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Abstract

The mesh architecture has been studied as one of promising models for 

parallel computation. Its structure is natural for solving problems in 

matrix computations and image processing, and is suitable for VLSI 

implementation. However, since each processor can communicate with 

only adjacent processors in a single time step, in many cases the time 

complexity of an algorithm on the mesh is lower-bounded by its large di-

ameter. This is a crucial drawback for a parallel computational model, 

and as a result, the mesh has been enhanced by the addition of vari-

ous types of broadcasting capability. In this dissertation, we study in 

inter-model simulations among several of these enhanced mesh models. 

  Here, we consider the step-by-step simulations; we say that a mesh 

M can be simulated in T steps on a mesh M' if there exists an algo-

rithm on M' that computes the result of an arbitrary step of M in T 

steps. From a theoretical point of view, a simulation result between two 

models is useful to relate the time-complexity classes of computational 

problems of each models. Also, it may provide a lower-bound or upper-

bound for a problem on one model if the problem is well studied on the 

other model. From a practical point of view, a simulation algorithm 

provides the simulated model as a higher level programming platform 
for the simulating model. 

  First, we deal with the reconfigurable mesh (RM) and mesh with 

multiple broadcasting (MWMB). The RM is a processor array that con-

sists of processors arranged to a two-dimensional grid with a reconfig-

urable bus system. The bus system can be used to dynamically obtain
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various interconnection patterns among the processors during the ex-

ecution of programs. A horizontal-vertical RM (HV-RM) is obtained 

from the general RM model, by restricting the network topology it can 

take to the ones that each bus segment must be along row or column. 

The MWMB is an enhanced mesh, which has additional broadcasting 

buses endowed to every row and column. We present two algorithms: 1) 

an algorithm that simulates the HV-RM of size n x n in O(•/) steps 

on the MWMB of size n x n, and 2) an algorithm that simulates the 

RM of size n x n in O(log2 n) steps on the HV-RM of size n x n. The 

time cost of the former algorithm is shown to be optimal in the worst 
case under the assumption on the processor mapping in this disserta-

tion. Furthermore, as the application of the latter algorithm., we show 
that the RM of size n x n can be simulated in 0((_2L_)2 log n log m ) 
steps on the HV-RM of size m x m (m < n). Previously, it was shown 
that the RM of size n x n can be simulated in 0(m () 2 log; m log m ) 

steps on the RM of size m x m. In terms of scaling simulation for the 

RM model, our algorithm is less efficient than the previously known 

best result. However, our algorithm only needs the power of HV-RM, 

which is much simpler and weaker model than the general RM model. 

  Next, we investigate the problem of simulating the mesh with sep-

arable buses (MSB) by the mesh with partitioned buses (MPB) and 

mesh with restricted separable buses (MRSB). The MSB and MPB are 

the two-dimensional mesh-connected computers which have additional 

broadcasting buses along every row and column. The broadcasting 

buses of the MSB can be dynamically sectioned into smaller bus seg-

ments of various lengths by the program control, while those of the 

MPB are statically partitioned in advance by a fixed length £. The
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MSB is equal in computational power to the HV-RM. The MRSB is 

a restricted model of the MSB, in which the broadcasting buses are 

placed only on every .£ rows and .£ columns, and only those processors 

located at the crossing point of the broadcasting buses can gain access 

to the buses. We show that the MSB of size n x n can be simulated 

in O(nl/3) steps by the MPB of size n x n when f = e(n2/3 ), and in 

O(t) steps by the MRSB of size n x n. These time costs are shown 

to be optimal in the worst case under the assumption on the processor 

mapping. 

  In this dissertation we propose simulation algorithms among several 

enhanced mesh models. Among them, the RM is the most powerful 

model. In fact, it has been argued that the RM can be used as a 

universal chip capable of simulating any equivalent-area architecture 

(e.g. the pyramid, mesh of trees, hypercube, etc.) without loss in time. 
By combining our simulation algorithms properly, we can obtain the 

time costs for simulating the RM on the other models, respectively. 

This means that our results give the upper bounds for the HV-RM, 

MWMB, MSB, MPB, and MRSB to simulate other equivalent-area 

architectures.



iv 

List of Publications

1. R. Sasada, S. Matsumae, and N. Tokura: A Sorting Algorithm 

  on a Fixed Size Reconfigurable Mesh, IEICE Technical Report, 

  COMP97-76, pp.25-32, in Japanese (Dec. 1997). 

2. S. Matsumae, R. Sasada, and N. Tokura: A Sorting Algorithm 

  on a Small Size Reconfigurable Mesh, IEICE Technical Report, 

  COMP97-99, pp.97-104, in Japanese (Mar. 1998). 

3. R. Sasada, S. Matsumae, and N. Tokura: A Convex Hull Al-

  gorithm on a Fixed Size Reconfigurable Mesh, IEICE Technical 

  Report, COMP97-100, pp.105-112, in Japanese (Mar. 1.998). 

4. S. Matsumae and N. Tokura: Simulation Algorithms among En-

  hanced Mesh Models, Technical Report 99-ICS-1, Department of 

  Informatics and Mathematical Science, Graduate School of Engi-

  neering Science, Osaka University (Mar. 1999). 

5. S. Matsumae and N. Tokura: Simulating a Mesh with Separable 

  Buses by a Mesh with Partitioned Buses, Proc. of 1999 Inter-

  national Symposium on Parallel Architectures, Algorithms and 

  Networks (I-SPAN'99), pp.198-203, IEEE CS press (June 1999). 

6. S. Matsumae and N. Tokura: Simulation Algorithms among En-

  hanced Mesh Models, IEICE Transactions on Information and 

  Systems, Vol.E82-D, No.10, pp.1324-1337 (Oct. 1999).



V

7. S. Matsumae and N. Tokura: Simulating a Mesh with Separable 

  Buses, Transactions of Information Processing Society of Japan, 

  Vol.40, No.10, pp.3706-3714 (Oct. 1999).



vi

Acknowledgments

The author has been fortunate to receive assistance from many peo-

ple. He would especially like to express his gratitude to his supervisor 

Professor Nobuki Tokura for his continuous guidance and encourage-

ment. The author has also received precious advice from Professors of 

the Graduate School of Engineering Science, Osaka University. Among 

them, he would like to extend his gratitude to Professor Toshinobu 

Kashiwabara and Professor Ken'ichi Hagihara for their valuable sug-

gestions and criticisms of this dissertation. 

  The author would also like to thank Professor Yoshihiro Tsujino 

of Kyoto Institute of Technology and Mr. Ryoji Sasada of Fuji Photo 

Film Co., Ltd. for their discerning comments and worthy discussions. 

  The author would like to thank Mr. Chan Wei Siang, my friend, for 

his careful reading of the draft of this dissertation. His valuable advice 

helped a lot to complete this dissertation. 

  The author would also like to express hearty thanks to Mrs. Masuyo 

Miyashita, Mrs. Yukiko Tanobe, and Miss Tomoko Sumiyoshi for their 

kind support. He is also grateful to the staffs and students of Labo-

ratory of Computer Languages, Graduate School of Engineer Science, 

Osaka University.



Contents

1 Introduction 

2 Simulation of Reconfigurable Mesh 

      2.1 Models ........................... 

    2.2 Problem Definitions .................... 

   2.3 Simulation by LCC-PCG Algorithm . . . . . . . . . . . 

   2.4 Simulation of HV-RM by MWMB . . . . . . . . ... . 

   2.5 Properties of PC-Graph . . . . . . . . . . . . . . . . . . 

   2.6 Simulation of RM by HV-RM . .. . . . .. . . ... . 

    2.7 Scaling Simulation .................... 

3 Simulation of Mesh with Separable Buses 

      3.1 Models ........................... 

   3.2 Simulation of MSB by MPB ............... 

   3.3 Simulation of MSB by MRSB .............. 

   3.4 Influence of Propagation Delays .............. 

4 Conclusions

1 

7 

9 

13 

18 

19 

24 

34 

44 

51 

52 

57 

67 

71 

73

vii



L ist of Figures

1.1

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8

2.9

2.10 

2.11

3.1

3.2

Enhanced mesh models and simulation costs (the mesh 

size is of n x n) . . . . . . . . . . . . . . . . . . . . . . . 

A 3 x 4 RM and a single processor. . . . . . . . . . . . 

A4x5MWMB . .. . . ... . . ...... .. . .. . 

A pc-graph example (M is a 3 x 3 RM). . . . . . . . . 

A pc-graph example (M is a 4 x 4 HV-RM). . . . . . 

A pc-graph G and its subgraphs GL and GR.. . . . . . 

Divisions of an n x n HV-RM (n = 23 = 8). . . . . . . 

Algorithm RM BYJIV-RM .. .. . ..... . . .... . 

Storage processors of an n x n HV-RM for each d (n = 

23=8) ........................... 

Folded storage processors of an n x n HV-RM for each 

d (n = 23 = 8) . . . . . . . . . . . . . . . . . . . . . . . 

Costs of simulating a single step (m < n). . . . . . . . 

Algorithm RMBY-HV-RM-2 . . . . . . . . . . .... . 

A mesh with separable buses (MSB). Local links are not 

shown . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A mesh with partitioned buses (MPB). Local links are 

not shown . . . . . . . . . . . . . . . . . . . . . . . . . .

5

 10 

 12 

 16 

 23 

 27 

 36 

 37

. 41

43 

45 

49

54

55

ix



X LIST OF FIGURES

3.3 A mesh with restricted separable buses (MRSB). Local 

       links are not shown .. . . . . . . . . . . . . . . . . . . . 

3.4 Algorithm SB-by-PB . . ... . .. . . . . . . . . . . . . 

3.5 Algorithm SB-by-RSB . . . . . . . . . . . . . . . . . . . 

3.6 Algorithm SBs-by-RSBs . ... . . .. . . .. . . . . .

56 

61 

68 

69



Lis 

   3.1

t of Tables 

 Time costs to perform a single step of the n x n MSB 

 when the propagation delay cannot be neglected. 71

xi



Chapter 1

Introduction

The mesh architecture has been studied as one of promising models 

for parallel computation. The two-dimensional mesh-connected com-

puter (mesh for short) is a processor array that consists of proces-
sors arranged in a two-dimensional grid. Each processor is connected 

via bi-directional unit-time communication links to four of its adjacent 

processors. Such structure is natural for solving problems in matrix 

computations and image processing, and many algorithms have been 

designed on this model. Also, the mesh structure is suitable for VLSI 

implementation and allows a high degree of integration. 

  The main drawback of the mesh is its large communication diam-

eter. That is, on the mesh of size n x n, it requires P(n) steps to 

move data from one end to the other, since each processor can commu-

nicate with only adjacent processors in a single time step. This leads 

many cases whereby the time complexity of an algorithm on the mesh 

is lower-bounded by its diameter. To overcome this problem, the mesh 

model has been enhanced by the addition of various types of broad-

casting buses. In this dissertation, we study in inter-model simulations 

1



2 INTRODUCTION

among several of these enhanced mesh models. 

  First, we deal with the reconfigurable mesh (RM) and mesh with 

multiple broadcasting (MWMB). The RM is a mesh enhanced with a 

reconfigurable bus system [29, 23, 3]. The bus system can be used to 

dynamically obtain various interconnection patterns among the pro-

cessors during the execution of programs. The processors in the same 

interconnected fragment can be seen as the ones which own a unit-time 

broadcasting bus over the processors. According to the restrictions put 

on the interconnection patterns, the RM is classified into several sub-

models, such as horizontal-vertical RM (HV-RM, in which each bus 

segment must be along row or column) and linear RM (LRM, in which 

each bus segment must be "linear", i.e., no bus-branching is allowed). 

The MWMB is an enhanced mesh, which has additional broadcasting 

buses along with every row and column [27, 24, 5, 6, 10,7j. Unlike the 

RM, the broadcasting buses in the MWMB model are static,, i.e., their 

connection pattern cannot be dynamically changed. Previously, many 

researchers compared these models with other models (e.g. the PRAM, 

pyramid, mesh of trees, hypercube, reconfigurable network, branching 

program, and so forth) by giving inter-model simulation algorithms be-
tween them [19, 4, 2, 12, 28, 20, 26]. But there had been no result 

among the RM, HV-RM, and MWMB. 

