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Abstract
Let (M, g, J) be a compact Hermitian manifold arfd the fundamental 2-form
of (g, J). A Hermitian manifold M, g, J) is said to be locally conformal Kahler if
there exists a closed 1-form such thatd2 = w A Q. The purpose of this paper is to
investigate a relation between a locally conformal Kahkeacdure and the adapted
differential operator on compact solvmanifolds.

Introduction

Let (M, g, J) be a Z-dimensional compact Hermitian manifold. We denote by
Q the fundamental 2-form, that is, the 2-form defined @agX, Y) = g(X, JY). A
Hermitian manifold M, g, J) is said to belocally conformal Kahlerif there exists a
closed 1-formew such thatd2 = o A Q. The closed 1-formw is called Lee form In
the casew = df, (M, e g, J) is Kéhler. The main non-Kahler examples of locally
conformal Kahler manifolds are Hopf manifolds [15], Inougrfaces [14] and gener-
alized Kodaira—Thurston manifolds [5] (cf. [6]). Note tHabue surfaces and general-
ized Kodaira—Thurston manifolds have a structure of a campalvmanifold. In this
paper, we investigate locally conformal Kahler structuoesa compact solvmanifold
'\G with a left-invariant complex structure, whef@ is a simply-connected solvable
Lie group andr is a lattice ofG, that is, a discrete co-compact subgroup.

An n-dimensional complex manifoldM is said to becomplex parallelizabléf it
admits holomorphic vector fieldsXy, ..., Xy} which are linearly independent at every
point. Wang [16] proved that a compact complex paralleleatmanifold M is bi-
holomorphic to a homogeneous spad&G, where G is a simply connected complex
Lie group andD is a discrete subgroup db. Abbena—Grassi [1] proved that a non-
toral compact complex parallelizable manifold has no llycabnformal K&hler struc-
tures. The author in [12] proved that if a compact nilmamifdl with a left-invariant
complex structure has a locally conformal Kahler structahen M is biholomorphic
to a Kodaira—Thurston manifold or a generalized Kodaira#$ton manifold.

A locally conformal Ké&hler manifold N1, g, J) is said to bea generalized Hopf
manifold if the Lee formw is parallel with respect to metrig. Vaisman [15] proved
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1088 H. SAwAI

that a generalized Hopf manifold has a structure of a praic§-bundle over a com-
pact Sasakian manifold. Hopf manifolds and generalizedaitad Thurston manifolds
are generalized Hopf manifolds. Tricerri [14] construcgedocally conformal Kahler
structure on Inoue surfaces with non-parallel Lee fasmin Section 3, we prove that

Main Theorem. Let (I'\G, g, J) be a locally conformal K&hler solvmanifold of
dimT'\G > 4 with a left-invariant complex structure and the Lee form. We assume
that (I'\G, g, J) satisfies the following conditions
1. There exists a left-invariant closettHform wg such that the Lee fornm is co-
homologous tawo.

2. The fundamenta-form © of (g, J) can be written as2 = —w A n + dn, where
n=-wold.

ThenI'\G has a left-invariant locally conformal Kahler structuretivthe parallel Lee
form wy, in particular, I'\G is a generalized Hopf manifold.

In Section 4, we see that Kodaira—Thurston manifolds andrskry Kodaira—Thurston
manifolds are examples of Main Theorem.

Hasegawa [7] proved that a complex structure on a 4-dimeakicompact solv-
manifold is induced from a left-invariant complex strueuwn the solvable Lie group
and classified 4-dimensional compact solvmanifolds withommex structure. By this
classification, we have a classification of 4-dimensionallly conformal Kahler solv-
manifolds in Section 4.

1. Preliminaries

Let (M =TI'\G, g, J) be a compact locally conformal Kéhler solvmanifold such
that J is left-invariant. In this section, we see that the localpnformal Kahler metric
g induces a left-invariant locally conformal Kéahler metricdaconsider its fundamental
2-form on the Lie algebrg of G.

