
Title THE SECOND VARIATIONAL FORMULA OF THE k-ENERGY
AND k-HARMONIC CURVES

Author(s) Maeta, Shun

Citation Osaka Journal of Mathematics. 2012, 49(4), p.
1035-1063

Version Type VoR

URL https://doi.org/10.18910/23427

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Maeta, S.
Osaka J. Math.
49 (2012), 1035–1063

THE SECOND VARIATIONAL FORMULA OF
THE k -ENERGY AND k -HARMONIC CURVES

SHUN MAETA

(Received March 8, 2010, revised March 15, 2011)

Abstract
In [4], J. Eells and L. Lemaire introducedk-energy andk-harmonic maps. In

1989, S.B. Wang [17] showed the first variation formula of thek-energy. In this
paper, we give the second variation formula ofk-energy and a notion of weakly
stable and unstable. We also studyk-harmonic maps into product Riemannian mani-
folds and k-harmonic curves into Riemannian manifolds with constant sectional
curvature. Moreover, we give some non-trivial solutions of 3-harmonic curves.

Introduction

The theory of harmonic maps has been applied into various fields in differential
geometry. The harmonic maps between two Riemannian manifolds are critical maps of
the energy functionalE(�) D (1=2)

R

Mkd�k
2
vg, for smooth maps� W M ! N.

On the other hand, in 1983, J. Eells and L. Lemaire [4] proposed the problem to
consider thek-harmonic maps: they are critical maps of the functional

Ek(�) D
Z

M
ek(�)vg, (k D 1, 2, : : :),

whereek(�)D (1=2)k(dCd�)k
�k

2 for smooth maps�W M ! N. G.Y. Jiang [6] studied
the first and second variation formulas of the bi-energyE2, and critical maps ofE2 are
called biharmonic maps. There have been extensive studies on biharmonic maps.

In 1989, S.B. Wang [17] studied the first variation formula ofthe k-energy Ek,
whose critical maps are calledk-harmonic maps. Harmonic maps are alwaysk-harmonic
maps by definition. In this paper, we studyk-harmonic maps and show the second vari-
ational formula ofEk.

In §1, we introduce notation and fundamental formulas of thetension field.
In §2, we recallk-harmonic maps.
In §3, we calculate the second variation of thek-energy Ek(�).
In §4, we show the reduction theorem ofk-harmonic maps into product spaces.
Finally, in §5, we studyk-harmonic curves into Riemannian manifolds with con-

stant sectional curvature, and get non-trivial solutions.Furthermore, we determine the
ODE of the 3-harmonic curve equation into a sphere.

2000 Mathematics Subject Classification. Primary 58E20; Secondary 53C43.
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1. Preliminaries

Let (M, g) be anm dimensional Riemannian manifold, (N, h), an n dimensional
one, and� W M ! N, a smooth map. We use the following notation. The second fun-
damental formB(�) of � is a covariant differentiationQr d� of 1-form d�, which is a
section of

J2 T�M 
 �

�1T N. For everyX, Y 2 0(T M), let

(1)
B(X, Y) D ( Qr d�)(X, Y) D ( QrX d�)(Y)

D

N

rX d�(Y) � d�(rXY) D r

N
d�(X) d�(Y) � d�(rXY).

Here,r, rN , Nr and Qr are the induced connections on the bundlesT M, T N, ��1T N
and T�M 
 �

�1T N respectively.
If M is compact, we consider critical points of the energy functional

E(�) D
Z

M
e(�)vg,(2)

wheree(�)D (1=2)kd�k2
D

Pm
iD1(1=2)hd�(ei ),d�(ei )i which is called theenergy den-

sity of �, and the inner producth � , � i is a Riemannian metrich, where{ei }
m
iD1 is an

orthonormal frame field onM. The tension field� (�) of � is defined by

� (�) D
m
X

iD1

( Qr d�)(ei , ei ) D
m
X

iD1

( Qrei d�)(ei ).(3)

Then,� is a harmonic mapif � (�) D 0.
The curvature tensor fieldRN( � , � ) of the Riemannian metric on the bundleT N

is defined as follows:

RN(X, Y)Z D r

N
Xr

N
Y Z � rN

Y r
N
X Z � rN

[X,Y] Z, (X, Y, Z 2 0(T N)).(4)

Moreover, N1 D N

r

�

N

r D �

Pm
kD1( Nrek

N

rek �
N

r

rek ek ) is the rough Laplacian, {ei }
m
iD1 is

an orthonormal frame field onM in this paper.

2. k-harmonic maps

J. Eells and L. Lemaire [4] proposed the notation ofk-harmonic maps. The Euler–
Lagrange equations for thek-harmonic maps were shown by S.B. Wang [17]. In this
section, we recall the definition ofk-harmonic maps.

DEFINITION 2.1 ([4]). For k D 1, 2, : : : the k-energy functionalis defined by

Ek(�) D
1

2

Z

M
k(dC d�)k

�k

2
vg, � 2 C1(M, N),



SECOND VARIATIONAL FORMULA OF THE k-ENERGY 1037

whered is a exterior differentiation andd� is a codifferentiation. Then,� is k-harmonic
if it is a critical point of Ek, i.e., for all smooth variations{�t } of � with �0 D �,

d

dt

�

�

�

�

tD0

Ek(�t ) D 0.

We say for ak-harmonic map to beproper if it is not harmonic.

G.Y. Jiang studied the casek D 2, and showed that� W (M, g) ! (N, h) is a
2-harmonic if and only if

�

N

1� (�)C RN(� (�), d�(ei )) d�(ei ) D 0.

We consider a smooth variation{�t}t2I
"

(I
"

D (�", ")) of � with parameterst , i.e.,
we consider the smooth mapF given by

F W I
"

� M ! N, F(t, p) D �t (p),

where F(0, p) D �0(p) D �(p), for all p 2 M.
The corresponding variational vector fieldV is given by

V(p) D
d

dt

�

�

�

�

tD0

�t,0 2 T
�(p)N,

V is a section of��1T N, i.e. V 2 0(��1T N).
We also denote byr, Nr and Qr, the induced Riemannian connection onT(I

"

�M),
F�1T N and T�(I

"

� M)
 F�1T N respectively.

Lemma 2.2 ([17]).

N

r

�=�t N1
s�1
� (F)jtD0

D �

N

1

sV C

m
X

jD1

N

1

s�1RN(V, d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

lD1

N

1

l�1{� Nrej R
N(V, d�(ej )) N1

s�l�1
� (�)

� RN(V, d�(ej )) Nrej
N

1

s�l�1
� (�)C RN(V, d�(rej ej )) N1

s�l�1
� (�)}.

Proof. For all! 2 0(��1T N),

N

r

�=�t N1! D �

m
X

jD1

{ Nr
�=�t ( Nrej

N

rej �
N

r

rej ej )!}

D �

m
X

jD1

�

N

rej
N

r

�=�t ( Nrej!)C RN

�

d F

�

�

�t

�

, d F(ej )

�

N

rej!

�

N

r

rej ej
N

r

�=�t! � RN

�

d F

�

�

�t

�

, d F(rej ej )

�

!

�
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D �

m
X

jD1

�

N

rej

�

N

rej
N

r

�=�t!C RN

�

d F

�

�

�t

�

, d F(ej )

�

!

�

C RN

�

d F

�

�

�t

�

, d F(ej )

�

N

rej!

�

N

r

rej ej
N

r

�=�t! � RN

�

d F

�

�

�t

�

, d F(rej ej )

�

!

�

.

