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CHAPTER 1 

General Introduction 

1.1 INTRODUCTION 

Anchoring of proteins to the cell surface is a common theme in nature, and the processes 

governed by different surface proteins are bases of many biological phenomena, such as 

cell-cell recognition, signal transduction, adherence, colonization, and immunoreactions (1). 

The utilization of cellular surface anchoring systems for the display of heterologous proteins 

on cells have been developed into an active research area that holds great promise for a 

variety of biotechnological applications including production of whole-cell biocatalysts, 

microbial adsorbents, live vaccines, screening of novel proteins, and antibody production 

(2-4). Generally construction of these systems is accomplished by expressing a heterologous 

peptide or protein of interest as a fusion with various anchoring motifs, which are usually 

cell-surface proteins or their fragments. Depending on the characteristics of target and 

anchor proteins, N-terminal fusion, C-terminal fusion or sandwich fusion strategy can be 

considered (2). 

1.2 LACTIC ACID BACTERIA 

Lactic acid bacteria (LAB) have a long history of use in food production and preservation (5), 

and the importance of LAB as industrial microbes is just next to that of the yeast 

Saccharomyces cerevisiae. These bacteria are gram positive, non-spore forming, fastidious, 

acid tolerant, and strictly fermentative that secret lactic acid as the major end product of 

sugar fermentations (6). LAB are naturally present in media rich in organic nutrients such as 
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food products, and digestive tracts. They are a genetically diverse group of bacteria with GC 

contents varying from 34 to 53%, including rod shaped bacteria such as lactobacilli and cocci 

such as lactococci, enterococci, pediococci, and leuconostoc (7). 

LAB are considered as safe and non pathogenic. They exhibit adjuvant properties, and are 

weakly immunogenic (8). Therefore, these bacteria are considered as attractive candidates 

for development of in vivo delivery vectors of biologically active molecules (e.g., antigens, 

enzymes or biological peptides) for vaccine and pharmaceutical purposes (9-13). It was 

shown that, extracellularly accessible antigens expressed on the surface of LAB are better 

recognized by immune system than those which are intracellular or secretory. Therefore, 

surface display is the technique of choice for making oral vaccine delivery vehicles with LAB 

and the research in cell surface display of LAB is aimed mainly at their use as oral vaccine 

vehicles (14). 

1.3 SURFACE DISPLAY SYSTEMS FOR LAB 

The anchoring domains that have been used for construction of protein display systems in 

LAB can be divided into three groups of cell wall bound proteins, cell membrane anchored 

proteins, and cell surface associated proteins. 

1.3.1 Cell wall bound proteins 

The most widely used surface anchoring system for LAB is based on the LPXTG motif anchor 

of cell wall bound proteins. This motif starts at the C-terminus with a short tail of positively 

charged residues that remain in the cytoplasm. Upstream of the cytoplasmic domain, a 

stretch of approximately 30 hydrophobic amino acids is preceded by the highly conserved 
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penta peptide LPXTG. The charged tail and hydrophobic domain are thought to function as a 

temporary stop to position the LPXTG motif for proteolytic cleavage. Correct positioning 

results in cleavage between the threonine and glycine residues followed by amid-linkage of 

the threonine residue to the peptide crossbridge in the peptidoglycan of the cell wall, by the 

action of a sortase (15). This anchoring system is used for C-terminal fusion construct of 

target proteins. Prtp of Lc. Lactis, M6 protein of Streptococcus pyogenes, and Protein A of 

Staphylococcus aureus are among LPXTG type anchors which have been used widely for 

construction of surface display systems in Lc. Lactisand Lactobacillus(16-19). 

1.3.2 Membrane bound proteins 

The cell-membrane anchored proteins including transmembrane proteins and lipoproteins 

have also been used for protein display in LAB. In the case of transmembrane proteins, 

protein topology studies should be performed to specify suitable insertion sites. Insertion of 

target peptides in exterior loops between transmembrane domains may limit the insert size 

because it should be performed in a way that it does not disturb the topology of the 

membrane protein (20). However, display systems in which the target protein is simply linked 

at its N-terminus to a cytoplasmic membrane protein (LcnD, and PgsA) have also been 

described (21, 22). 

Lipoprotein anchoring domains are characterized by a specific lipobox sequence including 

invariably a cystein residue located just after the cleavage site (23). These anchors can be 

used for fusion to the N-termini of target proteins. However, they detach from the 

cell-surface at specific growth phase (24). 
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1.3.3 Cell surface associated proteins 

Nearly all bacterial cell wall hydrolases have a modular design, in which an active site 

degrades peptidoglycan and a cell wall binding domain immobilizes the enzyme on the 

peptidoglycan layer. The cell wall binding domain is often comprised of repeated amino acid 

sequences. The C-terminal region of lactococcal cell wall hydrolase AcmA contains three 

repeated sequences of 44 amino acids separated by streches of 21 to 31 amino acids rich in 

serine, threonine and asparagines residues. The association of this domain with the cell wall 

is of a non covalent nature and it can bind to the cells when it is added from the outside (25). 

BspA (26-28) and S-Iayer protein (SLP)(29) are also among the cell surface associated 

proteins which are anchored by charge interactions. SLPs form porous lattices of identical 

subunits completely covering the cell surface and may constitute up to 20% of the total cell 

protein content. These properties make them an attractive target for protein anchoring 

studies. However, expression of these proteins in heterologous hosts lacking these proteins 

such as Lc. lactis and Lb. casei resulted in secretion of the SLPs in the medium (30). This 

finding suggests that these cells lack a cell wall component required for proper attachment of 

SLPs and this may implicate that cell surface anchoring of these proteins is limited to the host 

from which the sl,o gene was isolated. 

1.4 TWO MODES OF PROTEIN DISPLAY IN LAB 

Depending on the type of anchoring domain, two modes of protein display can be considered for 

LAB including internal mode of display and external mode of display. In the case of internal mode, 

the fusion of target protein to the anchoring domain is expressed in the cell, and the protein is 

displayed on the surface of the expression host, whereas in the case of the external mode the 

expression host and display host are different from each other. If the association of the anchoring 

4 



domain with the cell surface is of a non covalent nature, it can bind to the cells when it is added 

from the outside. Therefore the fusion of the target protein to the anchoring domain can be 

produced in a suitable expression host capable of its correct folding and modifications. Then it 

can be purified and bound to the surface of desired protein display host cells which results in non 

genetically modified protein display system. A comparison between advantages and 

disadvantages of these two systems is given in Table 1.1. 

TABLE 1.1 Comparison between two modes of protein display 

Internal External 

Control of display level Limited More flexible 

Exposure of target protein outside of the cell wall Incomplete Full exposure 

Anchoring stability Often stable Possibility of dissociation 

Applicable host strains - Wider range 

(Production, Binding) 

The systems based on the internal mode of protein display are often encountered with the 

problems in translocations and low levels of surface intensity of target proteins which have 

remarkable negative effects on the function of target proteins. In contrast, use of a display 

system based on the external mode of protein display can offer the advantage of full exposure of 

a target protein out of the cell wall, and the surface intensity of the protein can be adjusted by 

determining a suitable concentration for the protein and selection of a display host with a high 

binding capacity for the protein. However, regarding non covalent interaction of the target protein 
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with the cell surface, the possibility of dissociation of protein from the cell surface should be 

considered. 

1.5 OVERVIEW OF THE PRESENT STUDY 

Incomplete exposure of enzymes outside of the cell wall is often observed in the whole cell 

biocatalysts constructed based on the internal mode of protein display, and it limits access of 

large substrates such as starch which can not penetrate into the cell wall, to the enzymes. 

This limitation results in decreases in the apparent enzyme activities in these systems. This 

problem can be solved in a system based on the external mode of protein display because it 

results in full exposures of enzymes outside of the cell wall and it facilitates access of the 

substrates to the enzymes. However, the systems based on the external mode of protein 

display have been much less extensively studied compared with those based on the internal 

mode of protein display. Therefore, in chapter 2 ,we describe construction of a-amylase 

displaying LAB which are expected to be effective for direct fermentation of starch to lactate 

based on the external mode. In this study, E coliwas employed as the expression host and 

the C-terminal repeat region of peptidoglycan hydrolase (CPH) of Lc. lactisIL1403 was used 

as the anchoring domain. The efficiency of these systems is determined by cell surface 

binding and enzymatic activities of the hybrid biocatalysts and binding capacity and binding 

stability of display hosts. The fusion direction of an anchor protein to a target enzyme can 

induce conformational alterations in the fusion protein which affects its activities and the 

fusion of the anchor protein should be performed in a way that it does not make a steric 

hindrance for substrate binding to the enzyme. Therefore, the effect of the fusion direction 

on the activities of the cell-surface adhesive a-amylases was investigated, and several LAB 
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strains were examined for their binding capacities and stabilities for the cell-surface adhesive 

a-amylase. Finally, the effect of coexpression of molecular chaperones for increasing the 

production of the fusion protein in the soluble and active form in E coliwas investigated. 

In chapter 3, we studied the possibility of production of cell-surface adhesive proteins in the 

methylotrophic yeast Pichia pastoris. This yeast is an attractive host for production of 

cell-surface adhesive proteins since compared with prokaryotic hosts such as E coli, this 

organism has a better capability for the correct folding of recombinant proteins and disulfide 

bond formation. However, when a protein is expressed in this yeast, the influence of the 

post-translational modifications such as glycosylation on the protein properties should be 

considered. CPH contains several potential N-glycosylation sites, and attachment of glycoside 

chains at these sites may interfere with cell-surface binding activity of this domain. Therefore 

in this study, a CPH mutant devoid of the potential N-glycosylation sites (CPHM) was 

constructed which was expressed extracellularly in P. pastoris. The cell-surface binding 

activity of the constructed domain (CPHM) was studied and compared with that of the 

original domain (CPH) produced intracellularly in E coli. 

In chapter 4, we describe applicability of the external mode of protein display for increase in 

the survival of probiotics during passage through the upper gastrointestinal tract (GIT). The 

probiotic microorganisms can exert beneficial effects on human health if they are viable. 

Lactobacilli and bifidobacteria are most commonly used probiotics. However, these bacteria 

are not able to withstand the harsh acidity of the GIT. When these bacteria are mixed with 

starch or grown in the presence of starch, starch exerts a protective effect on the bacterial 

survival in acidic conditions. This fact is the basis for microencapsulation of bacteria within 

porous starch granules (bacterial core) which are then coated with amylose for the protection 

of probiotics. However, if the bacteria can not adhere to starch properly, it is not easy to 
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encapsulate them within starch granules because they may leak out of the pores. Therefore, 

the objective of this part of our research is to enhance delivery of viable microorganisms to 

the intestinal tract through conferring starch adhesion ability on them. We examined 

aggregation of bacteria with starch as an alternative technique for providing the bacterial 

core of microencapsulation. Compared with the previous method of preparing porous starch 

particles, this technique is easier, faster, and modification of starch granules is not required. 

In this way, the bacteria are entrapped between starch granules to take the advantage of 

protective effect of starch. Therefore, a cell-surface adhesive starch binding domain was 

constructed by fusion of CPH to a starch binding domain (SBD).The fusion protein was 

displayed on the surface of Lb. casei cells and suitable conditions for aggregation of bacteria 

with starch were determined. The aggregates were encapsulated with amylose and the 

survival of the cells under simulated conditions of upper GIT was examined. 