Let @ be the fundamental 2-form ofg(J). There exists a closed 1-form such
thatdQ2 = w A 2. We now assume that the associated Lee form satisfies thétioond
1 in Main Theorem. Then there exists a left-invariant closddrth wg such thatwg —

w = df. This assumption holds for completely solvmanifolds [9heh we define a
left-invariant 2-formq by

(X, Y) = [M (€' Q)(X, Y) du

for left-invariant vector fieldsX, Y, wheredu is the volume element induced by a bi-
invariant volume element o. Belgun [3] proved that2, is J-invariant and it is the
fundamental 2-form of a Hermitian structurg, (), J) on the solvable Lie algebrg of

G such thatdQ2g = wg A Qp.
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DEFINITION 1.1. Letg be a Lie algebra and a closed 1-form org. We define
the adapted algebraic compl@(\ g%, da) with the differential operatod,:

B:=anp+ds

for B € APg*. Note thatd? = O becausex is closed. Ap-form g is called a-closed
if d,8 = 0. Itis calleda-exactif there exists a |p — 1)-form y such thatg = d,y.

On the above Hermitian structuré,(), J) on g, sincewy is a closed 1-form, the
fundamental 2-formt2y is —wp-closed. We say that(( ), J) on g is locally conformal
Kahler. In Section 4, we consider a relation between a property & foem and the
adapted differential operator on 4-dimensional solvnds.

We next show thafg is —wg-exact if the second condition in Main Theorem also
holds true.

Proposition 1.2 (cf. [3]). Let Qg be the2-form ong above. IfQ = —wAn+dn,
then g is —wg-exact. In additionif n = —w o J, then ng = —kwg o J, where k=
fw e du.

Proof. SinceQ = —w An+dn andw = wy—df, we see that

efQ=el(—oAn+dpy
=el(—woAn +df An+dpy)
=-—worne'n+dEe)an+edy
=—wore'n+den).

Then we get
(X, ¥) = [ (~on A e+ d(e )X, V) du
M
= —on(X) [ V) i+ wo¥) [ ) dt [ de'mx V)
for X, Y €g.
Now, we define a 1-fornmy on g by no(X) = fM(efn)(X) du for X € g. Since
du is the right-invariant volume element, its Lie derivatikg du along a left-invariant

vector fieldsX is zero. Then, for any functiofr on M, we see that

(XF)du = (LxF) dp = Lx(F dg) = di(X)F d +i(X) d(F dy) = di(X)F dp,
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wherei(X) is the interior product with the vector field. Therefore, by Stokes’s the-
orem, we have

/ d(e’ n)(X, Y) du
M
- / X((e" n)(¥)) dpt — / Y((e' m)(X)) dyu — / €' D)X, YD dpt
M M M
- / di(X)(e" n(Y)) dyt — / diY)(e' n(X)) dje — noIX. Y1)
M M
= dr]o(x, Y).
Thus we see that

Q(X, Y) = —wo(X) /M &' n)(Y) dyu + wo(Y) /M (&' n)(X) dyt + /M d(e’ n)(X. Y) du

= —wo(X)no(Y) + @o(Y)no(X) + dno(X, Y)
= (—wo A 1o + dno)(X, Y).

Similarly, if n = —w o J, then we have
00 = [ €m0 di =~ [ @)X d =~ [ ('on—e AR du
= —wo(J X)/M e du + /M de"(IX) du

= —awo(J x)/M e' du+/M(J X)(e") du

= —(/M ef du)a)o(J X).

Thus we see thaty = —kwo o J, wherek = [}, e’ du. O

By Proposition 1.2, we see th&@itg = —wo A kg + K diy = K(—wo A n + dng) =
kd_.,,n5, Whereny = (1/K)no = —wo o J. Then the locally conformal Kahler structure
(20, J) induces the locally conformal Kéhler structury(= d_.,,(-wo o J), J) on
the solvable Lie algebrg. Therefore, by replacin§q by €2/, in order to prove Main
Theorem, it is enough to show that i, = d_,,(—wo© J), J) is a locally conformal
Kéahler solvable Lie algebra, then the Lee fowp is parallel with respect td, ) (see
Section 3).