  In this dissertation, we show the following two algorithms: 1) an 

algorithm that simulates the HV-RM of size n x n in O( fn) steps on 

the MWMB of size n x n, and 2) an algorithm that simulates the RM 

of size n x n in O(log2 n) steps on the HV-RM of size n x n. As for 

the former algorithm, we show that its time-complexity is optimal in 

the worst case under the assumption on the processor mapping in this
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dissertation. The advantage of the former algorithm is as follows. On 

the MWMB model, it is not easy to design an algorithm using the pop-

ular divide-and-conquer strategy, for writing such an algorithm on this 

model involves ensuring a conflict free allocation of broadcasting buses 

to submeshes. On the other hand, on the HV-RM model where row and 

column buses can be freely separated into sub-buses, it is not necessary 

to confuse the one who writes the algorithm with such a bus allocation 

problem. Therefore, it is practical and useful to have an algorithm that 

simulates an HV-RM program on the MWMB model. In other words, 

we can view the HV-RM model as a higher level programming platform 

for the MWMB. As for the latter algorithm, since the RM is a very pow-

erful computational model and there are many efficient algorithms on 

it (the interested reader should refer to [221), we can also obtain many 

efficient algorithms for the HV-RM, by just simulating those RM al-

gorithms. To apply this simulation algorithm, we next consider the 

problem of simulating an RM using a smaller RM. This sort of problem 
is called scaling simulation or self-simulation [16, 3, 17, 21, 9]. Here, we 
show that the RM of size n x n can be simulated in O ( (m )2 log n log m ) 
steps on the HV-RM of size m x m (m < n). Although this time cost is 

less efficient than O( (m )2 log m log m) steps obtained by Fernandez-
Zepeda et al. in [9], our algorithm only needs the power of HV-RM, 
which is simpler and weaker model than that used in [9]. 

  Next, we consider simulation problems among the mesh with sepa-

rable buses (MSB), mesh with restricted separable buses (MRSB), and 

mesh with partitioned buses (MPB). The MSB is equal in computa-

tional power to the HV-RM, and is more powerful than the MRSB and 

MPB. The MSB is an enhanced mesh model proposed by Maeba et
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al. in [15]. They considered sectioning the broadcasting buses of the 

MWMB by inserting the processor-controlled switches into the buses. 

The broadcasting buses of the MSB, called separable buses, can be dy-

namically divided into smaller bus segments by the program control. 

The MRSB [25] is a restricted model of the MSB in which the separable 

buses are placed only on every £ rows and .£ columns, and only those 

processors located at the crossing point of the broadcasting buses can 

gain access to the buses. The MPB was proposed in [8, 14]. Like the 
MWMB and MSB, the MPB broadcasts along every row and column. 

The broadcasting buses of the MPB have no sectioning switch inserted, 

but are partitioned in advance by a fixed length £. 

  In this dissertation, we show that the MSB of size n x n can be sim-

ulated in O(n1/3) steps by the MPB of size n x n when £ O(n2/3 ), 

and in O(£) steps by the MRSB of size n x n. Furthermore, these time 

costs are shown to be optimal in the worst case under the assumption 

on the processor mapping. Theoretically, since we have shown that 

the MSB (= the HV-RM in computational power) of size n x n can 

simulate the RM of size n x n in O(log2 n) steps, we can say that any 

problem that can be solved in time T by the RM of size n x n can 

be solved in O(TT' loge n) steps by the MPB or MRSB of size n x n, 

where T' is the time cost of simulating the MSB of size n x n. Practi-

cally, compared to the MSB, the number of broadcasting buses or that 

of switch elements inserted to the buses can be rather small on these 

simulating models, and thus it is expected that the scalability of them 

is better than that of the MSB. Also, considering the propagation delay 

of a broadcasting bus introduced by the length of the bus (i.e., signal 

propagation delay) and those switch elements inserted to the bus (i.e.,
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device propagation delay), the propagation delay of the buses in the 

MPB and MRSB can be small in practice, and hence we consider that 

our simulation algorithms are useful when the mesh size becomes so 

large that we cannot neglect the delay. 

  Figure 1.1 summarizes the inter-model simulation results obtained 

in this dissertation. 

  This dissertation is organized as follows. In Chapter 2 we discuss 

the simulation problems of the RM, HV-RM, and MWMB. In Chapter 

3 we present simulation algorithms for the MSB, MPB, and MRSB. 

And in Chapter 4 we summarize our results.

RM

O (loge n )
HV-RM

equivalent

o(.,rn- )

MSB

MWMB

O(n1/3 )
MPB

O(f)
MRSB

Figure 1.1: Enhanced mesh models and simulation costs (the mesh size 
is of nxn).



Chapter 2

Simulation 

Mesh

of Reconfigurable

In this chapter, we deal with the reconfigurable mesh (RM), horizontal-

vertical reconfigurable mesh (HV-RM), and mesh with multiple broad-

casting (MWMB). 

  The simulation problems related to these models have been studied 

well. Previously, Ben-Asher et al. [4] investigated the relation among 

the RN (reconfigurable network, a more flexible version of the RM, 

whose underling network topology need not to be the mesh), PRAM, 

and BP (branching program). In [2], they also presented several inter-

model simulations among the RM and its various submodels. Lin et 

al. [12] proposed simulations of the MWMB and B-RM (basic RM, a 

variant of the HV-RM) by the PRAM. Trahan et al. [28] established 

a hierarchy of powers of the RMBM (reconfigurable multiple bus ma-

chine), RN, and PRAM, focusing on the ability to "segment" and/or 
"fuse" buses and various bus-access rules. Miller et al. [20] compared 

the RMESH (a variant of the RM, in which no cross-over of buses is 

allowed) with the ordinary mesh, pyramid, mesh of trees, hypercube, 

7



8 SIMULATION OF RECONFIGURABLE MESH 

and PRAM. Shi et al. [26] demonstrated the equivalency of the RMESH 

with 8-connectivity and the RM by giving simulations between them. 

But there had been no result among the RM, HV-RM, and MWMB. 1 

  First, we show the following two algorithms: 

  1. An algorithm that simulates the HV-RM of size n x n in O(V/n ) 

    steps on the MWMB of size n x n, 

  2. An algorithm that simulates the RM of size n x n in O(log2 n ) 

    steps on the HV-RM of size n x n. 

As for the former algorithm, we show that the time-complexity is opti-
mal in the worst case under the assumption on the processor mapping 

we take here. 
  As the applications of the above two simulation algorithms, we 

also consider simulating an RM on a smaller RM. This sort of prob-
lem is called scaling simulation or self-simulation. Clearly, it takes 
Q( (R)' ) steps to simulate n x n processors using m x m processors 

(m < n). Previously, Maresca [16] showed that the PPA (Polymor-
phic Processor Arrays, a variant of the HV-RM) has an optimal self-
simulation. Ben-Asher et al. [3] proposed an O((n-.L)2lognlog m ) 
step self-simulation algorithm for the general RM, and optimal self-

simulation algorithms for the HV-RM and LRM, respectively. Ma-

tias and Schuster [17] presented the randomized algorithm for the RM, 
which runs in O((m )2 + log n log log m) steps with high probability 
on the LRM and uses the "ARBITRARY" concurrent write rule. Mur-

shed and Brent [21] considered certain global restriction for the RM, 
 1 Unlike the result for the RMESH in [20], the component labeling algorithm for 

a binary image does not imply the straightforward solution for the RM here. Note 
that the RM allows cross-over among buses, while the RMESH does not.
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and showed that the RM with that restriction enjoys optimal self-

simulation. Recently, Fernandez-Zepeda et al. [9] improved the result 

given in [3], and presented an O( (nn-.L )2 log n-.L log m) step algorithm for 
the RM self-simulation. 

  In this chapter we show that the RM of size n x n can be simulated 

in O((n-.L)2log n log m) steps on the HV-RM of size m x m, and in 

O((nn-.L)2VfM-lognlogm) steps on the MWMB of size m x m (m < n). 

Although the time cost 0 ((ML) 2 log n log m) of our HV-RM algorithm 

is less efficient than that obtained by Fernandez-Zepeda et al. in [9], 

our algorithm only needs the power of HV-RM, which is simpler and 

weaker model than that used in [9]. 

  This chapter is organized as follows. Section 2.1 describes the RM, 

HV-RM, and MWMB models. Section 2.2 and 2.3 discuss the simu-

lation and related problems. Section 2.4 presents an algorithm that 

simulates the HV-RM time-optimally on the MWMB. Section 2.5 gives 

preliminary lemmas for Section 2.6, and Section 2.6 presents an algo-

rithm that simulates the RM on the HV-RM. Section 2.7 discusses the 

applications of our algorithms, including the simulation of an RM by a 

smaller enhanced mesh.

2.1 Models

A reconfigurable mesh (RM) is the mesh enhanced with a reconfigurable 

bus system. An m x n RM is the RM which consists of mn identical 

SIMD processors with m rows and n columns (Figure 2.1). The proces-

sor located in row i and column j is denoted as PE[i, j], and is assumed 

to know its coordinates i and j (0 < i < m, 0 < j < n). We do not
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              A 3 x 4 RM A single processor 
                                     and its 4 ports 

        Figure 2.1: A 3 x 4 RM and a single processor. 

assume the existence of shared memory, and only assume that every 

processor has local memory. 

  Every processor has four ports, N (north), S (south), E (east), and 

W (west). The port S of PE[i, j] is connected via a static external 

bus to the port N of PE[i + 1j] (0 < i < m - 1, 0 < j < n), 

and the port E of PE[i, j] is to the port W of PE[i, j + 1] (0 < i < 

m, 0 < j < n - 1). In each processor, ports can be connected in 

pairs by internal buses, and the connection pattern can be dynami-

cally changed during the execution of the programs. The connection 

pattern of local ports in a processor is represented as partition of the 

ports of the processor. For example, when only port N and port S are 

connected, it is written as {NS,E,W}. There are altogether 15 possi-

ble partitions: {NSEW}, {NEW,S}, {NSE,W}, {N,SEW}, {NSW,E}, 

{NW,SE}, {NE,SW}, {NW,S,E}, {N,SW,E}, {NE,S,W}, {N,SE,W},
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{NS,EW}, {N,S,EW}, {NS,E,W}, and {N,S,E,W}. Each intercon-
nected bus segment forms a broadcasting bus whose communication 

latency is assumed to be a constant time. 

  A single time step of the RM is composed of the following 4 substeps: 

  1. BUS substep: Every processor changes the connection pattern 

    of its local ports by local decision. 

  2. WRITE substep: Along each bus, one or more processors on 

    the bus send data to the bus. These processors are called the 

    speakers of the bus. 

  3. READ substep: Several of the processors connected to a bus 

    read the data transmitted on the bus by the speaker(s). These 

    processors are called the listeners of the bus. 

  4. COMPUTE substep: Some local computation is performed by 

     every processor. 

We assume each of the 4 substeps is executed in a constant time. The 

data transmitted. on a bus in a single time step is assumed to be a k-bit 

binary data for some constant k, where k > log mn. 

  We assume the CRCW bus model for the RM here. Concurrent 

writes are resolved by the COMMON-COLLISION rule. If there is no 

speaker on a bus, the listeners of the bus receive a special value 0. If 

there is one or more speakers on a bus, all sending the same data, then 

the listeners of the bus receive the data. If there is more than one 

speaker on a bus, two or more speakers sending different data, then the 

listeners of the bus receive error.



12 SIMULATION OF RECONFIGURABLE MESH

II

~~11

x

rC IlC

              Figure 2.2: A 4 x 5 MWMB. 

  A horizontal-vertical RM (HV-RM) is a restricted model of the RM, 

in which only {N,S,E,W}, {N,S,EW}, {NS,E,W}, and {NS,EW} are 

allowed as the connection pattern of local ports in each processor. 

  A mesh with multiple broadcasting (MWMB) is the enhanced mesh 

which has broadcasting buses along with every row and column. An 

m x n MWMB is the MWMB which consists of mn identical SIMD 

processors with m rows and n columns. Except for the broadcasting 

capability in each row and column, an MWMB is the same as the 

ordinary mesh which has local buses connecting adjacent processors. 

