|

) <

The University of Osaka
Institutional Knowledge Archive

Title Code Generation Method for Embedded Processors
with Application Domain Specific Instruction Set

Author(s) |Tanaka, Hiroaki

Citation |KFRKZ, 2008, HIFwX

Version Type|VoR

URL https://hdl. handle.net/11094/23435

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Code Generation Method for Embedded Processors |

with Application Dc_)main'SpecifiC, Instfuction“Set- -

| ~ Submitted to
Graduate School of Information Science and Technology
| | Osaka University

January 2008

Hiroaki TANAKA

Publications

Journal Articles (Refereed)

[71] Hiroaki Tanaka, Yoshinoﬁ Takeuchi, Keishi Sakanushi, Masaharu Imai, Hiroki Tagawa,
Yu:[aka Ota and Nobu Matsumoto: “Generation of Pack Instruction Sequence for Media
”Procéssors Using Multi-Valued Decision Diagram,” IEICE Trans. on Fundamentals of

Electronics, vol. E90, no. 12, pp. 2800-2809, Dec, 2007.

[J2] Hiroaki Tanaka, Yoshinori Takeuchi, Keishi Sakanushi and Masaharu Imai: “A Code
Optimization Technique for Processors with SIMD instructions Considering Permutation

Instructions,” IPSJ J ournal (in Japanese, to appear).

International Conference Papers (Refereed)

- [I1] Hiroaki Tanaka, Shinsuke Kobayashi, Yoshinori Takeuchi, Keishi Sakanushi and Masa-
har}l Tmai: “A Code Selection Method for SIMD Processors with PACK Instructions,” in
Proceedings of the 7th International Workshop on Software and Compilers for Embedded
‘Systems (SCOPES), pp. 66-80, Sep., 2003.

{12] Hiroaki Tanaka, Yoshinori Takéuchi, Keishi Sakanushi, Masahau Irnai; Yutaka Ota, Nobu
Matsumoto and Masaki Nakagawa: .“Pack Instruction Generation for Media Processors
Using Multi-valued Decision Diagram,” in Proceedings of the 4th International Confer-
ence"on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 154~
159, Oct., 2006. ’ ' '

[13] Hiroaki Tanaka, Shiro Kobayashi, Yoshinori Takeuchi, Keishi Sakanushi and Masaharu
Imai, “A Block-Floating-Point Procesoor for Rapid Application Development,” in Pro-
ceedings of IEEE Intérnational Conference on Acoustics. Speech and Signal Processing

2007 (ICASSP2007), vol. II, pp65-68, 2007.

Domestic Conference P'aper‘

~ [D1] Hiroaki Tanaka, Shinsuke Kobayashi, Yoshinori Takeuchi, Keishi Sakanushi and Masa-
haru Imai: “A Code Selection Method for SIMD Processors with PACK Instructions,”
Technical report of IEICE. VLD, vol. 103, no. 145, pp. 43-48, Jun., 2003 (in Japanese). -

[D2] Hiroaki Tanaka, Hassan M. AbdE]Salam, Shiro Kobayashi, Yoshinori Takeuchi, Keishi
Sakanushi and Masaharu .Imai, "‘Implementaﬁon fo 2D-FET on a Block-Floating-Point
DSP;” IPSJ Symposium Series, vol. 2004, no. 8, pp. 91-96, Jul., 2004 (in Japanese)

[D3} Hiroaki -Tahaka, Keishi Sakanushi, Yoshinori Takeuchi and Masaharu Imai, “A Code
"Generation Method for Processors with SIMD Instructions Considering Dependency and
Distance between Operations,” IPSJ Symposium Series, vol. 2005, no. 9, pp. 79-84,

Aug., 2005 (in Japanese)

[D4] Hiroaki Tanaka, Shiro.Ko'bayashi, Yoshinori Takeuchi, Keishi Sakanushi and Masaharu
Imai, “Implerﬁentation and Eyaluation of an Instruction Set Processor with Herarchical
Bliock—Floating—Point Arithmetic Capability,” In the Proceedings of 21th Signal Process-
ing Symposium, Nov., 2006 (in Japanese)

~

Summary

.Application specific instruction set procéssors (ASIP) realize high cost—i)erformance embedded
systems. HoWeyer, there is a difficult problem in software development for ASIPé. In typical
software development for general purpose processors, prbgramm’ers write programs in high-
Jevel programming language and then generate assembly code using compilers. 'Ovn the other -
hand, in software dévelopment for ASIPs, programmers often have fo Wfite assembly code
'~ in some cases because compﬂers cannot efficiently generate application specific instructions
in assembly code. Programming using assembly code 17eqﬁires much devclopment effort and
loses portability of programs. Therefore, there is a great need for a code genération technology
to generate assembly code which brings out processors’s perfonﬁance. ' |

This thesis discﬁssés two types of code generation method for processors with vépplication
domain specific iﬁsfcruction set. First, this thesis proposes a code generation method with spécial
functions, which are mapped into specific instructions, in high-level pfogramming languages.
To ease software development of the target application domain, programming scheme and code
generation method for block-floating-point processors are proposed. Experimental results show
the proposed code generation method successfully generates assembly code for block-floating-
point processors. and quality of generated code is good enoﬁgh for practical éppiicatiOns.

The second :cod’e generation method is automatic generation of application specific instruc-
tions. To enable programmers to use application specific insﬁuctions without much programing
effort, automatic utilization of application specific instruction is proposed. Media processors
are selected as target proceséors in this thesis. Difficulties in compilation for media processors
are extraction of operations to perform in parallel and to deal with positions of data in registers.
" Media processors have two types of inétructions,'SIMD instructions which operate on subword.

data in registers and permutati_on instructions which reorder or repack data in registers. Utiliza-

tion of both-SIMD and pe_fniﬁtation instruction is cru01a1 to maxnmze {hé performance of medla
~ processors. In this study, code bptirnizatioh problerﬁ for media processors is formulated into
integer linear programming problem. Then, optimuvmi and heuristic code generation methods
are proposed and evaluated. Experimental results show the proposed methods generate assem-

bly code with SIMD and permutation instructions. High performance improvement is shown

by the proposed code generation methods.

'Acknowledgements

I would like to thank my supervisor, Prof. Masaharu Imai, for his guidance throughout my
undefgraduate and graduate researches. I am especially grateful for hisA useful advice which ,-
- develops my expertise in the research area and academic mentahty | |
I would like to thank Prof. Takao Onoye Prof. Akihisa Yamada and Dr. Yoshmorl Shlgeta
for a review of this thesis, useful d1scus$1on and comments on my study. Also, I would like to
- thank Prof. Onoye for treating me fﬁehdly th_roughout my student life. I enjoyed with his talks -
and thoughts very much. v '
I'would like to thank Prof. Ydshinori Takeuchi. His comments greatly improved this thesis. I
' am also grateful for his guidance,» support and encouragement through everything in my student
life. | |
I would like to thank Prof. Keishi Sakanushi for his guldance g1V1ng comments on my
research activities. o
I would like to thank Prof. Shmsuke Kobayashi and Mr. Kentaro Mita for introducing me
to this research area and guiding my early study. They gave me 1nstruct10n in research activity, .
presentation skills, programming skills, etc. '
1 Would like to thank Dr. Yuki Kobayashi, Mr. Noboru Yoneoka and Mr. Tatsuhiro Yoshimura.
| They provided me good time through my days in Integrated System Design Laboratory in Os-
aka Universit'y; I always enjoyed all kinds of activities in the labbratory by them.
I thank Dr. Kyoko Ueda, Dr.- Mohamed AbdEISalam Hassan, Miss. Yukako Nishikawa,
. Mrs. Motoko Higashide,"Mr. Ittetsu Taniguchi, Mr. Takashi Hamabe, Mr. Hirofumi Iwato,
Mr. Takuji Hieda, Mr. Takeshi Shiro, Mr. Takahiro Itoh, Mr. Akira Kobashi, Mr. Yu Okuna,
Mr. Hitoshi Nakamura, Mr. Ayataka Kobayashi, Miss Aiko Watanabe, Mr. Kazuhiro Kobashj,

Mr. HideYuki Okajima and other current and former members ‘of Integrated Systcm Design

1l

Laboratory in Osaka Univeréity. They gave me a lot of comments on my study. They also
~ made my life enjoyable with their talks and acts. | o

I would like to thank collaborators through my docforal research. I would like to thank Dr.
Shiro Kobayashi and Mr. Wang David from Asahi Kasei Corporation for giving discussion
and comments on the study éf the block-floating-point processor. They also helped me with
implementation of the processor and programs for evaluation. I would like to thank Mr. Nobu
Matsumoto, Mr. Yutaka O‘ta and Mr. Hiroki Tagawa from Toshiba Corporation. They prox}ided
me discussion aﬁd comments on the study of code generation for media processors. They also
brovided me tools for evaluation including compiler, simulator and so on. |

Last, I would like to thank my father 'Yasuo, my mother Nobuko, and my brothers Katsuyuki
and Masahiro. They gave rhé the ‘encouragement and continuous support throughout my life in

‘ Osaka.

Contents

1 Introduction | ’ _ A 1
>1.1 Overview of Embedded Processors L 3
1.1.1 Digital Signal Processors . . . : T

1.1;2 Media Processors oo ive w e e e } Cee 3‘

1.13 YM.icrocontro_ll‘eré e, 4

1.14 'Applicatio'n Specific Instruction Set Processors L. 5

1.2 Requirements for Compilers 7. e e e e e 6
1.3 Contributions S .‘ o e T 7
1.4 Thesis Out_lirle AT B 9

2 Related Work , , _ | 11
2.1 Overview of Code Generation Method for Embedded Proc—essors e 11
2.1.1- Assembly Languagé or Comipiler Intrinsic Functions 12

2.1.2 Language Extension or Construction.. e e .13

2.1.3 Automatic Code Generation and Optimization.13

2.2 Code Generation for Block-Floating-Point Processors 14
2.2.1 Block-Floating-Point Processors e e e e 14

23

222 Related Work on Code Generation Method for Block-Floating-Point

Processors L. e e 16
Code Generation for Media Processors v v v v v i 17
2.3.1 MediaInstructionSet. P 17

2.3.2 Related Work on Code Generation for Media Processors 18

A\

3 Code Generation for Block-Floating-Point Instructions

3.1 Hierarchical Block—Floating—Point Arithmetic C e
3.1.1 Conventional Block-Floating-Point Arithmetic S e
3.1.2 Introduction of Hieracrchical block-floating-point Arithmetic. »
3.1.3 Principle of H-BFP Arithmetic B
3.2 H-BFP Processor and its Compiler S
321 DeéignCoﬁcept. e e e e e L
 3.2.2 Hardware Implerlnentation RPN
3.2.3 Processor Description e e e e e e e e
324 CompilerSupport. e e e
3.3 ExperimentalResults 0L e
3.3.1 Experimental Setup e
332 Results e P
3.4 Summary
4 Optimal Code Generation for Media Instructions
4.1 SIMD Instructions L D T
42 Codeselection e . '
4.3 SIMD Instruction Formulation B} L
" 431 Rules for SIMD instructions+« o oo L .
432 Constraints on selection of rules e
433 TLPformulation. SR e
4.4 SIMD Instruction Formulation with permutation Instructions
4.4.1 IR and Rules for Data Packing and Moving
442 Cbnstraints onselectionofrules L
443 ILPFormulation P PR
45 Experimental FESUIS + o o e e .
4.6 SUmmary e e e e e e e e e e e e e e

5 Efficient Code Generation Algorithm for Media Instructions

5.1

Generation of SIMD Instructions e e e e e

23
23
23
24
25
28
28
28
30
32
34
34
35
40

41

41
42
43
43
45
46
49
49
52
53
54
59

61

5.1 Grouping SIMD Operations . . . e 62

5.1.2 Ordering SIMD Operations in Registers . e 62
5.2 Generation of Permutation Instructions PP ... 63

5.2.1 Introduction of MDDs for Representation of a Set of Permutations - . . '64_

5.2.2 Permutation Operation Manipulationon MDDs e 65
523 Permutation Instruction Generation Algorithm 68

5.3 Experimental Résults Ce e e e e e e L. T2
531 Experimental setup A C e 72
532 Results IR S 76

5.4 Sumfnary 84
Conclusion and Future Work ' ‘ 87

- 6.1 Conclusion 8T
62 FumreWork. P 88
6.2.1 ° Automatic ASIP Design Space Exploration e 88
 6.2.2 Compilation Techniques for Low Power P &9

'6.2.3 Compilation Techniques for Multi Processor SoC R - 89

List of Figures

2.1 H-BEP Arithmetic. e B 15
2.2 SIMD and permutation instructions. SIRUN _17,
3.1 Block-Floating-Point Data Format T '
32 H-BFP Arithmetic. e e .. 26
33 C_ompaﬁson of cdn?entional BFP and H-BFP e e e 26
34 HBFPDaaPath PR 29.
3.5. H-BFP Processor Architecture L .. 31
3.6 Comparison of Application.Development Flow L. 33
3.7 Program Refinement for H-BFP prd_cessor e 34
.3.8" Relative Ratio of Execution Time of DLX-HBFP to DLX-FP . .\ 38
4.1 Example of STMD in’stfuctio_ns. 4
42 permutation instructions.l L e 43
43 Consistency of nonterminals. T W, 45
44 Schedulability.45
4.5 Nodes insertion for data transfers. e . .._ A 49
4.6 Rule of permutation instructions. e e e R 50‘
4.7 E;(a}nple of permutation instructions. A 51
4.8 Identification of are;gister which source values located. 52
4.9 The ratio of generated codé size. T | C e e 55
4.10 Theratio of executioncycles. e 56
411 convolution. e I 58
4.12 nrealupdate. B e 58

5.1
52
53
5.4
5.5
56
57
58
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Operation grouping e 62

Operationordering 63
MDDs for { abcd } and { abed,abdc } L. L L 65
Adding permutationson MDDs e 67
Reorderingon MDDs e 67
An examplg permutation instruction o 68
Testing Target Permutatién Generation e e e e e 69
Expreésion Tree Construction o 70
Target processor ArChIECTITE .« « « o o v v e e e e e 73
Permutation instructions of the target processor 74
Code length reduction ratio. R e 6
Code length reduction ratio. e 77
Speedup against without SIMD instructions. . : 18
Speedup against without SIMD instructions. . . o e 79

Permutationinrgbgray L0 oL 82

List of Tables

3.1
32

33

3.4

4.1
4.2

5.1,

52

5.3

Resultsoflogicsynthesis e e e e e oL ... 36
Breakdown of gate count of DLX-HBFP e e e 36
Comparison of the number of insns. among different implementations, 37
SNR of each programs run on DLX-HBFP and DLX-FP 39
-Generated code size and executioncycles. L. e e e 57
The number of DFT. nodes, variables and constraints in ILP and CPU time. . . .58
Breakdown of generated instructions e e e e P .. 81
Comparison of compilation time between [1] and proposed method c.. 83
Permutation count and MDD node count of sets of permutations - 85

x1i

xii

Chapter 1
Introduction

The progress of semiconductor manufaCturing_ tephnblogy and design methodology of,'iiite—
grated circuits enable us to realize \}arious electronic devices based on digital circuits. As - |
integratidn scale of semiconductor grows, electronic devices can be manufactured in smaller
size. The pr_ogresé of design methodology enables fovimplement large scale electronic systems.
No’wédays, electronic systems are applied to products in various fields; mobile platforms suph
as celléphonés and PDAs, media players such és MP3V playc;fs and DVD players, engiﬁe con- -
troller for Véﬁicles, and all kinds of consumer electronics. These kinds of electronic systems
have been referred to as embédded .systéms. Embedded systems have several features’ Which

general purpose systems like pefsonal computers do not have.
¢ Embedded systems perform application épeciﬁc tasks.

¢ Embedded systems have to meet tight design constraints which come from application

specification.

Performancé requirements for embedded systems are becoming high, and functional require-
ments are Becoming various. These requirements résult in complex embedded systems. Product
vendors have to make a large effort to develop'eléctronic products. Rising development cost
is the most serious problem in the design of electronic systems. 4Embedded systems have been
developed as Application Specific Integrated Circuit (ASIC), which is dedicated specific ap-

plications, in early era of electronic system development. However, designing ASICs for all

1

2 CHAPTER 1. INTRODUCTION

' products is not realistic approach in recent embedded system design. Flexible hardware whioh

cannot be used for only a‘specific application but also various applications is required.

To address the problem of design productivity, instruction set processors are widely used in
embedded system desi_gn. Instructions-set processors realize desired functionality with given
- application. pro’grarns., There is no need to develop new hardware for new products if instruc-
tion set processors are employed. Instruction set processors greatly reduce development cost -
in embedded syStem design. Many applications are realized by instruction set processors in
today’s electronic products. Generally, instruction set processors designed for general pur-
poses. Howeyer, general purpose processors are often inefficient from the point of view of
cost-perform'a’nce since they are not optimized for a specific application. Such inefﬁeieney_
causes high manufacturing cost of products or low energy efficiency in application run-time.
Recent electronic device-s required high performance and high energ‘y efficiency. General pur-

pose processors usually do not meet requirements in recent electronic products.

To achieve required performance in short development perlod Application Spemﬁc Instruc-
tion set Processors (AS]P) are developed and used. ASIPs are the instruction set processors
which have custom hardware and instructions for dedlcated applications. Such custom 1nstruc—
tions can process apphcatrons effectively. Especrally, hrgh performance is required in digital
,srgnal processing field, and processors for digital signal processing applications are widely
used in recent years. Though ASIPS reallze high cost-performance embedded systems, there is
a considerable problem from the point of view of software development of ASIPs. In a typical
software development for general purpose processors, programmers Wn’te programs. in high-
level programming language, then, generate object code using-compilers. On the other hand,
in software development for ASIPs, programmers often have to write assembly code because
compilers hardly generate application specific instructions in assembly code in some cases.
Programming in assembly code requires much development effort and loses portability of pro-
grams. Therefore, there is great need for a technology to generate assembly code which brings

. out processors’s best performance.

This chapter gives an overview of embedded processors, then, requirements for compilers
for these processors are summarized. Then, the contribution of this thesis is described. Finally,

the outline of this thesis is described.

1.1. OVERVIEW OF EMBEDDED PROCESSORS - : ' 3

1.1 OVerview of Embedded Processors

This section gives brief survey of several types of embedded processors and their characteris-

tics.

1.1.1 Digital Sig_nal Processors

Digital Signal Proceésors (DSPs) are dédicated to real-time digital signal processing such as
FIR filtering, IIR filtering, FFT and so on. To meet severe performance requirements due to
" real-time processing, many architectural enhancements ha\}e been introduced into digital signal
Processors. | |

" There are some concepts in design of DSPs.

o Efficient memory access mechanism to process a large amount of data, such as dual

memory access, modulo addressing and memory accesses with address modifications.

e Complex operations to process data efficiently such as mﬁlﬁply-accumulation, memory

access with shift and parallel arithmetic Operations.
_ e Zero overhead loop mechanism to reduce loop overhead.

e Instruction set which supports Fixed-Point Arithmetic.

The first successful DSP in industry was TMS320C1x series{2] provided by Texas Instru- |
ments. Because thé TMS320C1x is early generation of DSPs, some characteristics enumerated
above are not introduced. HoweVér, some DSP specific features such as memofy access with
address modification, complex operétions and support of fixed-point arithmetic are found.