2. The adjoint operators and the inner product

Let ((, ), J) be the locally conformal Kahler structure as we consideBéttion 1
on solvable Lie algebrg, namelyQq can be written a$2o = d_,,,n0 = —wo A no+dno,
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wherewy is a closed 1-form org andng = —wgo J. In this section, we investigate the
properties of g, (, }, J).

Let y be the canonical isomorphism frogt to g induced by the inner product
(, ). Put A= y(wp). By this normalization, we may assume tHa#, A) = 1.

We easily see that an abelian Lie algebra of dimension equat thore than 4 has
no locally conformal K&hler structures. From now on, we assuhatg is not abelian.

Since g is solvable, §, g] is nilpotent. We take the descending central series for
[g,0]: n=[g, gl D0 =[n,n] Dn® =[n, @] >... 500 > nl+) = 0, where
n0+D = [n,n0] (i > 1) andn® #£ 0. We easily see that") is contained in the center
Z(n) of n. Note that, forX e g, adX)n® c n®) for eachi. Then we get

Lemma 2.1. Jn®) C [g,g]*, where[g, g]* is the orthogonal component ¢, g].
Proof. ForZ e n®) and X € [g, g], we see that
(3Z, X) = Q0o(X, Z) = (—wo A no + dno)(X, Z) = 0,
becausav, is closed andZ € Z(n). O
Lemma 2.2. For Z,Z en®), [JZ,2]=[JZ,Z] and[JZ,JZ] = 0.

Proof. The Nijenhuis tensoX; vanishes, because J is integrable. SiaceZ’ €
n®), we see that

0=Ny(Z,2)=[2,21+3[IZ 2]+ 3[2,3Z]-[IZ IZ]
= HIZ, ZN1+1(2,3Z1 -13Z, 3Z].

Note that P Z, 2'],[Z, JZ'] € n®. It follows that J{[JZ, Z'] +[Z, I Z} € [g, g]*" by
Lemma 2.1. Thus we havel, Z2'] +[Z,JZ]=0and JZ,JZ] =0. []

By Lemmas 2.1 and 2.2, we have
Proposition 2.3. For U, V, W € n®),

(ad@U)V, W) 4+ wo(IV){U, W) = (V, adQU)W) + wo(IJW)(U, V).
Proof. SinceQq = —wg A 1o + dng and wg is closed 1-form, we see that

(ad@U)V, W) = Qo(J ad@U)V, W) = —Q(ad@U)V, IW)
(2.1) = (wo A 1o — dno)(ad@U)V, JW)
= —wo(IW)no(ad@U)V) — dio(ad@U)V, IW).
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Sinceny = —wp o J, we get

—wo(JW)no(@ad@U)V) = wo(IW) dno(JU, V)
(2.2) = wo(IW){R2(JU, V) + wg A no(JU, V)}
= wo(JW)(U, V) — @o(IW)wo(IU)wo(I V).

From the derivation conditions and Lemma 2.2, we get

dno(ad@U)V, JW) = dno(JU, [V, IW]) —dno(V, [JU, IW])
= dno(JU, [V, JW])
= dno(JU, [W, JV])
= dno([JU, W], JV) + dno(W, [JU, JV])
= dno([IU, W], JV) = —dno(JV, [IU, W]).

It follows that

—dno(ad@U)V, IW)
= dno(JV, [JU, W))

= Qo(JV, [JU, W]) + wo A no(IV, [JU, W])

= (V, [JU, W]) — wo(JV) dno(JU, W)

=(V, [JU, W]) — wo(IV){Q20(JU, W) + wo A no(JU, W)}
= (V, [JU, W]) — wo(IV){U, W) + a(I V)wo(I U)wo(IW).

