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Abstract
In [4], J. Eells and L. Lemaire introducekienergy andk-harmonic maps. In
1989, S.B. Wang [17] showed the first variation formula of #energy. In this
paper, we give the second variation formula leEnergy and a notion of weakly
stable and unstable. We also studynarmonic maps into product Riemannian mani-
folds and k-harmonic curves into Riemannian manifolds with constamttisnal
curvature. Moreover, we give some non-trivial solutions dfeBmonic curves.

Introduction

The theory of harmonic maps has been applied into varioudsfigl differential
geometry. The harmonic maps between two Riemannian mdaifaie critical maps of
the energy functionak(¢) = (1/2) fM||d¢>||2vg, for smooth mapg): M — N.

On the other hand, in 1983, J. Eells and L. Lemaire [4] progdbe problem to

consider thek-harmonic mapsthey are critical maps of the functional
E@) = [ e k=12..)

whereg(¢) = (1/2)||(d +d*)k¢||? for smooth mapsg: M — N. G.Y. Jiang [6] studied
the first and second variation formulas of the bi-enekgy and critical maps oE, are
called biharmonic maps There have been extensive studies on biharmonic maps.

In 1989, S.B. Wang [17] studied the first variation formulatbé k-energy Ex,
whose critical maps are callddharmonic maps. Harmonic maps are alwé&ylsarmonic
maps by definition. In this paper, we stullsharmonic maps and show the second vari-
ational formula ofEy.

In 81, we introduce notation and fundamental formulas of téresion field.

In 82, we recallk-harmonic maps.

In 83, we calculate the second variation of tkenergy Ex(¢).

In 84, we show the reduction theorem lofharmonic maps into product spaces.

Finally, in 85, we studyk-harmonic curves into Riemannian manifolds with con-
stant sectional curvature, and get non-trivial solutioRarthermore, we determine the
ODE of the 3-harmonic curve equation into a sphere.

2000 Mathematics Subject Classification. Primary 58E20p&@ary 53C43.
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1. Preliminaries

Let (M, g) be anm dimensional Riemannian manifoldN( h), an n dimensional
one, andy: M — N, a smooth map. We use the following notation. The second fun-
damental formB(¢) of ¢ is a covariant differentiatio’V d¢ of 1-form d¢, which is a
section of O? T*M ® ¢ T N. For everyX, Y € I'(T M), let

B(X,Y) = (Vdg)(X,Y) = (Vx dg)(Y)

1 -
. = T oY) — (YY) = Vil A(Y) — d(VicY).

Here,V, VN,V and V are the induced connections on the bundled, TN, ¢ TN
and T*M ® ¢ 1T N respectively.
If M is compact, we consider critical points of the energy fuorei

@ E@) = /M &(d)vg:

wheree(g) = (1/2)|d¢|1? = Y\ ,(1/2)(d¢(e),dgp(e)) which is called theenergy den-
sity of ¢, and the inner product-, -) is a Riemannian metrit, where{g}™ , is an
orthonormal frame field oM. The tension fieldz(¢) of ¢ is defined by

3) (@) =) (Vdg)(e, &) =) (Ve dg)(e).
i=1 i=1

Then, ¢ is a harmonic mapif t(¢) = 0.
The curvature tensor fiel®N(-, -) of the Riemannian metric on the bundfeN
is defined as follows:

(4) RYX,Y)Z = VW Z - V'VIZ -V yZ, (X,Y,ZeT(TN)).

Moreover, A = V'V = =Y\ (Ve Ve, — Vv, 6 is therough Laplacian {e }.; is
an orthonormal frame field oM in this paper.

2. k-harmonic maps

J. Eells and L. Lemaire [4] proposed the notatiorkdiarmonic maps. The Euler—
Lagrange equations for the-harmonic maps were shown by S.B. Wang [17]. In this
section, we recall the definition dd-harmonic maps.

DEFINITION 2.1 ([4]). Fork =1, 2,... the k-energy functionals defined by

1
E0) = 5 [ 1@-+a) 0l ¢ cC ML N)
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whered is a exterior differentiation and* is a codifferentiation. Thery is k-harmonic
if it is a critical point of Ey, i.e., for all smooth variationg$:} of ¢ with ¢g = ¢,

d
at t:0E|<(¢t) =0.

We say for ak-harmonic map to beroper if it is not harmonic.

G.Y. Jiang studied the cade = 2, and showed thap: (M, g) — (N, h) is a
2-harmonic if and only if
—At(¢) + R (z(¢), dg(e)) dg(&) = O.

We consider a smooth variatidig; }te1, (1. = (—¢,¢)) of ¢ with parameterd, i.e.,
we consider the smooth mdp given by

F:l: xM — N, F(t, p) = ¢:(p),

where F (0, p) = ¢o(p) = ¢(p), for all p e M.
The corresponding variational vector field is given by

d

VP = g e

¢t0 € TypN,

V is a section ofp 1TN, i.e. V e T'(¢p 1T N).
We also denote by, V andV, the induced Riemannian connection o, x M),
F7ITN and T*(I, x M) ® F~1T N respectively.
Lemma 2.2 ([17]).
?a/atAs_lf(F)h:o

= =AMV + Y ATIRV(V, dg(e))) do(e))
j=1

1
> ATH=Ve RY(V, do(e))) A1 (9)

=1

_l_

m S—
=1

— RN(V, dp(€))) Ve, A 11(¢) + RN(V, dp(Ve, €))) A% ()}

Proof. For allw € I'(¢ 1T N),
m

Vst Ao = — Z{@a/at(?ej Ve, — §Vej o)}
=1

m
. 9 _
= - E {Vei Vot (Ve @) + RN (d F(a): d F(ej))vejw
=

- _ 0
- Vvej g Va/ata) - RN (d F (a), d F(Vej ej))w}
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e VARY 0
= j;{Vei (v‘fj Vit + RN (d F(ﬁ)’ d F(ej))a))
0 _

]
- _ a
_ VVeJ e Va/ata) — RN (d F(a), d F(V@J e]))a)}

Vaott(F)li=o = —AV + Z RN(V, do(e))) de(e)),
-1

Repeating this and using

we have the lemma. L]
Lemma 2.3 ([17]). Foranye (i=1,..., m),
%/at Vo A7 (F)li—o

= Ve AV +Y Vo ARV, do(e))) do(e))
j=1

=

S—

+Y ) Ve A=V RNV, do(e)) A5 11 ()
j=11

Il
=

—RY(V, dg())) Ve, A5 12(9) + RN(V, dop(Ve, ) A% 2 (9))
+RY(V, dp(e)) A% 2 (9).

