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COLORED HOOK FORMULA
FOR A GENERALIZED YOUNG DIAGRAM

KENTO NAKADA

AszstracT. We prove the colored hook formula for a finite pre-dominant
integral weight. As a corollary of this, we get a new proof of the Peter-
son’s hook formula. '

1. INTRODUCTION

Let A be a partition of d, and y; the corresponding irreduéible character
of the symmetric group S,. As is well-known (e.g. [8]), the degree y,(1)
of y, is given by the hook formula:

d!
HveYl hv |
where Y, is the Young (or Ferrers) diagram of shape 2, and 4, is the hook-
length at a cell v of Y;. Since the left hand side of (1.1) is equal to the

number #STab(Y,) of standard tableaux of shape A, the formula (1.1) can be
rewritten as:

(L.1) xa(1) =

d!

(1.2) #STab(Y;) = .
veY, hv

The purpose of this paper is to prove a generalization of (1.2), the colored
hook formula, for a generalized Young diagram in the sense of D. Peterson
and R. A. Proctor (see [1][5]). We stress that the colored hook formula is
new even for a Young diagram.

LetIl = {a, |z el } be the set of simple roots ofa Kac-Moody Lie algebra
g, and @, the set of real positive roots. Then we have the colored hook
formula: }

D LN :ﬂ(“l)’
(ﬁv'"*‘})g*’aﬂl(@ﬂl Prthr BitetB pap\ P
>

(1.3)

where A is a finite pre-dominant integral weight of g, D(R) is the diagram
of A, and Path(4) is a set of sequences in ®, with certain conditions. See
Section 4 and 5 for unexplained notion and furthur details. In Section 2, the
reader can see how the colored hook formula looks like in the case of the
2 X 2 Young diagram.



Taking the lowest degree part of (1.3), we have: :
1 1 1 1

(1.4) p— = -,

@ ,---,mdz):er»mh(/z) Fa @i + Xy Gy T T By ﬁl:[(ﬂ)ﬁ :
where MPath(4) is the set of elements of maximal length in Path(1). Taking
the specialization a; — 1 (i € I) of (1.4), we furthur get:

1 1

(1.5) #MPath(1)— = [ =
where ht(B) is the height of 8. According to [1], around 1989, D. Peterson
~ proved:

L(w)!
[Tgeom) ht(B)

for a minuscule element [1][5] w of the Weyl group of g, where

@ (w) = {8 € . [w(B) < 0}
and #Red(w) is the number of reduced decompostions of w. Peterson’s
formula (1.6) is equivalent to our reduced formula (1.5).

The colored hook formula (1.3), in the simply-laced case, was conjec-
tured by N. Kawanaka and S. Okamura in their study [9][11] of game-
theoretical aspects of Coxeter groups. We also point out that another proof
of Peterson’s formula (1.6) has been obtained by S. Okamura [10] using a
probabilistic argument. Although Okamura’s proof was an original moti-
vation behind the colored hook formuta (1.3), our proof of (1.3) is entirely
algebraic. _

We have also succeeded in generalizing the g-hook length formula
(R. P. Stanley [2]) to minusucule elements. The proof will be given in a
forthcoming paper [12].

(1.6) #Red(w) =



2. AN ExampLE

Let {a;, @z, a3} be a simple system of the root system @ of type As de-
picted by the Dynkm diagram in Figure 2.1.
an (2%} oa3

O

Ficure 2.1

Let A := —w,, where w, is the fundamental weight corresponding to a;.
Using the standard notation explained in section 3, we put:

D) = {B e @, (1.8 = -1}
Then we have:
D) ={az, a1+a;z, ax+as, a1 +az+as ),

which, in a usual ordering, can be considered as a realization of the 2 x 2
Young diagram. See Figure 2.2.

ai+axtas| artas

at+an s

FIGURE 2.2

Now we consider a directed graph given in Figure 2.3, where, for integral

weights u, v and B € @,, the arrow p £,V means (u, B") = ~1 and v =
sg() (= p + B), where sp is the reflection associated with a root B. A se-
quence of arrows like

@.1) T LR Y- RN}

is called a A-path of length [, where [/ is a non-negative integer. Note that
the origin of a A-path is always A. With each A-path (2.1), we associate the
rational function:

i 1 ' 1
@2) BiBi+B BitBt-+B

For example, with the 2-path

a1+a2
A — /l+al+a2—>/l+a1+a2+a3—>/1+al+2a/2+a3

appearing in Figure 2.3, we associate:
1 I 1 1 1 1
ai+as (0!1 +a2)+ag (al +az)+a3 +as Q1+a aytartaz a1+ 2a+a3 )

The colored hook formula (1.3), in the present case, asserts that the sum
of the rational functions obtained in this way is equal to

I (1 . l) .
BeD(Y) 'B )




/ A+ar+as+
/1+(12

] +ay + a3

A+ay +20; + a3

A+ay +as
Ficure 2.3
Thus we have:
1 1 1 1
1+—+ + +
a ata art+a; atax+tas
1 1 1 1 1 1
+ —- + — + —
amata aata; ara; +2a +as
N 1 1 1 ' 1
al+d2a1,+az+a3 a1+a2cxl+2a2+a_3
1 1 1 1
+ +
ay+a3ar+ay +a3 a2+a3a1+2a2+a3
1 1
+
a1 +ax+aza +2a; +as
1 1 1 1 1 1
+ — + — .
Gotaatata; oo taya; +2a a3
1 1 1 o1 1 1
+ — + —
G tasa+art+a; arataza;) +2a +az
1 1 1
+
a+aya +ay +asa; +2a; + as
1 1 1
+ .
ataza+a +az3a) + 20 + a3
1 1 1 1
wma+aya +ay+ a3 +2a; +az
1 1 1 1
+ —

@y +asa) +ay+aza; +2a, + a3

1 1 1 1
={l+—J1+—{1+ —{1 + —].
¢ %) a; +a; s + a3 a; +ar + aj



Taking the lowest degree part of this equation, we also get:

1 1 1 1 - 1 1 1 1
Q) @1t+a) a1 +ayt+asz ag +20’2+O’3 ay @y +a3 @y Far+as ap+2a+as
: 1 1 1 1

a1 t+ayayt+aza; +ay +as )
Note that the left hand side is the sum of the rational functions associated
with the A-paths of maximal length, which are in bijective correspondence
with the standard tableaux of the 2 X 2 Young diagram.




3. PRELIMINARIES

Let A = (a;,); je1 be a (not necessarily symmetrizable ) Cartan matrix of a
Kac-Moody Lie algebra [3][4]. We denote the set of real numbers by R. Let
b be an R -vector space and b* the dual space of hand (,) : h* X — R the
cannonical bilinear form. We suppose the existence of linearly independent
subsets IT := {ai[z' € I} ch and IV := {a}’ |i € I} C b such that (@}, )) =
a;,j. An element A € b* is said to be an infegral weight if

A alyeZ, iel
The set of integral weights is denoted by P. For each i € I, we define
s; € GL(H*) by:
S;: A 1- (/1, a,\.’)ar,-, Ae E)*.
The group W generated by {Si |i el } is called the Weyl group, which acts on
b by:
W), wh)) =1, h), weW,Aebh" heh.
We define the root system (resp. coroot system) by © := WII (resp. ®V:=
WIIY). We denote:

Q. = (D Nai (€ P),
iel

where N is the set of non-negative integers. For integral weights ( in partic-
ular, roots ) 4, u, we denote A < y if

p—21€0.. .
We denote 2 < pif A <y and A # u. We denote by @, and @_ the sets of

positive and negative roots of @, respecively. The dual BY € ®V of a root
B € @ is defined so that

“w(BY)=w(pB)’, weW.

For each 8 € @, we define sz € W by:

s5() = A~ BB, A€V,
or, equivalently, by ]

sg(h)=h—(B, WB’, heb.
We note that s, = s_,, = s;. For each w € W, we define a set ®(w) (€ D,)
by: '

o(w) :={y € @, |w(y) < 0}.



See [4, chap.5] for the following facts.
Letw = s, -+ - s;, be a reduced decomposition of w € W. Then we have

O (w) = {as, sn(@y), - 58 - sy, (@)}
For w,w' € W, we have:
dDw)y=0d(w) o w=w,
For 8,y € @, we have:
B.y)=0e(y =0,

and
B.yY)Y>0e (y,8)>0.



4., PRE-DOMINANT INTEGRAL WEIGHTS

In this section, we define and study pre-dominant integral weights, which
play important roles in this paper. )

Definition 1. An integral weight A is pre-dominant if
ALBYY=-1, Bed,.
The set of pre-dominant integral weights is denoted by Ps_;.
Definition 2. For A € P,_;, the set D(2) defined by
D) := {p € @. (4.5 = -1}

is called the diagram of 2. An element of D(2) is called a A-move. An
element of D(2) N II is called a simple A-move. A pre-dominant integral
weight A is said to be finite if #D(1) < oo.

We note that D(1) = @ if and only if D(2) N II = @. The terminology
“move”is suggested by the game theoretic study of Kawanaka [9].