See Figure 2.2. As in the RM, the processor located in row i and 

column j is denoted as PE[i, j], and is assumed to know its coordinates 

i and j (0 < i < m, 0 < j < n). We assume that every processor has
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local memory, but without the existence of shared memory. 

  A single time step of the MWMB is composed of the following 4 sub-

steps: 1) LOCAL COMM, 2) WRITE, 3) READ, and 4) COMPUTE 

substeps. In the LOCAL COMM substep, every processor communi-

cates with its adjacent processors via local buses. The other substeps 

are the same as those in the RM model. We assume that each of the 

4 substeps is executed in a constant time. The data transmitted on 

a bus in a single time step is assumed to be a k-bit binary data for 

some constant k, where k > log mn. In this model, we assume there 

is no write conflict on a bus, i.e., the bus accessing capability is of the 

CREW. If there is no speaker on a bus, the listeners of the bus receive 

the special value 0. 

  The MWMB can be seen as a weaker model of the HV-RM. The 

local buses (resp. broadcasting buses) of the MWMB can be mimicked 

on the HV-RM, by letting every processor of the HV-RM statically take 

{N,S,E,W} (resp. {NS,EW}) as the bus configuration. Thus, any step 
of an MWMB can be simulated in a constant time on an HV-RM of 

the same size.

2.2 Problem Definitions

We define simulation as follows.

Definition 1 (Simulation) Let M and M' be two enhanced meshes. 

We say that .M' simulates a step of M with slowdown C if there is an 

algorithm running in O(C) steps on M' that achieves the effect of an 

arbitrary step of .M. •
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  The effect of a step of M is characterized by the contents of registers 

and memory cells of each processor of M before and after the execution 

of the step. 

  In this chapter, we assume the .following.' Here, M denotes a 

simulated mesh, and M a simulating mesh. 

  1. The size of M and that of M' are the same. 

 2. Each PE[i, j] of M is mapped to PE[i, j] of M'. An injective 

    mapping from registers and memory cells of a processor of M into 

    those corresponding processor of M' is defined appropriately. 

  3. The computing power of processors and the bus bandwidth are 

    equivalent in both M and M', -except that every processor of 

    M' has some amount of extra registers and memory cells for the 

    simulation. 

With these assumptions, the main difference between a simulated mesh 

and a simulating one becomes only their broadcasting capabilities. 

Hence, to devise a simulation algorithm, we only need to consider how 

to achieve the bus structure of a simulated mesh on a simulating one. 

  Next, we define a graph called port connectivity graph, and after 

that, consider labeling the connected components of the graph. To 

avoid confusing the reader, from now on we write PEM [i, j] fDr denoting 

PE[i, j] of M where M is an enhanced mesh. 

 z The assumption 1 and 2 are not applied to Lemma 14
, Theorem 4, and Corollary 

3 in Section 2.7.
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Definition 2 (Port Connectivity Graph) Let M be the RM of size 

m x n, and let S a step of M. Then, the port connectivity graph (pc-

graph) of (M, S) is defined as an undirected graph G = (V, E) such 
that 

   V={(i,j,X) I (i,j) E IDM, X E {N,S,E,W}} 

      where lDM={(i,j) I0<i<m, 0< j <n}, 

   E=EM UEM,s 
        where 

      Et ={{(i,j,S), (i+1,j,N)}I0<i<m-1,0<j <n} 

U 

          {{(i,j,E), (i,j+1,W)}~0<i<m,0< j <n-1},       E
n is = { { (i, j, X), (i, j, Y) j 

                      port X and Y of PEM [i, j] is con-
                       nected at the BUS substep of S }. 

The pc-graph of (M,S) is written as PCG (M, S). •

  Intuitively, the graph PCG (M, S) represents the port-to-port con-

nection among ports of processors of M established at the BUS substep 

of S (Figure 2.3). Each vertex (i, j, X) E V corresponds to port X of 
PEM[i, j]. Edges in EM stand for the port-to-port connections via ex-

ternal buses, and edges in E Zs for the connections by internal buses. 

Note that pc-graphs are defined on the RM, not on the MWMB model. 

  In the literature, connected component labeling is usually done by 

labeling vertices in each component C with the smallest index number 

of all the vertices in C. In this chapter, we use the labels defined as 

follows.
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 The bus configuration of M                             PCG 

 at the BUS substep of S (M, S) 

      Figure 2.3: A pc-graph example (M is a,3 x 3 RM). 

Definition 3 (Initial Label) Let G = (V, E) be PCG (M; S). For 

each (i, j, X) E V, we associate a label, denoted as iniM s(i, j, X), in 

such a way that 

    iniMs(i, j, X) 
          x if PEM[i, j] is a speaker sending a value x through 

            port X at the WRITE substep of S, 
           T otherwise. 

These labels are called initial labels. Here, T is assumed to be a special 

value distinct from any other labels. • 

  A total order -< on the initial labels is defined as a natural extension 

of the total order on binary numbers, by regarding T as the greatest 

element. The binary operator which selects the smaller value (w.r.t. 
-<) of the given two arguments is denoted as 1. For a label set T, IT 

denotes the minimum (w.r.t. -<) among the elements in T.
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  Let vHv' denote that vertices v and v' are connected in graph G. 

Then, we can now define the connected component labeling problem, 

as follows. 

Definition 4 (LCC-PCG Problem) The problem of labeling con-

nected component of pc-graph (LCC-PCG problem) is defined as fol-

lows: 

Input: A pc-graph G = (V, E) is given. Every vertex in V is labeled 

    with its initial label. 

Output: For each v E V, v is labeled by . { initial label of v' I v~v' }. 

The labels obtained as output are called component labels. Let G' _ 

(V', E') be a reduced graph of G obtained by restricting the vertex set 
into V' C V. For each v E V', the value J,{initial label of v' I v4+v' } 

is called its local component. label within G'. • 

  We solve the LCC-PCG problem on enhanced meshes. The input 

and output conditions for such LCC-PCG algorithms in this chapter is 

fixed as follows. 

Definition 5 (LCC-PCG Problem on Mesh) Let G = (V, E) be 

PCG (M, S), and M' be a mesh whose size is identical to that of M. 

Then, the LCC-PCG problem of G on M' is defined as follows: 

Input: For each (i, j, X) E V, the edges connected to (i, j, X) and the 

    initial label of (i, j, X) are stored in PEM, [i, j] 

Output: For each (i, j, X) E V, the component label of (i, j, X) is 

    obtained at PEM'[i, j]. 

•
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2.3 Simulation by LCC-PCG Algorithm 

In this section, we show that the simulation problem can be :reduced to 

the LCC-PCG problem. 

  First, we consider a virtual model of the RM, called MIN RM. A 

MIN RM is the RM in which the bus accessing capability is of MIN 

bus model. In the MIN bus model, if there is one or more speakers 

on a bus, the listeners of the bus receive the minimum among the 

values sent by the speakers of the bus, otherwise the listeners of the 

bus receive a special value 0. Similarly, the MIN HV-RM is defined 

as a variant of the HV-RM model, whose bus model is of MIN. To 

avoid confusion, we write COMMON-COLLISION RM (resp. COMMON-

COLLISION HV-RM) for the RM (resp. HV-RM) defined in Section 2.1. 

Since the bus accessing capability has no influence on the arguments in 

Section 2.2, the simulation problem, pc-graph, and LCC-PCG problem 

can also be defined on the MIN RM model in the same way. 

  Then, we can state the following lemma. 

Lemma 1 Let M be a MIN RM (HV-RM) of size m x n. Then, 

the mesh of size m x n can simulate a step of M with slowdown 

O(C) if there exists an algorithm A that solves LCC-PC'G problem 

of PCG (.M, S) for any S in C steps on the mesh. 

Proof: Assume there exists such an algorithm A, and let M' denote 

the mesh on which A runs. Then, given S, by solving the LCC-PCG 

problem of PCG (M, S), M' can simulate the effect of BUS, WRITE, 
and READ substeps of S. Note that M' can generate necessary data 

for the input condition of the LCC-PCG problem in a constant time.
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As for the COMPUTE substep, M' has only to perform correspond-

ing computations in each processor. As a whole, this simulation takes 

O (C) steps, and thus the conclusion follows. •

   The MIN RM (resp. MIN HV-RM) can simulate any step of the 

COMMON-COLLISION RM (resp. COMMON-COLLISION HV-RM) in a 

constant number of steps (see [18] for the details, the proof is similar 

to the simulation of.the COLLISION bus model by the PRIORITY one). 

This fact, coupled with Lemma 1, implies the following corollary. 

Corollary 1 Let M be the COMMON-COLLISION RM (HV-RM) of size 

m x n. Then, the mesh of size m x n can simulate a step of .M with 

slowdown O(C) if there exists an algorithm A that solves LCC-PCG 

problem of PCG (M, S) for any S in C steps on the mesh. • 

   In the following, when just written as RM or HV-RM, we do not 

distinguish whether it is of MIN or of COMMON-COLLISION bus model. 

In such a case, the proposed assertion holds for both bus models. 

2.4 Simulation of HV-RM by MWMB 

In this section, we show that the MWMB of size n x n can simulate a 

step of the HV-RM of size n x n with slowdown O(Vln-). This slow-

down is time-optimal in the worst case. 

   First, we show the lower bound for the problem. The problem of 

simulating the HV-RM on the MWMB can be reduced to that of com-

puting local minima among data items dispersed one item per processor 

on the MWMB. In the case of just computing the minimum of all the
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data items, the task can be completed in O(n1/3) steps on the MWMB 

of size n x n [24]. But in the case of computing local minima, the task 

needs Q(/) steps, which can be shown as a corollary of the following 

lemma.

Lemma 2 Any algorithm that correctly simulates a step of the HV-RM 

of size n x n on the MWMB of size n x n must take 1(r.) steps in 

the worst case. 

Proof: Let M be the HV-RM of size n x n (simulated mesh), and 

let M' the MWMB of the same size (simulating mesh). Consider the 

step S of M which consists of the following substeps: 

  1. BUS substep: PEM[i, j] takes {N,S,EW} as its internal bus con-

    figuration if (j mod ,/-n-) ; 0, otherwise takes {N,S,E,W} (0 < 

   i, j < n). 

  2. WRITE substep: PEM[i, j] sends the content of variable a to port 

   E if (j mod V/n-)=0 (0 <i,j <n). 

  3. READ substep: PEM[i, j] receives data through port W and 

    stores the data in variable b if (j mod /) 0 0 (0 < i, j < n). 

Here, we do not take into account the COMPUTE substep of S. At 

the BUS substep of S, nvfn- horizontal broadcasting buses are formed 

over M. Along each bus, the leftmost processor of the bus is a single 

speaker of the bus sending the content of its local variable a to its-1 

listeners. We call those values to be transmitted as a-values.. Note that 

there are possibly n-~fn_ different a-values. In the following, we show
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that it must take Sl(J ) steps to simulate S on .M', no matter what 

algorithm is used. 

  Let A be any algorithm that correctly simulates S on M'. We count 

how many steps it needs as follows. Since the simulation is performed 

on the MWMB model, the simulating processors communicate via lo-

cal and broadcasting buses. Then, since every processor that initially 

holds an a-value is different from those processors which will receive 

the value, every a-value must be transmitted on those buses before A 

terminates. With these observations, we count the necessary steps for 

A, by considering the following two cases:

Case 1: There exists an a-value transmitted only through local buses 

   during the simulation.

Case 2: There is no a-value transmitted only through local buses 

   during the simulation.

In Case 1, since the distance between the processor initially holding the 

a-value and the most distant processor which will receive it is - 1, 

A must take at least - 1 steps before it terminates. On the other 

hand, in Case 2, every a-value must be transmitted via broadcasting 

buses at least once during the simulation. Since the total number of a -

value is nVn- and the number of data which can be transmitted through 

broadcasting buses in a single step is at most 2n (the total number of 

broadcasting buses of M'), A must take at least //2 steps before it 

terminates. In either case, A needs 1l(vrn-) steps. Thus, the conclusion 

follows. •
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  Next, we show an algorithm on the MWMB of size 1 x n. 

Lemma 3 Let G = (V, E) be PCG (M, S) where .M is the HV-RM of 

size 1 x n and S is a step of M. Then, the LCC-PCG problem of G 

can be solved in O(VTn-) steps on the MWMB of size 1 x n.

