
Title Decentralized Application Layer Multicast
Protocols for Interactive Applications

Author(s) Baduge, Thilmee Malinda

Citation 大阪大学, 2008, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/23458

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

r

'I ,

,

,

\ I

I

• f

f
f

" . ,

,

I • ,

•
• •

,
f t

Decentralized Application Layer Multicast

Protocols for Interactive Applications

• , ~ , (

,

,

!

,
• .. ,.

J

, { ! ,
"

January 2008

Thilmee Malinda ,BADUGE
t.

o ,

.'

,

•

r

}

. , ,

> ,

,

:r. - "

•

Decentralized Application Layer Multicast

Protocols for Interactive Applications

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2008

Thilmee Malinda BADUGE

List of Publications

Journal Papers

1. Thilmee M. Baduge, Akihito Hiromori, Takaaki Umedu, Hirozumi Yamaguchi

and Teruo Higashino : "A Decentralized Protocol MODE for Minimum Delay

Spanning Trees on Overlay Networks", Journal of Information Processing Soci­

ety of Japan (IPSJ), Vol. 46, No.2, pp. 482-492 (February 2005) (in Japanese).

2. Thilmee M. Baduge, Akihito Hiromori, Hirozumi Yamaguchi and Teruo Hi­

gashino : "A Distributed Algorithm for Constructing Minimum Delay Span­

ning Trees Under Bandwidth Constraints on Overlay Networks", Transactions

on the Institute of Electronics, Information and Communication Engineers (IE­

ICE), Vol. J88-D-I, No. 11 (November 2005), pp. 1648-1658 (in Japanese).

3. Thilmee M. Baduge, Hirozumi Yamaguchi and Teruo Higashino: "An Efficient

Overlay Multicast Protocol for Heterogeneous Users", Journal of Information

Processing Society of Japan (IPSJ), Vol. 46, No. 11, pp. 2614-2622 (November

2005).

Conference Papers

1. Thilmee M. Baduge, Akihito Hiromori, Hirozumi Yamaguchi and Teruo Hi­

gashino: "Design and Implemetation of Overlay Multicast Protocol for Multi­

media Streaming", Proceedings of the 34th International Conference on Parallel

Processing (ICPP 2005), pp. 41-48, Oslo, Norway (June 2005).

2. Thilmee Malinda Baduge, Hirozumi Yamaguchi and Teruo Higashino : "MODE

for Mobile - An Efficient Overlay Multicast Protocol for Heterogeneous Users

-", Proceedings of the 2nd International Conference on Mobile Computing and

Ubiquitous Networking (ICMU 2005), pp.96-101, Osaka, Japan (April 2005).

Other Related Conference Papers

1. Kazushi Ikeda, Thilmee M. Baduge, Takaaki Umedu, Hirozumi Yamaguchi and

Teruo Higashino : "A Middleware for Implementation and Evaluation of Appli­

cation Layer Multicast Protocols in Real Environments", Proceedings of the 17th

International workshop on Network and Operating Systems Support for Digital

Audio & Video (NOSSDAV 2007), pp. 125-130, Illinois, USA (June 2007).

2

Abstract

Recent innovation of the Internet has brought us several interactive group applications.

Especially, recent applications may require multimedia-based group communication

such as multimedia streaming or video conferencing. It is a common consensus that we

need a multicast solution for the group communication and IP multicast is not suitable

for such a purpose because of its deployment limitations. Instead, application layer

multicast (ALM in short) solutions have had a lot of attentions where application nodes

(end-hosts) are connected by unicast channels and consequently form tree-like virtual

networks (overlay networks) among them.

Although, all these group applications are similar in the sense of multicasting, they

have different QoS (Quality of Service) requirements. By looking at the real world

group applications, we can say that most of them involve interactivity, use some kind

of multimedia data and have different community scales. Therefore, it is very impor­

tant for an underlying ALM scheme to be (a) latency sensitive, (b) bandwidth sensitive

and (c) scalable. In this dissertation, first, we address these issues by proposing an

ALM scheme called MODE, which constructs a Degree Bounded Minimum Diame­

ter Tree (DBMDT) in a de-centralized manner. The overlay tree constructed by this

scheme satisfies the following conditions; (i) the maximum delay between any pair of

nodes is minimized, (ii) the number of overlay links connected to each node (degree) is

restricted by its bandwidth availability and (iii) scalable with its de-centralized design.

In addition to the above major QoS requirements, some applications require the

consideration ofthe existence of multiple sources. For example, in a video-conference

or a panel discussion, the pictures of some primary persons should be continuously de­

livered.to the other audience. Although these sources are some times subject to change,

but are not changed so frequently. For this kind of purpose, we propose a method for

the de-centralized construction of spanning trees as the second contribution of this dis­

sertation, where the maximum delay from those senders is minimized. This scheme,

3

called STS, constructs a sender-dependant Degree Bounded Minimum Diameter Tree

(s-DBMDT). Though some basic ideas have been taken over from the previous work

MODE, which basically minimizes the maximum delay between any pair of nodes,

STS differs from MODE from the following aspects: (i) formulation of a new problem

well suits for interactive mulimedia streaming applications which associates multiple

sender nodes and (ii) design and implementation of an adaptation mechanism needed

for mulitimedia streaming.

The end-user heterogeneity is also an important issue to be addressed. With the

recent rapid deployment of high-spec mobile devices, the end-users are shifting from

the conventional desktop pes to various hand-held devices, such as mobile phones or

PDAs. So the ALM schemes we design should be ready to adapt these mobile terminals

as well. In this case the following problems come across; the mobile hosts may not be

stable due to the limitation of batteries, computing and communication capabilities

and so on, and thus not stable to relay data packets frequently. Moreover, they may use

wireless links and thus delay of the overlay links connected to those nodes may not be

stable also. We address this issue as our third contribution by introducing MODE-m

extending from our initial work MODE, where the ALM tree is constructed carefully

and dynamically to prevent those hosts from staying at critical positions that affect the

end-to-end latency and the stability ofthe overlay multicast.

The utilizability of end-users as one-to-many data relay agents is one major fact

that ALM has attracted a great deal of attention. However, the reliability problems

of end-users induce the one of major drawbacks in the sense of spreading ALM into

the real world applications. One major issue that comes up here is the end-users'

desire-heterogeneity to the ALM session in which it is involved; since less-desired

users leave the session sooner and often without any prior notification or cause delay

and harmful jitter when they stay in the session, the participants in the downstream

suffer considerable degradation of quality. This dissertation addresses this reliability

issue by recognizing it as the user-lifetime and proposes a stability oriented overlay

multicast scheme as its fourth contribution, which covers an aspect different from the

previous MODE, STS or MODE-m.

The simulation experiment results, together with some experiments on real net­

works and Planetlab has shown that all of the above ALM schemes perform well in

achieving its target.

4

Contents

1 Introduction

2 Related work

2.1 Latency Oriented Approaches

2.2 Stability Oriented Approaches

11

16

16

18

3 Decentralized Construction of Minimum Delay Spanning Trees Under Band-

width Constraints 20

3.1 Introduction............. 20

3.2 Protocol Overview and Assumptions 21

3.2.1 DBMDT Problem . 21

3.2.2 Overview of MODE . . 22

3.2.3 Assumptions 23

3.3 Information Collection on Tree. 24

3.3.1 Node ID Assignment. . 24

3.3.2 Sub-tree Information Collection 25

3.3.3 Example 28

3.4 DBMDT Construction Protocol

3.4.1 Join Procedure

3.4.2 Repair Procedure for Single Disappearance

3.4.3 Repair Procedure for Multiple Disappearances

3.4.4 Repair procedure consistency

3.4.5 Unexpected disappearances

3.5 Performance Evaluation

3.5.1 Simulation Setup

3.5.2 Implementation of Compact Tree Algorithm.

3.5.3 Experimental Results.

3.6 Concluding Remarks

5

29

29

30

32

33

36

37

37

38

38

41

4 Coping With Multiple Sources and Heterogeneous Users

4.1 Association of Multiple Sender Nodes

4.2 Shared Tree Streaming (STS) Protocol

4.2.1 Definition of DB MDT and s-DBMDT

4.2.2 Key Idea for Minimizing the Maximum Delay from Senders

4.3 Design of STS Protocol

4.3.1 Join/Repair Procedure Design
4.3.2 Information Collection

4.4 Implementation of STS Protocol as a Java Middleware

4.4.1 Overall Architecture
4.4.2 Adaptation Mechanism for Media Streaming

4.5 Simulation Experiments. . . .

4.5.1 Simulation Setup . . .

4.5.2 Experimental Results .

4.6 Experiments on Real Networks .

4.6.1 Experiment Settings ..
4.6.2 Experimental Results . .

4.7 Consideration of Heterogeneous Users.

4.8 Motivation.

4.9 Overview of MODE-m

4.9.1 Outline of MODE for Mobile

4.9.2 Join Procedure ..
4.9.3 Refresh Procedure

4.10 Performance Evaluation. .

4.10.1 Simulation Setup .

4.10.2 Experimental Results .

4.11 Concluding Remarks

5 Decentralized Construction of Stability Oriented Spanning Trees in Mul­

tiple Source Context

5.1 Introduction........

5.2 Problem analysis

5.2.1 Problem definition

5.2.2 Learning from DBMSST .

5.3 ms-DDBMSST construction ..

5.3.1

5.3.2

Initial TreiConstruction

Tree refinement

6

42

42

44

44

45

48

48

50

52

52

54

55

55

56

58

59

60

64

64

66

66

67

69

70

70

71

74

75

75

76

76

78

80

82

82

5.4 Experiments 89
5.4.1 Simulation Experiments 89
5.4.2 PlanetLab experiments 91

5.5 Concluding Remarks 95

6 Conclusion 96

7

List of Figures

1.1 The Concept of Application Layer Multicast. 12

3.1 Different constructions by connecting sub-trees result in different max-

imum delay trees .. 23

3.2 Node ID Assignment 24

3.3 Example of Sub-trees 26

3.4 Sub-tree Information Collection: Example . 28

3.5 Repair Procedure (single node disappearance) 31

3.6 Timing Chart of R(v) -. -. 34

3.7 Repair Procedure: v'is the Initiator of R(v) . 35

3.8 Repair Procedure: v'is on the Path from the Initiator to the Repair

Master of R(v) 36

3.9 Dynamics of Diameters . 39

3.10 Control Traffic 40

3.11 Join/Repair Procedures' Processing Time Distribution. 41

4.1 DB MDT and s-DBMDT on Overlay Network 44

4.2 Join Procedure 46

4.3 Repair Procedure 47

4.4 System Architecture . 53

4.5 Adaptation Mechanism 54

4.6 Dynamics of Diameters in Simulation Experiments 57

4.7 Dynamics of Sender Dependant Diameters (S-diameters) in Simulation

Experiments . 58

4.8 Control Traffic (Total kbits on tree per each second) . . .l. 59

4.9 Dynamics of Diameters in Real Network Experiments. 60

8

4.10 Dynamics of Sender Dependant Diameters (S-Daimeters) in Real Net-

work Experiments. 61

4.11 Degree Adaptation Experiment . 62

.4.12 Concept of MODE-m 65

4.13 Mobile Node Rejoin in Join Procedure . 68

4.14 Mobile Node Refresh Strategy .. 70

4.15 Dynamics of MODE-m Diameters 72

4.16 Control Traffic of MODE-m ... 73

5.1 Two Simple Methods that Construct DBMSST: (a) stability-first (s-

first) and (b) stability-degree product-first (s·d-first) 78

5.2 Concept of the Centralized Heuristic Algorithm 80

5.3 The Outline of the Pre~Session Refinement of Initial Tree . ~ 83

5.4 Concept of Replacing Candidate Selection: (a) the initial tree (b) the

tree after swapping u and w when d(w) > d(u) (c) the tree after swap-

ping u and w when d(w) < d(u) 86

5.5 Refinement of RejTu,K (a) before refining (b) after refining 87

5.6 Dealing with Multiple Sources: Exchanging nodes on paths between

source nodes (a) before exchange (b) after exchange. 88

5.7 PlanetLab Instability Distribution. 91

5.8 Average Bandwidth vs Number of Nodes 92

5.9 Average Jitter vs Number of Nodes 93

5.10 Average Bandwidth vs Ratio of Unstable Nodes 94

5.11 Average Jitter vs Ratio of Unstable Nodes 95

9

List of Tables

1.1 Characteristics of ALM Applications, s: small, m: medium, 1: large 14

3.1 Comparison of Diameter and Repair Cost

4.1 Average Diameter and S-diameter of STS and MODE .

4.2 Average Time Required for Join and Repair Procedures

4.3 Time Required for Join and Repair Procedures.

4.4 Packet Loss Ratio Against a Single ~epair Procedure .

40

57

58

62

62

4.5 Comparison of Diameter [ms] and Rejoin Cost [number of attached/detached

links] of Mobile Nodes 72

4.6 Comparison of the Time Required for Join and Refresh 74

5.1 Performance of Proposed Protocol for Various Delay Bounds. 89

5.2 Swapping Policy Comparison. 90

5.3 Effect of the Number of Source Nodes 91

/

10

Chapter 1

Introduction

With the rapid growth of communication technologies and the wide spread of high­

handwidth end-users such as DSL, cable and optical fiber subscribers, the Internet

has shifted to a more complex, multi-purpose communication media from the conven­

tional web and email platform. Some typical applications of this new communication

paradigm are the Internet based multimedia streaming, video conferences, distance

learning, multi-user games and file sharing. This kind of multi-user applications are

commonly referred to as group applications. The multi-tier nature of these applica­

tions has resulted a demand for a new communication technology to send the same

data to multiple users simultaneously, which stands in contrast to the conventional

TCP/IP pOint-to-point (or one-to-one) communication method referred to as unicast.