Lemma 4.1. Let A € P»_j and 3 € D(A). Then we have:
(1) sp() € P>_y.
(2) D(sp()) = s5(D(A) \ ©(sp))-

Proof. (1) Lety € @, we have:
' (s5(A), ") = {4, s5(y" ).
If sg(y¥) > 0, then since A is p;e—dominant, :
(A, 55(y")) = —1.
If, on the other hand, sg(y") < 0, then
(Lss" N =LY =B Y HLB) =4 ¥+ By z-1+12 -1,

This proves part (1).
(2) Lety € D(sp(1)). Since

~1=(5p(D), ¥ =AY+ B ¥ 2 -1+ B, ¥"),

we have (B, y¥) < 0. Since (y, 8¥) < 0, we have sg(y) > 0 and sp(y) ¢
®(sp). Since

—1 = {s(2),7") =44 s5(x)"),
we have sg(y) € D(2) \ © (sﬁ). Hence, y € s (D(/l) \® (sﬁ)).
Conversely, let y € s,g(D(/l) \® (Sﬂ)). Then we have sg(y) € D(2) \ @ (Sﬁ).
Since sp(y) ¢ @ (sﬁ), we have y > 0. Since, moreover,
(sp(D)., ¥") = (A 55(»)") = =1,
we have y € D(s3(1)). This proves part (2). : O



Definition 3. Let A € P,._,. If a; € II satisfies
(A,(=@)")y=-1 (or, equivalently, (1, a;) = 1),
then —a; is called a simple backward A-move.

Lemma 4.2. Let A € P,_; and —«; a simple backward A-move. Then we
have: '

(1) 5-4,(1) € P>y

(2) D(5-0,(4)) = (D)) U {as}.
Proof. (1) Lety € @,, we have:

(5-a (D> ¥") = (4, 5:(7)")-
If 5,(y) > 0, then since 4 is pre-dominant, we have:
(A, s(y)") 2 -1

If, on the other hand, s;(y) < 0, then we have y = @;. Hence,
- (,5:(1)") =~(4,a]) = -1.
This proves part (1).

2) Smce @i 18 5-o{A)-move, we have D(s;,5-4 (1)) =s; (D(s-a{MN\{a:}) by
Lemma 4.1 (2). Hence we get part (2). o

Thus, if u € P5_;, ~q; is a simple backward y-move if and only if 4 =
Sq,(4) and @; € D(A) NII for some A € Ps_;.
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5. A-Parss

Definition 4. Let A € P,_;. Let ] be a nonnegative integer. A sequence of
positive roots B = (81,52, - - - ,B;) is said to be a A-path if

Bp€ D(Sﬁp—l esp(d), 1<p<l
We call [ the length of the A-path 8B and denote it by £(8B). Note that £(B)
may be 0. The set of A-paths is denoted by Path(1).

Theorem 5.1. Let A€ P5_; and (B, B2, -+, B1) € Path(2). Let a; e D(A) N1IL
Then we have: | _
, (SBI"'Sﬁx(/l),a;/)= ~1,0 or 1.

Proof. The statement is trivial for / = 0. Since sg,sg,, - - 55,(1) € P>-1, We
have:

<Sﬁlsﬁ1—1 ©t Spy (/l)’ a:/> >-1.
We also have:
(85,5py - 55 (D, @) = (s:8,5:8:58,., - - 55,(A)s 5:(@)))

' = (S50 518y * * Sp (D), a}\/)
Hence, it is sufficient to show that s4,gysisg,, - - - 55,(1) € P>_;.
If B; = a;, then we have sg,5)5i55,_, - - - 58,(A) = 8g,, - - - 55,(1) € P>_1. Hence
we may assume ; # a;. By induction, we may assume :

(Sgy -+ g (D), @y =—-1,0, or 1.,

If (sg,, - 56,(D), @) = -1, then we have 5,55, ,---55(4) € P>; by
Lemma 4.1 (1). -
If (sg, .- - 55,(D), @) ) =0, then we have s;55, - - - 55, (D) =5p,_,* * - 55, (D EP>_1.
If (sg_, -85, @) = 1, then we have s_o,55,, -+~ 55(4) € P>_; by
Lemma 4.2 (1). . .
Thus, we always have s;8,, - - - 55,(1) € P>_;. Since

S,'(B]) > 0, and
(8iSp,; *** Sy (A)s Si(ﬁl)v) = (S, * - Sp ), .B;/> =-1,
we have 5,(8;) € D(s;s5,_, - - - 5,(1)). Hence, by Lemma 4.1 (1), we have
SsiB)SiSp-1 ** Sp (’l) € Py;.
This proves the Theorem. yu|

Corollary 5.2. Let A € P5_j and a; € D(A) N1IL Let (By,- - ,B1) € Path(R).
Then we have:

Br.a/y=-2,-1,0,1, or 2, 1<k< L
Proof. By Theorem 5.1, we have:
A+ + - +P1 +Bu @y =-1,0, or 1.

A+p1+-+Bi1, @) =-1,0, or 1.
Hence we have (8, o)) = -2,~1,0,1, or 2. O
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Corollary 5.3. Let 1 € P>_; and a; € D) N1IL Let (B1,--- , B;) € Path(A).
Let1<k<l .

(1) If Br, @) = 2, then we have
<sﬁk-1 e Sp‘ (/1), CZIV> = —1 and <Sﬁksﬁk—l e .S'ﬁ1 (/1), a:’) = 1.
(2) If Bx, @) = =2, then we have '
(Sgr - 5p(Ds @) = 1 and{sp.sp,, -+ 55,(A), &) = -
Proof. First, we have
~1<(sp, -85, &/y<1 and —1<{sg,55,, 55D, &))< 1
by Theorem 5.1. Since {(sg,5g,_; * *5g, (D), @) ={sp,_ * 55,(D), &)Y+ (B, ),
we get part (1) and (2). O
- Corollary 5.4. Let A € P51, B € D() and a; € D(2) N IL Then we have:
B.,a]y=0,1, or 2.
Proof. By Theorem 5.1, we have:
| (1+B, a)y=-1,0, or 1.
14, a)) =-1.
Hence we have (8, o)) = 0,1, or 2. 0
Lemma 5.5. Let A € P, and B,y € D(). Then we have:
) IfB, vy =2, then(y, B’y =1 or 2
@) If Ais finiteand B, y¥) =y, B') =2, thenB =1y
Proof. (1) Since (B, y")>0, we have (y, 8¥)> 0. Hence it is sufficient to
show (y, B¥)<2. If 5,(B) > 0, then, since
(s,(D), sy(B)") = (4, ") = -
a sequence (y, s,(6)) is a /l-path Hence we have s, (ﬁ)sy(/l) € P._,. We note
that
-1< (Ss,(,e)sy(ﬂ), BYY={A+B-y, By =-1+2~(y, B").
Hence, we have (y,8") < 2. If, on the oher hand, s.,(8) < 0, then, since
-1 <A, (=5,(B)") ={4, =B + (7, B ") =1 =y, B*),
we have (y,8") < 2. (2) Suppose 8 #y. Weput B, := (sﬁsy)"(ﬂ) for each
integer n € Z. Then we have:
| = B+n(28—2y),
and
B, =B" +n(28" - 2y").
Hence
(A By =44, B +n(2B" = 2y")) = (4, B") + 2n(A, B") = 2m(A, ¥") = —1.
Since there exists infinitely many » € Z such that ht(8,) > 0, there exists

mﬁmtely many » € Z such that 8, € D(A). Th1s contradlcts the finiteness
of A. O
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Lemma 5.6. Let B, y, B+v € ©. If (B, ¥): (v, BY) = —1, then we have:

(1) <Bs 7V> = (% ﬂv) ’
(2) Putn = (B, y') = (v, B'). Then we have (B+y)" = (BY+y")/(n+2).

Proof. We have
| 2=B+y, B+N)=B B+7)")+ Ly, B+7)"). |
Since (B + 7y, ), B+7, ¥") = 1, wehave (B, (B+¥)").{y, B+7)") > 1.

Hence, we have
, BB+ = B+ =1
Since sg.(—B) = =B+ (B, (B+7¥)')B +7¥) =7, we have:
Y =spy(-B) =B + B+, B)B+7).
Hence, we have: _
B +y' =y, B +2)B+7)".
By the symmetry of 8 and y, we have:
BY+y =B ¥+ 2B +7)".
Hence, we get part (1) and (2). o
Lemma5.7. Let A € P5_y.Let B,y € D(A).Suppose that {B, y'y={y, B¥)=2.
Then: : '
(1) We have either s,(B) < 0 or (y, B—2y, y) € Path(2).
Q) Wehavep—y ¢ ® and B+7y ¢ .

Proof. (1) Suppose that s5,(8) > 0. First, we have:

¢.1) - v € D(Q).
Next, since (1 +7, (B —2y)") = (5,(2), s,(B)") = (4, B¥) = —1, we have:
(5.2) B—2y e D(A+7y).

 Finally, since (1 + v+ (B=2y), ¥y = -1 + 2+ (2 ~2-2) = —1, we have:
(5.3) yeDA+y+(B-2y)).

By (5.1),(5.2), and (5.3), we have:

(v, B—2y, ¥) € Path(J).