Repeating this and using

N

r

�=�t� (F)jtD0 D �

N

1V C

m
X

jD1

RN(V, d�(ej )) d�(ej ),

we have the lemma.

Lemma 2.3 ([17]). For any ei (i D 1, : : : , m),

N

r

�=�t Nrei
N

1

s�1
� (F)jtD0

D �

N

rei
N

1

sVC
m
X

jD1

N

rei
N

1

s�1RN(V, d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

lD1

N

rei
N

1

l�1{� Nrej R
N(V, d�(ej )) N1

s�l�1
� (�)

�RN(V, d�(ej )) Nrej
N

1

s�l�1
� (�)CRN(V, d�(rej ej )) N1

s�l�1
� (�)}

CRN(V, d�(ei )) N1
s�1
� (�).

Proof.

N

r

�=�t Nrei
N

1

s�1
� (F) D N

rei
N

r

�=�t N1
s�1
� (F)C RN

�

d F

�

�

�t

�

, d F(ei )

�

N

1

s�1
� (F).

By using Lemma 2.2, we have the lemma.

Lemma 2.4 ([17]). For any ej ( j D 1, : : : , m),
Z

M
h

N

rej R
N(V, d�(ej ))V1 � RN(V, d�(rej ej ))V1, V2ivg

D �

Z

M
hRN(V, d�(ej ))V1, Nrej V2ivg,

where V1, V2 2 0(��1T N).

Proof.

div(hRN(V, d�(ei ))V1, V2iei )

D

m
X

jD1

hrej hR
N(V, d�(ei ))V1, V2iei , ej i
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D

m
X

jD1

hh

N

rej R
N(V, d�(ei ))V1, V2iei

C hRN(V, d�(ei ))V1, Nrej V2iei C hR
N(V, d�(ei ))V1, V2irej ei , ej i.

By Green’s theorem, we have

0D
Z

M
divhRN(V, d�(ei ))V1, V2iei vg

D

m
X

jD1

Z

M
h

N

rej R
N(V, d�(ei ))V1, V2)iÆi j

C hRN(V, d�(ei ))V1, Nrej V2)Æi j C hR
N(V, d�(ei ))V1, V2ihrej ei , ej ivg.

Here,
m
X

jD1

hRN(V, d�(ei ))V1, V2ihrej ei , ej i D

m
X

jD1

hRN(V, d�(hrej ei , ej iei ))V1, V2i

D �hRN(V, d�(rei ei ))V1, V2i.

Therefore, we have the lemma.

Theorem 2.5 ([17]). Let kD 2s (sD 1, 2, : : :), then

d

dt

�

�

�

�

tD0

E2s(�t ) D �

Z

M
h�2s(�), Vi,

where

�2s(�) D N

1

2s�1
� (�) �

m
X

jD1

RN( N12s�2
� (�), d�(ej )) d�(ej )

�

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�2
� (�), N1s�l�1

� (�)) d�(ej )

� RN( N1sCl�2
� (�), Nrej

N

1

s�l�1
� (�)) d�(ej )},

where N1�1
D 0.

Proof.

E2s(�) D
Z

M
h(d�d) � � � (d�d)
� �� �

s

�, (d�d) � � � (d�d)
� �� �

s

�ivg

D

Z

M
h

N

1

s�1
� (�), N1s�1

� (�)ivg.
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By using Lemma 2.2 and Lemma 2.4, we calculate (d=dt)E2s(�t ),
(5)
d

dt
E2s(�t )jtD0

D

Z

M
h

N

r

�=�t N1
s�1
� (F), N1s�1

� (F)ivgjtD0

D

Z

M

*

�

N

1

sV C

m
X

jD1

N

1

s�1RN(V, d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

lD1

N

1

l�1{� Nrej R
N(V, d�(ej )) N1

s�l�1
� (�) � RN(V, d�(ej )) Nrej

N

1

s�l�1
� (�)

C RN(V, d�(rej ej )) N1
s�l�1

� (�), N1s�1
� (�)}

+

vg

D

Z

M
hV, � N12s�1

� (�)ivg C

m
X

jD1

Z

M
hV, RN( N12s�2

� (�), d�(ej )) d�(ej )ivg

C

m
X

jD1

s�1
X

lD1

Z

M
h�

N

rej R
N(V, d�(ej )) N1

s�l�1
� (�) � RN(V, d�(ej )) Nrej

N

1

s�l�1
� (�)

C RN(V, d�(rej ej )) N1
s�l�1

� (�), N1sCl�2
� (�)ivg

D

Z

M
hV, � N12s�1

� (�)ivg C

m
X

jD1

Z

M
hV, RN( N12s�2

� (�), d�(ej )) d�(ej )ivg

C

m
X

jD1

s�1
X

lD1

�

Z

M
hRN(V, d�(ej )) N1

s�l�1
� (�), Nrej

N

1

sCl�2
� (�)ivg

C

Z

M
h�RN(V, d�(ej )) Nrej

N

1

s�l�1
� (�), N1sCl�2

� (�)ivg

�

D

Z

M
hV, � N12s�1

� (�)ivg C

m
X

jD1

Z

M
hV, RN( N12s�2

� (�), d�(ej )) d�(ej )ivg

C

m
X

jD1

s�1
X

lD1

�

Z

M
hRN( Nrej

N

1

sCl�2
� (�), N1s�l�1

� (�)) d�(ej ), Vivg

�

Z

M
hRN( N1sCl�2

� (�), Nrej
N

1

s�l�1
� (�)) d�(ej ), Vivg

�

D

Z

M

*

V, � N12s�1
� (�)C

m
X

jD1

RN( N12s�2
� (�), d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�2
� (�), N1s�l�1

� (�)) d�(ej )

� RN( N1sCl�2
� (�), Nrej

N

1

s�l�1
� (�)) d�(ej )}

+

vg.
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So we have the theorem.

Theorem 2.6 ([17]). Let kD 2sC 1 (sD 0, 1, 2,: : :), then,

d

dt

�

�

�

�

tD0

E2sC1(�t ) D �

Z

M
h�2sC1(�), Vi,

where

�2sC1(�) D N

1

2s
� (�) �

m
X

jD1

RN( N12s�1
� (�), d�(ej )) d�(ej )

�

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�1
� (�), N1s�l�1

� (�)) d�(ej )

� RN( N1sCl�1
� (�), Nrej

N

1

s�l�1
� (�)) d�(ej )}

�

m
X

jD1

RN( Nrej
N

1

s�1
� (�), N1s�1

� (�)) d�(ej ),

where N1�1
D 0.

Proof. Whens D 0, it is the first variation of harmonic maps. So we consider
the case ofsD 1, 2, : : : .

E2sC1(�) D
Z

M
hd (d�d) � � � (d�d)
� �� �

s

�, d (d�d) � � � (d�d)
� �� �

s

�ivg

D

m
X

iD1

Z

M
h

N

rei
N

1

s�1
� (�), Nrei

N

1

s�1
� (�)ivg.