Finally, the general conclusion was described in chapter 5. 
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CHAPTER 2 

Bidirectional cell-surface anchoring function of the C-terminal repeat 
region of peptidoglycan hydrolase of Lactococcus lactisIL1403 

2.1 INTRODUCTION 

Microbial cell-surface display is potentially important in several areas of biotechnological 

applications, including construction of whole-cell biocatalysts (4, 31). The display of an 

enzyme on the cell surface by fusing it with one of cell-surface proteins of a host cell, 

(internal mode of protein anchoring) confers new functions on the host cell and the utilization 

of these systems for bioconversion processes is cost-effective because these enzymes can be 

readily recovered together with cells to reuse. However, the reduction in the apparent 

enzyme activity is an issue for these systems which is caused by incomplete exposures of 

enzymes on the outside of the cell and misfolded structures of biocatalysts. If an enzyme is 

not expressed on the outside of the cell wall, it is not accessible for a large substrate 

incapable of penetrating the cell wall. Therefore, decreases in the apparent enzyme activities 

are observed in these systems (32-36). 

One possible solution for these problems is development of a whole-cell biocatalyst based on 

cell-surface adhesive enzymes which can bind to the cell-surface when added from the 

outside (external mode of protein anchoring). These enzymes can be constructed by a 

genetic fusion with a cell-surface adhesive domain. Use of this system can result in the full 

exposures of the enzymes outside of the cell wall and the enzymes can be folded correctly if 

produced in a suitable host strain. 

The location of the fusion junction with the anchor protein is another important factor which 
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may influence the activity of the hybrid biocatalyst. For instance, activity of Rhizopus oryzae 

lipase whose active site is located at the C-terminal region, was strongly inhibited by fusion 

with a GPI anchor protein at the C-terminus, while fusing of the N-terminus of the lipase with 

the Flo1P flocculation functional domain enhanced the activity remarkably (36,37). 

It has been reported that the interaction of the C-terminal repeat region of peptidoglycan 

hydrolase (CPH) of Lactococcus lactis subsp. cremoris MG1363 with the cell wall of Lc. lactis 

cells is of a non-covalent nature and it can bind to these cells when added from the outside 

(38). For this reason, this domain is applicable for the production of the cell-surface adhesive 

enzymes. This domain has already been expressed in Lc. lactisfor the display of peptides and 

proteins, and in all the cases it was fused at its N-terminus to a target protein (38-40). 

Lactic acid bacteria (LAB) constitute an important group of industrial microorganisms that 

have been used widely for the fermentation and preservation of food products (41-43). We 

are interested in the construction of whole-cell biocatalysts based on LAB and the cell-surface 

adhesive enzymes for broadening or improvement of applications of these bacteria. For 

efficient construction of these whole-cell biocatalysts, three factors of cell-surface binding 

activity, enzymatic activity, and binding capacity of cells should be considered. CPH from Lc. 

lactisIL1403 is a homolog of CPH from Lc. lactisMG 1363. In this study, we investigated the 

capability of CPH from Lc. lactis IL1403 for the production of cell-surface adhesive enzymes 

in Escherichia coli using a-amylase (AMY) from Streptococcus bovis 148 as a target protein. 

The effects of the fusion direction on the binding activity of this domain for LAB cells and the 

enzymatic activities of the fusion proteins were studied and the binding capabilities of several 

LAB strains for these cell-surface adhesive a-amylases were investigated quantitatively. The 

whole-cell biocatalysts constructed in this study are expected to be effective for the direct 

fermentation of starch to lactate. 
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2.2 MATERIALS AND METHODS 

2.2.1 Bacterial strains and growth conditions 

E coliXLl-Blue was used for construction of vectors and expression of heterologous proteins. 

It was grown in Luria-Bertani (LB) liquid medium or on LB agar plates at 37°C. Lc. lactis 

subsp. lactis ATCC 19435 (American Type Culture Collection, Rockville, MD, USA), 

Lactobacillus delbrueckiisubsp. delbrueckii ATCC 9649, Lactobacillus caseisubsp. caseiNRRL 

B-441 (Agriculture research service culture collection, Peoria, Illinois, USA), Lb. caseisubsp. 

rhamnosus NRRL B-445, Lactobacillus plantarum NRRL B-531 were used for the binding 

assay. Lc. lactissubsp. lactisIL 1403 was used for the binding assay, and preparation of the 

genomic DNA. Lactococcus strains were grown at 30°C in M17 broth (Difco Laboratories, 

Detroit, MI, USA) containing 0.5% glucose (GM17). Lactobacillus strains were grown in MRS 

broth (Difco) at 37°C. 

2.2.2 DNA manipulation 

The C-terminal repeat coding region of peptidoglycan hydrolase gene (acmA) was PCR 

amplified from the chromosomal DNA of Lc. lactisILl403 with cph-F and cph-R primers, and 

the PCR fragment was inserted into pQE21 derived from pQE31 (Qiagen GmbH, Hilden, 

Germany) with NcoI and 8amHI sites. The obtained plasmid was deSignated as pQCPH in 

which cph was fused with a hexa histidine tag gene at the N-terminus. The fragment 

including T5 promoter and a-amylase encoding gene (amyA) was prepared by PCR from 

pQE31amyA (44) with amyA-CF and amyA-CR primers. The PCR product was digested with 

XhoI and inserted into pQCPH which was digested with NcoI and made blunt using T4 DNA 

polymerase followed by cutting with XhoI. The resulting plasmid is pQAC in which cph was 
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fused to amyA at its N-terminus. To construct the C-terminus fusion of cph to amyA, the 

fragment including T5 promoter and CPH encoding gene was amplified from pQCPH with 

amyA-CF and cph-NR primers. The PCR product was digested with XhoI and Bam-iI and 

introduced into the XhoI and Bam-iI sites of the plasmid pQE31amyA. The obtained plasmid 

was designated as pQCA. The correctness of all of the constructs was confirmed by 

restriction digestion and sequencing. 

TABLE 2.1 Oligonucleotide primers used 

Primer Sequence 

cph-F 5' -tgcgcgccatgggtacttctaattccggtggttcaacagc-3' 

cph-R 5' -gcggatccttatttaatacgaagatattgacc-3' 

amyA-CF 5' -tctctcgagaaatcataaaaaatttatttgctttgtgagcg-3 

amyA-CR 5' -ccttttagcccatctttattatagtttccag-3' 

cph-NR 5' -aaggatcccctl:taatacgaagatattgaccaattaaaatgg-3' 

2.2.3 Expression studies 

E. coli cells harboring the desired plasm ids were grown overnight at 37°C in LB broth 

supplemented with 100 !-Ig/ml ampicillin and 15 !-Ig/ml tetracycline. The cells were then 

harvested by centrifugation and transferred to fresh LB broth containing the antibiotics as 

mentioned above, and incubated at 37°C until the 00600 reached 0.5. Isopropyl ~-D 

-thiogalactoside (IPTG) was added to a final concentration of 1 mM to induce the expression 

of target proteins. At the same time ampicillin was added to a final concentration of 400 

!-Ig/ml for plasmid maintenance. After further incubation for 4 h, the cells were collected and 

the expression was studied by resolving the whole cell extracts on 8% sodium dodecyl sulfate 
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polyacrylamide gel electrophoresis (50S-PAGE). 

2.2.4 Purification of fusion proteins 

Proteins were purified under native conditions by metal affinity chromatography, utilizing the 

interaction between the histidine tag and a nickel chelate column (Ni-NTA superflow column 

(1.5 ml), Qiagen). The induced cells from a 100-ml culture were harvested by centrifugation, 

and were re-suspended in the binding buffer (50 mM NaHzP04 (pH 8.0),300 mM NaCl, 10 

mM imidazole). Lysozyme was added to a final concentration of 1 mgjml and the cell 

suspension was incubated for 1 h on ice. The cells were disrupted by sonication and the clear 

supernatant obtained by centrifugation was applied to the Ni-NTA column equilibrated with 

the binding buffer. The column was washed three times with the same buffer containing 20 

mM imidazole and the bound proteins were eluted with the elution buffer, which was the 

same as the binding buffer except that it contained 250 mM imidazole. The buffer of the 

eluent was then exchanged to 50 mM sodium citrate buffer (pH 6.0) using PO-lO columns 

(GE Healthcare, Uppsala, Sweden). Purified proteins were subjected to 8% 50S-PAGE, and 

the bands were visualized by staining the gel using Coomasie Brilliant Blue R250. Gels were 

scanned using GT-F600 scanner (Epson, Suwa, Japan), and densitometrical analysis was 

performed with Scion image software (Scion, MO, USA) to quantify the proteins. 

2.2.5 Binding assay and western blotting 

LAB strains were grown as mentioned above until an 00 660 of 1 was achieved. The cells from 

an 8-ml culture were dispersed in 0.5 ml GM17 medium containing the purified fusion protein 

at 2.4 mgjl, and incubated at 300C for 2 h with gentle shaking. Free a-amylase was used in 

the control experiments at the same molar concentration with the fusion proteins. After 
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washing the cells with the citrate buffer, the cell pellets were resuspended in 2xSDS-PAGE 

loading buffer containing 20% (w/v) glycerol, 125 mM Tris-HCI (pH 6.8), 4% SDS, 5% (v/v) 

~-mercaptoethanol, 0.01% bromophenol blue and boiled for 5 min. The proteins were 

separated by 8% SDS-PAGE and electroblotted onto a PVDF membrane (Amersham 

Hybond-P, GE Healthcare Japan, Tokyo). Detection was performed with a horseradish 

peroxidase conjugated anti-pentahistidine antibody (Qiagen) using a chemiluminescence 

method (ECl plus western blotting detection system, GE Healthcare). The immunoblots were 

scanned and the amount of the fusion proteins bound to the cells was determined by 

densitometrical analysis of immunoblots as mentioned above using known amounts of the 

fusion proteins as standards. 

2.2.6 Enzyme assays 

a-Amylase activity for starch digestion was measured by the method of Giraud et al. (45) 

with some modifications. Briefly, 0.1 ml of appropriately diluted enzyme solutions were 

incubated with 0.8 ml of a solution containing 1% soluble starch (Nacalai Tesque, Kyoto) in 

the citrate buffer at 30°C with shaking at 100 rpm. The reaction was stopped by addition of 

0.1 ml of 1 M H2S04• Residual starch contents were determined colorimetrically at 620 nm by 

adding 0.1 ml of the reaction mixture to 2.4 ml of an iodine solution (1.2 gIl KI, 0.12 gIl h). 

One enzyme unit was defined as the disappearance of 1 mg iodine binding starch per min 

under the assay conditions. To determine the starch degradation activity of the fusion 

proteins in the cell-bound form, following the binding assay and washing the cells as 

described in the previous section, the cells were resuspended in 0.1 ml of the citrate buffer, 

and used for the starch digestion activity assay as mentioned above. For calculation of the 

specific activity of the enzyme in cell-bound form, the amount of the fusion proteins 
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determined by western blotting was used. The mean value of three replicates was reported. 

a.-Amylase activity was also measured by an assay kit from Kikkoman Co. (Tokyo) using 

2-chloro-4-nitrophenyl 65-azido-65-deoxy-~-maltopentaoside (N3-G5-~-CNP) as substrate. 

