1)=(pq� 1), � D (q � 1)=(pq� 1).
And v(1,t) Ï (T� t)1=(pC1) for non-simultaneous quenching withv quenching only.
The quenching in (1.3) may be either simultaneous or non-simultaneous. This is de-

termined by particular ranges of nonlinear exponents and initial data, denoted as follows:
(H1) (i) q � p > 1: v1�p

0 (r ) � C1(i)u1�q
0 (r ) with C1(i) � (p� 1)=(q � 1),

(ii) q > p D 1: � log v0(r ) � C1(ii)u1�q
0 (r ) with C1(ii) � 1=(q � 1),

(iii) p D q D 1: c1u0(r ) � v0(r ) � c2u0(r ) with c1, c2 > 0,
(H2) 0< p � q < 1: v1�p

0 (r ) � C2u1�q
0 (r ) with 0< C2 � (p� 1)=(q � 1),

(H3) 0< p < 1� q: v1�p
0 (r ) � C3u1�q

0 (r ) with C3 � 0,

(H4) u�(qC1)=2
0 (1)(u000(r ) C ((N � 1)=r )u00(r )) � c0v

�(pC1)=2
0 (1)(v000(r ) C ((N � 1)=r )v00(r ))

with
p

p=
p

q < c0 < (pC 1)=(
p

C4(qC 1)),
for r 2 [0, 1], whereC4 is one of the constants in the assumptions (H1)–(H3).

In this paper, we extend the problem (1.1)–(1.4) in [7] to higher dimensional space
and study the asymptotic profile of quenching for radial solutions. In comparison with
the one dimensional case, some additional terms need to be taken care of while a ver-
ity of auxiliary functions are constructed by the maximum principle. We consider radial
solutions in a ball and we will propose a criterion to identify simultaneous and non-
simultaneous quenching for (1.3) under some assumptions, and then establish asymp-
totic estimates of quenching with different conditions, exactly the asymptotic profile
near the quenching point. We will show that{r D 1} is the only quenching point and
that the three kinds of simultaneous quenching profiles can be briefly described in the
following conclusions:
1. u(r, T) Ï (1� r )(p�1)=(pq�1), v(r, T) Ï (1� r )(q�1)=(pq�1), if p, q > 1 or p, q < 1;
2. u(r, T), v(r, T) Ï (1� r )1=2, if p D q D 1;
3. u(r, T) Ï jlog(1� r )j�1=(q�1), v(r, T) Ï (1� r )jlog(1� r )jq=(q�1), if q > p D 1,
for r close to 1.

If quenching is non-simultaneous and, for instance,v is the quenching component,
then v(r, T) Ï (1� r ) for r close to 1.

For simultaneous and non-simultaneous quenching cases, the quenching rates of
radial solutions are very similar to those in the one dimensional case (see [14]), which
will be described in Remarks 3.1 and 4.2 below.

REMARK 1.1. It’s interesting that an open problem is left on whetherthe quench-
ing profile and rate are unique without the assumption on the initial data so that the
solution is monotonically decreasing both int and r . Also, the quenching behavior of
non-radial solutions in higher dimensional space is still open. They will be the subjects
of future research.

The paper is organized as follows. We begin with a theorem on finite time quench-
ing and quenching sets in Section 2 together with two basic lemmas as preliminaries of
the paper, and then, in Section 3, we propose the criterion toidentify the simultaneous
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and non-simultaneous quenching. As the main results of the paper, the three kinds of
simultaneous quenching behaviors will be proved in Section4.

Throughout this paper,C and c denote different positive constants.

2. Finite time quenching and preliminaries

Let (u, v) be a solution of (1.3) with 0< u0 � M, 0 < v0 � K on [0, 1]. Then
0< u � M, 0< v � K for all t in the existence interval andr 2 [0, 1].

At first, we consider the following quenching theorem.

Theorem 2.1. Assume p, q > 0. Then every solution(u, v) of (1.3) quenches in
finite time with the only quenching point rD 1.