By using Lemma 2.3 and Lemma 2.4, we calculate (d=dt)E2sC1(�t ),

d

dt
E2sC1(�t )

�

�

�

�

tD0

D

m
X

iD1

Z

M
h

N

r

�=�t Nrei
N

1

s�1
� (F), Nrei

N

1

s�1
� (F)ivgjtD0

D

m
X

iD1

Z

M

*

�

N

rei
N

1

sVC
m
X

jD1

N

rei
N

1

s�1RN(V,d�(ej ))d�(ej )

C

m
X

jD1

s�1
X

lD1

N

rei
N

1

l�1{� Nrej R
N(V,d�(ej )) N1

s�l�1
� (�)

�RN(V,d�(ej )) Nrei
N

1

s�l�1
� (�)CRN(V,d�(rej ej )) N1

s�l�1
� (�)

CRN(V,d�(ei )) N1
s�1
� (�), Nrei

N

1

s�1
� (�)}

+

vg.
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Here, using
m
X

iD1

Z

M
h

N

rei!1, Nrei!2ivg D

Z

M
h

N

1!1, !2ivg,

where!1, !2 2 0(��1T N), we have

(6)

d

dt
E2sC1(�t )jtD0

D

Z

M
hV, � N12s

� (�)ivg

C

m
X

jD1

Z

M
hRN(V, d�(ej )) d�(ej ), N1

2s�1
� (�)ivg

C

m
X

jD1

s�1
X

lD1

Z

M
h�

N

rej R
N(V, d�(ej )) N1

s�l�1
� (�)

� RN(V, d�(ej )) Nrej
N

1

s�l�1
� (�)

C RN(V, d�(rej ej )) N1
s�l�1

� (�), N1sCl�1
� (�)ivg

C

m
X

jD1

Z

M
hRN(V, d�(ej )) N1

s�1
� (�), Nrej

N

1

s�1
� (�)ivg

D

Z

M

*

V, � N12s
� (�)C

m
X

jD1

RN( N12s�1
� (�), d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�1
� (�), N1s�l�1

� (�)) d�(ej )

� RN( N1sCl�1
� (�), Nrej

N

1

s�l�1
� (�)) d�(ej )}

C

m
X

jD1

RN( Nrej
N

1

s�1
� (�), N1s�1

� (�)) d�(ej )

+

vg.

So we have the theorem.

By Theorem 2.5 and 2.6, we have the following [17].

Corollary 2.7. A harmonic map is always k-harmonic(k D 1, 2, : : :).

For N1l (k D 1, 2,: : :), we have Theorem 2.10. We show the following two lemmas.
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Lemma 2.8. Let l D 1, 2,: : : . If for any ei (i D 1,: : : ,m), Nrei
N

1

(l�1)
� (�)D 0, then

N

1

l
� (�) D 0.

Proof. Indeed, we can define a global vector fieldX
�

2 0(T M) defined by

(7) X
�

D

m
X

jD1

h�

N

rej
N

4

(l�1)
� (�), N4l

� (�)iej .

Then, the divergence ofX
�

is given as

div(X
�

) D h

N

4

l
� (�), N4l

� (�)i C
m
X

jD1

h�

N

rej
N

4

(l�1)
� (�), Nrej

N

4

l
� (�)i

D h

N

4

l
� (�), N4l

� (�)i,

by the assumption. Integrating this overM, we have

0D
Z

M
div(X

�

)vg D

Z

M
h

N

4

l
� (�), N4l

� (�)ivg,

which implies N4l
� (�) D 0.

Lemma 2.9. Let l D 1, 2, : : : . If N1l
� (�) D 0, then

N

rei
N

1

(l�1)
� (�) D 0, (i D 1, : : : , m).

Proof. Indeed, by computing the Laplacian of the 2l -energy densitye2l (�), we have

(8)

4e2l (�) D
m
X

iD1

h

N

rei
N

4

(l�1)
� (�), Nrei

N

4

(l�1)
� (�)i

� h

N

r

�

N

r( N4(l�1)
� (�)), N4(l�1)

� (�)i

D

m
X

iD1

h

N

rei
N

4

(l�1)
� (�), Nrei

N

4

(l�1)
� (�)i � 0.

By Green’s theorem
R

M 4e2l (�)vg D 0, and (8), we have4e2l (�) D 0. Again, by (8),
we have

N

rei
N

4

(l�1)
� (�) D 0, (i D 1, : : : , m, l D 1, 2, : : :).

Theorem 2.10. Let l D 1, 2, : : : . If N1l
� (�) D 0 or if for any ei (i D 1, : : : , m),

N

rei
N

1

(l�1)
� (�)D 0, then�W M ! N from a compact Riemannian manifold into a Riemann-

ian manifold is a harmonic map.

Proof. By using Lemma 2.8 and 2.9, we have Theorem 2.10.
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3. The second variational formula of thek-energy

In this section, we calculate the second variation of thek-energy. The formula was
proved fork D 2, by G.Y. Jiang [6], and fork D 3, S.B. Wang [18].

Now let � W (M, g) ! (N, h) be ak-harmonic map (k D 1, 2, : : :). We consider a
smooth variation{�t,r }t,r2I

"

(I
"

D (�", ")) of � with two parameterst and r , i.e., we
consider the smooth mapF given by

F W I
"

� I
"

� M ! N, F(t, r, p) D �t,r (p),

where F(0, 0, p) D �0,0(p) D �(p), for all p 2 M.
The corresponding variational vector fieldV and W are given by

V(p) D
d

dt

�

�

�

�

tD0

�t,0 2 T
�(p)N,

W(p) D
d

dr

�

�

�

�

rD0

�0,r 2 T
�(p)N.

V and W are section of��1T N.
We also denote byr, Nr and Qr the induced Riemannian connection onT(I

"

� I
"

�

M), F�1T N and T�(I
"

� I
"

� M)
 F�1T N respectively.
The Hessianof Ek at its critical point� is defined by

H (Ek)
�

(V, W) D
�

2

�t�r

�

�

�

�

(t,r )D(0,0)

Ek(�t,r ).

Theorem 3.1. Let �W (M,g)! (N,h) be a2s-harmonic map(sD 1,2,: : :). Then,
the Hessian of the2s-energy E2s at � is given by

H (E2s)�(V, W) D
Z

M
hV, J2s(W)ivg,

where

J2s(W) D �I2s C II2s C III 2s � IV2s.

where

I2s D �

N

1

2sWC

m
X

jD1

N

1

2s�1RN(W,d�(ej ))d�(ej )

C

m
X

jD1

2s�1
X

lD1

N

1

l�1{� Nrej R
N(W,d�(ej )) N1

2s�l�1
� (�)

�RN(W,d�(ej )) Nrej
N

1

2s�l�1
� (�)CRN(W,d�(rej ej )) N1

2s�l�1
� (�)},
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II2s D �

m
X

iD1

(rN
N

1

2s�2
� (�)

RN)(d�(ei ),W)d�(ei )�
m
X

iD1

(rN
d�(ei ) R

N)(W, N12s�2
� (�))d�(ei )

C

m
X

iD1

RN

 

�

N

1

2s�1WC

m
X

jD1

N

1

2s�2RN(W,d�(ej ))d�(ej )

C

m
X

jD1

2s�2
X

l2D1

{ N1l2�1{� Nrej R
N(W,d�(ej )) N1

2s�l2�2
� (�)

�RN(W,d�(ej )) Nrej
N

1

2s�l2�2
� (�)

CRN(W,d�(rej ej )) N1
2s�l2�2

� (�)}},d�(ei )

!

d�(ei )

C

m
X

iD1

RN( N12s�2
� (�), Nrei W)d�(ei )C

m
X

iD1

RN( N12s�2
� (�),d�(ei )) Nrei W,

III 2s D �

s�1
X

lD1

m
X

iD1

�

r

N
N

rei
N

1

sCl�2
� (�)

RN
�

( N1s�l�1
� (�),W)d�(ei )

�

s�1
X

lD1

m
X

iD1

�

r

N
N

1

s�l�1
� (�)