The assay mixture contained 200 IJI of reaction solution, 100 IJI of the citrate buffer and 40 IJI 

of cell suspension. The mixture was incubated at 37°C for 10 min, and the enzyme reaction 

was terminated by addition of 400 IJI of the reaction stop solution supplied in the kit. The 

activity was assayed by measuring the absorbance of liberated 2-chloro-4-nitrophenol (CNP) 

at 400 nm. One unit of activity was defined as the amount of enzyme needed to release 

1 IJmol CNP per minute from N3-G5-~-CNP at 37°C. 

2.2.7 Determination of dissociation rate constant 

After performing the binding assay as described above, the cells were washed to remove 

unbound proteins, and incubated in the citrate buffer. At specified time intervals, the buffer 

was changed following centrifugation and a portion of the cells was withdrawn. The activity 

of the fusion proteins bound to the cells was determined with the a-amylase measurement 

kit as mentioned above. Since the dissociation of the proteins from cells can be regarded as a 

first-order reaction, the change in the activity of a.-amylase bound to the cells (A) can be 

expressed as: 

cIA 
-=-kA 
dt 

(1) 

where kis the dissociation rate constant. By integrating Eq. 1 with an initial condition of A=Ao 

at t=O, 

A 
In-=-kt 

Ao 
(2) 

The dissociation rate constant was calculated based on the slope of In AI Ao vs t plot. 
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2.2.8 Coexpression of chaperones 

For coexpression experiments, the chaperone plasmid set (Takara Bio Inc., Shiga) containing 

the plasm ids pG-KJE8, pGro7, pKJE7, pG-Tf2 and pTf16 was used. Initially, E coli cells 

were transformed with one of the chaperone plasm ids followed by transformation with pQCA. 

The coexpression was performed in LB medium containing 20 I-Ig/ml chloramphenicol and 

100 I-Ig/ml ampicillin. The chaperone expression was initiated by addition of 0.5 mg/ml 

L-arabinose and/or 10 ng/ml tetracycline. When the OD 600 reached 0.5, IPTG was added to a 

final concentration of 1 mM to induce expression of the fusion protein, and ampicillin was 

added to a final concentration of 400 I-Ig/ml. After 4 h, the cells were harvested, resuspended 

in the binding buffer and sonicated. The amount of the protein in the soluble fraction was 

determined by SDS-PAGE as mentioned above, and the ratio of the amount of the protein in 

the soluble fraction to total amount of the expressed protein was considered as solubility 

percentage. 

2.3 RESULTS 

2.3.1 Expression and characterization of the fusion proteins 

To investigate the effect of the fusion position on the cell-surface binding activity of CPH from 

Lc. lactisIL1403, two expression cassettes were constructed in which CPH was fused either 

at its N-terminus (pQAC) or at its C-terminus (pQCA) to a-amylase of S. bovis 148 (Fig. 2.1). 

The fusion proteins were expressed intracellularly in E coli using the T5 promoter at 116 

mg/I for AMY-CPH and 53 mg/I for CPH-AMY, and the observed molecular sizes for both the 

proteins were 100 kDa as expected. 
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pQAC for AMY-CPH 

~6XHiSI AMY CPH r-
pQCA for CPH-AMY 

~6XHiSI CPH AMY r-
pQE31amyA for AMY 

~6XHiSI AMY r-
FIG 2.1 Structure of expression cassettes 

The cells of Lc. /actis ATCC 19435 were mixed with the purified proteins and studied for the 

binding of the fusion proteins by western blotting. As shown in Fig. 2.2, both fusion proteins 

were associated with the cells. In addition, the antibody did not react with the cells not 

incubated with the purified fusion proteins, and also when the cells were incubated with free 

a-amylase expressed from pQE31amyA, no signal was detected (data not shown). 

1 2 

FIG. 2.2 Effect of fUSion direction on the cell-surface binding activity of CPH. Lane 1, the cell 

bound AMY-CPH; lane 2, the cell bound CPH-AMY. 
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These results indicated that the binding of the fusion proteins to the cells was due to their 

CPH moiety and CPH was capable of binding to lactococcal cells either it was fused to 

a-amylase at its N-terminus or at its C-terminus. However, the number of bound molecules 

per cell was about three times more for CPH-AMY (lx103 molecules per cell) compared with 

AMY-CPH (3X102 molecules per cell). 

When the specific activities of the fusion proteins in their free forms were determined for 

starch digestion (Table 2.2), it was about 11 times more for CPH-AMY (261 U/mg) compared 

with AMY-CPH (23 U/mg). Fusion of CPH to the N-terminus of AMY resulted in 40% decrease 

in the specific activity of AMY whereas that to the C-terminus of AMY resulted in 95% 

decrease in the specific activity. The binding of the fusion proteins to the cells resulted in 

40% and 50% decrease in the specific activities of CPH-AMY (151 U/mg) and AMY-CPH (11 

U/mg), respectively. 

TABLE 2.2 Specific activity for starch digestion (U/mg) 

Protein Free form Cell-bound form 

AMY-CPH 23 11 

CPH-AMY 261 151 

AMY 426 -

2.3.2 Binding of CPH-AMY to LAB strains 

In order to examine the binding capabilities of LAB strains for CPH-AMY, the purified protein 

was mixed with LAB cells. After incubation, the cells were examined for the binding of the 
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fusion protein by westem blotting. CPH-AMY was observed to be associated with the cells of 

all the strains tested (Fig. 2.3). The antibody did not react with the cells not incubated with 

the fusion protein or incubated with free a-amylase. 

1 2 3 4 5 6 

100% 37% 2% 8% 63% 0.2% 

FIG. 2.3 Binding of CPH-AMY to LAB strains. Lane 1, Lc. faetisATCC 19435; lane 2, Lb. pfantarum 

NRRL B-531; lane 3, Lc.faetisIL 1403; lane 4, Lb. caseiNRRL B-441; lane 5, Lb. defbrueckiiATCC 

9649; lane 6, Lb. casei NRRL B-445. The estimated number of bound molecules of (PH-AMY to 

one cell of Lc. Laetis ATCC 19435 is l x Ia' which was considered as 100% and the relative 

percentages for other cells were shown in the figure. No signal was detected for the cells 

incubated with citrate buffer or free Q-amylase. 

The highest binding capability was observed for Lc. faetis ATCC 19435 and the lowest one 

was observed for Lb. casei NRRL B-445. A high binding capability was observed for Lb. 

defbrueckii ATCC 9649 which was 63% of that of Lc. faetis ATCC 19435. Our calculations 

showed that 1x 103 and 7x102 molecules of CPH-AMY bound to each cell of Lc. factis ATCC 

19435, and Lb. defbrueckii ATC( 9649, respectively. When the cells of Lc. factis ATCC 19435 

was incubated with a high concentration of CPH-AMY, the number of bound molecules 

increased remarkably. At the final concentration of 2.4 mg/ ml for CPH-AMY in the binding 

assay mixture, the number of the bound molecules reached to 6x 104 per cell . 
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2.3.3 Stable binding of CPH-AMY to the cell-surface 

To study the stability of the binding of CPH-AMY to the cells of Lc. Lactis ATCC 19435, and Lb. 

delbrueckii ATCC 9649, the cells bound to CPH-AMY were incubated at a specified 

temperature and dissociation rate constants were determined based on the time courses of 

a-amylase activity on the cell-surfaces (Table 2.3). 

TABLE 2.3 Dissociation rate constants of CPH-AMY for the cells at different temperatures (S-l) 

Bacterial strain 4°C 300C 37°C 

Lb. delbrueekii ATCC 9649 3.84 (± 1.07) xlO-6 a, b - 6.96(± 1.38) xlO·6b 

Le. laetis ATCC 19435 1.08 (± 0.11) xlO·4 a,c 0.50 (± 0.25) xlO ·4c -

The statistical difference between each two values indicated with the same superscript (a or b or 

c) is significant at less than 5% probability. 

The binding of CPH-AMY to the cells of Lb. delbrueckii ATCC 9649 was very stable, and the 

change in the activity of the bound protein during incubation was very low. The calculated 

dissociation rate constants at 40C were 1.0ax 10-4 and 3.a4x 10-6 S-l for Lc. Lactis ATCC 

19435, and Lb. delbrueckii ATCC 9649 respectively. Increase in the temperature from 4 to 

370C resulted in 1.a1 times increase in the dissociation rate constant for Lb. delbrueckii ATCC 

9649. However, in the case of Lc. Lactis ATCC 19435, the dissociation rate constant at 300C 

was 2.16 times lower than that at 40C. 
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2.3.4 Effect of coexpression of chaperones on soluble expression of CPH-AMY 

In the absence of chaperone coexpression, only 9% of CPH-AMY was present in the soluble 

form. To increase the solubility of CPH-AMY, coexpression of molecular chaperones was 

performed. When DnaK, DnaJ, and GrpE (pKJE7) were coexpressed with CPH-AMY, the 

solubility of the protein increased to 54%, and when other groups of chaperones were 

coexpressed the solubility of CPH-AMY increased to 34-35% (Table 2.4). The concentration 

of CPH-AMY in the soluble fraction increased three times by coexpression of trigger factor 

(pTf16) (16 mgjl) (46). 

TABLE 2.4 Coexpression of chaperones 

Chaperone plasmid CPH-AMY in soluble fraction (PH-AMY in soluble fraction 

(%) (mgjl) 

9 5 -

pG-Tf2 36 7 

pG-KJES 34 7 

pKJE7 54 12 

pGro7 34 14 

pTf16 35 16 

GroES, GroEL and TF (trigger factor) were expressed from pG-Tf2; DnaK, DnaJ, GrpE, GroES and 

GroEL were expressed from pG-KJES; DnaK, DnaJ and GrpE were expressed from pKJE7; GroES 

and GroEL were expressed from pGro7; TF was expressed from pTf16. 

2 1 



2.4 DISCUSSION 

One of the objectives of this study is to develop an efficient system for the direct 

fermentation of starch to lactate by the construction of an a-amylase displaying lactic acid 

bacterium. Use of this system is advantageous over that of free a-amylase because the 

enzyme can be easily recovered together with cells to reuse. Starch is a large substrate which 

is not capable of penetrating the cell wall. For this reason, in order to achieve its efficient 

hydrolysis, the enzyme must be exposed on the outside of the cell wall in a way that it is 

accessible for starch. The display systems based on the internal mode of cell-surface 

anchoring are often associated with the limitation in the translocation of target proteins and 

mislocalization of a target protein can affect its activity negatively (32, 35, 47). In contrast, a 

display system based on the external mode of protein display can ensure the full exposure of 

a target protein outside of the cell. Therefore, a whole-cell biocatalyst based on the 

externally added cell-surface adhesive a-amylase was considered as a suitable selection for 

our purpose. 