Proof: Let M' be the MWMB of size 1 x n, on which the LCC-PCG 

problem of G is solved. First, divide M' into v/n- disjoint submeshes M'p 
of size 1 x vi (0 < p < vfn-), and for each submesh M,, we associate a 

graph Gp = (Vp, Ep) such that Gp is a reduced graph of G obtained by 
restricting the vertex set into { (0, j, X) E V I PEM' [0, j] is in M'p}. For 
each Gp, let vp (resp. vp) denote the leftmost vertex (resp. rightmost 
vertex) of Gp, i.e., (0, pVn-, W) E V, (resp. (0, (p + 1),,,Fn - 1, E) E Vp). 
Then, we can compute the component labels for every vertex in V, in 

the following three phases: 

 Phase 1: Each M'p computes the local component label within Gp for 

    every vertex in Vp, and determines whether vp H vp holds. 

 Phase 2: Compute component labels of every vp and vp (0 < p < Vln). 

 Phase 3: Each M'p computes the component labels of those vertices 

    in Vp connected to vP and/or vp . 

Phase 1 can be performed in O(Ji) steps, by sequentially scanning 
labels from left to right and then from right to left in each M'p using 

regular mesh connections. As for Phase 2, by sequentially broadcasting 

the local component labels and connectivity information obtained at
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Figure 2.4 : A pc-graph example (.M is a 4 x 4 HV-RM).

Phase 1 of those vp and vp (0 < p < Vn-), the labels of those vertices 
can be updated to the component labels in O(Vrn-) time. And finally, 
Phase 3 can be done in O(/i) steps similarly to Phase 1. Thus, the 
conclusion follows. (See [18] for the details3 .) •

  Here, we deal with the LCC-PCG problem of PCG (M, S) where 

M is of HV-RM model. Hence, for each vertex (i, j, X), if X is N or S, 

then its component label can be determined by checking the reduced 

graph composed of those vertices (i', j', X') satisfying j' = j. Similar 
argument holds for vertex (i, j, X) such that X is E or W. See Fig-

ure 2.4. In Figure 2.4, the connected components of PCG (M, S) can 

be determined by checking each of the subgraphs (graphs enclosed by 

 s The algorithm in [18], however, does not follow this strategy as it is, although 
its concept is essentially the same.
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dashed boxes) independently. 

  Hence, the following lemma holds. 

Lemma 4 Let G = (V, E) be PCG (M, S) where A4 is the HV-RM of 

size n x n and S is a step of A4. Then, LCC-PCG problem of G can 

be solved in O(-v/n-) steps on the MWMB of size n x n. 

Proof: The algorithm proceeds in two phases. In the first phase, 

compute the component labels for each (i, j, X) E V such that X is E 

or W in each row in parallel. And in the second phase, compute the 

component labels for each (i, j, X) E V such that X is N or S in each 

column in parallel similarly. Each phase can be performed in O(1i) 

steps from Lemma 3, and thus the conclusion follows. •

  We can now state the main theorem of this section. 

Theorem 1 The MWMB of size n x n. can simulate a step of the 

HV-RM of size n x n with slowdown O(v/n-). This slowdown is time-

optimal in the worst case. 

Proof : By Lemma 1, 2, 4, and Corollary 1. •

2.5 Properties of PC-Graph 

In this section, we show some properties of the pc-graph, and prove 

some lemmas using them. Our main goal here is to obtain Corollary 2, 

which plays an important role in the algorithm in Section 2.6.
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  Some of the lemmas proved here rely on the algorithms by Miller et 

al. proving the following results. 

Lemma 5 (Theorem 1 in [20]) Given the adjacency matrix A of an 

undirected graph with n vertices distributed so that element Ai ,j is stored 

in PE[i, j] of the HV-RM of size n x n, the connected components of 

the graph can be determined in O( log n) steps. •

Lemma 6 (Lemma 1 in [20]) Given a set S = fail of n values, dis-

tributed one per processor on the HV-RM of size 1 x n so that PE[O, j] 

contains aj, 0 < j < n, and a unit-time binary associative operation 

®, in O( log n) steps the parallel prefix problem can be solved so that 

each processor PE[0J] knows as ® al ®... ® a3. • 

Although these algorithms have been presented for the RM model, they 

can be executed on the HV-RM as well.' 

  Throughout this section, we assume that every initial label is dis-

tinct from any other labels 5 , which enables us to know whether two 

vertices are connected or not by just checking their (local) component 

labels. Furthermore, to avoid repetition, we fix some notations as fol-

lows. G = (V, E) denotes PCG (M, S) where M is the RM of size 

m x n (m:5 n, n is even) and S is a step of M. We divide V into two 

disjoint sets VL and VR such that 

    VL = {(i,j,X)EV10<j<n}, 
    VR = {(i,j,X)EVI n<j<n}, 

 4 As for Lemma 5, refer to Section 5.1 in [3]. 
 s This assumption does not hold in general . To make use of the results in this 

section, we shall extend the definition of initial labels in Section 2.6.
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and let GL (resp. GR) denote a reduced graph of G obtained by restrict-

ing the vertex set into VL (resp. VR). See Figure 2.5 for an. example. 

Also, we let M' denote the COMMON-COLLISION HV-RM of size m x n, 

in which problems are solved here. 

  Let Von and i' be the sets: 

    Von = {(i,n-1,E)EVLI0<i<m}, 
    Vo = {(i,2,W)EVR I0<i<m}, 

and let V,on denotes VonUV n. The vertices in Vcon are called contacting 
vertices (in Figure 2.5, contacting vertices are marked with f). Note 

that the vertices in Vin (resp. VI) are the only vertices in VL (resp. 

VR) connected to vertices in VR (resp. VL) in G. Then, we define 

a graph called bridge graph as follows. Here, 7r1 denotes a projection 

function such that 7r, ((X, y, Z)) = x. 

Definition 6 (Bridge Graph of GL and GR) The bridge graph of 

GL and GR is defined as an undirected graph Gb,i _ (Vb,i, Ebr;) such 

that 

   Vbri = 10,. m - 1} (= 1,7r, (v) v E Vcon}), 

R 

    Ebri=EbL~UEb~ 

         where 

       Ebn = { 17r, (v), 7r1(v')} I v, v' E V '-L..' vHv' }, 
       Ebn = { {7r1(v), 7(1(v')} I v, v' E Von, v-v' }. 

  For example, when GL and GR are the same graphs shown in Figure 

2.5, we have Vb,; ={ 0, 1, 2, 3 } and Eb,; _{ {0,0}, {1,1}, {2,2}, {3,3}, 

{0,2}, {1,3}, 12,311.
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The bri

Property 

     Vv) v'

dge graph enjoys the following property. 

1 (Relation between and H') 

E Vcon, [ v *--> v' t* 7fl(v) G+4' 7rl(v')

Proof: Take any v, v' E Vcon. Assume v .(-.-4v' holds. Consider a path 

between v and v' in G, and enumerate every contacting vertex that ap-

pears in the path from v. Then, for every two consecutive v" and v' of 

these vertices, irl(v")G '7rl(v"') must hold, which implies irl(v)G*V7ri(v'). 

On the other hand, if -rl (v)G4'irl (v) holds, then, from the construction 

of Gbr;, obviously v *v' follows. •

  Next, we consider how to compute the connected components of 

Gbri. Let c, c'L, and cR be the functions which return the component 

labels, local component labels within GL, and local component labels 

within GR, respectively. And for each v E V, let c(v) denote c'L(v) if 

v E VL otherwise cR(v). Then, the following lemma holds.

Lemma 7 The following operation can be performed in O(log m) steps 

on M'. 

Input: For each (i, j, X) E V,pn, c'((i, j, X)) is given to PEM, [i, j]. 

 Output: The connected components of Gb,; are obtained in such a way 

    that all processors in' row i and row j know the same component 

    number k E {0, ... , m - l} iff i G+4' j holds (0 < i, j < m).
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Proof: This operation can be done in two phases. In the first 

phase, the adjacency matrix A of Gbri is generated so that each ele-
ment Ai,j is stored in PEM, [i, j]. This is achieved by first broadcasting 
c'L((i, n - 1,E)) and c'R((i, ,W)) in each row i (0 < i < m), and 

next broadcasting cL((j, - 1, E)) and c' ((j, ,W)) from PEM-[j, j] 

in each column j (0 < j < m). Now, each PEM, [i, j] has sufficient 

information to determine Ai,;, and does Ai,j 1 if cL((i, n - 1, E)) _ 
cL((j, n - 1, E)) or cR((i, ,W)) = ck((j, n, W)) holds, otherwise does 
Ai,j ~-0 (0 < i, j < m). Then, in the second phase, the connected com-

ponents of Gbri is computed. The first phase needs a constant time, 

and the second phase takes O( log m) steps from Lemma 5. Hence, the 

conclusion follows. • 

  Next, we consider how to compute the component labels of con-

tacting vertices. These labels can be obtained from the information on 

their local component labels and the bridge graph, as shown below. 

Property 2 (Component Label of Contacting Vertex) 

   Vv E Vcon c(v) = J {C (v) I iri (v) H' ir1(v'), v E Von} 

Proof: From Property 1, the claim is equivalent to 

   Vv E Vcon, c(v) = j{c'(v') I v v', v' E V,-on}. (2.1) 

We prove (2.1) as follows. Take any v E Vcon. Since c(v') < c(v) holds 

for all v' E V, we have 

   1{C'(v )Iv<+v', VI E Vcon} 1 1{C(v')Ivt', ti E Vcon} = c(v). (2.2)
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On the other hand, consider the vertex v" E V whose initial label is c(v), 

and a path v = vo, vl, ... , vl = v" in G. And let e E {0, ... Ill be the 

largest index satisfying ve E Vcon. Then, c'(ve) _ (initial label of v") _ 

c(v) holds, and thus 

   c(v) ~ J {C (v) I v « v', v' E Vcon} (2.3) 

follows. The two inequalities (2.2) and (2.3) imply (2.1), and the con-

clusion is obtained. •

  Then, we can prove the following lemma. 

Lemma 8 The following operation can be performed in O(log m ) 

steps on M'. 

Input: For each (i, j, X) E Vcon, c'((i, j, X)) is given to PEm,[i,j]. 

    The connected components of Gbr; is given in such a way that all 

    processors in row i and row j know the same component number 
    k E {0, ... , m - 1 } iff i Gam' j holds (0 < i, j < m). 

Output: For each (i, j, X) E V on, c((i, j, X)) is obtained at every 

     processor in row i.

Proof: This operation can be performed in two phases. In the first 

phase, PEM'[i, j] does t <-cL((j, 2 -1, E)),~c'' ((j, 2, W)) if i~- j holds, 
otherwise does t <-- T (0 < i, j < m). The necessary information for 

this task can be delivered to each processor by using row and column 

broadcasts similarly to the algorithm used for Lemma 7. Then, in 

the second phase, by computing the minimum (w.r.t. --~) among the
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values stored in the variable t of the left m processors in each row, 

the output condition is satisfied (Property 2). The first phase needs a 

constant time, and the second phase takes O( log m) steps from Lemma 

6. Thus, the conclusion follows. •

  Finally, we consider how to compute the component labels of bound-

ary vertices, from the information on their local component labels. 

Boundary vertices are defined as follows. Let V d and V d be the sets: 

    Vbd = {(0,j,N)EVL1O<j<} 
         U{(m-1,j,S)EVL10<j<n} 
         U{(i,-2-1,E)EVL~0<i<m} 
         U{(i,0,W)EVL10<i<m}, 
    V d = {(O, j, N) E VR I n < j < n} 

          U{(m-1,j,S)EVRI n < j <n} 
          U{(i,n-1,E)E V' 10<i<m} 

         U{(i,n,W)EVR10<i<m}, 

and let Vbd = Vbd U Vd. The vertices in Vbd are called boundary vertices 
of GL and GR, as they are located at the boundary of each graph (in 
Figure 2.5, those circled vertices in GL and GR denote the boundary 

vertices). W.r.t. the boundary and contacting vertices, the following 

property holds.

Property 3 (Component Label of Boundary Vertex) 

  1. For each v E V d, if there exists a vertex v' E Y ;L.. 

    G'L(v') = cL(v), then c(v) = c(v') holds for such v', 

   c(v) = GLL(v). 