RN
�

(W, Nrei
N

1

sCl�2
� (�))d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

�

N

rei
N

1

sCl�1WC

m
X

jD1

N

rei
N

1

sCl�2RN(W,d�(ej ))d�(ej )

C

m
X

jD1

sCl�2
X

l2D1

{ Nrei
N

1

l2�1{� Nrej R
N(W,d�(ej )) N1

sCl�2�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

sCl�2�l2
� (�)

CRN(W,d�(rej ej )) N1
sCl�2�l2

� (�)}}

CRN(W,d�(ei )) N1
sCl�2

� (�), N1s�l�1
� (�)

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

N

rei
N

1

sCl�2
� (�),

�

N

1

s�l WC

m
X

jD1

N

1

s�l�1RN(W,d�(ej ))d�(ej )

C

m
X

jD1

s�l�1
X

l2D1

{ N1l2�1{� Nrej R
N(W,d�(ej )) N1

s�l�1�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

s�l�1�l2
� (�)

CRN(W,d�(rej ej )) N1
s�l�1�l2

� (�)}}

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN( Nrei
N

1

sCl�2
� (�), N1s�l�1

� (�)) Nrei W,
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IV2s D �

s�1
X

lD1

m
X

iD1

�

r

N
N

1

sCl�2
� (�)

RN
�

( Nrei
N

1

s�l�1
� (�),W)d�(ei )

�

s�1
X

lD1

m
X

iD1

�

r

N
N

rei
N

1

s�l�1
� (�)

RN
�

(W, N1sCl�2
� (�))d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

�

N

1

sCl�1WC

m
X

jD1

N

1

sCl�2RN(W,d�(ej ))d�(ej )

C

m
X

jD1

sCl�2
X

l2D1

{ N1l2�1{� Nrej R
N(W,d�(ej )) N1

sCl�2�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

sCl�2�l2
� (�)

CRN(W,d�(rej ej )) N1
sCl�2�l2

� (�)}},

N

rei
N

1

s�l�1
� (�)

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

N

1

sCl�2
� (�),

�

N

rei
N

1

s�l WC

m
X

jD1

N

rei
N

1

s�l�1RN(W,d�(ej ))d�(ej )

C

s�l�1
X

l2D1

(

N

rei
N

1

l2�1
m
X

jD1

{� Nrej R
N(W,d�(ej )) N1

s�l�1�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

s�l�1�l2
� (�)

CRN(W,d�(rej ej )) N1
s�l�1�l2

� (�)}

CRN(W,d�(ei )) N1
s�l�1

� (�)

)!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN( N1sCl�2
� (�), Nrei

N

1

s�l�1
� (�)) Nrei W.
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Proof. By (5), we have
(9)
1

2

�

2

�r �t
E2s(F)

D

Z

M

*

N

r

�=�r d F

�

�

�t

�

, � N12s�1
� (F)C

m
X

iD1

RN( N12s�2
� (F), d F(ei )) d F(ei )

C

m
X

iD1

s�1
X

lD1

{RN( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei )

� RN( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei )}

+

vg.

C

Z

M

*

F

�

�

�t

�

, Nr
�=�r

(

�

N

1

2s�1
� (F)C

m
X

iD1

RN( N12s�2
� (F), d F(ei )) d F(ei )

C

m
X

iD1

s�1
X

lD1

{RN( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei )

� RN( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei )}

)+

vg.

Then, puttingt D 0, the first term of (9) vanishes. Thus, we calculate the second term
of (9).

Using Lemma 2.2, we have

N

r

�=�r N1
2s�1

� (F)jtD0 D I2s.

N

r

�=�r RN( N12s�2
� (F), d F(ei )) d F(ei )

D (rN
d F(�=�r ) R

N)( N12s�2
� (F), d F(ei )) d F(ei )

C RN( Nr
�=�r N1

2s�2
� (F), d F(ei )) d F(ei )

C RN( N12s�2
� (F), Nr

�=�r d F(ei )) d F(ei )

C RN( N12s�2
� (F), d F(ei )) Nr�=�r d F(ei ).

Using second Bianch’s identity, Lemma 2.2, we have

m
X

iD1

N

r

�=�r RN( N12s�2
� (F), d F(ei )) d F(ei )jtD0 D II2s.
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N

r

�=�r RN( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei )

D (rN
d F(�=�r ) R

N)( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei )

C RN( Nr
�=�r Nrei

N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei )

C RN( Nrei
N

1

sCl�2
� (F), Nr

�=�r N1
s�l�1

� (F)) d F(ei )

C RN( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) Nr
�=�r d F(ei ).

Using second Bianch’s identity, Lemma 2.2 and Lemma 2.3, we have

s�1
X

lD1

m
X

iD1

N

r

�=�r RN( Nrei
N

1

sCl�2
� (F), N1s�l�1

� (F)) d F(ei ) D III 2s.

N

r

�=�r RN( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei )

D (rN
d F(�=�r ) R

N)( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei )

C RN( Nr
�=�r N1

sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei )

C RN( N1sCl�2
� (F), Nr

�=�r Nrei
N

1

s�l�1
� (F)) d F(ei )

C RN( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) Nr

�=�r d F(ei ).

Using second Bianch’s identity, Lemma 2.2 and Lemma 2.3, we have

s�1
X

lD1

m
X

iD1

N

r

�=�r RN( N1sCl�2
� (F), Nrei

N

1

s�l�1
� (F)) d F(ei ) D IV2s.

Theorem 3.2. Let �W (M, g)! (N,h) be a (2sC1)-harmonic map(sD 0, 1,: : : ).
Then, the Hessianof the (2sC 1)-energy E2sC1 at � is given by

H (E2sC1)
�

(V, W) D
Z

M
hV, J2sC1(W)ivg,

where

J2sC1(W) D �I2sC1 C II2sC1 C III 2sC1 � IV2sC1 C V2sC1,

where

I2sC1 D �

N

1

2sC1WC

m
X

jD1

N

1

2sRN(W, d�(ej )) d�(ej )

C

m
X

jD1

2s
X

lD1

N

1

l�1{� Nrej R
N(W, d�(ej )) N1

2s�l
� (�)

� RN(W, d�(ej )) Nrej
N

1

2s�l
� (�)

C RN(W, d�(rej ej )) N1
2s�l

� (�)},
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II2sC1D�

m
X

iD1

(rN
N

1

2s�1
� (�)

RN)(d�(ei ),W)d�(ei )

�

m
X

iD1

(rN
d�(ei ) R

N)(W, N12s�1
� (�))d�(ei )

C

m
X

iD1

RN

 

�

N

1

2sWC

m
X

jD1

N

1

2s�1RN(W,d�(ej ))d�(ej )

C

m
X

jD1

2s�1
X

l2D1

{ N1l2�1{� Nrej R
N(W,d�(ej )) N1

2s�l2�1
� (�)

�RN(W,d�(ej )) Nrej
N

1

2s�l2�1
� (�)

CRN(W,d�(rej ej )) N1
2s�l2�1

� (�)}},d�(ei )

!

d�(ei )

C

m
X

iD1

RN( N12s�1
� (�), Nrei W)d�(ei )

C

m
X

iD1

RN( N12s�1
� (�),d�(ei )) Nrei W,

III 2sC1D�

s�1
X

lD1

m
X

iD1

�

r

N
N

rei
N

1

sCl�1
� (�)

RN
�

( N1s�l�1
� (�),W)d�(ei )