The next generatib_n of TI’s DSP, TMS320C2X éeﬁes [3] has all features listed above. These
features enable to fetch two operands from _data memories and perform one multiply-accumulate

operation within one cycle. This is one of the most remarkable feature of TMS320C2x.

1.1.2 Media Processors

Media processors target real-time media encoding and decoding. In recent years, the standards

for audio C_ODEC, video CODEC, and picture compression have been proposed and used in

4 o CHAPTER 1. INTRODUCTION

many kinds of electronic devices. Since encoding and decoding of multimedia digital data
feqﬁire high performance for eleétronic devices, existing genéral purpose microprocessors .andv
DSPs did not have ‘enough processing ability to perform thebcodéc standards. The emerging
technologies to meet higher performance require expioitaﬁon of parallelism in two different',

levels.

e SIMD instructions which operate on subword data in registers

e Multiple instruction issue mechanism as VLIW architecture

SIMD instructions exploit data level parallelism in af)plications. In media processing appli-
cations, usually there exist a lot of operations which can perform in .parallel. By mapping such -
operations in one instrubtioh, higﬁer performance .can‘ be obtained than conventional instruction
which perform one operation per one instfuction. Multiple instruction issues mechanism which
is referred to as VLIW (Very Long Instruction Word) exploits instruction level parallelism. In
assembly code, instructions which have no dependence among ‘them are found. By iséuing such
instructions simultaneously, higher performance can be obtained than single issue processors. |

~ Media processors have been provided by several companies. Texas Instruments has provided
TMS320C6X series [4]. TMSS2OC6X series is a advanced generation of TMS32OC2X, and ded-
icated not only to digital signal précessing applications but also to digital media applications.
Processors in TMS320C6x series have all features of DSPs and both of SIMD instructions and
VLIW architecture features. TMS320C6x series are VLIW processors and allowed‘to issue up
to 8 instructions simultaneously. 2 parallel and 4 parallel SIMD instructions are also supported.
PNX1300 media processors [5] which provided by NXP Serniconcjuctors are also VLIW based '
media processoré. PNX1300 media processors are able to issue up to 5 instructions and support

SIMD instructions. Several DSP features are also supported by PNX1300 media processors.

1.1.3 Microcontrollers

Microcontrollers are used for controlling several peripheral devices. Microcontrollers receive
signals from various peripheral devices such as sensor signals and interrupts, and then send

signals to control other peripheral devices. The increasing usage of microcontrollers in recent

1.1. OVERVIEW OF EMBEDDED PROCESSORS - | ‘ ' .5

years is controllers for vehicles. Conventional mechanisms of vehicle control, ‘mechanically
controlled systems like oil pressure, are to be repiaced with electrorﬁcal control Systems. Re-
quired performance to microcontrollers is not so high compared to media proceésors. However,
microcontfollers should be dependafle, and réqﬁirement of real-time reactivity must be met be-

cause of drivers’s safety.

1.1.4 Application Specific Instruction Set Processors

All proééssbrs reviewed in prévious sectioﬂs are designed by processor vendors, and system“ :
developers just use them without any modification. Unlike those processors, configurable pro-
Cessors é.re redesigned or modified by product developers using processor design tools provided
by tool vendbfs. Since processor designers can configure their processors, processlors optimized -
to specific applications can be obtained. Software development tools such as compilers, assem-
blers and linkers are typically provided by tool vendors.

Many academic and commercial prdcessor design tools are piésgnted. ‘

‘Chess/Checkers [6] [7] is an embedded processor design tool-suite provided by Target Tech-
nologies. In the Chess/Checkers processor development environment, processor designefs de-
sign processors using nML processor description language. Chess takes target processor de- -
scription written in nML language and -application program written in C Iénguage, compiles
tﬁe application program, and generates assembly code for the tafget processor. The processdr
~ performance can be estimated using a retargetable instruction set simulator, Checkers. The
processor HDL is generated by VHDL generator Go from the processor description written in
nML.. Processor désigners can explore the processor design space by modifying the précesSor
descriptions and using Chess/Checker tool-suite.

Processor Designer [8] [9] provided by Coware is also an embedded processor design tool.
Processor Designer uses LISA processor description ianguage like Chess/Checkers’s nML lan-
guage. Generation ‘of'HDL of processors and software development tools such as compiler,
assembler and simulator are also supported by Processor Designer.

‘Tensilica’s Xtensa [10] is an configurable processor and its aréhitecture parameters and in-

struction set are customizable. Processor designers are able to add instructions using TIE lan-

6 , | " CHAPTER 1. INTRODUCTION

4

guage which describes additional instructions [11]. Similar to Chess/Checkers and Processor
Designer, HDL geﬁeration'of processors and generation of software develépment tools are sup-
ported. The feature of Tensilica’s proéess’or design tool-suite support automation of processor
customization. Xtensa Xplorér takes tafgét appliéation written in C programs, then, automati-

cally customize the target processor to process efficiently the target programs.

1.2 Requirements for Compilers

The main role bf cbnﬁpilers in embedded system design is to ease software development. Writ-
ihg assémbly code is a hard task because of the low-level of abstraction of programing model.
Additidﬁally, the fequirements of a huge variety of functionalities of recent er/nbedded, systems
- make embedded software large and complex. Developing all embedded software by assembly
language is not feasiblé in recent embedded system development. To use compilers in develop-
ing embedded software is not unusual while embedded software developers are used to program -
in ‘assembly language in the past. | ' |

The most 'signiﬁcanf task of compilers is to translate programs written in high-level pro-
gramming Ianguage into assemblly code which is an instruction séquence of a target processor.

Moreover, there are some additional requirements around compilers.

° Compilérs should support a programming language which gives a suitable programming

model to describe applications in the target application domain.

e Compilers should generate opﬁmized assembly code which take advantage of the target

Pprocessor.

The first requirement stems from the need of high software productivity. The abstraction
of programming lang‘uage should be not only high-level but also suitable for the target appli-
cation domain. The translation of algorithm of applicatidns ihto programs should be easy for
programmers, if the programming model is suitable to the application domain. As a result,
programmers can rapidly develop software. |

The second requirement stems from the reqﬁirements for performance. Unless the appli-

‘cation specific architecture features and instructions are utilized, high performance cannot be

1.3. CONTRIBUTIONS | . | 7
obtained. Traditional compilation methodology does not take into account rm_ost appiication
specific features. Generally, it is difficult for compilers to utilize architecture specific features.

However, compilation method to utilize application speciﬁc features are essential for embedded

system development.

1 .3 * Contributions

- This thesis discusses code generation method for application domain specific instruction set
- processors. Chall'enges involved by the requiremerits mentioned in the previous section are
tackled. ‘ _ | '

As a compilation method of applicatioﬁ specific programming model, code generation method
 for bleck-ﬂoating-point processors are Studied. Blockfﬂoating-point processors have instruc- ‘
- tion set to perform operations based on block-ﬂoating-point arithmetic. A challenge in compi- .
- lation for block-floating-point processors is to bridge a gap between the programming mod'el of -
block-ﬂoating-peinf arithmetic and usual prograinﬁﬂng model of a pro gramming hnguage. The . -
‘method to describe the computation »proceduire of block-floating-point arithmetic in high-le\}el
programing language and to compile programs is the ﬁiain topic of this study.

Compiler optimization method for media processors is also studied in this thesis., ‘Media
processors play an important role in recent embedded system‘ design because of the spread of
digital media applications among many kinds of electronic devices. Compilation method to
- fully utilize media processors is crucial for development of embedded software. The assembly-

code generation method for a class of instruction called SIMD instructions is focused in this
| study. Difficulties in ’comp‘ilation for SIMD instructions are extraction of operations ;to perform
in parallel and to deal with positions of data in registers. To minimize the number of arith-
‘metic operation instructions, compiler should map the maximum possible operations to SIMD
instructions. However, since each operation in SIMD instructions process data existing the
same position among different registers, permutation instructions which reorder or repack data
in registers may be required. Permutation instructions take additional execution cycles hence
it is desirable Vto use as less permutation instructions ae possible. By determining positions of

data in registers appropriately, the number of permutation instructions will be small. However,

8 | | 'CHAPTER 1. INTRODUCTION

fhé positions of data in registers is determined inappropriately, overhead caused by permutation
instructions becomes large. The code generation method to use SIMD instructions considering
the pefrnutation instructions is the main topic of the latter half of this thesis.

The main cohtributions of this thesis are as follows. The first coﬁtributibn is on. compilation

method for block-floating-point processors.

) Fifst,‘ the code generation method for bloCk—ﬂoating-point processors is proposed. With
the consideration to describe the block-floating-point arithmetic in the high-level pro-
gramnﬁng language, the processor architecture, programming scheme and compilation
method are studied. A complete evaluation of processors and compilers have been per-

formed.
The second contribution is on compilation method for media processors.

e Code generation for media processors with SIMD and permutation instructions is formu-

| lated into integer linear programming (ILP) problem.

e The bcode generation method using ILP solver is proposed. The effectiveness of the
method is demonstrated by applying it to a set of programs from the domain of digi-

tal signal processing applications.

o A heuristic for the code generation with SIMD and permutation instructions based on
data flow graph representation of programs is proposed. The output of this heuristic is
not always optimal. However, this heuristic outputs solutions in very shorter time than

ILP based code generation method.

e The method to generate permutation instruction sequence which is necessary to heuristic
code generation method is presented. This method computes an instruction sequence to

generate desired data permutation with given permutation instruction set.

e The heuristic code generation method is evaluated using a real commercial media pro-

cessor and several digital signal processing applications.

1.4. THESIS OUTLINE g | 9

1.4 Thesis Outline

The remainder of this thesis is as follows. _

In chapter 2, related work of this thesis is summarized. Code generation methods for appli-
cation domain specific insrruction set processors are reviewed in this chapter. Ideally, assembiy
code of any processors should be generated from descriptions of processor independent high-
level programming languages. However, such compilers are not always provided or desired
performance cannot be always obtained. Several researches or practical approaches to deal
with this problem are reviewed. Compilation techniques to generate high performance code
from processor independent high-level programmlng languages are also rev1ewed

In chapter 3,a compﬂa‘uon method for block—ﬁoating pomt processors is described. Anin-.
struction set processor supporting H-BFP arithmetic and its.application development method
are proposed. The processor is designed based on the RISC architecture to enable compiler-
- based development. The programming scheme using intrinsic functions ‘vand compilation method -
for the block-floating- pomt processors are presented and evaluated.

. In chapter 4, a code generation method for SIMD instructions considering perrnutatlon in-
structions is descrrbed. The code generation method is based on a code selection problem for-
mulated into integer linear programming problem. Code generation by solving the formulated
pr_oblem using ILP solver is evaluated. ‘

In chapter 5, ar heuristic code generation rechnique for SIMD instructions with permutation -
instructions'is described. This method identifies SIMD instructioné by ﬁnding and grouping the
 same operatlons in programs. After the SIMD instruction identification, permutation instruc-

' 'tions are generated In this permutation instruction generatlon Multi-valued Decision Diagrarn
(MDD) is introduced to represent and to manipulate sets of packed data. The code genera-
tion method integrated the heuristic to identify SIMD instructions and permutation instruction ,
sequence is evaluated. " '

- Conclusion and future work are described in chapter 6.

10

CHAPTER 1. INTRODUCTION

,‘Chapte"r_ 2
Related Work

This chapter discusses code generation methods for embedded processors. Then, related work '

of the topics studied in this thesis is summarized.

2.1 Overview of Code Generation Method for Embed-

ded Processors -

~ There are somé code generation methods for embedded processors. A difficulty in code genera-
ti(jn for embedded processors is to utilize instructions dedicated to speciﬁc”.application domain.
The moét desirable way to use application specific instruétions is automatic genéraﬁbn of as-
sembly code by compilers. Code optimization teéhniques for application specific instructions
or architectures have been studied for any kinds of iristructions or architectures f12], [131,[14],
[15]. o | |

Automatic generation of assembly code from prbcessor independeht programs in high-level
languages is a challenging task because of the gap between model of programming language
and the model of applications iﬁ the target domain. Some approaches have been investigated
to manage this gap [16], [17], [18], [19]. [20], [21], [22]. After the review of code genera-
tion methods, existing code generation methods for two classes of embedded .processors are

discussed.

11

12 o | CHAPTER 2. RELATED WORK

241 Assembly Language or Compiler Intrinsic Functions

When compiler’s are not available or do not generate application specific instructions, the sim-
plest solution to réﬁuest for using application specific instructions is to write software in v‘as-
sembly code. Assembly programming of perforrhance critical processes is still 'é prevailing so-
lution in curreht software development. Programming with compiler intrinsic functions which
are functions to be mapped into specific instructions in high_—lével programming languages is

-also taken to use 'application specific instructions. There are some variations of this approach.
e Program entire software in assembly language.

Program performance critical functions in assembly language, then integrate them with

_programs written in high-level prdgfamming languages at linking time.

Use previously designed libraries.

Embed assembly code in prograrhs written in high-level programming languages.

Use compiler intrinsic functions in programs written in high-level programming lan-

guages.

If compilers are not available or the target application is.small, assembly progfamming of
entire software is a possible way to use application specific instructions. Programming perfor-
mance critical functions in assembly language is another possible approach to exploit proces-
sors’s potential. Since small portion of software is frequently executed typically.in run-time,
brogramming in assembly only critical portion code is effective. '

Some processor vendors provide pre-compiled functions as libraries, which are frequently
used for applications in target application domains. Application programmers can use applica-
tion specific instructions through functions collected in libraries [23], [24].

Using application specific instructions in high-level language is also a possible approach to
_ exploit application specific instructions. Some compilers have mechanism called inline assem-
bly. Inline assembly generate fragmentsv of assembly code written in programs of high-level
programming language as it is. Programmers can embed assembly code directly into target

application programs. Compiler intrinsic functions can be used in some compilers. Compiler

2.1 OV,ERVIEW OF CODE GENERATION METHOD _ . 13

intrinsic functions are the functions in high -level languages mapped into’ spe01ﬁc instructions
by compilers Programmers can use spe01ﬁc instructions by writing compiler intrinsic functlons.

like usual functions.

2.1.2 Language Extension or Construction'

To ease application development and tasks of compllers special high-level languages have been
proposed ' ‘

are extended or new languages for specific apphcation domain are constructed. Compilation
of general high-level languages for application specific 1nstructrons would be a hard task due
to the gap between programming model of languages and 1nstruct10n sets. Limited data type,
arithmetic operations and progranl control flow mo‘d'eli in high-level programming languag‘es.
make production of efficient assernbly code difficult. Sequential programming' model is an
obstacle to exploit instructions to perform parallel operation_s. '4

Language exten'sion"to break the limitation of existing high-level languages by introducing
new data type, new operations, new control flow model and parallelism has been studied before
[19]. [20]-, [21]. Construction of application domain specific languages has been also studied

[22]. These approaches allow programmers.to use application speciﬁc instructions easy.

2.1.3 Automatic Code Generation and Optimiiation

- The most desirable way to use application specific instructions for programmers is autornatic
generation of assembly code making the best use of target processors. Many code generation
and optimization methods for many kinds of processors have been studied [25],[26], [12], [15].

There are several approaches to generate and optimize assembly code or programs [26],[15].
One approach to optimize programs is transformation of intermediate representation of pro-
grams. Processor 1ndependent and dependent optirmzation algorithms at 1nterrned1ate repre-
sentation level have been studied a lot [26]. Another approach to optimize programs and as-

~sembly code is generation of high qliality assembly code in assembly code generation phase
[15]. In assembly code generation, compilers have three tasks, instruction selection, instruc-

tion scheduling and register allocation. Optimization algorithms in these tasks have been also

14 CHAPTER 2. RELATED WORK

studied. Since this thesis focuses method to utilize application specific instructions, the code
generation and optimization methods at intermediate representation and instruction selectioni
 are reviewed only in this-section. _ |

Early gén‘e'rationvof digital signal processors have single-issue architecture, and have complex
instructions such as memory access operations with complex addressing mode and multiply-
accumulation operations to achieve efficient instruction encoding. [3]. Such instruction set
causes milltiple translatién into assémbly code for a given program. A problem of translat-
ing programs into most efficient assembly code has‘ been studied by many researchers [27],.
[28], [29], [30].

In the research on the code generation for digital signal processors, code generatién methods
to achieve higﬁ signal processing quality for fixed-point digital signal processors have been
studied. In this topic, accuracy of outputs‘ of signal processing is the matter to be considered.
~ Program trénsforrﬁation from floating-point programs into ﬁxed—pbint programs at high-level

programnlihg language have been studied [17], [18], [16].

2.2 Code Generation for Block-Floating-Point Proces-

SOrs

2.2.1 Block-Floating-Point Processors

There are two major types of digital signal processors classified by the supported arithmetic.
The first one is floating-point arithmetic and the other is ﬁxed—point arithmetic. Each of these
DSPs has different features. From the application software development point of view, software
for floating-point DSPs can be efficiently developed, because high signal quality can be easily
achieved due to the nature of floating-point arithmetic. However, floating point units are ex-
pensive and not suitable to realize cost-effective digital signal processing systems. On the other
hand, fixed-point DSPs do not have expensive hardware. For the reason of low hardware cost,
fixed-point DSPs are widely used in consumer electronics. However, the development of soft-
wére for fixed-point DSPs is time consuming task because it is difficult to develop fixed-point

implementation which achieves high signal processing quality.

2.2. CODE GENERATION iFOR BLOCK-FLOATING-POINT PROCESSORS | - 15

fixed point to
floating point converter|

- f‘l'oating pointf
. | fixed point converter

Figure 2.1: H-BFP Arithmetic

As a compromise between floating-point and fixed-point, block-floating-point (BFP) imple-
mentation is also used on .ﬁxed-point DSPs. Block—ﬂoating'-point is bésed on the concept of

. ﬂoatin‘g—poiﬁt; that is to say, the block-floating-point systems use ﬂoating-point format as num-
ber representation and performs arithmetic operations in floating-point manner. The difference
between floating-point and blockfﬂoating—point is that several numbers share an exponent in
block-floating-point systems while each number has its own exponent in floating-point S}.fsv—
tems. The advantages of block-floating-point arithmetic are lower performénce requirement'
for processing devices than ﬂeating-point and suitable computation steps for ﬁxed—poiﬁt DSP.

These advantages have motivated system developers to use block-floating-point arithmetic. -

While a BFP implementaﬁon can realize ,high signal processing quality similar to floating-
point on a low-cost ﬁXed—point hardware, de{felopiﬁg BFP imﬁlementetion is still a hard task.
BFP has been applied to some limited applications [31] [32], but efficient BFP implementations
fo; other applications are not Well known. Actually, there is a considerable trade-off between
accuracy and hardware cost, in BFP arithmetic [33]. This trade-off makes development of BFP
systems difficult. In order to solve the problem of lacking a good implementation approach,
hierarchical block-floating-point (H-BFP) arithmetic [34] [33] and a precessor with H-BFP
instruction set have been proposed [35]. The basic concepﬁ of H-BFP is to keep data on the

memory in floating-point format, while processing data in fixed-point format.