Proof.
Vot Ve A1 (F) = Vg Vyat A 7(F) + RV (d F(%) dF(e )) AL (F).
By using Lemma 2.2, we have the lemma. O
Lemma 2.4([17]). Forany g (j =1,..., m),
[ (5 RV, dite v~ ROV, (Ve e )Va, Vo
== [ RV, d(ep)Vs, T Vaug
where \{, V, € I'(¢" 1T N).

Proof.
div((RN(V, dg(e))V1, Va)e)

= Y (Ve (RV(V, dg(e))V4, Vo)&, &)
j=1
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((Ve, RN(V, dp(@)V1, Va)&

'MB

Il
=

+ (RY(V, dp(@))V1, Ve, Vole + (RY(V, dp(&))Vi, Vo) Ve &, ).

By Green’s theorem, we have
0= [ dMRM(V, do(@)Va Vala
M

= Z:l/';I(ﬁej RN (V, do(e))Vs, VZ))(S”

+ (RY(V, dg(e))Vi, Ve V2)8ij + (RN(V, dgp(@))V1, Vo) (Ve &, €)vg.

Here,

m m
D RNV, dp(@))V1, Vo) (Ve &, &) = D (RN(V, dp((Ve &, €))8))Vy, Vo)
j=1 j=1
= —(RV(V, dp(Ve @)V, V2).
Therefore, we have the lemma. O

Theorem 2.5([17]). Letk=2s(s=1,2,...), then

dt

Exsldh) = /M (e2s(6), V),

t=0
where

Tas(¢) = A (g) — Y RVN(AZ?(g), dg(ey)) do(ey)
j=1

s-1

=D D ARV A% 21 (), A% () deb(ey)

j=11=1
— RV(AS1-22(g), Ve, A5 12(9)) dp ()

where A-1 = 0.
Proof.

Eas(¢) = /M((d*d) -+ (d"d) ¢, (d*d) - -- (d"d) ¢)vg

S S

= /M (Az(9), At ())vg
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By using Lemma 2.2 and Lemma 2.4, we calculad¢dt) Ezs(¢r),
(6)

2 e

dt 2s t=0

_ /M (T A% 22(F), A5 22(F))vglco

— / <_Asv + Y ARV, de(e) do(ey)
M =1

j=1 |=

S—

=
AH=Ve RV, d(e)) A% 1(g) — RN(V, dep(e))) Ve, A% (¢)
1
RV, (Ve e)A ' He(g), A“r(qs)}>vg
— [ =B+ Y [ (V) RNE (), doten) ot
M =1 /M

>

j=11=

S—

+

1
/ (—Ve, RM(V, dop(e))) A 2 (¢) — RN(V, dop(e)) Ve, A 11 (9)
1 M
+ RY(V, dp(Ve €)X r(9), AT 21 ())vg

= / (V, —A% e (@))vg + Y / (V, RN(A™22(9), d(ey)) da(e;)vg
M -1 /m

m s-1

+y Z{ fM (RN(V, do())) A r(9), Ve, A 21 (¢))vg

j=11=1
+ [ RNV, dple) T 5 (o), AS*'Zr(qs»vg}
M
— [ =B+ Y [ (V) RYE (), doten) ot
M =1 /M
m s—1

+ 30T [ (RG] 82100, B0 dote, Vg

j=11=1

- / (RN(AH22(9), Ve, A% 12 (9)) doi(ey), V)vg}
M

- [ <v, LR e(g) + Y0 RVBEe(9), dley) doe)

=1
m
2

j=11=

S—

1
{RN(Ve, A°127 (), A1 ()) dop(ey)
1

— RN (A*12¢(g), Ve, A7 2(9) d¢(ej)}>vg-
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So we have the theorem. L]

Theorem 2.6([17]). Letk=2s+1 (s=0,1,2,...), then

dt

Bzl = - [M (r2s42(0), V),

t=0

where

s11(9) = A7 (¢) — ) RV(A*'2(¢), do(e))) do(e))
j=1

[y

S

=D 0D AR (Ve A (g), A7 (9) dob(ey)
j=1

j |

Il
[aN

— RY(A 2 (9), Ve, A7 2(9)) deb(ey))

— > RY(Ve A2 (g), A5 M1 (9)) db(ey),

=1
where A1 = 0.

Proof. Whens = 0, it is the first variation of harmonic maps. So we consider
the case o6 =1, 2,....