�

s�1
X

lD1

m
X

iD1

�

r

N
N

1

s�l�1
� (�)

RN
�

(W, Nrei
N

1

sCl�1
� (�))d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

�

N

rei
N

1

sCl WC

m
X

jD1

N

rei
N

1

sCl�1RN(W,d�(ej ))d�(ej )

C

m
X

jD1

sCl�1
X

l2D1

{ Nrei
N

1

l2�1{� Nrej R
N(W,d�(ej )) N1

sCl�1�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

sCl�1�l2
� (�)

CRN(W,d�(rej ej )) N1
sCl�1�l2

� (�)}}

CRN(W,d�(ei )) N1
sCl�1

� (�), N1s�l�1
� (�)

!

d�(ei )
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C

s�1
X

lD1

m
X

iD1

RN

 

N

rei
N

1

sCl�1
� (�),

�

N

1

s�l WC

m
X

jD1

N

1

s�l�1RN(W,d�(ej ))d�(ej )

C

m
X

jD1

s�l�1
X

l2D1

{ N1l2�1{� Nrej R
N(W,d�(ej )) N1

s�l�1�l2
� (�)

�RN(W,d�(ej )) Nrej
N

1

s�l�1�l2
� (�)

CRN(W,d�(rej ej )) N1
s�l�1�l2

� (�)}}

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN( Nrei
N

1

sCl�1
� (�), N1s�l�1

� (�)) Nrei W,

IV2s D �

s�1
X

lD1

m
X

iD1

�

r

N
N

1

sCl�1
� (�)

RN
�

( Nrei
N

1

s�l�1
� (�), W) d�(ei )

�

s�1
X

lD1

m
X

iD1

�

r

N
N

rei
N

1

s�l�1
� (�)

RN
�

(W, N1sCl�1
� (�)) d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

�

N

1

sCl WC

m
X

jD1

N

1

sCl�1RN(W, d�(ej )) d�(ej )

C

m
X

jD1

sCl�1
X

l2D1

{ N1l2�1{� Nrej R
N(W, d�(ej )) N1

sCl�1�l2
� (�)

� RN(W, d�(ej )) Nrej
N

1

sCl�1�l2
� (�)

C RN(W, d�(rej ej )) N1
sCl�1�l2

� (�)}},

N

rei
N

1

s�l�1
� (�)

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

N

1

sCl�1
� (�),

�

N

rei
N

1

s�l WC

m
X

jD1

N

rei
N

1

s�l�1RN(W, d�(ej )) d�(ej )

C

m
X

jD1

s�l�1
X

l2D1

{ Nrei
N

1

l2�1{� Nrej R
N(W, d�(ej )) N1

s�l�1�l2
� (�)

� RN(W, d�(ej )) Nrej
N

1

s�l�1�l2
� (�)
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C RN(W, d�(rej ej )) N1
s�l�1�l2

� (�)}}

C RN(W, d�(ei )) N1
s�l�1

� (�)

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN( N1sCl�1
� (�), Nrei

N

1

s�l�1
� (�)) Nrei W,

V2sC1 D �

s�1
X

lD1

m
X

iD1

�

r

N
N

rei
N

1

s�l
� (�)

RN
�

( N1s�1
� (�), W) d�(ei )

�

s�1
X

lD1

m
X

iD1

�

r

N
N

1

s�1
� (�)

RN
�

(W, Nrei
N

1

s�1
� (�)) d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

�

N

rei
N

1

sWC

m
X

jD1

N

rei
N

1

s�1RN(W, d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

l2D1

{ Nrei
N

1

l2�1{� Nrej R
N(W, d�(ej )) N1

s�l2�1
� (�)

� RN(W, d�(ej )) Nrej
N

1

s�l2�1
� (�)

C RN(W, d�(rej ej )) N1
s�l2�1

� (�)}}

C RN(W, d�(ei )) N1
s�1
� (�), N1s�1

� (�)

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN

 

N

rei
N

1

s�1
� (�),

�

N

1

sWC

m
X

jD1

N

1

s�1RN(W, d�(ej )) d�(ej )

C

m
X

jD1

s�1
X

l2D1

{ N1l2�1{� Nrej R
N(W, d�(ej )) N1

s�l2�1
� (�)

� RN(W, d�(ej )) Nrej
N

1

s�l2�1
� (�)

C RN(W, d�(rej ej )) N1
s�l2�1

� (�)}}

!

d�(ei )

C

s�1
X

lD1

m
X

iD1

RN( Nrei
N

1

s�1
� (�), N1s�1

� (�)) Nrei W.
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Proof. By (6), we have
(10)

1

2

�

2

�r �t
E2sC1(F)

D

Z

M

*

N

r

�=�r d F

�

�

�t

�

, � N12s
� (F)C

m
X

jD1

RN( N12s�1
� (F), d F(ej )) d F(ej )

C

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej )

� RN( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej )}

C

m
X

iD1

RN( Nrei
N

1

s�1
� (F), N1s�1

� (F)) d F(ei )

+

vg

C

Z

M

*

F

�

�

�t

�

, Nr
�=�r

(

�

N

1

2s
� (F)C

m
X

jD1

RN( N12s�1
� (F), d F(ej )) d F(ej )

C

m
X

jD1

s�1
X

lD1

{RN( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej )

� RN( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej )}

C

m
X

iD1

RN( Nrei
N

1

s�1
� (F), N1s�1

� (F)) d F(ei )

)+

vg.

Then, puttingt D 0, the first term of (10) vanishes. Thus, we calculate the second term
of (10).

Using Lemma 2.2, we have

N

r

�=�r N1
2s
� (F)jtD0 D I2sC1.

N

r

�=�r RN( N12s�1
� (F), d F(ej )) d F(ej )

D (rN
d F(�=�r ) R

N)( N12s�1
� (F), d F(ej )) d F(ej )

C RN( Nr
�=�r N1

2s�1
� (F), d F(ej )) d F(ej )

C RN( N12s�1
� (F), Nr

�=�r d F(ej )) d F(ej )

C RN( N12s�1
� (F), d F(ej )) Nr�=�r d F(ej ).

Using second Bianch’s identity, Lemma 2.2, we have

m
X

jD1

N

r

�=�r RN( N12s�1
� (F), d F(ej )) d F(ej )jtD0 D II2sC1.
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N

r

�=�r RN( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej )

D (rN
d F(�=�r ) R

N)( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej )

C RN( Nr
�=�r Nrej

N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej )

C RN( Nrej
N

1

sCl�1
� (F), Nr

�=�r N1
s�l�1

� (F)) d F(ej )

C RN( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) Nr
�=�r d F(ej ).

Using second Bianch’s identity, Lemmas 2.2 and 2.3, we have

s�1
X

lD1

m
X

jD1

N

r

�=�r RN( Nrej
N

1

sCl�1
� (F), N1s�l�1

� (F)) d F(ej ) D III 2sC1.

N

r

�=�r RN( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej )

D (rN
d F(�=�r ) R

N)( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej )

C RN( Nr
�=�r N1

sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej )

C RN( N1sCl�1
� (F), Nr

�=�r Nrej
N

1

s�l�1
� (F)) d F(ej )

C RN( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) Nr

�=�r d F(ej ).

Using second Bianch’s identity, Lemmas 2.2 and 2.3, we have

s�1
X

lD1

m
X

jD1

N

r

�=�r RN( N1sCl�1
� (F), Nrej

N

1

s�l�1
� (F)) d F(ej ) D IV2sC1.