And this one-to-many or many-to-many communication method is commonly referred

to as multicast.

IP multicast, which handles many-to-many communication in network protocol

level by replicating packets at network routers, has been proposed in early 80's forthis

need. However, even after 20 years of its introduction, it is still not available as an

open Internet service due to lack of infrastructure (eg: replacement ofIP multicast sup­

porting network routers) and existing Internet service (eg: inter career communication)

support. Having the fact that open multicast services generally have not been available,

an alternative called Application Layer Multicast (ALM in short) or Overlay Multicast

in other words, has been proposed. ALM is a technology, which is based on the idea

of using end-users to provide similar capabilities of network level IP multicast routers

by acting as message replicating and relaying agents. Since the application running

on each end-user covers the replication part, the actual message passing across the In-

11

~
OVerlay Network

b :' ~
4 : 1. . .

: : c : . 2 .
:~.: :
:~:: :
I I I I

physical
router

end host
(participant of group)

Figure 1.1: The Concept of Application Layer Multicast

temet or the underlying network can be done using the currently available unicast as

illustrated in Fig.I.I. The good about ALMis not only it can use the current network

infrastructure, but also the utilizability of resource-rich end-user computing devices

(commonly referred to as peers or nodes) for the message relaying, by which an in­

numerable variations of applications can be supported. Therefore, ALM has become

the technology with the highest potential to realize the diversity of these group appli­

cations, despite it is not as efficient as IP multicast because of its delay and bandwidth

penalties and less stability.

The ALM schemes (or protocols) can be classified into two main categories de­

pending on how the end-hosts are organized. They are referred to as unstructured and

structured (or DHT) overlays. Unstructured overlays use floods (flooding the query

over the entire overlay network) or random walks (go through the overlay links ran­

domly) for the data discovery after organizing the nodes into a random graph topology.

Since there are no constraints on how the data is distributed on overlay nodes, unstruc­

tured overlays provide a high resilience to the node transiency. Structured overlays,

on the other hand, use well structured overlay topologies and have constraints on the

data placement. Here, data objects and nodes are assigned unique keys (identifiers) and

queries are routed based on these keys, by which it can largely reduce the cost of data

search. However, structured overlays are less resilient to the node transiency as the

data objects are not found if the nodes responsible for them h,ave failed ordisappe~red.

Structured overlays are mainly used for peer-to-peer (or P2P) network applications

such as file sharing or messaging. On the other hand, unstructured overlays are used

12

for both P2P applications and group communication applications such as multimedia

streaming or video conferences.

The ALM schemes for such group communication applications (simply referred by

group applications for the rest) are classified into the following three categories based

on their policies to generate overlay topologies: (i) mesh-first approaches like [1, 2],

(ii) tree-first approaches like [3,4,5,6,7,8] and (iii) other approaches like [9, 10]. The

approaches of (i) first build mesh-like overlay networks, and then build trees on top of

the overlay networks. The approaches of (ii) directly build trees as overlay networks.

The approaches of (iii) include implicit composition of tree-like forms, for example,

overlay nodes are hierarchically structured in Ref. [9]. The mesh-first approaches are

more resilient to the node transiency as it manages redundant overlay links, while tree­

first approaches are less network resource consuming as it utilizes a single tree. In this

dissertation we mainly focus on this tree-based ALM schemes.

Although, all these group applications are similar in the sense of multicasting, they

demand the support from the underlying ALM service in many dimensions, or have

different QoS (Quality of Service) requirements in other words. For instance, a multi­

media streaming application requires a higher bandwidth, while an interactive applica­

tion like a video conference rather relies on a lower end-to-end (source to destination)

delay. Table 1.1 summarizes these characteristics of some typical group applications.

By looking at real world group applications, we can say that most of them involve

interactivity, use some kind of multimedia data and have different community scales.

Therefore, it is very important for an underlying ALM scheme to be (a) latency sen­

sitive, (b) bandwidth sensitive and (c) scalable. In this dissertation, first, we propose

an ALM scheme called MODE to meet these three major demands, which constructs a

Degree Bounded Minimum Diameter Tree (DBMDD in a de-centralized manner. The

overlay tree, which is a spanning tree, constructed by this scheme satisfies the following

conditions: (i) the maximum delay between any pair of nodes is minimized (referred

by "minimum diameter"), (ii) the number of overlay links connected to each node (de­

gree) is restricted by its bandwidth availability (referred by "degree bounded") and (iii)

scalable with its de-centralized design. In addition to the above features, MODE is

resilient for node failures (un-announced departures) by providing quick restoring for

broken trees. For this, MODE proactively calculates a node-to-connect for each node

using some local information and this node is used in case of isolation from the main

tree. The experimental results using ns-2 have shown that MODE could achieve sim-

13

Table 1.1: Characteristics of ALM Applications, s: small, m: medium, 1: large
Application Scale Restrictions Number of Sources

Bandwidth Latency

Multimedia Streaming I I s single
Video Conferences s I I mUltiple
Distance Learning I I m single
Multi-user Games I m I multiple

ilar diameters with CT[ll] algorithm, a centralized scheme that greedily constructs a

DBMDT, in a small computation time and small amount of control traffic even though

MODE is autonomous and decentralized.

In addition to the above major QoS requirements, some applications require the

consideration of the existence of multiple sources. For example, in a video-conference

or a panel discussion, the pictures of some primary persons should be continuously

delivered to the other audience. These sources are some times subject to change,

but are not changed so frequently. For this kind of purpose, we propose a method

for the de-centralized construction of spanning trees where the maximum delay from

those senders is minimized", rather than DBMDT[6, 7, 12], where the maximum de­

lay between any pair of nodes is minimized. This scheme, called STS, construct~ a

sender~dependant Degree Bounded Minimum Diameter Tree (s-DBMDT), where some

basic ideas have been taken over from out previous work MODE. A java middleware

based on STS protocol has also been designed and implemented. This middleware

consists of an adaptation mechanism to identify and relocate the nodes of low stream­

ing performance, and this helps to achieve a better multimedia streaming quality. The

performance evaluation, which has been done based on experiments in both simuhited

networks and real networks, strongly indicates the efficiency and usefulness of our

protocol.

Again, the end-user heterogeneity is also an important issue to be addressed. With

the recent rapid deployment of high-spec mobile devices, the end-users are shifting

from the conventional desktop PCs to various hand-held devices, such as mobile phones

or PDAs. So the ALM schemes we design should be ready to adapt these mobile termi­

nals as well. In this case the following problems come across; the mobile hosts may not

be stable due to the limitation of batteries, computing and communication capabilities

and so on, and thus not stable to relay data packets freque~tly. Moreover, they may

use wireless links and thus delay of the overlay links connected to those nodes may not

14

be stable also. As a solution for this we propose MODE-m extending from our initial

work MODE, where the ALM tree is constructed carefully and dynamically to prevent

those hosts from staying at critical positions that affect the end-to-end latency and the

stability of the ALM tree. The experimental results have shown that this dynamic fea­

ture is very effective to keep the diameter as small as possible under the existence of

mobile nodes.

As stated at the beginning of this chapter, the utilizability of end-users as one-to­

many data relay agents, is one major fact that ALM has gained a lot of attention as a

research topic. However, the reliability problems of end-users induce the one of major

drawbacks in the sense of spreading ALM through real world applications. One major

issue that comes up here is the desire-heterogeneity of end-hosts to the ALM session in

which it is involved; since less-desired users leave the session sooner and often without

any prior notification or cause delay and harmful jitter when they stay in the session,

the participants in the downstream suffer considerable degradation of quality. We ad­

dress this reliability issue by recognizing it as the user-lifetime and propose a stability

oriented overlay multicast scheme, which covers an aspect different from the previous

MODE,STS or MODE-m. The extensive simulations and experiments conducted in

PlanetLab have shown the usability of this protocol.

The contributions of the ALM protocols dIscussed in this dissertation can be sum­

marized as follows; (1) decentralized construction of minimum delay spanning trees

under bandwidth constraints, (2) formJllation of a new problem associating multiple­

sources in minimum delay spanning trees, (3) design and implementation of an adap­

tation mechanism that well supports media streaming, (4) consideration of heteroge­

neous end-users for interactive overlay multicast, and (5) decentralized construction of

stability oriented spanning trees in multiple source context.

The rest ofthe dissertation is organized as follows. Chapter 2 discusses the related

work and show the novelty ofthe ALM schemes discussed in this dissertation. Chapter

3 describes the protocol MODE, while Chapter 4 explains STS and MODE-m, which

are the protocols based on some basic ideas of MODE. Chapter 5 presents the fourth

contribution stated above. Finally, Chapter 6 concludes this dissertation.

15

Chapter 2

Related work

2.1 Latency Oriented Approaches

A number of investigations have been dedicated to multicast protocols which consider

the failure of nodes. From the point of view of network architecture, these researches

can be classified into the following categories; (i) multicast on wireless ad-hoc net­

works, (ii) native multicast (e.g. IP multicast) and (iii) application layer multicast (or

overlay multicast).

Researches in the first category such as MAODV [13] focus on reorganization of

groups according to the radio ranges of nodes. The main issue is to keep connectivity

among nodes, therefore the tree op'timization is another issue. Some researches in the

second category consider dynamic change of tree forms for fault tolerance or improve­

ment of performance (for example, dynamic core migration is considered in Ref. [14])

and others mainly focus on enhancing reliability by means of re-transmission and/or

redundancy such as RMTP [15], rather than coping with hardware failure.

Different from the above categories, multicast researches in the third category pur­

sue the stability (i. e. fault-tolerance) and efficiency of overlay multicast trees under the

constraints of bandwidth and delay. For example, HBM [3] mainly considers how to

make backup links in a centralized way for the failure of a node. ALMI [5] proposes a

centralized algorithm for constructing minimum spanning trees. Void [4] is similar to

ALMI, however, Void together uses shared tree connection and mesh-like connection

for robustness. Narada [1, 2] considers mesh-like overlay networks where a shortest

path tree per source is constructed. NICE [9] considers hierarchical topology where

leaders organize their logical sub-domains. Refs. [9, 16] also consider hierarchical

16

overlay multicast trees for scalability reasons. For the deployment of IP multicast,

HTMP [17] focuses on the connectivity between IP multicast islands.

Our protocol is different from the above approaches in the following points.

• Autonomous and decentralized organization of trees. Most protocols take cen­

tralized approaches, and decentralized approaches are sometimes considered to

be ineffective because they increase protocol complexity. However, in our case,

we show that decentralized information collection is very effective for our DB­

MDT problem with dynamic joinlleave activities, because it requires very small

amount of control traffic and simple operations.

• Tree optimization. Most approaches mainly focus on their protocol frameworks

and do not consider the optimization of trees. ALMI considers minimum span­

ning trees, but they are computed in a centralized way using the entire knowl­

edge.

