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Abstract
Let (M, g, J) be a compact Hermitian manifold and� the fundamental 2-form

of (g, J). A Hermitian manifold (M, g, J) is said to be locally conformal Kähler if
there exists a closed 1-form! such thatd�D !^�. The purpose of this paper is to
investigate a relation between a locally conformal Kähler structure and the adapted
differential operator on compact solvmanifolds.

Introduction

Let (M, g, J) be a 2n-dimensional compact Hermitian manifold. We denote by
� the fundamental 2-form, that is, the 2-form defined by�(X, Y) D g(X, JY). A
Hermitian manifold (M, g, J) is said to belocally conformal Kählerif there exists a
closed 1-form! such thatd� D ! ^ �. The closed 1-form! is called Lee form. In
the case! D d f , (M, e� f g, J) is Kähler. The main non-Kähler examples of locally
conformal Kähler manifolds are Hopf manifolds [15], Inoue surfaces [14] and gener-
alized Kodaira–Thurston manifolds [5] (cf. [6]). Note thatInoue surfaces and general-
ized Kodaira–Thurston manifolds have a structure of a compact solvmanifold. In this
paper, we investigate locally conformal Kähler structureson a compact solvmanifold
0nG with a left-invariant complex structure, whereG is a simply-connected solvable
Lie group and0 is a lattice ofG, that is, a discrete co-compact subgroup.

An n-dimensional complex manifoldM is said to becomplex parallelizableif it
admits holomorphic vector fields{X1, : : : , Xn} which are linearly independent at every
point. Wang [16] proved that a compact complex parallelizable manifold M is bi-
holomorphic to a homogeneous spaceDnG, whereG is a simply connected complex
Lie group andD is a discrete subgroup ofG. Abbena–Grassi [1] proved that a non-
toral compact complex parallelizable manifold has no locally conformal Kähler struc-
tures. The author in [12] proved that if a compact nilmanifold M with a left-invariant
complex structure has a locally conformal Kähler structure, then M is biholomorphic
to a Kodaira–Thurston manifold or a generalized Kodaira–Thurston manifold.

A locally conformal Kähler manifold (M, g, J) is said to bea generalized Hopf
manifold if the Lee form! is parallel with respect to metricg. Vaisman [15] proved
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1088 H. SAWAI

that a generalized Hopf manifold has a structure of a principal S1-bundle over a com-
pact Sasakian manifold. Hopf manifolds and generalized Kodaira–Thurston manifolds
are generalized Hopf manifolds. Tricerri [14] constructeda locally conformal Kähler
structure on Inoue surfaces with non-parallel Lee form!. In Section 3, we prove that

Main Theorem. Let (0nG, g, J) be a locally conformal Kähler solvmanifold of
dim0nG � 4 with a left-invariant complex structure and! the Lee form. We assume
that (0nG, g, J) satisfies the following conditions:
1. There exists a left-invariant closed1-form !0 such that the Lee form! is co-
homologous to!0.
2. The fundamental2-form � of (g, J) can be written as� D �! ^ � C d�, where
� D �! Æ J .
Then0nG has a left-invariant locally conformal Kähler structure with the parallel Lee
form !0, in particular, 0nG is a generalized Hopf manifold.

In Section 4, we see that Kodaira–Thurston manifolds and secondary Kodaira–Thurston
manifolds are examples of Main Theorem.

Hasegawa [7] proved that a complex structure on a 4-dimensional compact solv-
manifold is induced from a left-invariant complex structure on the solvable Lie group
and classified 4-dimensional compact solvmanifolds with a complex structure. By this
classification, we have a classification of 4-dimensional locally conformal Kähler solv-
manifolds in Section 4.

1. Preliminaries

Let (M D 0nG, g, J) be a compact locally conformal Kähler solvmanifold such
that J is left-invariant. In this section, we see that the locally conformal Kähler metric
g induces a left-invariant locally conformal Kähler metric and consider its fundamental
2-form on the Lie algebrag of G.