  2. For each v E Vd, if there exists a vertex v' E Vi

such that 

otherwise

such that



32 SIMULATION OF RECONFIGURABLE MESH 

    c'R(v') = ck(v), then c(v) = c(v') holds for such v', otherwise 

   c(v) = cR(v). 

Proof: Obvious from the assumption on the initial labels and the 

construction of G. • 

  Then, the following Lemma holds. 

Lemma 9 The following operation can be performed in a constant time 

on .M'. 

Input: For each (i, j, X) E Vd, c'((i, j, X)) is given to PEA,,, [i, j]. For 

    each (i, j, X) E Vcon, c((i, j, X)) is given to PEM, [i, j]. 

Output: For each (i, j, X) E Vbd, c((i, j, X)) is obtained at PEM, [i, j]. 

Proof: Let us consider the vertices in Vbd only, the details for the 

vertices in V d are similar. We divide Vbd into the following,, 4 disjoint 

sets: 

    VNbd = {(0,j, N) E VL 1 0 < j < n}, 
    VSbd = {(m-1,j,S)EVL (0<j < 2}, 

    VEbd = {(i,..-1,E)EVL(0_<i<m}, 
 VWbd = {(2,0,W) E VL (0 < i < m}. 

Then, the component labels can be computed in the following way. 

  . Vertices in VNbd: From Property 3, we has only to update the 

    label of each v E VNbd properly if there exists v' E V on such that 

    c'(v') = c'(v), otherwise let c(v) = c'(v). First, using row and 

    column broadcasts, let PEM, [i, j] know c'(i, n - 1, E), c(i, n -
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    1, E), and c'(0, j, N) (0 < i < m, 0 < j < n). Then, in each 
    column j (0 < j < n), by letting every processor PEM, [i, j] 

    with c'(i, -1, E) = c'(0, j, N) (if exists) broadcast c(i, n -1, E), 

    PEM, [0, j] can know the component label of (0, j, N) E VNbd. Note 

    that c'(i, n-1,E) = c'(i', n-1, E) implies c(i, n-1, E) = c(i', n-
    1) E) (0 < i, i' < m), and thus no collision occurs (i.e., no error is 

    detected) on this broadcasting. 

  • Vertices in Vsbd: Similarly to vertices in VNbd. 

  • Vertices in VEbd: Already obtained by the input condition. 

                                     - 1, E) and c'(i, n - 1, E)   • Vertices in Vwbd: First move each c(i, n                                               Y -2 

    to PEM, [0, i] by using row and column broadcasts (0 < i < m), 

    and follow the strategy used for VNbd. 

These operations can be done in a constant time, and thus the conclu-

sion follows. •

  Now, we can state the following. 

Corollary 2 The following operation can be performed in O( log m ) 

steps on M'. 

Input: For each (i, j, X) E Vbd, c'((i, j, X)) is given to PEM,[i, j]. 

Output: For each (i, j, X) E Vbd, c((i, j, X)) is obtained at PEM' [i, j]. 

Proof: From Lemma 7, 8, and 9. •
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2.6 Simulation of RM by HV-RM 

In this section we show that the COMMON-COLLISION HV-RM of size 

n x n can simulate a step of the RM of the same size with slowdown 

O(log2 n). Our algorithm is based on the component labeling algo-

rithm for a binary image proposed by Maresca et al. in [1, 11]. We 

apply their divide-and-conquer algorithm to solve the LCC-PCG prob-

lem, and improve the memory usage of it. 

  The algorithm presented in this section makes use of the results in 

Section 2.5. However, in Section 2.5, every initial label is assumed to 

be distinct, which does not hold in general. Hence, we need to extend 

the definition of initial labels. The extension is done by adding the 

vertex information to the labels. 

Definition 7 (Extension of Initial Label) Let G = (V, E) denote 

PCG (.M, S). For each (i, j, X) E V, we associate a label, denoted as 

ini S(i, j, X), in such a way that 

     ini;~.ts(i, j, X ) 
          (x, i, j, X) if PEM [i, j] is a speaker sending a value x 

                   through port X at the WRITE substep of S, 
          (T, i, j, X) otherwise. 

These labels are called extended initial labels. • 

  The total order -{e is defined on the extended initial labels as a 

lexicographic order w.r.t. -<, <, and <p. <P is the total order on 

{N,S,E,W} satisfying N<PS<PE<pW. The operator le is defined w.r.t. 
.<e similarly as is to -<. In the following, we extend the LCC-PCG 

problem of G = (V, E) in such a way that the component label of
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v E V is defined as the value J,e{extended initial label of v' I v~v'}. 

The definition of local component labels is modified similarly. 

  Let G = (V, E) be PCG (.M, S) where M is the RM of size n x n 

and S is a step of M. Here, we show an algorithm that solves the 

LCC-PCG problem of G on M' where M' is the COMMON-COLLISION 

HV-RM of size n x n. To simplify the exposition, we assume n = 2k for 

some positive integer k. To describe the algorithm, we use the following 

notations. 

Definition 8 (Division of M') For each d E 10,..., 2k}, a division 

of .M' is defined as follows: 

 d is even: 

    M' is divided into 22k-d disjoint submeshes M q of size 2d'2 x 2d/2 

    (0 < p, q < 2k-d/2). Each M q consists of PEM,[i, j] (p2d/2 < 
   i < (p+ 1)2d/2, q2 d/2 < j < (q+ 1)2d/2). 

d is odd: 

    .M' is divided into 22k-d disjoint submeshes .Mp q of size 2(d+l)/2 x 
    2(d-1)/2 (0 < p < 2k-(d+l)/2, 0 < q < 2k-(d-1)/2). Each M q 

    consists of PEM,[i, j] (p2(d+l)/2 < i < (p + 1)2(d+1)/2, q2(d-1)/2 < 

     < (q+ 1)2(d-l)/2) 

• See Figure 2.6 for an example. Note that each submesh M q consists 

of MP 2q and .M 'p 24+1 if d is even, otherwise consists of .M' and 
M2P+i,q (1 < d < 2k).
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Figure 2.6: Divisions of an n x n HV-RM (n = 23 = 8).

Definition 9 (Subgraph of G) For each submesh M'aq, we associate 
a graph GP q = (pdq, Ed q) such that Gd q is a reduced graph obtained 

from G by restricting the vertex set into {(i, j, X) E V I PEM, [i, j] is in 
M'aq}. Let G' = (V', E') be such a subgraph associated to a submesh 
M". Then, the boundary vertices of G' are defined as those vertices in 
VNbd, VSbdl VEbd, and VWbd where 

 VNbd = {(i, j, 1') E V'IPEM, [i, j] is in the topmost row in .M"}, 
 VSbd = {(i, j, S) E V'I PEM+, j] is in the bottom-most row in M"}, 

 VEbd = {(i, j, E) E V'IPEM'[i, j] is in the rightmost column in M"}, 
 VWbd = {(i, j, W) E V'IPEM,[i, j] is in the leftmost column in M"}. 

The vertices in each VNbd, VSbd, VEbd' and VWbd are respectively called 

the northern, southern, eastern, and western boundary vertices of G'./ 

  Then, in Figure 2.7, we show an algorithm that solves the LCC-

PCG problem of G on M'. The algorithm is carried out in the same
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Algorithm RMBYJIV-RM 

{ Labeling a pc-graph G on an n x n COMMON-COLLISION HV-RM 
(.M'). } 

 Stage 1: { Label Combination } 
    ford F- 1 to 2k do 

     (d is even) 
       Each .MP q computes the local component labels within 

      Gp q for the boundary vertices of Gp,2q and GP,2q f i 
     (d is odd) 

       Each MP q computes the local component labels within 
       Gp q for the boundary vertices of GZP;q and G2P+1,q. 

Stage 2: { Label Propagation } 
    ford - 2k to l do 

     (d is even) 
       Each M q computes the component labels of the bound-

      ary vertices of GGj2q and G~ 2q+1. 
    (d is odd) 

       Each .MP q computes the component labels of the bound-
       ary vertices of G2Pjq and G2P+l,qG 

end of RMBY-HV-RM

           Figure 2.7: Algorithm RMBY-HV-RM. 

fashion as the component labeling algorithm for a binary image [1, 11]. 

At each iteration of the for-loop of Stage 1, the newly obtained local 

component label of each vertex (i, j, X) is stored in PEM, [i, j]. 

  The correctness of the algorithm is shown as follows. 

Lemma 10 RM_BY_HV-RM solves the LCC-PCG problem of G. 

Proof: Since 

   U(the boundary vertices of GP q) = V 
       P,q
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holds, the component label of each vertex is obtained at the last itera-

tion of the for-loop at Stage 2. •

  In the following, we show how to implement RMBY-E[V-RM on 

.M'.

Lemma 11 Stage 1 of RM_BY_HV-RM can be performed in O(log2 n ) 

steps.

Proof: Just before the l-th iteration of the for-loop at Stage 1, for 

each GP-q , the local component label within G1-q1 is obtained for every 

         

7 p7 

boundary vertex of Gp,e . This is from the input condition (when l = 1), 
or from the result of the preceding iteration of the for-loop (when 1 > 1). 
Then, by Corollary 2, the execution of the for-loop body with d = l 

can be performed in 

) 

       O(log 2lt/2j 

     O(l) 

steps. Since 

           2k 

             z-~ 

       O(log2 n ) 

holds, the conclusion follows. •
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Lemma 12 Stage 2 of RM BYJIV--RM can be performed in O(log n ) 

steps.

Proof: First, we show that every iteration of the for-loop at Stage 2 

can be done in a constant time. Let us consider only the case when d 

is even, the case when d is odd can be proved similarly. 

  Consider the execution of the for-loop body with d = 1. During the 

execution, each M'p,q computes the component labels of the boundary 
vertices of Gp,2q and Gp;2q+i. Here, we consider the component labels 
of the boundary vertices of Gp,2q only, those of Gtn,2q+1 can be obtained 
similarly. Just before the execution of the for-loop body, the following 

conditions hold:

  1. The component label is obtained for every boundary vertex of 

t 

     GP,q. 

  2. The local component label within G1 q is obtained for every bound-

   ary vertex of GP-,211 and G,,q. 

The condition 1 is from the last iteration of the for-loop at Stage 1 

(when 1 = 2k), or from the result of the preceding iteration of the for-
loop at Stage 2 (when 1 < 2k). The condition 2 is from Stage 1. Let Vbd 

be the set of all boundary vertices of G, q. Note that the component 

labels for the northern, southern, and western boundary vertices of 

G1-2q are already obtained because these vertices are also the boundary 
vertices of G' q. Thus, we have only to compute the component labels 
for the eastern boundary vertices of Gp,2q. Let VEbd be the set of the 
eastern boundary vertices of GG,2q, and for each v E Vbd U VEbd, let
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c'(v) and c(v) denote the the local component label within GP',,, and the 
component label, respectively. Then, the following property holds: 

   For each v E VEbd, if there exists a vertex v' E Vbd such that 

   c'(v') = c'(v), then c(v) = c(v') holds for such v', otherwise c(v) = 

   c'(v). 

The proof is similar to that of Property 3, and the details axe omitted 

here. Because of this property, we has only to update v E VEbd. properly 

if there exists v' E Vbd such that c'(v') = c'(v), otherwise let c(v) _ 

c'(v). By the similar technique used for proving Lemma 9, this task can 

be done in a constant time (see [18] for the details). Now it is shown 

that every iteration of the for-loop can be performed in a constant time. 

Since 

          2k 

             l=1 

       O(logn) 

holds, the conclusion follows. •

  Next, we consider the memory usage of RM BY_HV-RM. To per-

form each one iteration of the for-loops at Stage 1 and Stage 2, just a 

constant number of temporary storage in each processor is sufficient. 

However, when the execution of the for-loop body at Stage 1 is com-

pleted with d = 1, every processor of M' has to store the newly ob-

tained local component label if it holds the boundary vertex of some 

Gp,e . Let us call these processors as storage processors at d == 1 (Figure 
2.8). Then, the memory usage of RM_BY-HV-RM in a processor is
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Figure 2.8: 
23 = 8).