East1(¢) = /M(d (d*d)---(d"d) ¢, d (d*d)--- (d"d) ¢)vg

S S

m
=Y [ (e te(@), Sa 2@
i=1
By using Lemma 2.3 and Lemma 2.4, we calculadgd()Ezs. 1(¢t),

d
at E2s+1(ot)

m
ZZ/ (Va/on Ve A1 (F), Ve A2 (F))vgli—o
t=0 j=1’M

S| <_% BV Ve & IRV dofe i)
i=1’/M j=1

m s—1

+Y Y Vo ATH=Ve RN(V,do(e))) A2 (9)

j=1l=1

—RN(V,dg(€))) Ve A L1 (¢)+ RV (V,dep(Ve, €)) A ()

+RY(V,dp (@)A1 (9), Ve ATt (¢)}>vg-
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Here, using

m
(Awl, a)g)vg,

=1

/';I(%wl, Ve w2)vg =/

M

wherewy, w, € T(¢~*TN), we have
d
T Eost1(d) =0
- [ V. —357(9)) vg
M
£y / (RV(V, do(e))) do(e;), A2 Le(¢))vg
j=17M

vy

S

1
/M (¥, RV(V, di(e)) A% ' Le(9)
1

=1 1=
— RNV, de(e)) Ve, &5 Le(g)
+ RNV, dg(Ve € ) A1e(8), A1 e(6) g
©) .
+3 [ (RUV, do@)ae(e), Vo B e
j=17M

-/ <v, ~Rr(9) + Y RV(Ae (), do(e))) doey)

i=1

+

m s-1
j=11=1

{RN(Ve, A1 (gp), A7 711 (9)) dop(ey)
|=
— RN(A 17 (9), Ve, A2 (9)) dop(ey))

+ ) RV(Ve A5 Me(g), A5 (9)) d¢(ej)>vg-

j=1

So we have the theorem.
By Theorem 2.5 and 2.6, we have the following [17].
Corollary 2.7. A harmonic map is always k-harmonfk =1, 2,...).

For Al (k=1,2,...), we have Theorem 2.10. We show the following two lemmas.
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Lemma 2.8. Letl=1,2,.... Ifforany e (i =1,...,m), Vo Al Vz(¢) =0, then
Az(¢p) = 0.

Proof. Indeed, we can define a global vector fidlgl e I'(T M) defined by

m

™ Xp = 3 (=Y A Dr(g), Ar(g)e;.

j=1
Then, the divergence oX, is given as

div(Xy) = (Ae(g), A'e(9)) + ) (~Ve, A Ve(9), Ve A(9))
j=1

= (A1(¢), A1(9)),

by the assumption. Integrating this ovit, we have
oz/ div(Xy)vg =/ (Az(0), At(¢))vg,
M M

which implies A't(¢) = 0. O
Lemma 2.9. Letl=1,2,.... If Az(¢) =0, then
Ve Al Vz(p) =0, (=1,...,m).

Proof. Indeed, by computing the Laplacian of theskergy densitgy (¢), we have

m

Aea(¢) = D (Vo Al Dr(g), Vo Al Dr(g))

i=1

®) — (VA e(g)), A (e))

= 3 (Ve AlVr(g), Vo A r(9)) = 0.
i=1

By Green’'s theoren}f,\,I Aey(¢p)vg = 0, and (8), we havehey(¢) = 0. Again, by (8),
we have

Ve Al V() =0, (=1,...,m1=1,2,..). O

Theorem 2.10. Letl=1,2,.... If Alr(¢p) =Oorifforanyg (i =1,...,m),
Ve Al=Y7(¢) = 0,theng: M — N from a compact Riemannian manifold into a Riemann-
ian manifold is a harmonic map.

Proof. By using Lemma 2.8 and 2.9, we have Theorem 2.10. []
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3. The second variational formula of thek-energy

In this section, we calculate the second variation of kkenergy. The formula was
proved fork = 2, by G.Y. Jiang [6], and fok = 3, S.B. Wang [18].

Now let ¢: (M, g) — (N, h) be ak-harmonic mapK =1, 2,...). We consider a
smooth variation{¢: }irer, (Ic = (—¢, €)) of ¢ with two parameters andr, i.e., we
consider the smooth map given by

F:lexl,xM— N, F(,r,p)= ¢, (p),

where F(0, 0, p) = ¢o,0(p) = ¢(p), for all p e M.
The corresponding variational vector fieldd and W are given by

d
V) = 5| doe TN,
0

t=

d
W(p) = a Por € Ty N.
=0

r

V and W are section ofp 1T N.
We also denote by, V andV the induced Riemannian connection ol x I, x
M), FATN and T*(I, x I, x M) ® F~*T N respectively.
The Hessianof Ey at its critical point¢ is defined by
82

H(E)s(V, W) = ——

ator Ek(¢t,r)-

(t,r)=(0,0)

Theorem 3.1. Let¢: (M,g) — (N, h) be a2s-harmonic mags = 1,2,...). Then
the Hessian of th&s-energy ks at ¢ is given by

H (Es)s (V, W) = /M (V, Js(W)) vg,

where
JZS(W) = —log + llog + o5 — IV 0s.

where

los = —APW+Y " A= TRY(W,dg(e)))dg(ey)
m 25—1121
+ ) ATHVe RY(W,dg(e)) A2 (¢)
j=11=1
—RY(W, do(€))) Ve, A% (¢) + RV (W, dp(Ve, €))) A% 12 (9)),
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llos = Z(VAZS ey R DA(@), W)do(e)— D~ (Ve MW, A2 22(g))d ()
i=1
+Z RN (—A231W+ZA252RN (W, do(e)))do(e))

j=1
m 2s-2

+Y°> j{A‘z H{—Ve, RV (W, dop(e)) A% 721 ()
i=1l=
—RY(W, de(e))) Ve, AZ72727 ()

+RN(W,do(Ve ) A% ?2(9)}),do (@ )) dg(e)

+) RY(AZ?2(), Ve W)dg(a) + ) RN(A®1(g), d()) Ve W

i=1 i=1
s—1 m
Mo == > (Vg stz R 1(0), W)do(e)

I=1i=1
s—1 m

D D (VN RV W, Vg A5 22 () dp (@)
I=1i=1
s—1 m

+ZZRN( Ve ASH 1W+ZV ASHZZRN(W, do () do (e))
e m s+l-2 =

Y Y (Ve A=V RN (W, dep(e)) A5 221 ()
i=1l=1

—RM(W, dg(g))) Ve, AT 221 ()
+RY(W,dg (Ve ) A 221 ()1}

+RY(W,dg(e) A% (9), As_'_lf(fb)) do(e)

s—1 m
+|ZZ RY (% AH2(p),
=1i=1
— AW CATTIRN (W, dg(e)d(e))
j=1
m s—I-1
+) Y ATV RN (W, dg(e)) A1 (9)
i=1l,=1