When CPH was fused at its C-terminus to a-amylase of S. bovis, as well as its N-terminal 

fusion, it was able to direct attachment of a-amylase molecules to the cells of Lc. lactis ATCC 

19435 (Fig. 2.2). Therefore, it is a bidirectional anchor protein. However, interestingly for the 

C-terminal fusion construct, the number of the bound molecules increased three times. The 

change in the fusion direction may cause conformational alterations in the fusion protein 

leading to the better accessibility of CPH for cell-surface binding and increase in number of 

the bound molecules. 

As shown in Table 2.2, the C-terminal fusion construct of CPH resulted in 11 times higher 

specific activity for the starch digestion compared with that of the N-terminal fusion 
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construct. The starch binding domains of this a-amylase are located at the C-terminus (48). 

Therefore, fusion of CPH to the N-terminus of a-amylase may help with more efficient 

adsorption of a-amylase onto starch and its degradation resulting in a higher specific activity 

for starch digestion. 

It was observed thatLc. lactis ATCC 19435 was able to display 6x104 molecules per cell 

which is comparable with other surface display systems based on the internal mode of 

anchoring. The size of the a-amylase from S. bovis is very large (77 kDa), and usually an 

increase in the size of displayed proteins results in a decrease in the density of the proteins 

on the cell-surface. In the study by Maassen et at. (49), a surface density of 3.9x103 

moleculse per cell was reported for the display of tetanus toxin fragment C (62 kDa) on the 

surface of Lb. casei using PrtP anchor protein. However, by the present system, a large 

protein (a-amylase, 77 kDa) was successfully displayed on the cell-surface at a density 

comparable to that of conventional systems. 

The binding of CPH-AMY to the cells of Lb. delbrueckii ATCC 9649 was very stable and its 

dissociation rate constant at 37°C was 7x 10-6 
S-l (the half life of the binding (t1/2) was 28 h). 

The binding of this protein to the cells of Lc. lactis ATCC 19435 also was stable with 

dissociation rate constant of 5x10 -5 S-l at 30°C (t1/2=4 h). It is known that lactate production 

by lactic acid bacteria is maximal during exponential growth phase. Therefore, for successful 

application of the constructed whole-cell biocatalysts in lactate production, suitable 

fermentation conditions should be specified for adjustment of duration of exponential growth 

phase with dissociation rate of the protein. These half lives are long enough for lactic acid 

fermentation if inoculm size is adequet and/or suitable growth conditions with high specific 

growth rates are used. 

In the case of Lc. lactis ATCC 19435, the increase in the temperature resulted in the decrease 
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in the dissociation rate constant (Table 2.3). If the interaction between a protein and its 

ligand is mainly of a hydrophobic nature, the affinity for the ligand increases with an increase 

in temperature. However, it should not be the case for CPH. Because this domain is rich in Ser 

and Thr residues and it has a hydrophilic nature. Therefore, we can not exclude the 

involvement of temperature induced changes in the cell-surface structures in the decrease of 

the dissociation rate constant with the increase in the temperature. However, the exact 

reason for this observation remains to be clarified. The difference between the dissociation 

rate constants of Lc. lactis ATCC 19435 and Lb. delbrueckii ATCC 9649 at 4°C may be 

attributed to the difference in the target site of CPH. In addition, it has been reported that 

removal of peptidoglycan-associated polymers such as lipoteichoic acid by the acid treatment 

of lactococcal cells increased their binding capacity remarkably (38). Therefore, the 

difference between the binding capabilities of LAB for CPH-AMY can be attributed to the 

difference in cell-surface structures of these strains. 

Coexpression of DnaK-DnaJ-GrpE with CPH-AMY showed the most pronounced effect on the 

prevention of the protein aggregation compared with that of other groups of chaperones 

(Table 2.4). However, regarding the expression level, the highest amount of CPH-AMY in the 

soluble form was observed for coexpression with trigger factor. This chaperone is assumed to 

playa role in protein folding because of its association with nascent polypeptides. Moreover, 

it can strengthen GroEL-substrate binding to facilitate protein folding or degradation (46). In 

future, other strategies such as fusion with solubility-enhancing proteins will be tried to 

improve production of CPH-AMY in the soluble form. 

E coli expression system with its ability of ease of genetic manipulation, low cost, and high 

expression level is the most attractive system for heterologous protein expression. The 

greatest disadvantage of this system is the formation of inclusion bodies and low refolding 
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yield. However, our results showed the effectiveness of coexpression of molecular 

chaperones as a suitable approach for increasing solubility of CPH-AMY in E coli. In 

conclusion, the results of this study suggest that CPH is applicable for production of 

cell-surface adhesive enzymes in E coli. However, a suitable fusion direction should be 

specified to ensure adequate cell-surface binding and enzymatic activities. 
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CHAPTER 3 

Expression of C-terminal repeat region of peptidoglycan hydrolase of 

Lactococcus lactis IL1403 in methylotrophic yeast Pichia pastoris 

3.1 INTRODUCTION 

The display of proteins and peptides on the surface of cells by fusing them with the anchoring 

domains, has a broad range of potential biotechnological applications including the 

construction of diagnostic devices, vaccine delivery vehicles, and whole cell biocatalysts (2, 

31, 50). Lactic acid bacteria (LAB) constitute a group of gram-positive bacteria which have 

extensively been used for the fermentation and preservation of food products (41-43). The 

non pathogenicity of LAB has made them attractive for making oral vaccine delivery vehicles 

by the display of antigens (8, 51). The C-terminal repeat region of the peptidoglycan 

hydrolase (AcmA) of Lactococcus lactis subsp. cremoris MG1363 (CPH) is an anchoring 

domain which has been expressed in Lc. lactisfor the display of proteins and peptides on the 

surface of this bacterium (27, 29, 38, 52). The interaction of this domain with the cell wall is 

of a non-covalent nature and since it can bind to tells when it is added from the outside, 

chimeric proteins need not to be expressed in the cells (38). For this reason, this mode of 

protein display can retain nongenetically modified status of the cells, and it is valuable for 

food and vaccine development (52). 

In order to confer new properties on LAB by the display of desired proteins on them, we 

are interested to produce cell-surface adhesive proteins using CPH in the methylotrophic 

yeast Pichia pastoris. For many years, Escherichia coli has been used as a host 

microorganism for production of recombinant proteins due to its superior properties for 
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protein production including ease of genetic manipulation, low cost, and high expression 

level (53). However, as E. coli is a prokaryote, often it is not able to fold foreign proteins 

properly and perform other post-translational modifications such as disulfide bond formation 

(54). The formation of inclusion bodies is the main obstacle for protein production in this 

expression system, as the recombinant proteins must then be refolded into their native 

functional conformations using complex multistep processes that can lead to a significant 

decrease in the final yield of the protein (55). On the other hand, P. pastoris is a unicellular 

eukaryote that has many similarities to E. coliin terms of rapid growth, low cost, and ease of 

cloning foreign genes. Being a eukaryote, P. pastoris is capable of producing soluble, 

correctly folded recombinant proteins that have undergone all the post-translational 

modifications that are essential for their functions including disulfide bond formation as the 

most important one (56). Several proteins generated as misfolded, insoluble inclusion bodies 

in E. coli obtained as soluble and correctly folded proteins when expressed in P. pastoris. 

For instance, when antigen 5 (Ag 5) was expressed in P. pastoris, it was shown to have the 

native structure of natural protein, but when it was expressed in E. coli, it did not show the 

native structure (57). In the study by Li et at. (58), successful secretory expression of herring 

antifreeze protein in P. pastoriswas reported which exhibited full activity comparable with the 

native protein, whereas expression of this protein in E. coli resulted in the formation of 

inactive inclusion bodies which required further manipulation to get biological activity. In 

addition, P. pastoris has the capability of extracellular expression of recombinant proteins at 

high levels, and a simple purification of secreted proteins is possible due to the relatively low 

levels of native secreted proteins (56). Therefore, the use of P. pastoris is potentially more 

advantageous over that of E. colior Lc. lactiswith high nutritional requirement, and a costly 

cultivation (59), difficult genetic manipulation, and limited disulfide bond formation (60). 
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However, when a protein is expressed in this yeast, the influence of the post-translational 

modifications such as glycosylation on the protein properties should be considered. The 

glycosylation of a foreign protein that is nonglycosylated in its native form may be regarded 

as a drawback for this system because it may affect the protein functions. CPH contains 

several potential N-glycosylation sites. In addition, it includes serine and threonine residues 

which may be subjected to O-glycosylation. The attachment of glycoside chains at these sites 

may affect the cell surface binding activity of CPH. In this study, therefore, we report the 

extracellular production of a mutant of CPH (CPHM) devoid of the potential N-glycosylation 

sites in the methylotrophic yeast P. pastoris. The cell-surface binding activity of the 

constructed domain was studied and compared with that of the original domain produced 

intracellularly in E. coli. 

3.2 MATERIALS AND METHODES 

3.2.1 Microorganisms and growth conditions 

E. coli BL21 was used for the construction of vectors and the expression of heterologous 

proteins. It was grown in Luria-Bertani (LB) liquid medium or on LB agar plates at 37°C. P. 

pastoris GS115 (his4) (Invitrogen, Carlsbad, CA, USA) was used for protein expression. 

Lactobacillus caseisubsp. caseiNRRL B-441 (Agriculture research service culture collection, 

Peoria, IL, USA), Saccharomyces cerevisiae IF00216 (Institute for Fermentation Osaka, 

Osaka), E. coliXLl-blue, and Bacillus subtilis 168 were used for the binding assay. Lb. casei 

NRRL B-441 was grown in MRS broth (Difco Laboratories, Detroit, MI, USA) at 37°C. S. 

cerevisiaeIF00216 was grown in YPD medium at 30°C. E. coliXLl-blue, and B. subtilis 168 

were grown in LB medium at 37°C. 
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3.2.2 DNA manipulation 

pQECPH (chapter 2) in which a hexa-histidine tag gene was attached at the 

N-terminus-encoding region of cph, was used as the template to amplify cph using 

5' -tctillgQgaagagagaggctgaagcaatgagaggatcgcatcaccatcac-3' and 

5' -catgatgcggccgcttatttaatacgaagatattgacc-3' as the forward and reverse primers, 

respectively. The PCR product was digested with Xhdl and NotJ. (underlined) and subcloned 

into pPICZaC (Invitrogen) at the same restriction sites. The resultant plasmid is pPIaCPH. 