Storage processors of an n x n HV-RM for each d (n =

proportional to how many times it becomes a storage processor dur-

ing Stage 1. But as expected, there exists a processor which becomes 

a storage processor many times. For example, PEM, [0, 0] becomes a 

storage processor every time, and it needs Sl( log n) memory to store 

the local component labels. Because of this reason, the component la-

beling algorithm for a binary image in [1] uses St( log n) storage in each 

processor. But as shown below, we can execute RMBY-HV-RM with 
O(1) memory in each processor.

Lemma 13 RM-BY-HV-RM can be performed with using only a con-

stant number of storage in each processor.

Proof: We change the processors which maintain the newly obtained 

local component labels at each iteration of the for-loop of Stage 1, as
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follows: 

d is even: 

    The newly obtained local component labels for the boundary ver-

    tices of Gd-1 are stored in the processors located in the right-
                    PIq 

    most column of .Mp q 1 if q is even, otherwise in the processors in 
    the leftmost column of .MP 41. The label of a western or eastern 

    boundary vertex of Gd-1 obtainedd at a processor in row i of .M'I q 1                     pjq 
is stored in the processor in the same row of MP 41. The label 

    of a northern (resp. southern) boundary vertex of GG-Q1 obtained 
    at a processor in the topmost row (resp. bottom-most row) and 

    column j of Mp 4 1 is stored in the processor in row j (resp. row 
   2d/2-1-j) of MIa1 

d is odd: 

    The newly obtained local component labels for the boundary ver-

    tices of Gd-1 are stored in the processors located in the bottom-

    most row of ,M'p 41 if p is even, otherwise in the processors in the 
    topmost row of Mp a 1. The label of a western or eastern bound-

    ary vertex of Gd -1 obtained at a processor in row i of M 4 1 is 
                      pjq P? 

    stored in the processor in column i of M 41. The label of a 
    northern or southern boundary vertex of Gd Q1 obtained at a pro-

    cessor in column j of .M 4.1 is stored in the processor in the same 
    column of M -1. 

We call those processors as folded storage processors at d == 1 (Figure 

2.9). Then, every processor is ensured to become a folded storage pro-

cessor at most 4 times during Stage 1, and each time it has only to 

store at most 4 labels in it. At each iteration of the for-loop of Stage
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Figure 2.9: Folded storage processors of an n x n HV-RM for each d 
(n = 23 = 8).

1, the operation of moving the newly obtained local component labels 

to the proper folded storage processors can be performed in a constant 

time by using row and column broadcasts in each submesh. Similarly, 

the local component labels stored in the folded storage processors at 

d = l can be moved back in a constant time to the processors in such a 

way that each local component label of (i, j, X) is moved to PE,,, [i, j]. 

Hence, this change of the label keeping strategy does not invalidate the 

proofs of Lemma 11 and 12. Thus, the conclusion follows. •

  Now, we can state the following theorem. 

Theorem 2 The COMMON-COLLISION HV-RM of size n x n can sim-

ulate a step of the RM of size n x n with slowdown O(log2 n), using a 

constant number of storage in each processor.
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Proof: The first element of the component label of each v E V is 

equal to the component label of v defined in Section 2.2. Therefore, by 

Lemma 1, 10, 11, 12, 13, and Corollary 1, the conclusion follows. •

2.7 Scaling Simulation 

In this section, we discuss applications 

First, we present the following theorem. 

Theorem 3 The MWMB of size n x n 

n x n with slowdown O(/loge n). 

Proof: From Theorem 1 and 2.

of our simulation

can simulate

algorithms.

the RM of size

  Our algorithms can simulate an RM with the MIN bus model, and 

this may complement the slowdown in some cases. For example, some 

RM algorithms involve the operation of electing a leader processor 

among the processors interconnected by a bus, or of computing the 

minimum among the values held by such interconnected processors. 

And in some cases, the time cost for these operations becomes the 

crucial cost of the entire algorithm. But in the MIN bus model, such 

operations can be performed in a constant time. Therefore., we expect 

that the time cost of simulating such an RM algorithm on a COMMON-

COLLISION HV-RM or on an MWMB can be reduced more in practice, 

by improving the time cost originally taken by the RM algorithm by 

rewriting it on the MIN RM model.
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     Figure 2.10: Costs of simulating a single step (m < n). 

  Next, we consider simulating an RM by a smaller enhanced mesh. 

In [3], Ben-Asher et al. proposed self-simulation algorithms on the RM, 

LRM, and HV-RM models (these models are of COMMON-COLLISION). 

In [9], Fernaandez-Zepeda et al. proposed more efficient RM self-simulation 

algorithm than that in [3]. We illustrate our results and their self-

simulation results in Figure .2.10, concerning only the RM, HV-RM, 

and MWMB models. The horizontal arrows are by the self-simulation 

results in [3, 9]. 

  Then, we have the following lemma. 

Lemma 14 The COMMON-COLLISION HV-RM of size m x m can sim-

ulate the RM of size n x n with slowdown O((m)2log2 n) (m < n). 

Proof: From Theorem 2 and the self-simulation results on the HV-

RM model in [3]. •
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  In the HV-RM self-simulation algorithm in [3], each PEM, [i, j] sim-
ulates PEM[x, y] (i(m) < x < (i + 1) (am), j(m) < y < (i + 1)(m) ) 
where M is the simulated mesh of size n x n and M' is the simulating 

mesh of size m x m (m < n). Hence, the same processor mapping is 

taken in the simulation of Lemma 14. In the following, we show that 

we can improve the time cost given in Lemma 14.

Theorem 4 The COMMON-COLLISION HV-RM of size m x m can 

simulate the RM of size n x n with slowdown O( (_L)2 log n log m) (m < 

n).

Proof: Let M denote the RM of size n x n. For simplify the exposi-

tion, we assume n = 2k and m = 2k' for some positive integers k and k' 

(k' < k). Let 2d' _ (m)2. In Figure 2.11, we show the modified version 
of RMBY-HV-RM. 

  Here, .M' denotes the COMMON-COLLISION HV-RM of size n x n, 

and G = (V, E) is PCG (M, S) for any S. RMBYBV-RM-2 solves the 

LCC-PCG problem of G on M'. The correctness of RMBY-HV-RM-2 

is straightforward, and the details are omitted. 

  Next, we consider how to simulate RM.BY.IV-RM-2 on M" where 

M" is the COMMON-COLLISION HV-RM of size m x m. The processor 

mapping from M' to .M" is the same as the simulation of Lemma 14. 

Then, since each .Mi ~ is simulated by PE,M,, [i, j] alone, Stage 1.1 and 
Stage 2.2 can be performed in each processor by using a well-known 

sequential algorithm. Each Gad contains 4(nn-.L)2 vertices and O((-n.i)2 ) 
edges, and hence this task can be completed in O((m)2) steps. As for
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Stage 1.2 and Stage 2.1, they are simulated step-by-step by the HV-RM 

self-simulation algorithm in [3]. Since

 2k 

E log 2 h/21 
l=d'+1 

 2k 

l 

1=d'+1 

(2k-d')(2k+d'+1)
2 

 (d'=2k-2k') 
2k'(4k - 2k' + 1)

4kk'

2

O (log n log m )

holds, Stage 1.2 can be performed in 0(( 

As for Stage 2.1, since 

            2k 

    E 1 
            l=d'+1 

         2k-d 

          (d'=2k-2k') 

       2k' 

       2 log m

n 
m )2 log n log m) steps on M".
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holds, it can be performed in O( (-L )2 log m) steps on M". As a whole, 
RM BY-HV-RM-2 can be performed in O ((n.L )2 log n log m) steps on 
M". Then, by similar arguments of the proofs of Lemma 1 and Corol-

lary 1, the conclusion follows. •

Corollary 3 The MWMB of size m x m can simulate the RM 

n x n with slowdown O((n-.L.L)2VM- log nlogm) (m < n).

of size

Proof: From Theorem 1 and 4.
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Algorithm RMBY-HV-RM-2 

{ Labeling a pc-graph G on an n x n COMMON-COLLISION HV-RM 
(.M'). } 

Stage 1: { Label Combination } 

    Stage 1.1: 

       Each M'' q computes the local component label within GP;9 
       for every vertex in V~ q. 

    Stage 1.2: 

      ford (d + 1) to 2k do 
         Execute the d-th iteration of the for-loop at Stage 1 of 

        RMBY-HV-RM. 

Stage 2: { Label Propagation } 

    Stage 2.1: 
       ford - 2k to d'+l do 

         Execute the (2k - d + 1)-th iteration of the for-loop at 
         Stage 2 of RMBY-HV-RM. 

    Stage 2.2: 

       Each M'p q computes the local component label within Ga,q 
       for every vertex in Vd' with treating the component labels 

       of the boundary vertices of Gd;4 as their initial labels. 

end of RM._BYJIV-RM-2

Figure 2.11 : Algorithm RMBYJIV-RM-2.



Chapter 3

Simulation of Mesh with 

Separable Buses

In this chapter, we consider simulation problems among the mesh with 

separable buses (MSB), mesh with restricted separable buses (MRSB), 

and mesh with partitioned buses (MPB). The MSB is equal in compu-

tational power to the HV-RM defined in the Chapter 2, and is more 

powerful than the MRSB and MPB. 

  Here, we show that the MSB of size n x n can be simulated in 

O(n'/3) steps by the MPB of size n x n when £ = B(n2/3 ), and in 

e(Q) steps by the MRSB of size n x n. These time costs are shown 

to be optimal in the worst case under the assumption on the processor 

mapping we take here. 

  We also consider the influences of propagation delays of broadcast-

ing buses. We assume that the propagation delay of a broadcasting 

bus is introduced by the length of the bus (i.e., signal propagation de-

lay) and the number of switch elements inserted to the bus (i.e., device 

propagation delay). Compared to the MSB, the propagation delay of 
buses in the MPB and MRSB can be small in practice, and thus we 

                      51
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consider that our simulation algorithms are useful when the mesh size 

becomes so large that we cannot neglect the delay. 

  This chapter is organized as follows. Section 3.1 describes the MSB, 

MPB, and MRSB models. Section 3.2 presents an algorithm that sim-

ulates the MSB on the MPB, and Section 3.3 gives an algorithm that 

simulates the MSB on the MRSB. And Section 3.4 discusses the influ-

ences of propagation delays.

3.1 Models

An n x n mesh consists of n2 identical SIMD processors or processing 

elements (PE's) arranged in a two-dimensional grid with n rows and n 

columns. The PE located at the grid point (i, j), denoted as PE[i, j], 

is connected via bi-directional unit-time communication links to those 

PE's at (i ± 1, j) and (i, j ± 1), provided they exist (0 < i, j < n). 

PE[0, 0] is located in the top-left corner of the mesh. Each PE[i, j] is 

assumed to know its coordinates (i, j). 

  An n x n mesh with separable buses (MSB) and an n x n mesh with 

partitioned buses (MPB) are the n x n meshes enhanced with broad-
casting buses along each row and column (Figure 3.11 and 3.2). The 

broadcasting buses of the MSB, called separable buses, can be dynami-

cally sectioned through the PE-controlled switches during the execution 

of programs, while those of the MPB are statically partitioned in ad-

vance by a fixed length .£. An n x n mesh with restricted separable buses 

(MRSB) is the n x n mesh enhanced with the separable broadcasting 
 ' Here, the MSB is slightly different from the one proposed by Maeba et al [151. 

Our model is closer (in fact, is equal in the computational power) to the HV-RM 
model defined in Chapter 2.
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buses along every .£ rows and £ columns for a fixed .£ (Figure 3.3). In the 

MRSB, only PE[il, jt] can can gain access to the broadcasting buses 

(0 < i, j < n/I).
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shown.
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Figure 3.3: A mesh with restricted separable buses (MRSB). Local links 
are not shown.
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  A single time step of the MSB, MPB, and MRSB is composed of 

the following three substeps: 

Local Comm. Substep : Every PE communicates with its adjacent 

    PE's via local links. 

Broadcast Substep : Every PE changes its switch configurations by 

   local decision (this operation is only for the MSB and the MRSB). 

    After that, along each broadcasting bus segment, several of the 

    PE's connected to the bus send data to the bus, and several of 

    the PE's on the bus receive the data transmitted on the bus. 

Compute Substep : Every PE executes some local computation. 

We assume that the propagation delay of the broadcasting buses is a 

constant time, and that each of the three substeps is executed in a 

constant time. 