N

r

�=�r RN( Nrej
N

1

s�1
� (F), N1s�1

� (F)) d F(ej )

D (rN
d F(�=�r ) R

N)( Nrej
N

1

s�1
� (F), N1s�1

� (F)) d F(ej )

C RN( Nr
�=�r Nrej

N

1

s�1
� (F), N1s�1

� (F)) d F(ej )

C RN( Nrej
N

1

s�1
� (F), Nr

�=�r N1
s�1
� (F)) d F(ej )

C RN( Nrej
N

1

s�1
� (F), N1s�1

� (F)) Nr
�=�r d F(ej ).

Using second Bianch’s identity, Lemmas 2.2 and 2.3, we have

m
X

jD1

N

r

�=�r RN( Nrej
N

1

s�1
� (F), N1s�1

� (F)) d F(ej ) D V2sC1.

DEFINITION 3.3. Assume that� W (M, g) ! (N, h) is a k-harmonic map. Then,
� is weakly stableif H (Ek)

�

(V, V) � 0, for all V 2 0(��1T N). � is unstableif it is
not weakly stable.

Proposition 3.4. Any harmonic map is a weakly stable k-harmonic map.
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Proof. CASE 1. k D 2s, (sD 1, 2, : : :).
By assumption we have

(11)
H (E2s)�(V, V)

D

Z

M

*

V, �

 

�

N

1

2sV C

m
X

jD1

N

1

2s�1RN(V, d�(ej )) d�(ej )

!

C

m
X

iD1

RN

 

�

N

1

2s�1V C

m
X

jD1

N

1

2s�2RN(V, d�(ej )) d�(ej ), d�(ei )

!

d�(ei )

+

vg

D

Z

M

*

�V, � N12sV C

m
X

jD1

N

1

2s�1RN(V, d�(ej )) d�(ej )

+

vg

C

Z

M

*

m
X

iD1

RN(V, d�(ei )) d�(ei ), � N1
2s�1V C

m
X

jD1

N

1

2s�2RN(V, d�(ej )) d�(ej )

+

vg

D

Z

M
















�

N

1

sV C

m
X

jD1

N

1

s�1RN(V, d�(ej )) d�(ej )
















2

vg � 0.

CASE 2. k D 2sC 1, (sD 0, 1, 2,: : :).
By assumption we have

(12)
H (E2sC1)

�

(V, V)

D

Z

M

*

V, �

 

�

N

1

2sC1V C

m
X

jD1

N

1

2sRN(V, d�(ej )) d�(ej )

!

C

m
X

iD1

RN

 

�

N

1

2sV C

m
X

jD1

N

1

2s�1RN(V, d�(ej )) d�(ej ), d�(ei )

!

d�(ei )

+

vg

D

Z

M

*

�V, � N12sC1V C

m
X

jD1

N

1

2sRN(V, d�(ej )) d�(ej )

+

vg

C

Z

M

*

m
X

iD1

RN(V, d�(ei )) d�(ei ), � N1
2sV C

m
X

jD1

N

1

2s�1RN(V, d�(ej )) d�(ej )

+

vg

D

Z

M
















N

r

 

�

N

1

sV C

m
X

jD1

N

1

s�1RN(V, d�(ej )) d�(ej )

!
















2

vg � 0.
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Corollary 3.5. Assume that� W (M, g) ! (N, h) is a harmonic map. Then,

Jk(V) D J( N1k�2J(V)).

for all V 2 0(��1T N).

Proof. If � is harmonic map, then,� (�) D 0. Thus we have

Jk(V) D J( N1k�2J(V )),

for all V 2 0(��1T N). Therefore, we have the corollary.

4. The k-harmonic maps into product spaces

In this section, we describe the necessary and sufficient condition of k-harmonic
maps into product spaces. Let us recall the result of Y.-L. Ou[10].

Theorem 4.1 ([10]). Let ' W (M, g) ! (N1, h1) and  W (M, g) ! (N2, h2) be two
maps. Then, the map� W (M, g) ! (N1 � N2, h1 � h2) with �(x) D ('(x),  (x)) is
2-harmonic if and only if both map' or  are 2-harmonic. Furthermore, if one of
' or  is 2-harmonic and the other is a proper2-harmonic map, then � is a proper
2-harmonic map.

We generalize Theorem 4.1 fork-harmonic maps. We have the following theorem
which is useful to construct examples thek-harmonic maps.

Theorem 4.2. Let ' W (M, g) ! (N1, h1) and  W (M, g) ! (N2, h2) be two maps.
Then, the map� W (M, g) ! (N1� N2, h1� h2) with �(x) D ('(x), (x)) is k-harmonic
if and only if both map' or  are k-harmonic. Furthermore, if one of' or  is har-
monic and the other is a proper k-harmonic map, then� is a proper k-harmonic map.

Proof. It is easily seen that

(13) d�(X) D d'(X)C d�(X), 8X 2 0(T M).

It follows that

(14) r

�

X d�(Y) D r

�

X d'(Y)Cr�X d (Y), X, Y 2 0(T M).

wherer� is given byr�X D r

N
d�(X), 8X 2 0(T M).

Let {ei }
m
iD1 be a local orthonormal frame on (M, g) and Y D Yi ei , then d'(Y) D

Yi
'

�

i (E
�

'), for some function'� defined locally onM. A straight forward computa-

tion yieldsr�X d'(Y) D r

'

Xd'(Y), � (�) D � (')C � ( ), N4
�

� (�) D N

4

'

� (')C N

4

 

� ( ).



1056 S. MAETA

We notice that N4
'

� (') is tangent toN1, N4
 

� ( ) is tangent toN2. So we have

(15)
N

4

�

�

N

4

�

� (�)
�

D

N

4

�

�

N

4

'

� (')C N

4

 

� ( )
�

D

N

4

'

�

N

4

'

� (')
�

C

N

4

 

�

N

4

 

� ( )
�

.

Similarly,

N

4

t
�

� (�) D N

4

t
'

� (')C N

4

t
 

� ( ).

for all t D 0, 1, 2,: : : .
We use the property of the curvature of the product manifold to have

RN1�N2
�

N

4

t
�

� (�), d�(ei )
�

d�(ei )

D RN1
�

N

4

t
'

� ('), d'(ei )
�

d'(ei )C RN2
�

N

4

t
 

� ( ), d (ei )
�

d (ei ).

Similarly we have

RN1�N2
�

N

4

s
�

� (�), N4t
�

� (�)
�

D RN1
�

N

4

s
'

� ('), N4t
'

� (')
�

C RN2
�

N

4

s
 

� ( ), N4t
 

� ( )
�

,

RN1�N2
�

r

�

d�(X)
N

4

s
�

� (�), N4t
�

� (�)
�

D RN1
�

r

'

d'(X)
N

4

s
'

� ('), N4t
'

� (')
�

C RN2
�

r

 

d (X)
N

4

s
 

� ( ), N4t
 

� ( )
�

,

RN1�N2
�

N

4

s
�

� (�), r�d�(X)
N

4

t
�

� (�)
�

D RN1
�

N

4

s
'

� ('), r'd'(X)
N

4

t
'

� (')
�

C RN2
�

N

4

s
 

� ( ), r d (X)
N

4

t
 

� ( )
�

,

for all t, sD 0, 1, 2,: : : , and for all X 2 0(T M).
By using Theorem 2.5 and 2.6, we have the theorem.

The following corollary is a generalization of Corollary 3.4 in [10]. This corollary
for k D 2 is also proved in [1].

