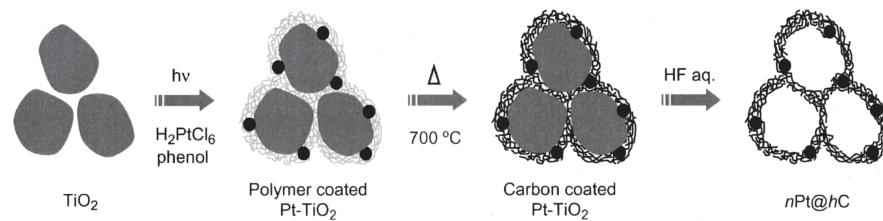


Title	Pt-Nanoparticles Encapsulated in Hollow Porous Carbon : Photocatalytic Synthesis, Structural Characterizations and Catalytic Activities
Author(s)	Ng, Yun Hau
Citation	大阪大学, 2009, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/23454
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka


氏名		アン 興 ユン 永 ハウ 豪
博士の専攻分野の名称		博士(理学)
学位記番号		第23033号
学位授与年月日		平成21年3月24日
学位授与の要件		学位規則第4条第1項該当
基礎工学研究科物質創成専攻		
学位論文名		Pt-Nanoparticles Encapsulated in Hollow Porous Carbon : Photocatalytic Synthesis, Structural Characterizations and Catalytic Activities (中空多孔性カーボンに内包された白金ナノ粒子-光触媒反応による調製、キャラクタリゼーション、および触媒活性-)
論文審査委員		(主査) 教授 松村 道雄 (副査) 教授 福井 賢一 教授 平井 隆之 准教授 池田 茂

論文内容の要旨

This thesis describes designing and development of efficient carbon-based platinum nanocatalysts with unique structure using a novel synthetic method. To achieve this goal, we employed titanium dioxide (TiO_2), which acted as photocatalyst and template simultaneously, to prepare a hollow porous carbon encapsulating platinum nanoparticles ($n\text{Pt}@h\text{C}$). The preparation procedures are visualized in Scheme 1. The highly active electrons (e^-) and positive holes (h^+) generated in TiO_2 upon ultraviolet light irradiation were utilized to

reduce PtCl_6^{2-} and oxidize phenol, respectively, to generate platinum-loaded TiO_2 covered by a layer of phenolic polymer. Subsequent calcination of this composite in vacuum to convert surface phenolic polymer into carbon components followed by removal of TiO_2 core particles by chemical etching yielded the $n\text{Pt}@h\text{C}$. Using combination of various characterization tools such as thermogravimetry, spectroscopy, chromatography, microscopy and porosity analyses, mechanism of the synthetic reaction and physical properties of $n\text{Pt}@h\text{C}$ were identified.

From tomography analysis, the Pt nanoparticles are found to be embedded in the carbon matrix of $n\text{Pt}@h\text{C}$ which contains well-developed micropore and mesopore systems. In catalytic reactions, on account of the presence of well-developed pores inside the carbon shell that provides three-dimensional hydrophobic channels and spaces, efficient mass transfer and preferential adsorption of the substrate adjacent to the Pt is facilitated. These unique properties result in a high concentration of substrate in the Pt microenvironment, leading to the efficient catalytic function when compared to that of conventional Pt-loaded activated carbon (Pt/AC).

Scheme 1. Illustration scheme of the preparation procedure of $n\text{Pt}@h\text{C}$.

In Chapter 1, a general introduction of research background and strategies is described. In Chapter 2 and 3, we found that polymerization of phenol proceeded even after the surface of TiO_2 was fully covered. This observation prompted us to study the irradiation time-dependent effect on the physical properties of thus-obtained $n\text{Pt}@h\text{C}$. By using short and prolong irradiation, remarkable alterations in properties of the carbon shells are observed, affecting the carbon morphology, density and porosity. Short irradiation time (< 1 h) resulted in the sheet-like $n\text{Pt}@h\text{C}$ sample owing to the inadequate polymerization to covering the surface of TiO_2 ; sphere-type $n\text{Pt}@h\text{C}$ is obtained through moderate irradiation time (2-5 h); Prolong irradiation induce a significant densification of the carbon matrix, resulting in a decrease in pore volume. Mainly due to the modulation of active surface of Pt nanoparticles in each $n\text{Pt}@h\text{C}$, changes in morphology and density of carbon are found to influence catalytic activity for hydrogenation of normal olefins.