• Tolerance to multiple nodefailures. We consider multiple nodes' disappearances

in a distributed environment and validate the soundness.

To our best knowledge, no existing method considers the above issues.

And also STS and MODE-m, differ from all the above proposals including MODE,

from the aspect of the consideration for multiple sender nodes and heterogeneous (mo­

bile) nodes. Furthermore, STS considers the practical aspect of multimedia applica­

tions by proposing a adaptation mechanism to identify and replace incapable nodes in

its implementation. As for ALM protocol implementations, we can say that several

overlay multicast researches have implemented their protocols. In Ref. [5], an applica­

tion level multicast communication library called ALMI has been implemented in Java.

ALMI supports both reliable communication and datagram communication, and pro­

vides basic operations for constructing and maintaining shared trees among end-hosts.

On the other hand, in Yoid (Your Own Internet Distribution) Project [4] which pro­

motes unification of unicastlmulticast communication and protocol stability, wrapper

scripts are provided as Yoid Software for Mbone tools such as vic[18]. The research

group in Carnegie Mellon University has developed ESM, a native code toolset based

on End System Multicast methodology[I]. This tool was used for distributing live

video in SIGCOMM2002 conference. HyperCast is the Java implementation based

on two methodologies, HyperCast[19] and Delaunay Triangulation[20] and provides

socket-like Java APIs. RelayCast[21] is a middleware to aim at adapting to various

17

applications that require different metrics (bandwidth, delay or both), by component­

based design and implementation.

Our objective to design and implement STS middleware is different from any ofthe

above. First, we would like to realize DBMDTs in an efficient way, for real applica­

tions. As stated before, we consider that DBMDT is suitable for interactive multimedia

applications. Our objective is to provide a middleware for such an application includ­

ing media streaming. In our STS protocol the nodes can reside in appropriate positions

of the multicast tree. Secondly, none of the above does experiments which we intend

to do, for example, measuring node-to-node delays in video streaming.

Note that focusing on protocols designed for content distribution such as near on­

demand applications, there are other well-designed protocols. Ref. [22] has investi­

gated several related projects.

2.2 Stability Oriented Approaches

A lot of ALM schemes have been proposed so far targeting the variety of Internet

group applications in the current world. They can be categorized into the following 3

major categories focusing on each one's design concern: (i) latency-first approaches,

(ii) restore-first approaches and (iii) other QoS concerned approaches. The first one

focuses on minimizing the latency between nodes. Generally tree based approaches·

like [11, 7, 5] are considered to meet these latency requirements. The second one

mainly focuses on restoring the overlay topology in case of collapse due to nodes'

leaving. This is also critical when using ALM in real world applications. Multiple path

approaches where the redundant paths are used in case of original path failure ([3, 4]),

or restore schemes where the overlay topology is re-established using a previously or

immediately calculated restore mission ([23, 12,24]) are often used to realize this. The

third one corresponds to the ALM schemes like [9,1,25], which are targeted to provide

some other QoS features like bandwidth.

All the above schemes have only considered topological factors like node-to-node

overlay link latency and node degree in their protocols, and hence non-topological

characteristics such as heterogeneity of node lifetime and forwarding capabilities have

not been addressed for a long time. To our best knowledge, [26] has first addressed this

issue inspired by an analysis of some real-world data traces. They have proposed using

nodes' lifetime characteristics, where older nodes are selected as peers for new nodes

in their longest-first algorithm. After that, [27] has also addressed this as "priority",

18

by which nodes lifetime and/or bandwidth are referred. This has conducted simulation

experiments with some real-world data traces to find out which metric among lifetime

and bandwidth gives the better reliability in terms of affect of node failures, when

prioritizing them. Their conclusions state that bandwidth prioritizing performs better.

In contrast to the centralized approach taken in [27], [28] proposes a decentralized

algorithm to build a reliable tree considering nodes' lifetime.

Our proposal differs from the above lifetime aware approaches in the following

aspects. (i) Taking the multiple-source issue into ac:count to make the scheme more

applicable to interactive multimedia applications, (ii) associating a delay bound from

all sources which is indispensable to realize the interactivity, and (iii) conducting ex­

periments in PlanetLab to verify the usability in real-world.

19

Chapter 3

Decentralized Construction of
Minimum Delay Spanning Trees
Under Bandwidth Constraints

3.1 Introduction

Whenever we design an interactive application on top of tree-based overlay multicast

protocols, we have to consider the maximum delay between nodes on overlay trees (re­

ferred to as diameter), because the diameter can be the delay of the interactive session

(e.g. group conversation including two nodes at the both ends of the diameter path).

Also in order to handle multimedia streaming (especially video streaming) on overlay

trees, it is important to consider bandwidth constraints around nodes. Since overlay

links through a node actually use the same network interface of the node, the traffic

amount ofthe node depends on its degree (the number oflinks of the node on the tree).

So the degree should not exceed the capability limitation of the node.

In this chapter, we present a protocol called MODE (Minimum-delay Overlay tree

construction by DEcentralized operations), which constructs a degree-bounded delay

sensitive spanning tree as an overlay multicast tree. The construction problem of such a

tree is known as the degree-bounded minimum diameter tree (DBMDT) problem, and it

is NP-hard [6]. Therefore, Ref. [6] proposes a heuristic algorithm called Compact Tree

(CT) algorithm which is similar with Prim's minimum spanning.tree algorithm [29].

Since CT algorithm focuses on static and centralized construction ofa degree-bounded

minimum diameter tree, it is not suitable to directly adopt it to the DB MDT problem

20

with nodes' join or leave operations (or failures) during a session. When some nodes

leave a session, such an algorithm may require many modifications ofthe existing tree

. as well as much computation time in order to obtain a new tree with a smaller diameter.

This may largely affect continuity ofthe session.

On the other hand, our protocol aims at repairing the existing spanning tree in a

simple, fast and decentralized way when multiple nodes' simultaneous or continuous

disappearances occur. It also aims at shortening the diameter of the repaired tree.

In our protocol, a collection phase and a normal phase are alternately repeated. In

each collection phase, the neighbor nodes of a node v collect the information about

the sub-trees which will appear by v's possible disappearance. The information of

a sub-tree includes the center node of the sub-tree's longest path. In the subsequent

normal phase, when node v disappears, the neighbor nodes have already known the

information ofthe isolated sub-trees. Therefore one of them can start a repair procedure

and it can be executed quickly. Note that the procedure connects the isolated sub-trees

through the center points of their longest paths to obtain a tree with a small diameter.

Moreover, this procedure is tolerant of mUltiple nodes' simultaneous (or continuous)

disappearances in a normal phase. The consistency of the protocol for such multiple

nodes' disappearances is discussed under some assumptions.

Our experimental results using ns-2 have shown that our algorithm could achieve

similar diameters with CT algorithm in small computation time and small amount of

control traffic even though our protocol is autonomous and decentralized one.

This chapter is organized as follows. Section 3.2 formulates the degree-bounded

minimum diameter tree problem. In Section 3.3, the way to collect the sub-tree infor­

mation for repairing broken trees is given. Section 3.4 presents the protocol to process

nodes' participations and disappearances. Section 3.5 shows the experimental results

and Section 3.6 concludes the chapter.

3.2 Protocol Overview and Assumptions

3.2.1 DBMDT Problem

Hereafter, we call the participant nodes of an overlay multicast tree simply nodes. Our

goal is to provide an autoIJ,omous and decentralized protocol that constructs Degree­

Bounded Minimum Diameter Tree (DBMDT) as an overlay network, under nodes'

participations and disappearances.

21

The definition of DBMDT is given below. Let G = (V, E) denote a given undi­

rected complete graph where V denotes a set of nodes and E denotes a set of overlay

links which are unicast connections between nodes. Also let dmax (v) denote a de­

gree bound (the maximum number of overlay links) of each node v E V, and let

c(i,j) denote the cost (delay) of each overlay link (i,j) E E. DBMDT is a spanning

tree T of G where the diameter of T (the maximum cost of the paths on T) is mini­

mum and the degree of each node v E V (denoted as d(v)) does not exceed dmax (v).

Hereafter, dmax is used to represent the maximum degree bound of all the nodes (i.e.

maxvEV {dmax (v)}).

3.2.2 Overview of MODE

In our protocol, two logical phases caIled a collection phase and a normal phase are

repeated alternately. The period of the coIlection phase is very short (e.g. less than two

seconds in our experiments in Section 3.5) while that of the normal phase is relatively

long (e.g. one minute).

In a normal phase, our protocol copes with nodes' two kinds of operations, (i)

join and (ii) leave/failure (referred to as disappearance), in an autonomous and decen­

tralized way. We consider nodes' disappearanc"es as a good occasion to shorten the

diameter of the current tree. Therefore, every time a disappearance happens, the tree is

partially re-constructed (i.e. repaired) so that it can eventually converge to a DBMDT.

Also, the repair procedure should be done quickly enough to prevent data delivery from

being suspended for a long time. For such a purpose, each node coIlects the sub-tree

information in the precedent coIlection phase. This collection is done in a recursive

(incremental) way. The collected information is used for quick and efficient execution

of repair procedures in the normal phase.

When a node disappearances from the current tree T, the generated sub-trees are

connected to each other and the new tree T' is constructed in such a way that the new

diameter becomes smaIler. For that, MODE utilizes a policy of connecting the "center

nodes" together. The center node of a sub-tree is the node on the diameter path (longest.

delay path) ofthat sub-tree where the difference between the delays from the both ends

of the diameter path to the node is the smallest.

For example, if node u on the diameter path Xl - YI - Y2 - X2 (shown with the

thick line in Fig. 3.1(a)) disappears, MODE connects the center nodes (shown with

squares)to each other and constructs the new tree T' as shown in Fig. 3.1 (b). By

22

max. delay = xI+yI+y2+x2

T
(a)

max. = max{dI/2+yl '+y2'+d2/2,
delay dI/2+yl'+d3/2,

T
' d2/2+y2'+d3/2,

dl, d2, d3}

(b)

max. = max{xI+yl "+y2"+x2,
delay x I+y I "+x3,

x2+y2"+x3,
T" dl, d2, d3}

(c)

Figure 3.1: Different constructions by connecting sub-trees result in different maxi­
mum delay trees

connecting through the center nodes like this, the possible maximum delay from the

connecting node in each sub-tree (the maximum delay from the connecting node to

any other node in that sub-tree) becomes smaller (approximately 1/2 of the maximum

delay ofthat sub-tree) and that results a smaller diameter for T' in a higher possibility.

On the other hand, if the neighboring nodes of the disappeared node are connected to

each other as shown in Fig. 3.I(c), the maximum delay from the connecting node in

each sub-tree,Xl and X2, which has composed the diameter ofT as well, are still the

maximum delays of those sub-trees. Hence, in this case, the diameter of the repaired

tree T" might not be much smaller than T. Therefore, MODE utilizes the idea of

connecting through the center nodes.

3.2.3 Assumptions

Nodes may disappear from the current tree at any timing. In order to discuss the con­

sistency of our protocol, we give the following assumptions concerned with the disap­

pearances of nodes.

G I. Any node's disappearance does not affect the physical (underlying) network, and

each node can immediately detect its neighbor node's disappearance.

23

Figure 3.2: Node ID Assignment

G2. The initial node never disappears and each new node which wants to join a tree

knows the network address (e.g. IP address) of this node.

This does not mean that the initial node plays a role of a centralized node. It only

works as a well-known node required for new nodes' participations.

G3. A node's disappearance never causes a lose of any control message.

3.3 Information Collection on Tree

We explain MODE's collection phase in this section.

3.3.1 Node ID Assignment

In our protocol, when a node disappears from a tree, one of its neighbor nodes has the

responsibility for detecting the disappearance and initiates the repair procedure. To let

the neighbor nodes know who should be the initiator, a unique node ID is assigned to

each node of the tree. It is fully refreshed at the beginning of every collection phase.

For this purpose, we use the algorithmic routing in Ref. [30] where the assignment

of unique node ID's is also presented I. Fig. 3.2 shows an example of the node ID

assignment.

As we mentioned in the previous section, we assume that the initial node never

disappears (see assumption G2). Node ID 0 is assigned to this node and it is called the

I Algorithm routing is a routing strategy on a spanning tree which relies on the original node ID assign­
ment rules. We later use this routing strategy in Section 3.4.