Corollary 4.3. Let  W (M, g) ! (N, h) be a smooth map. Then, the graph
� W (M, g) ! (M � N, g � h) with �(x) D (x,  (x)) is a k-harmonic map if and only
if the map W (M, g) ! (N, h) is a k-harmonic map. Furthermore, if  is proper
k-harmonic, then so is the graph.

Proof. This follows from Theorem 4.2 with' W (M, g) ! (N, h) being identity
map which is harmonic.

5. k-harmonic curves into a Riemannian manifold with constant sectional
curvature

Harmonic maps are always biharmonic maps. By Corollary 2.7,harmonic maps
are alwaysk-harmonic maps. In this section, we consider the following problem.
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PROBLEM 5.1. Are biharmonic mapsk-harmonic maps (kD 3,4,: : :)? More gen-
erally, for s< k, are s-harmonic mapsk-harmonic maps?

Let {T, N} be an orthonormal frame field tangent toN2 along to
 , whereT D 


0

is the unit vector field tangent to
 , N is the unit normal vector field in the direction
of rT T .

Then, we have the following Frenet equations

(16)

(




0

D T , r

N



0

T D �N, r

N



0

N D ��T,

hT, Ni D 0, hT, Ti D 1, hN, Ni D 1,

where� is the geodesic curvature andh � , � i D h, the Riemannian metric onN2. Then,
we have the following proposition.

Proposition 5.2. Let 
 W I ! (N2, h � , � i) be a smooth curve parametrized by
arc length from an open interval ofR into a Riemannian manifold(N2, h � , � i) with
constant sectional curvature K . Then, 
 is a 3-harmonic curve if and only if

(

�

(4)
� 15�(� 0)2

� 10�2
�

00

C �

5
C K (� 00 � 2�3) D 0,

��

(3)
� 2�3

�

0

C 2� 0� 00 D 0,

where� is the geodesic curvature of
 .

Proof. We calculate (rN



0

r

N



0

)2
� (
 ) as follows.

(17)
(rN




0

r

N



0

)2
� (
 ) D (� (4)

� 15�(� 0)2
� 10�2

�

00

C �

5)N

C (�5�� (3)
C 10�3

�

0

� 10� 0� 00)T .

Therefore,
 is 3-harmonic if and only if

(18)
(� (4)

� 15�(� 0)2
� 10�2

�

00

C �

5
C K (� 00 � 2�3))N

C (�5�� (3)
C 10�3

�

0

� 10� 0� 00)T D 0.

So we have Proposition 5.2.

Corollary 5.3. Let 
 W I ! (N2,h�, �i) be a3-harmonic curve parametrized by arc
length from an open interval ofR into a Riemannian manifold(N2,h � , � i) with constant
sectional curvature K� 0. If the geodesic curvature� is constant, then � D

p

2K.

Proof. We can show this corollary by a direct computation. The proof is omitted.
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Proposition 5.4. Let 
 W I ! (Nn, h � , � i) be a smooth curve parametrized by
arc length from an open interval ofR into a Riemannian manifold(Nn, h � , � i) with
constant sectional curvature K . Then, 
 is 2s-harmonic curve if and only if

(19)

�2s(
 ) D
�

r

N



0

r

N



0

�2s�1
� (
 )

C K
{�

r

N



0

r

N



0

�2s�2
� (
 ) �







0,
�

r

N



0

r

N



0

�2s�2
� (
 )

�




0

}

�

s�1
X

lD1

K
{
�

r

N



0

r

N



0

�s�l�1
� (
 ), 
 0

�

r

N



0

�

r

N



0

r

N



0

�sCl�2
� (
 )

�







0, rN



0

�

r

N



0

r

N



0

�sCl�2
� (
 )

��

r

N



0

r

N



0

�s�l�1
� (
 )

�




r

N



0

�

r

N



0

r

N



0

�s�l�1
� (
 ), 
 0

��

r

N



0

r

N



0

�sCl�2
� (
 )

C







0,
�

r

N



0

r

N



0

�sCl�2
� (
 )

�

r

N



0

�

r

N



0

r

N



0

�s�l�1
� (
 )

}

D 0.

Proof. We only notice that

N

1 D �r

N



0

r

N



0

,

RN(V, W)Z D K (hW, ZiV � hZ, ViW),

h


0, 
 0i D 1.

We get the proposition.

Similarly we have

Proposition 5.5. Let 
 W I ! (Nn, h � , � i) be a smooth curve parametrized by
arc length from an open interval ofR into a Riemannian manifold(Nn, h � , � i) with
constant sectional curvature K . Then, 
 is (2sC 1)-harmonic curve if and only if

(20)

�2sC1(
 ) D �

�

r

N



0

r

N



0

�2s
� (
 )

� K
{�

r

N



0

r

N



0

�2s�1
� (
 ) �







0,
�

r

N



0

r

N



0

�2s�1
� (
 )

�




0

}

C

s�1
X

lD1

K
{
�

r

N



0

r

N



0

�s�l�1
� (
 ), 
 0

�

r

N



0

�

r

N



0

r

N



0

�sCl�1
� (
 )

�







0, rN



0

�

r

N



0

r

N



0

�sCl�1
� (
 )

��

r

N



0

r

N



0

�s�l�1
� (
 )

�




r

N



0

�

r

N



0

r

N



0

�s�l�1
� (
 ), 
 0

��

r

N



0

r

N



0

�sCl�1
� (
 )

C







0,
�

r

N



0

r

N



0

�sCl�1
� (
 )

�

r

N



0

�

r

N



0

r

N



0

�s�l�1
� (
 )

}

C K
{�
�

r

N



0

r

N



0

�s�1
� (
 ), 
 0

�

r

N



0

�

r

N



0

r

N



0

�s�1
� (
 )

�

�







0, rN



0

�

r

N



0

r

N



0

�s�1
� (
 )

��

r

N



0

r

N



0

�s�1
� (
 ))

}

D 0.
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Using these propositions, we show the following propositions.

Proposition 5.6. Let 
 W I ! (N2, h � , � i) be a 2s-harmonic curve(sD 1, 2,: : :)
parametrized by arc length from an open interval ofR into a Riemannian manifold
(N2, h � , � i) with constant sectional curvature K� 0. If the geodesic curvature� is
constant, then � D

p

(2s� 1)K .

Proof. By assumption, for allt D 0, 1, 2,: : : ,

(r



0

r




0)t
� (
 ) D (�1)t�2tC1N,

r




0(r



0

r




0)t
� (
 ) D �(�1)t�2tC2N.

Using these and Proposition 5.4, we have

�2s(
 ) D ��

4s�1N C K (�4s�3N C 2K (s� 1)�4s�3N)

D �

4s�3(��2
C (2s� 1)K )N D 0.

Therefore we have the proposition.

Proposition 5.7. Let 
 W I ! (N2, h � , � i) be a (2sC 1)-harmonic curve(s D
0, 1, 2,: : :) parametrized by arc length from an open interval ofR into a Riemannian
manifold (N2, h�, �i) with constant sectional curvature K� 0. If the geodesic curvature
� is constant, then � D

p

2sK .

Proof. By assumption, for allt D 0, 1, 2,: : : ,

(r



0

r




0)t
� (
 ) D (�1)t�2tC1N,

r




0(r



0

r




0)t
� (
 ) D �(�1)t�2tC2N.

Using these and Proposition 5.5, we have

�2sC1(
 ) D ��

4sC1N C K�4s�1N C 2K (s� 1)�4s�1N C K�4s�1N

D �

4s�1{��2
C 2sK}N D 0.