Site-directed mutagenesis was performed using a Quickchange Multi Site-Directed 

Mutagenesis kit (Strata gene, La Jolla, CA, USA) to substitute five potential N-glycosylation 

Sites using pPIaCPH as the template and three mutagenic primers 

5'-acagctacaaataccaataCtaattcaCaAacaagctcaaccacttatac-3' for Nl5T and N18Q, 

5'-caagttcttcgtctaCtacaaCtagttcaacttcttcagg-3' for N73T and N75T, and 

5'-cgagttcaacttctaCctcttctgcagcttcaaGtacctctatccataaggttg-3' for N168T and N174S (the 

converted nucleatides are shown in capital letters). After verification of the mutations by 

sequencing, the constructed plasmid (pPIaCPHM)(Fig. 1) and pPIaCPH were linearized using 

Sad and introduced into P. pastoris by electroparation. The transformants were selected on 

YPDS medium (1% yeast extract, 2% peptone, 2% glucose, 1 M sorbitol) containing 100 

~g/ml zeocine (Invitrogen). The integration of the genes in the yeast chromosome was 

confirmed by genomic PCR using the 5 ' AOXl primer (5'-gactggttccaattgacaagc-3') and 

3 ' AOXl primer (5'-gcaaatggcattctgacatcc-3'), and the correctness of each gene sequence 

was confirmed by sequencing. 
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CYCITT 

Zeocin I 

PEM7 

1 

pPluCPHM 
4276 bp 

AOXITT 

(1- factor 
His tag 

EK site 

CPR: KREAEAMRGSHHHHHHGTSNSGGSTATNTNNNSNTSSTTYTVKS 28 

CPHM: ------------------------------T--Q----------
GDTLWGISQKYGISVN).IQSANNLKSTVIYIGQKLVLTTSSSSSNINSST 78 

--------------------------------------------T-T---

SSGNSAGTTTPTTSVTPAKPASQTTIKVKSGDTLWGLSVKYKTTIAQLKS 128 

WNHLNSDTIFIGQNLIVSQSAGSSSSSTGSSSASTSSTSNSSAASNTSIR 178 

------------------------------~--------T-----S----

KVVKGDTLWGLSQKSGSPIASlKAWNHLSSDTILIGQYLRIK* 

FIG 3.1 Structure of pPlaCPHM and amino acid sequences of CPHM and CPH. 

The plasmid pPlaCPH has the same structure as that of pPlaCPHM except that cphMwas replaced with 

cph. The arrow represents the Kex2 cleavage site. 
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3.2.3 Expression of CPH in E. coli 

E coli BL21(DE3) cells harboring pQECPH were grown overnight at 37°C in LB broth 

supplemented with 100 IJg/ml ampicillin. The cells were then harvested by centrifugation and 

transferred to fresh LB broth containing the antibiotic as mentioned above, and incubated at 

37°C until the OD 600 reached 0.5. Isopropylthiogalactoside was added to a final 

concentration of 1 mM to induce the expression of the target protein. At the same time, 

ampicillin was added to a final concentration of 400 IJg/ml for the plasmid maintenance. After 

further incubation for 4 h, the cells were collected and the expression was studied by 

resolving the whole cell extract on 12.5% sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). 

3.2.4 Expression of CPHM in P. pastoris 

To select a clone with a high expression level of CPH orCPHM, transformants were inoculated 

into 2 ml of buffered glycerol complex medium (BMGY: 1% yeast extract, 2% peptone, 100 

mM potassium phosphate buffer (pH 6), 1.34% yeast nitrogen base (Difco Laboratories, 

Detroit, MI, USA), 4x 10-5 % biotin, 1% (w/v) glycerol) and cultivated at 30°C with shaking at 

240 spm until an OD600 of 6 was achieved. Then, the expression was induced by suspending 

10 OD units of cells in 10 ml of buffered methanol complex medium (BMMY: the same 

composition as that of BMGY medium except for glycerol, which was replaced with methanol 

at O.5%(v/v)) in 100 ml test tubes. The cells were cultivated for 4 days with addition of 0.05 

ml of methanol every 24 h. For flask-scale expression studies, induction was initiated at an 

OD600 of 2 and methanol was added to 1 % (v/v) every 24 h. 
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3.2.5 Protein purification 

Proteins were purified by metal affinity chromatography, utilizing the interaction between the 

histidine tag and a nickel chelate column (Ni-NTA superflow column (Qiagen)). For 

purification of CPHM, ammonium sulfate was added to the culture supernatant at 80% 

saturation and pH 6. The precipitate collected by centrifugation was dissolved in binding 

buffer (50 mM NaH2P04 (pH 8),300 mM NaCl, 10 mM imidazole), and insoluble materials 

were removed by centrifugation. The supernatant was desalted using a PO-l0 column (GE 

Healthcare, Uppsala, Sweden) and it was applied to the Ni-NTA column, which had already 

been equilibrated with the binding buffer. After washing the column with the same buffer 

containing 20 mM imidazole, bound proteins were eluted with the elution buffer which was 

the same as the binding buffer except that it contained 250 mM imidazole. For the 

purification of CPH from E coli, IPTG-induced cells were suspended in the binding buffer and 

disrupted by sonication. After centrifugation, the native CPH in the supernatant was purified 

as described above. 

The purified proteins were subjected to 12.5% 50S-PAGE, and the protein bands were 

visualized by staining the gel using Coomasie Brilliant Blue R250. Gels were scanned and 

densitometrical analysis was performed to quantify'the protein. 

3.2.6 Binding of proteins to cells 

The microorganisms were grown in appropriate conditions as mentioned above until an 

00660 of 1 was achieved. Cells from 1 ml culture for the bacteria and 0.8 ml culture for the 

yeast were dispersed in GM17 medium (M17 (Oifco) including 0.5% glucose) containing the 

purified proteins at 0.24 !-1M, and incubated at 300C for 2 h with gentle shaking. After 

washing the cells three times with phosphate buffered saline (PBS) (50 mM potassium 

32 



phosphate (pH 7.2), 150 mM NaCl) containing 0.1% (w/v) Tween 20, the obtained pellet was 

resuspended in 2xSOS-PAGE loading buffer containing 20% (w/v) glycerol, 125 mM Tris-HCI 

(pH 6.8), 4% 50S, 5% (v/v) ~-mercaptoethanol, and 0.01% bromophenol blue, and boiled 

for 5 min. The proteins were separated by 12.5% 50S-PAGE and electroblotted onto a PVOF 

membrane (Amersham-Hybond P, GE Healthcare, Buckinghamshire, UK). CPH and CPHM 

were detected with a horseradish peroxidase-conjugated anti-pentahistidine antibody 

(Qiagen) using a chemiluminescence method (ECl plus western blotting detection system 

(GE Healthcare)), and densitometrical analysis was performed to quantify the bound 

proteins. 

3.2.7 N-terminal sequencing 

The purified proteins were subjected to 50S-PAGE and electroblotted onto a PVOF 

membrane (Immobilon pSQ, Millipore, Bedford, MA, USA). The membrane was stained with 

Coomassie brilliant blue R250 and the bands were excised to determine the N-terminal 

sequence. N-terminal sequencing was outsourced to Aproscience Co., Ltd. (Tokushima, 

Japan) and determined by the Edman method. 

3.2.8 Determination of dissociation rate constant 

The binding assay was performed as described above except that 8 ml of the cells of Lb. casei 

B-441 were dispersed in GM17 medium containing the purified proteins at 0.5 mg/I, and after 

washing cells to remove unbound proteins, the cells were incubated in PBS at 40 C. At 

specified time intervals, the buffer was changed following centrifugation and a portion of the 

cells was withdrawn. The time courses of the amounts of CPH and CPHM bound to the cells 

were analyzed by western blotting followed by densitometrical quantification of protein 
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bands. Because the dissociation of proteins from cells can be regarded as a first-order 

reaction, a change in the concentration of a complex is given as 

dX 
-=-k,,,X (1) 
dt OJ! 

where Xis the concentration of CPH (or CPHM) and kotlris the dissociation rate constant. By 

integrating Eq. (1), (X=AQ at t=0), 

lnX -lnXo = -kojJt . (2) 

InXwas plotted against time and koffwas calculated from the slope of the curve. 

3.3 RESULTS 

3.3.1 Binding of CPH produced intracellularly in E. co/ito Lactobacilluscells 

CPH from Lc. lactis IL1403 is a homolog of CPH from Lc. lactis MG1363. To investigate the 

cell-surface binding activity of CPH from Lc. lactis IL1403, this domain was expressed 

intracellularly in E coli using the T5 promoter. To facilitate the purification of CPH, a 

hexa-histidine tag was introduced at its N-terminus. After IPTG induction, there was an 

obvious extra band at the molecular size of 32 kDa. Analysis of the soluble and insoluble 

fractions of the induced E coli cell extracts indicated that 20% of the protein was present in 

the soluble fraction. The soluble protein was purified under native conditions by metal 

affinity chromatography (data not shown) and it was mixed with cells of Lb. casei B-441. 

After incubation, cells were harvested and examined for the presence of bound CPH by 

western blotting using the anti-histidine tag antibody. As shown in Fig. 3.2, CPH was 

observed to be associated with the cells. In addition, the antibody did not react with the cells 

which were not incubated with the purified CPH and the cells which were incubated with the 

proteins purified from the extract of E colicells containing the vector without the insert (data 
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not shown). Therefore, (PH is capable of binding to the cell surface when produced 

intracellularly in E coli. 

(PH (32 kDa) 

Degradation products 

(28 and 27 kDa) 

FIG. 3.2 Binding of (PH produced in E colito Lb. casei B-441 cells. 

The (PH bound to cells was detected using the anti-histidine tag antibody. No signal was detected 

in the control experiment, in which the cells were mixed with elution buffer instead of (PH. 

3.3.2 Mutation of N-glycosylation sites of CPH and selection of positive 

transformants 

To delete the potential N-linked glycosylation sites (Asn15-Asn-Ser, Asn18-Thr-Ser, 

Asn75-Ser-Ser, Asn l68-Ser-Ser, and Asn174-Thr-Ser) of (PH, Pichia vector containing cph, 

pPla(PH, was mutated from these asparagines residues to Thr, Glu, Thr, Thr, and Ser, 

respectively, resulting in the plasmid construct pPlo(PHM (Fig. 3.1). Since a new 

N-glycosylation Site appeared at Asn73 by substitution of Asn75 to Thr, Asn73 was also mutated 

to Thr. After introduction of these two plasm ids into P. pastorisGS115 by electroporation, the 

selected transformants , were cultured in BMGY broth, followed by methanol induction in 

BMMY and assayed for the secretion of the proteins by dot-blotting of the culture 

supematant onto a PVDF membrane followed by detection with the anti-histidine tag 

antibody. All the selected clones exhibited positive indication for the presence of (PHM in the 

culture supernatant after induction with methanol. However, no positive clone for (PH was 
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observed. A clone with the highest level of secreted CPHM production was selected for 

further studies. 

3.3.3 Characterization of CPHM secreted from P. pastoris 

When the culture supernatant of the induced cells of GS115 (pPIoCPHM) was resolved on 

12.5% 50S-PAGE and subjected to western blot analysis, two protein bands, corresponding 

to 50 and 35 kOa, were reacted with the anti-histidine antibody (Fig. 3.3A). After His-tag 

affinity chromatography, the purified proteins (Fig. 3.3B and 3.3C) were subjected to 

N-terminal sequence analysis. It showed that both protein bands contained 

Met-Arg-Gly-Ser-His-His-His at their N-termini. Therefore, the histidine tag was retained and 

the o-mating factor signal peptide was completely processed. 

The cell surface binding activity of the produced proteins was examined by mixing cells of Lb. 

caseiB-441 with the purified proteins. The protein binding was studied by western blotting. 

The 50-kOa band was capable of binding to the cells, whereas the 35-kOa band did not bind 

to the cells of this bacterium (Fig. 3.30). The anti-histidine tag antibody did not react with 

the cells which were incubated with the proteins purified from the supernatant of the host 

strain with the chromosomal integration of the vector without the insert (data not shown). 