24

root node. Here, let dmax denote the maximum degree bound of all the nodes. The root

node starts each collection phase at regular intervals by broadcasting synchronization

messages on the tree. When the root node (say node a) sends the messages to its

neighbor nodes, it assigns node ID's l, ... ,d(a) to those nodes. Similarly, if a node v

receives a synchronization message from a neighbor node and if it knows that node ID

n is assigned to itself, it assigns node ID's starting from n x dmax + 1 up to n x dmax +
d(v) - 1 to the rest of its neighbor nodes when it sends messages to them. Finally all

the nodes in the tree have unique node ID's.

For each node v, the neighbor node with a smaller node ID than that of v is called

the parent node (or simply parent) of v. The rest of the neighbor nodes with larger

node ID's are called the child nodes (or simply children) of v.

3.3.2 Sub-tree Information Collection

For a pair of two adjacent nodes u and v, let Tuv denote the sub-tree rooted at node v

generated by node u's disappearance.

After the broadcast of synchronization messages, for each node (say u), its neigh­

bor nodes collect the information of the sub-trees which will appear by u's possible

disappearance. This information is called sub-tree information. Using the information,

one of the neighbors can start the repair procedure which connects the isolated sub­

trees if node u disappears. As stated in the previous section, in order to shorten the

diameter of the repaired tree, our idea is to connect the isolated sub-trees through their

center nodes. For example, in Fig. 3.3, the diameter path ofTuv is [node a, node b,

node e node d, node e], and node e is the center node ofTuv (we assume the delays of

links are the same).

For such a purpose, each neighbor node of node u collects the information of all

the sub-trees connected to node u. For example, in Fig. 3.3, node v keeps the sub-tree

information ofTuv, Tuv' and Tuv" to provide for node u's disappearance. It also keeps

the sub-tree information ofTev, Teb and Ted to provide for node e's disappearance. The

sub-tr~e information ofTuv includes the followings.

• network addresses (e.g. IP address) and node IDs of v and its neighbors other

than u. Hereafter we denote these neighbors ofv as neighbor(v).

• dia(Tuv) : the diameter ofTuv

• eenter(Tuv) : network address and node ID of the center node ofTuv

25 .

Tuv'
,r - -.! - ___ _ .,
, , , , , , , ,

__ ·r~,y"_ -- -- --- --_____ _

TU,vlJ

:' node b
node h: , , , , , , , , ,

, , , , , , , , , ,

, , , , ,

node k:

node n

, , , , , , ,

• centerNode (I chiidNodes

Figure 3.3: Example of Sub-trees

For example, dia(Tuv)=4 and center(Tuv)=c. where we assume that the maximum

degree dmax (x) is 4 for all the nodes x, and the delays of all the links are the same.

When a leaf node (say z) receives a synchronization message, z sends a heartbeat

message to its parent y. Node y sends a heartbeat message to each neighbor node x

whenever it receives heartbeat messages from all the neighbor nodes except x.

Each node v is responsible for calculating the sub-tree information of Tuv. The

calculated information must be included into the heartbeat message from node v to

node u. When a node v receives heartbeat messages from all the neighbor nodes (say

Wl, ... , Wd(v)-l) except u, the sub-tree information of Tuv c~n be calculated at node

v. For such recursive calculation of sub-tree information, we introduce the following

auxiliary parameters for each sub-tree Tuv .

• depthTuv: the maximum delay ofTuv from v .

• H(Tuv): the node list of the maximum delay path ofTuv fromv. For each node

26

Z E H(Tuv), the network address and the node ID are included.

They can be defined in a recursive way as follows. Here "@" denotes the concatenation

of node lists.

depthTuv = max {depthTvwj + c(v, Wj)}
l~j~d(v)-l

For Wj which maximizes the above,

Next, we can also define dia(Tuv) in a recursive way as follows.

where

dia(Tuv) = max {dia(Tvwj),jointdepth}
l~j~d(v)-l

jointdepth max {depthTvwx + c(v, w"')
l~x,y~d(v)-l

+depthTvwy + c(v, wy)}

Here, Wx and Wy denote two different nodes in Wl, ... , Wd(v)-l' The diameter of Tuv

is the maximum value of (i) the diameters of its sub-trees and (ii) the sum of the two

longest depths from node v.

Finally, center(Tuv) can be defined as follows.

,,,,t,,(T.v) ~ {
center(Tvwj)

center node on "jointpathlist" (if dia(T vw) = jointdepth)

where

jointpathlist = reverse(H(Tvwx))@[v]@H(Tvwy)

and "reverse" is the reverse function of a list. If the diameter of Tuv is the same as

that of a sub-tree Tvwj, the corresponding center(Tuv) is the same as that for Tvwj.

On the other hand, if the concatenation of two maximum delay paths from v becomes

Tuv's diameter path, we select the center node on the new diameter path.

The heartbeat message sent from v to u includes:

• the sub-tree information of Tuv,

• depthTuv and H(Tuv) and

27

dmax(v)=4 (for all v), thus dmax=4 centerNode(To,l) 6
integer of each node denotes node ID chiidNodes(To,l) 5,6] integer following node ID denotes

dia(To,l) 4 the delay to the root of that subtree
depth(To,l) 3

TO,1., depthNode(To,l) 1 (0),6 1),26(2),105(3
centerNode(T1,5 5 centerNode(T1,5 5
chiidNodes(T1,5) - 5 childNodes(T1,5) -

~ dia(T1,5) 0 " centerNode(T1,6) 6
depth(T1,5) 0 r---- chiidNodes(T1,6) 25,26]
depthNode(T1,5) 5(0)] I .~ 1 • ~iI centerNode(T 6,25 25 . 'til

chiidNodes(T6,25 - centerNode T1,6) 6

dia(T6,25) 0 child Nodes T1,6) ·[25,26] ~

~
dia(T1,6) 3 ''® depthNode(T6,25 r25(0)] depth(T1,6) 2

deQth(T6,25) 0 \
~

(@- ri) dejJthNode(T1,6) r6(O),26(1),105(2)]
y . centerNode(T 6,25 25

<en!.,NOd;(T", ,00 1 05 A~ ,
chiidNodes T6,25 , -

chiidNodes(T26,105) - centerNode(T6,26 26
dia(T26,105) 0 child Nodes T6,26 105
depth(T26,l05) 0 ,

dePthN~~.~~::~~ ,// centerNode(T 6,26) 26
chiidNodes(T6,26) 105
dia(T6,26) 1 (~\// depth(T6,26) 1

\ depthNode(T 6,26 1[26(0),105(1)
, .. ' . . centerNode(T 26,105 -- .. ' 105

chiidNodes(T26,105) -

Figure 3.4: Sub-tree Information Collection: Example

• the sub-tree information ofTvw for each w except u.

Therefore, after node u receives/sends heartbeat messages from/to all its neighbor

nodes, node u knows each sub-tree information of Tvw where v is a neighbor of node

u and w is a neighbor of node v. Then it enters a normal phase.

3.3.3 Example

Fig. 3.4 shows how heartbeat messages are exchanged. Initially, nodes 5, 25 and

105 send the information (and auxiliary parameters) of the sub-trees T15, T625 and

T26 105 respectively, since they are the leaf nodes (here we omit the case for leaf nodes

9 and 10). Node 26 receives the heartbeat message from node 105, calculates the sub­

tree information (and auxiliary parameters) of T626 and sends it to node 6, together

28

with the sub-tree information ofT26l05. If node 6 receives heartbeat messages from

nodes 25 and 26, it calculates the sub-tree information (and auxiliary parameters) of

T16 and sends it to node 1 together with T625 and T626's sub-tree information. If

node 1 receives the heartbeat messages from nodes 5 and 6, it calculates the sub-tree

information (and auxiliary parameters) of Tal and send it to node o.
Similarly, node 1 receives the heartbeat message from node O. If it receives the

message, it calculates the sub-tree information ofT6l and Tsl and sends them to nodes

6 and 5, respectively. Since node 1 knows all the three sub-tree information of T6 25,

T626 and T6l, it knows the required information for the repair procedure of node 6's

disappearance. Note that by exchanging those information, nodes 25 and 26 can also

know the same information.

3.4 DBMDT Construction Protocol

This section presents DBMDT construction protocol which consists of two procedures

to process join and disappearance of nodes in normal phases. We make the following

two assumptions concerned with normal phases to make the discussion simple. Later

we try to relax these two assumptions (see Section 3.4.5).

Nl. Node disappearances never occur in collection phases.

N2. For each (non-leaf) node v that disappears, there exists at least one neighboring

node which does not disappear during the repair procedure of v 's disappearance.

N3. Once a node is selected as a repair master or a candidate node to connect to the

repair master, it does not disappear until it completes its task.

3.4.1 Join Procedure

The join procedure is simple. Here we take the approach of connecting the newly

joining node to be closest to the center node ofT. A new node which wants to join the

current tree T, first sends a query message to the root node 2 asking the address of the

center Ilode. In MODE, any node can calculate the tree's center node using the sub­

tree information received from each neighbor. So the root can send the center node's

address to the queried node once it has entered to the normal phase. In case of the

2This is because we assume that a new node only knows the root node as a well-known node (see as­
sumption G2). To avoid access concentration, several well-known nodes may be assumed rather than a
single node.

29

impossibility of center node calculation (i.e. before the first collection phase has been

completed) or the center node's early disappearance, the root node sends the address of

itself.

Once the joining node receives the reply from the root node, it sends a connection

request message to the center node. The center node, which receives the connection

request messages, sends a connection acceptable message to the joining node if it has

the potential of accepting a new child. And, at the same time it broadcasts the con­

nection request message to its child nodes3 . The child nodes also treat the connection

request message in the same way. Note that these nodes send no message to the joining

node if they have no potential of accepting a new child. Here, the delay from the center

node is also added to the connection request message before it is broadcast to the child

nodes. So every node which sends a connection acceptable message to the joining node

includes the delay from the center also. Then the joining node uses these values and

the delay to each responded node (this can be measured using ping for instance) to

calculate the candidate connecting node which has located itself at the position closest

to the center node. And the newly connected nodes do not involve in repair procedures

of other node disappearances before they finish their first collection phase.

Here, the potential of accepting a new child is discussed in terms of the residual

degree. A node is said to have the potential of accepting a new child if its residual

degree is greater than a certain threshold k. Our simulation results have shown that

constructing the initial tree with some residual degree in each node makes more diam­

eter reductions in later repair procedures, and we have set k = 0.8dmax .

3.4.2 Repair Procedure for Single Disappearance

Let v denote a node which has disappeared, u denote v's parent and Wj denote v's j-th

child (1 ::; j ::; d(v) - 1) where d(v) is the current degree of node v. Also, let R(v)

denote the repair procedure for node v's disappearance. We first explain R(v) without

considering other disappearances, and then consider them in the next section.

We illustrate the behavior of the repair procedure for a single (non-leaf) disap­

pearance in Fig. 3.5. For node v's disappearance, its parent (node u, this is called

the repair initiator) activates the repair procedure and sends the information of Tvwj

(1 ::; j ::; d(v) - 1) to the center node ofTvu (this is called the repair master). Us-

3Here we can set a suitable forwarding count limit to prevent the joining node from receiving a huge
number of connection accepting messages.

30

o node
~ 1 disappeared node
[] repair master
C subtree center nod

(repai.r sub master)

repair master

(a) (b)

Figure 3.5: Repair Procedure (single node disappearance)

ing the node ID of the repair master, this delivery is done on the tree according to the

algorithmic routing introduced in Ref. [30]. This step is named phasel (refer Fig.

3.6). The repair master then sends its address to each Wj (1 ::::; j ::::; d(v) - 1) (these

are called repair sub-initiators) and handovers the repair process to them (phase2).

Then Each Wj sends the repair masters address to the center nodes (called repair sub­

masters) ofthe sub-trees where they are the root nodes (see Fig. 3.5(a» (phase3). This

is also done according to the algorithmic routing. Now each repair sub~master of Tvwj

(1 ::::; j ::::; d(v) - 1) knows the address of repair master, so they connect themselves

to the repair master in the same way discussed in Section 3.4.1 (phase4). Note that if

the repair sub-master has no residual degree, its closest node with a residual degree is

handed over the connection process.

By this procedure, nodes near the "center" of the sub-trees are connected, and the

diameter of the repaired tree is expected to be equal or smaller than before.