Proof. Sinceu00,v00 � 0, we know thatur ,vr � 0 by the maximum principle. Thus,

min
r2[0,1]

u(r, t) D u(1, t), min
r2[0,1]

v(r, t) D v(1, t), t 2 [0, T).

For F(t) D
R 1

0 r N�1u(r, t) dr and G(t) D
R 1

0 r N�1
v(r, t) dr , we have

F 0(t) D
Z 1

0
r N�1ut (r, t) dr D

Z 1

0
(r N�1urr C (N � 1)r N�2ur ) dr

D ur (1, t) D �v

�p(1, t) � �K�p,

G0(t) D
Z 1

0
r N�1

vt (r, t) dr D
Z 1

0
(r N�1

vrr C (N � 1)r N�2
vr ) dr

D vr (1, t) D �u�q(1, t) � �M�q,

and so

F(t) � F(0)� t K�p
�

M

N
� t K�p, G(t) � G(0)� t M�q

�

K

N
� t M�q.

On the other hand,

F(t) D
Z 1

0
r N�1u(r, t) dr � u(1, t)

Z 1

0
r N�1 dr D

u(1, t)

N
,

G(t) D
Z 1

0
r N�1

v(r, t) dr � v(1, t)
Z 1

0
r N�1 dr D

v(1, t)

N
.

Then we have

u(1, t) � M � Nt K�p, v(1, t) � K � Nt M�q,

which means that there existsT > 0 such that limt!T� min{u(1, t), v(1, t)} D 0.
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To show thatr D 1 is the unique quenching point, it suffices to prove that the
quenching cannot occur at any inner pointr0 2 (1=2, 1). Define

h(r, t) D ur (r, t)C
"

2K p

�

r �
1

4

�2

,

where " > 0. Since ur (r, T=2) < 0 for r 2 (0, 1], there exists"0 > 0 such that
ur (r, T=2) � �"0 < 0 for r 2 [1=4, 1]. If we take" � 32K p

"0=9, thenh(r, T=2) � 0,
r 2 [1=4, 1]. We have

ht � hrr �
N � 1

r
hr C

N � 1

r 2
h

D �

"

K p
�

"(N � 1)

r K p

�

r �
1

4

�

C

"(N � 1)

2r 2K p

�

r �
1

4

�2

D �

"

K p

�

1C
N � 1

r

�

r �
1

4

�

�

N � 1

2r 2

�

r �
1

4

�2�

D �

"

2r 2K p

�

(N C 1)r 2
�

N � 1

16

�

� 0

for (r, t) 2 (1=4, 1)� (T=2, T). And

h

�

1

4
, t

�

D ur

�

1

4
, t

�

� 0, h(1, t) D �v

�p(1, t)C
9"

32K p
� 0

for t 2 (T=2, T). By the maximum principle,h � 0 in (1=4, 1)� (T=2, T), which
means that

ur (r, t)C
"

2K p

�

r �
1

4

�2

� 0, (r, t) 2

�

1

4
, 1

�

�

�

T

2
, T

�

.

Integrating with respect tor , we obtain

u(r, t) � u(1, t)C
"(1� r )

6K p

�

9

16
C

3

4

�

r �
1

4

�

C

�

r �
1

4

�2�

� u(1, t)C
3"(1� r )

32K p
, (r, t) 2

�

1

4
, 1

�

�

�

T

2
, T

�

.

Hence, for anyr0 2 (1=2, 1),

lim inf
t!T�

u(r0, t) �
3"(1� r0)

32K p
> 0.

Similarly, we have also lim inft!T�

v(r0, t) > 0.
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We have shown that quenching cannot occur in the interior of (0, 1). The proof
is complete.

Next, we introduce two basic lemmas as preliminaries.

Lemma 2.1. Let (u, v) be a solution to(1.3) with assumptions(H1)–(H3).
(i) If q � p > 0, q, p ¤ 1, then there exists a positive constant C such that

(2.1) v

1�p(r, t) � Cu1�q(r, t), (r, t) 2 [0, 1]� [0, T),

where C can be one of the constants in the assumptions(H1)-(i)–(H3).
(ii) If q > p D 1, then there exists a positive constant CD C1(ii) such that

(2.2) � log v(r, t) � Cu�qC1(r, t), (r, t) 2 [0, 1]� [0, T).