FIG. 3.3 Expression, purification, and binding of CPHM produced in P. pastoris. (A) Western blot 

of CPHM expressed in P. pastoris. Lane 1, supernatant of GS115/pPlaCPHM; lane 2, supernatant 
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of host strain (GS115); lane 3, cell pellet of GS115/pPlaCPHM; lane 4, cell pellet of GS115. (B) 

SDS-PAGE of culture supernatant of GS115/pPlaCPHM (lane1) and purified CPHM (lane2). (C) 

Western blot of pure CPHM (the same sample as that for lane 2 of panel B). (D) Binding of CPHM 

to the cells of Lb. casei B-441. CPHM bound to the cells was detected using the anti-histidine tag 

antibody (lane 1) and no signal was detected for the cells incubated with elution buffer instead of 

CPHM (lane 2). 

3.3.4 Binding of CPHM and CPH to other cells 

When the binding of purified CPHM to the cells of E coli XLi-Blue, 8. subtilis 168, and 

S.cerevsiae IF00216 was examined by western blotting, it was observed that in addition to 

that of gram-positive bacteria including 8. subtilis 168 and Lb. caseiB-441, this domain was 

also able to bind to the surface of a gram-negative bacterium (E coliXll-Blue) and a yeast 

(S.cerevsiae IF00216) (Fig. 3. 4). 

1 2 3 4 

FIG. 3.4 Binding of CPHM produced in P. pastoris to cells. CPHM bound to cells was detected 

using the anti-histidine tag antibody and no signal was detected for the cells incubated with 

elution buffer instead of CPHM. Lane 1, 8. subtilis 168; lane 2, E coliXLl-Blue; lane 3, Lb. casei 

B-441; lane 4, S:cerevisiaeIF00216. 

The number of bound molecules of CPHM (produced in P. pastoris) per OD unit of cells and 
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the number of bound molecules of CPH (produced in E col!) per OD unit of cells were 

calculated based on the densitometrical analysis of the western blot (Table 3.1) 

TABLE 3.1 Binding of CPH and CPHM to cells 

Number of bound molecules per OD unit Ratio 

Microorganism 
CPH CPHM 

B. subti/is 168 6xlO12 4x1012 0.67 

E co/iXL1-Blue 3x1012 3x1012 1 

Lb. casei NRRL B-441 6xlO11 3x1012 5 

S. cerevisiaeIF00216 2x1012 6x1012 3 

These results indicated that the number of bound molecules per OD unit of Lb. caseiB-441 

cells for CPHM was 5 times more than that of CPH. In the case of S.cerevisiae IF00216, 3 

times increase in the number of bound molecules per OD unit of cells was obselVed for CPHM 

compared with CPH. However for B. subti/is 168, the number of bound molecules of CPHM 

per OD unit was 1.5 times lower than that of CPH, and in the case of E co/iXL1-Blue no 

difference between these values was obselVed. 

3.3.5 Stable binding of CPHM and CPH on the cell surface of Lb. casei 

The stability of the binding of CPHM secreted in P. pastoris, and CPH produced intracellularly 

in E co/ito cells of Lb. caseiB-441 was studied by incubating the cells bound to the proteins 

in PBS at 40C. As shown in Fig. 3.5, about 80% of CPHM remained bound to the cells after 3 
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h of incubation. The rate constants for the dissociation of the proteins from the cells (koff) 

were estimated based on the time courses of the amount of the bound proteins. The koff of 

CPHM produced in P. pastoris (2xlO·s s·') was 3.5 times lower than that of CPH produced 

intracellularly in E. coli (7xlO-s S-I), and the difference was statistically significant at a 95% 

confidence level. These low dissociation rate constants are comparable with those of 

antibodies with very high affinities (61), and it shows the specificity of the binding. 

CPHM CPH 

50 kDa 
32 kDa 

023 a 1 2 3 

FIG. 3.5 Stable binding of CPHM and CPH to cells of Lb. easei. Cells bound to CPH or CPHM were 

incubated in PBS buffer at 40 C. The samples were taken at the time (h) indicated in the figure and 

were analyzed for the amount of the bound protein by western blotting using the anti-histidine 

tag antibody. The dissociation rate constant (koff), estimated as described in materials and 

methods, was 2xlO-ss·' for CPHM, and 7xlO·5 S· ' for CPH. 

3.4 DISCUSSION 

The methylotrophic yeast P. pastoris is a popular expression host which has widely been 

used to produce various prokaryotic and eukaryotic proteins. In contrast to the prokaryotic 

recombi nant expression systems such as those based on E. coli, the P. pastoris system has 

the ability to perform many of the post-translational modifications such as correct folding, 

disulfide bond formation, and proteolytic processing (56). The P. pastorisexpression system 

has successfully been used to produce proteins that are highly disulfide-bonded whereas 

prokaryotic systems have been generally unsuccessful in achieving this (62). Furthermore, 
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extracellular expression in P. pastoris is an attractive option because this yeast secretes 

low-levels of endogenous proteins; therefore secretion of the expressed proteins may be 

considered as an effective purification step (56). Considering these advantages, we 

investigated the possibility of production of cell-surface adhesive proteins in this system in 

order to confer new properties on cells using these proteins. 

Our result indicated that when CPH was produced intracellularly in E. coli, about 20% of the 

protein was present in the soluble fraction, which was in the active form and it could bind to 

the cells tested (Fig. 3.2). However, when CPH is fused with a desired protein to produce a 

cell-surface adhesive protein in E. coli, the fusion protein may not be correctly folded, and is 

mostly deposited as inclusion bodies with a usually low refolding yield. When CPH was fused 

with the a-amylase of Streptococcus bovis, only 9% of the protein was found in the soluble 

fraction (data not shown). Therefore, P. pastoriswas considered as a more appropriate host 

for the expression of these proteins regarding its better capability for the correct folding of 

the proteins. 

CPH is a prokaryotic protein and it contains five potential N-glycosylation sites which may be 

subjected to N-glycosylation in the yeast (Fig. 3.1). To avoid the possible interference of 

N-glycan chains with the cell-surface binding activity of this domain, these sites were 

substituted by site-directed mutagenesis. Our attempts for expression of native CPH in P. 

pastoris were not successful. However, we succeeded to express the mutated domain 

(CPHM) in P. pastoris. The reason for this observation remains to be clarified. When the 

mutated domain (CPHM) was expressed in P. pastoris, the apparent molecular sizes of the 

observed bands (50 and 35 kDa) were larger than that of the original domain (CPH) 

produced in E. coli(32 kDa) (Fig. 3.3A). Because the complete removal of the signal peptide 

was confirmed by N-terminal sequencing, and CPHM does not contain any N-glycosylation 
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sites, the increase in the apparent molecular size is attributed to O-glycosylation. The results 

of the cell binding assays showed that only the 50-kOa band was able to bind to the cell 

surfaces. Because both bands had the same N-terminal sequences, the 35-kOa band may 

have been derived from the 50 kDa band by proteolytic degradation at the C-terminal region. 

It has been reported that the homolog of CPH from Le. lactis MG 1363 binds noncovalently 

to a broad range of gram-positive bacteria (11). However, our result indicated that in addition 

to gram-positive bacteria, CPH and CPHM were able to bind to the surfaces of gram-negative 

bacteria and yeast, albeit to different extents (Table 3.1 and Fig. 3.4). CPH contains three 

homologous repeats called the LysM repeats, and it has been suggested that the LysM 

domain is a general peptidoglycan-binding module, although the precise component to which 

it can bind has not yet been established (63). 

In the present study, it was observed that the dissociation rate constant of CPHM for the cells 

of Lb. easei B-441 decreased 3.5 times compared with that of CPH as a result of 

O-glycosylation in P. pastoris (Fig. 3.5), which indicated that the binding of O-glycosylated 

CPHM to the cells was stronger than that of native CPH. However, Boraston et at. (64) 

showed that O-glycosylation did not affect the adsorption of a carbohydrate-binding module 

produced in P. pastoris to cellulose because the O-linked glycans were far from the binding 

site and glycans at those positions were unlikely to affect the binding. Therefore, the effect of 

O-glycan chains on the binding to a ligand depends on the spatial conformation of the protein. 

In another study by Munro et at. (65), a role for O-glycosylation in the adhesion of Candida 

albieansto buccal epithelial cells was demonstrated by the significant reduction in adherence 

to the epithelial cells in the mutants with a reduced level of mannosyltransferase activity and 

truncated O-mannan. Our comparison of the numbers of bound protein molecules per 00 

unit cells of O-glycosylated CPHM and nonglycosylated CPH for cells of Lb. easeiB-441 and 
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S.cerevisiae IF00216 (Table 3.1) suggested a positive role for the involvement of O-glycan 

chains in the binding of CPHM to the surfaces of these cells. However, in the case of E coli 

XL1-Blue, no effect was observed and a negative effect was observed for B. subtilis 168. 

Considering the differences in cell-surface structures of these microorganisms, these results 

indicated a cell-dependent role for the involvement of O-glycoside chains through interaction 

with the cell-surface structures in the adherence to cell-surfaces. 

In conclusion, our results suggested the capability of CPHM for the production of 

cell-surface adhesive proteins in P. pastoris. Several applications may be considered for these 

proteins including an enhancement of the delivery of viable probiotics to the human 

gastrOintestinal tract. Several genera of LAB including Lb. casei are well-known probiotics 

that can contribute to human health by maintaining or improving intestinal microbial balance. 

Many beneficial effects are exerted by probiotics (66,67). However, their viabilities must be 

maintained during the product storage, and they must be able to survive the adverse 

conditions of the gastrOintestinal tract (GIT) before reaching their site of action. It was 

shown that the microencapsulation of probiotics with starch or other food grade polymers 

can help enhance the survival of probiotics during storage, during passage through the 

human GIT, and when being incorporated in dairy products, because microencapsulation 

segregates the cells from adverse environments; thus, potentially reducing cell injuries (67, 

68, Valton, T. et aI., European patent 1999-W09952511). 

The fusion of CPHM with a starch binding domain (SBD) will confer nongenetically modified 

probiotic strains with the capability of binding to starch, which can facilitate their 

microencapsulation with starch. Therefore, the results of the present study may contribute to 

the development of probiotic production technologies. 
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CHAPTER 4 

A new strategy for enhancement of microbial viability in simulated 

gastric conditions based on the display of starch binding domain on the 

cell-surface 

4.1 INTRODUCTION 

Probiotics are live microbial food supplements, which benefits the health of consumers by 

improving their intestinal microbial balance (69). These bacteria have been increasingly 

included as functional ingredients in dairy products such as yoghurts and fermented milks 

(70). Since the viability and activity of a probiotic is essential at the site of action, it must 

survive passage through the upper gastrointestinal tract (GIT), and it must be able to 

function in the gut environment (71). Most commonly used probiotics are lactobacilli and 

bifidobacteria (72). However, several studies indicate that most of these bacteria may not be 

able to withstand the harsh acidity of the GIT (73, 74). Different approaches have been 

proposed to protect probiotics from environmental stresses including appropriate selection of 

acid resistant strains, stress adaptation, and microencapsulation (75). Microencapsulation 

segregates cells from the adverse environment; thus it reduces the cell injuries. Food grade 

polymers such as alginate, chitosan, carboxymethyl cellulose, carrageenan, gelatin, pectin 

and starch are mainly applied for microencapsulation using different technologies (76). 