(2.3)

From (2.1) and (2.2)), (2.3), we have
(ad@U)V, W) = wo(JW)(U, V) — wo(I W)wo(IU)wo(I V)

+ (V, [JU, W]) = wo(IV)(U, W) + wo(I V)wo(IU)wo(IW),
(ad@U)V, W) + wo(IV)(U, W) = (V, adJU)W) + wo(JW)(U, V). O

It is well-known that if a solvable Lie grou® admits a latticel’, then the solv-
able Lie algebrag of G is unimodular. We define

DEFINITION 2.4. A solvable Lie algebra is called strongly unimodular if, for
X e g, trad(X)|,» = 0 for eachi.

Benson—Gordon [4] proved that if a solvable Lie groB@padmits a latticel’, then the
solvable Lie algebrg of G is strongly unimodular.

We take an orthonormal framZy, ..., Zn,} of n®) and consider the strongly uni-
modular conditions of ad(z;) from n®) to n® for eachi.
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For eachi, let

a(i) -+ am()
adQZ)(Z1, ..., Zm) =(Z1, ..., Zm)| : :
ami(i) -+ amm(i)
By Proposition 2.3, we see that

(ad(J Zi)Zj, Zy) + wo(J Z,-)(Zi, Zy) = (Zj, ad(d Z) Zx) + wo(J Z)(Zi, Zj),
aj(i) + dikwo(J Zj) = ajk(i) + &ijwo(J Z).

It follows that, in the case of, k #1i,
a;(i) = aj(i)
and, in the case of =1, k #1,

ai(i) = ai (i) + wo(J Z).

Then we get
line i
wo(J Z1)
(2.4) axi)=a+|0 0]
wo(J Zm)
where A is an m x m)-symmetric matrix.
Moreover, put
line i
a
* . *
A = row i a; aii a':_n ,
* a,'n *

for eachi. Since Pz, Z;] =[JZ;, Zi], we get

aj;(i) = (ad02)z;, ;) = (ad@Z))z;, Z;) = &
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for j #i. Then A; can be written as

Thus (2.4) can be expressed as follows:

ai1

(2.5) @jk@)) = rowi | a}

*

line i
a) + wo(J Z1)

a +wo(dZ)

_ *
arl‘n + wo(J Zm)

aim

From the strongly unimodular condition of adt;)|.., we have

Proposition 2.5. For each | (Zj aij) + wo(JZ) = 0.

Then we have
Corollary 2.6. Y, wo(JZ)? = 1.

Proof. For each, we see that

1=(Z,Z) =(Z, Z)

= (—wo A 1o + dno)(I Zi, Z;)
= —wo(I Z)no(Zi) —no([I Z, Z])
= wo(J Z)? + wo(J[I Z, Zi]),
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because)g = —wg o J. From (2.5),

1=(Z,Z) = wo(IZ)* + wo(I[I Z, Z]),

1= a)o(J Zi)z + wgo J (Z(a'] + a)o(J Zj))Zj),

(2.6) J

1=wo(3Z)*+ ) aiw(IZ) + ) wo(IZ))>.
j j

Take the sum of (2.6) for, we get

Zl = Zwo(JZi)z-i- Zaijwo(J Zj) + Zwo(JZj)z,
i i i i
m= Zwo(Jzi)Z-F Z(Z aij)wo(JZi) + meo(JZi)z.
i i j i

By Proposition 2.5, we have
M= wo(JZ) + Y (~wo(IZ)wo(IZ) +m Y wo(IZ),
i i i
m=3 w0(JZ)?-) wo(IZ)?+m wo(IZ)?,
i i i
m=mY wo(JZ)
i
which implies that}"; wo(J Z)? = 1. O]
Corollary 2.7. A=Y wo(JZ)JIZ € In").
Proof. SinceA = y(wyp), it can be given by

A=) wo(JZ)IZ +B,
i

where B € (IJnM)* N [g, g]*. From (A, A) = 1, we have

1= (A A =) w(JZ)*(IZ,IZ)+ (B, B) =) wo(JZ)*+ (B, B).