(2) IfB-vy e ®,then we have (B—~7v, y') = {y, (B—7)") = 0. Hence, by
‘Lemma 5.6, we have 8¥ = (1/2)(B — )" + (1/2)y". Hence

Vy 1 \ lv_l Y _1_ v\ .
.8 =A(y, 5(6—7) +§7>—2<7,(ﬂ ) >+2<7,7>—1,

which is a contradiction. If, on the other hand, § + y € @, then, by Lemma
5.6, we have (8 +v)Y = (1/4)B" + (1/4)y". Hence
1

1 1 1 1
vy _ ZAY L SaVy = o \Y - vy — =
which contradicts the fact that 1 is an integral weight. O
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Definition 5. Let B, v € ®. The root B is said to be y-shiftable if
B—ye®d or B+yed.

We note that if 8 is y-shiftable and w € W, then w(p) is w(y)-shiftable.
Lemma 5.8. Let 1 € P._y and B3,y € D(A). Suppose that {8, v") = 2. Then
we have: :

{y, B¥) =1 if and only if B is y-shiftable. _
Proof. Supposing that (y, 8¥) = 1. Since S~y = sg(—y) € @, B is y-shiftable.
Conversely, supposing that 8 is y-shiftable. By Lemma 5.5 (1), we have
(y.BYy =1, or 2. If (y, B’) = 2, then, by Lemma 5.7 (2), we have
B—v&® and B+ 7y ¢ ®. This contradicts that g is y-shiftable. Hence, we
have (y, B¥) = 1. o

Lemma 5.9. Let A € P,y and B,y € D(1). We assume B is y-shiftable.
Then we have: '

(1) B+ye D) if B,y")=0.

(2 B-7eD@) if B,y")=2 and B>7.
Proof. (1) Ifg—vy e ®,, then we have B+ 7y = 5,(B —v) € ®.. Hence,
in anyway, we have 8 + v € ®,.. Hence, by Lemma 5.6, we have (8 + y)¥ =
(1/2)BY + (1/2)y". Since

(4, B+ =(,1/2B" +(1/2)y") = -1,
we have 8 +y € D(4). .
(2) ByLemma 5.8, we have (y, 8Y) = 1. And, we have B~y = sp(—y) € D.
Since 8 > y, we have 8 —y € ®,.. Since
(4B =" =44 s5(=7)") = (55D, ~¥") = A+ B, ') = -1,

we have 8 — v € D(J). 0
Lemma 5.10. Let A € P>_y. Let By, ** » Bi—1,B% Br+1,Br+2, -+ , B1) € Path(2).
‘If‘(Bk’ﬁl\c/-Q.l) = O: then we have: (Bls et 3ﬂk—l9ﬂk+l5ﬁk’ﬁk+2’ e 3ﬂl) € Path(/l)-
Proof. Since ’

(sﬁk—l Sg (’1)’ :Bl\c/+1) = <Sﬁksﬁk—1 8 (/1)’ SBi (ﬁk+l)v> = <Sﬁksﬁk—1 ety (/1)’ ﬂ;c/+l> =-1,
we have:

(5.4) Br+1 € D(sp,.; -+ - 55,(1)).

Since

<Sﬁk+1 Spr17"Sp (/l)’ ﬁl\c/> = <sﬁk-1 8 (’l)’ SBis1 (Bk)v) = <Sﬂk—1 8 (’l)a Bl\c/) =-1,
we have:

(5-5) Br € D(sﬁk+1 SBi1 " S (’l))
Since s, Sg,,, = Sg,., Sg,» WE have:
(5 -6) SBe1SBSBi-1 T SB (/l) = SBSBra1SBi-1 T Sh (/1)

By (5.4),(5.5),and (5.6),we get (ﬂ],'",ﬂk_l ,,Bk+1 ,ﬂk,ﬁk.,.z,“',ﬁ]) ePath(/l). O
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6. Hooks

Proposition 6.1. Let § € D, Let ; € ® (s) N IL If B # a, then we have:

@ (Sﬁ) ={lajus ((D (Ss,-(ﬂ))) L {~sp(@)} (disjoint union).
" Proof. First, we hgve:
(6'1) a; P (Sﬁ) .

Lety € s; (CI) (Ssi(ﬁ))). Then s;(y) € ® (Ssi(ﬁ)). Hence, we have s;(y) > 0 and
sisp(y) < 0.

If y < 0, then we have y = —a;. Hence, we have a; = s,(y) € CIJ(SS,,(,;)).
Since s;spsi(@;) = ssg(a@) < 0, we have s;sp(a;) > 0. By (6.1), we have
- sg(e;) < 0. Hence, we have sg(a;) = —a;. Hence, we get 8 = a;. This
contradicts our assumption. Hence, we have y>0. '

If s5(y) > 0, then we have sg(y) = @;. Hence, we have y = sg(a;) < 0 by
(6.1). This contradicts that y > 0. Hence, we have sg(y) < 0. We have:

(62) ye® (Sﬁ) .
Since a; € @ (Sﬁ), we have:
(6.3) ‘ —sp(c) € @ (s5).

By (6.1), (6.2), and (6.3), we have:
@ (55) 2 e} U s: (@ (5009)) U {—s(@2)}:

Ifa;e s,-((D (ss,.(,g))), then we have —a;=s:(a) €@ (Ssi(/g)). This is contradiction.
Hence,we get:

(64) A [0 4] ¢ S§; ((D (Ss,.(ﬂ))) .
If @; = —sp(a;), then B = @;. This is contradiction. Hence, we get:
6.5) a; # —sp(a;).

If —sp(a;) € s: (<I) (ss,.(,;))), then we have —s;sp(a;) € CD(ss,.(ﬁ)). Hence, we
have a = s,(—s:Ss(a;)) < 0. This is contradiction. Hence, we get:

6.6) - —spa) ¢ 51(@ (s9))-

By (6.4), (6.5), and (6.6), we get: '

6.7) @ (s55) 2 {a} U : (@ (s59)) U {-sp(e)}  (disjoint union).

Since s, = $:8p5;, we have €(sg) = €(s5,8) 2, €(55,(8)» OF £(85,5)+2. By
(6.7), we have:

. f(Sp) = f(Ss,.(g)) + 2.
This proves the statement. O
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Definition 6. Let 1 € P5_;. Let B € D(1). We define a set H; (8) by:

Hi(8) :=D()N @ (s5)-
The set H, (B) is called the hook at B (in the diagram D(A) ). The number
#H, (B) is called the hooklength at B (in the diagram D(Q) ).(See [9])

Lemma 6.2. Let A € P»_;. Let a; € I satisfy (A, @) = 0. Then we have:
5; (D(2)) = D(A).
Proof. Let B € D(A). Since 8 # a;, we have s;(8) > 0. Since
(A, s(B)") = (s:(), B =41, By = -

we have s;{8) € D(2). Hence, we have 8 € s;(D(1)). This proves the
statement. ‘ O
Lemma 6.3. Let A€ P>_; and B€D(A). Let a;€ D (s,g) NIL If B #a, then
we have either: '

(L e/y=-1 and B, a)) =1,

A, a/y=-1 and B, o) =2,
or

(A, ef)= 0and B a)y=1.
Proof. Since 0> sg(a;) =a;—{a;, B')B, we have {(a;, BY), (B, @) > 1. Since
B¢ai: we have Si(ﬂ)> 0. Since -1 = (’L ﬁV) = (ﬂa Siw)v>+<a’i, ﬁV)(/l, a,v)a
we have (1, @) = -1 or {4, s{(B)") = —1. If (4, @}') = —1, then, by Corol-
lary 5.4, we have either (8, @) =1 or 2.
If, on the other hand, (2, s,(ﬁ)") = —1, then we have (4, @) = 0. Since
—sg(@;) > 0, we have —1 < (4, —sg(a:)") = —(B, ;). Hence, we have
(B, )=1. This proves the statement. |

Lemma 6.4. Let A € P,_1 and B € D(A). Let o; € ®(sp) NIL IfB # o
then we have:

M) If,e)y=-1 and B, a;) =1, then we have ‘;Sﬁ(ai) ¢ D(2).
- (2) If (4, a)’) =~1 and (B, @) = 2, then we have —sg(a;) € D(A).
(3) If(4, a/y= 0 and (B, ) = 1, then we have —sg(a;) € D(A).