—RY (W, d(e))) Ve, A% 22 (9)

+ RN (W, dop(Ve, ej))As—'—l—'Zr(rp)}}) dg(e)

s—1 m

+Y S R (Ve A 2r(g), A L (¢) Va W

I=1i=1



1046 S. MAETA

s—=1 m
IVos = = % (Vi RY) (Ve 55 7He(g), W)dg (@)
I=1i=1
s—1 m
2D (VG s RYW, 25722 (g)) d(e)
I=1i=1
s—1 m m
+Y Y RY <—AS+'—1W+ZAS+'—2RN (W, de(e;))do(e))
I=1i=1 i=1
m s+l-2
) D ATV RY (W, d(ey ) A2 21 (9)
j=1 l,=1

—RN(W, de(e))) Ve, AT 227 (g)
+RY(W,do (Ve ) A 221 ()},

Ve AS'lr(qs)) do(e)

s—1 m

+ZZ RN <AS+|2_L,(¢),

I=1i=1

—Ve AW+ ) Ve ATIRN(W, gy (e))) dep ()
j=1

s—1-1

+ Z{ Ve A2 12{ Ve, RY (W, dgs()) A%~ (¢)
j=1

—RN(W,d(e))) Ve, A% 22(g)

+ RN (W, dp(Ve, €)) A 27 (¢))
+RN(W,dg(e ))AS—'-lr(¢)}) do(e)
s—=1 m

+3 D TRN(AT27(g), Vg A 11 () Ve W.

I=1i=1
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Proof. By (5), we have

)
1 92

2 arat

= /M<vw dF(%), — A (F) + ) RN(A®?2(F), dF(e) dF(e)

i=1

EZS(F)

+

m s—
i=1

1
(RN(Vg A1 27(F), A5 12(F)) dF(e)
1

— RN(ASTI=2¢(F), Vo A7 12(F)) d F(a)}>ug.

3\ - _ N
o <F(a), T {—AZSlr(F) + 30 RUE (), 0F @) dF(e)

m s-1

+ 3 S RY(Ve A 21 (F), A5 e (F)) dF(e)

i=11=1

— RN(ASH2¢(F), Vo AS'1¢(F)) d F(e,)}}>vg.

Then, puttingt = 0, the first term of (9) vanishes. Thus, we calculate the s¢erm
of (9).
Using Lemma 2.2, we have
Vijor A7 (F)lizo = l2s.
Vasor RN(A®22(F), dF(e)) dF(e)
= (Var@an R")(A% ?2(F), dF(e)) dF(e)
+ RY(Vyar A%722(F), dF(e)) dF(e)
+ RY(A® 21 (F), Vyjor dF(e)) dF(e)
+ RN(A=27(F), dF(e))Vaar dF(E).

Using second Bianch’s identity, Lemma 2.2, we have

> Vo RN(A® 22 (F), dF(8)) dF(8)t=0 = Il2s.
i=1
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Vajor R (Vg AH1722 (F), A ~12(F)) dF(a)

= (Vakn RV (Ve A 21(F), A1 (F)) dF(e)
+ RV (Vo Ve A 21 (F), A 12 (F)) dF(e)
+ RN (Vg A =27 (F), Vy0r A7 712(F)) dF(&)
+ RN (Vg A% =21 (F), A% 12(F))Vyar dF ().

Using second Bianch’s identity, Lemma 2.2 and Lemma 2.3, axeh

[%]
[N

m

Vi RN (Ve A1 -2(F), A 22 (F)) dF(g) = Il 5s.

i=1

Vasor RN(ASH 27 (F), Vo A 12(F)) dF(g)

= (VC'J\‘F(B/Br) RV(A 27 (F), Vg A 11(F)) dF(e)
+ RN(Vyjar A1 722(F), Vo A7 '2(F)) dF(e)
+ RN(AST2¢(F), Yy, Vg A5 12 (F)) dF(e)

+ RN(AST72¢(F), Vg A7~ (F))Vy,0r dF ().

Il
=

Using second Bianch’s identity, Lemma 2.2 and Lemma 2.3, axeh

s—1 m
> Vs RMAH 21 (F), Vo A2 (F)) dF(g) = IVas.
1 1

O]

Theorem 3.2. Let¢: (M, g) — (N, h) be a(2s+ 1)-harmonic map(s=0,1,...).

Then the Hessianof the (2s + 1)-energy ks, 1 at ¢ is given by
H(Eess oV W) = [ (V) JoaW)s
M

where
Dosy1(W) = —losy1 + llosyr + oy — IVosi1 + Vosia,

where

|25+1 = —A23+1W + Z AZS RN (W, d¢(ej )) d¢(ej)
j=1
m 2s
+ > A=V RY (W, do(e))A™ ' o(9)
j=11=1

— RN(W, dg(e))) Ve, A= 2(9)
+ RY(W, dg(Ve ) A% 7(9)},
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lloss1=— Z(VAZS R DAe(8), W)dé(e)

—Z(%NM)RN)(w, A=t (g)do(e)

i=1

L3R (_ RS B RN (W, da(ep) do(e;)
i=1

j=1
m 2s—1
+) Y (AT =V RN (W, d(e)) A% 2 T (¢)
j=1l=1

—RY(W, dg(g)) Ve, A=2717(9)
+RY(W,do (Ve ) A% 211 (4)}}, dop (e )) do(e)

+Y RY(A®1(g), Vo W) dgp(er)

i=1

+Y RY(A®'1(g), dg(e)) Ve W
i=1

M os1= ZZ (V3 o 10 R (A 72 (0), W) d(e)
I=1i=1
s—=1 m

DD (VR R W, Ve A5H1 722 (g)) dp(e)

I=1i=1

M

s—1 m m
+ (—% AW+ Y Vg AHIRN (W, dg (e)) deb(e)