Therefore we have the proposition.

Therefore, we obtain the answer of Problem 5.1. Fors < k, a s-harmonic map is
not always ak-harmonic map.

Next we consider 3-harmonic curves into a Riemannian manifold with constant
sectional curvature.
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DEFINITION 5.8. The Frenet frame{ei }iD1,:::,n associated to a curve
 W I 2
R ! (Nn, h � , � i), parametrized by arc length, is the orthonormalization ofthe
{

r

N(k)
d
 (�=�t) d
 (�=�t)

}

kD1,:::,n, described by

e1 D d


�

�

�t

�

,

r

N
d
 (�=�t)e1 D �1e2,

r

N
d
 (�=�t)ei D ��i�1ei�1 C �i eiC1 (i D 2, : : : , n� 1),

r

N
d
 (�=�t)en D ��n�1en�1,

where the functions�1, �2, : : : , �n�1 are called the curvatures of
 . Note thate1 D 


0

is the unit tangent vector field along the curve.

Let �1, �2, �3, �4 and �5, are constant.

Proposition 5.9. Let 
 W I ! (Nn, h � , � i) be a smooth curve parametrized by arc
length from an open interval ofR into a Riemannian manifold(Nn,h � , � i) with constant
sectional curvature K . And�i (i D 1,2,: : : ,5) is constant. Then, 
 is 3-harmonic curve
if and only if

(21)

8

�

�

<

�

�

:

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3) � K (2�3

1 C �1�
2
2) D 0,

� �1�2�3(�2
1 C �

2
2 C �

2
3 C �

2
4 � K ) D 0,

�1�2�3�4�5 D 0.

Proof.

(�1)2
�

r

N



0

r

N



0

�2
� (
 ) D (�5

1 C 2�3
1�

2
2 C �1�

4
2 C �1�

2
2�

2
3)e2

C (��3
1�2�3 � �1�

3
2�3 � �1�2�

3
3 � �1�2�3�

2
4)e4

C �1�2�3�4�5e6,

�

�

r

N



0

r

N



0

�

� (
 ) D (�3
1 C �1�

2
2)e2 � �1�2�3e4,

�

r

N



0

r

N



0

�

� (
 ) �






0,
�

r

N



0

r

N



0

�

� (
 )
�




0

D (�3
1 C �1�

2
2)e2 � �1�2�3e4,

h� (
 ), 
 0irN



0

� (
 ) �






0, rN



0

� (
 )
�

� (
 ) D �

3
1e2.

By using Proposition 5.5,
 is 3-harmonic curve if and only if

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3)e2

C (��3
1�2�3 � �1�

3
2�3 � �1�2�

3
3 � �1�2�3�

2
4)e4
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C �1�2�3�4�5e6

� K{(�3
1 C �1�

2
2)e2 � �1�2�3e4 C �

3
1e2} D 0.

Thus we have,

(22)

8

�

�

<

�

�

:

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3) � K (2�3

1 C �1�
2
2) D 0,

� �1�2�3(�2
1 C �

2
2 C �

2
3 C �

2
4 � K ) D 0,

�1�2�3�4�5 D 0.

Since�i , (i D 1, 2, 3, 4, 5) is constant, we can write�i as,

�2 D ��1, �3 D ��1, �4 D Æ�1, �5 D ��1,

where�, �, Æ and � are constant.

Proposition 5.10. Let 
 W I ! (Nn, h � , � i) be a smooth curve parametrized by
arc length from an open interval ofR into a Riemannian manifold(Nn, h � , � i) with
constant sectional curvature K . And�i (i D 1, 2, : : : , 5) is constant. Then, 
 is a
3-harmonic curve if and only if
(1) When nD 2, �1 D

p

2K.
(2) When nD 3, �1 D

p

2K , or �1 D
p

(2C �2)K=(1C �2).

(3) When n� 4, �1 D
p

2K , or �1 D
p

(2C �2)K=(1C �2) and �3 D 0.

Proof. Whenn D 2, by Proposition 5.7,�1 D
p

2K .
When, dimN D 3, namely�3 D �4 D �5 D 0, 
 is 3-harmonic if and only if

0D �

4
1 C 2�2

�

4
1 C �

4
�

4
2 � K (2�2

1 C �
2
�

2
1).

Thus, we have

�1 D

p

(2C �2)K

1C �2
�

p

2K .

When, dimN D 4, namely�4 D �5 D 0, 
 is 3-harmonic if and only if

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3) � K (2�3

1 C �1�
2
2) D 0,(23)

�1�2�3 D 0, or �

2
1 C �

2
2 C �

2
3 D K .(24)

If �2 D 0, �2
1 D 2K .

If �3 D 0, �1 D
p

(2C �2)K=(1C �2).
If �2

1 C �
2
2 C �

2
3 D K , there are no solution.
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When, dimN D 5, namely�5 D 0, 
 is 3-harmonic if and only if

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3) � K (2�3

1 C �1�
2
2) D 0,(25)

�1�2�3 D 0, or �

2
1 C �

2
2 C �

2
3 C �

2
4 D K .(26)

If �2 D 0, �2
1 D 2K .

If �3 D 0, �1 D
p

(2C �2)K=(1C �2).
If �2

1 C �
2
2 C �

2
3 C �

2
4 D K , there are no solution.

When, dimN � 6, 
 is 3-harmonic if and only if

(�5
1 C 2�3

1�
2
2 C �1�

4
2 C �1�

2
2�

2
3) � K (2�3

1 C �1�
2
2) D 0,(27)

��1�2�3(�2
1 C �

2
2 C �

2
3 C �

2
4 � K ) D 0,(28)

�1�2�3�4�5 D 0.(29)

If �2 D 0, �2
1 D 2K .

If �3 D 0, �1 D
p

(2C �2)K=1C �2.
If �4 D 0, there are no solution.
If �2

1 C �
2
2 C �

2
3 C �

2
4 D K , there are no solution.

Finally, we determine that the ODEs of the 3-harmonic curve equations into a
sphere. This result was proved fork D 2 in [2] and for S3 in [3].

Proposition 5.11. Let 
 W I ! Sn
� R

nC1 be a smooth curve parametrized by arc
length. Then
 is 3-harmonic curve if and only if

(30) �


(6)
� 2
 (4)

� (2g13C 3)
 00 C 4g23

0

C (1C 9g24C 8g33)
 D 0,

where gi j D g0(
 (i ),
 ( j )), (i , j D 0, 1,: : : ), and g0 is the standard metric on the Euclid-
ean spaceRnC1.

Proof.

r

0



0




0

D B(
 0, 
 0)Cr



0




0,

which yields that

r




0




0

D r

0



0




0

C g(
 0, 
 0)
 .

Therefore, we haver



0




0

D 


00

C 
 . Similarly, we have

(r



0

r




0)(r



0




0) D 


(4)
C 


00

C (g13C 1)
 ,

(r



0

r




0)2(r



0




0)

D 


(6)
C 


(4)
C (g13C 1)
 00 C (2g23C 3g14)


0

C (1C g33C 3g24C 3g15C g22C 3g13)
 ,

(31)
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RN( N1� (
 ), 
 0)
 0 D �


(4)
� 


00

� (g13C 1)
 C g14

0,(32)

RN(r



0

� (
 ), 
 0)
 0 D �(g13C 1)
 00 � (g13C 1)
 ,(33)

where we usedg13 D �g22, g14 D �3g23, g15 D �3g33 � 4g24. So we have Propos-
ition 5.11.

References
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