Proof. (1) Since

(A, (=sp(@))") = ~(sp(D), @) = ~(4, ) + B, &) = (-1 + 1) =0, -
we have —sg(a;) ¢ D(1).
(2) First, we have —sg(a@;) > 0. Since

(4, (=sp(@))") = ~(s5(2), @]} = (A, &)+ B, &) = ~(-1+2) = -

we have —sg(a;) € D(2).
- (3) First, we have —sg(a;) > 0. Since

(A, (=sp(@))") = ~(sp(A), @) = ({4, &)) + B, o)) = —(0 +1) =
we have —sg(a;) € D(2). O
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Lemma 6.5. Let A € P,y and B € D(A). Let a; € @(sﬁ) NIL Ifp # a;
then we have:

(1) If{A,@!y=—1 and (B, &) =1, then Hy,1(s:(B)) = s:(HAB) —{a:})-
2) (A, @y =—1and (B, &}y =2, then Hya(s:(8)) = s:{ Ha(B) —{eris—sp(@)}).
B) If(A.e))= 0and (B, a})=1,then Hyuy(s:(B))=s:{HAB)—{~sp()}).
Proof. (1) ByLemma 4.1(2), Proposition 6.1 and Lemma 6.4(1), we have:
H,, o (5:B)) = D(Sa(D) N @ (555
=5;(D@) —{a:) Ns; (‘D (Sp) —{a;, —Sﬁ(a'i)})
=5 (D) N ®(s5) ~ {1}) = 5 (F1 (B) — {a) -

(2) By Lemma 4.1(2), Proposition 6.1 and Lemma 6.4(2), we have:
Hy,, @ (51(8)) = D(s0;()) N @ (55,5
= 5 (D) — {ai}) N 5 (@ (s5) — (@ —sp(@)}) |
= 5;(DAND (5)—{@s—s5(@)}) = 5 (Ha(s5)~{en—s5(an)}).
(3) By Lemma 6.2, Proposition 6.1 and Lemma 6.4(3), we have:
Ho (5:08)) = D(s:(D) N @ (s5¢s)) |
= 5; (D) N 51 (@ (s5) — tr, —sp(@1)})
= 5;(D(D) N @ (s5) - {—sp(@)}) = s: (Ha (s5) - {—s(@)}).
m|

Lemma 6.6. Let A € P,y and B € D(A). Let a; € ® (ss) NIL IfB #
then we have:

#H,{ (ﬂ) = #Hs,-(/l) (S,(ﬂ)) + <ﬂ, a':’)
Proof. This follows from Lemma 6.3 and Lemma 6.5. m|

Lemma 6.7. Let A € P,y and B € D(A). Let a; € ®(s5) N1IL IfB #
then we have: '

ht (B) = ht(s:(8)) + (B, a),
where ht (B) is the height of B.

Proof. 1tis straightforward to see. o
Theorem 6.8. Let A € P,_,. Let B € D(A). Then we have:
#H, (B) = ht(B).

Proof. This follows from Lemma 6.6, Lemma 6.7 and induction on #® (Sﬁ).
‘ O
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7. Mam TaeEoREM AND ITs CONSEQUENCES
We now state the main result of this paper.
Theorem 7.1 (Colored Hook Formula). Let 1 € P»_; be finite. Then we

have:

1 1
(7.1) L

1
. eee = 1+—) .
(ﬁv‘"’%"amu)ﬁlﬁl th Bt th ﬁ!;([z)( A

where both hand sides are considered as rational functions in { ; |z' el } ch*.

We call a; (i € I) color variables, when, as in Theorem 7.1, we consider
them as independent variables. We note that the Weyl group W naturally
acts on the rational function field Q(a;] i € I) in color variables.

Let A € P,_, be finite. Put d := #D(1). We denote the set of /l-paths of
length d by MPath(2).

By Lemma 4.1 and Theorem 6.8, a A-path B in MPath(4) is a sequence of
simple roots of length #D(1).

Corollary 7.2. Let A € P>_; be finite. Put d := #D(1). Then we have:

(7.2) Z 1t . 1 = n l

(@i, i, )EMPath(d) @i @y + @, @ Tty /;eD(,l)'B

Proof. Let ¢t be an indeterminate. For each color variable o; (i € I), we
substitute za; in (7.1). Comparing the coefficients of the lowest degree ¢

of both hand sides, we get (7.2). O
Corollary 7.3. Let A € P». be finite. Put d := #D(1). Then we have:
d!
(7.3) #MPath(l) = ——————
I 1gena ht(B)

where ht(8) denotes the height of B € D.,.

Proof. For each color variable ¢; (i € I), we substitute 1 in (7.2). Then we
get (7.3). O

Applying Theorem 6.8 to (7.3), for a finite pre-dominant integral weight A,
we have:

(7.4) #MPath(1) = #D(’D'

[geneny #Ha (B)
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8. Proor oF THE MAIN THEOREM ( FirsT PART )

Definition 7. Let 1 € Po_jand ; € D) NIL Let B = (By,--- b)) €
Path(). If By is a;-shiftable for some 1 < k < /, we denote the minimum
value of such k£ by p;. If such & does not exist, we put p; := 17+ 1.
We put o

gdi(B) = (Bl’ Tt ’ﬂpl—-l)
and
~ FaAB) = Bprs++ 5 BD);
and call them the ground a;-floor and the a;-up-stairs of B, respectively.
Thus B is written as:

B = (G(B), 7o, (B)).
Proposition 8.1. Let A € P_, be finite and &; € D(A) NIL Let B € Path(Q),
and Go,(B) = (B1,++* ,Bp-1)- Then, for 1 <k < p; — 1, we have
{Br, @) = 0,unless By = a;.

Moreover, an index k such that B = a; is unique if it exists.

Proof. Let 1 <k < p; — 1. By Corollary 5.2, we have:
B, @)y =-2,-1,0,1, or 2.
If (Br, /) = 1(resp. — 1), then By — a; = 5i(Br) € D, (resp. fr + @; =
si(Br) € @, ). Hence By is a;-shiftable. This contradicts the definition of the
ground a;-floor.
If (Bi, @)) = —2, then, by Corollary 5.3, we have:
‘ <sﬂk—1 ToSp (/1)’ CZ:/) =L
By Lemma 4.2, we have s_q,5g, - 55,(1) € P>_; and @; €D(s_4,85, - 55,(1)).
Since
s:{Bx) >0, and
(S—disﬁk—l cet 8 (’l)’ Si(ﬂk)v> = <s/3k-l Tt 8p (’1)’ ﬁZ) = -1,
we have 5;(Bx) € D(s_¢;85,., - * - 55,(2)). Since
(s:(Br), @/) =2 and s;(B) is not a;-shiftable,

we have {(a;, s:{B;)") = 2, by Lemma 5.8. Hence, we have s;(8;) = a; by
Lemma 5.5 (2). Hence we have f; = —a;. This contradicts the definition of
a A-path. '
If (B, @) = 2, then, since B; is not a;-shiftable we have (a;, 8)) = 2 by
Lemma 5.8. Hence, we have 8; = a; by Lemma 5.5 (2).
Hence we have either (8, @) =0 or S;=a;. This proves the first statement.
If there exists ki, k (k) # k2) such that By, = a; (j = 1,2), then

(Sﬁpl—l e sﬁ](/l)’ a’:/) = (l +ﬁ1 +ore +ﬁp1—l, Q’;’)

> a)+ B, Y+ B, & )=-1+2+2=3

This contradicts Theorem 5.1. Hence we get the uniqueness part of the
Proposition. o
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Lemma 8.2. Lety € P>y and a; € D(u) N1IL
(1) Let B € D(u) be a;-shiftable. Then we have B — a; € D(s,,(12)).
(2) Let B € D(s4,(11)) be a;-shiftable. Then we have B + a; € D(u).

Proof- (1) By Corollary 5.4, we have (8, ) =0,1, or 2.
If (8, @) = 0, then, by Lemma 5.9 (1), we have 8 + a; € D(u). Hence, by
Lemma 4.1, '

B - a; = si{B + a;) € D(s,, (1))
If (B, @) = 1, then we have:
B — a; = 5i(pB) € D(s,(1))-
If (B, a)) = 2, then, by Lemma 5.9 (2), we have 8 — a; € D(p) Hence,

B—a;= S;(ﬂ @;) € D(sq,(W))-
Thus, we always have 8 — @; € D(s,,(1)).
(2) By Corollary 5.4, we have (s;(8), a}) = 0,1, or 2.
If (s:(B), @)) = 0, then by Lemma 5.9 (1), we have s;(8) + @; € D(u).
Hence,

ﬁ +a; = Si(ﬁ) +a; € D(ﬂ).
If (si(B), @)') = 1, then, we have:
Btai=s(BeDl).
If (s:(B8), @/} = 2, then, by Lemma 5.9 (2), we have s:(8) — a; € D(u).
Hence,
B+ a; = si(B) — a; € D().
Thus, we always have 8 + a; € D(u). ' O

For a sequence B = (B1,--- ,B;) of roots. We define a rational function

Je by:
l—l Z 1ﬁk

if 3.7, Bx # 0 for any p.
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Proposition 8.3. Let A € P,_, be finite and a; € D(A) N IL
(1) If one of the following sequence B,8;(1 < j < r) is a A-path
with indicated ground a;-floor and a;-up-stairs, then any one of the
other sequences is a A-path with indicated ground a;-floor and a;-

up-stairs.
 ground a;-floor a;-up-stairs
Bi= (B, rverrreerenns B s B Bt B)
By i= (B e vrvreerreiens Bty @iy Br=iBrats 5 1)

B_] = (Bls e 7ﬁj—laaisﬁja e sﬁr—ls ﬂr_ai7ﬂr+l, cte 9ﬁl)

By = (@i By Br1, Br—iBri1s 2 B1)

Here B (1 < k < r—1) are positive roots such that (B;, a;’) =0and
that By, are not a;-shiftable.
- (2) Under the same assumption as in (1), we have:

- 1
+ E ={1+—|fa.
'fB =1 Ja ( * @i )fs
Proof. (1) First, we prove B, € Path(1), supposing that 8 € Path(2). By

our assumption, we have:
(818D, &y =, &Y+ B, &)+ + By, @) = —1.