16 ‘ : ' CHAPTER 2. RELATED WORK

| Fig. 2.1 illustrates the concept of H-BFP arithmetic. The data in memory are represented as
floating-point numbers. The floating-point to fixed-point converter is used to convért the data. -
Data processing are performed on the ‘ﬁ'xed—point data path, and then the results are converted
ﬂoating-point represéntation by the fixed-point to ﬂoating—point conv.e'rter.' The fixed-point to
floating-point converter performs ﬂoating—ﬁoint normalization. The results are stored to the data
memory. With H-BFP arithmetic, desired signal processing quality aﬁd reasonable hardware

implementatioﬁ can be obtained simultaneously like usual BFP. Details of H-BFP is

'2.2.2 Related Work on Code Generation Method for Block-Floating-

' ‘Point Processors

Thére exists processors which uses block-floating-point ar_ithmetic sucﬁ as coﬁventional fixed-
point DSPs [4] and H-BFP DSPS BS]. However, compilation méthbd for bl‘ock-ﬂoating'-point
instructioﬁ set have not been studied in the past. The application development approach pre-
sented in [35] is writing assembly code from scratch referring to the floating-point implemen-
tation 6f the target application. Block—ﬂoating—point implementation of FFT on conventional
ﬁXéd—point DSPs presented in [36] is also assembly programs. Manual translation of programs
from high level language into assembly language is error prone and a time consuming task. A

software development method which offers high productivity is required.

In this thesis, an instruction-set processor supporting H-BFP arithmetic and its application
development method are proposed. Since this is the first research on the code generation by
compilers for H-BFP instruétion set, RISC based processor is originally proposed to separate
compiler’s task from difficulties which do not stem from H-BFP feature. In the proposed soft-
ware development flow, H-BFP programs are implemented by modifying usual ﬂoating—point
programs. The required modification is only to add special functions. The proposed code gen-
eration method converts the special functions into H-BFP instructions. Since the modification
does not require complex program transformations by hand, H-BFP program can be easily

developed.

2.3.. CODE GENERATION FOR MEDIA PROCESSORS N | 17

L— 2 Lde om0 o

23 15~ 70‘ » . -31 23 - 1570

laTblcldI [alblcld] [elflalh]

(a) a SIMD instruction (b) a permutation instruction

Figure 2.2: SIMD and permutation instructions

2.3 Code Generation for Media Processors
2.3.1 | Media |nstructioh Set

- Multimedia applications' become popuiar applications which run on wide variety of platforms.
Most multimedia applications demand_ high performance for electronic devices which execute
those applicatiOns Recent microprocessors are often customized to execute multimedia ap- |
phcations efﬁcrently The good nature in most multlmedla applications is data parallelism in
’ | applications. Therefore, many processors adopt SIMD (Smgle Instruction Multiple Data) in- _
structions to exploit data parallehsm. SIMD instructions perform operations on multiple data
packed in registers as shown in Fig.2.2(a). When a SIMD instruction is executed, the same
ooperations are executed at the same time. Obviously, the processing efficiency of SIMD in-
structions is higher than that of conventional irl_structions which perform one operation at a
time. Moreover, no special hardware is required to implement SIMD instructions.

SIMD instructions are usefiil, but most compilers have limited ability to use SIMD instruc-
tions. In view of this limitation, in order to exploit SIMD instructions; programmers need to use
compiler intrinsics, special functions in high level programming languages, which are mapped
to specific instructions, or to write programs in assembly languages. However, using compiler

- intrinsics or writing assembly programs are time consuming tasks, and decrease portability of
programs. Therefore, a technique for automatically generating assembly programs including
SIMD instructions is required: |

The difﬁculty of code 'generatio'n that exploits SIMD instructions stems from the data par-

18 | CHAPTER 2. RELATED WORK

allelism in registers. When using SIMD instructions, the positions of data in registers must
be noted. When a SIMD instruction which operates a binary opérator is exeéuted, operands
of each operation performed by a SIMD instructidn must be at the same position in registers. |
If data and operations on the target application are well coordinated, SIMD instructions can
be generated easily. If not, generation of additional pérmutation instructions which reorder or
repack data in registers is needed. The permutation instructions take tWo source registers with
packea data, and take some data elements from each register, and put these data elements into
~one target register. Fig.2.2(b) shows a typical permutation instruction which takes two elements
from each source register and packs into them the target register. Although such data repacking
instructions take run-time execution cycles; the total execution cycles can decrease by the effect
of SIMD instructions. The combination of SIMD and data repacking instructions can achieve
~ high performance improvements comparéd with the case that SIMD instructions are unused.
There are many problems around code generation with S]MD ihstructions. One of the most
_ essential fopic‘ is.finding permutation instruction sequence which generates required packed-
daté from given packed data with given permutation instructions. Mést processors do not- havel
all possible permutation instructions, but have several permutation instructions. In addition,
the nufnber of all combiﬁation of data repacking is very largé. Therefore, the permutation
instruction’sequehc’e which generates‘:reqliired packed data is not always found easily because
of limitation of available permutation instructions and large search space of data repacking.‘

This is one of the most significant problem in the exploitation of SIMD instructions.

2.3.2 | Related Work on Code Generation for Media Pro_cessors

Many publications have been released about automatic code generation of SIMD instructions[37,
38, 15, 39, 40, 41, 1, 42, 43].

In [37]; using several analysis and loop transfo_rmations, loops are vectorized to generate
SIMD instructions.- Though [37] aims at exploitation of SIMD instmctions, [37] does not take
account of data reordering . [39],[40] and [41] present a vectorization technique in the pres-
ence of misaligned memory access and data type conversions in loop bodies. Using the con-

. cept of virtual vectors, statements in loop bodies are vectorized. Misaligned memory access

2.3. CODE GENERATION FOR MEDIA PROCESSORS | 19

and unahgned vector operations are aligned by pack and unpack operations.. For the state-
ments with mixed data length, data conversion instructions are also generated. [42] proposes
a vectorization technique of loop bodies with int‘erlea\'/ed data access of arrays. Utilizing two
classes of data packing instructions, extract and interleave instructions, data repacking instruc{
tion sequence which arrange interleaved data in a non-interleaved form is generated. SIMDh
instructions are generated for vector operatlons on the rearranged data. [43] proposes a SIMD
1nstruct1on utilization technique combmed software pipelining. Functional units used by SIMD
rhstructxons ar_1d used by conventional scalar operation instructions are individually equipped -
in most processor_s which have SIMD instructions. Therefore, good utilization of both SIMD
functional units and scalar functional units lead higher performance than conventional uector-
ization techniques. Iﬁ'[43], operations in loops are mapped to scalar operation instructi_ons
or SIMD instructions so that the number of instructions to be performed in a loop riteration: is

minimized.

| All the above approaches target loops. On the other hand, there are some approaches target-
ing basic blocks or unrolled loop bodies. The advantage of the basic block level approaches is
that it is apphcable to wide range of programs. The loop level approaches such as [37, 39, 40,
- 41] and [43] are targeting well-formed loops generally However well-formed loops are not
frequently_appeared in practlcal programs. Additional tasks such as manually analyzmg and
rewriting programs may be necessary before applying loop level SIMD optimization so that the
optimization works on programs On the other hand, basic block level approaches are easily ap-
plicable to practical programs, because they are not sensitive to control structures in programs.
In addition, parallelism within a basic block can be also utilized in basic block approaches,
. which is not considered in'loop level approaches. In [15], pattern matching and coverirlg uprob—
lem with SIMD instructrons are formulated to Integer Linear Programming (ILP). Solving the
covering problem using ILP solver, highly optimized assembly codes with SIMD instructions
are obtained. Howeyver, this approach takes too much time to solve ILP problems. For the latest
SIMD instructions which handle 4 or 8 packed data, the time required to solve ILP problems
may not be acceptable. Moreover, reorder or repacking data in registers is not handled in this
method. In [38], SIMD instructions are generated by grouping statements in a basic block. Us-

ing data dependency and alignments information, statements which are executable in parallel

20 . . CHAPTER 2. RELATED WORK'

are grouped into Pack Set to minimize data packing cost. Performance improvements are larger -
than traditional vectoriZation. However, the way to generate permutation instructions and the
related problem of packing are not mentioned. In [1]; generation of SIMD and perﬁmtq_tion .
instructions is presented. SIMD instructions are generated by grouping operations in a basic -
‘block represented by Data Flow Graph(DFG). After the grouping, 'permutation instructions are
inserted between SIMD instructiohs. In [1], in‘order to generate bermutat"ions which mean
packed data ordering in registers, permutation decomposition backward tree and forward tree
| are used. The backward tree represents the deeomp0'sition of the target permutation by permu-
tation instructions. On the other hand, the'for_ward tree represents generation.of permutations
by Iiermuteition instruCtiens from input permutations. By matching the leaves of backward and
forward trees and searching paths from the targef permutation to 'inp.ut permufations, permu-
,tation instruction sequence to generate target permutation is obtained. The advantage of [1] is
 that more efficient code can be generated compared to [15], because of utilization of permu-
tation instructions. Also, a method to generate instruction sequeﬁces to generate permutations
is presented, which is not mentioned in [38]. However, the size of the backward tree used in
[1] exponentially grows according to the depth of the backward tree. The larger the number of
~ data in registers or the number of permutation insfructieﬁs becomes, the longer the compilation

time becomes.

In this thesis, code generation methods for media processors are proposed. At first, the
code generation problem with SIMD and permutation instructions are formulated into inte-
ger linear programming (ILP):problem extending [15]. Then, the code generation method
using ILP solver is proposed. In this method, dasa move operations are introduced in dirécted
acyclic graphs representing programs. Moreover, permutation instructions are introduced in
ILP formulation. The problem can be solved by usin g ILP solver. Consequently, compilers can
generate assembly code including SIMD and bpermutation instructions. The advantage of the
proposed method is that the SIMD instruction utilization is higher than without p'ermutation,
instructions. As a result, performance and code size are improved at the same time. Sec-
ondly, a fast code generation method for media processors is probosed. This method generates
SIMD instructions by finding operations which are executable in parallel and mapping them

“to SIMD instructions. In this method, permutation instruction generation technique based on

2.3. CODE GENERATION FOR MEDIA PROCESSORS - 21

MDD is presented. Usmg MDD, the proposed technique exhaustwely generates permutatlons
and finds feasible 1nstruct1on sequences which reorder or repack data elements in reg1sters
* Since MDD can represent and mampulate sets of permutations efficiently, permutation instruc-

_ tion sequences can be generated in a short time.

22

CHAPTER 2. RELATED WORK -

Chapter 3

Code Generation for |

Block'-FIo'aitin-g-POi‘nt 'Instru»ctio_’ns

This chapter is organized»es follows. The H-BFP arithmetic is summarized in section 3.1,
and an instruction-set processor with H-BFP arithmetic and its compiler are in section 3.2.
Experimental results are described in section 3.3. Finally, this chapter is concluded in section

34.

3.1 Hierarchical Block-Floating-Point Arithmetic

In this section, conventional block-floating-point arithmetic and hierarchical block-floating-

_ point arithmetic[34] [33] are briefly summarized.

3.1.1 Conventional Block-Floating-Point Arithmetic

B{lock—ﬂoating—poiht arithmetic (BFP) is based on the concept of floating-point. Each number
is represented as a pair of the scale-factor (exponent) and mantissa, and arithmetic operations
are performed by the similar way as that of usual floating-point (FP) such that computing and
normalizing mantissa then computing scale-factor. The difference between ﬁsual FP and BFP
is that the scale-factor is shared by some numbers in BFP while each number has its own

scale-factor in usual FP. In BFP, a set of numbers sharing a scale-factor is referred to as a

23

24 : CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS ‘

mantissa - " .block-scale-factor

. -20 21222324252527 =23 2221 20

ro -10.11111 [ElofTlola b [OTOTTTT]
Ty -110.1001
T2 0110.101
r; 0.011001

_ | ‘ +[lredunduntbit [E& signbit [mantlssa bit
(a) Binary Numbers - (b) Block-Floating-Point Representatlon

Figure 3.1: Block—Floatmg-Pomt Data Format

- data block, and the shared, seal_e—faetor is referred to as-a blqck—scaleefactor? All numbers in
a data block is normalized based on a block—scale—factor. Fig.3.1 shows a block-floating-point
representation of 4 binafy numbers Fig.3.1(a) shows 4 binary numbers, and Fig.3.1(b) shows -
- a block-floating- pomt representatlon of Flg 3.1(a). The block-scale-factor of the data block 1 is
determmed by finding the largest scale-factor

Arithmetic operatlons are done in block basis. Scaling and normahzmg mantissa are to be
performed as same as usual FP. However computational cost is less than that of usual FP
because the number of scale-factor _mampulauons are small by sharing scale-factor. Also, main
| _computation of BFP consists of integer operations such as shift, addition and multiplication.
This means that arithmetic operetions of BFP are Suitable to perform on fixed-point DSPs.

These are the motivation to introduce BFP.

3.1.2 Ihtroduction of Hieracrchical block-floating-point Arithmetic

Hierarchical block-floating-point arithmetic, an improved version of BFP has been proposed
in [33]. In H-BFP, each data elerhent in a data block is represented as a ﬂoating-point number
* when it is on memories, and it is represented as a mantis_}sa and a common block-scale-factor
when it is computational data path. Note that the block-scale-factor is still available if all data -
elements in a data block are on memories, though the representation of a data element does not
depend on the value of block-scale-factor. During data processing, data elements are' ioaded
from memories to the registers, then, they are converted from floating-point format into fixed-

point format in the block-floating-point manner. Arithmetic operations such as addition, multi-

3.1. 'HIERARCHICAL BLOCK-FLOATING-POINT ARITHMETIC 25

plication and accumulation are perforrhed on the data represented in fixed-point format. After

the computations, resulfs are converted into floating-point representation agéin,,and stored vinto
memories. Fig. 3.2 illustrates H-BFP arithmetic. As mentioned above, a set of data is located
in data memory in floating-point representation. The ﬂoéting—poiht to fixed-point converter is
used to.convert the data. Data processing are performed on the fixed-point data path and then
the results are converted ﬂoatlng -point representation by the fixed-point to ﬂoatlng po1nt con-
Verter The ﬁxed pomt to ﬂoatmg point converter performs ﬂoatmg point normalization. The-
results are stored to the data memory.- _

The goal of H-BFP is to obtain reasonable implementation of digital srgnal processing sys-
tems with less development effort. H-BFP has the advantage in over conventional BFP arith-
metic. vIn the development of conventional BFP based systems, design quali{y, such as signal
- quality, har_dware‘ cost and processing time, heavily depehd on the implementation options.
Application developers have to make effort to find a reasonable implementétion On the other
hand, though H- BFP requires add1t10na1 overhead in execution t1me due to data format con-
versions, high precision srgnal processmg and low hardware cost are ensured. Fig.3. 3 shows
a companson of the behavior. of BFP to H-BFP. The upper part shows the-case of BFP, and
the lower part shows the case of H-BFP. Fig.3.3 'depicts how the precision of numbers in a
data block varies during,a; sequence of operations. In Fig.3.3, a data block is loaded from a
data memory, used for certainboperations' as operands, stored .to a data m’emory,r then loaded:
from a data memory for next computation again. Comparing H-BFP with BFP, H-BFP re-
quire additional memory usage to keep-element—scale-factor, additional computational cost for
vﬁoating-point normalrzation. However, there is a remarkable point in H-BFP. The numbers in
the data block loaded from memory for the next computation, which is the most left data block
: in Fig.3.3, some lower significant bit keep mantissa bit, while those of the data block of BFP

lose some mantissa bit. Hence, H-BFP achieves higher accuracy than conventional BEP.

3.1.3 Principle of H-BFP Arithmetic

In this section, H-BFP arithmetic operations are described in detail.

26 ' ~ CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS v

fixed point to f
floating point converter|

floating point to ™
fixed point converter

Figure 3.2: H-BFP Arithmetic

on memory on data path ‘ onmemory i on data path
Load ' Computation Store Load
= [=
BFP
block block
‘normalization - : normalization - lose
- accuracy
: |
H-BFP f»
block - floating-point block ’ kee ?
normalization normalization) normalization P

accuracy

{T] redundant bit mantissa bit -

B block-scale-factor

B8 sign bit

~Figure 3.3: Comparison of conventional BFP and H-BFP

As mentioned in section 3.1.2, floating-point and block-floating-point representations are
used in H-BFP. The floating-point representation of a data element consists of an element-
scale-factor and a mantissa. Let the element-scale-factor and mantissa be represented as two’s
complement of binary numbers in this paper. The block-floating-point represenfation. of a data
~ element consists of a block—scale—factor and a mantissa. The block-scale-factor and mantissa
in a block-floating-point representation are also two’s complement of binary numbers. In the
block-floating-point representation, guard bits are reserved at most significant bits of a man-

tissa. Guard bits prevents overflow in data processing and allows to omit input data scaling-

3.1. HIERARCHICAL BLOCK-FLOATING-POINT ARITHMETIC _ | 7

down[33].This leads higher accuracy than without guard-bits. The vbit width of the mantissa
on memories and the one on data path do not have to beithe same. Generally, the bit width
of the mantissa on data path is longer than the one on memories to save mémory capacity and
memory- access. éost. -

The proéedurai steps of H—BFP arithmetic operation are listed as follows. The input data
blocks, data elements represented as floating-point numbers and block—scaleefactoré, are given'
on memori_e‘s. The block-scale-factor of a data block is a maximum value of element-scale-
factor in the data block. The computation results ar_e obtained as output data blocks, data

elements and block-scale-factors.

1. Compute input block-scale-factors which are bIock-Scale—faCtors used for binary align-
ment of mantissa during computation. Initialize output block-scdle-]‘actdrs which are

block;séale-factor's of computation results.

2. Repeat below steps for every arithmetic'op'erations

(a) Loading data elements from memories, and extract and convert mantissas into fixed-

point numbers referring to the inpuf block-scale-factors.
(b) Process data by fixed-point 6perations.

(¢) Convert ﬁxed-point numbers into floating-point numbers, then store them to mem-

ories. Update output block-scale-factors simultanéqﬁsly.
3. Save output block-scale-factors..

Looking the procedural steps, some H-BFP specific primitive operations can be found. Han-
dling block-scale-factors, converting ﬂoatihg-point number to fixed-point mantissa and convert-
ing fixed-point mantissa are required to realize H-BFP. Realization of those hardware functions-

is the main topic of this paper.

28 CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS .

3.2 H-BFP Processor and its Compiler

3.2.1 Design Concept

The goal of this study is to realize an instruction-set processor which efficiently executes H-BFP
operations and provides a compiler for the processor. To achieve this goal, H-BFP processor is
 designed following principles:

¢ Based on a typical 32-bit RISC processor with integer instruction-set.

o Build a data path for H-BFP operations into a processor pipeline. |

.. Implemenf additional three types of instructions for H-BFP.

— Integer arithmetic operations on scale-factors
- — Load floating-point data from memories, then convert them into fixed-point data

— Convert fixed-point data into floating-point data, then store them to memories.

The first prihciple comes from a requirement for compilers. The compilation technology for
32-bit RISC is available today, such technology can be used for the proposed processor as it is.
The second and third principlés aré lead by a requirement for realization of H-BFP operations.
The ﬁxed—pdint data path is originally supported by an integer processor. Handling scale-factors
and supporting data format conversions are necessary to execute H-BFP operaﬁons. Hence, by

“implementing such operations on integer processors, H-BFP can be executed on the processors.