(iii) If q D p D 1, then u� v for t close to T .

Proof. (i) Forq � p> 0 with p,q¤ 1, set8(r,t)D v1�p
�Cu1�q(r,t). We know

8t �8rr �
N � 1

r
8r � (pv�1

vr C qu�1ur )8r C q(1� p)u�1
v

�1ur vr8

D C(p� q)v�1u�qur vr � 0

in (0, 1)� (0, T), and moreover

8r (1, t) D ((p� 1)� C(q � 1))u�q(1, t)v�p(1, t) � 0, t 2 (0, T)

for each of (H1)–(H3),q, p ¤ 1. The facts8r (0, t) D 0 for t 2 (0, T) and8(r, 0)D

v

1�p
0 (r ) � Cu1�q

0 (r ) � 0 for r 2 [0, 1] are obviously true under the assumptions of the
lemma. By the maximum principle,8(r, t) � 0, i.e., v1�p(r, t) � Cu1�q(r, t) for (r, t) 2
[0, 1]� [0, T).

(ii) For the case ofq > p D 1, let 9(r, t) D �(log v C Cu�qC1)(r, t). By taking
C large enough, we get

9t �9rr �
N � 1

r
9r � (v�1

vr C qu�1ur )9r

D (C(1� q)u�qC1
C q)u�1

v

�1ur vr � 0

for (0, 1)� (0, T), and

9r (0, t) D 0, 9r (1, t) D (C(1� q)C 1)u�q(1, t)v�1(1, t) � 0, t 2 (0, T),

9(r, 0)D �(log v0(r )C Cu�qC1
0 (r )) � 0, r 2 [0, 1].
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It follows by the maximum principle that

9(r, t) D �(log v C Cu�qC1)(r, t) � 0, (r, t) 2 [0, 1]� [0, T).

(iii) For q D p D 1, let w D v � cu. Then wt � wrr � (N � 1)wr =r D 0 in
(0, 1)� (0, T). wr (0, t) D 0 andwr (1, t)C w(1, t)=(vu) D 0. Therefore, we can show
by the maximum principle thatu � v.

The lemma is proved.

Lemma 2.2. If (H4) and one of (H1)–(H3) hold, then

(2.3) u�(qC1)=2(1, t)ut (r, t) � c0v
�(pC1)=2(1, t)vt (r, t)

for (r, t) 2 [0, 1]� (0, T) and the positive constant c0 in (H4).

Proof. Set

J(r, t) D u�(qC1)=2(1, t)ut (r, t) � c0v
�(pC1)=2(1, t)vt (r, t).

Sinceu, v � 0, ut , vt � 0, we have on the parabolic boundary that

J(r, 0)D u�(qC1)=2
0 (1)

�

u000(r )C
N � 1

r
u00(r )

�

� c0v
�(pC1)=2
0 (1)

�

v

00

0(r )C
N � 1

r
v

0

0(r )

�

� 0, r 2 [0, 1],

Jr (0, t) D u�(qC1)=2(1, t)(ur (0, t))t � c0v
�(pC1)=2(1, t)(vr (0, t))t D 0, t 2 (0, T),

Jr (1, t)C c0qv
�(pC1)=2(1, t)u�(qC1)=2(1, t)J(1, t)

D (p� c2
0q)u�(qC1)=2

v

�p�1(1, t)J(1, t)vt (1, t) � 0, t 2 (0, T)

sincep� c2
0 p. Moreover, by Lemma 2.1 (i), we have withc0 < (pC1)=(

p

C4(qC1)) that

Jt � Jrr �
N � 1

r
Jr C

c0(qC 1)

2
u(q�1)=2(1, t)v�(pC1)=2(1, t)vt (1, t)J(r, t)

C

qC 1

2
u�1(1, t)ut (r, t)J(1, t)