Let � be the fundamental 2-form of (g, J). There exists a closed 1-form! such
that d� D ! ^�. We now assume that the associated Lee form satisfies the condition
1 in Main Theorem. Then there exists a left-invariant closed 1-form !0 such that!0�

! D d f . This assumption holds for completely solvmanifolds [9]. Then we define a
left-invariant 2-form�0 by

�0(X, Y) D
Z

M
(e f
�)(X, Y) d�

for left-invariant vector fieldsX, Y, whered� is the volume element induced by a bi-
invariant volume element onG. Belgun [3] proved that�0 is J-invariant and it is the
fundamental 2-form of a Hermitian structure (h , i, J) on the solvable Lie algebrag of
G such thatd�0 D !0 ^�0.
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DEFINITION 1.1. Let g be a Lie algebra and� a closed 1-form ong. We define
the adapted algebraic complex

�

V

g�, d
�

�

with the differential operatord
�

:

d
�

� WD � ^ � C d�

for � 2 ^pg�. Note thatd2
�

D 0 because� is closed. A p-form � is called�-closed
if d

�

� D 0. It is called�-exact if there exists a (p� 1)-form 
 such that� D d
�


 .

On the above Hermitian structure (h , i, J) on g, since!0 is a closed 1-form, the
fundamental 2-form�0 is �!0-closed. We say that (h , i, J) on g is locally conformal
Kähler. In Section 4, we consider a relation between a property of Lee form and the
adapted differential operator on 4-dimensional solvmanifolds.

We next show that�0 is �!0-exact if the second condition in Main Theorem also
holds true.

Proposition 1.2 (cf. [3]). Let �0 be the2-form ong above. If�D �!^�Cd�,
then �0 is �!0-exact. In addition, if � D �! Æ J, then �0 D �k!0 Æ J, where kD
R

M e f d�.

Proof. Since� D �! ^ �C d� and! D !0 � d f , we see that

e f
� D e f (�! ^ �C d�)

D e f (�!0 ^ �C d f ^ �C d�)

D �!0 ^ e f
�C d(e f ) ^ �C e f d�

D �!0 ^ e f
�C d(e f

�).

Then we get

�0(X, Y) D
Z

M
(�!0 ^ e f

�C d(e f
�))(X, Y) d�

D �!0(X)
Z

M
(e f
�)(Y) d�C !0(Y)

Z

M
(e f
�)(X) d�C

Z

M
d(e f

�)(X, Y) d�,

for X, Y 2 g.
Now, we define a 1-form�0 on g by �0(X) D

R

M (e f
�)(X) d� for X 2 g. Since

d� is the right-invariant volume element, its Lie derivativeL X d� along a left-invariant
vector fieldsX is zero. Then, for any functionF on M, we see that

(X F) d� D (L X F) d� D L X(F d�) D di(X)F d�C i (X) d(F d�) D di(X)F d�,
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where i (X) is the interior product with the vector fieldX. Therefore, by Stokes’s the-
orem, we have

Z

M
d(e f

�)(X, Y) d�

D

Z

M
X((e f

�)(Y)) d� �
Z

M
Y((e f

�)(X)) d� �
Z

M
(e f
�)([X, Y]) d�

D

Z

M
di(X)(e f

�(Y)) d� �
Z

M
di(Y)(e f

�(X)) d� � �0([X, Y])

D d�0(X, Y).

Thus we see that

�0(X, Y) D �!0(X)
Z

M
(e f
�)(Y) d�C !0(Y)

Z

M
(e f
�)(X) d�C

Z

M
d(e f

�)(X, Y) d�

D �!0(X)�0(Y)C !0(Y)�0(X)C d�0(X, Y)

D (�!0 ^ �0 C d�0)(X, Y).

Similarly, if � D �! Æ J, then we have

�0(X) D
Z

M
(e f
�)(X) d� D �

Z

M
(e f
!)(J X) d� D �

Z

M
(e f
!0 � e f d f )(J X) d�

D �!0(J X)
Z

M
e f d�C

Z

M
d(e f )(J X) d�

D �!0(J X)
Z

M
e f d�C

Z

M
(J X)(e f ) d�

D �

�

Z

M
e f d�

�

!0(J X).

Thus we see that�0 D �k!0 Æ J, wherek D
R

M e f d�.

By Proposition 1.2, we see that�0 D �!0 ^ k�00 C k d�00 D k(�!0 ^ �
0

0 C d�00) D
kd

�!0�
0

0, where�00 D (1=k)�0 D �!0 Æ J. Then the locally conformal Kähler structure
(�0, J) induces the locally conformal Kähler structure (�

0

0 D d
�!0(�!0 Æ J), J) on

the solvable Lie algebrag. Therefore, by replacing�0 by �0

0, in order to prove Main
Theorem, it is enough to show that if (g,�0 D d

�!0(�!0Æ J), J) is a locally conformal
Kähler solvable Lie algebra, then the Lee form!0 is parallel with respect toh , i (see
Section 3).