3.2;2 Hardware Implementation

A data path structure to execute H-BFP specific operations is shown in Fig.3.4. There are three . |
parts enclosed with dotted line, float to fixed conversion, scale-factor manipulation and fixed
to float conversion. The scale-factor manipulation is divided into two parts further, align-factor
- computation and scale-factbr‘ computation. scale-factor register file is shown in the center of
Fig.3.4, fixed-point data path is shown at the bottom. The processing data is incoming from
the left top, and is outgoing to the right top through two conversions and fixed-point data path.

Impiementations of individual components are as follows;

3.2. H-BFP PROCESSOR AND ITS COMPILER . 29

Floating-Point Data o ' Floating-Point Data
(from Data Memory) Scale-Factor : (to Data Memory)
: " Manipulation S '

—— -

R ' oot M1 Aign-Factor Scale-Factor
emen| " Computation Computation”
Scale-Factor : [P ir ik !
I E ! Guard Bit

-

Element
Scale-Factor

:' Count

\I—————————————_-‘

I
l
|
|
1
I)
! ' i I
: b 1 : .
1 H Ly B P -
1 I\-—-—.————--———';-, f g
i : _ 1 55
: i IIBSF![" _'IOBSF“] : @
1
! U : . —— ! ' : ’

‘oo __Y_____2 |Scale-Factor Register File| > ______1___._ A
Float to Fixed - ‘ - Fixed to Float
Conversion R L . Conversion

, -Fixed-Point _ :

Figure 3.4: H-BFP Data Path

3.2.2.1 Scale-Factor Register File

\

" The scale-factor register file is é régister file to keep block-scale-factors. Input and- output
block-scale-factors (IBSF, OBSF) and temporary block-scale-factors (not appeared in Fig.3.4)
are kept during data processing. The bit width of a register in this register file should be the

same as the bit width of block-scale-factors of a H-BFP system.

3.2.2.2 Float to Fixed Conversion

In float to fixed conversion, floating-point numbers are converted into fixed-point numbers. A
barrel shifter (Alignment Shift) is used in this conversion. The inputs of alignment shift are
mantissa and a scale-factor. The mantissa is shifted by the value of the scale-factor generated

by scale-factor manipulation, then, extended by the guard bit width.

3.2.2.3 Align-Factor Computation

In align-factor computation, the shift amount of mantissa for floating-point to fixed-point con-

version is computed. The difference between input block-scale-factor and element scale-factor

30 \ CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS

is used typically.

3.2.2.4 Fixed to Float Conversion

In fixed to float conversion, fixed-point numbers are converted into floating-point numbers.
A barrel shifter (Normalize Shift) is used in this conversion. The inputs of normalize shift are
‘mantissa as a fixed-point number and a scale-factor to tlormalize the mantissa. The shift amount
in this normalizétio_n is computed by a leading sign counter (Leading sign). The bleading sign
counter is implemented using a priority encoder. The element scale-factor is generated by scale-
faetor manipulation. The ‘normaliied mantissa and the element scale-factor are concatenated,

then it is eutputted.

3.2.2.5 Scale-Factor Computation

In scale—factor computation, the element scale;factors of floating-point number are computed.
The element scale-factor is computed as (input block-scale-factor - leading 51gn count + guard
bit count). The output block-scale-factors are also computed in this data path. The eutput block-
scale-factor of a data block is the maximum element-scale- factor in the data block Therefore,
the output block-scale-factors can be computed by taking maximum number between tempo-
rary output block-scale factor and generated element scale-factor for every time the floating-

point number is generated.

3.2.3 Processor Description

Fig.3.5 shows the pfoposed H-BFP processor architecture. The H-BFP processor is based on a
standard 5-stage pipelined RISC processor. The H-BFP data path is embedded in the pipeline.
The target architecture is five stage pipelined; i.e., instruction fetch, instruction decode, ex-
ecution, memory access, and write back stages. The H-BFP data path shown in Fig.3.4 is
decomposed, and equipped over 4 stages. The scale-factor register file is placed in the second

stage to allow scale-factors to be available in later stages. Float to fixed conversion and align- |
factor computation data path are placed in the five stage. Floating-point data loaded from data

memories can be converted into fixed-point data before storing them to general purpose register

3.2. H-BFP PROCESSOR AND ITS COMPILER r ' 31

/ \
1 — I
L 1 I
I Scale-Factor 1
i Register Flle I
! I
| fix | | ! .

- .-y fixed-to-float : 1 float-to-fixed
1 conversion scale-factor I conversion-
1 ~ manipulation _p—
I _ , |
1 I
' Data Path - - B : [

RISC Core lr‘ - ol A
R N ﬂ ' ; Data
Inst. i : .
Menr:ory T Relgliter Integer Data Path = [Memory |
: =

, Figure 3.5: H-BFP Processor Architecture

file. Floating to fixed conversion and scale-factor computation data path are placed in the third
stage. Floating-point data converted into from Fixed-point data can be stored to data memories

right after the conversion.

For H-BFP based pr_occséing, instructions which perform prirrﬁtive operations of H-BFP.
are implemented. As mentioned in section 3.2.1, there are thrée types of H-BFP specific
instructions. As scale-factor manipulations, 13 instructionst including to move block-écale‘—
-~ factors between scale-factor register file and data memory, several operaitions such as a'dditiIOn,
subtraction and select maximum value are implemented. These instructions provides various’
block-based processing. Load instructions from data memory with floating-point to fixed-point
conversion and store ins-truct\ioriwith floating-point to fixed-point conversion are also imple-
mented. There are 4 instructions for each load and store instructions. A variety of conversions

can be performed by those instructions.-

.32 ‘ CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS

3.2.4 Compiler Support

In this section, software development approach for H-BFP processor introduced.

Software for H-BFP processor is developed as folloWs. A program based on floating-point
arithmetic of the target .application is written in 2 high level programming language first of all.
Then, the program is réwritten into the program based on H-BFP arithmetic. The differences
of the computation model between the ﬂoating—pdint and H-BFP are t};at dafa are non-blocked
or blocked, and data conversions after/before opérations are not needed or needed. Hence, the
software for H-BFP processor can be developed by adding H-BFP specific operations to the
floating-point arithmetic based program. To enable the prdgrammeré to add such operations,
a compiler technique called compiler intrinsic is. used. Compiler intrinéic functions are the.
functions in the high level'pro gramnling~language which are mapped to the specific instructions
‘of the target processor. Usirig (;ompiler intrinsic, H-BFP specific bperations in H-BFP programs
can be directiy mapped to iﬁstructipns of the H-BFP processdr.

Fig.3.6 shows thé development flow of conventional approa—éhes and the propdséd‘ approach.
In conventional fixed-point or BFP based software development, and H-BFP based software de-
velopment presented in [35], ﬂoatiﬁg-point arithmetic based program is developed first. Then,
the target application is develcjped referring to the floating-point based program as a reference .
model. In the conventional fixed-point or BFP based software development flow, several imple-
mentations must be considered, and analysis of trade-off between signal processing quality and
costs has to be performed. In the flow of [35], while the feature of H-BFP eases development,
assembly programming is still needed. On the other hand, in the proposed approach, the target
application program can be 6btaine'd easily because all have to do is progfam refinement by
insertion of compiler intrinsic functions.

Fig.3.7 shows a program refinement example of a floating-point program. There are three -
program fragments in Fig.3.7. The left program is the ﬁbating-point implementation for proces-
sors supporting floating-point arithmetic. The upper and lower programs at the right in Fig.3.7
are the H-BFP implementation and floating-point implementation for the H-BFP processor, re-
épectively. The upper right program can be obtained by inserting scale-factor manipulations and

data conversions in block-floating-point manner. On the other hand, the lower right program -

3.2. H-BFP PROCESSOR AND ITS COMPILER. | _ 33

FP FP

Program Program

Hours = Days

*Weeks—Months . *Days—Weeks

BFP H~-BFP
Program Program

(a) Conventional approach (b) Proposed approach

- Figure 3.6: Comparison of Application Devél()pment Flow

can be obtained by inserting H-BFP specific operations in floating-point manner. Compiler in-
trinsic functions, sfcselect, tofix, toflt , are appeared into their corresponding instructions

“for the‘ H-BFP processor.

All these example programs compute the addition of two vectors. In the upper right program
in Fig.3.7, the addition of twb Vectors is interpreted as addition of two vectors which belong
to different data blocks. The variables asfb and bs f]§ in Fig.3.7 hold the block-scale-factors
for data blocks a and b respectively. The sfcselect function computes the block-scale-factor
which determines the fixed-point data formaf on the addition. In the loop body, tofix func4
tion performs ﬂoéting—point to fixed-point conversibn; tofit function performs fixed-point to
floating-point conversion. By inserting scale-factor h1anipulation such that the H-BFP pro-
cessor performs the manipulation before every addition as shown the lower right program,
floating-point implementation on H-BFP processor can be obtained. The ﬂoating-point imple-
mentation takes more execuﬁon cycles than H-BFP implementation in the runtime. However,

floating-point implementation achieves high_er precision of arithmetic operations than H-BFP

implementation.

34 | ~ CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS

H-BFP implehentation for H-BFP processors
=~ . block-scale—factor)
i 47 computation

. for addition

ani float to fixed
conversions

_ Floating—point(FP)
implementation
for processors with FP

- N
float a[N], b[NI, c[NJ; -
inti; - / } S ngzzeﬁlgfyit J

\

N

computes adequate

scale—factor

for each addition
(FP manner)

for(i=0;i<N;i++) [

o[i] = ali] + bIil ;

Figure 3.7: Program Refinement for H-BFP processor

3.3 Experimental Results

In this section, the experimental results are presented.

3.3.1 Experimental Setup

An HDL model of the H-BFP processor has béén designed using an ASIP development tool,
ASIP Meister{44]. and the compiler with compiler intrinsics has been developed. The H-BFP
processor is based on the‘DLX[45] without floating-point operation instructions, DLX-Int.
Adding fhe H-BFP data path and H-BFP instructions to DLX-Int, a H-BFP processor, DLX-
HBFP is developed. Note that the original DLX[45] has no integer multiplication instruction,
and it is supposed that floating-point multiplication should be used if the original DLX com-
putes iﬁteger multiplication. Therefore, 16 bit multiplier and multiplicdtion instruction are
added to DLX-HBFP. The 16 bit multiplication is usually implemented in commercial digital :
signal processors. The bit width of integer and fixed-point data path of DLX-HBFP is 32 bits.

3.3. EXPERIMENTAL RESULTS - . 35

The floating-point formait on memory is composed of 8bits exponent and 16 bits maritissa.

To compare the H-BFP processor with usual floating-point processor, DLX-Int with floating-
. point unit, DLX-FP, has been also developed. DLX-FP has a floating-point unit providing
siﬁgle floating-point computation with the IEEE 'sténdard[46]. The ﬂoatingfpoint unit operates
- arithmetic (.)peration’s such as addition, mulﬁplication, and floating-point to integer conversion,
integer to floating-point conversion, etc. DLX-FP take 10 cycles per a single ﬂoéting‘—point
: éddition/subtracﬁon, and 13 cyéles per a floating-point multiplication. If DLX-FP issues a
ﬂoéting—point operation, the internal pipeline of DLX-FP stalls until DLX-FP finishes floatin g-

' point operation. -

A compiler to generate assembly code from H-BFP program, H-BFP compiler, is also de-
veloped for this experiment. H-BFP compiler generates-H-BFP instructions from intrinéic func-

tions in high-level program.

.In this experiments, the design quality of hardware and application proceSsiﬁg performance
of DLX-HBFP are studied. DLX-HBFP, DLX-Int and DLX-FP are syﬁthesizcd and estimated
delay, frequency and gate count to evaluate DLX-HBFP in terms of the design quality. -The'
performance of DLX-HBFP is evaluated vusing DSPstone benchmark suite[47]. DSPstone is a
set of programs takenv‘from digital signal applications. Compiling and executing programs of
- DSPstone, accuracy of output is evaluated. Static instruction count in generated assembly code
is compared between H-BFP processor and floating-point processor. Moreover, exécution time
of programs run on DLX-HBFP and DLX-FP .,is\ compared to evaluate performance of the H-
BFP processor. Finally, the outputs of DLX-HBFP and.DLX-FP are comi)ared with the output

of double floating-point computation.

3.3.2 Results

In this section, experimental results are shown.

36 CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS

Table 3.1: Results of logic synthesis

Delay | Frequency | Area |
[ns] | [MHz] | [gate]

DLX-Int | 4.82 | 207.4 | 54161
DLX-HBFP | 536 | -186.6 | 63107
DLX-FP | 6.08 164.5 | 79087

‘Table 3.2: Breakdown of gate count of DLX-HBFP
~ Base(DLX-Int) '

54161
Incremental gate count -
H-BFP components - 1809.
Pipeline régistér - 2712
Multiplexer : 227.9
~ Control 2016
Other 115

‘ 8931

Total 63107

3.3.2.1 Hardware Evaluation

The hardware area of the H-BFP processor was estimated. The HDL model of DLX-Int, DLX-
HBFP and DLX-FP were syn‘tvhesized using a O.i4,um prdcess. Synthesis results are summa-
rized in Tab.3.1. The estimated delay, frequency, gate count for DLX-Int, DLX-HBFP and
DLX-FP are shown. The total area of DLX-HBFP is about 63K gates with the maximum fre-
quency at about 186.4MHz. The increased gate count is about 8.9Kgate while the DLX-FP

increased about 25Kgate compared with DLX-Int.

" The breakdown of gate count of synthesized DLX-HBFP is shown in Tab.3.2. In Tab.3.2,

total gate count of DLX-Int are shown, and breakdown of incremental gate count is also de-

3.3. EXPERIMENTAL RESULTS | o - _ ' : 37

scribed. The gate count of H-BFP compenents isjust 1.8Kgate. Additional gate count to embed
H-BFP components into processor pipeline, which is the sum of pipeline register, multiplexer,
contrel and other is about 7.1Kgates. On the other hand, increased gate count of DLX-FP more ,
than 25K gate. The floating-point coprocessor typically costs about 20-40K gate[48][49]. This
means that the ability of H-BFP can be added with little hardware and delay overhead.

3.3.2.2 Performance

‘To confirm fhe performance of the H;BFP processor/compiler, the size of assembly programs
for H-BFP processor hés been evaluated. DLX-HBFP was cempared with DLX—FP. vTable
3.3 shows the number of instructions to process each program for DLX-HBFP and DLX-FP.
Comparing DLX-HBFP with DLX-FP, the number of instructions of DLX-HBFP is comparable
to that of DLX-FP in 7 cases. This result indicates the H- BFP processor/compller can process

applications as efficient as usual processor/compller supporting ﬂoatmg -point anthmetlc

Table 3.3: Comparison of the number of insns. among different implementations

N the size of vector M : the width and helght of matrlx T : the humber of taps

DLX-HBFP DLX-FP
, - [# of insns] | _[#ofinsns]
n_real_updates 14N+26 14N+13

n_complex_updates 44N+30 36N+13
complex_multiply 26N+15 - ' 26N+7

convolution 12N+20- 12N+12
dotproduct ~ . - 12N+22 » 12N+11
fir |- 12NT+30 10NT+9
matrix1 12M3+16M2+7M+11 | 10M3+14M?+7M+4
matrix2 || I2MP425M2+7M+12 | 12M3+23M2+7M+4
mat1x3 12M2+14M+11 12M2+12M+4
fir2dim 30MT+23M2+5M+11 | 30M2T+24M>+6M+5

38 CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS

Figure 3.8: Relative Ratio of Execution Time of DLX-HBFP to DLX-FP

Fig.3.8 shows relative ratio of execution time of DLX-HBFP to DLX-FP. The execution
time 1s defined as execution cycle count divided by the frequency. In Fig.3.8, relative ratio is
ranged frorh about 0.5 up to 0.8. This ié beéause, that the execution cycles of DLX-HBFP is
less than that of DLX-FP and the frequencylof DLX-HBFP is highér than DLX-FP. Actually,
the ﬁoating-poinf operations of DLX-FP take a larger number of éycles than usual ﬂoéting-
: péint unit. However, the number of dynamically executed instructions of DLX-HBFP isv almost
séme as DLX-FP, and computatinal cost of H-BFP operations is smaller than floating-point

operations. Heﬁce’, DLX-HBFP can prcocess applications more efficiently than DLX-FP.

3.3.2.3 Signal Processing Quality

C programs implemented by floating-point arithmetic in DSPstone benchmark has been modi-
fied for the DLX-HBFP. The HDL model of the DLX-HBFP with the object codé generated by. -
‘the compiler has been simulated on an HDL simulator. The white noise has been used as the
- input of the programs.
The signal processing quality of H-BFP implementation has been evaluated using an signal-

to-noise ratio measure which is defined as

o oo B(n)
SNR =10 loglo[zﬁgol{R_(n) —5(n)}?

where N is the number of output samples of the application, R(n) is the n th output of

] | 3.1)

39

3.3. EXPERIMENTAL RESULTS

Table 3.4: SNR of each programs run on DLX-HBFP and DLX-FP

83.57

DLX-HBFP | DLX-FP |
. [dB] [dB] |
" n_real_updates 83.13 | -+ 146.67
n_compléx_updates 81.66 148.33
_ complex_multiply '83.91 | 141.89 |
convolution - 8085 | 151.48
* dot_product 82.68 | 137.00
fir 8038 | 146.67
matrix1 81.01 |~ 146.51
matrix2 81.34 | 14627 |
mat1x3 81.27 | 142.54
fir2dim 145.92

the double precision ﬂoating—point computation, and S(n) is the n-th output obtained by HDL

simulation of the H-BFP processor, respectively.

Tab.3.4 shows the SNR of DLX-HBFP and DLX-FP for each p_rdgram. The first column

shows the names of programs, the second and third columns shows the SNR of DLX-HBFP
and DLX-FP, respectively. In Tab.3 .4, SNRs of DLX-HBFP ranged from 80.85 to 83.91. SNRs
of the DLX-FP score higher than those of the DLX-HBFP. This is because SNRs are depénds

on the bit width of mantissa. The bit width of mantissa of DLX-HBFP is 16 bits on the memory.

On the other hand, the bit width of mantissa of DLX-FP is 23 bits because of single floating-

point. According to the previous study, SNRs of H-BFP are expected up‘to 80dB, and the SNRs

are enough to practical applications[33]. The results of Tab.3.4 is consistent with the previous

work.

40 ‘) CHAPTER 3. CODE GENERATION FOR BFP INSTRUCTIONS
3.4 Summary

In this chapter, a processor supporting hierarchical block-floating-point arithmetic and software
development method for. the processor are proposed. In experiments, some applicatio;ls has
been implemented and simulated on the H-BFP proc'essof. It is confirmed that the H-BFP
processer can achieve high signal quality and low hardware cost. Using the proposed method,

signal processing applications can be eaéily developed.

‘Cha'p'ter 4 ,,
v Optimal Code Generation for Media

Instructions

This chapter describes the optimal code generation rﬁethOd for media processors considering
permutation instructioﬁs. This chapter is organized as follows: Section 4.1 describes SIMD
- instructions. Section 42 iﬁtroduces a code selection methodvu'si‘ng tree parsing and dynamic
programing {50]. vSectiAon 4.3 explains the Leupers’S'method [15]. Section 4.4 deséﬁbes the

proposed method. Section 4.5 shows experimental results. Section 4.6 concludes this chapter. -

4.1 SIMD Instructions

n SIMD instructions, a value in a register is assumed to consist of se\}eral values. Fig. 4.1_(&)
shows a SIMD instruction that performs two additions on upper and lower pvarts of registers.
LOAD/STORE instructibns is aléb regarded as SIMD instructions. Fig. 4.1(b) shows an ex-
ample of SIMD LOAD/STORE instructions. Usually, processors with SIMD instructions also '
have permlitation instructions. permutation instructions transfer several values from a couple
of registers into a register. permutation instructions are useful to execute SIMD instructions
effectively because permutation inStruétions produce packed data type.