I=1i=1 j=1
m s+l-1

+Y Y (Ve A27H=Ve RN (W, dep(e)) A% 121 (g)

j=1l,=1
— RN (W, dg(e))) Ve, A 121 ()
+ RY(W, dp(Ve, €))) A2 (g)}}

+RY(W, dg(e) A% 2 (9), As'lf(db)) do(e)
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s—1 m
+ZZ RN< AS—H lf(¢)
I=1i=1
— AW+ T ATTIRY (W, dg () dor(e))
j=1
m s—|-1
+Y Y A=V RN (W, dp(e)) A% 22 (¢)
j=1l,=1
— RM(W, dg(e))) Ve, A 1727 ()
+RY(W, do(Ve € ))AS—'—l—'er)}}) do(e)
s—1 m
+Y D RN(Ve A e (g), A e () Ve W
I=1i=1
s—1 m
lVZS - Z Z As+| 1 (¢) (VQ AS - lr(¢) W) d¢(a)
I1=1i=

=D (VY ey RYW, A541702(9)) dg(e)
=1 i=1

s—1 m m
+Y > RN (_AS+'W + Y AHTIRY(W, do(e))) do(e))
I=1i=1 j=1
m s+l-1
+ Y D ARV RN(W, dg(e)) A1 (9)
=1 l,=1

— RN(W, dg(e)))Ve, A 127 (9)
+ RN(W, dop(Ve, ) A1z (¢},

Ve AS'lr(¢)) do(e)

=

S—

+ Z RN (AS+I1T(¢),

| i=1

Il
N

— Vo AW + > Ve ASTIRN(W, dg(e;)) do(ey)
j=1
m s—I-1

+ 30D (Ve A=V RN (W, dop(g))) A 22 (g)

i=1 =1
— RN(W, do(e))) Ve, A% 21 ()
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+ RN(W, dgp(Ve, €))) A 121 ()}

+ RN(W, d¢(a))AS—'—1r(¢>)) do(e)

s—1 m

+ Y RV@AT i (g), Ve A () Ve W,

1i=1

L |

-

S—

Vosi1 = —
|

(VY 5 RV B 22(9), W) do ()

Il
=

»
|
[uN

(V1 R W, Ve 522(9)) dp(e)

Il
-

s 1

=

ki
N

+ RN (-% ASW + Z Ve ASTIRN(W, do(e))) d(e;)
i=1

=1 i i=1
m s—1
0D (Ve A=V RY (W, dg(e)) A5 2 M2 (¢)
j=1l=1

— RM(W, dg(e))) Ve, A1 (9)
+ RY(W, dop(Ve, €))) A% 2 2 (9)}}

+ RY(W, dp(@))A* 'z (9), ASlf(¢)) do(e)

s—1 m
+Y > RN (% A (),
|1=1 i=1
— AW+ ) ATIRY(W, dg(ey)) do(ey)
j=1
m s-1
+ {A?H{—Ve RY(W, do(e)) A7 7 ()
j=11=1
— RY(W, dg(e))) Ve, A2 11 (9)
+ RN(W, dp(Ve, € ))AS'“r(¢)}}> dg(e)
s—=1 m

+ 30D RN (Ve A (@), A5 (@) Ve W.

I=1i=1
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Proof. By (6), we have

(10)
2
%%EZS+1(F)
- /M<%/3,d F(%) —AP7(F) + Y RV(A*7(F), dF(e))) dF(e))
j=1

%]

+

NE

1
{RN(Ve, A1 (F), A7 712(F)) dF(ey)
j 1

J

I
uN

— RN(A 1 (F), Ve, A2 (F)) dF(ey)}

+ Z RN(Ve AS12(F), AS1¢(F)) dF(g )>vg
i=1

9\ - _ SN
+[M<F(§),Va/ar{—AZST(F)‘f‘JZ:;RN(AZS1T(F):dF(eJ'))dF(eJ')

[y

+

J

{RN(Ve, A1 (F), A1 (F)) dF(ey)

m s—
=1

Il
N

— RN(AH17(F), Ve A2 (F)) d F(ey)}

+ Y RY(Ve A5 12(F), A5 2(F)) d F(e,)}>vg.

i=1

Then, puttingt = 0, the first term of (10) vanishes. Thus, we calculate the rsterm
of (10).
Using Lemma 2.2, we have
Vasor ABT(F)li=o = lost1.
Vasar RN(A* 12 (F), dF(e))) dF(e))
= (Vak@/mR(AZ 1 (F), dF(e))) dF(e))
+ RN (%/m AzsilT(F), d F(ej)) d F(ej)
+ RN(AZ11(F), Va/ar dF(e))) dF(e)
+ RN(AZI(F), dF(€)))Va/ar dF(g)).

Using second Bianch'’s identity, Lemma 2.2, we have

m
Z Vasor RN(AZ1(F), dF(e))) dF(€))li—o = ll2s41.
=1
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Vajor RN (Ve, AH 11 (F), A1 (F)) dF(ey)

= (Var@n RV Ve, A1 (F), A1 (F)) d F(gy)
+ RV (Vyjar Ve, A1 (F), A1 (F)) dF(ey)
+ RY(Ve, A1 (F), Vi A1 (F)) dF(ey)
+ RY(Ve, A1 (F), A1 (F)) Vasar dF(e)).

Using second Bianch’s identity, Lemmas 2.2 and 2.3, we have

s—1 m
D> Vi RN (Ve 8112 (F), A5 1e(F)) dF(g)) = s,
1j=1
Vasor RVASTLL(F), Ve, A7 712(F)) dF(gy)
= (Vik@/on RV 12 (F), Vg A5 11(F)) dF(e))
+ RN (Vy o A1 (F), Ve, A (F)) dF(ey)
+ RV(ASHIL(F), Vijor Ve, A1 (F)) d F(ey)
+ RV(ASHIL(F), Ve, A 12 (F)) Vo or dF(ey).