Once this repair is done, the repair master and the repair sub-master exchanges the

address and the IDs of their neighbor nodes over the new link.

31

3.4.3 Repair Procedure for Multiple Disappearances

Simply applying the above procedure to multiple nodes' disappearances occur simul­

taneously or consecutively, might result in loops or isolated sub-trees. Therefore, we

discuss the required extensions to the above repair procedure to handle these cases in

this section.

E 1. If the repair initiator (the parent of v) has also disappeared, R(v) is not initiated.

In this case, the protocol is extended such that every neighbor node of v probes

for other neighbors existence when it detects v's disappearance, and the node

with the smallest ID (say w) becomes the repair master of R(v), while the rest

become the repair sub-masters. Note that the assumption N2 guaranties that at

least one neighbor node of v is alive, so the repair initiator of R(v) is always

found. And this time the center node of Tvw becomes the repair master and

connects the repair sub-masters in the sub-trees except Tvu.

In the same way, if any of the repair sub-initiators, Wj (1 ::; j ::; d(v) - 1),

has disappeared, the repair master cannot send its address to the corresponding

repair sub-master. In this case, the repair master selects wi's child node (say

Wk) located on the path from Wj to the center node of Tvwj, or another node

randomly if Wk does not exist.

E2. If a node on the path from R(v)'s initiator to repair master has disappeared, the

sub-tree infonnation of other sub-trees cannot be delivered to the repair master.

Therefore, in this case the node just before the disappeared node becomes the

repair master instead. Similarly, if a node between a repair sub-initiator and a

repair sub-master has disappeared, the node just before the disappeared node is

selected.

E3. If an edge (v, w), which has been created by a previous repair procedure is bro-.

ken by node v's disappearance, the repair procedure cannot be initiated as Tvw's

sub-tree infonnation is not known to v's neighbors. Therefore, in this case, R(v)

is not applied for Tvw, and a local repair procedure which connects v's neighbor

with the smallest ID to Tvw at W (or one ofw's neighbors) is applied instead.

32

3.4.4 Repair procedure consistency

In this section, we show the consistency of MODE by proving the consistency of R(v)

after the extensions E 1, E2 and E3 are applied. Here the protocol is said to be consistent

ifno loops and isolated sub-trees are created.

Hereafter, a node disappeared at the same time or later of v's disappearance is

denoted by v'. The timing of v"s disappearance can be categorized to one of the phases

(phaseO - phase6) of R(v) (see Fig. 3.6). Note that phaseO denotes the time between

v's disappearance and R(v)'s initiation, and phase6 is the time after phaseS. Here, v"s

role in R(v) is one of the following.

1. the initiator or the sub-initiator of R(v)

2. a node located on the path from R(v)'s initiator to the repair master (including

the repair master) or a node located on the path from R(v)'s sub-init~ator to the

repair sub-master (including the repair sub-master)

3. some other node

We show R(v)'s consistency for any combination of v's's role and R(v)'s phase fol­

lowing the above categorization. Again, we show the consistency of two simultaneous

repair procedures by discussing the consistency of R(v') in R(v). This can be easily

extended to show the consistency of repairing n node disappearances.

First, we discuss the sub-case of (1) where v'is the initiator of R(v) (see Fig.

3.7(a)). According to Fig. 3.6 if v"s disappearance occurs in or after phasel, R(v)

is not affected by v"s disappearance, so R(v) and R(v') can be considered as two

independent repair procedures (this case is discussed later in this section). So here

we discuss v"s disappearance in phaseO. In this case, since assumption N2 assures

the existence of at least one child node, v's one child becomes the initiator of R(v)

according to extension El (see Fig. 3.7(a)) and connects the sub-trees other than Tvv'

(see Fig. 3.7(b)). On the other hand v is the sub-initiator of R(v'). However, the

discussion on this can be omitted considering the consistenc~ of the case where v'is

the sub-initiator of R(v), which is discussed below. Furthermore, R(v') treats TV'V as

a single sub-tree, so after applying R(v) and R(v') the tree is repaired without loops

and isolated sub-trees (see Fig. 3.7(b)).

Similarly, in the sub-case of (l) where v'is the sub-initiator of R(v), consideration

of only in or before phase2 is required according to Fig. 3.6. In this case, sub-tree

33

u

phaseO

phase1

phase2

phase3

Tv,u

repair

Tv, WI

repair
WI submaster

phase4

···················l···I%¥iH·}4fIm;;;;::·············I:;~@,:~~~~~ ...
phaseS i

····················i····f"",:",,"'f
phase6 ;

Figure 3.6: Timing Chart of R(v)

Tv,Wn

repair
Wn

information delivered to the repair master contains the information about v"s neighbor

nodes too. So the repair master can use one of these children on behalf of v' and

can connect Tvv' . Though v is the initiator of R(v'), this is already discussed in the

previous discussion. Therefore, R(v') connects Tvlwj (1 ~ j ~ d(v') - 1) to each

other and makes Tvv' a single tree. Finally, R(v) connects Tvv' to Tv'v to make a

single spanning tree.

In the sub-case of (2) where v'is located on the path from R(v) 's initiator to the

repair master (see Fig. 3.8(a», only the time in or before phase2 is required to be

discussed (see Fig. 3.6). That is because, a disappearance of v' which takes place in

or after v does not affect R(v), so R(v) and R(v') run independently. In this case, the

node just before v' (say w') can be found by R(v) in its algorithmic routing process

towards the repair master. SO w' becomes the repair master according to assumption E2

and repairs TV1w' to a single spanning tree (see Fig. 3.8(b». At the same time, R(v')

treats Tv1w' as a single sub-tree and connects it to other isolated sub-trees created with

v"s disappearance (see Fig. 3.8(b».

34

Q] repair sub masters ofR(v')
nOdLt0 [ll]repair master ofR(v')

... 0 repair sub masters ofR(v)
Ell alternative repair master ofR(v)
-links by R(v)

node u' : - .. -links by R(v') ,. : node u'
d " node w4 no e .':.<>--_ node w5

Tv' ,w4 1\........ i T~:,;~-I\
U : L3

node vf:t_

nE~~~~:~
TV,w1 ') 11dJ. 0

o TV,w3

(a)

.-).. i ..,.

!y~Ode v' ';-' l \"1.:\
~:b

....... + ... {
node v ,-'-, •..........

............ ·····'-(-f·._
node .N1.······ :; "node w3

r/ A:de 20\ zl\l
L .. .1

(b)

Figure 3.7: Repair Procedure: v'is the Initiator of R(v)

Similarly, in the sub-case of (2) where v'is located on the path from R(v) 's sub­

initiator to the repair sub-master, consideration of v' 's disappearance in or before phase3

is adequate, and a alternative repair sub-master is found in the same way. Note that in

case of that v'is the repair master (repair sub-master), disappearance of v' in phase2,

3 and 4 (phase4, 5 and 6) does not take place according to assumption N3. Then, ifv'

disappears in or after phase5 (phase6), R(v) and R(v') can be considered as separate

independent processes, and this is discussed later.

In case of (3) v"s disappearance occur in any phase is independent of R(v) and

R(v) and R(v') are independent.

Finally we discuss the cases where R(v) and R(v') are independent. In these cases,

it is obvious that v' does not affect R(v). However, R(v') is executed in a situation

such that some neighbor nodes have already disappeared and some new nodes have

joined the tree. Here the repair consistency for the disappeared nodes can be shown

by replacing v' with v, in the above proof of R(v) 's consistency. And for the newly

joined nodes, a local repair (simply connecting the neighbor nodes) is applied instead

of R(v') according to the extension E3. With this the consistency of R(v) with v"s

35

d:& IQIrepair sub masters'ofR(v')
no e I§I repair master ofR(v')

,., 0 repair sub masters ofR(v)
!21 .!2I repair master ofR(v)

- links by R(v)
node u' : _ .. - links by R(v')

o

node 1(' :..~~:.../ alternative repair master

6~:~"b £~W'
node u :

(a) (b)

Figure 3.8: Repair Procedure: VI is on the Path from the Initiator to the Repair Master
of R(v)

disappearance in any timing of R(v) has been proved.

3.4.5 Unexpected disappearances

In this section, the repair procedure for the node disappearances occur when the as­

sumptions Nl, N2 and N3 described earlier are not followed or before the first collec­

tion phase, are discussed.

First we take the case where assumption N 1 is not followed. To make the discussion

easier we assume that the synchronization message reaches all nodes in the tree4 •

If a node disappears in the collection phase its all neighbors are in the collection

phase. This is because they are either nodes which are waiting to send the collection

message, or nodes which are waiting to receive the collection message. In this case,

the repair is done in the following procedure. First, all neighbor nodes of v shift to the

4Ifnot, there might be some nodes which cannot receive the synchronization message. In this case, a time
out can be set to make them join the tree following the join procedure after deciding that they are isolated

36

nonnal phase neglecting v and the sub-tree rooted at it. Then each child w of v joins to

T's root node with the sub-trees rooted at them.

When the assumptions N2 and N3 are not followed, isolated sub-trees might be

generated as some nodes which playa important role in the repair procedure might not

exist. In this case, nodes in these isolated sub-trees can find there isolation by using

the synchronization message time out for instance. Then the node with smallest ID in

each isolated sub-tree can connect itself to the root node ofT to recover the isolation.

However, in this case the isolation time depends on the synchronization message inter­

val and such a long isolation may be intolerable. One possibility of overcoming such a

long isolation is to make the root node send a probe message in every short period and

make the isolated nodes find there isolation sooner.

3.5 Performance Evaluation

In this section, we discuss the perfonnance evaluation done by simulation experiments.

3.5.1 Simulation Setup

We have implemented our MODE protocol on ns-2. In our experiments, networks with

400 physical nodes have been generated and used as underlying networks. We have

selected 200 nodes as overlay participant nodes. The end-to-end delay ofthem ranges

from 10ms to 200ms.

Considering practical situations, we have prepared the following scenario that sim­

ulates a real-time session in collaborative applications such as a video-based meeting

or a groupware. Note that we have set the interval between collection phases to 60 sec­

onds. The degree bound has been set to 5 for all the nodes. The scenario is as follows.

(i) The session period is 300 seconds. (ii) Each of 200 nodes joins the session only

once and eventually leaves the session. (iii) Within the first 30 seconds, about 60 nodes

join the session. (iv) From 30 seconds to 270 seconds, additional joins are processed.

Also some existing nodes leave the session. The collection phases starts at 30, 90, 150,

210 and 270 seconds successively. (v) After 270 seconds, no node joins take place and

about 40 nodes leave the session.

We have shown the number of nodes on the tree at every second together with the

numbers of join/leave operations in Fig. 3.9 and Fig. 3.10 to make it facilitate to see

the dynamics of the metrics according to the scenario.

37

3.5.2 Implementation of Compact Tree Algorithm

As a comparison, we have also implemented the centralized algorithm presented in

Ref. [6] (called CT algorithm) on ns-2. The algorithm starts with the minimum delay

(overlay) link as the initial tree, and adds the rest oflinks one by one so that the diameter

of the resulting tree can be minimized using the entire tree knowledge.

Since CT algorithm can construct a spanning tree with a near optimal diameter

value, we have used it as a benchmark to see the optimality of diameters in our MODE

protocol. We have also used it to confirm the efficiency of MODE in term of the repair

costs. For such a purpose, we adopt the following two implementation policies of CT

algorithm to make it work with nodes' joinlleave operations. (i) For each join or leave

of a node the existing spanning tree is completely destroyed and reconstructed accord­

ing to the CT algorithm. Hereafter this implementation is denoted as CT. Though CT

can maintain a near optimal diameter, the number of disconnecting and establishing

links is held high as the tree is reconstructed each time. (ii) Foro each join node the

connection-end that makes the best diameter is calculated using CT algorithm. And

when node disappearances occur the best connection-end is calculated in the same way

for each isolated node. In the both cases above, the tree destroying before the recon­

struction is not done, but the un-isolated part of the tree is kept as it is. Hereafter this

imp~ementation is denoted as partial-CT. partial-CT reduces the number of disconnect­

ing and establishing links comparing to CT, but the diameter becomes more larger. In

the both of above implementations the entire tree knowledge is used.