Fig. 4.2 shows an example of pei’mutation instructions. First, a[i] and a[i+1], and b[i] and

bli+1] are loaded by a LOAD instruction. Since source values of additions are not located

41

42 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

) 32bit register . n;eéﬁzry
e~ sobits — e . .. e o
S short ¢[N]; 32bit LO_AD c[01|- al
. e < .
e~ 16bits—»] - short d[N]; 1] a2
a_up a_lo | b_up l “b_lo] I al a2 . i .
\ / . 1 =
N
_ df1) b2
[aZup+b_upa_To+b o] 32bit STORE
s : , ‘
39bit register . : T : .
(a)"ADD2" instruction (b)"SIMD" LOAD/STORE instructions

Figure 4.1: Example of SIMD instructions.

regularly, a SIMD instruction is not applied right after loading. However, replacing values .
by permutation instructions, SIMD instructions can bé‘ applied and the program is executed

effectively.

4.2 Code selection

Code selection is usually implemented by using tree pattern matching and dynamic program-
ming [S0). | | |

Let us assume a D_AG G = (V, E) representing a given basic block. Here v € V/ réprésents
an IR iével operation such as arithmetic, logical, load and store. e € E represents data'de—
pendency. A DAG is divided at its CSE(Common Sub Expression)vinto DFT(Data Flow Tree).
Consequently, a set of DFT is got for a basic block. |

In tree pattern matching and dynamic programming technique, an instruction set is modeled
as a tree grammar. A tree grammar consists of a set of terminals, a set of nonterminals, a set
of rules, a start symbol and a cost function for rules. Terminals represent operators in a DFT.
Nonterminals represent hardware resources which can be stored data such as registers and
. memories. A cost function determines a cost, which is usually execution cycle of instruction
corresponding the rule. Rules is used to represent behavior of instructions. For example, an

ADD instruction which performs addition of two register contents, and stores the result to a

4.3. SIMD INSTRUCTION FORMULATION - 43

_"SIMD" LOAD "SIMD" LOAD

afi)afi+1] bli},bli+1]
register \ | register.
[alil Tali+11) . | bl Juli+1]]

shorta[NJ, bIN],c[N] PACKHL | >< | PACKLH
. Z v
. [l | Bl | !a[i+1]!b[i+1]|
clil] =a[i] + afi+1];: ’ ’
cli+1]=b{l + blit1]; P ADD?
' [el [ohi+1i]

A\

"SIMD" STORE
. clil,eli+1]

Figure 4.2: permutation instructions.

register represents as follows. -
reg — PLUS(reg, reg).

Code selection for a DFT is carried out by deriving the DFT which has minimal cost. In
order to derive a tree which has minimal cost, dynamic programming is used. In a bottomfup
traversal, all nodes v-in DFT are labeled with a set of triples '(h, p,c), where 7 is a nonterminal,
" pisarule, and cis the cost for subtree which root is v. This means that node v can be reduced

ton by applying rule p at cost c.

4.3 SIMD IhstrUction Formulation

In this chapter, formulation and solution in reference [15] are summarized.

4.3.1 Rules for SIMD instructions

A set of DFTs mentioned in section 4.2 is considered. The flow of this method is as follows;
first, é set of rules is conﬁputed at each node in DFT by pattern matching. Next, a rule is selected
from the set on condition thét cost is minimum. For the sake of simplicity, we discuss the case
of two data placed in a register. However, it is easy to extend this method to the case of three

or more data placed in a register.

44 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

When a N-bit processor with SIMD instructions perform an operation on %—bit data, there

.are three options to execute the operation.

v

e Execute an instruction which performs on N-bit register
e Execute a SIMD instruction, where the operations perform on upper part of register
e Execute a SIMD instruction, where the operations perform on lower part of register

In the tree grammiar, it'is necessary to distinguish full registers as well as upper and lower
subregisters. To represent the operation on upper and lower part of a register, additional non—
terminals reg_hi and reg_lo are introduced. Using reg-hi and reg-lo, three operations men-

tioned above can be represented.

e Arithmetic and logical operatibns

For example, 32-bit addition and upper and lower parts of SIMD addition are represented

as followé.
” reg ~— PLUS(reg,reg)

reg_hi — PLUS(feg_hz',reg_hi)
reg_lo — PLUS(reg-lo,reg-lo)

Other operations can be répresented similarly to the example of addition.

o Loads and stores

Similar to arithmetic and logical operations, 16-bit load operations are represented as

follows. v
reg. — LOAD_SHORT(addr).

reg_-hi — LOAD_SHORT (addr)
reglo — LOAD_SHORT(addr)

. 16-bit store operations are represented as follows.

S — STORE_SHORT(reg,addr)
S — STORE_SHORIT(reg-hi,addr)
S — STORE_SHORT (reg-lo,addr)

43. SIMD INSTRUCTION FORMULATION b 45

Mej=(o
R1 =reg->MUL(reg,reg),
R2 €78No->MUL(reg-lo,reg_lo),

vj
R3 =reg_up->MUL(reg_up.reg_up) \ *

M(vi)={

R4 = reg->PLUS(reg,reg);

R5 =reg_lo->PLUS(EER lo,reg_lo),
R6 =reg_up->PLUS(reg_up,reg._up)

Figure 4.3: Consistency of nonterminals. - Figure 4.4: Schedulability.

e Common sub expressions

The definition and the use of CSE are respectively represented as follows.

S — DEF_SHORT_CSE(reg)
S — DEF_SHORT_CSE(reg_hi)
S — DEF.SHORT_CSE(reg.lo)

reg -~ — USESHORT.CSE
reg-hi — USE_SHORT.CSE
reglo — USE.SHORT_CSE

4.3.2 Constraints on selection of rules

In matching phase, a set of rule is annotated at each node. In the next phase, a rule is selected

from the set, while the selection of rule have to Be done under constraints as follows._

o Selection of single rule

For each node v;, exactly one rule has to be selected.

e Consistency of nonterminals

Let v; and vy be children of v; in a DFT. Here, a nonterminal which is left hand side of a
rule is called target nonterminal. Each target nonterminal of the rule selected for v; and

vy, corresponded to argument of the rule selected for v; has to be consist.

46 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

Fig. 4.3 shows an example of consistency of nonterminals. If R, is selected for v;, Rs
have to be select for v;. |
o Common sub expressions
Nonterminal of the rule selected for definition of CSE v; and nonterminal of the rule
selected for its use v; must be identical. | -
e Node pairing
When v; is executed By a SIMD instruction, another node v; which is executed by the
- identical SIMD instruction must be existed.
e Schedulability -

When we determine which nodes execute by SIMD instructions, data dépendency be-
tween each pair should be considered. As shown in Fig. 4.4, if v; and v; are executed by

an identical SIMD instruction, v, and v; cannot be execute at the same time.

4.33 ILP formulation

Let V = {v1,...,v,} be the set of DFG nodes, and let R; be a set M(v;) of all rules matching

v;. Boolean solution variables z;; is defined as follows:

1, if R; is selected for v; ‘ |
Tij = . _ 4.1)
: 0, other '

variables z;; denotes whiéh rule is selected for v; from M (v;) after ILP is solved.

Let a pair of nodes (v;,v;) denote a SIMD pair if it holds below conditions.

e v; and v; can be executed in parallel. Namely, there is no path from v; to v&- or from v; to

v; in DFG.
e v; and v; represent same operation, and

o M(v;) contains a rule with target nonterminal reg_hi, and M (v;) contains a rule with

target nonterminal reg_lo.

4.3. SIMD INSTRUCTION FORMULATION _ , _ 47

o If v; and v; are LOAD br STORE, which work on memory address p; and pj»then p; — p;

equal to the number of bytes occupied by the 16-Dit value.

Boolean auxiliary variables y;; is defined as follows:

-1, if v; and v; are executed ‘at an identical SIMD instruction

: . 4 (4.2)
0, other ' - ' ;

Yij =
where variable y;; denotes nodes which are executed by an identical SIMD instructions, and
- the result of the operation‘ on v; is stored to upper part of a destination register, the result of the.
operation on v; is stored to lower part of a destination register. |

Constraints described above are represent as follows.

e Selection of a single rule

Since only one z;; become 1 each v;, this constraint represents as follows.

A V’Ui : Z - Ty = 1 o (43)

e Consistency of target nonterminals

Let Rie M (vi), R; . ny; — t(ng,n3) for a terminal ¢ and nonterminals ny, ng, 13, and
let v; and v, be thé left and right child of v;. Let. MM (v) C M(v) denote the s_ﬁbset
of rules matching v that have N as the target nonterminal. If Rj =n; — t(ng,ng) is
se}ected for v;, then the rule chosen for v; and v, must have the target nonterminals 7,

and ng This constraint is represented as follows.

: RpeMn2(v)
Vo; VR € M(v) + ;< > Tk @5

Ry eM™3(vr)

o Common subexpressions

48 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

Definitions of 16-bit CSEs and uses of 16-bit CSEs have been defined as follows.

Ry S — DEF_SHORT_CSE(reg)
R,= S — DEF_SHORT.CSE(reg.hi)
" Ry= S — DEF.SHORT.CSE(reg_o)

i

Ry=' reg —USE.SHORTCSE
Rs = reg.hi . — USE_SHORT_-CSE
" Re¢= reglo — USE.SHORT.CSE

Therefore, if v; is definition of CSE and v, is use of CSE, it is clear that M(v;) =
{Ry, Ry, Rs} and M (v,) = {Ry, Rs, Rs}. This constraint is represented as follows.

VUi, Uy & Tl = Tua, Tiz = Tus, Ti3 = Tug (4.6)
e Node pairing -

" Let P denote the set of SIMD pairs. If By, € M"(v;) is selected for ©;, there must be v;
and Ry € M *(v;) which holds (v;,v;) € P. This condition is represented as follows.

V'Ui : Z Tij = z - Yig V (47)

RieMhi(yy) j:(bi,vj)GP
Yu; Z C Xy = Z Y (48)
RpeMlio(v,) J:(vs,v5)EP

e Schedulability

Let X (v) denote a set of nodes that must be executed before v, and let Y (v) denote a set
of nodes that must be executed after v. If (v;,v;) € P, then a set Z;; defined below have
to be empty. |

 Zip = PO (X () X Y(v) U X (v5) x Y (1)) . @)

This constraint is represented as follows.

;

V(vi,0;) € P :V(0g,v1) € Zij : yig + 9 < 1 (4.10)

o Objective function

4.4, SIMD INSTRUCTION FORMULATiON WITH PERMUTATION INSTRUCTIONS 49 |

\@\®/® DE?@ @gll?: -
| / : _’ \.;.Df3
g s

Figlire 4.5: Nodes insertion for data transfers.

The optimization goal is to make the maximum use of SIMD instructions. - Since tar-
get nonterminals of the rules for SIMD instructions are reg_hi or reg_lo, the objective
function is represented as follows.

F=0 =) (4.11)

€V RpeMbi(v) UM (v;)

4.4 SIMD Instructibn Formulation with permutatidn In-
structions ‘

In this section, the proposed method is explainéd. The proposed method is extended from
the Leupers’s method [15]. Data transfer for SIMD instructions is considered in instruction

selection of compiler. The following sections explain in detail.

4.4.1 IR and Rules for Data Packing and Moving

To represent data transfers on DFT, nddes that represent data transfer operations are introduced.
Since candidates of data transfers appear between operétions, nodes for data transfers are in-
serted between all opera_tions'.i Fig. 4.5 shéws nodes insertion for data transfer. DT1, DT2 and
DT3 are added to DFT. Moreover, the rules of data transfer are also introduced. When a pfo—
cessor executes a permutation instruction, there are three conditions according to the locations

where data exist.

50 - . CHAPTER 4. OPTIMAL_: CODE GENERATION' FOR MEDIA INSTRUCTIONS
reg_hi reg_lo

reg_hi
(a) reg_hi->PACK(reg_hi) (b) reg_hi->PACK(reg_lo) (c) reg_hi->PACK(reg)

reg_hi reg hi

- Figure 4.6: Rule of pérmutation instructions.

[

& Two values are located in a register. The value that would be packed is in the upper part

of the register.

e Two values are lécated in a register. The value that would be packed is in the lower part

of the register.
e A value is located in a register

These three conditions are shown in Fig.4.6. Fig. 4.6(a) shows a data transfer from upper pari
of a source registér to upper part of a destination register. To represent permutation instructions,
terminal PERM is used. Fig. 4.6(a) represents the rule reg_hi — PERM (reg_hi). Siﬁxilarly,
Fig. 4.6(b) represents the rule reg_hi — PERM ((reg_lo). Fig. 4.6(0) shows a data transfer
from source register occupied by a value to upper part' of a destination registef. Fig. 4.6(c)
represents the rule reg_hi — PERM(reg). Data transfer to the lower part of destination

register is represented as same as the case of data transfer to the upper part mentioned above.

These conditions for permutation instructions are formulated as additional rules shown below.

— PERM((reg-lo
reg_hi — PERM/(reg-lo
;r'eg_lo — PERM((reg_hi
— PERM(reg_hi
PERM(reg)
PERM(reg),

reg_lo)
)
)
)

. T"eg__hi

!

reg_lo

l

reg_ht

4.'4. SIMD INSTRUCTION FORMULATION W'ITH PERMUTATION INSTRUCTIONS 51

BHREbl] [ahlai]

PACK2 - PACKLH2

[5_hi [b o | lahi [alo | 6 ki b o |

PACKHL2 PACKH2

Figure 4.7: Example of permutatio_ﬁ-inshnctions.

. where.a permutation instrubtion consists of two rules : one ha§ reg-hi as a target nonterminal,
and the other has reg_lo as a targét nonterminal. . | o |
For example, consider four permutation instructions Whicﬁ TMS320C62x [4] ha{Ie shown in
Fig. 4.7. Using the rules introduced above, permutation instructions are represented. PACKH2 -
' .consists of two data transfers, one is from upper part of source register to upper part of desti-,
nation register, and the other is fror/n uppér part of source ;registe‘r_tovlower‘ part of destination
- register.- Former data flow-is rep_reéented by reg-hi — PERM/(reg_hi), and latter is repre-
sented by reg_lo“—> PERM (reg_hi), therefore, PACKH2 instruction can be represénted by a
pair of rules, reg_hi — PERM (reg_hi) and reg_lo — PERM (reg_hi)k.
Moreover, the rule for UNPACKthic'h isa instrﬁction that moves a value located upper or
~ lower partof a regi.ster into a register is adqptéd. Those rules are represented as follows.
‘reg — UNPACK(reg.lo) |
reg — ,‘ UNPACK(reg_hi) - |
In addition, thé rules indicates no operation cal]ed “NOMOVE” is intrqduced.

reg o NOMOYV E(reg)
reglo — NOMOVE(reg.lo)
reg-hi — NOMOV E(reg_hi)
These rules are selected when it is not necesséry to move data.
PERM and UNPACK have some cost since acfual instructions are executed if they are

selected. However, NOM OV E have hQ cost since that is corresponded to no actual instruction.

52 - CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

G ——— -

1] dil
dil dir _ _djl Ajr r di l J 1 I dir dir
/\ @ | @’\/ ' T ONOL
%/ simd_add \dj N

‘Figure 4.8: Identification ofa régistep which source values located.

4.4.2 Constraints on selection of rules
According to additional DFT nodes and rules, the following constraints has to be considered.

e Node pairing for permutation instructions

PERM , UNPACK and NOMOV E match DET nodes for data transfer. Those rules

‘must be selected under constraints shown below.

- If PERM is Selected for v;, another node v; that is selected as PERM must exist,

_ and they are executed an identical PERM instruction.
- fUNPACK is selected for v;, there is no node executed with v;.

- If NOMOVE is seleptéd for v;, even if a target nonterminal is reg_hz or reg_lo, -
v; is not pairéd to-other nodes because behavior of NOMOV E does not depend
on other part of a register. However, when SIMD instructions are executed succes-
sively, the nodes for data transfers between SIMD instructions must be selectéd as

NOMOV E and must be paired them.

‘o Identification of a register which source values Jocated

When a SIMD instruction is executed, left arguments have to be located in an identical
register, and right arguments also have to be located in the source register. Fig. 4.8 shows
-an example of identification of registers. Each result of v;, and vj,, and v;, and vj, must

be located in an identical register to performv; and v; as a SIMD instruction.

4.4. SIMD INSTRUCTION FORMULATION WITH PERMUTATION INSTRUCTIONS 53

4.4.3 ILP Formulation

In this section, ILP formulation for permutation instructions is explained.

~~ e Node pairing for permutation

Boolean auxiliary variables a;; and b;; are defined as follows:

1, v and v; are executed an identical PERM instruction
aij = . '
0, other

1, v; and v; are stayed in an identical register

bq;j = :)
0, other.

"~ Let Vyove denote a set of nodes for data transfers, and let MEp(v) denote a subset

of rules.in MY (v) that have OP as the terminal OP. This constraint is represented as

~ follows.
VUz' c VMOVE : Z Tip = Z aij (412)
‘ , RkEM%RM(”i) - F{viws)EP '
Yv; € Vyove Z L T = Z - Qs o (4.13)
, RREMBppn,(vi) Ji(vsoi)€P :
VUi c VMOVE : ' ‘ Z Tip = Z bij . (414)
RkGM},’(',iO'MOVE(Ui) j:(’ui,vj)GP‘
V’Ui € VMOVE : Z T 2 Z bji (415)

RkGM]l\?QMOVE(Ui) J:(vj,vi)EP

According to the definition of 1;; , a;; , and b;;, following constraint is needed.
Yyi; € Vimove = ¥Yi; = Gij + bij (4.16)

e Identification of a register which source values located

Let v;, and v;, be left and right children of v;, v;, and v;, be left and right children of v;.
In order to execute a SIMD instruction for v; and v;, results of v;, and v;;,, and v;, and
v;, must be located in a register. When v;, and v;, are executed by an identical SIMD

instruction, the results of v;, and v;, are stored to a register. Therefore, to execute a

54

. CHAPTER _4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS'

SIMD instruction for v; and v, v;, and Vs> and v;, and v;, must be executed by a SIMD
1nstruct1on Yij denotes that SIMD 1nstruct10ns is executed for v; and v] ThlS constraint

is represented as follows.

V(v v) E Py € Vi, < iy ' 4.17)

Y(ui,v;) EPvi €V i iy < i (4.18) .