Using second Bianch's identity, Lemmas 2.2 and 2.3, we have

s—1

ayor RN AL (F), Vg A1 (F)) dF(g)) = IV 2541

[]

m _
j=1
Visor RN (Ve A 12 (F), A°17(F)) dF(e)

= (Vir@n R(Ve, A2 (F), A2 (F)) dF(e))
+ RY(Vy/ar Ve, A2 (F), A2 (F)) dF(e)
+ RN (Ve, A% 12 (F), Vyor A 2 (F)) dF(ej)
+ RN (Ve A% 12 (F), A° 11 (F))Vy/ar dF(ey).

|_
Il
B

Using second Bianch's identity, Lemmas 2.2 and 2.3, we have

m
Z Vajor RN (Ve, A5 (F), A7 (F)) dF(e)) = Vas1. 0
=1

DEFINITION 3.3. Assume thap: (M, g) — (N, h) is ak-harmonic map. Then,
¢ is weakly stabléf H(Ex)s(V, V) >0, for all V € I'(¢ 1T N). ¢ is unstableif it is

not weakly stable

Proposition 3.4. Any harmonic map is a weakly stable k-harmonic map.
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Proof. Casel. k=2s, (s=1,2,...).
By assumption we have
(11)
H(E2s)s(V, V)

- / <v, —<—A25v + Y ATIRN(V, do(e))) do(ey ))
M

i=1

+y RN (—AZHV + Y AFPRY(V, dg(ey)) do(ey), d¢(a)) d¢>(a)>vg

i=1 j=1

_ / <—v, —AV 4 Y ARV, dg(ey) d¢(e,-)>vg
M

j=1

+ /M <Z RV(V, dg(e)) dg(e), —AZV + ) AZZRY(V, do(e))) d¢(ej)>vg
i=1

=1
J,

2
vg > 0.
CAase 2. k=2s+1,(s=0,1,2,...).
By assumption we have
(12)
H(Ezs+1)4(V, V)

= / <v, —<—A25+1v + Y AERY(V, do(e)) d¢(e,-))
M

j=1

—AV + Y ATIRY(V, do(e)) de(ey)

j=1

+> R <_525v + Y AIRN(V, dg(ey)) do(e)), de(e )) d¢(a)>vg

i=1 i=1

= / <—v, —ATTV 4+ Y APRY(V, do(e)) d¢(ej)>vg
M

j=1

+ /M <Z RV(V, dg(e)) dg(e), —A%V + > A IRN(V, dg(ey)) d¢(e;)>vg
i=1

i=1
/M

2
vg > 0. O

\Y (—ASV + Z ATIRN(V, do(e))) d¢(e,-))

j=1
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Corollary 3.5. Assume that: (M, g) — (N, h) is a harmonic map. Then
J(V) = I(A23(V)).
for all V € (1T N).
Proof. If ¢ is harmonic map, then;(¢) = 0. Thus we have
(V) = I(A2I(V)),
for all V € T(¢~1T N). Therefore, we have the corollary. O

4. The k-harmonic maps into product spaces

In this section, we describe the necessary and sufficienditon of k-harmonic
maps into product spaces. Let us recall the result of Y.-L.[TD].

Theorem 4.1([10]). Letg: (M, g) — (Ng, hy) and ¢ : (M, g) — (N2, hy) be two
maps. Thenthe map¢: (M, g) — (N1 x Nz, hy x hy) with ¢(x) = (¢(x), ¥ (X)) is
2-harmonic if and only if both mag or y are 2-harmonic. Furthermoreif one of
@ or ¥ is 2-harmonic and the other is a prop&-harmonic mapthen ¢ is a proper
2-harmonic map.

We generalize Theorem 4.1 férharmonic maps. We have the following theorem
which is useful to construct examples tkéharmonic maps.

Theorem 4.2. Let ¢: (M, g) — (Ng, hy) and ¢ : (M, g) — (N2, hy) be two maps.
Then the mapg: (M, g) — (N1 x Nz, hy x hy) with ¢(x) = (¢(x), ¥ (X)) is k-harmonic
if and only if both mapp or ¥ are k-harmonic. Furthermoref one ofg or v is har-
monic and the other is a proper k-harmonic malpen ¢ is a proper k-harmonic map.

Proof. It is easily seen that
(13) de(X) = dp(X) + dp(X), VX e I'(TM).
It follows that
(14) VS dp(Y) = VE do(Y) + VL dy(Y), X, Y e T(TM).

where V? is given by V§ = V. VX € T(T M).
Let {e}™, be a local orthonormal frame oM( g) and Y = Y'e, thendgp(Y) =
Yi ¢ (Eqp), for some functionp® defined locally onM. A straight forward computa-

tion yields V§ de(Y) = Vde(Y), 7(¢) = t(0) + t(¥), Ay(9) = Ayt(e) + AyT(¥).
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We notice thatA,t(p) is tangent toN;, A, 7(y) is tangent toN,. So we have

(15) By (LyT(9)) = %4)(%«;7(@ + A:pf(l_ﬂ))
= Dy (Ly7(9)) + Dy (By (V).
Similarly,
NyT(@) = B, T(0) + Dy T(¥).
forallt=0,1,2,....
We use the property of the curvature of the product manifoldhave

RNz (AL 7(9), dg(e)) dg(e)
= R (AL(g), do(e)) dg(e) + R™ (AL o(v), dy (@) dy ().
Similarly we have
RMWMN (AST(9), Ay (0))
= RY(&5(0), &,1(0) + R (&57(v), &) r(),
RNNe (V8 RS T(0), A 7(9))
= R (V00 257(0), 8,7(9) + R™(Vi 00 83 1(0), &), 1),
RNN2 (AST(0), Vg0 B4 7(9))
= RM(&57(0), Vi,0087(0)) + R (A5 1(¥), Vi, 008y (1)),

forallt,s=0,1,2,..., and for all X € I'(T M).
By using Theorem 2.5 and 2.6, we have the theorem. ]

The following corollary is a generalization of Corollary43in [10]. This corollary
for k = 2 is also proved in [1].