3.5.3 Experimental Results

[Diameter variance against the number of nodes) The diameter variance through the

session is shown in Fig. 3.9. We can see thatthe diameter has started to decline from its

initial value of225[ms] of initial tree construction phase (0[s]-60[s]). And has reached

to a stability around 60[s] where joins/leaves are repeated. Through out the session,

MODE's diameter is quite close to that of partial-CT, though it is somewhat faraway

from eT's diameter and we can say MODE provides a good distributed reconstructing

method.

[Diameter and repair cost) We define the number of overlay links which are estab­

lished and disconnected during the repair procedure as the repair cost. The average,

worst values of the dia!lleter and the average repair cost is calculated by averaging 10

sessions executed in different networks. And these values are shown in Table 3.1 di-

38

200

'[150

i
~100

i5
50

Figure 3.9: Dynamics of Diameters

MODE­
partial-CT - - - -

CT---

viding the session in to 3 sub periods of initial, stable and last. Here the periods of

0[s]-50[s], 50[s]-240[s] and 240[s]-300[s] are named as initial, stable and last period

successively. According to Table 3.1, MODE holds a diameter that is 1.47 times of CT

and 1.14 times ofpartial-CT in stable period, while that is 1.52 times ofCT and 1.13

times of partial-CT in initial period. And in the last period that is 1.39 times of CT

and 1.14 times ofpartial-CT. And for the worst values of diameter, MODE has shown

a value that is 1.19 times ofCT and 1.09 times ofpartial-CT which can pe considered

to be reasonable. Obviously, MODE's repair cost is quite small that is 0.05 times of

CT and 0.38 times of partial-CT. Taking the above results into account, we can say

MODE gives a reasonable diameter with smaller repair cost comparing to the existing

centralized algorithms, though it copes with node joins and leaves in a decentralized

way.

[Control Traffic] We have measured the control traffic amounts on the tree. The result

is shown in Fig. 3.10.

Due to small message complexity, MODE has required the maximum of about

200Kbps around 30[s] collection phase (we can see the peaks around 30[s], 90[s],

39

Table 3.1: Comparison of Diameter and Repair Cost
diameter repair

average worst cost
initial stable last avg.

CT 136 137 132 187 58.3
Partial-CT 184 164 161 204 7.5

MODE 208 188 184 224 2.9

~o"-''-~rI-..-~",,-r'-Tl-'-r'-Tl,,-r'-~II''''

200

'(;;'160
0.

~ 120

lao
g

Figure 3.10: Control Traffic

150[s], 210[s] and 270[s]). This is the traffic for the whole network and the average

traffic for a single overlay link has remained 3Kbps. And considering the maximum

degree is 5 for each node, the traffic ofthe physical network link is held under 15Kbps.

We can say this amount is small enough considering the bandwidths of DSL connec­

tivity which is getting spread drastically.

[Time for Procedure Execution) Finally, we have measured the time required to exe­

cute the join/repair procedures. Their distributions are shown in Fig. 3.11.

We can see that the all the join procedures have only required at most 0.5 sec­

onds, while the all the repair procedures have only required at most 0.9 seconds. The

expected average values of the join and repair procedures are 0.26 and 0.70 seconds,

respectively. From the results, we can say that the procedures were processed quickly

enough.

40

'" 50
~

" ~ 40

e 30
C-

.g 20

i
eft. 10

o

o

.--

f-----
.---

~

I
0.1 0.2 0.3 0.4 0.5 0.6

join-

leave

n
0.7 0.8 0.9

time[ms)

Figure 3.11: JoinJRepair Procedures' Processing Time Distribution

3.6 Concluding Remarks

40

30

20

10

o
1.0

In this chapter, we have proposed an autonomous and decentralized protocol for dy­

namically constructing a degree-bounded delay sensitive multicast tree on overlay net­

works where multiple nodes' simultaneous (continuous) joinlleave activities in a spec­

ified period is considered.

Implementing our protocol in a real environment is part of our future work.

41

Chapter 4

Coping With Multiple Sources
and Heterogeneous Users

4.1 Association of Multiple Sender Nodes

In the previous chapter we have presented a protocol called MODE (Minimum-delay

Overlay tree construction by DEcentralized operation). MODE aims at minimizing

maximum delay (referred to as diameter) between any pair of nodes under the degree­

constraints given by the nodes, assuming interactive applications where every node

can be a potential sender. Through our investigations, we have learned that tree-based

approaches are simpler, since managing many trees makes operations more complex

and may increase overhead. In interactive applications, multiple nodes may often be

potential senders, therefore, we think that a shared tree approach is preferable.

Whenever we design such a shared tree approach, we should consider the follow­

ing points. (i) The maximum delay of overlay trees should be minimized, because the

diameter can be the delay of the interactive session (e.g. group conversation includ­

ing two nodes at the both ends of the diameter path). (ii) Bandwidth constraints around

nodes should be taken into account. Sin.ce overlay links through a node actually use the

same network interface ofthe node, the traffic amount of the node depends on its degree

(the number of links of the node on the tree). So the degree of each node should not

exceed the capability limitation ofthe node. Considering these facts, some techniques

for constructing Degree-Bounded Minimum Delay (or Diameter) Trees (DBMDTs)

have been proposed [6, 7, 12]. However, unfortUnately none of those methods has con­

sidered the following several important features of interactive multimedia applications

42

such as video conferencing.

First, such an application may have several sources. These sources are subject to

change, but are not changed so frequently. For example, in video-conferencing, pic­

tures of some primary persons should be continuously delivered to the other audience.

In such an application, we would like to efficiently build a tree where the maximum

delay from the current senders is minimized satisfying the degree bounds of nodes,

rather than DBMDT[6, 7, 12] where the maximum delay between any pair of nodes is

minimized. Such a tree may have shorter delay than DB MDT if we only focus on the

delay from those sources. Hereafter, for a given set of senders, such a tree is called

sender-dependent DBMDT and denoted as s-DBMDT. Fig. 4.1 shows an example that

explains the difference between DBMDT and s-DBMDT. For a given complete graph

that represents an overlay network in Fig. 4.1 (a), DBMDT is a spanning tree which in­

volves all the nodes ofthe graph and has a minimum diameter, as shown in Fig. 4.l(b).

In this case, the diameter path is b-a-c-e (or d-a-c-e) of delay 5. Here, let us suppose

that currently only nodes a and e are senders, which are shown by meshed circles iIi. the

figures. In this case, considering the fact that only these nodes send data and others are

receivers, s-DBMDT in Fig. 4.l(c) achieves smaller maximum delay 4 (a-e-c) from

those senders, while 5 (e-c-a-b or e-c-a-d) in DBMDT of Fig. 4.1(b).

Secondly, in a practical aspect of interactive multimedia applications, we need to

identify incapable hosts and prevent them from staying in the center of scDBMDT,

since those hosts may delay or drop packets due to limitation of network bandwidth

or processing power to forward packets, or instability of hosts. Similarly, we should

provide a reasonable way to allow each host to determine an appropriate degree bound,

since the capability overflow of such a host may also cause packet delay or dropping at

the host.

In this chapter, we propose a new protocol called Shared Tree Streaming (or STS

in short) protocol that constructs, in a decentralized manner, s-DBMDT adaptively.

We also design and implement a Java middleware based on STS protocol. STS is a

distributed heuristic algorithm to build a s-DBMDT as an overlay network. The fea­

tures of the proposed STS protocol have not been considered in the existing literatures,

including our previous work. Compared with those work, our contribution can be sum­

marized to the following two points. First, we define a new problem that is well-suited

to multimedia interactive applications and design a new decentralized protocol for the

problem. Secondly, we have designed and implemented an adaptation mechanism that

43

........ ~ ;·~2
W··············./·····::~·····~ f;jiff
(a) An Overlay Network

degree bound=3
(all nodes)

(b) DBMDT (dia.=5,s­
dia.=5)

(c) s-DBMDT (dia.=5,s­
dia.=4)

Figure 4.1: DBMDT and s-DBMDT on Overlay Network

is needed for multimedia streaming on overlay shared trees. Our performance evalua­

tion is based on experiments in both simulated networks and real networks that strongly

shows the efficiency and usefulness of our protocol.

This chapter is organized as follows. Section 4.2 gives the overview of our STS

protocol. The detailed design is shown in Section 4.3. The design and implementation

of STS middleware in Java, denoted by STS/J, are stated in Section 4.4. The exper­

imental results on a simulated network and a real network are shown in Sections 4.5

and 4.6, respectively. Finally, Section ?? concludes the chapter.

4.2 Shared Tree Streaming (STS) Protocol

4.2.1 Definition of DB MDT and s-DBMDT

First, we revise the definition of a Degree-Bounded Minimum Diameter Tree (DB­

MDT), which has also been discussed in the previous chapter. Let G = (V, E) denote

a given undirected complete graph where V denotes a set of nodes and E denotes a

set of potential overlay links which are unicast connections between nodes. Also let

dmax (v) denote a degree bound of each node v E V (the maximum number of overlay

links attached to v), and let h(i,j) denote the delay of each overlay link (i,j) E E.

DBMDT is a spanning tree T of G where the diameter of T (the maximum delay on

T) is minimum and the degree of each node v E V (denoted as d(v) does not exceed

dmax(v).

Based on the above, we define a sender-dependent DB MDT (s-DBMDT) intro­

duced in this chapter as follows. For a given G = (V, E) and a given set S <::;; V

44

of senders, s-DBMDT is a spanning tree T of G where the maximum delay from the

senders in S is minimum and d(v) :::; dmax(v) where v E V. The maximum delay

from the senders is called sender-dependent diameter and denoted by s-diameter.

The DBMDT construction problem has been proved to be NP-complete [6]. The

DBMDT construction problem is a special case of our s-DBMDT construction problem

where S = V. Therefore, we need an efficient heuristic algorithm for the problem.

4.2.2 Key Idea for Minimizing the Maximum Delay from Senders

Our goal is to build s-DBMDT efficiently in such an environment where nodes join and

leave the tree dynamically and senders in the tree vary from time to time. In order to

minimize the maximum delay from those senders, a new node should be connected to

an adequate position in the current tree, and disconnected sub-trees by a node's leaving

should be repaired by connecting adequate nodes in the sub-trees. For such a purpose,

we design a decentralized heuristic protocol called Shared Tree Streaming (STS) pro­

tocol that consists of two procedures,join and repair. The join procedure makes a new

joining node connect to a node which positions the joining node "closest to the senders"

of the current tree in order to prevent the new node from making the s-diameter longer.

The repair procedure is activated when a node on the current tree leaves (or suddenly

disappears) and it connects appropriate intermediate nodes in the isolated sub-trees to

make a new tree with a shorter s-diameter. To execute the above procedures in decen­

tralized manner, each node in our STS protocol autonomously collects the information

about the current sender nodes and diameter paths of the sub-trees that will appear

by neighboring node's leaving. This information collection is executed periodically to

keep up with the status changes of the tree (e.g. location of sender nodes and diameter

paths of the sub-trees). This will be explained in Section 4.3.2. In this sub-section,

we explain how the two procedures keep the s-diameter as small as possible, satisfying

given degree bounds of nodes.

Join Procedure Outline For a new joining node u, the join procedure never changes

the current form of the tree, but lets the new node u connect to such a node (say v)

where the maximum delay from the senders to the new joining node u (i.e. a candidate

for the s-diameter of the consequent tree) is minimum. Note that node v must be such

a node that has at least one residual degree.

Fig. 4.2 shows an example where senders are denoted by meshed circles. We

45

degree bound of all the nodes=3

s-diameter=2 s-diameter=3 s-diameter=3

(a) (b) (c)

Figure 4.2: Join Procedure

assume that the degree bounds of ali the nodes are 3. In Fig. 4.2(a), we have a tree

involving three nodes a, band c where a and c are senders. Also the s-diameter of

the tree is 2. Let us assume that a node d wants to join the tree, and the dotted lines

represent the measured delay between the new node d and the existing nodes on the

tree. Consequently, node d is connected to node a since the maximum delay from

senders a and c becomes 3 (Fig. 4.2(b» and it is the minimum in all the possible

connecting positions. Let us also assume that after the join of node d, node e wants to

join to the tree, and it is connected to node b since the maximum delay from the senders

to the new node e is minimum (=3) (Fig. 4.2(c». This keeps the s-diameter the same

as before.

Later we will explain how this operation is realized in a distributed environment.