Objective function

The optimization goal is to minimize code size. Consider variables x;;, y;; for arithmetic,

.logical operation and load/store, y;; corresponds to a SIMD instruction, and z;; for the

rule which has reg as a target nonterminal corresponds to an instruction. On the other
hand, if variables z;;, a;j, b;j represent data transfer operations, a;; corresponds to a
permutation instruction, z;; for UNPACK corresponds to a data transfer operation, and
Tij, bij for NOMOV E corresponds to no instructieh. Let Ppov e denote a set of pairs

of nodes for data transfer, and code size can be represented as follows.

f= Z .'Z ik + > Yij

%€V—VimovE RyEMTe9 (v;) (vs,v;)€EP~PyovE :
+) > D DR 4.19)
%EVMOVE RyeM b acw (i) (viv5)€PMovE

4.5 Experimental results |)

The prbposed formulation was implemented by using CoSy compiler development environ-

ment [51] on RedHat Linux 8.0. For evaluation, a DLX Based processor which had DLX -

instruction set without floating point arithmetic operation, but had SIMD instructions, such as

ADD2, MULT?2, and several permutation instructions. ADD2 instruction performs-two addi-

~ tions on 16-bit values, MULT? instruction which two muitiplications on 16-bit values, and a

variety of permutation instructions are PACKL, PACKLH, PACKHL and PACKHH. To com-

pare the quality of generated code, three compilers were used: (1) a cbmpiler generated by the

compiler generator of ASIP meister [52] (2) a compiler applied the Leupers’s method based

4.5. EXPERIMENTAL RESULTS . o 55

Leupers’.s [15]

1.0

0.5

0.0

,{I’\Q‘\ 06\\0\ Q\Q‘ ((\d\‘\“‘ 6&\&
) o oo A°

Figure 4._9: The ratio of geherated code size.

on (1)’s compiler, and (3) a compiler applied the proposed method based on (1)’s compiler. -
Programs for evaluation which consists of iir_biqliad_one_section, complex_multiply, convo-
lution, dot_product, fir, matrix and n.real updates were selected from DSPstone be_hchmark
47]. Original codes such as convolution, dot_product, fir, matrix, n_real_updates were unrolled

easily extract parallel executions.

-

Table 4.1 shows generated code size and the number of execution cycles of each program
compiled by each compiler. Figs. 4.9 shows the ratio of code size generated by (2) and (3) to
generated by (1) and F1g 10 shows the ratio of execution cycles of generated code. Table 4.2
~ shows the number of nodes of DFT, the number of variables and constramts in ILP and CPU

time.

In Fig. 49 and Fig. 4.10 coinparing the Leupers’s method with no SIMD the Leupers’s

method was effective in only n_real updates. However, the proposed method reduced code

56 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

proposed:

_Leupers’s [15]

o @ ®

W \®
2N o
\9‘ A\ %\\\Q

Figure 4.10: The ratio of execution cycles.

size and exécution cycles 1n convolution, dot_produét, FIR, matrix, and n_real_updates. The
Leupers’s metﬁod' can select SIMD instructions the case where a sequence of instructioﬁs con-
sists of SIMD instructions only because the Leupers’s method does not consider data transfer.
However, such ‘conditidns are not often filled. On the other hand, the ‘proposedvmethod inserts
data transfer instructions when SIMD instructions can be applied by moving values, or un-
packed data is required. Actually, in convolution, the proposed method selected a permutation
instruction to adapt the location of values for SIMD multiplibation instruction and select it.

In Table 4.2, comparing the Leupers’s method and the proposed method, the proposed method.
takes much more time to solve ILP. This is because the proposed method has wider solution
space than the Leupers’s method. Therefore, the proposed method spends much time to get an
optimum solution. However. the proposed method can select SIMD instructions effectively.
The code size of the proposéd method is smaller than that of the Leupers’s method, and execu-
tion cycles of the proposed method is smaller than that of the Léupers’s' method.

Table 4.2 shoWs that the pfoposed method compiles 6 programs within a minite. However;

the proposed method takes more than 5000 seconds to compile FIR. Because it is proved that

4.5. EXPERIMENTAL RESULTS | L 57

" Table 4.1: Generated code size and execution cycles.

| no SIMD optimization | Leuper’s method | proposal method

pfq_gram code | execution code | execution | code | execution

| size . cycles size cycles size | cyclyes
iir_biquad N_section | 132 | 420 '132. " 420} 132 | 420
complex multiply | 126 562 | 126 562 | 126 | 562
convolution 62 T84 62 784 | 54| 514

© dotproduct - | 57 62| 57| . 162| 44| 118

PR 88 | 828 | 88 828 | 67 365
. matrix 17| - s268| 137|268 | 127| 4dss|

nrealupdate | 95 12| 53| 634| 53| 634

the ILP ,b\elongs.to NP complete problem [53], 1t is e’Xpected that the combilation time fof large
programs will be very long. The compiiation time depends On not only the size of programs but
also characteristics of programs. Characteristics of programs reflect the number of Variabies,
the number of c_c_;nstraints and the solution space in an instance of ILP. Comparing the convolu-
tion and n real updafe in Table 4.2, the number of nodes and the number of constraints of nreal -
update are srriaﬂer thaﬁ coﬁvolution. However, the compilation time of n real update‘is longer
than convolution. This indicates that the instance of ILP of convolution can be solved more
‘easily than n real update. Fig. 4.11 and 4.12 show the ‘program fragmerlts of convolution and
n ;eal update. In Fig. 4.11 and 4.12, 4 additions and 4 multiplications can be found for each
programs. However, only multiplications are executable in parallel in 4.11, while additions are
also executable in parallel in 4.12. This means the constraints in the instance of EP of convo- |
lution is tighter than n real updates. As a result, the optimum solution of convolutioﬁ can be
found in shorter time than n real update.

There are some points to be considered to shorten compilation time. The first point is that
the input DFGs Wefe not modified before ILP formulation in this experiments. Generally, there
are several DFG representations for a specific program fragment. Processor independent opti-

mization techniques such as sharing common sub expression, redundant expression elimination

58 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

. Table 4.2: The number of DFT nodes, variables and constraints in ILP and CPU time.

Leupers’s method proposed method v
program #of |#of | #0f | CPUtime | #of | #of | #of | CPU time |-
' nbdes var. | cons. [sec] nodes | var. 1 cons. [sec]
iir_biquad N_section 40 | 189 | 190 ol 69 | 2304 | 7974 0.99
complex multiply - 16 | 62 69 0.09| 30 776 1789 0.18
convolution | 341149 174 0.09 | 60 | 2062 | 7504 1.99
dot product 18| 67 88 0.08| 32| 704 1522 0.18
fir- 48 1305 627 017 81 | 3660 | 20097 | 5679.00 |
matrix 6 21 25 0.12 10 92 101 - 379
n real update 28 | 129 | 137 0.12 51| 2166 | 4557 22.72

y+¥px [i+0] *ph [N-1-i+3]; p_dli+0]=p_c[i+0]+p_a[i+0]+p_b[i+0];
y+=p’x [i+1]*ph[N-1-1+2]; p_dli+l]l=p_cli+l]l+p_a [i+1] *p_bl[i+l];
yt+=px [i+2] *ph [N-1-1i+17]; p_d[i+2)=p_cl[i+2]+p_ali+2]*p_b[i+2];
y+=px [i+3] *ph[N—l—’iJrO] ; p_d[i+3]=p_c[i+3]+p_al[i+3]p_b[i+3];

Figure 4.11: convolution. Figure 4.12: n real update.

J

reduce the number of nodes in DFGs. If the number of nodes in. DFGs decréasés, the compi-
lation time can be shorten because the size of the insténc’e of ILP becomes small. The sécond
point is that the instance of ILP is soived without any modification. Redundant variables and
constraints may be found in the instance of ILP which is derived- by the prbposed ILP formu-
lation. If variables or constraints can be £educed.by some analysis before solving the instance
~of ILP, ILP solver may solve the modified problem in shorter time comparing with the case to

solve the original instance of problem.

4.6. SUMMARY o _ 59

4.6 Summary
In this chapter, a code selection method for SIMD insﬁuCtions considerihg data transfer has |
proposed. In the proposed method, nodes for data transfer has been added to DAGs, and rules
~ for data transfer has been introduced. Similar to the Leupers’s method, code selection problem
was formulated into ILP, and the problem was solved by using ILP solver. Experimental results

show that the proposed method can generate more efficient codes than the Leupers’s method,

which use data transfer instructions to exploit SIMD instructions.

60 CHAPTER 4. OPTIMAL CODE GENERATION FOR MEDIA INSTRUCTIONS

Chapter 5

Efficient Code Generation Algorithm

foif Media InStr'uc;ti'oh's

This chapter describes the fast code generatién method for medid procéssors. The organization
of this chapter is as follows: The Way to find SIMD. opefatidns in high level langﬁage program
is described in section 5.1." Permutation instruction gener_‘ation based on‘MDDs is'p‘r'esented in
section 5.2. Experimental fésults are shown in section 5.3. This chapter is concluded in section

5.4,

5.1 Generation of S‘IMD Instructions

' The.pr‘oposed code 'genératidn approach mainly consists of two.parts. The first part is SIMD
instruction generaﬁon, and the second part is permutation instruétion generation.

In the first part, using tree matching in [50] and [iS], a data flow graph (DFG) whose nodes
are elements of SIMD operatibns is constructed. - After the DFG construction, the DFG is
divided into data flow trees (DFT), then operations are grouped into SIMD instructions. Finally,
a DFG whose nodes are SIMD instructions is constructed. In this section, grouping of SIMD
operatioﬁs is explained. Pattern mafching, DFG construction and DFT construction are similar

to [1].

61

62 - CHAPTERS. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

A & ARCCERICIDICED

(a) Selection of DFT nodes . (b) Grouping DFT nodes

Figure 5.1: Operaﬁdn grouping

5.1.1 Grouping SIMD Operations

Groups of operations performed by SIMDA instruc;tions are determined as follows. First, leaves
of DFTs which have the same operations are selected. Then, if the number of the selected
’nodes is less than the number of dperatiOns that one SIMD instruction can perform, the selected
nodes are grouped as a .SIMD instruction. If not, fhe selected nodes are divided into smaller
groups whose nu’mbef of elements is less than the number of opefations‘of a SIMD instruction. .
Finally, the nodes in the selec.ted group are removed from the DFTs. This grouping is repeatedly
processed until all nodes are removed from DFTs. In this process, nodes corresponding to
load and store operations that can be executable by one SIMD instruction are restricted by"
its memory address. Since misaligned memory access is unavailable or cause large penalty
cycles, c_orisecutive and aligned memory access operations are groui)ed as SIMD instructions.
Fig.5.1 shows an example of operation grouping. The load operations have been removed from
DFTs as shown invFig.S .1(a). The add operations, nodes with a plus operator, are grouped and
added to the DFT in Fig.5.1(b). ‘Then, the add nodes will be.re,moved from Fig.5.1(a). After
 this grouping, the DFT in Fig5.1(b) is constructed. This process continues until all nodes are

removed from DFTs.

5.1.2 Ordering SIMD Operations in Registers

The order of operations in a register is determined as follows. The load and store operations are
imiquely ordered by the memory address accessed by operations, because the available group

of memory access operation is limited by the memory address and alignment as mentioned in

5.2. GENERATION OF PERMUTATION INSTRUCTIONS ' 63 '.

(2) graph of grouped operations ~ (b) the reordering result

Figure 5.2: Operation ordering

sect_ion5.1.1.> The order of operations except for load and store is determined by the order of
load and store operations. The most frequently used position where sourcés and destinations
are arranged is selected for each ‘opérétion. Fig.5.2\ shows the example of operation ordering.
In Fig.5.2(a), a part of grouped graph is shown. The most left add opefation has two sources al‘
and b0, one destination dl. The order in the grouped node of a1l is the second element, b0 is
the first and d1 is the second. Therefore, | the most left add operatién in Fig.5.2(a) is reordered
to the second in the grouped node as shown in Fig.5.2(b). Slmllarly the second add operation

is reordered to the most left in the grouped node.

5.2 Generation of»PermutatiOn Instructions

This Asectio}n describes how the permutation instructions are generated. Hereafter, the contents
- of packed data are called permutation because they are naturally repre_sentéd by permutations.
The generation method of permﬁtatiohs consists of two stéps. In the first steij, it is examined
whether the target p,ermutatioh can be generated using given permutation instructions. The
basic concept of the first step is to generate all permutations from source permutations using
available permutation instructions. In the second step, the expression tree representing the con-
struction process of the target permutations from input,permutations is generated. The tree
: construc_tion‘ starts ﬁom the root, Wthh is the node corresponding to the target permutations,
and the tree grows from the root to the leaf by adding nodes representing permutation instruc-

tions. In the permutation instruction generation, Multi-valued Decision Diagram (MDD) [54] is

64 - CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

utilized to represent and manipulate the sets of permutations. Using MDD, a permutation oper-
ation can be manipulated not on a pair of permutations but on pairs of sets of permutations. This -
characteristic enables efficient generation of permutations. In the rest of this section, MDDs

are introduced first. Then the permutation instruction generation algorithm is described.

'5.2.1 Introduction of MDDs for Representation of a Set of Permu-
tations | o _—

In this section, representation of the set of ‘permutations using Multi-valued Decision Dia-
gram(MDD) is introduced. ' | ,
Consider the register which has n elements of packed data. Let S = {s1, 5, . . .k}vbe the set
of given sub-word data. Let r € S™ be the permutation représenting the content of a register.
Let R € 25" be the set of ‘permutations. When a set of pérmutations R and a permutation r-

are given, a function F : S™ - {0,1} is defined as follows :

1, ifreR .
F R(r) = ' G.D
0, ifrgR S :
According to the definition, the function Fg implicitly represents the set of permutafions R.

Here, variables x4, .., , whose domain is S are introduced . Assume z; to be the 7th element -

of r which is the input of Fg. Using z;, the equation(5.1) can be expressed as follows :

L if (z1,...,2) €ER
0, if(zi1,...,zn) R

Fr(z1,...,2,) = (5.2)
In the equation(5.2), Fg is defined as the multi-valued input, binary-valued output func-
tion. Such functions can be represented by Multi-valued Decision Diagram. Fig.5.3 shows two
MDD:s for {abcd} and {abcd,abdc}. In Fig.5.3(a), the only one path exists from the root
" to 1-terminal through the edges a,b,c,d. On the other hand, in Fig.5.3(b), there are two paths |
exist from the root tov 1-terminal through a,b,c,d and a,b,d,c. Considering the sequences of
the labeled symbols on edges as elements in a set, a set of permutations can be represented by
an MDD. Moreover, some MDD manipulations cofrespond to operations on the éets of per-

mutations. The logical-or operation on MDD corresponds to the union operation on the set of

" 5.2. GENERATION OF PERMUTATION INSTRUCTIONS ’ 65

(@{abcd} " (b) { abed, abdc)

Figure 5.3: MDD:s for { abed } and { abcd,abdc }

permutations. Similarly, logical-and operation on MDD 'corres‘ponds to the intersection oper-
ation. For example, the MDD shown in Fig.5.3(b) is constructed by the logical-or of MDDs
representing {abcd} and {abdc}, which corresponds to the union of {abéd} and {abdc}.

5.2.2 Permutation Opération Manipulation on MDDs

Using MDDs, basic operations such as union and intersection can be applied to permutations.

Similar to such basic operations, permutation operations can also be performed on MDDs.
‘Consider a permutation opération p which takes two permutations 1,72, and returns a per-

mutation 3. Let 7;(j) be the jth elements of a perniutation r;. Let o(k) be a function defined

by (k) = (i, Jr)» iy € (1,2} 5 € {,.. ,n} fork=1,. . ,n. Let g, (k) be the jith element

of the i;th input permutation of p,. Given a function ¢, a permutation operation p,(ry,72) is

66 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

defined as follows :

Bolr) = 0,)

= (ro(G1), - - -, Tin(Gn)) : (5.3)

Let P, be the permutation operation on sets of permutations Ry and R,. P,(Ri, Rp) is

defined as follows. :

Pa(RlaRZ)—z U : {pa(frl’r,?) } | (5‘4)

(r1,72):r1€R1,72€Ry

The result of P,(Ry, Rp) .is a set of permutatiohs whose elements are results of p, on any
pairs of elements of input sets. | o
- The direct computation of equation(5.4) is hard when |R;| and |R,| are large. However,
‘using MDDs, permutation operations on sets of permutations are effectively. manipulated. In
other words, there is no neéd to execute the permutation operatiori for each pair. ‘The'way to

compute P(R;, Ry) using MDDs consists of three primitive manipulations.

" 1. Foreach R;, make R, from R; by adding all permutations whose elements at the position

where the permutation opération works are the same as that of any of permutations in Ri.

This computation on MDDs is simply implemented. Every node which corresponds to

- unused element is replaced with the union of its children as shown in Fig.5.4.

2. For each R/, make R! by reordering the elements of all permutations in R; to match with

the order of the output of the permutation operation.

This computation on MDDs is almost same as the conventional variable ordering tech-
nique for decision diagra-ms_. The difference between this reordering and con_veﬁtional
variable ordering is that the level of variable is not changed in this reordering whereas it
is changed in the conventional variable ordering. Fig.5.5 shows reordering of elements

on MDDs.

5.2. GENERATION OF PERMUTATION INSTRUCTIONS | . el

Figure 5.5: Réordering on MDDs

3. Finally, P(R,, R,) is obtained by computing intersection of Ry and Rj. The intersection

operation corresponds to the logical-and operation on MDDs.

’FQr the explénation of the permutation operation manipulation, consider a permutation op-
eration p shown in Fig.5.6. Assume the input sets of permutations are B; = {abcd} and
R; = {dcba}. The elements of R} are all permutations matching abx*.. As a result, R} is
.obtained as follows :
'Ry = {abaa, abba, abca, abda,
abab, abbb, abcb, ai;db, _
ébac, abbec, abec, abdc,

abad, abbd, abcd, abdd}

Similarly, the elements of R), are all permutations matching dc*. In the second step of

68 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS
r | r2 .
r3

Figure 5.6: An example permutation instruction

the perniutation operation manipulation, elements in R} and R are reordered according to the
permutation operation. The elements of R/ and RY are all permutations matching a b+ and
xd*c respectively. Finally, the intersection of Ry and R} is computed. The intersection of R
and Ry is the set of permufations matéhing both a+bx and »d*c. Asaresult, { adbc }is
obtained for this example. - |

In the example shown in this section, the length of permutation is 4,-and the input sets of
permutations have only one elément. Howex}er, it is clear that these are not restrictions, becauseb

such parameters are independent of those manipulations.

5.2.3 Permutation Instruction Generation Algorithm

In this section, the permutation vinstruction generation algorithm is explained.

The inputs of the algorithm are the set of permutations Ry, a required permutation r, and a
set of permutation operations P. The output is an expression tree whose operations are P € P
and leaves are r E Ry. The result of evaluation of the tree have to be r,. Note that the subscript
of R is used to distinguish ambng the variants of the set of permutati'ons generated in this
algorithm though R; means the ith input of the permutation operation in the section3.

The permutation instruction generation algorithm consists of two sub-procedures.

1. Examine whether the required permutation can be generated using the given permutation

‘operations.

2. Build the expression tree whose intermediate nodes are permutation operations, leaves

5.2 -GENERATION OF PERMUTATION INSTRUCTIONS 69

CanGeneratePermutation(Ry, P, 1,)
1: 40 ”
2: while r, & R; do
3 VPEP R1+13<——P(B4RL)
4. | Rz+1 — (Uj RL+1,j) UR;
5: if R;11.= R; then

. 6 - return false
7. end if
8: 1—1+1
9: end while

10: Ngepep <— 1

11: return true

Figﬁre-5.7: Testing Target Permutation Generation

are input permutations.