2. The adjoint operators and the inner product

Let (h , i, J) be the locally conformal Kähler structure as we consider inSection 1
on solvable Lie algebrag, namely�0 can be written as�0 D d

�!0�0 D �!0^�0Cd�0,
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where!0 is a closed 1-form ong and�0 D �!0 Æ J. In this section, we investigate the
properties of (g, h , i, J).

Let 
 be the canonical isomorphism fromg� to g induced by the inner product
h , i. Put AD 
 (!0). By this normalization, we may assume thathA, Ai D 1.

We easily see that an abelian Lie algebra of dimension equal to or more than 4 has
no locally conformal Kähler structures. From now on, we assume thatg is not abelian.

Since g is solvable, [g, g] is nilpotent. We take the descending central series for
[g, g]: n D [g, g] � n(1)

D [n, n] � n(2)
D [n, n(1)] � � � � � n(r )

� n(rC1)
D 0, where

n(iC1)
D [n, n(i )] (i � 1) andn(r )

¤ 0. We easily see thatn(r ) is contained in the center
Z(n) of n. Note that, forX 2 g, ad(X)n(i )

� n(i ) for eachi . Then we get

Lemma 2.1. Jn(r )
� [g, g]?, where [g, g]? is the orthogonal component of[g, g].

Proof. For Z 2 n(r ) and X 2 [g, g], we see that

hJ Z, Xi D �0(X, Z) D (�!0 ^ �0 C d�0)(X, Z) D 0,

because!0 is closed andZ 2 Z(n).

Lemma 2.2. For Z, Z0

2 n(r ), [J Z, Z0] D [ J Z0, Z] and [ J Z, J Z0] D 0.

Proof. The Nijenhuis tensorNJ vanishes, because J is integrable. SinceZ, Z0

2

n(r ), we see that

0D NJ(Z, Z0) D [Z, Z0] C J[ J Z, Z0] C J[Z, J Z0] � [ J Z, J Z0]

D J{[ J Z, Z0] C [Z, J Z0]} � [ J Z, J Z0].

Note that [J Z, Z0], [ Z, J Z0] 2 n(r ). It follows that J{[ J Z, Z0]C [Z, J Z0]} 2 [g, g]? by
Lemma 2.1. Thus we have [J Z, Z0] C [Z, J Z0] D 0 and [J Z, J Z0] D 0.

By Lemmas 2.1 and 2.2, we have

Proposition 2.3. For U, V, W 2 n(r ),

had(JU)V, Wi C !0(J V)hU, Wi D hV, ad(JU)Wi C !0(J W)hU, Vi.

Proof. Since�0 D �!0 ^ �0 C d�0 and!0 is closed 1-form, we see that

(2.1)

had(JU)V, Wi D �0(J ad(JU)V, W) D ��0(ad(JU)V, J W)

D (!0 ^ �0 � d�0)(ad(JU)V, J W)

D �!0(J W)�0(ad(JU)V ) � d�0(ad(JU)V, J W).
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Since�0 D �!0 Æ J, we get

(2.2)

�!0(J W)�0(ad(JU)V ) D !0(J W) d�0(JU, V)

D !0(J W){�0(JU, V)C !0 ^ �0(JU, V)}

D !0(J W)hU, Vi � !0(J W)!0(JU)!0(J V).

From the derivation conditions and Lemma 2.2, we get

d�0(ad(JU)V, J W) D d�0(JU, [V, J W]) � d�0(V, [JU, J W])

D d�0(JU, [V, J W])

D d�0(JU, [W, J V])

D d�0([ JU, W], J V)C d�0(W, [JU, J V])

D d�0([ JU, W], J V) D �d�0(J V, [JU, W]).

It follows that

(2.3)

�d�0(ad(JU)V, J W)

D d�0(J V, [JU, W])

D �0(J V, [JU, W]) C !0 ^ �0(J V, [JU, W])

D hV, [JU, W]i � !0(J V) d�0(JU, W)

D hV, [JU, W]i � !0(J V){�0(JU, W)C !0 ^ �0(JU, W)}

D hV, [JU, W]i � !0(J V)hU, Wi C !0(J V)!0(JU)!0(J W).