Repair Procedure Outline Whenever a node's disappearance occurs, the discon­

nected sub-trees are repaired by the repair procedure. At that time, we try to shorten

the s-diameter of the repaired tree, by connecting the core nodes of the isolated (dis­

connected) sub-trees. Here, let m and n be the both end nodes of the diameter path

(not s-diameter path) of a tree t. The core node oft is a node whose maximum delay

from the nodes m and n is minimum in all the nodes of t. This means that the core

node is located on the "center" of the diameter path. Here, we will explain why such a

procedure can make the s-diameter of the repaired tree shorter. An example is shown

in Fig. 4.3 where the senders are Sa, Sb and Se represented by meshed circles. In tree

T of Fig. 4.3(a), let us assume that its s-diameter path is Sa-VI-U-V2-W and a new node

U leaves the tree. By the leave of node u, the tree T is partitioned into three sub-trees

46

\kT3
V3r

/5
. ',,:'

I. sa

subTi ,. se ".

w

(a) T

m3 n3

(b)T'

Figure 4.3: Repair Procedure

path type

I. longest path (i)
from Sa in
subTl

2. Sa-Cl-C2- (ii)
m2

3. Sa -Cl-C2-C3- (ii)
m3

4. longest path (i)
from Sb in
subT2

5. Sb-c 2-Cl-m l (ii)
6. s b -C2 -C3 -m3 (ii)
7. longest path (i)

from Se in
subT2

8. Se-C2-Cl- (ii)

ml

9. Se-C2-C3- (ii)
m3

(c) Candidates for
s-diameter path ofT'

subT1 , subT2 and subT3, and they are connected through their core nodes Cl, C2 and

C3 (denoted by squares) and reorganized into a new tree T' as shown in Fig. 4.3(b)

(there are some possibilities to connect among the core nodes and this figure shows

one of them). In this case, the s-diameter of T' is either of (i) the maximum delay

from a sender to a node within the same sub-tree, or (ii) the maximum delay from a

sender to a node on a different sub-tree. We enumerate all the candidates for the new

diameter path in Fig. 4.3(c) along with their classification of the above type (i) or (ii).

We note that mi and ni are both ends of the diameter path of subTi and without loss

of generality we assume that delay of path Ci-mi on the tree, denoted by L(Ci, mi), is

always equal to or larger than L(Ci, ni).

Obviously, if a path of type(i) (either path 1,4 or 7 in Fig. 4.3(c» becomes the

s-diameter path ofT', the s-diameter is equal to or smaller than that ofT. Otherwise,

one of the paths of type (ii) becomes the s-diameter path ofT'. Here we can say that

for any sub-tree subTi , the following inequality always holds;

(4.1)

where L is the delay of the path between two nodes on the tree l . The above inequality

IThis is obvious since L(Ci, ni) + L(Ci' mi) is the diameter (the maximum delay) of subTi.

47

suggests that for any path of type (ii), the delay from a sender to the core node on the

same sub-tree is not larger than the half ofthe diameter ofthe sub-tree. Also on another

sub-tree, the delay from its core node to an end of the diameter path on the sub-tree is

the half ofthe diameter ofthe sub-tree. Consequently, the diameter ofT' may be equal

to or less than the sum of halves of the diameters of the two sub-trees plus the delay

between the core nodes. Here, the half of the diameter of a sub-tree of T is always

smaller than the half of the diameter of the original tree T. Therefore, this may shorten

the s-diameter compared with T in many cases even though it depends on the delay

between the core nodes. To make it facilitate to understand, let us compare our strategy

with the simple one where we simply connectthe neighboring nodes of~ (i.e. VI, V2

and V3). As the result of this procedure, the new s-diameter is almost equal to that of

T with a high possibility, since the maximum delay paths from the neighboring nodes

VI, V2 and V3 remain as they are, and they may again be a part of the s-diameter path

of the repaired tree.

We note that the above description is for the case that the leaving node u is on the

s-diameter path of T. For the case that node u is not on the s-diameter path of T, the

s-diameter of T' is not smaller than that of T. This is because the s-diameter path of

T is preserved in an isolated sub-tree as it is, and thus it remains in T'. However, we

think that the i)-diameter ofT' is not changed from T in most cases.

As a whole, we can expect the s-diameter to be smaller when nodes leave.

4.3 Design of STS Protocol

4.3.1 JoinlRepair Procedure Design

As stated before, we have used the basic ideas of our previous work MODE for the join

and repair procedure designs. Since the core node of STS have the similar responsibil­

ity as the center node of MODE, we can use the same repair procedure of MODE by

replacing its center node with the core node of STS. Therefore, we omit the discussion

of the repair procedure design here. However, the join procedure of STS is somewhat

different from that of MODE, because of its consideration to the existence of sender

nodes. Hence, we discuss the design of join procedure in detail here.

As explained in the previous section, we take a policy to connect a joining new

node to an adequate node (called accepter node) in the current tree so that the maxi­

mum delay from the senders to the new node is minimum. A new node which wants

48

to join the current tree first sends a query message to a well-known node on the tree to

ask the address of the center node ofthe tree. The center node of a tree is a node whose

maximum delay from the senders is the minimum. Intuitively, the accepter node that

makes the maximum delay from the senders to the new node minimum seems to be

located near the center node of the current tree. Therefore, we start searching the ac­

cepter node from the center node. To do this, in our STS protocol, we assume that each

node can know the center node of the current tree (thus any node can be a well-known

node). We also assume that each node knows the maximum delays from all the senders.

The way of this information collection will be explained later in Section 4.3.2. Once

the joining node receives the reply from the well-known node, it sends a connection

request message to the center node. Then, the center node sends a connection permis­

sion message to the joining node only if its residual degree is not zero. At the same

time, it broadcasts the connection request message to its neighboring nodes of the tree.

In response to the reception of the connection request message, each neighboring node

acts in the same way as the center node. Therefore the coi1llection request message is

delivered on the tree to all the nodes. We note that ifthere are many nodes on the tree,

it is not a good idea for the new joining node to receive a lot of connection permission

messages. In such a case, we can give a maximum hop count from the center node,

and make only nodes reachable from the center node with at most the maximum hop

count reply the connection permission messages. Even if we give such a maximum

hop count, the possibility to find the best position (accepter node) is rather high, since

usually the accepter node can be chosen from nodes near the center node.

We assume that the connection permission message from each node contains the

information about the maximum delay from all the senders to that node. Therefore, the

new joining node'can know that each node which has sent the connection permission

message having at least one residual degree. It can also know the maximum delay from

the senders to the node. Then the joining node can measure the delay to the node (this

can be measured using ping for instance) and choose the accepter node to be connected

to, which minimizes the maximum delay from the senders to the new node.

For example, suppose that in Fig. 4.2(b) a new node e wants to join the current

tree. The center node of the current tree is either node a or node b. Suppose that node

a is chosen as the center node. Then, the node e sends a connection request message to

node a and the node a replies the connection permission message which shows that the

maximum delay from the senders to node a is 2. Then, node e measures the delay (=2)

49

from node a and recognizes that the maximum delay from all the sender nodes to node

e is 4. At the same time, node a broadcasts the connection request message to nodes

band d along the current tree. Node b replies with a connection permission message

which shows that the maximum delay from the senders is 1, node e measures the delay

(=2) from node b and node b recognizes that the maximum delay from all the sender

nodes to node e is 3. By repeating this message exchange, node e can recognize that it

should connect itself to node b (that is, node b is selected as the accepter node).

4.3.2 Information Collection

In STS protocol, all the nodes periodically collects those information required to exe­

cute join and repair procedures by message exchange along the current tree. Although

this have some similarities to that of MODE, here we discuss it because of some addi­

tional parameters caused by the sender nodes.

Hereafter we will explain how the information required by join and repair proce­

dures are collected by collection messages. Here, we show the information that each

node x must hold.

• The ID and address of the center node of the current tree.

The center node is the node whose maximum delay from the senders is minimum.

• The maximum delay from the senders to node x.

This information is used by the join procedure.

• The sub-tree information ofTyz for every pair of y and Z where y is a neighbor­

. ing node of x and Z is a neighboring node of y.

This information is used by the repair procedure. Note that the sub-tree informa­

tion ofTyz contains the IDs and network addresses of z, z's neighboring nodes

and the core node ofTyz (core(Tyz).

Here, we introduce the details of the sub-tree information ofTxY.

• dia(TxY) : the diameter ofTxY.

• depthTxY: the maximum delay ofTxY from y.

• H (TxY) : the maximum delay path ofTxY from y. The delay of each link on the

path is also included.

50

• ST(s, TxY) : the path from a sender s in TxY to y. The delay of each link on the

path is also included.

We let each node (say v) be responsible for calculating the sub-tree information of

Tuv for every its neighbor u. For this purpose, we let the collection message sent from

v to u have the following information.

• dia(Tuv), depthTuv, H(Tuv) and ST(s, Tuv) (for each sender sin Tuv)

• the sub-tree information ofTuv

• the sub-tree information ofTvw for each w (except u) of the neighboring node

ofv

Now we show that node v can calculate the above information if it receives the col­

lection messages from all the neighboring nodes except u (let W denote the set of

neighboring nodes of v except u). First, regarding the parameters dia(Tu v), depthTu v,

H(Tuv) and ST(s, Tuv) (for each sender sin Tuv), we can define them as follows.

depthTuv

max {dia(Tvw), depthTvx + h(v,x) + depthTvy + h(v,y)}
w,x,yEW

max{depthTvw + h(v, w)}
wEW

[v]@H(Tvwo) (wo E W where Wo maximiz(!s depthTuv)

[v]@ST(s, Tvw) (Vw E W where ST(s; Tvw) is not empty)

Note that hex, y) is the link delay on the tree. The equation for dia(Tuv) comes from

the definition of the diameter. noun The diameter ofTuv is the maximum value of (i)

the diameters of its sub-trees and (ii) the sum of the two longest depths from node v.

The others are straightforward.

Secondly, regarding the sub-tree information ofTuv, the IDs and network addresses

ofv and v's neighbors are known bYv. Therefore, core (Tuv) can be defined as follows.

core(Tvw)
. (if dia(Tuv) = dia(Tvw) where wE W)

center ofrev(H(Tvx))@[v]@H(TvY)
(if dia(Tuv) = depthTvx + h(v, x) + depthTvY + h(v, y)
where x, yEW)

where "rev" is the reverse function ofa given path. If the diameter ofTuv is the same as

that ofa sub-tree Tvw, the corresponding core(Tuv) is the same as that ofTvw. On the

51

other hand, if the concatenation of two maximum delay paths from v becomes Tuv's

diameter path, we must select a node in the center of the diameter path as core(Tuv).

Therefore, the sub-tree information ofTuv can also be known.

Thirdly, the sub-tree information ofTvw is included in the collection message from

w.

From the above, we have proved that each node v can calculate the content of the

collection message to be sent to node u. Then, after receiving the collection messages

from all the neighbors, node u can know the information included in the collection

messages. Assuming those information, we show that any node, say x, can calculate

the information that node x must hold, listed previously in this section. The center

node and maximum delay from the senders can be calculated by all the ST(s, (Tx *))

included in the received collection messages. Also the sub-tree information of Tyz is

directly included in the collection message from y to x. Consequently, we have proved

that every node can obtain the required information after the collection phase.

4.4 Implementation of STS Protocol as a Java Middle­
ware

We have implemented our protocol as a Java based middleware called STS/J. This

middleware constructs and maintains an overlay multicast tree based on STS protocol.

4.4.1 Overall Architecture

Our middleware is composed of two layers as shown in Fig. 4.4. The underlying layer

is Tree Controlling Layer that controls the tree structure according to STS protocol.

The overlaying layer is Media Streaming Layer that provides rich functions for trans­

mission of streaming data. The underlying layer is implemented as a class named ST S

that has some instance methods. To use this middleware, first, we must choose an

initial degree bound d and make an instance of class ST S by passing d. The degree

bound of each node will be adjusted by our middleware automatically depending on

the capability of the node. Then we can activate our middleware by caIling method

join with a parameter SocketAddress (the pair of an IP address and a port number)

that specifies the well-known node of the tree. When a ST S object is initiated with the

address of its well-known node, the object will connect to the tree according to STS

protocol. We can detach a node from the tree by calling leave method. Multicasting of

52

C~ ________ ~T-________ ~)

@ @ g Gepai0 9 Geceive) (connected) (disconnected)

Tree Controlling Layer

(~ ______ ~~UD~P~n~C~P __ So_c_k7et_I~n_te~IT:~a_ce ________ ~)
Inter Node Communication Layer

Figure 4.4: System Architecture

messages can be carried out by calling send method.