~ The first sub-procedure CanGeneratePermutatibn is showﬁ in Fig.5.7. The basic concept
of CahGeneratePermutation is to generate all permﬁtations from source permutations using
available permutation operations until 7, is generated. The main pfoeess is the while loop in the
lines from 2 to 9. The variable i is initialized to O and incremented for every iteration. R; holds
all permutations -geﬁerated' in 0,...,2 th iterations. In the lihes 3 and 4, R; 1 is made from R;
by adding permutations generated by available permutation operations. In the line 5, R;1; and
R; are compared. If R,y is equal to Rz this sub-procedure will finiish and return “false” since
it means that no more permutations can be generated and the required permutatlon could not
be generated by available permutation operations. Until the required permutation is generated
or no other permutations can be generated, the while loop is executed repeatedly. When this
sub-procedure finished, the number_ of iterations is obtained és a constant ngeper. The constant
ndepth,ahd the sets of permutations Ry, ..., Rn,,,, generated in this sub-procedure are also

_used in the second sub-procedure.

70

CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

GetExpressionTree(RTeIire i)

1:
2

: end if

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

if Rreswre N Ry = ¢ then

return aleaf corresponds to r € RTI4TN Ry

if Rreswire N\ R; = ¢ then

return nil

: end if
: forall P; € P do

(R;equire,l, R;equire,'r) — P7Y(Rreavire)
T} — GetExpressionTreé(R;eq“"e’l,z' - 1)
Ty GetExpressionTree(R;eq“"e’f.z' -1
i T # nil and T7 # nal then
T; «— a tree with P; as root, subtrees are T} and 77
else ”
T; «— nil
end if |
end for
if VT : Tj # nil then
return Tj such that the number of nodes is minimal
else
return nil

end if

Figure 5.8: Expression Tree Construction

5.2. GENERATION OF PERMUTATION INSTRUCTIONS n 71

The second sub-procedure GetExpressionTree is shown in Fig.5.8. The inputs are a set ‘of
permutatlons Rreevire and an integer i. An expressmn tree representing the expression o gener-
ate one of the elements n Rreq"“'e is returned. The second input ¢ indicates the depth of tree to
be built. The depth of obtained tree will be less than equal to 4. This sub—procedure constructs
an er(pression tree recursiVely. At the :start, GetExpressionTree is invoked with ¢ = Tdepth, and
Rrezvire — Ipr 1. In Fig.5.8, the lines from 1 t 3, a leaf of permutation in Rreevie N Ro is

>returned if R"eqwe includes any permutations in Ry. In the lines from 4 to 6, nil is returned
if the condluon is satisfied since the condltlon 1ndlcates that no required permutation is in R;.
In the lines from 7 to 16, for each permutatlon operation B, a tree Whose root is Py is con- .

: structed P,c is the inverse permutatron operation. In the line 8, P;* returns a pair of sets of
permutations (Rreq“"e’l]-27"‘2‘1“”e ") which is the source of R""¢, In the lines 9 and 10, GetEx-
pressionTree is recurswely 1nv0ked to build the left and right subtrees, T} 'and T}. In the lines
from 11 to 15, If both Tl and T are not nil, a tree Ty, whose root is P, and the subtrees are'Tl
and 77 is built. Finally, in the hnes from 17 to 21, Tk Wthh has mm1mal cost is returned If |

any 7; k is ml ml 18 returned.

In GetExpresszonTree the functlon recurswely called itself 2 - |P| times. Therefore, GetEx-
pressionTree is called (2 - |P|)™ertt times in the Worst case. However, the lines from 4 to 6 in
GetExpresszonTree check whether it is p0331ble to generate necessary permutations, and redun-
dant subtree constru(_:tion is pruned if it is not possible. Since sub expression trees which are not
the part of feasible expression trees are not searched, computation time of GetExpressionTrée
practically depends on’ the number of feasible expression trees. This gives a great reduction
of computation time to search a desired expression tree. In CanGeneratePermutation, on the
other hand, permutation operations are performed Tdepth, * |P| times. It is reasonable since it is

polynomial in both the number of permutation operations and the depth of the tree.

This permutation instruction generation algorithm generates a feasible expression tree with
minimum number of permutation instruction from minimum depth of feasible expression trees.
n generatl, the depth of expression tree of the best solution is not minimum, and common sub
expression should be considered in the algorithm. Therefore, to find the best solution required

much time. The proposed algorithm can find a good solution in reasonable time in this feature.

72 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

5.3 Experimental Results

" In this section, the proposed method is evaluated.

5.3.1 Experimental setup

TTo confirm the effectiveness of 'SIMD and permutation instruction generation algorithm, the
algorithm wésv implemented. Media embedded Processor, MeP [55] was used as the target pro-

cessor. MeP is a configurable processor core. The base processor, MeP coré, is a 32 bit RISC

architecture and has no SIMD instructions. SIMD instruction capability can be added to MeP

core by cﬁstomizing coﬁﬁgﬁration. There are several configuration options for MeP, such as |

embedding .u\»ser designed logics, adding coprocessors, and $o on. The configuration option

used in these experiments was coprocessor option. A dual-issue coprocessor which has a 64

bit register file and supports 8-parallel byte, 4-parallel halfword, and 2-parallel word SIMD‘in—

structions , was added to MéP core. Fig. 5.9 shows the target architecture in this experimeﬁts.

There are 5 components in the Fig. 5.9, MeP core, a coprocessor, a Jocal memory, a global
bus interface 'an'd a data memory‘ access controller. The MeP core and the copfocesso’r share

d local memory, and both MeP core and the coprocessor can directly access the local memory

through 64 bit data bus. Data transfers among MeP core, the cop_rbcessor and the local mem-

ory are available. The local memory consists of data cache, | data RAM, instruction cache and

instruction RAM. The MeP core and the coprocessor fetched instructions and processing data

from the local memory. The data memory access controller manages data transfers between the

local memory and external memories. The target processor communicates with other compo-

nents through the global bus interface. The coprocessor has 2 SIMD pipeline data paths. Both

data paths supports 2/4/8 way arithmetic operations such as addition, subtraction and multipli-

catioh.' 6 permutation instructions were implemented in the coprocessor. These permutation

instructions take data elements in the lower or upper part of register from 2 source registers,

then, interleave and store them into 1 destination register. Fig.5.10 shows all permutation in-

structions of the coprocessor. The additional coprocessor works with MeP core in parallel.

. Therefore, the target processor behaves as a 3-way VLIW processor. If the bit width of the

processing data is 8, the target processor can perform up to 9 operations simultaneously; The

5.3. EXPERIMENTAL RESULTS

73

Global Bus
Interface

Data Memqry Access Controller

Giobal Bus .

Figure 5.9: Target processor érchitecturé

B

MeP core processes one operation, each SIMD pipeline in the coprocessor processes 4 opera-

tions. By the same token, if the bit width of the processing data is 16, the target processor can

perform up to 17 operations.

In these experiments, 12 programs were used to evaluate the proposed method. To evalu-

ate the ability to geherate data reordering instruction sequence, following 4 programs which

perform only data reordering were used:

bitreverse : bit reversed reordering

reverse : reversed reordering

shuffle : shuffle reordering

matrix transpose : matrix transposition

Other 8 programs were used to evaluate the entire SIMD instruction utilization technique.

SIMD instructions could not be used to execute those programs without data reordering. Fol-

lowing 8 progfams were selected as benchmarks:

| 74 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

ELEETR — [OEImkblk)

‘ ST :
(2 bl [k[dTi]
(a) unpacku.b

(e) unpacku.w) . () unpacki.w

Figure 5.10: Permutation instructions of the target processor

complex multiply : vector multiplication of complex numbers

complex update : vector multiplication and addition of complex numbers.

convolution : 1 dimensional convolution

dot product : inner product of two vectors

matrix : multiplication of two matrices

fft : Fast Fourier Transform of 16 complex numbers

rgbgray : color conversion of an image from RGB to gray scale

rgbcmyk : color conversion of an image from RGB to CMYK

5 of 8 programs, complex multiply, cofnplex update, convolution, dot product and matrik are
- selected from DSPstone benchmark [47]. Other 3 programs, fft, rgbgray and rgbcmyk were
coded from scratch. ' "
These programs were suitable to confirm the ability to use SIMD and permutation instruc-
tions, because all pr‘ograms‘ includes operations which can be executed in parallel,l and data

reordering was necessary to process those operations by SIMD instructions. The size of a data

© 5.3. EXPERIMENTAL RESULTS | ' 75

element was 16 bits and 8 bits for all programs. Therefore, 4 or 8 parallel SIMD instructions

were used for 16 or 8 bits versions of programs

The proposed method was unplemented asa translator which translates plain C program to
C program using burlt—rn functions which are mapped to SIMD and permutation _1nstruct10ns.
In our implementation,. the.cornpiler analyzed given C program, and unrolled loops in the given -
program. Then, proposed métho'd was applied ‘to the unrolled loop body. Finally, a C program
with built-in functions of SIMD and ’permutation instru"ctions were generated. For these ex-
periments, an MDD package which performs several operations needed to realize tlre proposed
method was used. MDDs were represented as shared ROMDD [56] in the MDD package-,'and
any special techniq_ne to reduce the _size of MDD such as edge negation Was not used. To 'evalu—
- ate the -proposed ‘method, we also implemented the permutation'instruction generation method
based on backward tree and forward tree proposed in [1], and developed another translator with
the method of [1] for comparison. The translator was the same as the translator with proposed
.method except for the permutation ins’truction generation method. . In [1], not only generation
. method of permutation lnstr_’uction sequences, but also method to generate SIMD instruction.
However, we implemented only perrnutation instruction generation method of [1], because the
' main objective of these experiments is to evaluate method to generate permutation instruction
sequences. |

The SIMD instruction utilization methods were applied to application programs by the trans-
lators. Then, the output programs of translators were compiled by MeP C compiler, and sim-
- ulated by a cycle accurate 1nstruct10n set processor simulator (ISS). The compiler and ISS
’ provrded by Toshiba Corp was used for compilation and simulation. These experiments were
performed on RedHat Enterpnse 3 operating system running on Intel Xeon 2.8 GHz processor

with 2GB of memory.

In these experiments, the SIMD instruction generation methods were evaluated in terms of
the number of instructions and execution cycles. The number of instructions in the main loops
of programs was counted for each assembly code generated by compilers with -and without
SIMD instruction generation method. The number of execution cycles was measured by using
ISS. This experiments assumed all processing data were located' in the local memory, and the

results of processing were also stored into the local memory. The number of execution cycles

76 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

] Tr”'ee([1])

MDD(proposed)

Reduction Ratio

G

e

R

B

IR A L (o (o\l\“
RIS
)

B

Figure 5.11: Code length reduction ratio.

The size of data element is 16 bits, 4 parallel SIMD instructions are used.

measured in these experiments was sum of the cycle count for loading data from the local

memory, data processing and storing data into the local memory.

5.3.2 Results

Fig.5.11 and 5.12 show the redu¢ﬁon ratio in the number of instructions in the main loop of
assembly code comparing the code generated by the compiler with the proposed method or the

method of [1] to that without SIMD instruction. Comparing the proposéd method to [1], the

5.3. EXPERIMENTAL RESULTS | - 7T

|] Tree(l1]) -

B MDD(proposed)

o
(4,18

Reduction Ratio

Figure 5.12: Code length reduction ratio.

The size of data element is 8 bits; 8 parallel SIMD instructions are used.

proposed method achieved the same or h1gher reductlon ratio. for most of the programs Both
methods successfully generated permutation 1nstruct10n sequences for all programs However,

generated permutation instruction sequences for the same program were different for almost all
progr‘ams. In case of data reordering programs (matrix ‘rranspose, 'bitr_everse, reverse,shuffle)
high reduction ratio was achieved by SIMD and permutation instructions. Without SIMD in-
structions, load and store instructions were generated for each data elements. However, with-
SIMD 1nstructrons 4 or 8 data elements were loaded by one wide memory access instruction.

Data elements were reordered by using permutatlon 1nstructrons then reordered data elements
were also stored by one wide memory access 1nstruct1on. In case of other programs, not only

memory access, but also data processing operations such as addition and multiplication were

- 18 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

10

[] Tree([1D)
8 ' MDD(propoSed)
6

Speedup

Figﬁre 5.13: Speedup against without SIMD instructions.

The size of data element is 16 bits, 4 parallel SIMD inst}uctions are used.

mapped to SIMD instructions.

Fig.5.13 and 5.14 show the speedup by the SIMD and permutation instruction utilization.
Since the proposed method achieved higher code reduction ratio than the method of [1] as
shown in Fig.5.11 and 5.12, the proposed method achieved higher speejdlip than [1] in most of
the programs. In the case of fft of 8bits. yersion, speedup of [1] was lowef than the proposed
method while the code reduction ratio of [1] was higher than the proposed method. This_' is
because instruction level parallelism in the assembly code generated by the proposed method
is higher than that of the method of [1]. The final assembly code generated by the proposed
method became more efficient by instruction scheduling perfdrmed by the MeP C Compiler. In

the case of 16 bits version of programs(Fig. 5.13), speedups were achieved from about 1.7 up

5.3. EXPERIMENTAL RESULTS | i ' 79

10~

] -Tree(t1 D

F] MDD(proposed) L

' Figuré 5.14: Speedup against without SIMD instructions.

The size of data element is 8 bits, 8 pa;rallel SIMD instructions are used.

" to about 5 times faster than withéut SIMD and permutation instructions. In the case of 8 bits
version(Fig. 5.14), speedups were achieved from about 1.8 up to about 8.5 times fasfer than
without SIMD and permutation instructions. The target processor behaves as aRISC processor
when SIMD instructions are not used, but behaves as a 3-way VLIW processor when SIMD in-

+ structions are used. Therefore, the instruction level parallelism was also contributed to speedup.
High speedup ratio exceeding SIMD parallelization factor was obtained for matrix transpose

~ of 8 and 16 bits versions, as a result of both data level and instruction level parallelism. In
the data reordering programs of 8 bits version, matrix transpose was about 2.0 times faster, and
'bitrerverse, reverse, shuffle were about 1.5 times faster thah 16 bits version. In fhe case of & bits

version of programs other than data reorderihg, 6 of 8 programs were about 1.25 times faster

80 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

than 16 bits version. However, in the case of fft and rgbcmyk, 8 bits version was slower than 16
bits version. This is because a large number of permlitation instructions was generated as the
number of data elements increase in the case of fft_ and rgbcmyk. The run-time overhéad caused
by permutation instructions greater than the execution cycles saved by the SIMD instructions.
Table 5.1 shows the breakdown of generated instrucﬁoﬁs f_ocused on the number of permutation
instructions. “4 SIMD” and “8 SIMD” mean the size of a data elements is 16 bits and 8 bits
respectively. The number of permutation insfructions, total number of generated instructions
and the percentage of permutations instructions for each program are shown in Tablé' 51. In
4 SIMD, the ratid of permutation instructions was ranged from 22 up to 85 %. The number
of generated permutaion instructions was smallin the cases of shuffle, dot product and matrix.
About a half of instructions was permutation instruction in the cases of matrix transpose, bitre-
‘verse, complex multiply and complex update. Highly ratio of permutation instructiohs could ‘be
found in the cases of reVerse, fft, rgbgray and rgbcmyk. The reason why a large number of per-
mutation instructions were generated was that thé complex data permufationé were required to
perform those programs using S]MD instructions. For example, rgbgray takes an inpuf vector
cémposed of three colors, red, green and blue, and computes an output vector whose elements
are the results of output(i] = input[3 = i] +(input[3 i+ 1] >> 1) +(input[3+i+2] >> 2).
In this case, 6 load instructions, 2 store inétructions, 8 SIMD arithmetib instructions and 30
permutation instructions were generated. Fig. 5.15 shows the data flow of the generated code
for this program. As shoWn in Fig. 5.15, permutation was very compiex. Moreover, it took 5
- permutation instructions for one permutatién. Though the number of permutation instructions
was l,argé, total number of instructions was reduced, and writing such complex permutation
instruction sequence by hand was tod difficult for application programmers. In 8 SIMD, the
ratio of permutation instructions was higher than 4 SIMD. The ratio of permutation instructions
in somé programs such as convolution, dot prodﬁct, matrix and fft was much higher than the
case of 4 SIMD. The reasons include the complex permutation,as well as unoptimized data
permutation of the intermediate results. The proposed method determines the order of data in
registers based on inputs and outputs of DEGs. This scheme often generates data permutation
.. which require many permutation instructions. Better schemes or optimization techniques to

determine the order of data in registers such as [57] would reduce the number of permutation

5.3. EXPERIMENTAL RESULTS

81

Table 5.1: Bfeakdown of generatedAinstructions

- 4 SIMD 8 SIMD! |
of insn. Ratio of # of insn. Ratio of
~# of perm. | Total | perm. [%] | # of pérm. Total ! perm‘. [%6]
matrix transpose 32| 68 47 | 24| 44| 55
bitreverse 3| 66 48 32| 65 49 |
reverse 12| 16 75 121 14 86
~ shuffle 4| 14 29 || 2| -6 33
complex multiply 52 96 4 48 | 78 62
complex update ' 64 129 | 50 58 95 71
convolution | 9| 23 139 35| 40| 88
dot product | 4| 18 2 23| 32 72
matrix N 4 17 24 23| 31 74
ffi 109 | 173 63 177 | 219 81
rgbgray 30| 46 ' 65 24| 33 73
rgbemyk 118 | 139 85 117 | 141 83

instructions.
In these experiments,‘th'e quality of the generated code cannot be clearly explainéd because
the optimﬁrh solution _cannbt be obtained due to the high computationél complexity of the
- optimum code generation for mgdia instructions. HoWever, there is potential for improvement
of the perfo'rman‘cé of the target processor. The method to determiﬁe the order of data in
régisters have room for improvement as mentioned abové. Much permutation instructibns were
generated by the currenf method as shown in Table 5.1. Permutation instructions would be
reduced by improving this method. In addition, the quality of code would be improved by
considering some architecture features such as multiple instruction issue and data path pipeline
in code generation. Because the target processor in these experiments has one RISC core
and 2.SIMD core, and sﬁpp()rts 4 and 8 way SIMD instructions. Ideally, speedups could be

achieved up to 9/17 times when using 4/8 way SIMD instructions. However, the speedups

82 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

Load Load Load Load Load Load

Figure 5.15: Permutation in rgbgray

shown in these experiments were averagely about 2 time. This was caused by not only much
permutation instructions, but also unconsidered architecture features. Code generation with

instruction scheduling considering VLIW and pipelined architecture would improve the quality

of code. Because the generation of application specific instructions was the main topic in
this study, other code generation and optimization techniques such as instruction scheduling
and register allocation were out of the scope. Code generation with other code optimization

techniques is future work.