From (2.1) and (2.2)), (2.3), we have

had(JU)V, Wi D !0(J W)hU, Vi � !0(J W)!0(JU)!0(J V)

C hV, [JU, W]i � !0(J V)hU, Wi C !0(J V)!0(JU)!0(J W),

had(JU)V, Wi C !0(J V)hU, Wi D hV, ad(JU)Wi C !0(J W)hU, Vi.

It is well-known that if a solvable Lie groupG admits a lattice0, then the solv-
able Lie algebrag of G is unimodular. We define

DEFINITION 2.4. A solvable Lie algebrag is called strongly unimodular if, for
X 2 g, tr ad(X)j

n
(i )
D 0 for eachi .

Benson–Gordon [4] proved that if a solvable Lie groupG admits a lattice0, then the
solvable Lie algebrag of G is strongly unimodular.

We take an orthonormal frame{Z1, : : : , Zm} of n(r ) and consider the strongly uni-
modular conditions of ad(J Zi ) from n(r ) to n(r ) for eachi .
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For eachi , let

ad(J Zi )(Z1, : : : , Zm) D (Z1, : : : , Zm)

0

B

�

a11(i ) � � � a1m(i )
...

...
...

am1(i ) � � � amm(i )

1

C

A

.

By Proposition 2.3, we see that

had(J Zi )Z j , Zki C !0(J Z j )hZi , Zki D hZ j , ad(J Zi )Zki C !0(J Zk)hZi , Z j i,

ak j (i )C Æik!0(J Z j ) D a jk(i )C Æi j !0(J Zk).

It follows that, in the case ofj , k ¤ i ,

ak j (i ) D a jk(i )

and, in the case ofj D i , k ¤ i ,

aki (i ) D aik(i )C !0(J Zk).

Then we get

(2.4) (a jk(i )) D Ai C

0

B

�

line i

0
!0(J Z1)

...
!0(J Zm)

0

1

C

A

,

where Ai is an (m�m)-symmetric matrix.
Moreover, put

Ai D

0

B

B

B

B

B

B

B

�

line i

ai
1

* ... *
row i ai

1 � � � ai
i � � � ai

m
...

* ai
m *

1

C

C

C

C

C

C

C

A

,

for eachi . Since [J Zi , Z j ] D [ J Z j , Zi ], we get

a j j (i ) D had(J Zi )Z j , Z j i D had(J Z j )Zi , Z j i D a j
i
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for j ¤ i . Then Ai can be written as

Ai D

0

B

B

B

B

B

B

B

�

line i

a1
i ai

1

. ..
... *

row i ai
1 � � � ai

i � � � ai
m

...
...

* ai
m am

i

1

C

C

C

C

C

C

C

A

.

Thus (2.4) can be expressed as follows:

(2.5) (a jk(i )) D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

line i

a1
i ai

1 C !0(J Z1)

...
* ... *

row i ai
1
*

� � � ai
i C !0(J Zi ) � � � ai

m

...
.. .
*

* ai
m C !0(J Zm)

*
am

i

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

.

From the strongly unimodular condition of ad(J Zi )jn(r ) , we have

Proposition 2.5. For each i,
�

P

j a j
i

�

C !0(J Zi ) D 0.

Then we have

Corollary 2.6.
P

i !0(J Zi )2
D 1.

Proof. For eachi , we see that

1D hZi , Zi i D �0(J Zi , Zi )

D (�!0 ^ �0 C d�0)(J Zi , Zi )

D �!0(J Zi )�0(Zi ) � �0([ J Zi , Zi ])

D !0(J Zi )
2
C !0(J[ J Zi , Zi ]),
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because�0 D �!0 Æ J. From (2.5),

(2.6)

1D hZi , Zi i D !0(J Zi )
2
C !0(J[ J Zi , Zi ]),

1D !0(J Zi )
2
C !0 Æ J

 

X

j

(ai
j C !0(J Z j ))Z j

!

,

1D !0(J Zi )
2
C

X

j

ai
j!0(J Z j )C

X

j

!0(J Z j )
2.

Take the sum of (2.6) fori , we get

X

i

1D
X

i

!0(J Zi )
2
C

X

i , j

ai
j!0(J Z j )C

X

i , j

!0(J Z j )
2,

mD

X

i

!0(J Zi )
2
C

X

i

 

X

j

a j
i

!