By Corollary 2.6, we havéB, B) = 0, which implies thatB = 0. O
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3. Structure on the solvable Lie algebra

We use same notation introduced in Section 2. In this secti@nprove thatJ A
is in the centerZ(g) of g and have Main Theorem.

We seeJA= -3 wo(JZ)Z €n® by Corollary 2.7. PutZo = JA. Note that
no(Zo) = —wpo J(JA) =1 andne(A) = —wp o J(A) = 0. We get

Lemma 3.1. For X € g, dno(A, X) =0 and dyo(Zo, X) = 0.

Proof. Sinceng = —wp o J, we see that
dno(A, X) = Q0o(A, X) + wo A no(A, X) = (A, IX) + no(X) = wo(J X) + no(X)
=0.
Similarly, we get
an(ZOa X) = QO(ZOI X)+CUO/\7]0(ZO, X) = _<X7 JZ())_a)O(X) = <x1 A>_a)0(x)
=0. O
Then we see that

Proposition 3.2. For U € n®), ad(A)U = 0.

Proof. By a straightforward computation, we see that
(ad(A)U, ad(A)U) = Qo(J o ad(A)U, ad(A)U)
= (—wo A no + dno)(J o ad(A)U, ad(A)U)
= —wp(J o ad(A)U)no(ad(A)U) + dno(Jd o ad(A)U, ad(A)U).
By Lemma 3.1 and the derivation conditions,
(ad(A)U, ad(A)U) = wo(J o ad(A)U) dno(A, U) — dno(ad(A)U, J o ad(A)U)
= —dnp(ad(A)U, J o ad(A)U)
= —dno(A, [U, J cad(®A)U]) + dno(U, [A, J cad(A)U])
= dno(U, [A, J o ad(A)U)]).

Now, sinceJA = Zy and ad@)U € n), we see that
[A, Joad(A)U] = [-JZ, J oad(A)U] =0

by Lemma 2.2. It follows thatdno(U, [A, J o ad(A)U]) = 0, which implies that
ad(A)U = 0. O
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Therefore we have
Theorem 3.3. Zy € Z(g).

Proof. LetX € g. By Lemma 3.1, we see that

(ad(X)Zo, ad(X)Zo) = Q0(J o ad(X)Zo, ad(X)Zo)
= (—wo A no + dno)(J o ad(X)Zo, ad(X)Zo)
= —wo(J o ad(X)Zo)no(ad(X) Zo) + dno(J o ad(X)Zo, ad(X)Zo)
= wo(J 0 ad(X)Zo) dno(X, Zo) + dno(J o ad(X)Zo, ad(X)Zo)
= dno(J o ad(X)Zo, ad(X)Zo).

Moreover, from the derivation conditions amth € Z([g, g]),

(ad(X)Zo, ad(X)Zo) = dno(J o ad(X)Zo, ad(X)Zo) = —dno(ad(X)Zo, J o ad(X)Zo)
= —dno(X, [Zo, J 0 ad(X)Zo]) + dno(Zo, [X, J o ad(X)Zo])
= —d)]o(x, [Zo, Jo ad(X)Zo])

Now, since adk)Zo € n), we see that
[Zo, J 0 ad(X)Zo] = [ad(X)Zo, J Zo] = [A, ad(X)Zo] =0

by Lemma 2.2 and Proposition 3.2. It follows théo(X, [Zo, J ad(X)Zg]) = 0, which
implies that adk)Zo = 0 for X € g. []

From Theorem 3.3, we have
Corollary 3.4. ad(A) o J = Joad(A).

Proof. LetX € g. SinceJ is integrable, we see that

0=N3(A X) =[A X] + I[IA X]+ A IX] - [IA IX]
0=[A, X] + J[Zo, X] + I[A, IX] —[Zo, IX].