Hence,
(8.1) @; € D(sg,., - -+ 55,(2))-
If the a;-up-stairs ﬁff)(B) = (B, ,B1) is empty, then this proves the as-
sertion. So, we may assume that ?’é;’)(B) is not empty. Since B € Path(Q),
we have:
(8.2 Br € D(sg,_, -+ 55,(2)).
By our assumption, B, is a;-shiftable. Hence, applying Lemma 8.2(1) to
(8.1) and (8.2), we have:
(8.3) Br — a@; € D(8q,58,., * - 85,(2)).
Furthurmore, since Sg,—o;8q,58,., * * * $p,(4) = A+f1+ - +B, = 55,55, ** - 55,(AD),
we have:

’ (84) (ﬂr+l> ot sﬂl) € Path(sﬁr—aistlisﬁr—l ©r 8p (/l))
By (8.1), (8.3) and (8.4), we get B, € Path(1).
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Next, we prove B € Path(41), supposing that B, € Path(A). If the a;-up--
stairs ﬁf)(B,) = (B, — i, Bre1, -+ ,B1) is empty, then the assertion is trivial.
So, we may assume that Téf)(B,) is not empty. Then we have:

8.5) a; € D(sg,_, -+ 55, ()

and

(8.6) By — @ € D(sq,3,., - + - 55,(2))-

Applying Lemma 8.2 (2) to (8.5) and (8.6), we have:

(8.7 Br=Br — )+ a; € D(sp,_, -+~ 55,(2))-
Furthurmore, since $g,o;54,5,., * * * S5,(4A) = 8,55,., - * - 55, (1), we have:
8.8) Brats -+ B € Path(sgsp,_, - 55, (D).

By (8.7) and (8.8), we get B € Path(1).
Finally, by Lemma 5.10, for 1 < j < r -1, B8;,; € Path(1) is equivalent to

B; € Path(2).
This proves part (1). .

(2) For a proof of part (2), it is enough to put 6z :=f1+ - +8; (1 <k<r-1)
and apply Lemma 8.4 below.- : O
Lemma 8.4. For indeterminates a, 8y, ,6,-1(r = 2), we have:

1 1 1 1
51 5r-2 6r—1 5r—l +a
1 1 1 1
+__ “ee
01 620, 2+ab+a
N
1 1 1 1
"5 Uasra Tdate _ 11 1 11
R 866 626 a
1 1 1 1
+_ — oo
01 0 O0hta 6,1+
1 1 1 1
+6161+062+a/ C Ot
1 1 1 1

; 01 +a<52+a'.“5,_1 +a
The Lemma can be proved by induction on r. For instance, if » = 4, then
the proof is given below:
1 1 1 1

& & o6 &te 11 11
A1 1 1 &6 & &te 111 1

01 6y dr+ads+a :.+_1__1_ 1 1 - 0100303+ =li_1_l
1 1 1 1 616262+a63+a lll 1 5152530"
S 61 +ad+adta 11 1 1 616, @ 6 +a

11 1 1 S +ad+a

ad+adh+ads+a



22

Definition 8. Let A € P»_; and @; € D(2) N II. The ground a;-floor Go(B)
is said to be basic if

a; € Go(B), ( namely, if @; does not appear in G, (B) ).
The set of elements B of Path(2) such that G,,(8) is basic is denoted by
Path, (1).

We note that, for a /l—path B =1, B, the following two conditions
are equivalent:

(1) B € Path, (1),
(2) if B, =a;, then there exists an index p <gq such thatS,, is a;-shiftable.

Proposition 8.5. Let A € Ps_; be finite and a; € D(X) N IL. Then we have:
Z Je= (1 + ) Z fs
BePath(1) BePathy, (1)
Proof. For C,C’ € Path(1), we denote C ~ C’, if:
there exists a B € Path, (1) such thatC = B or B;, and C' = B or B,

where 8; and B; are A-paths indicated in Proposition 8.3 (1). We note that
such a B € Path, (1) is unique if it exists. The binary relation ~ is an equiv-
alence relation. For each equivalence class & € Path(d)/~, there exists, by
Proposition 8.1 and Proposition 8.3 (1), a unique element B in & such that
B € Path, (1). We denote such B by Bg. By Proposition 8.3 (2), we have:

Z f8 = Z Zfs= Z (1+§;)st

BePath(1) EcPath()/~ BeE EcPath(A)/~

=(1+l) Z fzaa:(l"‘i) Z I3
i) gepatiiy~ - &

'/ BePathg, (1)
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9. Proor oF THE MAIN THEOREM ( SECOND PART )
Let u € P>_1 and a; € II. We define a set GD%(u) by:

GD%(u) := {y € @, U{-ai} |[(u, v') = -1].
Let A € P,_; and @; € D(2) NII. Let / be a nonnegative integer. The set
of sequences B = (81,82, -+ ,B) of elements of ® satisfying the following
condition:
By € GD%(sp,., -+ sp(D), 1<p<],
is denoted by GPath,,(1).

Lemma 9.1. Let A € P>_; and a; € D(A) N1IL Let-
B1, - »Bi=1:Brs B+, Brs2s* -+ - B1) € GPathy (). If (Br, By, ) = 0, then we

have:

B = (ﬂl’ ot aﬁk-lsﬁk+l’ﬂk,ﬁk+i, Tt ,ﬁl) S GPathai(/l).

Proof. We omit the proof that 8’ € GPath, (1), since it is similar to that of
Lemma 5.10. O

Lemma 9.2. Let u € P>_; and a; € IL Suppose that {1, a/)=-1,0, or 1.
Let Be GD%(u) be a;-shiftable.

(1) If (sp(w), @) = —1, then we have B + a; € GD* (u).

(2) If (sp(u), @)y = 1, then we have B — a; € GD% ().

Proof. (1) By our assumption, we have (u + 8, @) = —1. Since S is a;-
shiftable, we have 8 # —a;. Hence, we have 8 € D(u).

If (u, @)) = -1, then (B, a}) = 0. Since B,a; € D(u) and B is ;-shiftable,
we have 8 + a; € D(u) € GD* (1) by Lemma 5.9 (1).

If (u, @) = 0, then (B, @) = —1. Since (i, B+ @;)") = (u, s(B)") =
(si(u), B¥) = (u, B) = —1, we have B + &; € GD%(u)

If (u, a)) = 1, then (B, ;') = —2. Since B # a;, we have s;(8) € D(5_o,(1))
by Lemma 4.2 (2). Since s;(8),@; € GD"(s_o,(10)), (s:(B), @) = 2, and
s{(B) is a;-shiftable, we have s;(8) — @; € D(s_,, (1)) by Lemma 5.9 (2).
Since s;(8) — a; # a;, we have 8 + a; € D(u) € GD%(u) by Lemma 4.1 (2).
Thus, we always have 8 + a; € GD%(u).

(2) By our assumption, we have (u + B, ;') = 1. Since B is a;-shiftable,
we have 8 # —a;. Hence, we have 8 € D(w).

If (u, @) = -1, then (B, @) = 2. Since B,a; € D(i) and Bis a,-shlﬂable
we have B — a; € D(u) € GD*(u) by Lemma 5.9 (2). ‘

If (u, @) = 0, then (B, @) = 1. Since {u, (B — @)") = (W, 5,,(B)") =
(sa), BYY = u, B*) = —1, we have B — a; € GD™(u). |
If (u, @) = 1, then (B, @;) = 0. Since B # a;, we have 5;(8) € D(s_o,(1))
by Lemma 4.2 (2). Since s4{8), @; € D(s_o,(1)), (5:(B), @) = 0, and 5,(B)
is a;-shiftable, we have s;(8) + a; € D(s_,,(1)) by Lemmia 5.9 (1). Since
s:{(B) + a; # a;, we have 8 — ¢; € D(u) € GD*(u) by Lemma 4.1 (2).

Thus, we always have 8 — a; € GD%(u). O
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Lemma 9.3. Let y € P,y and a; € IL. Let B € GD%(u) be a;-shifiable.

(D) If{u, @)y = 1, then we have B + a; € GD™(s5_o,()).
(2) If {u, a;) = —1, then we have ,8 a; € GD%(s,,(1))-

Proof. (1) Since B is a;-shiftable, we have 8 # —a;. Hence, we have B e
D(u). Since s4B), a;€D(s-4,(1)), we have (s,(5), aV) 0,1, or2 by Lemma
4.2 (2) and Corollary 5.4.

If (s:(B), @/ ) =0, then we have B+a;=s,(8) +a;€ D(s_o,(1t) S GD%(s_, (1) by
Lemma 5.9(1).

If (s:(B), @;')=1, then since {s_o, (1), (B+a;)")={s_o, (1), s:(B)V)={u, B*)=
—1, we have B+a; € D(s_,,(1)) CGD%(5_q,(1)).

If (s:(B), @) =2, then we have B+a;=s,(8)— ;€ D(s_,(11) S GD%(s_o(1t) by
Lemma 5.9(2). Thus, we always have 8 + @; € GD*(s_o,(1t)).

(2) Since  is a;-shiftable, we have 8# —a;. Hence, we have Be D(u). Since
B, a;eD(u), we have (8, @) = 0,1, or 2 by Corollary 5.4.