!0(J Zi )Cm
X

i

!0(J Zi )
2.

By Proposition 2.5, we have

mD

X

i

!0(J Zi )
2
C

X

i

(�!0(J Zi ))!0(J Zi )Cm
X

i

!0(J Zi )
2,

mD

X

i

!0(J Zi )
2
�

X

i

!0(J Zi )
2
Cm

X

i

!0(J Zi )
2,

mD m
X

i

!0(J Zi )
2,

which implies that
P

i !0(J Zi )2
D 1.

Corollary 2.7. AD
P

i !0(J Zi )J Zi 2 Jn(r ).

Proof. SinceAD 
 (!0), it can be given by

AD
X

i

!0(J Zi )J Zi C B,

where B 2 (Jn(r ))? \ [g, g]?. From hA, Ai D 1, we have

1D hA, Ai D
X

i

!0(J Zi )
2
hJ Zi , J Zi i C hB, Bi D

X

i

!0(J Zi )
2
C hB, Bi.

By Corollary 2.6, we havehB, Bi D 0, which implies thatB D 0.
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3. Structure on the solvable Lie algebra

We use same notation introduced in Section 2. In this section, we prove thatJ A
is in the centerZ(g) of g and have Main Theorem.

We seeJ AD �

P

i !0(J Zi )Zi 2 n(r ) by Corollary 2.7. PutZ0 D J A. Note that
�0(Z0) D �!0 Æ J(J A) D 1 and�0(A) D �!0 Æ J(A) D 0. We get

Lemma 3.1. For X 2 g, d�0(A, X) D 0 and d�0(Z0, X) D 0.

Proof. Since�0 D �!0 Æ J, we see that

d�0(A, X) D �0(A, X)C !0 ^ �0(A, X) D hA, J Xi C �0(X) D !0(J X)C �0(X)

D 0.

Similarly, we get

d�0(Z0, X) D �0(Z0, X)C!0^�0(Z0, X) D �hX, J Z0i�!0(X) D hX, Ai�!0(X)

D 0.

Then we see that

Proposition 3.2. For U 2 n(r ), ad(A)U D 0.

Proof. By a straightforward computation, we see that

had(A)U, ad(A)Ui D �0(J Æ ad(A)U, ad(A)U )

D (�!0 ^ �0 C d�0)(J Æ ad(A)U, ad(A)U )

D �!0(J Æ ad(A)U )�0(ad(A)U )C d�0(J Æ ad(A)U, ad(A)U ).

By Lemma 3.1 and the derivation conditions,

had(A)U, ad(A)Ui D !0(J Æ ad(A)U ) d�0(A, U ) � d�0(ad(A)U, J Æ ad(A)U )

D �d�0(ad(A)U, J Æ ad(A)U )

D �d�0(A, [U, J Æ ad(A)U ]) C d�0(U, [A, J Æ ad(A)U ])

D d�0(U, [A, J Æ ad(A)U ]).

Now, sinceJ AD Z0 and ad(A)U 2 n(r ), we see that

[ A, J Æ ad(A)U ] D [�J Z0, J Æ ad(A)U ] D 0

by Lemma 2.2. It follows thatd�0(U, [A, J Æ ad(A)U ]) D 0, which implies that
ad(A)U D 0.
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Therefore we have

Theorem 3.3. Z0 2 Z(g).

Proof. Let X 2 g. By Lemma 3.1, we see that

had(X)Z0, ad(X)Z0i D �0(J Æ ad(X)Z0, ad(X)Z0)

D (�!0 ^ �0 C d�0)(J Æ ad(X)Z0, ad(X)Z0)

D �!0(J Æ ad(X)Z0)�0(ad(X)Z0)C d�0(J Æ ad(X)Z0, ad(X)Z0)

D !0(J Æ ad(X)Z0) d�0(X, Z0)C d�0(J Æ ad(X)Z0, ad(X)Z0)

D d�0(J Æ ad(X)Z0, ad(X)Z0).

Moreover, from the derivation conditions andZ0 2 Z([g, g]),

had(X)Z0, ad(X)Z0i D d�0(J Æ ad(X)Z0, ad(X)Z0) D �d�0(ad(X)Z0, J Æ ad(X)Z0)

D �d�0(X, [Z0, J Æ ad(X)Z0]) C d�0(Z0, [X, J Æ ad(X)Z0])

D �d�0(X, [Z0, J Æ ad(X)Z0]).