From Zy € Z(g), [A, X] + J[A, IJX] = 0. Then we have our claim. []

Corollary 3.5. Lee formwyg is parallel, if and only if Q¢ is ad(A)-invariant.
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Proof. LetV be the Riemannian connection 6f ). For X, Y € g, we see that

2(Vxwo)(Y) = —2w0(VxY) = —2(A, VxY)
=—([A X, Y) = (X, [A, Y]) = (A, [X, Y])
= —Qo(J[A, X], Y) = Qo(I X, [A, Y]) — wo([X, Y])
= —Qo(J[A, X], Y) = QI X, [A, Y]),

becauseaw is a closed 1-form. From Corollary 3.4, we get

2(Vxwo)(Y) = —Qo([A, IX], Y) — 20(I X, [A, Y]) = (ad"(A)20)(I X, Y).

Thus we have our claim. O

Proof of Main Theorem. By Corollary 3.5, to prove Main Theorétris enough

to show thatQq is ad(A)-invariant.
Let X,Y € g. By a straightforward computation, we see that

(ad"(A)S20)(X, Y) = =Qo([A, X], Y) — Qo(X, [A, Y])
= (wo A o — dno)([A, X], Y) + (wo A no — dno)(X, [A, Y])

= —wo(Y)no([A, X]) —dno([A, X], Y)
+ wo(X)no([A, X]) —dno(X, [A, Y]).

By Lemma 3.1, we getjpp([A, X]) = —dno(A, X) =0 andno([A, Y]) = 0. Moreover,
from the derivation conditions,

dno([A, X], Y) + dno(X, [A, Y]) = dno(A, [X, Y]) =0,

which implies that2g is ad(A)-invariant. This completes the proof of Main Theorem.
O

4. Examples

In this section, we give examples of Main Theorem and condatsily conformal
Kahler structures on 4-dimensional compact solvmanifoldiste that a compact Kahler
solvmanifold is a finite quotient of a complex tours which faastructure of a complex
tours bundle over a complex tours ([2], [8]).

Hasegawa [7] classified a 4-dimensional compact solvmiahdod proved that any
complex structure on such solvmanifold is induced from &itefariant complex struc-
ture on Lie group. By this classification, we see that a 4-disi@nal locally confor-
mal Kahler solvmanifold is biholomorphic to Kodaira—Thiars manifold, Secondary

Kodaira—Thurston manifold or Inoue surfaces.
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We see that Kodaira—Thurston manifolds and secondary Kadehurston mani-
folds are examples of Main Theorem:

ExAMPLE 4.1 (Kodaira—Thurston manifold [5]). Le& be a 3-dimensional nil-
potent Lie group given by
X, Y, Z€ ]R}.

q

The Lie groupG admits a latticel". Let g be the nilpotent Lie algebra corresponding
to G. g xR is given by

o X
< N

gx R =spaniX,Y, Z, A: [X,Y] = Z}.
Let {X, Y, z, »} be the dual base dfX,Y, Z, A}:
dx=dy=dw =0, dz=-xAY.

We define a left-invariant metri¢, ) on I'\G x S* such that{X, Y, Z, A} is an
orthonormal frame and a left-invariant complex structdrey JA= Z,JX =Y. Then
(M\Gx S, (,),J) is a locally conformal Kahler manifold with the fundamen2aform
given by

Q=—0AZ=-XAy=0d_rz=0d_y(—wo J).

Hence the fundamental 2-forf, is —w-exact. We easily see that Lee fornis par-
allel.

EXAMPLE 4.2 (Secondary Kodaira—Thurston manifold (cf. [15])). l&tbe a 4-
dimensional solvable Lie group given by

1 . 1 .
1 _E(X sint + y cost) §(X cost — y sint)

z
0 —sint cost y
0 0 0 1

The Lie groupG admits a latticel:

1 1
1 —E(usin2ns+vcoshs) E(ucoser—vsinZns) w

r — 0 CosZrs sin2rs Ul:suv,weZz
0 —sin2rs cos2rs v
0 0 0 1
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Let g be the solvable Lie algebra correspondingGo
g=spadA X, Y, Z: [A, X =Y, [A Y] ==X, [X, Y] = Z}.
Let {w, X, Y, z} be the dual base dofA, X, Y, Z}:
do =0, dx=-wAYy, dy=wAX, dz=-XAY.