If (8, @) = 0, then we have 8 + a; € D(u) by Lemma 5.9 (1). Since
B+ai # a;, wehave B —a; = 5B + a;) € D(so,(1)) € GD%(s4,(1)) by
Lemma 4.1 (2).

If (B, ay) = 1, then since (sa,(1), (8 — )"} = (50 (), si(B)") =, B) =
—1, we have 8 — a; € GD¥(s,,(1)).

If (8, @) = 2, then we have B — a; € D(u) by Lemma 5.9 (2). Hence, we
have 8 — @; = 5B — a;) € D(s,(1)) € GD*(50,()) by Lemma 4.1 (2).
Thus, we always have 8 — a; € GD%(s,,(1)). O

Lemma 94. Let 1 € Ps_jand a; € DA)NIL IfB = By, - .B) €
GPath,, (), then there exists a (8], - - ,B,) € Path(Q) such that

S+ 55, (A) = sp, -+ - 55, ().

Proof. If —a; ¢ B, then there is nothing to prove. If —a; € B, then let k be
the smallest index such that 8; = —c;. Applying Lemma 9.1 to 8 repeatedly,
we get an element:

(ﬁl R ',ﬁp,—'a'j,ﬂp-{»l P 'sﬁk—-l aﬁk+l )t "ﬁl)-e GPatha,(/l) SUCh that <Bp’(_ai)v> ¥+ 0‘

Since —a; € GD% (s, * - 55,(1)), we have (sg,--- 55,(1), @}) = 1. Since
(B1, -+ . Bp-1) €Path(4), we have (s, - - - 55,(1), @; Vy=-1,0, or 1 by The-
orem 5.1. Hence, we have (8,, @) = 1, or 2.

If (B,, @) = 1, then B, is a,-shlftable Hence, by Lemma 9.2 (2), we have
By —ai,@;) € Path(sﬁp_l -+ - 55,(4)). We have:

(Bl, et sﬁp——laﬁp - ai9ﬁp+la et 3ﬁk—l’ﬁk+l9 ct 9ﬁl) € GPatha,(/l)'
If, on the other hand, (8,, @) )=2, then we have 8, @; € D(sg,. - +53(4)) by
Corollary 5.3(2). By Lemma 5.5 (1), we have (@;, 8;) = 1, or 2.
If (a;, ,3}/> = 1, then 3, is a;-shiftable. Hence, by Lemma 9.2 (2), we have
By — @;, @;) € Path(sg, , - - - s5,(4)). We have:

(Bla e 9ﬂp—lsﬁp - ai’ﬂp+l9 tte sﬂk—lsﬁk+19 cee ’ﬁl) € GPathai(/l)'
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If {a;, ﬁ;) =2, then we have f,=a; or (a;, B,—2a;, @;) €Path(sg, - - -s5(2)) by
Lemma 5.7(1).
If B, = a;, then we have:
(ﬂl, et ’Bp—lyﬁpi-ls ch 9ﬁk—laﬂk+l9 e sﬁl) € GPathai(/l)°
If, on the other hand, (@;, 8, — 2a;, @;) € Path(sg, , - - - 55,(4)), then we have:

(ﬁl’ e ,ﬂp—l, a’iaﬂp - 2ai’ﬁp+l, e 9Bk—l9ﬂk+l> ttt ’ﬁl) € GPatho.’,(ﬂ')‘
Applying the above argument repeatedly, we finally get an element
B =B, .B)) € GPath, (1)

which contains no —a;. Thus, we get B’ € Path(2) such that sg,- - -55,(1) =
g, Sp . . O

Let B = (B, --,B)) € GPath,,(1). For each 1 <k<I, we have ¥~_, 8, > 0
by the above Lemma. Hence, we can always define fg for 8 € GPath,,(1).

Theorem 9.5. Let A€ P _, and a;e D(A)NIL Let (81, B2, - -, B1) € GPath,, (1)
Then we have: :
(sg,*--54,(A), @)y =-1,0 or 1.

Proof. This follows from Theorem 5.1 and Lemma 9.4. O

Corollary 9.6,Corollary 9.7 and Corollary 9.8 below are generalization of
Corollary 5.2, Corollary 5.3, and Corollary 5.4, respectively. Since proofs
are entirely similar to those of the corresponding ones, we omit them.

Corollary 9.6. Let A€ P5_; and a;eD()NIL Let (B1, -+, B1) € GPath,(2).
Then we have:

Bna)y=-2,-1,0,1, or 2, 1<k<l |
Corollary 9.7. Let A € P>_; and a; € D(A)NIL Let (B, - -, B1) € GPath,(2).
Let 1<k<lI.
D) If Br. a)) = 2, then we have
(Sgy -+ 8, (A), @) = ~1 and (sg, s, , - 55,(D), @)y = 1.
2) If Br, @) )y = —2, then we have .
(g - - 8a (D), @) = l-and (sgsp,_, -~ 55,(1), a)) = —1.
Corollary 9.8. Let 1 € Ps_; and a; € D(A) N 1L Let B € GD¥(A). Then we

have:
B,a/)=0,1, or 2.

Let A € P»_; and ; € D(1) N I1. We define a set s; (Path(s,,(1))) by:
§; (Path(sai(/l))) = {(si(’)/l)’ B SI(YI)) |(713 T 71) € Path(sm(/l))} .
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Lemma 9.9. Let A € P,_; and a; € D(A) N IL
(1) We have: .
Path(1) = {8 € GPath,,(1)| -2 ¢ B}.
(2) For B=(Bs,: - -, B;) € GPath, (1), the following two conditions (a),(b)
are equivalent:
(a) B € Path, (1),
(b) —a;¢B, and if B, =q;, then there exists an index p <q such that
By is a;-shiftable.
(3) We have:

si (Path(s,,(2))) = {B € GPath,,(2) [e: ¢ B}.

(4) Let (B1,: - -, B1) € 5; (Path(sy,(2))). Suppose that A is finite. If By=—a,
then there exists an index p < q such that B, is a;-shiftable.

Proof. (1) Itis straightforward to see.

(2) This follows from definition 8.

(3) Itis straightforward to see.

4) Let B = (By,---,.B) € s;(Path(s,,(2)). Then we have s;(B) =
(5:(B1),- - - , 5:(Bp) € Path(s,,(2). Let B; = —a;. Then we have s;(8,) = a;.
We have: _

9.1 C (s, @y =1,

and

<SaiSSi(ﬁq—1) e Ssi(ﬁl)sﬂ'i/l’ a/:’) = <Ss,-(ﬁq)ss,-(ﬁq_1) U Ss,.(ﬁl)Smﬂ, a:/> =1

Hence, we have:

(92) <S5i(ﬁq-1) e SSi(Bl)Saill’ azv) =-1L

By (9.1) and (9.2), we have, for some 1 < p < g-1,
9.3)
<S5i(ﬂp—l) - SSi(ﬂx)Sai/l’ a:’) =1 and <Ssi(ﬂp)ssi(ﬁp-1) v ss,.(pl)smxl, a;’) = —-1,
or
(9.4)

(SsiBp) "+ Ssitp)Sesds &) = 1 a0d (S8,)S5:8,1) *** Ssitpr)Sals @) = 0.

If (9.3) holds, then, since A is finite, s;(8,) is @;-shiftable by Lemma 5.5(2)
and Lemma 5.8. If, on the other hand, (9.4) holds, it is trivial that s;(8,) is
a;-shiftable.

Thus, 5;(8,) is always a;-shiftable. And so is B,. This proves part (4). O

Definition 9. Let 1 € Py and a; € D) NIL Let B = (By,-+-,B) €
GPath,,(2).We suppose that there exists exactly m indices 1< p; < <p,, </
such that 8, is a;-shiftable(1 <g <m). We put p,1 := I + 1. The subse-
quence G,,(8) = (Bi,--- ,Bp-1) of B is called the ground a;-floor of B .
For 1 < g < m, the subsequence 7. O(B) := (Bp,»*** +Bpgi-1) of Bis called
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the g-th a-floor of B The subsequence F(B) := (F(B), -+ , FIU(B))
is called the a;-up-stairs. Thus B is written as: :
B = (Go(B), FLU(B)) = (Gor(B), FUB), -+ , FINB)).

Proposition 9.10. Let A € P,_; be finite and o; € D(A) NIL Let B =
B, -+ ,B1) € GPath, (1). We suppose that there exists exactly m indices
1< p1<-+- < pm<Isuch that B,, is a;-shiftable(1<q<m). Let1 < g < m.

Let Fa(B) = Bpys Bogr1*** >Bpga-1):
(1) Then, for p;+1 < k < pg.1—1, we have:
Br. @) =0, unless By =a; or —a;.
2) If -a; ¢ F(B), then
. an index k(p,H <k< pgi-1) such that Br= «a; is unique if it axzsts
B) If a; ¢ FO(B), then
an index k(p;41 k< pg.1-1) such that Br=—a; is unique if it exists.

Proof. We omit the proof, since it is similar to that of Proposmon 1. o
Let 1 € P, be finite and @; € D(A) NI1. The set of B = (By,--- ,B)) €

GPath,, (1) satisfying the following two conditions:

(1) if B, = @;or — a;, then there exists an index p < g such that g, is

a;-shiftable. ‘

Q) ;¢ FOB) or —a; ¢ FO(B), foreachyq.
- 1is denoted by QPath, (1).
By Lemma 9.9 and Proposition 9.10, we have Path,,(1) C QPath, (1) and
5; (Path(s,,(2))) € QPath, ().