Now, since ad(X)Z0 2 n(r ), we see that

[Z0, J Æ ad(X)Z0] D [ad(X)Z0, J Z0] D [ A, ad(X)Z0] D 0

by Lemma 2.2 and Proposition 3.2. It follows thatd�0(X, [Z0, J ad(X)Z0]) D 0, which
implies that ad(X)Z0 D 0 for X 2 g.

From Theorem 3.3, we have

Corollary 3.4. ad(A) Æ J D J Æ ad(A).

Proof. Let X 2 g. Since J is integrable, we see that

0D NJ(A, X) D [ A, X] C J[ J A, X] C J[ A, J X] � [ J A, J X]

0D [ A, X] C J[Z0, X] C J[ A, J X] � [Z0, J X].

From Z0 2 Z(g), [A, X] C J[ A, J X] D 0. Then we have our claim.

Corollary 3.5. Lee form!0 is parallel, if and only if�0 is ad(A)-invariant.
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Proof. LetO be the Riemannian connection ofh , i. For X, Y 2 g, we see that

2(OX!0)(Y) D �2!0(OXY) D �2hA, OXYi

D �h[ A, X], Yi � hX, [A, Y]i � hA, [X, Y]i

D ��0(J[ A, X], Y) ��0(J X, [A, Y]) � !0([X, Y])

D ��0(J[ A, X], Y) ��0(J X, [A, Y]),

because!0 is a closed 1-form. From Corollary 3.4, we get

2(OX!0)(Y) D ��0([ A, J X], Y) ��0(J X, [A, Y]) D (ad�(A)�0)(J X, Y).

Thus we have our claim.

Proof of Main Theorem. By Corollary 3.5, to prove Main Theorem,it is enough
to show that�0 is ad(A)-invariant.

Let X, Y 2 g. By a straightforward computation, we see that

(ad�(A)�0)(X, Y) D ��0([ A, X], Y) ��0(X, [A, Y])

D (!0 ^ �0 � d�0)([ A, X], Y)C (!0 ^ �0 � d�0)(X, [A, Y])

D �!0(Y)�0([ A, X]) � d�0([ A, X], Y)

C !0(X)�0([ A, X]) � d�0(X, [A, Y]).

By Lemma 3.1, we get�0([ A, X]) D �d�0(A, X) D 0 and�0([ A, Y]) D 0. Moreover,
from the derivation conditions,

d�0([ A, X], Y)C d�0(X, [A, Y]) D d�0(A, [X, Y]) D 0,

which implies that�0 is ad(A)-invariant. This completes the proof of Main Theorem.

4. Examples

In this section, we give examples of Main Theorem and considerlocally conformal
Kähler structures on 4-dimensional compact solvmanifolds. Note that a compact Kähler
solvmanifold is a finite quotient of a complex tours which hasa structure of a complex
tours bundle over a complex tours ([2], [8]).

Hasegawa [7] classified a 4-dimensional compact solvmanifold and proved that any
complex structure on such solvmanifold is induced from a left-invariant complex struc-
ture on Lie group. By this classification, we see that a 4-dimensional locally confor-
mal Kähler solvmanifold is biholomorphic to Kodaira–Thurston manifold, Secondary
Kodaira–Thurston manifold or Inoue surfaces.
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We see that Kodaira–Thurston manifolds and secondary Kodaira–Thurston mani-
folds are examples of Main Theorem:

EXAMPLE 4.1 (Kodaira–Thurston manifold [5]). LetG be a 3-dimensional nil-
potent Lie group given by

G D

8

<

:

0

�

1 x z
0 1 y
0 0 1

1

A

W x, y, z 2 R

9

=

;

.

The Lie groupG admits a lattice0. Let g be the nilpotent Lie algebra corresponding
to G. g � R is given by

g � R D span{X, Y, Z, AW [X, Y] D Z}.

Let {x, y, z, !} be the dual base of{X, Y, Z, A}:

dx D dyD d! D 0, dzD �x ^ y.

We define a left-invariant metrich , i on 0nG � S1 such that{X, Y, Z, A} is an
orthonormal frame and a left-invariant complex structureJ by J AD Z, J XD Y. Then
(0nG�S1,h , i, J) is a locally conformal Kähler manifold with the fundamental 2-form
given by

�0 D �! ^ z� x ^ y D d
�!

zD d
�!