We define a left-invariant metri¢, ) on I'\G such that{ A, X, Y, Z} is an ortho-
normal frame and a left-invariant complex structuteby JA = Z, JX =Y. Then
(T\G, (, ), J) is a locally conformal Ké&hler manifold with the fundamdngform
given by

Q=—-wAz-XAy=d,z=d_,(—wo J).

Hence the fundamental 2-forfa, is —w-exact. We easily see that Lee foemis parallel.

A locally conformal Kéhler structure on Inoue surfaces aifeeent from one on
solvmanifolds as Main Theorem:

EXAMPLE 4.3 (Inoue surfaces® [11], [14]). Let B € SL(3,Z) be a unimodular
matrix with eigenvalues, 8, 8 such thatg # B, and eigenvectorsa(, a, ag), (b1, by, bs)
of «, B, respectively. Then we define a structure of the grouplbix C = {(x +
V—=1a',2): x,t €R, z € C} as follows:

X+ V1ot 2) - (X + V=1a", Z) = (@'X + x + V/—1a'*Y, g7 + 2).

It can be expressed by

o8 0 0 x
_Jfo s o0z
G= 0 0 B z ‘t,xeR, zeC
0 0 0 1

> 0 O u
o 0 ﬁs 0 P w1 .
I' = 0 0 BS Wy S, U, wy, wp €7Zy,
0O 0 O 1
. & a3
where P = (@1 b, l}s) € GL(3,C). Let g be the solvable Lie algebra corresponding
b b b

to G:

g = sparfA, X, Y1, Yo: [A, X] = =2r X, [A, Y1] =rY1 +6Y2, [A, Yo] =Y, —0Y1},
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wherea = e 2 andB = &+ Y. Let {w, X, 1, Yo} be the dual base dfA, X, Yy, Ya}:
do =0, dx=2roAX, dyy=—ToAy1+00AY, dyp=—TwAY—0wA VY.

We define a left-invariant metri¢, ) on I'\G such that{ A, X, Y1, Y2} is an ortho-
normal frame and a left-invariant complex structuteby JA = X, JY; = Y. Then
("\G, (, ), J) is a locally conformal K&ahler manifold with the fundamdngform
given by

QL=—w0AX—=VY1 AV

Note that the fundamental 2-forif2 is not —2r w-exact. We see that the Lee form
is not parallel: ¥ xw)X # 0.

EXAMPLE 4.4 (Inoue surfaces™ [5], [11], [14]). Let G be a 4-dimensional
solvable Lie group given by

1 1
1 —Ey EX z
G = o ¢ 0 x|:t,x,y,zeR}.
0 0 ety
0 0 0 1

We can construct a latticE on G (cf. [13]). Let g be the solvable Lie algebra corres-
ponding toG:

g =sparfA, X, Y, Z: [A, X] =X, [A Y] =-Y, [X,Y] = Z}.
Let {w, X, Y, Z} be the dual base ofA, X, Y, Z}:
do =0, dx=—-wAX, dy=wAy, dz=-—-XAY.

We define a left-invariant metri¢, ) on I'\G such that{A, X, Y, Z} is an ortho-
normal frame and a left-invariant complex structuteby JA =Y, JZ = X. Then
("\G, (, ), J) is a locally conformal K&ahler manifold with the fundamdngform
given by

Qo=—-wAY—ZAX.

Note that the fundamental 2-fori? is not —w-exact. We see that the Lee form is
not parallel: ¥yw)Y # 0.

We mention that an Inoue surfac is not of the formI"\G, but it is a double
covering space of an Inoue surfa& (cf. [10]). Then an Inoue surfac& has a
locally conformal Kahler structure.
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