Definition 10. Let 1 € P»_j and a; € D) NIL Let B = By, ,B1) €
QPath, (1).We suppose that there exists exactly m indices 1< py <~ <p,<I
such that §,, is a;-shiftable(1<g<m). Let 1 < g < m.
The g-th a;-floor F2(B) is said to be basic if
a; ¢ FO(B) and - o; ¢ FO(B).
The g-th a;-floor F2(B) is said to be positive if
a; € FO(B) and - a; ¢ FO(B).
The g-th a;-floor Té?) (B) is said to be negative if
@ ¢ FO(B) and - a; € FO(B).

We note that each g-th floor 7—'@(8) is either pos1t1ve basic, or negative by
Proposition 9.10.
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Proposition 9.11. Let A € P, be finite and a; € D(A)NIL Let B =
(B, -+ .B1) € QPath, (). We suppose that there exists exactly m indices
1< p1<-+- < pm <1 such that B, is a;-shifiable(1<q<m). For 1 < q <m,
we define T(B) := (By,--- . B)) by:

B if k< p,,
Br+a; if T;(?)(B) is positive, and k = p,,

~a; if FO(B)is positive, py < k < pge1, and Bi = a,

Be if FE(B)is positive,p; < k < pgs1, and (B, @) =0,
Pr+a; if 7-;(?)(8) is positive, and k = pg.1,
B, =1 Bi if FO(B)is basic, and p, <k < pga,
Br—a; if f,(:’)(B) is negative, and k = pg,

a;  if FEO(B)is negative,p, <k < pge1, and B = -,

Br  if FO(B) is negative,p, <k < pge1, and (B, @) =0,
Br—a; if 5""0(?)(8) is negative, and k = pg.1,

Br if pja <k

Then we have:
(1) 74(8B) € QPath, (1).
(2) The subsequence (BB, 1> »B,,,,_1) is the g-th a;-floor of 74(B).
(3) T,1,(B) = 8.

Proof. (1)and (2) If F(B) is basic, then there is nothing to prove. So,
we may assume that ﬁ?)(B) is positive or negative. Put € := 1 (resp. — 1) if
ﬁfiq)(B) is positive (resp. negative). Let kg be the unique index in {pz+1,--- ,
Pg+1—1} such that B, = ea;. ( See Proposition 9.10)

Since e; € FO(B), by Corollary 9.7, we have

9.5) (SBig-1 """ SBog1SBpy St 58D @) = —€,
and

9.6) (SearSgyy * sbw By SBper ** S5 (s @) = €.
By Proposition 9.10 (2) and (3), we have:

9.7 B €y =0, p;<k<kh,

and

9.8) . Br €afy =0, ky<k<pg.

By (9.5) and (9.7), we have:

(99) (Sﬁpqsﬁpq—l T 8p) (A)’ azv> = €.
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Applying Lemma 9.2 (1) to (9.9), we have:
©.10) Bp, + €21 € GD"(sg,,., -~ 55,(D)
' By, + €a; is a;-shiftable.

By (9.10) and induction on k ( from k£ = p,+1 to ky—1), we have:

(sﬁk—l o Sﬁpq+l Sﬁpq'*‘faisﬁpq—l Tt sﬁl‘(/l)"' ﬁZ)
=Br1++Bp1 + By, + €€+ By 1+ + L1+ A, )
=((Br-1 ++ + Bpyr1 + Bp, + Bpg1 -+ 1 + ) + €, BY)
= <Sﬁk—l toT sﬁpq+l Sﬁpq Sﬁpq—l T Sﬁl (/l), ﬁ;c/> + €<ai’ ﬁ;:)
=-1+€-0=-1.

Hence, we have:

9.11)
ﬁk € GDai(Sﬁk—l T Sﬂpq+i sﬁpq"'faisﬁpq—l T Spy (/1))7 Pg+ l<k< kO - L
P 1s not a;-shiftable.

By (9.10) and (9.11), we have:

(SBtgr  ** By ShpgvearSBpgr * 551 (D> (—€@)")
= Bro-1+ " +Bp+1 + (Bp, +€) + By 1+ + B + A, (—eay)”)
= ((Bro-1+* + Bpgr1 + Bp, + Bp,-1 + -+ + 1 + A) + €y, (—€a;)’)
= =€ " By Sy By " Sy A, @)y —{a;, @)
=—€-(—€)-2=-1.
Hence, we have:
— €a; € GD%(sp,_, = * * S8, .1 By, +eaiSBpy1 *** SE(A))-

(9.12) — ea; is not a;-shiftable.

By (9.10), (9.11), (9.12) and induction on £ ( from k = ky+1 to p,.1—1), we
have:
(8B ** * Spugut S—earSBigr ** * SBpger SBog+earSBpg-1 *** S8:(A)s B
= (Br1++ - +Bry1 (=€) +Bry-i ++ - +Bp 41+ (Bp, H€X) +Bp 1+ +B1+ A, BY)
= ((Br-1+  +Bror1 HeQi+HBry1+ By 11 +Bp, +Pp, 1+ - HP1+ D)~ €, By)
= (Spey e SBry+1SeaiSBig-1 """ SBpg+1SBogSBrg-1 7" SH D, By) — ai, BY)
=-1-€-0=-1,

Hence, we have:
(9.13)
Br€GD (S SpppS-caMBig-i**“SbogeSipgreaiSipy-i S8 (D), kol Sk < pgarl.

By (9.6) and (9.8), we have:

(9.14) <Sﬁpq+1—1 B 1SeaiSBiy-1 T SBpgs1SBog SBog-1 T SH1 (D), a:/) =€
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Applying Lemma 9.3 (1) to (9.14), we have:

(9.15)

Bpu T €@ € GD""'(sﬁqu_1 "t 8By a1 S—eiSBig-1 * " SBpgs1 SBpgreiSBpy1 " SBy D).
Bg+1 + €a; is a;-shiftable.

Furthuremore, we have:

(9.16) sﬁpq+1 sﬁp§+1~1 " SBrgs1SeaiSBig-1 " SBogs1SBog SBog-1 TSP @)

= Sﬁpq+1 +€disﬂpq+1—l " SBiger S—eaiSBig-1 " * " SBpga1 SBog+eaiSBp-1 TSP (4.

By (9.10),(9.11),(9.12), (9.13),(9.15) and (9.16),We have 7,(B) € GPath,,(1).
Since there exists a unique index &k (p; < k < p,y4+1) such that B, = —a; and
By, @ )=0(p#k), we have:

74(B) € QPath, (1) .
By Bhgrts* +Bpt) = T, (B))

(3)  This follows from definition of 7,. m

Corollary 9.12. Let A€ P5_; be finite and a; e D(A)NIL Let B=(B1, -, B1) €
QPath, (1). We suppose that there exists exactly m indices 1 < p; <~<p,<I
such that B, is a;-shifiable(1<q<m). Then, for 1 < g < m, we have:

(1) FFL(B) is not negative, then F2(1(B)) is not positive.

() FFE(B) is not positive, then F& (1 (B)) is not negative.

Proof. This follows from Proposition 9.11. O

Let 2 € P,; be finite and a; € D) NIL Let B = By, ,B) €
QPath, (1). We suppose that there exists exactly m indices 1< py<-+< p,<!/
such that 3, is a;-shiftable (1 < g < m). We define transformations 7(35)
and 7(8B) of B by:
(B) =14 11(B),
and
T(B) := 11+ 14(B).

Remark 1. Let A € P,_; be finite and @; € D(A) NII. Let B = (By,--- ,B1) €

QPath, (1).We suppose that there exists exactly m indices 1< p; <~ <p, <!

such that g, is a;-shiftable(1 <g<m). Then, for 1 < g1, 49> < m, we have:
TnTg = TgTq: -

Thus, we actually have 7 = 7.

Lemma 9.13. Let A € P»_, be finite and ; € D(2) N IL
(1) Let B € Path, (1). Then 7(B) € s; (Path(s,,(1))).
(2) Let B € s; (Path(s,,(2))). Then #(B) € Path,, (). .
(3) Moreover, the transformation T gives a bijection from Path, (1) to
s (Path(sz, (1).
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Proof. (1) LetB = (B, --- ,B1) € Path, (1). We suppose that there exists
exactly m indices 1<p; <---<p, </ such that 8, is a;-shiftable (1<g<m).
By Lemma 9.9 (2), each g-th floor ?;(?)(B) of B is not negative. By Corol-
lary 9.12 (1), each g-th floor ffiq)(f(B)) of 7(B) is not positive. By Lemma
9.9 (3) and (4), we have 7(B) € s; (Path(s,,(2))).

2) LetB = (B1, --- ,B1) € s;(Path(s,,(1))). We suppose that there exists
~ exactly m indices 1 <py <---<pn <! such that B, is a;-shiftable (1<g<m).
By Lemma 9.9 (3) and (4), each g-th floor 7—'@(8) of B is not positive. By
“Corollary 9.12 (2), each g-th floor ‘7:{‘1)(7'(3)) of #(B) is not negative. By

Lemma 9.9 (2), we have #(B) € Path, (4).