Valton et al. have recently developed a microencapsulation technology that involves 

entrapping bacteria in the hollow core of partially hydrolyzed starch granules (bacterial core), 

which are then encapsulated in an outer coating of amylose (Valton, T. et al. European patent 
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1999-W09952511). The aim of this technology is to protect the probiotic bacteria from 

adverse environmental conditions during processing, during storage in products, and during 

passage through the GIT, and it is based on the fact that starch granules can be used to 

protect living microbes from environmental stresses (Valton, T. et al. European patent 

1999-W09952511). It is expected that bacterial adhesion to starch can facilitate 

encapsulation of the bacteria when this technology is used (67). Because adherence of the 

bacteria to starch will increase the density of the cells entrapped in the starch granules, and 

lower number of the cells may leak out of the pores of the porous starch granules when 

preparing the bacterial core. In addition, it is known that an increase in the initial cell load of 

probiotic products results in an increase in the bacterial survival on exposure to the GIT 

conditions. Therefore, it is expected that adhesion to starch can enhance the delivery of 

viable probiotics to the intestinal tract. However, not all of the desired probiotics possess 

proper starch adhesion abilities. In the study by Crittenden et al. (77), several strains of 

bifidobacteria were examined for adhesion to starch, and it was shown that starch adhesion 

was not characteristic of all of the bifidobacteria tested. Moreover, using genetic engineering 

techniques to confer starch binding ability on probiotics is not favorable because of 

consumers' concerns about genetically modified f06ds. 

In chapter 2 and chapter 3, we showed that the C-terminal region of peptidoglycan hydrolase 

(CPH) of Lactococcus lactis IL1403 is an efficient anchoring domain for the display of 

heterologous proteins on cells which can bind to the cell surface when it is added from the 

outside. When fusion of CPH to a-amylase was produced in E coli, CPH was able to direct 

binding of the enzyme to the cell surfaces of various lactic acid bacteria. For this reason, this 

domain can be used to confer new properties on the cells without making any genetiC 

modifications in them. In this chapter, therefore, we investigated the capability of CPH for the 
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display of a starch binding domain on the surface of Lactobacillus casei cells, and 

aggregation of the cells with starch was examined as an alternative technique of providing 

the bacterial core of microencapsulation. This is the first report to demonstrate potential 

applicability of the cell-surface display technology for enhancement of delivery of viable 

microorganisms to the intestinal tract. 

4.2 MTERIALS AND METHODS 

4.2.1 Bacterial strains and growth conditions 

E. coliXLl-Blue was used for the construction of vectors and the expression of heterologous 

proteins. It was grown in Luria-Bertani (LB) liquid medium or on LB agar plates at 37°C. 

Lactobacillus caseiNRRL B-441 was used for the binding assay, and it was grown at 37°C in 

MRS broth (Difco Laboratories, Detroit, MI, USA). 

4.2.2 DNA manipulation 

The gene encoding the linker and the first nine amino acid residues of the starch binding 

domains of the a-amylase of Streptococcus bovis was prepared by PCR from pQE31amyA 

(44) with 5'-aaggatccgggccaagctagccaagcagctc-3' and 5'-gcgccaattatctgggttttgg-3' as 

forward and reverse primers respectively. The amplified fragment was digested with 8ani-lI 

and 8stt..I and inserted at the same restriction sites into pQCA (chapter 2). The obtained 

plasmid was designated as pQCLS (Fig. 4.1). The correctness of the construct was confirmed 

by restriction digestion and sequencing. 
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~ 6xHis I CPH ILinker I SBD r-
FIG. 4.1 Structure of expression cassette 

4.2.3 Expression studies 

E. coli cells harboring the desired plasmids were grown overnight at 37°C in LB broth 

supplemented with 100 J,.Igjml ampicillin and 15 J,.Igjml tetracycline. The cells were then 

harvested by centrifugation and transferred to fresh LB broth containing the antibiotics 

mentioned above, and incubated at 37°C until the OD6oo reached 0.5. Isopropyl ~-D 

-thiogalactoside (IPTG) was added to a final concentration of 1 mM to induce the expression 

of the target protein. At the same time ampicillin was added to a final concentration of 400 

J,.Igjml for plasmid maintenance. After further incubation for 4 h, the cells were collected and 

the expression was studied by resolving the whole cell extracts on 12.5% sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE). 

4.2.4 Purification of the fusion protein 

Proteins were purified under native conditions by metal affinity chromatography, utilizing the 

interaction between the histidine tag and a nickel chelate column (Ni-NTA superflow column 

(1.5 ml), Qiagen GmbH, Hilden, Germany). The induced cells from a 100-ml culture were 

harvested by centrifugation, and were re-suspended in the binding buffer (50 mM NaHzP04 

(pH 8), 300 mM NaCl, 10 mM imidazole). Lysozyme was added to a final concentration of 1 

mgjml and the cell suspension was incubated for 1 h on ice. The cells were disrupted by 

sonication and the clear supernatant obtained by centrifugation was applied to the Ni-NTA 

column equilibrated with the binding buffer. The column was washed three times with the 

same buffer containing 20 mM imidazole and the bound proteins were eluted with the elution 
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buffer which was the same as the binding buffer except that it contained 250 mM imidazole. 

The buffer of the eluent was then exchanged to 20 mM Tris-CI buffer (pH 8.0) by 

ultrafiltration. The protein preparation was applied to an anion exchange column 

(SuperQ-5PW, Tosoh) equilibrated with 20 mM Tris-CI buffer (pH 8.0). The absorbed proteins 

were eluted by a linear NaCi gradient (O-lM). Protein elution was monitored using a UV 

detector, and the desired fraction was collected and desalted by ultrafiltration. Purified 

proteins were subjected to 12.5% 50S-PAGE, and the bands were visualized by staining the 

gel using Coomasie Brilliant Blue R250. Gels were scanned using GT-F600 scanner (Epson, 

Suwa, Japan), and densitometrical analysis was performed with Scion image software (Scion, 

Maryland, USA) to quantify the proteins. 

4.2.5 Cell-surface binding assay 

Lb. case; cells were grown as mentioned above until an 00 660 of 1 was achieved. The cells 

from a 1.5-ml culture were dispersed in 0.15 ml MRS medium containing the purified fusion 

protein at 0.12 mg/ml, and incubated at 300C for 2 h with gentle shaking. After washing the 

cells twice with 0.1 M phosphate buffer (pH 7.0) (PB), the cell pellets were resuspended in 

2xSOS-PAGE loading buffer containing 20% (w/v) glycerol, 125 mM Tris-HCI (pH 6.8), 4% 

50S, 5% (v/v) ~-mercaptoethanol, 0.01% bromophenol blue and boiled for 5 min. Binding of 

the protein to the cells was studied by 12.5% 50S-PAGE followed by CBB staining, and the 

amount of the fusion protein bound to the cells were determined by densitometrical analysis 

of CBB stained gels as mentioned above. 

4.2.6 Starch binding assay 

200 1-11 of the protein purified by the his-tag column (0.06 mg/ml in PB) was mixed with an 
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equal volume of a suspension of starch granules (Corn starch, Sigma-Japan, Tokyo, Japan, ) 

(10 mg/ml) in the same buffer and incubated at 37°C for 3 h with gentle shaking. After 

centrifugation, the supernatant was examined for the presence of unbound proteins by 

SDS-PAGE. 

4.2.7 Aggregation of bacteria with starch and microencapsulation 

After the performing binding assay as mentioned above, the cells were washed and 

resuspended in PB to a final density of lx 109 cells mrl. Equal volumes of the cell suspension 

and starch granules suspended in PB, were mixed for 30 min and allowed to stand at room 

temperature for lh. Formation of aggregates was studied both visually and with phase 

contrast microscopy. To determine the percentage of the cells adhering to starch under these 

conditions, after sedimentation, 0.5 ml sample was taken from below the surface of the liquid. 

Optical density at 540 nm was measured and compared with those of the controls (bacteria 

without starch, and starch without bacteria) to calculate the starch adhesion percentage as 

described by Crittenden et al (77). For coating of the aggregates with amylose, an 1% 

solution of amylose in water (amylose from potato, Sigma) was prepared by heating it to a 

temperature of 170°C in a pressure heater (Taiatsu Techno, Tokyo, Japan) which was then 

cooled down to 37°C. The aggregates were mixed gently with 0.5 ml of the amylose solution 

and the coating was allowed to form overnight at 4°C. 

4.2.8 Survival of cells in simulated gastric juice 

The simulated gastric juice was prepared as described by Lian et at. (78), which was a pepsin 

solution (3 g 1-1) in saline (0.5%). The juice was prepared freshly, and its pH was adjusted to 

2.0 or 3.0 with 5 M HCI. The amylose coated cells were mixed with 1 ml of the filter sterilized 
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simulated gastric juice, and incubated at 37°C. At specified time intervals, the gastric juice 

was removed after centrifugation and the cells were washed once with PB following with two 

washes with saline. The cells were then resuspended in PB containing 30 U mr1 a-amylase 

(Megazyme, Bray, Ireland) and incubated at 40°C for 20 min to aid release of the cells from 

the encapsulating materials. Viable bacteria were enumerated on MRS-agar after incubation 

for 24 h at 37°C and the survival percentage was determined by dividing the final viable 

population (du mr1) with the initial viable population (du mr1) of the Lb. casei cells 

inoculated to the simulated gastriC juice. 

4.3 RESULTS 

4.3.1 Expression and purification of the fusion protein 

In chapter 2, we showed that fusion of CPH to the C-terminus of a-amylase of S. bovis 

resulted in the decrease in the starch degradation activity of this enzyme compared with 

fusion to it N-terminus. The starch binding domain of this a-amylase is located at its 

C-terminus. Fusion of CPH at the C-terminus of this enzyme can make steric hindrance for 

binding of starch to the starch binding domain and it causes the decrease in the enzyme 

activity. Thus the C-terminus of this starch binding domain is necessary for its function and it 

should be free. For this reason in this study, the capability of CPH for the construction of a 

cell-surface adhesive starch binding domain was investigated by fusion of CPH to the 

N-terminus of the starch binding domain (Fig. 4.1). The fusion protein was expressed 

intracellularly in E coliusing the T5 promoter at 0.35 g r1. The molecular size was 56 kDa as 

expected and 75% of the protein was present in the soluble fraction. When the protein was 

purified under native conditions by the histidine-tag affinity chromatography, two additional 
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bands at the molecular weight of 73 and 71 kDa were also present in the protein preparation 

(Fig. 4.2, lane 1). After incubation of the purified proteins with starch, no bands for target 

protein, and the protein at 71 kDa were detected in the supernatant, and the concentration 

of the protein at 73 kDa in the supernatant was lower than that of the initial one (Fig. 4.2, 

lane 2). These results showed that in addition to the target protein, these two proteins also 

were able to adhere to starch. Therefore, in order to confirm the activity of the target protein 

for adhesion to starch, these bands were successfully separated from CPH-SBD by the anion 

exchange chromatography (Fig. 4.2, lane 4). The result of the starch binding assay showed 

that the purified protein is in the active form and it is able to adhere to starch (data not 

shown). 
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FIG. 4.2 Purification of CPH-SBD, its binding to starch, and to Lb. case; cells. Lane 1, nickel 

chelate column purified protein preparation; lane 2, supernatant after starch binding assay; lane 

3, control without starch; lane 4, ion exchange chromatography purified CPH-SBD; lane 5, cells 
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bound to CPH-SBD; lane 6, cells only. 