D

c0

2
((pC 1)v(p�1)=2(1, t) � c0(qC 1)u(q�1)=2(1, t))v�p�1(1, t)vt (1, t)vt (r, t)

� 0

for (r, t) 2 (0, 1)� (0, T). By the maximum principle (see, e.g., Lemma 2.1 of [3]),
J(r, t) � 0, or equivalently,u�(qC1)=2(1, t)ut (r, t) � c0v

�(pC1)=2(1, t)vt (r, t) for (r, t) 2
[0, 1]� (0, T). This completes the proof.
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3. Simultaneous and non-simultaneous quenching

In this section, we will prove a criterion to identify the simultaneous and non-
simultaneous quenching, which is given as the following theorem.

Theorem 3.1. Let (u, v) be a solution of(1.3) with quenching time T .
(i) If p, q � 1, then simultaneous quenching will occur for any positive initial data
satisfying(H1) and (H4). If 0< p< 1� q with (H3) and (H4) hold, then the quench-
ing is non-simultaneous.
(ii) If 0 < p, q < 1, then for any positive u0(r ) there existsv0(r ) such that(H2) and
(H4) hold, and the quenching is non-simultaneous.
(iii) In the case of non-simultaneous quenching, for instance, if v is the quenching
component, then v(r, T) � (1� r ) for r close to1.

We needs three lemmas to prove the three parts of the theorem,respectively.

Lemma 3.1. Assume that the quenching is non-simultaneous and, for instance, v
is the quenching component with quenching time T . Thenv(r, T) � (1 � r ) for 0 <
1� r � 1.

Proof. Notice that limt!T�

v(1, t) D 0 and 0< c < u(1, t) � M for 0 <

1� r � 1. Set

J(r, t) D vr (r, t)C '(r )u�q,

where', '0, '00 � 0, '(0)D 0, '(1)D 1, '0(1) � 0, '(r ) � �uq
0(r )v00(r ). It is easy to

see thatJ(r, 0)� 0, J(0, t) D J(1, t) D 0, and

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J

D

N � 1

r 2
'u�q

� '

00u�q
C 2q'0u�q�1ur � q(qC 1)'u�q�2u2

r �
N � 1

r
'

0u�q

D 'u�q�2

�

N � 1

r 2
u2
� q(qC 1)u2

r

�

� '

00u�q
C 2q'0u�q�1ur �

N � 1

r
'

0u�q

� 0

for (r, t) 2 (0,1)�(0,T). By the maximum principle,J(r, t) � 0 for (r, t) 2 [0,1]� [0,T).
By '0(r ) � 0, we know that there exists 0< 1� r1 � 1 such that'(r ) � c> 0 for any
r 2 [r1, 1]. By 0< c < u(1, t) � M, we have�vr � cu�q

� C. Integrating the above
inequality from r to 1, we obtain

v(r, t) � C(1� r )

for r 2 (r1, 1], 0< T � t � 1.
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On the other hand, setJ(r, t) D vr (r, t)C Cu� , where 0< � < 1 andC is large
enough. Then

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J D �C�(� � 1)u��2u2

r C C
N � 1

r 2
u� � 0

for (r,t) 2 (0,1)�(0,T). And J(0,t)D Cu�(0,r ) � 0, J(1,t)D�u�q(1,t)CCu� (1,t)� 0
whereC is large enough and 0< c< u(1,t) � M. By the maximum principle,J(r,t) �
0, that is

�vr � Cu� � C.

Integrating this inequality fromr to 1, we get for 0< T � t � 1, 0< 1� r � 1,

v(r, t) � C(1� r ).

Let t ! T and the proof is complete.

Lemma 3.2. The quenching in(1.3) is simultaneous under the assumptions(H1)
and (H4), and is non-simultaneous if(H3) and (H4) are satisfied.

Lemma 3.3. Assume that(H2) and (H4) hold. Then for any initial data u0, there
exists an open set(in the C2 topology) of initial data v0 such thatv quenches while u
keeps strictly positive.

The proofs of Lemmas 3.2 and 3.3 are similar to the ones of Lemmas 3.2 and 3.3
in [14]. Here we omit them.