  The bus accessing capability is of the COMMON-COLLISION CRCW 

model. If there is a write-conflict on a bus, then the PE's on the bus 

receive a special value 1 (i.e., PE's can detect whether there is a write-

conflict on a bus or not). If there is no data transmitted on a bus, 

then the PE's on the bus receive a special value 0 (i.e., PE's can know 

whether there is data transmitted on a bus or not). 

3.2 Simulation of MSB by MPB 

In this section, we consider simulating a single step of the n x n MSB 

(denoted as M) by the n x n MPB (denoted as M'). To avoid con-
fusion, let PEM[i, j] and PEM'[i, j] respectively denote PE[i, j] of M 

and PE[i, j] of M'.
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   Given a single step of M in such a way that each PEM' [i:, j] knows 

how PEM [i, j] behaves at this single step, we consider how -to achieve 

the same computational task of the step using M'. We assume that 

the computing power of PE's, the bandwidth of local links, and that of 

broadcasting buses are equivalent in both M and M'. 

   To begin with, we prove the following lemma. 

Lemma 15 For any single step of M, the broadcasts taken on the 

separable bus in row i (resp. column i) of M can be simulated in row i 

(resp. column i) of .M' in O(f + n/f) steps (0 < i < n). 

Proof: Take any single step S of M and i E {0, 1, ... , n - 1}. Let 

us consider simulating the broadcasts taken on the separable bus along 

row i of M only, those on the bus along column i of M can be simulated 

similarly. 

   First, we define some notations to describe the broadcasts to be 

simulated. Let Pj denote PEM[i, j] (0 < j < n). To distinguish the 

two ports through which a PE has access to the row separable bus, we 

refer to the port on the left side of the sectioning switch as port L and 

the other as port R, as shown in Figure 3.1(b). Then, the broadcasts is 

carried out in the following way: (1) several of Po, P1, . . . , P,L_1 section 

the bus, (2) several of P0, P1, ... , P,ti_1 send data to the bus through 

port L and/or R, and (3) several of P0, P1,... , Pn_1 receive data from 
the bus through port L and/or R. W.r.t. these broadcasts performed 

in row i of .M, we define Cj, s~ , and r,' (0 < j < n, x E {L, R}) as 

follows: 

    Cj _ {(k, y) I port x of Pj and port y of Pk belong to the same 

          bus segment after the broadcasting bus being sectioned},
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    s~ = a if Pj sends data a to port x, otherwise six 

    r,x = (the data received by Pj from port x). 

To describe each rj' using C* and s*, we define a binary commutative 

operator ® in such a way that it satisfies the following equations for 

any x and y: 

    x®0=0®x=x, 

   x®1=1®x=1, 

    x®y=y®x=x ifx=y, 

    x®y=yEDx=1 ifxzhy, x04, andy q5. 

It is not difficult to confirm that ED is well-defined and enjoys the asso-

ciative law. Then, each rjx can be expressed as 

    r,X = ®(k,y)EC, Sk. (3.1) 

  Next, let Pj' denote PEM' [i, j] (0 < j < n), and consider how to 

inform every P~ of r~ and rR when every Pk is given sk, sk , and the 
switch configuration taken by Pk. We divide Po, Pi, . . . , P~_1 into n/.I 
disjoint blocks M, (0 < p < n/I). Each M, consists of P~ (p1 < j < 

(p + 1)1). Here, let LP'M,p (resp. RP 1p) denote the leftmost PE (resp. 
the rightmost PE) of M,. It. should be noted that RP;~,P and LP;u1 1 
are adjacent. PE's (0 < p < n/.I - 1) and that any PE in .M'' can 

communicate with the other PE's in M'' in a single time step using 
the broadcasting bus (0 < p < n/I). For each j E {0, ... , n - 1} and 
x E {L, R}, we let 

    r,.7 = ®(k,y)EC'7 Sk (3.2)
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where C'~ = Cj1 fl {(k, y) I P P; and Pk are in the same block and y E 

{L, R}}. 
  Then, in Figure 3.4, we show an algorithm that simulates the broad-

casts taken along row i of M. Each rj' is stored in variable D., of P 

when the algorithm terminates. 

  As for each r~ such that C; C {(k, y) I Pk is in M'' and y E {L, R}} 
for some p E {0, ... , n/.t - 1}, it is obtained at D,,, of P' at Phase 
1 because r? = r" holds in such a case. As for the rest, they are 
computed at Phase 2. After the execution of the first for-loop, such I 
is obtained at Dy of Pk for every (k, y) E C~ such that both pt < k and 

((p+1)t, L) 0 Cj- hold for some p E {0, ... , n/t-1}, and at the second 
for-loop, the value is copied to Dy of P' for every (k, y) E C7 . 

  Phase 1 can be performed in O(t) steps, since each block consists 
of .£ consecutive PE's. Note that this phase can be done similarly to 

the well-known algorithm on a linear processor array that performs 

a semigroup computation on values distributed one per processor by 

sequentially scanning those values. Phase 2 needs O(n/I) steps. Thus, 

the conclusion follows. •

  Next, we consider improving the time cost shown in Lemma 15. For 

Lemma 15, we presented the algorithm SB-by-PB in which the first 

phase is performed in 0(t) steps by sequentially scanning data within 
each block. In the following, we reduce the time cost for this phase to 

O(£1/2) steps, and as a result we obtain more efficient algorithm which 

runs in O(£1/2 + n/.t) steps. 

  As a corollary of Lemma 15, we state the following.
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Algorithm SB-by-PB 
{ Simulating the broadcasts taken on the separable bus in row i of M, 
using row i of M'. DL, DR, t1, t2, t3, and t4 are the local variables in 
each PE. } 

Phase 1: { Local Simulation } 
    In each M'', by sequentially scanning those s~, sR, and the switch 

   configuration taken by P3 (pf < j < (p + 1) f) stored in the PE's 
    of M , from left to right and then from right to left, each P~ 

    obtains r~L and r'R in DL and DR, and knows whether (j, x) E C p 
    and (j, x) E CR hold for each x E {L, R} where l , and rP are the 

    column indexes of LP' ~,t, and RP" ,t, . 

Phase 2: { Global Simulation } 
   for p 4- 0 to (n/t - 2) do 

     (1) RP'M,p sends DR to LP'M~p+1. The received data is stored in 
       ti. 

     (2) LP"~,P+1 broadcasts ti®DL to all PE's in M'P+1. The received 
       value is stored in t2 of each PE. 

    (3) Each P~ in .M''+1 does Dx <- t2 if (j, x) E CL +1)1 (X E 
     {L, R}). 

    for p <- (n/f - 1) to 1 do 

     (1) LP' ,p sends DL to RP'M,p_1. The received data is stored in 
       t3. 

     (2) RP;,,i,p_1 broadcasts t3 to all PE's in M'                                               P-,. The received 
       data is stored in t4 of each PE. 

    (3) Each P'              in M'P_1 does D., + - t4 if (j, x) E 0'_1 (x E {L, R}).                  j -PI 

end of SB-by-PB

Figure 3.4 : Algorithm SB-by-PB.

Corollary 4 For any single step of M, the broadcasts taken on the 

separable bus in row i (resp. column i) of M can be simulated in row i 

(resp. column i) of M' in O(n1/2) steps when f = n1/2 (0 < i < n). •
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  A close inspection of the algorithm used for proving Corollary 4 

implies the following lemma2 . 

Lemma 16 For any single step of .M, the broadcasts taken on the 

separable bus in row i (resp. column i) of M can be simulated in row i 

(resp. column i) of M' in O(n1/2) steps when f = n (0 < i < n).

Proof: Consider the execution of SB-by-PB in a row of M' with 

.£ = n1/2. As for Phase 1., since broadcasting buses are not used for this 

phase, the length of the broadcasting bus of M' does not matter. As 

for Phase 2, every time the broadcast occurs, there is only a single PE 

sending a value in the row, and thus this phase can be performed even 

if there is only one broadcasting bus covering the entire row of M'. 

Hence, every operation in Phase 1 and 2 can be executed in the same 

time on the n x n MPB even when f = n. The proof for the simulation 

in each column is similar. Thus the conclusion follows. •

  Then, we can now improve the result of Lemma 15, as shown below. 

Lemma 17 For any single step of M, the broadcasts taken on the 

separable bus in row i (resp. column i) of M can be simulated in row i 

(resp. column i) of .M' in O(e1/2 + n/t) steps (0 < i < n).

Proof: Let us consider simulating the broadcasts taken on the sepa-

rable bus in row i of M for a given step S of M only. To prove that the 

simulation can be performed in O(£1/2 + n/1) steps, it suffices to show 

that the same task of Phase 1 of SB-by-PB can be achieved in O(£1/2 ) 
 2 This lemma corresponds to Lemma 3 in Chapter 2 .
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steps. Here, we define Pj, P' C, , 

r," in the same way as in the proof

sX ,rX      , ,M,, 

of Lemma 15.

LPM,P,RP;~1 , and

  At Phase 1 of SB-by-PB, each M'' locally simulates the broadcasts 

(i.e., computes r**). Since each Mp can be seen as a linear array com-
posed of .£ consecutive PE's and a broadcasting bus, by executing the 

algorithm proving Lemma 16 within each M'P, every P~ can know r'~ 
and r'R in O(11/2) steps.

  Next, consider letting each P~ in M'P know whether (j, x) E C P hold 
for each x E {L, R} where lp is the column index of LP;M,P. Consider a 
broadcast operation in row i of M such that the bus configuration is the 

same as that of S and every P; corresponding to LP' ,P for some p sends 

"1" to the port L . Then, by locally simulating this broadcast operation 

within each M'p, every P~ in .M'' can know whether (j, x) E C n hold 
for each x E {L, R} where lp is the column index of LP;~,P. (Here, note 

that if P~ in .M'p obtains "1" for port X of P; in this local simulation, it 

means that in the bus configuration of S the port X of P; is connected 

to the port L of Pk corresponding to LP.',~,t, .) By the similar argument 
in the preceding paragraph, this local simulation can be performed in 

O(11/2) steps in each M'. Similarly, in O(11/2) steps, every P~ in .Mp 
can know whether (j, x) E CR hold for each x E {L, R} where rp is the 

column index of RP;.,,.

  Thus, the same computational task of Phase 1 of SB-by-PB can be 

done more efficiently in O(£1/2) steps. Since Phase 2 of SB-by-PB needs 

O(n/I) steps, the entire simulation can be completed in O(11/2 + n/.I ) 

steps. Thus, the conclusion follows. •
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  In the proof of Lemma 17, we improved the time cost required for 

the Phase 1 of SB-by-PB by using the result of Lemma 16. Such an 

improvement is possible because the broadcasting buses of M' are par-

titioned by length .£ and the algorithm proving Lemma 16 can be exe-

cuted within each block in parallel. Because of this reason, we cannot 

apply the same speedup technique to the algorithm proving Lemma 3 

in Chapter 2, though it is carried out in the same fashion as SB-by-PB. 

  Then, we obtain the following lemma immediately from Lemma 17. 

Lemma 18 M' can simulate any single step of M in O(£1,"2 + n/.i ) 

steps. 

Proof: M' can simulate the broadcast substep of a single step of 

M, by first simulating the broadcasts taken along rows in parallel in 

each row, and then simulating those along columns similarly. This 

takes O(£1/2 + n/t) steps from Lemma 17. As for the local comm. and 

compute substeps, M' can simulate them in a constant number of steps 

in each PE. Thus, the conclusion follows. •

  Next, we consider the lower bounds for simulating M by M'. 

Lemma 19 There exists a single step of M that takes 1l(n/t) steps 

to be simulated on M'. 

Proof: Consider the single step of M in which PEM [0, 0] sends a 

value to PE,M [0, n - 1]. It is obvious that this step must take 1l( n fl )
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steps to be simulated on M'.

65 

•

Lemma 20 There exists a single step of M that takes SZ( £1/2) steps 

to be simulated on M'.

Proof: Consider the single step S of M whose broadcast substep 

consists of the following operations (here, L is some positive integer 

such that L < n and n mod L = 0): 

 1. PEM [i, j ] divides the row broadcasting bus if (j mod L) = 0 (0 < 

   i, j < n). 

  2. PEM[i, j] sends the content of variable a to the row broadcasting 

   bus through port R if (j mod L) = 0 (0 < i, j < n). 