Table 5.2 shows the compilation time of [1] and the proposed method for each program. “4
SIMD” and “8 SIMD” mean the size of a data elements is 16 bits and 8 bits respectively. In
the 4 SIMD, the compilation time of [1] was shorter than the proposed method. Both methods

compiléd most of the programs within 10 seconds. fft and rgbcmyk took compilation time

5.3. EXPERIMENTAL RESULTS = o 83

Table 5.2: Cornpanson of compilation trme between [1] and proposed method

4 SIMD ~ 8SIMD

Tree([7]) | MDD | Tree(17]) | MDD |

isec] | [sec] || [secr] [sec.].

matrix transpose | 7.47 | 851 2800 | 202 |
biteverse | 7.36| 844 2700 | 177
reverse 065 0.89| - 409 373
shufffle 123 12| - 732| 075
complex multiply | 7.89 | 9.73 | - 3380 | 271.3
complexupdate || 11.9| 14| 4040 | 294
convoluion || - 099 | 145| 2550 | 400
 dot product 0.74 | 1.04 2220 | 2.87
matrix 072 1.03| 2220| 277

©fft . 147 (- 18| 7410 1100
rgbgray 25| 3.58 1060 | 290
rgbemyk 243 | 343 8060 | 2320

, more than 10 seconds, this is because the necessary data reordering was complex and appeared
several 'time'. On the contrary, in the 8 SIMD, the compilation time of the proposed method was
shorter than that of [1]. [1] took more than IOOO seconds to compile each program for the most
of the programs. On the other hand, it took less than 100 seconds to comprle 6 programs for

“each program by the proposed method In the case of fft and rgbcmyk it took more than 1000
seconds. However, the eompllatron time was about a quarter of that of [1].

Table 5. 3 shows the number of permutatlons(# perm) in R; jand R; generated in CanGener-
atePermutation() of the proposed method, and the number of nodes of MDDs(# node) repre-
senting R, ; and R;. The input sets of permutations was Ry'= {abcdefgh}. CanGeneratePer-
mutation() was performed to generate as many permutations as possible. All possible permu-
tations were generated after the main while-loop of -CanGenemtePermutation() was performed

5 times. The numbers of permutations in R;; and R; become large as the value of 4 increases. |

84 CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

‘However; the most large size of MDD was Rs, and the size of MDD become small as the value -
- of i increases. For all R; ; and R; except for R3, the number of MDD nodes was less than 1000
even if the number of perrhutations was more than 8000000. The sets of permutétions were

represented efficiently by MDDs.

54 Summary

In this chapter, ‘a.code generation technique for SIMD and permutation instructions are pre-
~ sented. Utilization of permutation instructions is éSsential for exploitation of SIMD instruc-
tions. In the presented algorithm, the packed data in registers are represented and manipulated
by MDDS. Utilizing MDDs, i)ermutation instructions can be generated efficiently. The exper-
imental results s_hon the pefmutation instruction generaﬁon algorithm can geherate SIMD and
permutation instructions, and reduée the number of instructions and speedup the execution of

programs.

' 5.4. SUMMARY

Table 5.3: Permutation count and MDD node count of sets of permutations'

generated by CangenemiePermutaiion()

Ro = { abcdefgh }, the number of permutation instructions, |P|, is 6.

#perm. | # nodes #perm. | #nodes |-
[Ro] 1 10 || Reo | 8667135 86
Ris 1| 10| Re, | 8667135 79
Riz| 1| 10| Ry | 8667135 | 24
Ry 1| 10| Rys| 8667135 | - 86
1| Rug 1| 10| Riy| 8667135| 79
Rus 1 10| Rys | 8667135 | 24
'R 7| 33| R | 14407168 | 454
Rao 36 69 | Rso | 16777216 | 1
| Ray 36| 57| Rs1 | 16777216 1
Roa| 36 24 || Rs | 16777216 | 1
Rss 36| 69| Ry | 16777216 1
Boa| 36| 57| Rsa| 16777216 1
| Ras 36 24 | Rss | 16777216 1
Ry 188 205 || Rs | 16777216 1
Reo| 7744 569
Rei| 7744 553
Rsa| 7744| 60
Rss| 7744|616
Reg| 7744| 602
Rss | 7744 62
Ry | 34000 1795

8 - CHAPTER 5. EFFICIENT CODE GENERATION FOR MEDIA INSTRUCTIONS

Chapter 6
Conclusion and FutUre Work

This chapter concludes this thesis. Then, the future direction of compilers for application

specific instruction-set processors is discussed. .

6.1 Conclusi'on:

Compilation methods for any kinds of process'orsi are crucial to eaéé* s.oftware, development
effort. Compilers have to provide suitable programming mddels to deséribe applications and
translate high-level programs into low-level assembly code. Emerging processors with new
architecture features demand for new compilation methiodolo gy and, optimizatidn techniques.

Block-floating-point Processors is specialized to perfofni arithmetié operations by block-
.ﬂoating—point manner. In spite of the advantage of block-floating-point arithmetic in perfor-
mance and hardware area, Biock-ﬂoating-point arithmctié has been rarely employed in embed-
ded systems because of the difficulty in prbgramming. A challenge in code. generation for
block-floating-point processors is to bridge the gap between the programming model of block-
floating-point and the model of general programming language.v |

A prograniming scheme and code generation'method for block-floating-point processors is
presented in this thesis. ‘Compiler intrinsic functions are introduced to describe block-ﬂoéting-
point operations. Floating-point programs are easily translated into block-floating-point pro-
grams by using compiler intrinsic functions. Experimental results‘showed that the proposed

compilation method successfully generates assembly code for block-floating-point processors. -

87

88 o v CHAPTER 6. CONCLUSION AND FUTURE WORK

The generated assembly code fulfilled the performance requirements for block—ﬂoating-point
processofs. The proposed method provides an easy way, to use block-floating-point arithmetic
~ to application developers.

On the other hand, the importance 6f media processors and its code bptimization techniques
have been increasing by the spread of media applications. A challenge in compilation fo‘r‘media
processors is té exploit data level parallelism in épplicaﬁon programs. Traditional parallelizing
techniques for super computers based on vectorization of lodps are not suitable to fully exploit
the advantage of media instruction set. Utilization of SIMD instruc;tio’ns together with data
' permutation instmction maximizes performance of medifa processorsf In _this thesis, the code
| optimization p_r'oblem lfor SIMD instructions considering permutation instructions is mathe-
‘matically formulated into Integer Linear Programming problem. Itiis showed that the optimal

assembly code is obtained by solving the formulated problem. Heur_istic code géneration for
SIMD instructions is also proposed in this thesis. 'this method enables to generate assembly
code with high degree of SIMD parallelism up to 8. The proposed method achieved speedup

ratio up to about 8.5.Significant performance improvement in is shown by this method.

6.2 Future Wbrk

The future work includes following items.

6.2.1 'Automatic ASIP Desig‘n Space Exploration

Current ASIP design tools provide the interface to customize processors more easily than RTL
design tools. However, the progress of semiconductor process'technoldgy is involving demands
on higher productivity in electronic system design:. ASIPs should not be manually customized
but automatically customized in the next generation of ASIP-design technology. Compiler
technologies such as processor dependent and independent program transformation and opti-
mization, retargettable code generation and optimization are indispensable to automate ASIP

design.

6.2. FUTURE WORK - S | " 89

6.2.2° Compilation Techniques for Low Power

As a concern to environmentél issues including the warming bf the earth grows; electronic
systems are required to bé ecological. To meet demands on low power for embedded systéms,
both hardware and software techniques to reduce power consumption are crﬁcial. Compilation
technologies for low power such as data localizatjon in memory hierarchy, software controlled
hardware activation, low energy usage of registers has been studied. There exists a lot of ‘
lbw poWer techniques by compilers, however, the relationships a._mong'different low power
E 'téchniques or integration of several techniques have not been (_studied well. The mutual relation

among some low power techniques is considered to be future work.

6.2.3 : Compilation Techniques for Multi Processor SoC

Performénce requirement for 'émbeddéd systems is ‘expected to be higher than current embed-
ded systems. Curr’e}lt embedded systems have up to about 10 prdcgssor cores. However, more
and more processor cores up :to 100 or 1000 cores will be integratéd in the next generation of
embedded systeins. Known corﬁpiler technologies for supér computing which target a com-
puting system consisting of up to 1000 or 10000 processing elements may be applicable to
the next generation of multi processor embedded éystems. However,. the characteristics of the
* multi processor embedded systems are not well-known. Compiler technoldg_y for multi proces-

sor embedded systems will be a hot topic in the future compiler research.

90

CHAPTER 6. CONCLUSION AND FUTURE WORK

~ Bibliography

(11 A. Kudriavtsev and P. Kogge, “Generation of Permutations for SIMD Processo‘rs ” Proc.
of the 2005 ACM SIGPLAN/SIGBED Conference on Languages Compllers and Tools
for Embedded Systems, pp.147 — 156, Jun. 2005.

[2] Texas Instruments, TMS320C1x User’s Guide, 1991.
[3] Texas Instrumenfs,' TMS320C20x User’s Guide, 1999.

[4] Texas Inétrume_nts, TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide,
2007. |

‘ [5] Philips Semiconductors, PNX1300 Series Media Processors - Data Book, 2002.

[6] J.V. Praet, D. Lanneer, W. Geurts, and G. Goossens, “Processor Modeling and Code Se-
lection for Retargeitable Compilation,” ACM Trans on Design Automation of Electronic

Systems, vol.6, no.3, pp.277-307, 2001.

[7] G. Coossens, D. Lanneer, W. Geurts and J.V. Parat, “Design of ASIPs in Multi-Processor
SoCs using the Chess/Checkers Retargetable Tool Suite,” Proc. 2006 International Sym—
posium on System—on -Chip, pp.1-4, 2006.- '

[8] CoWare, “Pfocessor Designer.” http://www.c'oware.com/producté/processordesigner.php,
-2007.

[91 A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for Embedded Proces-
sors with LISA, Kluwer Academic Publishers, 2003. |

91

92. S _ : : BIBLIOGRAPHY

[10] R.E. Gonzalez, “Xtensa: a conﬁgurable and extensible processor,” IEEE Micro,' vol.20,
10.2, pp.60-70, 2000,

[11] N. Cheung, J. Henkel, and S. Parameswaran, “Rapid Configuration and Instruction Se- ‘
lection for an ASIP: A Case Study,” DATE ’03: Proc. of the Conference on Design,
Automation and Test in Europe, pp.802-807, 2003.

[12] P. Marwedel and G. Goossens Code Generat1on for Embedded Processors, Kluwer Aca-
demic Publishers, 1995

| [13] C. Liem, Retargetable Compllers for Embedded Core Processors, Kluwer Academic Pub-
lishers; 1997. ‘ ‘

[14] R. Leupers, Retargetable Code Generation for Digital Signal Processors, Kluwer Aca-
demic Publishers, 1997.

[15] R. Leupers, Code Optimiiation Techniques for Embedded Processors, Kluwer Academic
Publishers, 2000. '

[16] T. Aamodt and P. Chow,, “Embedded ISA Support for Enhanced Floating-Point to Fixed-
Point ANSI C Compilation,” 3rd International Conference on Compilers; Architecture, '

and Synthesis for Embedded Systems (CASES), pp.128-137, November 2000.

[17] K.I. Kum, J. Kang, and W. Sung, “A floating-point to integer C converter with shift re-
duction for fixed-point digital signal processors,” ICASSP *99: Proc. of the IEEE Inter-
national Conference on Acoustics, Speech, and Sighal Processing, 1999., pp.2163-2166,
1999. ’

[18] D. Menard, D. Chillet, and O. Sentieys, “Floating-to-fixed-point conversion for digital
signal processors,” EURASIP J. Appl. Signal Process., vol.2006, no.1, pp.77-77, uary.

[19] R.J. Fisher, General—Purpose SIMD within a Register: Parallel Processing on Consumer
Microprocessors, Ph.D. thesis, Purdue University, 2003. |

BIBLIOGRAPHY | . o 03

[20] S. Kyo, S. Okazaki, and I. Kuroda, “An Extended C Language and a SIMD Compiler for
Efficient Implementation of Image Filters on Media Extended Micro—Processdr,"’ Proc. of

Acivs 2003(Adcanced Concepts for Intelligent Vision Systems)), pp.234-241, 2003.
[21] “Embedded Cc” http://www.embedded-c.org, 2007.

[22] J. Xiong, J. Johnson, RW Johnson, and D. Padua, “SPL: A Language and Compiler for
DSP Algorithms,” Programming Languages Design and Implémentation (PLDI), pp.298-
308, 2001. ‘

[23] Texas Instruments, TMS320C64x DSP Libfary Programmer’s Reference, 2(_)0’3.

[24] .“Intel®Math Kernel Library.” http://www.intel.com/cd/softWére/products/asmo-.
na/eng/307757.htm, 2007. '

[25] M.S. Lam, R. Sethi, J.D. Ulhnan, and A.V. Aho, Compilers: Principles, Techniques, and
Tools, Addison—Wesley, 2006. ‘ '

[26] K. Kennedy and J.R. Allen, Optimizing Compilers for Modern Aréhitectures: a-
' dependence-based approach, Morgan Kaufmann Publishers Inc., 2002. |

[27] S.Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instrucﬁon Selection using Binate Cover- .
ing for Code Size Optimization,” ICCAD ’95; Proc. of the 1995 IEEE/ACM International
Conference on Computer-Aided Design, pp.393—-399, 1995.

- [28] G.'Afaujo and S. Malik, “Code Generation for Fixed-point DSPs,” ACM Trans. on Design
Automation of Electronic Systtems, vol.3, no.2, pp-136-161, 1998.

[29] C.H. Gebotys, “An Efficient Model for DSP Code Generation: Performance, Code Size,
Estimated Energy,” ISSS *97: Proc. of the 10th International Symposium on System Syn-
thesis, pp.41-47, 1997.

[30] R. Leﬁpers and P. Marwedel, “Time-Constrained Code Compaction for DSPs,” ISSS ’95:
Proc. of the 8th International Symposium on System Synthésis, pp.54-59, 1995.

94

BIBLIOGRAPHY

[31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

(40]

K. Ralev and P. Bauer, “Implementation Options for Block Floating Point Digital Fil-

ters,” ICASSP ’97: Proc. of the IEEE International Conference on Acoustics, Speéch, '
and Signal Processing, 1997., pp.2197-2200, 1997. ’

A. Mitra and M. Chakraborty, “The NLMS Algorithm in Block FLoating Point Format,”
IEEE Signal Processing Letters, pp.301-304, 2004. | "

S. Kobayashi and G. Fettweis, “A Hierarchical Block-Floating-Point Arithmetic,” Journal
of VLSI Signal Processing, vol.24, no.1, pp.19-30, 2000.

S. Kobayashi and G. Fettweis, “A New Approach for Block-floating-point Arithmetic,”
ICASSP *99: Proc. of the IEEE International Conference on Acoustics, Speech, and Sig-
nal Processing, 1999., pp.2009-2012, 1999. ‘

S. Kobayashi, I. Kozuka, and T. Kino, “Rapid Application Software Developement on
A Block-Floating-Point DSP,” Proc. 2003 International Signal Processing Conference,
2003. - | |

D. Elam and C. Lovescu_, A Block Floating Point Implementationfor an N-Point FFT on
the TMS320C55x DSP. Texas Instruments, 2003,

A.J.C. Bik, M. Girkar, PM. Grey, and X. Tian, “Automatic Intra-Register Vectorization
for the Intel® Architecture,” International Journal of Parallel Programming, vol.30, no.2,

pp.65 =98, Apr. 2002.

S. Larsen and S. Amarasinghe, “Exploiting Superword Level Parallelism with Multime-
dia Instruction Sets,” Proc. of the Conference on Programming Language Design and

Implementation, pp.145-156, Jun. 2000.

A.E. Eichenberger, P. Wu, and K. O’Brien, “Vectorization for SIMD Architectures with
Alignment Constraints,” Proc. of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation, pp.82-93, Jun. 2004.

P. Wu, A E. Eichenberger, and A. Wang, “Efficient SIMD Code Generation for Runtime
Alignmeht and Length Conversion,” CGO *05: Proc. of the International Symposium on

Code Generation and Optimization, pp.153-164, 2005.

BIBLIOGRAPHY - o | 95

~ [41] P. Wu, AE. E1chenberger A. Wang, and P Zhao, “An Integrated Simdization Framework
- Using Virtual Vectors " ICS ’05: Proc. of the 19th Annual Internat10nal Conference on
Supercomputmg, pp:169-178, 2005. |

[42] D. Nuzmain, I. Rosen, and A. Zaks, “Auto-vectorization of Interleaved Data for SIMD,”
PLDI *06: Proc. of the 2006 ACM SIGPLAN Conference on Programming Language
De31gn and Implementatlon pp- 132-143, 2006. V

[43] S Larsen R. Rabbah and S: Amarasmghe “Exploiting Vector Parallelism in Software
Pipelined Loops,” MICRO 38: Proc. of the 38th annual IEEE/ACM International Sympo-
sium on Microarchitecture, pp.119-129, 2005.

[44] M. Imai, “ASIP Meister: A Configurable Processor Core Development System,” Proc. I'TI
3rd International Conference on Information & Communications Technology (ICICT),

£ 2005.

[45] PM. Sailer and D.R. Kaeli, The DLX Instruction Set Architecture Handbook; Morgan
Kaufmann Publishers, Inc., 1996 | |

[46] ANSVIEEE Standard 754, IEEE Standard for Binay Floating Point Arithmetic, 1985. .

[47] V. Zivojnovic, J. Martinez, C. Schlger, and H. Meyr, “DSPstOne: A DSP—Oﬁented_ Beneh—
marking 'Methodology,” Internatinal Conference on Signal Processing Applications and
Technology, Oct. 1994.

[48] Tensilica, “Xtensa Processor Floating Point Unit.” http:// www.tensilica.com/products/ -

‘x7_ﬂoa—ting_point'.htm, 2007.
[49] GB3 Digital Systems, “ARM?7 Floating-Point Co-Processor,” 2005.

[50] A.V.Aho, M. Ganapathi, and S.W.K. Tjiang, “Code Generation Using Tree Matching and
Dynamic Programming,” ACM Trans. on Programming Languages and Systems, vol.11,

no.4, pp.491 — 516, Oct. 1989.

[51] ACE, “CoSy compiler development system.” hitp://www.ace.nl/compiler/cosy.html,
2007. '

96

BIBLIOGRAPHY

[52]

[53]

[54]

[55]

[56]

[57]

S. Kobayashi, K. Mita, Y. Takeuchi, and M. Imai, “A C_ompiler Generation Method for -
HW/SW Codesign Based on Configurable Processors,” IEICE Trans. on Fundamentals of
Electronics, Communication and Computer Sciences, vol.E85-A, no.12, pp.2586-2595,

2002.

M.R." Garey and D.S. Johnson, Computers and Intractability: A Guid to the Theory of
NP-Completness, W H Freeman & Co (Sd), 1979.

S.M: Arvind Srinivasan Timothy Kam and RK. Brayton, “Algorithms for Discrete Func-
tion Manipulation,” Proceedings of the IEEE International Conference on Computer-

Aided Design, pp.92-95, Nov. 1990.

T. Miyamiori, J. Tanabe, Y. Taniguchi, K. Furukawa, T. Kozakaya, H. Nakai, Y. Miyamoto,
K. Maeda, and M. Matsui, “Development of Image Recognition Processor Based on Con-
figurable Processor,” Journal of Robotics and Mechatronics, vol.17, no.4, pp.437-446,
2005. '

D.M. Miller and R. Drechsler, “Implementing a Multiple-Valued Decision Diagram Pack—
age,” Internatinal Symposium on Multi-Valued Logic, pp.52-57, May. 1998.

G. Ren, P. Wu, and D. Padua, “Optimizing data permutations for simd devices,” PLDI
*06: Proc. of the 2006 ACM SIGPLAN conference on Programming language design and

- implementation, New York, NY, USA, pp.118-131, ACM Press, 2006.