(�! Æ J).

Hence the fundamental 2-form�0 is �!-exact. We easily see that Lee form! is par-
allel.

EXAMPLE 4.2 (Secondary Kodaira–Thurston manifold (cf. [15])). LetG be a 4-
dimensional solvable Lie group given by

G D

8

�

�

�

�

<

�

�

�

�

:

0

B

B

B

B

�

1 �

1

2
(x sin t C y cost)

1

2
(x cost � y sin t) z

0 cost sin t x
0 �sin t cost y
0 0 0 1

1

C

C

C

C

A

W t, x, y, z 2 R

9

>

>

>

>

=

>

>

>

>

;

.

The Lie groupG admits a lattice0:

0 D

8

�

�

�

�

<

�

�

�

�

:

0

B

B

B

B

�

1 �

1

2
(usin2�sCv cos2�s)

1

2
(ucos2�s�v sin2�s) w

0 cos2�s sin2�s u
0 �sin2�s cos2�s v

0 0 0 1

1

C

C

C

C

A

W s, u,v,w 2 Z

9

>

>

>

>

=

>

>

>

>

;

.
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Let g be the solvable Lie algebra corresponding toG:

g D span{A, X, Y, Z W [ A, X] D Y, [A, Y] D �X, [X, Y] D Z}.

Let {!, x, y, z} be the dual base of{A, X, Y, Z}:

d! D 0, dx D �! ^ y, dyD ! ^ x, dzD �x ^ y.

We define a left-invariant metrich , i on 0nG such that{A, X, Y, Z} is an ortho-
normal frame and a left-invariant complex structureJ by J A D Z, J X D Y. Then
(0nG, h , i, J) is a locally conformal Kähler manifold with the fundamental 2-form
given by

�0 D �! ^ z� x ^ y D d
�!

zD d
�!

(�! Æ J).

Hence the fundamental 2-form�0 is �!-exact. We easily see that Lee form! is parallel.

A locally conformal Kähler structure on Inoue surfaces are different from one on
solvmanifolds as Main Theorem:

EXAMPLE 4.3 (Inoue surfaceS0 [11], [14]). Let B 2 SL(3,Z) be a unimodular
matrix with eigenvalues�,�, N� such that� ¤ N

�, and eigenvectors (a1,a2,a3), (b1,b2,b3)
of �, �, respectively. Then we define a structure of the group onH � C D {(x C
p

�1�t , z) W x, t 2 R, z 2 C} as follows:

(x C
p

�1�t , z) � (x0 C
p

�1�t 0 , z0) D (�t x0 C x C
p

�1�tCt 0 , � t z0 C z).

It can be expressed by

G D

8

�

�

<

�

�

:

0

B

B

�

�

t 0 0 x
0 �

t 0 z
0 0 N

�

t
Nz

0 0 0 1

1

C

C

A

W t, x 2 R, z 2 C

9

>

>

=

>

>

;

.

Thus we easily see that the Lie groupG is solvable and it admits a lattice0:

0 D

8

�

�

<

�

�

:

0

B

B

�

�

s 0 0
0 �

s 0
0 0 N

�

s

0 0 0

P

0

�

u
w1

w2

1

A

1

1

C

C

A

W s, u, w1, w2 2 Z

9

>

>

=

>

>

;

,

where P D

� a1 a2 a3
b1 b2 b3
Nb1 Nb2 Nb3

�

2 GL(3,C). Let g be the solvable Lie algebra corresponding

to G:

g D span{A, X, Y1, Y2 W [ A, X] D �2r X , [A, Y1] D rY1 C �Y2, [A, Y2] D rY2 � �Y1},
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where� D e�2r and� D erC
p

�1� . Let {!, x, y1, y2} be the dual base of{A, X, Y1, Y2}:

d! D 0, dx D 2r! ^ x, dy1 D �r! ^ y1 C �! ^ y2, dy2 D �r! ^ y2 � �! ^ y1.

We define a left-invariant metrich , i on 0nG such that{A, X, Y1, Y2} is an ortho-
normal frame and a left-invariant complex structureJ by J AD X, JY1 D Y2. Then
(0nG, h , i, J) is a locally conformal Kähler manifold with the fundamental 2-form
given by

� D �! ^ x � y1 ^ y2.

Note that the fundamental 2-form� is not �2r!-exact. We see that the Lee form!
is not parallel: (OX!)X ¤ 0.