Corollary 4.3. Let ¢: (M, g) — (N, h) be a smooth map. Thenhe graph
¢: (M, g) = (M x N, g x h) with ¢(x) = (X, ¥(x)) is a k-harmonic map if and only
if the mapy: (M, g) — (N, h) is a k-harmonic map. Furthermaref i is proper
k-harmoni¢ then so is the graph.

Proof. This follows from Theorem 4.2 withh: (M, g) — (N, h) being identity
map which is harmonic. ]

5. k-harmonic curves into a Riemannian manifold with constant &ctional
curvature

Harmonic maps are always biharmonic maps. By Corollary Batmonic maps
are alwaysk-harmonic maps. In this section, we consider the followimgbpem.
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PrROBLEM 5.1. Are biharmonic mapk-harmonic mapsk = 3,4,...)? More gen-
erally, for s < k, are s-harmonic mapk-harmonic maps?

Let {T,N} be an orthonormal frame field tangent & along toy, whereT = y’
is the unit vector field tangent tp, N is the unit normal vector field in the direction
of V¢T.
Then, we have the following Frenet equations
16) y'=T, VIT=«kN, VJN=—«T,
(T,N) =0, (T, T)=1, (N,N)=1,

wherex is the geodesic curvature ard, -) = h, the Riemannian metric oN?. Then,
we have the following proposition.

Proposition 5.2. Let y: 1 — (N?, (-, -)) be a smooth curve parametrized by
arc length from an open interval @& into a Riemannian manifoldN?, (-, -)) with
constant sectional curvature K. Thep is a 3-harmonic curve if and only if

k@ —15¢(k")? — 10c%" + k° + K (k" — 2%) = 0,
ieie® — 23" + 2k = 0,

where is the geodesic curvature of.

Proof. We calculate ()} VY)*z(y) as follows.

(V;/\‘,V)’,\!)ZT(]/) = (k™ — 15¢(c")? — 10c%c” + «°)N

a7)
+ (=5« ® + 103" — 10¢'c")T.

Therefore,y is 3-harmonic if and only if

(™ — 15¢(k')? — 10¢%c” + k5 + K (k" — 23)N

(18)
+ (—5kk® + 10c3¢’ — 10c',”)T = 0.

So we have Proposition 5.2. O
Corollary 5.3. Lety: | — (N?,{-,-)) be a3-harmonic curve parametrized by arc
length from an open interval & into a Riemannian manifol@N?2, (-, -)) with constant

sectional curvature K> 0. If the geodesic curvature is constantthenx = +/2K.

Proof. We can show this corollary by a direct computatione Phoof is omitted.
O
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Proposition 5.4. Lety: 1 — (N", (-, -)) be a smooth curve parametrized by
arc length from an open interval d® into a Riemannian manifoldN", (-, -)) with
constant sectional curvature K. Thep is 2s-harmonic curve if and only if

25—
os(y) = (VNVN)* e (y)

+ K{(Vy’vy’)zyzf(y)_( (V VN)ZS : (V))V/}

s—1
STV ), )N (V)T ()
=1
— (' VIRV T ) (V)T )
— (TN VNN (), v ) (VNN Py
+()//, (vlyl\j/v}y/\!)sﬂ—zt(y))vN(VN )sl -1 ( )}

14

(19)

Proof. We only notice that
A NN
A =-VNVh,
RNV, W)Z = K((W, Z)V —(Z, V)W),
(vr)=1
We get the proposition. [l

Similarly we have

Proposition 5.5. Lety: 1 — (N", (-, -)) be a smooth curve parametrized by
arc length from an open interval d& into a Riemannian manifoldN", (-, -)) with
constant sectional curvature K. Then is (2s 4+ 1)-harmonic curve if and only if

s1(y) = —(VNVN)2(y)
—K{VIV)* ) = (' (V) 0y}

s—1

+ 3 KV ), v )V VRV )
|=1

(20) — (', VIV T ) (VAT e ()
(T NI )

+ (1 (V)T TV T e ()
+ K{(((VPVE) T2 (), v )V (VIVY) T2 ()
— (', IN(ONVN) TR () (VI VN ()} = 0.



SECOND VARIATIONAL FORMULA OF THE k-ENERGY 1059
Using these propositions, we show the following proposgio

Proposition 5.6. Lety: | — (N?, (-, -)) be a2s-harmonic curves =1, 2,...)
parametrized by arc length from an open interval Bfinto a Riemannian manifold
(N2, (-, -)) with constant sectional curvature K 0. If the geodesic curvature is

constant thenx = /(2s — 1)K.

Proof. By assumption, for al =0, 1, 2,.. .,
(Vi Vy)'e(y) = (1) %* N,
Vo (Vy Vy)e(y) = —(—1)' k22N,
Using these and Proposition 5.4, we have
tas(y) = =N + K(c* 3N + 2K (s — 1)c**°N)
= 1% 3(—k? 4 (2s — 1)K)N = 0.

Therefore we have the proposition. []

Proposition 5.7. Let y: 1 — (N?, (-, -)) be a(2s + 1)-harmonic curve(s =
0, 1, 2,...) parametrized by arc length from an open interval®finto a Riemannian
manifold (N?, (-, -)) with constant sectional curvature K O. If the geodesic curvature

K is constantthenx = +/2sK.

Proof. By assumption, for al =0, 1, 2,.. .,
(Vy Vi)e(y) = (1)'®HN,
V(Y V)t (y) = —(=1)'k®+2N.
Using these and Proposition 5.5, we have
Tos11(y) = —k®FIN + Ke® IN 4+ 2K (s — 1k* IN + Kc* IN
= kS H—k? 4 2sK}N = 0.

Therefore we have the proposition. O

Therefore, we obtain the answer of Problem 5.1. &er k, a s-harmonic map is
not always ak-harmonic map.