In Chapter 4, we focus on clarifying the location of Pt nanoparticles in $n\text{Pt}@h\text{C}$ using an electron tomography technique. From a tomogram obtained through reconstructing 121 tilted images of $n\text{Pt}@h\text{C}$, the Pt nanoparticles are found to be embedded in the thin carbon shell and physically separated from each other by the carbon matrix. Owing to this entrapment of Pt inside the porous carbon shell, they are “frozen” inside the carbon; any possible movement of Pt is minimized. Because of this unique structure, the Pt nanoparticles showed high resistance to sintering when subjected to thermal treatment at temperatures up to 800 °C. As a

result, hydrogenation reactions using n Pt@ h C pre-heated at various temperatures indicated minimum loss of catalytic activity. For comparison of sintering behavior, Pt/AC prepared by conventional impregnation/ H_2 reduction method is prepared. From TEM images of Pt/AC treated at elevated temperatures, it was found that the Pt nanoparticles of Pt/AC grew to bigger agglomerates and the catalytic activity was lost significantly according to the temperature.

Oxidation of alcohols into corresponding aldehydes, ketones and carboxylic acid is a reaction of importance in chemical industry. In Chapter 5, we evaluate the performance of n Pt@ h C in the oxidation of various alcohols using molecular oxygen as oxidant. Mechanism of alcohol oxidation on Pt is also studied. By using various catalytic tools such as Hammett plot and kinetic isotope study, mechanism of oxidation of benzyl alcohol is verified. The mechanism pathways are found to be comprised of 3 major steps: (1) formation of alcoholate species on Pt, (2) β -hydride transfer to generate benzaldehyde and, (3) reoxidation of Pt by oxygen. Besides, comparing to a commercially available Pt/AC, n Pt@ h C exhibits longer life-time in oxidation of alcohols where Pt/AC is deactivated rapidly under atmospheric pressure. Pt of n Pt@ h C is suppressed to oxidation compared to that of the Pt/AC catalyst. General conclusions of the thesis including several research recommendations for prospective researchers are included in Chapter 6.

以上の成果は、金属触媒の合成と応用における新たな研究の方向性を示したものとして、学術的に高く評価されるものであり、博士（理学）の学位論文として価値のあるものと認める。

論文審査の結果の要旨

活性炭などのカーボン系材料に金属微粒子を分散させた担持金属触媒は、工業的に広く利用されている。このような担持金属触媒の活性は、担持された金属の粒径、分散性などのさまざまな形態によく依存することが知られている。本論文は、白金ナノ粒子とカーボン材料担体からなる触媒における、新たな調製方法による新構造の形成と、この新構造材料によって発現する、既存の触媒にはない新たな触媒機能発現について研究をおこなった成果であり、六章により構成されている。

第一章では、研究の背景および目的について詳述している。

第二章および第三章では、申請者が開発した光触媒反応を利用した新規触媒調製法による多孔性カーボン固定化白金ナノ粒子の合成、多孔性カーボン部を中心とするキャラクタリゼーション、および触媒活性の評価について述べている。触媒の調整は、白金イオン（塩化白金酸）およびフェノールを含む溶液中に酸化チタン光触媒粒子を懸濁させて紫外光を照射して、酸化チタン上に白金ナノ粒子とフェノール樹脂を析出させ、これを真空中で熱処理した後、酸化チタン粒子を溶解除去することで行っており、白金ナノ粒子が高分散に担持された中空カーボン粒子を得ている。透過型電子顕微鏡観察や窒素吸着測定などから、中空カーボンシェルがナノサイズの厚みをもつ多孔性カーボンであることを、サイズ均一な白金ナノ粒子（3 nm）が高分散状態で固定化されていることなど、この新規複合体の構造を詳細に評価している。また、この新規複合体が液相でのオレフィン水素化にきわめて高い触媒機能を有することを見出している。

第四章では、透過型電子顕微鏡トモグラフィーを用いた新規複合体中の白金ナノ粒子の構造、状態についての詳細な検討を行い、その知見から期待された白金ナノ粒子の優れた熱耐性について実験的に評価している。それらの結果から、（1）白金ナノ粒子は薄い多孔性カーボンシェル内部に埋設された構造をとること、（2）そのため、高温下（~700°C）でも、凝集体の生成や触媒活性（オレフィン類水素化）の低下がないこと、を明らかにしている。

第五章では、新規複合体を用いた分子状酸素によるアルコール酸化反応についての結果を述べている。この新規複合体が市販の活性炭担持白金触媒に比べて非常に高い触媒活性と優れた再利用性を有することを明らかにしている。さらに、このアルコール酸化反応の速度論的検討により反応機構解析、高活性・再利用性の因子などについても明らかにしている。

最後に論文全体の結果を総括し、この新規複合体構造について、今後の展望や応用性について記している。