4.3.2 Binding of CPH-SBD to the surface of Lactobacillus cells 

The cells of Lb. easeiwere incubated with the purified CPH-SBD and studied for binding of 

the protein by SDS-PAGE. As shown in Fig. 4.2 (lane 5), the protein was observed to be 

associated with the cells, and the result of densitometrical analysis showed that 6x104 

molecules of CPH-SBD bound to each cell of Lb. easei. 

4.3.3 Aggregation of the bacteria with starch 

For aggregation of bacteria with starch, it is necessary to specify an optimal ratio between 

bacteria and starch. Therefore, dependence of aggregate formation on starch concentration 

at a constant cellular density was investigated. Free cells mixed with starch, and starch 

without cells were used as controls. For each case, we compared the volume of the sediment 

formed in the samples containing the bacteria bound to CPH-SBD and starch with those of 

the controls visually. The result is shown in Table 4.1. 

TABLE 4.1 Comparison of sediment formation at different starch concentrations 

Starch concentration BPS1 

(mg ml-1) 

1 + 

2 ++ 

5 +++ 

10 + 

1: Mixture of bacteria displaying CPH-SBD and starch 

2: Mixture of bacteria and starch 

5 1 

BS2 S3 

+ + 

+ + 

+ + 

+ + 



3: Starch only 

The volumes of the sediments formed after 1 h standing of the samples at room temperature, 

were almost the same for the controls in all the cases tested. When the starch concentration 

was 5 mg mrl
, the volume of the formed sediment in the sample containing the cells bound 

to the fusion protein and starch was remarkably larger than those of the controls. When the 

adhesion percentage of the cells to starch granules was measured under these conditions, it 

was 32% for the bacteria bound to CPH-SBD and 4% for the free cells. 

Formation of aggregates was confirmed by microscopic observation for the bacteria bound to 

CPH-SBD (Fig. 4.3), whereas the starch granules were separated from each other in the case 

of the free cells (data not shown). 

FIG. 4.3 Aggregation of Lb. casei cells displaying CPH-SBD with starch granules 

4.3.4 Survival of cells in the simulated gastric juice 

When free cells of Lb. caseiwere subjected to the simulated gastric juice at pH 3.0 or 2.0 for 

1 h, the survival of the cells was 0.074% and 0.002% respectively. However, when the 

amylose coated bacterial aggregates were subjected to the gastric juice for 1 h, the survival 
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was increased to 64% and 6% at pH 3.0 and 2.0 respectively (Fig. 4.4). 
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FIG. 4.4 Timecourse of survival of Lb. casei cells in the simulated gastrointestinal conditions. 

Open triangle and filled triangle: free cells and amylose coated aggregates respectively (pH 3.0); 

open circle and filled circle: free cells and amylose coated aggregates respectively (pH 2.0). 

TABLE 4.2 Effect of system components on survival 

Bacteria CPH-SBD Starch Amylose Survival (%) 

+ + + + 64 

+ - + + 37 

+ + - + 7 

+ + + - 11 

+ - - - 0.074 
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We compared the effects of different components of the system on the survival at pH 3.0 

(Table 4.2). It was observed that the survival of the bacterial aggregates in the absence of 

amylose coating was 11%, and when the bacteria bound to the fusion protein was coated 

with amylose without aggregation with starch, the survival was 7%. Incorporation of 

CPH-AMY to the system resulted in 27% increase in the survival. 

4.4 DISSCUSSION 

In the study by Wang et at. (79), it has been reported that survival of bifidobacteria in acidic 

conditions enhanced as a result of growth in the presence of starch and also mixing with the 

starch granules. However, the exact mechanism for the protective effect of starch is not 

known, and the adhesion of these bacteria to the starch granules and the bulking capacity of 

the starch which may markedly modify the pH of stomach were considered as possible 

explanations for these observations. The result of their study suggested that, the starch 

granules can be used to protect living microbes from environmental stress factors, and this 

fact is the basis for development of the technique of encapsulating probiotics within starch 

granules (Valton, T. et at. European patent 1999-W09952511). The objective of the present 

study is, therefore, to enhance delivery of viable microorganisms to the intestinal tract 

through conferring starch binding ability on them. In this way, the bacteria are entrapped 
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between starch granules in order to take advantages of the protective effect of starch. Our 

result showed that CPH was able to direct binding of SBD of a-amylase of S. bovisto the 

cell-surface of Lb. casei, and the results of the starch binding assay showed that the SBD 

fused with CPH was in the active form and it could bind to the starch granules. Therefore, 

when the fusion protein was produced in E coli, it was able to direct adhesion of the cells to 

the starch granules. We examined aggregation of the cells with starch as an alternative 

protective strategy for entrapping bacteria between the starch granules. Compared with the 

previous method of entrapping bacteria within the porous starch granules which were 

prepared by an enzymatic digestion, this technique is much simpler and faster. Moreover, the 

starch granules can be used in their intact forms without any modifications. When the 

amylose coated bacterial aggregates were subjected to low pH, there was a significant 

increase in the survival (64% at pH 3.0, and 6% at pH 2.0), compared with the free cells 

(0.074% at pH 3.0, and 0.002% at pH 2.0) under the same conditions. These results indicate 

the effectiveness of the developed technique for protection of the bacteria. As shown in Table 

4.2, the protective effect of the entrapment of the bacteria between the starch granules with 

the aid of CPH-SBD on the survival was comparable with that of using only the amylose 

coating (11% and 7% respectively). In addition, 1.73 times increase in the bacterial survival 

was observed as a result of the aggregation of the bacteria with starch using CPH-SBD 
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compared with the mixing of the free cells with starch (64% and 37% respectively). The 

most pronounced positive effect on the survival was observed when all of the components 

(fusion protein, starch, and amylose) acted together. In conclusion, the results of this study 

demonstrated the effectiven,ess of the cell-surface display technique for protection of the 

cells from adverse gastric conditions, and also it is expected that the constructed fusion 

protein can result in an improvement of the known technology of encapsulating probiotics in 

the porous starch granules. 
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CHAPTERS 

General conclusion 

Utilization of enzymes displayed on the cell surface in bioconversion processes is cost 

effective since the enzymes can be easily recovered together with cells to reuse. However, 

the reduction in the apparent enzyme activity is an issue when internal mode of protein 

display is used, which is caused by incomplete exposures of enzymes outside of the cell and 

misfolded structures of biocatalysts. These problems can be circumvented in a display 

system based on the external mode of protein display. However, optimal performance of 

these systems is dependent on the efficiency of the expression host and the display host. 

Therefore, in the present study construction of a whole cell biocatalyst based on the cell 

surface adhesive enzymes was studied using E colias the expression host and the a-amylase 

as the target enzyme. However, as E coli is a prokaryote, its ability for correct folding of 

proteins is limited and formation of inclusion bodies is the main obstacle of this expression 

system. In contrast, P. pastoris is a eukaryotic host which is capable of producing soluble, 

correctly folded recombinant proteins that have gone under all the post-translational 

modifications necessary for their functions. For this reason, we investigated the possibility of 

production of cell surface adhesive proteins in this expression host, and finally we showed 

the potential applicability of the external mode of protein display for enhancement of delivery 

of viable microorganisms to the intestinal tract. The result of each step of this research is 

summarized as followings: 

In chapter 2, we showed that when the C-terminal region of peptidoglycan hydrolase of Lc. 

lactis IL1403 was produced in Ecoli, it was in the active form and when it was fused to the 
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a-amylase of Streptococcus bovis, it could direct binding of the enzyme to the cell surface of 

Lc. lactis ATCC 19435. The positive effect of change in the fusion direction on the cell-surface 

binding activity and enzymatic activity of the cell surface adhesive enzyme was demonstrated, 

and the capabilities of several strains of lactic acid bacteria for binding to this enzyme were 

studied. Among the LAB tested, Lc. lactis ATCC 19435 showed the highest binding capability 

and Lb. delbrueckii showed the highest binding stability. Furthermore, the effect of 

coexpression of molecular chaperones on improvement of the production of the adhesive 

enzyme in the soluble form was studied. 

In chapter 3, we constructed a mutant of CPH devoid of the potential N-glycosylation sites to 

avoid the possible interference of attached N-glycoside chain with the cell surface binding 

activity of this domain. This domain was successfully produced extracellularly in P. pastoris in 

the active form, and we observed a remarkable increase in the binding stability of this 

domain compared with that of the original domain produced in E coli as a result of 

O-glycosylation in P. pastoris. We showed that in addition to gram-positive bacteria, this 

domain is able to bind to the cell surfaces of gram-negative bacteria and yeast. Therefore, it 

is a suitable fusion partner for the construction of a variety of protein display systems. 

In chapter 4, we showed the effectiveness of th'e external mode of protein display for 

protection of microorganisms under simulated intestinal conditions. When CPH was fused to 

the starch binding domain (SBD) of a-amylase of Streptococcus bovis, it was able to direct 

binding of SBD to the cell surface of Lb. casei cells. Therefore, binding of the cells to starch 

was mediated by the fusion protein. Then the suitable conditions for aggregation of these 

bacteria with starch were determined. The formed aggregates were coated with amylose and 

subjected to simulated gastric juice. As a result, 64% increase in the survival of protein 

coated bacteria compared with free cells was observed. 
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In conclusion, external mode of protein display is useful in the applications for which the use 

of genetically modified organisms is not favorable such as foods and vaccines, and also it 

should be used when the full exposures of target proteins outside of the cell are required 

such as a biocatalyst with a huge substrate incapable of penetrating the cell wall. The result 

of the present study demonstrated for the first time the applicability of P. pastoris as a 

protein expression system for the development of protein display systems based on the 

external mode. In addition, for the first time, the efficiency of E coli for production of 

cell-surface adhesive enzymes and cell-surface adhesive starch binding domain was 

demonstrated, and we showed the importance of the fusion direction on the activities of cell 

surface adhesive proteins. The cell-surface associated domains have also been studied by 

other research groups. However, most of these binding domains can bind to specific species 

or they are not able to bind to the microbes of industrial value (80,81). For example the cell 

wall binding domain of Staphylococcus aureus autolysin was able to bind to the surface of 

some of gram-positive bacteria but it was not able to bind to the surface of Lactobacillus sp. 

and E coli, and the treatment of these bacteria with trichloroacetic acid was required for 

binding of this domain which gives non living status to the cells. In the case of 

Saccharomyces cerevisiae even after acid treatment, binding of the domain was not 

observed (80). However, the result of the present study demonstrated the capability of CPH 

for binding to the surface of gram-positive and gram-negative bacteria and yeast cells. This 

finding opens new lines of research for construction of protein display systems on other 

microorganisms especially on yeast. 
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