Theorem 3.1 follows from Lemmas 3.1–3.3 directly.

REMARK 3.1. We note that, in the case of non-simultaneous case, we could also
get the quenching rate. For instance, ifv is the quenching component, thenv(1, t) �
(T � t)1=(pC1). The conclusion is similar to the one dimensional case that has been
proved in [14].

4. Simultaneous quenching profiles

Now we deal with the more interesting simultaneous quenching profiles. Consider
the case ofq � p > 1 at first.

Theorem 4.1. Let (H4) with either (H1) or (H2) hold, (u, v) be the solution of
(1.3) with quenching time T . Then

u(r, T) � (1� r )(1�p)=(1�pq), v(r, T) � (1� r )(1�q)=(1�pq), 0< 1� r � 1.
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We will prove the upper and lower bounds for the quenching profiles for u and v
by a chain of lemmas.

Lemma 4.1. Let (H1) and (H4) hold, (u,v) be the solution of(1.3) with quench-
ing time T . Then there exists a positive constant C such that

v(r, t) � C(1� r )(1�q)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.

Proof. Set

J(r, t) D vr (r, t)C '(r )u�q,

where ', '0, '00 � 0, '(0) D 0, '(1) D 1, '0(1) � 0, '(r ) � �v

p
0 (r )u00(r ). By the

Lemma 3.1 and Lemma 2.1 (i), we have

�vr � cu�q
� cv�q(1�p)=(1�q),

or equivalently

�v

q(1�p)=(1�q)
vr � c.

Integrating the above equality fromr to 1, we can get

v(r, t) � c(1� r )(1�q)=(1�pq), 0< 1� r � 1, 0< T � t � 1.

Lemma 4.2. Let (H1) and (H4) hold, (u,v) be the solution of(1.3) with quench-
ing time T . Then there exists a positive constant C such that

u(r, t) � C(1� r )(1�p)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.

Proof. Set

J(r, t) D (1� r )�ur (r, t)C Cu� ,

where 0< � < 1, 0< � < 1 and (1� �)=(1� �) D (1� p)=(1� pq). We have

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J � 2�(1� r )�1Jr

D ��(� � 1)(1� r )��2ur � C�(� � 1)u��2u2
r C C

N � 1

r 2
u� C �

N � 1

r
(1� r )��1ur

C 2�2(1� r )��2ur � 2C��u��1(1� r )�1ur
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D �(� C 1)(1� r )��2ur C �
N � 1

r
(1� r )��1ur � C�(� � 1)u��2u2

r

� 2C��u��1(1� r )�1ur C C
N � 1

r 2
u�

D �(1� r )��2ur

�

(� C 1)C
N � 1

r
(1� r ) � 2C�u��1(1� r )1��

�

� C2�(� � 1)u��2u2
r C C

N � 1

r 2
u�

� 0

for r 2 (0, 1), 0< T � t � 1 and C large enough. It easy to see thatJ(0, t) D
Cu�(0, t) � 0, J(1, t) D Cu�(1, t) � 0. By the maximum principle,J(r, t) � 0 for
0< 1� r � 1, 0< T � t � 1. That is

(1� r )�ur (r, t)C Cu� � 0,

equivalently

�u��ur � C(1� r )��.

Integrating the above equality fromr to 1, we get

u(r, t) � C(1� r )(1��)=(1��)
D C(1� r )(1�p)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.

Lemma 4.3. Let (H1) and (H4) hold, (u,v) be the solution of(1.3) with quench-
ing time T . Then there exists a positive constant C such that

v(r, t) � C(1� r )(1�q)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.

Proof. Set

J(r, t) D (1� r )�vr (r, t)C Cv
 ,

where 0< 
 < 1, 0< � < 1 and (1� �)=(1� 
 ) D (1� q)=(1� pq). Similarly to the
proof of Lemma 4.2, we can get

v(r, t) � C(1� r )(1��)=(1�
 )
D C(1� r )(1�q)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.
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Lemma 4.4. Let (H1) and (H4) hold, (u,v) be the solution of(1.3) with quench-
ing time T . Then there exists a positive constant c such that

u(r, t) � c(1� r )(1�p)=(1�pq)

for 0< T � t � 1, 0< 1� r � 1.