Next we consider 3-harmonic curves into a Riemannian mkhifath constant
sectional curvature.
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DEFINITION 5.8. The Frenet framde}i_;  , associated to a curvg: | €
R — (N", (-, -)), parametrized by arc length, is the orthonormalization ttoé
(Voo dy(a/at)}k . described by

_dy(;)

N
de(a/at)el = K18,
V(;\Iy(a/at)a = —Ki-18-1 + K€ 41 (l =2,...,n— l),
Vc'j\‘y(a/at)en = —Kn-16n-1,

where the functions, «2, ..., k1 are called the curvatures of. Note thate; = y’
is the unit tangent vector field along the curve.

Let x1q, k2, k3, k4 and ks, are constant.

Proposition 5.9. Lety: | — (N", (-, -)) be a smooth curve parametrized by arc
length from an open interval & into a Riemannian manifol¢N", (-, -)) with constant
sectional curvature K. And; (i =1,2,...,5) is constant. Theny is 3-harmonic curve
if and only if

(k3 + 26312 4 keyicd + raia2) — K (23 + k1xd) = 0,
(21) — Kykoka(kZ 4 k3 + k2 + kf — K) =0,
K1K2K3K4K5 = 0.
Proof.
(- 1)2(VN y,) t(y) = (k] + 232 + keaks + kikai2)e
+ (—KszKg — K1K§’K3 — I(]_KzKS - Kllcg/cg/(f)e4
+ K1K2K3K4K5Es,
—(V;',\I/V,’/\!)T(V) = (k] + Kk1K3)€2 — K1k2K3€s,
(VIVI)T() = (v, (VIV) Ty = (k5 + kaxd)er — Kikoraey,
(T V)V =Y V) (y) = e
By using Proposition 5.5y is 3-harmonic curve if and only if

5 3,2 4 2,2
(k7 + 265K5 + K1Kk5 + K1k5K5)€

3 3 3 2
+ (—KiK2K3 — K1K5K3 — K1K2K5 — K1K2K3K ] )€
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+ K1K2K3K4K5€8

— K{(c3? + k12)er — k1koks€s + K362} = 0.
Thus we have,

(k3 + i35 + keyics + kaiaic?) — K (23 + k13) = 0,
(22) — Kikok3(kE 4 k3 + k2 + kf — K) =0, O

K1kcokcicaks = 0.
Sincek, (i =1, 2, 3, 4,5) is constant, we can writg as,
K2 = ak1, k3 = K1, K4 = 0k1, k5= Ok1,
whereqa, 8, § andf are constant.

Proposition 5.10. Lety: | — (N", (-, -)) be a smooth curve parametrized by
arc length from an open interval @k into a Riemannian manifoldN", (-, -)) with
constant sectional curvature K. And (i =1, 2,...,5) is constant. Theny is a
3-harmonic curve if and only if
(1) When n= 2, k1 = v2K.

(2) When n=3, k1 = v2K, or k&1 = /(2 + 2K /(1 + ?).
(8) When n> 4, k1 = /2K, or k1 = /(24 a?)K /(1 + o) and k3 =

Proof. Whenn = 2, by Proposition 5.7¢; = +/2K.
When, dimN = 3, namelyks = k4 = ks = 0, y is 3-harmonic if and only if

0 = «f + 20k + aicy — K (22 4 a?c?).

Thus, we have

_ V@+ad)K _

S 14a2

When, dimN = 4, namelyxs = k5 = 0, y is 3-harmonic if and only if
(23) (k3 + 2313 4 Keyicy + Kia2) — K(23 + k) = 0,
(24) k1kokz = 0, or Kf + K22 + K3 = K.

If ko = 0K1—2K

If K3 =0, k1 = V(2 + DK /(1 + a?).

If ¥+ k7 + x5 = K, there are no solution.
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When, dimN = 5, namelyxs = 0, y is 3-harmonic if and only if

(25) (k5 + 23162 + Keaicd + ra2) — K (23 + kx3) = 0,

(26) Kikoky =0, OF k¥4 k3 + K2+ k5 =K.

If ko, =0, K12—2K

If IC3 =0,k = \/(2+a2)K/(1+a2)
If k2 + k3 + k5 + k7 = K, there are no solution.
When, dimN > 6, y is 3-harmonic if and only if

(27) (k5 + 23162 4 keyied + rica2) — K (23 + ki) = 0,
(28) —K1K2K3(K1 + IC2 + K3 + /<4 —K) =0,
(29) K1K2K3K4K5 = 0.

If ko =0, K1—2K

If k3 =0, k1 = /(2+ «?)K/1 + a?.
If x4 =0, there are no solution.
If k24 k5 + k5 + k7 = K, there are no solution. O

Finally, we determine that the ODEs of the 3-harmonic curgeagions into a
sphere. This result was proved fer= 2 in [2] and for S? in [3].

Proposition 5.11. Lety: | — S" C R"*! be a smooth curve parametrized by arc
length. Theny is 3-harmonic curve if and only if

(30) —y©® — 2@ — (2913 + 3)y” + 4923y’ + (1 + 9924 + 8gsa)y = O,

where g = go(y", W), (i,j =0,1,...), and @ is the standard metric on the Euclid-
ean spaceR"+?,

Proof.
oy =B, v) + Vv,
which yields that
Vyy' =V +90 vy
Therefore, we havé/, y’ = y” 4 y. Similarly, we have
VYo ) (Vv = v® +y" + (s + Ly,
(Vy Vi Yo (Vyy)
(31) =7+ 9+ (G1s+ 1)y + (2023 + 3014)y’
+ (1 + 33 + 3024 + 3015 + Q22 + 3013)V,
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(32) RVAT(), v)y =—yW —y" = (Gis + Dy + gy,

(33) RNV, t(y), ¥ )y = —(qs + 1)y — (913 + L)y,

where we usedjis = —Q2, O14 = —3023, 015 = —3033 — 4024. SO we have Propos-

ition 5.11. O
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