EXAMPLE 4.4 (Inoue surfaceSC [5], [11], [14]). Let G be a 4-dimensional
solvable Lie group given by

G D

8

�

�

�

�

<

�

�

�

�

:

0

B

B

B

B

�

1 �

1

2
y

1

2
x z

0 et 0 x
0 0 e�t y
0 0 0 1

1

C

C

C

C

A

W t, x, y, z 2 R

9

>

>

>

>

=

>

>

>

>

;

.

We can construct a lattice0 on G (cf. [13]). Let g be the solvable Lie algebra corres-
ponding toG:

g D span{A, X, Y, Z W [ A, X] D X, [A, Y] D �Y, [X, Y] D Z}.

Let {!, x, y, z} be the dual base of{A, X, Y, Z}:

d! D 0, dx D �! ^ x, dyD ! ^ y, dzD �x ^ y.

We define a left-invariant metrich , i on 0nG such that{A, X, Y, Z} is an ortho-
normal frame and a left-invariant complex structureJ by J A D Y, J Z D X. Then
(0nG, h , i, J) is a locally conformal Kähler manifold with the fundamental 2-form
given by

�0 D �! ^ y � z^ x.

Note that the fundamental 2-form� is not �!-exact. We see that the Lee form! is
not parallel: (OY!)Y ¤ 0.

We mention that an Inoue surfaceS� is not of the form0nG, but it is a double
covering space of an Inoue surfaceSC (cf. [10]). Then an Inoue surfaceS� has a
locally conformal Kähler structure.



1102 H. SAWAI

ACKNOWLEDGEMENTS. The author would like to express his deep appreciation
to Professor Yusuke Sakane and Professor Takumi Yamada for their thoughtful guid-
ance and encouragement during the completion of this paper.The author also thanks
Professor Tomonori Noda for several advices.

References

[1] E. Abbena and A. Grassi:Hermitian left invariant metrics on complex Lie groups and cosym-
plectic Hermitian manifolds, Boll. Un. Mat. Ital. A (6) 5 (1986), 371–379.

[2] D. Arapura and M. Nori:Solvable fundamental groups of algebraic varieties and Kähler mani-
folds, Compositio Math.116 (1999), 173–188.

[3] F.A. Belgun: On the metric structure of non-Kähler complex surfaces, Math. Ann.317 (2000),
1–40.

[4] C. Benson and C.S. Gordon:Kähler structures on compact solvmanifolds, Proc. Amer. Math.
Soc.108 (1990), 971–980.

[5] L.A. Cordero, M. Fernández and M. de León:Compact locally conformal Kähler nilmanifolds,
Geom. Dedicata21 (1986), 187–192.

[6] S. Dragomir and L. Ornea: Locally Conformal Kähler Geometry, Birkhäuser Boston, Boston,
MA, 1998.

[7] K. Hasegawa:Complex and Kähler structures on compact solvmanifolds, J. Symplectic Geom.
3 (2005), 749–767.

[8] K. Hasegawa:A note on compact solvmanifolds with Kähler structures, Osaka J. Math.43
(2006), 131–135.

[9] A. Hattori: Spectral sequence in the de Rham cohomology of fibre bundles, J. Fac. Sci. Univ.
Tokyo Sect. I8 (1960), 289–331.

[10] M. Inoue: On surfaces of classVII 0, Invent. Math.24 (1974), 269–310.
[11] Y. Kamishima:Note on locally conformal Kähler surfaces, Geom. Dedicata84 (2001), 115–124.
[12] H. Sawai:Locally conformal Kähler structures on compact nilmanifolds with left-invariant com-

plex structures, Geom. Dedicata125 (2007), 93–101.
[13] H. Sawai:A construction of lattices on certain solvable Lie groups, Topology Appl.154 (2007),

3125–3134.
[14] F. Tricerri: Some examples of locally conformal Kähler manifolds, Rend. Sem. Mat. Univ.

Politec. Torino40 (1982), 81–92.
[15] I. Vaisman: Locally conformal Kähler manifolds with parallel Lee form, Rend. Mat. (6)12

(1979), 263–284.
[16] H.-C. Wang:Complex parallisable manifolds, Proc. Amer. Math. Soc.5 (1954), 771–776.

Numazu National College of Technology
3600 Ooka, Numazu
Japan
e-mail: sawai@numazu-ct.ac.jp