Proof. Set

J(r, t) D ur (r, t)C '(r )v�p,

where', '0, '00 � 0, '(0)D 0, '(1)D 1, '0(1) � 0, '(r ) � �v p
0 (r )u00(r ). It is easy to

see thatJ(r, 0)� 0, J(0, t) D J(1, t) D 0, and

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J

D

N � 1

r 2
'v

�p
� '

00

v

�p
C 2p'0v�p�1

vr � p(pC 1)'v�p�2
v

2
r �

N � 1

r
'

0

v

�p

D 'v

�p�2

�

N � 1

r 2
v

2
� p(pC 1)v2

r

�

� '

00

v

�p
C 2p'0v�p�1

vr �
N � 1

r
'

0

v

�p

� 0

for (r, t) 2 (0,1)�(0,T). By the maximum principle,J(r, t) � 0 for (r, t) 2 [0,1]� [0,T).
By '0(r ) � 0, we know that there exists 0< 1� r1 � 1 such that'(r ) � c> 0 for any
r 2 (r1, 1]. Then we have

�ur (r, t) � '(r )v�p
� c(1� r )�p(1�q)=(1�pq),

equivalently where we use the conclusion of Lemma 4.3. Integrating the above equality
from r to 1, we can obtainu(r,t)� c(1�r )(1�p)=(1�pq) for r 2 (r1,1], 0< T�t � 1.

REMARK 4.1. We obtain the quenching profiles for (H1) (1< p � q) by letting
t ! T and combining Lemmas 4.1–4.4. The subcase of (H2) (0< p � q < 1) can
be treated by a similar way. The main difference between the two subcases is that,
by Theorem 3.1, the quenching should be assumed simultaneous for the second case,
while the quenching in the first case is always simultaneous.

Theorem 4.1 is proved by Lemmas 4.1–4.4 and Remark 4.1.
Finally, we consider the simultaneous quenching profiles for the other cases.

Theorem 4.2. Let (u, v) be the solution of(1.3) with quenching time T . For
0< 1� r � 1,
(1) If p D q D 1, the simultaneous quenching profile is

u(r, T) � (1� r )1=2, v(r, T) � (1� r )1=2.
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(2) If p D 1< q, the simultaneous quenching profile is

u(r, T) � jlog(1� r )j�1=(q�1), v(r, T) � (1� r )jlog(1� r )jq=(q�1).

Proof. (1) ForpD q D 1, by using Lemma 4.1 withq D 1 and noticingu � v,
we can obtainv(r, t) � C(1� r )1=2, and v(r, t) � C(1� r )1=2 from Lemma 4.3 where
�D 5=8, 
 D 1=4. Thus,u(r, t) � v(r, t) � (1� r )1=2 for 0< T � t � 1, 0< 1� r � 1.

(2) Now we consider the case ofq > pD 1. We know from the Lemma 2.1 (ii)
that � log v(r, t) � cu�qC1(r, t), that is

v(x, t) � e�cu�qC1(r,t), (r, t) 2 [0, 1]� [0, T).

To get the upper bound of thev(r, t), set

J(r, t) D vr (r, t) � C log(1� r )v1=q(r, t).

It easy to see thatJ(0, t) D 0 andC is large to makeJ(1, t) � 0. We have

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J

D

C

(1� r )2
v

1=q
�

2C

q(1� r )
v

1=q�1
vr C

C

q

�

1

q
� 1

�

log(1� r )v1=q�2
v

2
r

�

C(N � 1)

r (1� r )
v

1=q
�

C(N � 1)

r 2
log(1� r )v1=q

D �

2C

q(1� r )
v

1=q�1
vr C

C

q

�

1

q
� 1

�

log(1� r )v1=q�2
v

2
r

C

C

1� r
v

1=q

�

1

1� r
�

N � 1

r
�

N � 1

r 2
(1� r ) log(1� r )

�

� 0

for C large enough and (r, t) 2 (r1, 1)� (0,T), where 0< 1� r1 � 1. By the maximum
principle, J(r, t) � 0 for (r, t) 2 (r1, 1]� [0, T). Then we have

�v

�1=q
vr � �C log(1� r ).