(3) By Proposition 9.11 (3), Part (1) and (2), 77 is the identity transforma-
‘tion over Path, () and 7% is the identity transformation over s; (Path(s,,(2))).
Hence, the bijectivity is obvious. : |

Proposition 9.14. Let A€ Ps_; be finite and @; € D) NIL Let 1, -+ .y,
Yo o+ » Yy be elements of ®, U{—a;}. Letr >2. Lete=1 or —1.

(1) If one of the following sequence B; (1 < j < r—1) is an element of

QPath, (1) with indicated decomposition, then any one of the other
sequences is an element of QPath, (1) with indicated decomposi-

tion.
lower floor g-th a;-floor . upper floor
Br—ll:: (’)’1,"‘ » Y1 Bo’ﬁl’ """""""""" .s,Br-3,ﬁr—2'y €a;, 733." ,’)’;:)
Br_z = ('yl,-.- >V ﬁo:ﬂl’ ..... fereserens 7ﬁr—3s Eai’ﬁr_z, fyi’... ,»y;,)

B] = (717"' > Vi ﬂO:ﬁlv"' 3Bj—1)€aiaﬁjaﬁj+la°°' ’ﬁr——29 7,1’"° 37;')

BZ = (‘yl’--. > Vi ﬂo’ﬂl,eai,ﬂz’ .............. . ’ﬂr—Za '}/1’... "y;’)
Bl = ('yl,... > Vi ﬁanai’ﬁhBZs ........... e ,ﬁr-—Z; y’l,... ,fy;,)

Here Bi (1 <k<r-2) are elements of ®,\N~a;} such that (B, a;)=0
and that By are not a;-shiftable.
(2) Under the same assumption as in (1) we have:

r—1 r-1
D5 =D Fusy
J=1 j=1

Proof. (1) Note that eq; never skip e;-shiftable terms. This follows from
Lemma 9.1.

(2) For a proof of Part (2), it is enough to put @ := ea;, d; = Zé;:] Yo+
k0B (1<k<r-1), and apply Lemma 9.15 below. O



Lemma 9.15. For indeterminates a, o,

1 1 1 - 1
6y 62 6y O1ta
1 1 1 1
+__ oo N
01 6,20, 2+ad,_1+a
danenn
LR S S S
61 Gbt+a S ta
deeennn
1 1 1 1
+_ — .e
01 62 0, +a 01 +a
l 1 1 1
5161+a/62+a/ 0,1 + @

Proof. This follows from Lemma 8.4.

<o 0,1 (r 2 2), we have:
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1 1 1 1
Si+a O,2+ad,+ad,
1 1 11
Si+a Gpa+a O, Oy

Foevenns

1 1 1 1

01 +a 6k+a6_k ' 0,1
Foneenn

1 1 1 1
Sranaan T

1 1 1 1
el R i

O

Proposition 9.16. Let A € P»_; be finite and a; € D(A) N IL. Then we have:

fs

BEPathai (’1) Bes;

Jz-
(Path(s;(2)))

Proof. Applying Proposition 9.14 to Path,,(2) repeaitedly, we get:

Je =

BePath,, (1)

f«®)» .

BePath,, (1)

by Proposition 9.10. By Lemma 9.13, we get:

Ja® =
BePathe, (1)

This proves the statement.

2

Jc-

Cesi(Path(sq; (1))

o

By Lemma 4.1(2), Proposition 8.5, Proposition 9.16, and induction, we

have:
1 1
fz = T+~ fs=(1+—_) Z Iz
BePath(4) !/ BePath,,(2) ' Bes,-(Path(s,,i(l)))

1 1 1

3 A )
&; CePath(sq, () @i ¥€D(5a, (D) Y

1
=1+—1— n (1+—)=(1+—1—) n (1+l)
i ﬂes,-(D(sai(l))) ﬁ @i BED()\{ey) ﬁ

)
1+-1.
L5

This completes the proof of the colored hook formula (7.1).
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10. MmwuscurLe ELEMENTS

Definition 11. Let Abea dominant integral weight. Following D. Peterson
(see[1][5]), we define w € W to be A-minuscule if

(10.1) (Sipy * o S1,(A), G-'}L) =1, 1<p<d

for some reduced decomposition w = s;,- - -s;,. If we W is A-minuscule for
some dominant integral weight A, then we say that w is minuscule.

Proposition 10.1. For a pair (A, w) of a dominant integral weight A and a
A-minuscule element w, we put A := w(A). Then, A is a finite pre-dominant
integral weight. Furthurmore, the correspondence (A, w) — A is bijective.

Proof. First, we prove that =w(A) is a finite pre-dominant integral weight,
supposing that w is a A-minuscule element for a dominant integral weight
A. LetBe®,. If (1, BY)<—1, then we have:

=12(4, B¥) = (w(A), BY) = (A, w ' (B)").

Since A is dominant, w™!(B) is a negative root. Hence, we have 8 € ®(w).
Letw = s;, ---s;, be a reduced decomposition of w. Then we have ®(w) =
{aila §i (aiz)’ tr Sttt Sy (aid)}‘ Hence we have ﬁ = Sy Sip—l (aip) for
some 1 < p < d. We have: _
</L ﬁv> = <Si1 te S,'d(A), Spypene Sip-l(aip)v)

= {84,810, Sis(A), @)

= (S, Su(A), @7)

=-1
for some 1 < p < d. Hence, for each g € ®,, we have (1, 8¥) > —1.
Furthurmore, we have also proved that (1, 8¥) = —1 ifand only if 8 € ®(w).
Since #®(w) = d is finite, A is a finité pre-dominant integral weight.

Next, we prove the bijectivity. Let A be a finite pre-dominant integral
weight. Let (a;,--- ,@;,) € MPath(1). Putw = s;--+5;,, and A :=
wl(2) = 53, - 5;,(2). Since the A-path (@;,, - ,@;,) is of maximal length,
we have D(A) = @. Hence A is a dominant integral weight. Applying
Lemma 4.2 (2) to D(A) = @ repeatedly, we get:

(10'2) ) {ail s Sh (aiz)a st St Sy (aid)} = D(A) - (D+°

If s; - - - 5, is not a reduced decomposition of w, then there exists an index p
(1 < p < d)such that £(s;, -+ s5,,) > £(s;, -+ s,—p_ls,-p), where £ denotes the
length function. Hence, we have s; ---s;,,(a;,) € ®-. This contradicts
(10.2). Hence, s, - - - 5y, is a reduced decomposition of w. Since
<Sip+1 T Sid(A)5 Ct':;) = <Sip+1 B I 70 7 7 R Sil(/l)9 a’:;)

= (83,84, =+ 53, (A), @7}

= ~(Sj - 53, (A), @)

=-(-1=1
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forl < p<d,w=s s, is A-minuscule. We also have:
(103) (I)(w) = {ail’ Si] (aiz): STt Si] tce sid_l (aid)}'

By (10.2) and (10.3), we have ®(w) = D(1). Hence, such w is uniquely
determined from A.

The correspondence A — (A(= w!(2)), w) thus obtained is clearly the
inverse of the previous map (A, w) — A. Hence we get the bijectivity. O

For w € W, we denote the set of reduced decompositions (sy,, S, ** -+ , Si,)
of w by Red(w). As a corollary of the proof of Proposition 10.1, we get:

CorolIary 10.2. Let A be a dominant integral weight. Let w € W be A-
minuscule. Let (s;,, 8,5~ ,8;;) € Red(w). Then, we have:

<sip+l toe Sid(A)’ (I;;) =1, 1<p<d

This qofollary show that the definition of A-minuscule elements is inde-
pendent from a choice of reduced decompositions. This is also proved by
J. R. Stembridge in [7].

Proposition 10.3. Let (A, w) be a pair of a dominant integral weight A and
a A-minuscule element w. Let A := w(A) be the corresponding finite pre-
dominant integral weight. Put d := #D(2). Let (@, -+, @;,) € MPath(2).
Then we have (s;,, -+, s;,) € Red(w). Furthurmore, the correspondence
(@i, i) - (81,00, 8,) from MPath(2) to Red(w) is bijective.
Proof. If (a;,,- -+ , @;,) € MPath(1), then, by the proof of Proposition 10.1,
we have (s;,,+ -, 5;,) € Red(w).
To prove the bijectivity, let (s;,- - ,s;) € Red(w). By the proof of Propo-
sition 10.1, we have ®(w) = D(2). Hence we have [ = d. Since
(sip_; e Sil (ﬂ), a’;) = (Sip_1 et Si) Sil ot Sid(A), al\;)
= (SipSip+1 e Sid(A), Q’;;)
= _<sip+1 tee Sid(A), a;)
=-1
- for 1 < p < d. Hence, we get (@;,,- - ,a;;) € MPath(2). This proves the
bijectivity. _ S &
By Corollary 7.3, Proposition 10.1 and Proposition 10.3, we get a proof
of Peterson’s hook formula (1.6).

Remark 2. Minuscule elements are classified by R. A. Proctor [5][6] (in
simply-laced case) and J. R. Stembridge [7] (in non-simply-laced case). .
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