  3. PEM [i, j] receives data from the row broadcasting bus through 

   port L and stores it in variable b if (j mod L) # 0 (0 < i, j < n). 

Let us call the data broadcasted at this substep as a-values. Note that 

there are possibly n2/L different a-values. 

  Take any algorithm A that correctly simulates S on M'. Here, the 

simulation is carried out on the MPB model, and thus the simulating 

PE's can use only the local links and the statically partitioned broad-

casting buses. Since each PE that initially holds an a-value is different 

from those PE's which will receive the value, every a-value must be 

transmitted through the local links and/or the broadcasting buses dur-

ing the simulation. With these observations, we count the necessary 

steps for A, by considering the following two cases:
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Case 1: There exists an a-value transmitted only through local links. 

Case 2: There is no a-value transmitted only through local links. 

In Case 1, since the distance between the PE initially holding the a-

value and the most distant PE which will receive it is L - 1., A must 

take at least L - 1 steps. On the other hand, in Case 2, since the 

total number of a-value is n2/L, and the number of data which may be 

transmitted on the broadcasting buses is at most 2n2/1f in a single time 

step, A must take at least £/(2L) steps. Thus, by letting L = ,112, in 

either case, A needs Sl(£1/2) steps.' Thus the conclusion follows. •

Now, we can state the following theorem.

Theorem 5 When .£ = O(n2/3 ), M' can simulate any single step of 

M in O(n1/3) steps. This time cost is optimal in the worst case.

Proof: From Lemma 18, M' can simulate any single step of M in 

O(n1/3) steps when £ = O(n2/3 ). The optimality is from Lemma 19 

and 20, since there exists a single step of M which cannot be simulated 

in O(n1/3) steps by any algorithm if .£ 0 O(n2"3) and there exists a 

single step of M which must take 92(n 1/3) steps to be simulated when 

.£ = O(n2/3 ). •

 a The lower bound P(nh/2) for simulating the HV-RM by the MWM]3 presented 
in Chapter 2 is derived from this, since the n x n MWMB is the same as the n x n 
MPB with f = n.
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3.3 Simulation of MSB by MRSB 

In this section, we consider simulating the n x n MSB by the n x n 

MRSB. Let M denote the n x n MSB, and let M' the n x n MRSB. 

As in Section 3.2, we write PEM [i, j] and PEM' [i, j] for denoting PE[i, j] 

of .M and PE[i, j] of M' respectively, and assume that the computing 

power of PE's, the bandwidth of local links, and that of broadcasting 
buses are equivalent in both M and M'. 

  We begin by proving lemmas for simulating broadcasts of M by 

Lemma 21 For any single step of M, the broadcasts taken on the 

separable bus in row it (resp. column it) of M can be simulated in row 

it (resp. column it) of M' in O(t) steps (0 < i < n/2).

Proof: Take any single step S of M and i E {0, 1, ... , n/.? - 1}. 

Let us consider simulating the broadcasts taken on the separable bus 

along row it of M only, those on the bus along column it of .M can be 

simulated similarly. 

  Let P; and P' denote PE,M [it, j] and PEM, [it, j] respectively (0 < 

j < n). C; , s; , r7 , ®, .M'P, LP;M,p, RP' ~,~,P, and r are defined in the 
same way as in the proof of Lemma 15. Then, in Figure 3.5, we show an 

algorithm that simulates the broadcasts performed along row it of M. 

Each r,' is stored in variable D., of P~ when the algorithm terminates. 
 After the execution of (2-2) of Phase 2, for each p E {0, ... In/t-11, 

rL and r P are obtained respectively in DL and DR of LP' I where h is 
the column index of LP'M1 and rr is that of RP' I Then, using these 

                     P MP* 

information, each PE can update its DL and DR appropriately at Phase
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Algorithm SB-by-RSB 

{ Simulating the broadcasts taken on the separable bus in row it of M, 
using row if of M'. DL, DR, and DR are the local variables in each PE. } 

Phase 1: { Local Simulation } 

   (1-1) Execute the Phase 1 of SB-by-PB. 
   (1-2) In each M', the content of DR of RP' ,p is transferred to 

      LP;M,P. This value is stored in DR of LP'f,. 
Phase 2: { Global Simulation } 

   (2-1) Each LP' ,P divides the row bus if (pt, L) ¢ CR 
   (2-2) Each LP, ,P sends the content of DL and that of DR to the bus 

      through port L and R respectively. The values received from 

      port L and R are stored in DL and DR. 

Phase 3: { Local Propagation } 
    In each Mp', PE's update DL and DR appropriately using the in-

    formation of DL and DR of LP'M,P. 

end of SB-by-RSB

             Figure 3.5: Algorithm SB-by-RSB. 

3. The correctness is straightforward and we omit the details. Phase 1 

and 3 can be performed in O(t) steps, since each block Mp consists of 

t consecutive PE's. Phase 2 takes O(1) steps. Hence, the conclusion 

follows. •

Lemma 22 For any single step of M, the broadcasts taken on the 

separable buses along rows (columns) of M can be simulated on M' in 

O (f) steps. 

Proof: Take any single step S of M. Let us consider simulating the
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Algorithm SBs-by-RSBs 

{ Simulating the broadcasts taken along rows of M, using M'. } 

Stage 1: { Local Simulation } 
    Execute the Phase 1 of SB-by-RSB in each row in parallel. 

Stage 2: { Global Simulation } 
    In each B,, do the following: 

   for i4-Oto(L-1)do 

        Execute the Phase 2 of SB-by-RSB for the row i of B,. 

Stage 3: { Local Propagation } 
    Execute the Phase 3 of SB-by-RSB in each row in parallel. 

end of SBs-by-RSBs

Figure 3.6 : Algorithm SBs-by-RSBs.

row broadcasts only, the column broadcasts can be simulated similarly. 

  We divide .M' into n/L disjoint bands Bp' (0 < p < n/.?). Each Bp' 

consists of PEM, [i, j] (p.e < i < (p + 1)L, 0 < j < n), i.e., Bp' contains 

row i of M' (pf < i < (p + 1).?). The row i of 8, is the row pl + i of M' 

(0 < i < I, 0 < p < n/I?). Then, in Figure 3.6, we show an algorithm 
that simulates the broadcasts along rows of M. 

  Stage 1 and Stage 3 can be performed in O(1) steps from Lemma 

21. As for Stage 2, it can be done in O(L) steps in the following way. 

In each BBp, only the row 0 of Bp' has a broadcasting bus (restricted 

separable bus) whereby Phase 2 of SB-by-RSB is performed. Hence, 

for each row i (0 0) of Bp', the data necessary for the execution of Phase 

2 of SB-by-RSB must be moved to row 0 of 13',, and after the data being 

processed, the result must be moved back to the row. These operations 
can be done by just shifting the data synchronously with each iteration 

of the for-loop. Thus, Phase 2 can be completed in O(£ + I) = O(f)
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steps, and the conclusion follows. • 

  Then, we have the following lemma. 

Lemma 23 M' can simulate any single step of M in O(L) steps. 

Proof: M' can simulate the broadcast substep of a single step of M, 

by first simulating the broadcasts taken along rows, and then simulating 

those along columns. This takes O(L) steps from Lemma 22. As for 

the local comm. and compute substeps, M' can simulate them in a 

constant number of steps in each PE. Thus, the conclusion follows. • 

  The lower bound for simulating M by M' is given in the following 

lemma. 

Lemma 24 There exists a single step of M that takes 5l(L) steps to 

be simulated on M'. 

Proof: Consider the single step of M in which PEM [0, 0] sends a 

value to PEM [0, f/2]. It is obvious that this step must take Sl(L) steps 

to be simulated on .M'. • 

  Now, we obtain the following theorem. 

Theorem 6 M' can simulate any single step of M in O(P) steps. 

This time cost is optimal in the worst case. 

Proof: From Lemma 23 and 24. •
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3.4 Influence of Propagation Delays 

Although we assumed that the propagation delay of the broadcasting 

buses was a constant time, we cannot neglect the influence of the delay 

when the mesh size becomes large. Here, as in [13], let us take the 

following assumptions: 

  • The propagation delay of a bus is proportional to the sum of its 

    signal propagation delay and device propagation delay. 

  • The signal propagation delay of an x-length bus is O(x') for 

    some a > 0. 

  • The device propagation delay of a bus is neglectable (Case 1), or 

    is proportional to the number of the switch elements inserted to 

   the bus (Case 2). 

Then, in Table 3.1, we show the necessary time to perform any single 

step of the n x n MSB. 

Table 3.1: Time costs to perform a single step of the n x n MSB when 

the propagation delay cannot be neglected. 

(In Case 1 we can neglect the device propagation delay, and in Case 2 
we cannot. Each mesh is of size n x n, and the broadcasting buses of 

the MPB are partitioned with .£ = n2/s.)

time costs
models

Case 1 Case 2

MSB

MPB

MRSB

O( n« )
O( n' /3 -n 2«/3 )

O( £.n' )

O( na+n)
O( nl/3 , n2a/3 )

O( £ - (na + n/i) )
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  As for the Case 1, we can see that the MPB can perform a single 

step of the MSB as efficiently as the MSB if a = 1, and that it is 

even superior to the MSB if a > 1. As for the Case 2, the MPB is 

equal to (when a = 1) or superior to (when a 54 1) the MSB, and 

the MRSB has the same efficiency as the MSB if £ < nl-'. But from 

a theoretical point of view, in these cases (except the MPB in Case 2 

with a < 1) there is less advantage of augmenting ordinary meshes with 

broadcasting buses, for it takes S2(n) time to perform a single step of 

the n x n MSB.



Chapter 4

Conclusions

In Chapter 2, we have presented an algorithm that simulates the HV-RM 

of size n x n in O(V/n-) steps on the MWMB of size n x n, and an al-

gorithm that simulates the RM of size n x n in O(log2 n) steps on the 
HV-RM of size n x n. As for the former algorithm, we have proved 

that its time cost is optimal in the worst case under the assumption 

on the processor mapping. Also, we have shown that the RM of size 

n x n can be simulated in O((m )2 log n log m) steps on the HV-RM. 
of size m x m, and in O ((m) 2 / log n log m) steps on the MWMB of 

size m x m (m < n). Although the time cost 0((-L)2 log n log m) is 
less efficient than O((n-.M )2 log m log nm ) given in [9], our algorithm only 
needs the power of HV-RM, which is simpler and weaker model than 

that used in [91-

  In Chapter 3, we have shown that the MSB of size n x n can be sim-

ulated in O(n'!3) steps by the MPB of size n x n when £ = O(n2/3 ). 

Also, we have proved that the time cost is optimal in the worst case un-

der the assumption on the processor mapping. Comparing it with the 

result that the MSB of size n x n (= the HV-RM of size n x n) can be 
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simulated in O(n1/2) steps by the MWMB of size n x n (= the MPB 

of size n x n with .£ = n), we can say that the time cost for simulating 

the MSB of size n x n is reduced from O(n1/2) to O(n1/3 ) without 

increasing the number of switch elements. Also, we have proved that 

the MSB of size n x n can be simulated in O(£) steps by the MRSB of 

size n x n. We have shown that the time cost is optimal in the worst 

case under the assumption on the processor mapping. Since the num-

ber of sectioning switches used in the MRSB of size n x n is 2n 2/f2' our 

result shows that we can reduce the number of switch elements used 

in the MSB by the factor of £2 with only paying the extra time cost 

proportional to £. 

  By combining these simulation algorithms properly, we can obtain 

the time costs for simulating the RM on the other models. Since it 

was argued that the RM can be used as a universal chip capable of 

simulating any equivalent-area architecture (e.g. the pyramid, mesh of 

trees, hypercube, etc.) without loss in time, our combined simulation 

algorithms provide the upper bounds for the HV-RM, MWMB, MSB, 

MPB, and MRSB to simulate other equivalent-area architectures, re-

spectively. 

  We proved that three of our simulation algorithms are optimal in 

the worst case under the processor mapping. However, we do not know 

if there exists more efficient algorithm for the simulation of the RM 

by the HV-RM. Also, the upper-bounds mentioned in the preceding 

paragraph are not shown to be tight, and there may be more efficient 

algorithms. We are currently studying these problems.
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