Integrating the inequality fromr to 1, we get

v

1�1=q(r, t) � �C(1� r ) log(1� r ),

or equivalently

v(r, t) � C(1� r )q=(q�1)
jlog(1� r )jq=(q�1)

� C(1� r )jlog(1� r )jq=(q�1)
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for 0< T � t � 1, 0< 1� r � 1.
By � log v(r, t) � cu�qC1(r, t), we haveu1�q(r, t) � � log v(r, t). Using the above

upper bound ofv(r, t), we obtain

u1�q(r, t) � � log v(r, t) � �C log((1� r )jlog(1� r )jq=(q�1))

D �C log(1� r ) �
Cq

q � 1
log(jlog(1� r )j)

� �C log(1� r )

for (r, t) 2 (0, 1)� (0, T). Then

u(r, t) � Cjlog(1� r )j�1=(q�1)

for 0< T � t � 1, 0< 1� r � 1.
To get the lower bound of thev(r, t), we setJ(r, t) D vr (r, t)C ru�q. Obviously,

J(0, t) D J(1, t) D 0. We have

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J D 2qu�q�1ur � rq(qC 1)u�q�2u2

r � 0

for (r, t) 2 (0,1)�(0,T). By the maximum principle,J(r, t) � 0 for (r, t) 2 [0,1]� [0,T).
Then we have

�vr (r, t) � ru�q
� Cjlog(1� r )jq=(q�1).

Integrating the inequality fromr to 1 where 0< 1� r � 1,

v(r, t) � C
Z 1

r
jlog(1� s)jq=(q�1) ds.

Setting log(1� s) D �w, we get

v(r, t) � C
Z

1

� log(1�r )
w

q=(q�1)e�w dw.

It is known that the incomplete Gamma function0(a, z) D
R

1

z w

a�1e�w dw satisfies

0(a, z) � za�1e�z for z!1. For the incomplete Gamma function0(a, � log(1� r ))
with a� 1D q=(q � 1), we obtain

v(r, t) � C(1� r )jlog(1� r )jq=(q�1)

ford 0< T � t � 1, 0< 1� r � 1.
As for the lower bound of thev(r, t), we set

J(r, t) D ur (r, t)C r v�1.
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It is easy to see thatJ(0, t) D J(1, t) D 0. And

Jt � Jrr �
N � 1

r
Jr C

N � 1

r 2
J D 2v�2

vr � 2r v�3
v

2
r � 0

for (r, t) 2 (0,1)�(0,T). By the maximum principle,J(r, t) � 0 for (r, t) 2 [0,1]� [0,T).
Then we have

�ur � r v�1
� C(1� r )�1

jlog(1� r )j�q=(q�1)

for 0 < T � t � 1, 0< 1� r � 1. Integrating the above inequality fromr to 1, we
can get

u(r, t) � Cjlog(1� r )j�1=(q�1)

for 0< T � t � 1, 0< 1� r � 1. Let t ! T and the proof is complete.

REMARK 4.2. For the simultaneous quenching case, we note that{r D 1} is the
only quenching point. Moreover, by virtue of Lemma 2.1, we also could get three
kinds of simultaneous quenching rates described briefly as the following conclusions,
which are very similar to those in the one dimensional case (see [14]),

u(1, t) Ï (T � t)�=2, v(1, t) Ï (T � t)�=2 for p, q > 1 or p, q < 1I

u(1, t) Ï (T � t)1=4, v(1, t) Ï (T � t)1=4 for p D q D 1I

u(1, t) Ï jlog(T � t)j�1=(q�1), v(1, t) Ï (T � t)jlog(T � t)jq=(q�1) for 1D p < q,

where� D (p� 1)=(pq� 1), � D (q � 1)=(pq� 1).
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