We provide three callback methods receive, connected and disconnected, and we

can implement applications by overriding them. The receive callback is called when

a message transmitted by send method arrives. If receive is not overridden, the node

becomes a relay node that only forwards the messages and does not receive any mes­

sage. An original transmission process for multimedia streams can be implemented

in the receive callback by using QoS control mechanisms such as transcoding. The

connected callback is called when a node is connected to the tree, and disconnected

callback is called when the tree .is broken. These callbacks are prepared for notifi­

cation to the users. So we can use this middleware without overriding them because

the necessary processes are carried out inside of the middleware automatically. If we

want to implement a node that transcodes the forwarding streams based on some QoS

mechanisms, it can be done by overriding forward method by alternative forwarding

method.

We have implemented the overlaying layer as a class STSstream. To use this

layer, we must make a STS object, and then initiate a STSstream object with the

ST S object. By specifying a stream which is used to transmit data by setOutputStream

method, we can start multicasting data through the stream to all the nodes of the tree

that the ST S object joins. The transmitted data can be received from a stream which

53

(a) Physical network and
overlay tree.

(b) Congestion occurs on
a remote link between
nodes v and w 1.

(c) Congestion occurs on
the local link of node v.

Figure 4.5: Adaptation Mechanism

is given by getI nputStream method. This layer controls the underlying ST S objects

according to the following QoS mechanisms in order to keep an efficient tree structure

for multicasting.

4.4.2 Adaptation Mechanism for Media Streaming

Theoretically, we have shown importance of s-DBMDT for interactive multimedia

applications in previous sections. Here, we focus on practical aspects of multime­

dia streaming on a tree. Practically, it is difficult to determine an appropriate de­

gree for each node. It is theoretically simple, since usually an end host has only

one network interface, and the overlay links attached to the host uses the interfaces.

Therefore, the upper bound of the degree bound dmax (v) of node v is detennined by

dmax (v) ::; I: N B where N is the bandwidth of the network interface and B s is the
sES S

bitrate transmitted from a sender s. However, the actual bandwidth of network inter-

face, especially wireless network interface, changes from time to time. Therefore, the

degree bound should be adapted according to the network status.

Here, we adopt the following policy for each node, say v. Here we denote the set of

the neighboring nodes of v by W. We also denote the neighboring node which sends

a stream to v by u. Thus node v relays the stream to the nodes in W - {u} (Fig.

4.5(a». Our implementation uses RTP and RTCP, and if a node detects loss or jitter of

packets, it sends receiver reports to its upstream. In Fig. 4.5, streams are represented

as thick arrows, while RTCP reports are represented as dotted arrows. In the figure,

the underlying network is shown where small circles represent physical routers and big

ones represent end hosts.

54

• If node v receives an RTCP receiver report from only one node (or some nodes)

w E W - {u}, node v determines that network congestion happens not on

the local link (i.e. network interface) but on a remote link on the unicast path

between v and w (Fig. 4.5(b)). In this case, node v sends compulsory leave

message to node w to let it leave and rejoin the tree.

• If node v receives an RTCP receiver report from each node in w E W - {u}

and also node v sends an RTCP receiver report to node u, node v determines that

network congestion happens on the local link (Fig. 4.5(c)). In this case, node

v ignores the compulsory leave message from node u, and sends compulsory

leave messages to some nodes in w E W - {u} to let them leave and rejoin

the tree. This is done to dissolve the congestion on the local link of node v by

decreasing its current degree. After that, node v sets its degree bound dmax (v)

to the adjusted degree to prevent itself from accepting other neighbors.

• If node v continues stable states for a while, it increments its degree bound.

4.5 Simulation Experiments

In this section, we describe our performance evaluation on ns-2 simulator.

4.5.1 Simulation Setup

We have implemented our STS protocol on ns-2 to evaluate the enhancement against

our previous work MODE[12]. In our experiments, networks with about 400 physical

nodes have been generated and used as underlying networks. We have selected 200

nodes, including both wireless and wired nodes, as overlay participant nodes. In the

simulation, we have set the initial end-to-end delay (overlay link delay) to vary between

10ms to 200ms for both wired and wireless nodes, while setting the wireless nodes to

change their end-to-end delay up to 300ms during the simulation.

Considering practical situations, we have prepared the following scenario that sim­

ulates a real-time session in collaborative applications such as a video-based meeting

or groupware. Note that we set the interval between collection phases to 60 seconds.

The initial degree bound was set to 5 for all the nodes. The scenario is as follows. (i)

The session period is 300 seconds. (ii) Each of 200 nodes joins the session only once

and eventually leaves the session. (iii) Within the first 30 seconds, about 60 nodes join

55

the session. (iv) From 30 seconds to 270 seconds, additional joins are processed. Also

some existing nodes leave the session. The collection phases starts at 30, 90, 150, 210

and 270 seconds successively. (v) After 270 seconds, no node joins and about 40 nodes

leave the session.

In Fig. 4.6, Fig. 4.7 and Fig. 4.8, we have shown the number of nodes on the tree

at every second together with the numbers of joinlleave operations to make it facilitate

to see the dynamics of the metrics according to the scenario.

4.5.2 Experimental Results

Diameter and Sender-Dependent Diameter: We have measured (a) the diameters

and (b) sender-dependent diameters (s-diameters) at every one second for STS and

MODE. According to the goals of those two protocols, we can expect that STS could

achieve smaller s-diameters, but a bit larger diameters than MODE. Fig. 4.6 and Fig.

4.7 shows the results. We can figure out that the s~diameter of STS is smaller (Fig.

4.7). On the other hand the diameter of STS remains larger than MODE according to

Fig. 4.6.

Note that the diameter is not dominant on the streaming as long as one of the

predefined sources (defined at the tree construction stage) play the role of streaming

source. However, the nodes other than the predefined sources may also become the

streaming source. For that, STS periodically refreshes the information of the tree,

and after the information is refreshed, the succeeding join/repair operations are done

according to the new sources. However, for the duration before the refreshment, some

validity should also be given to the diameter. The results shown in Fig. 4.6 states that

the diameter of STS has not much diverged from that of MODE, which means that the

value is still small enough to enable the nodes other than the predefined sources being

the streaming sources as well. Also this diameter increment here can be considered

reasonable enough by taking the s-diameter reduction advantage into account.

We have also measured the average diameters and s-diameters (in milliseconds)

for STS and MODE after performing simulations for 10 different sessions, wher:e each

follows the above scenario. The results are shown in Table 4.1. According to those

results, we can again say that STS can support multimedia applications better than

MODE.

56

~ 161~ ~ . #Of join nodes - ! 00 12 in" # of leave nodes
. S 8 i 'i fi m ..
~ ~ ~_WHillr!fu ffiDm"fib ~fhIIlnnD nfl,mllfi-. flflnrllnm fl1Ilwfuu llinfLM. !Hi'mfHl
"*' a 50 lOa 150 200 250 300

timers]

Figure 4.6: Dynamics of Diameters in Simulation Experiments

Table 4.1: Average Diameter and S-diameter of STS and MODE
protocol diameter[ms] s-diameter[ms]
MODE 585 480

STS 651 364

Control Traffic: We have measured the control traffic flows on the entire tree for

STS to see if it is small enough compared with streaming bandwidth. The result is

shown in FigA.8. The highest traffic amount has been generated around 30 seconds

(around the first collection phase) as the number of nodes· has reached to top. Even

taking this peak value (350kbit) together with the number of nodes in the sesshm at

that time (90 nodes approximately), the average traffic amount on a single node can

be calculated as 4kbitlsec. We can say this value (4kbps/node as maximum) is small

enough for streaming applications which usually consume several hundreds ofkbps.

Join/Repair Procedure Overhead: We have measured the time required for the two

procedures explained in Section 4.3 to see if that is reasonable enough for multimedia

streaming. Table 4.2 shows the results. According to the results, the time required

57

s-diameter in
s-diameter in s-DBMST -

ci!l 161~. #oljoin nodes -I 00 12 r '1 ,. # of leave nodes
. S 8 i 'i fi ill ..

~ ~ ~.mamr!fu ffiflmnilJ, ~Fh!llwD nfhrriM ... HflJnm flfilliwwlllinWH qi;'mFHl
'* 0 50 100 150 200 250 300

timers]

Figure 4.7: Dynamics of Sender Dependant Diameters (S-diarneters) in Simulation
Experiments

for restoration of isolated trees (repair time) remains less than 1 second, which can

be considered small enough for multimedia streaming. The time required for the join

procedure Goin time) here is larger than the repair time. Here we have set the connec­

tion permission message timeout (the time each joining node waits to receive connec­

tion permission messages before it selects the best position to connect) large enough

(0.6[s]) to receive as more as connection permission messages. So the join time holds

a larger value (0.93 [s]), but this value is considered reasonable enough as time required

for bootstrapping.

4.6 Experiments on Real Networks

In this section, experiments using the implementation on real networks and those re­

sults are described.

58

400r-------~------------------------------------_,

350

]'300

&! 250
7:f
!S 200

!l150

til
Q)

80 '"g
P

60 ~

40]
u >
J W~
til 0

Q) 0 '*'
j 161~. #oljoin nodes -I ~ 12 !:"l _. ~'.. # of leave nodes

l ~ ~llkffldlt, Hihm"Jih ~00lw" rrthwl\lll"rtllJlnm n1lhMrni,'ibrwk m1,ftfl
"0 0 50 100· 150 200 250 300

'*' time[s].

Figure 4.8: Control Traffic (Total kbits on tree per each second)

4.6.1 Experiment Settings

We have used 8 machines placed in the same LAN (lOOBase-TX) and run 4-6 pro­

cesses on each machine to emulate 40 user nodes. Here, we made each process keep

the packets for a certain time period before forwarding, if the forwarding target is lo­

cated in the same machine where that process runs. In this way, we could prevent the

link-delay between the nodes located in the same machine from being too small. The

scenario is as follows. All nodes join the tree before streaming video so that they can

be ready to receive the initial frame of the stream. It includes some information to de­

code and play video such as its resolution and frame rate. Throughout the session, the

streaming-source changes it's position through tl:).e pre-defined source nodes. During

the streaming, 3-5 nodes are set to leave in every interval between collection phases.

The period is of 60 seconds. Here the link delays vary from 1O[ms] to 1 OO[ms] and

the initial degree bound for each node is 4. Each node's degree bound is dynamically

changed to enhance the media delivery performance on the tree as described in Section

4.4. And also, we set STS to select its predefined streaming sources increasingly with

the total node count in a manner to make the sources, which includes the initial node

as well, occupy 20% of the entire nodes.

59

300 MODE """.*"". 60
STS --*""

of nodes _ -
50

If) it""""""""" -..... Ko.L---'Jo_---'~-"*-...., E 200""""""".x,,,,,. c,... -..:.L"A-_'iII

i ... -.... _._ ~·:·=:"""""""x""""""""x"""""""")(""""""""*"""""""")f"""""""")(""""""",, 40 If)

E 150 .-..... 30 .:g
~ ~- -- g

------.---- -0
100 --.-.. ._.~ 20 'II:

50 10

o~----~--~~--~----~----~----~----~----~ 0 o 50 100 155 200 250 300 350 400
time [sl

Figure 4.9: Dynamics of Diameters in Real Network Experiments

4.6.2 Experimental Results

Diameters and S-diameters: We have measured the dynamics of diameters and s­

diameters. We have used the same scenario for 10 cases each of which has different

locations for pre-defined source nodes, and have measured the average for every 25

seconds. The measured variance is shown in Fig. 4.9 and Fig. 4.10. We can see that

the diameter ofSTS is held higher than that of MODE (Fig. 4.9). But s-diameter, which

counts more in multimedia streaming, is held smaller in STS according to the results

shown in Fig. 4.10. These results state that STS is better for multimedia streaming in

applications like video conferences with a certain number of key-persons, who address

the rest of the audience for the most part of the session.

Degree Adaptation: We have checked whether the degree adjustment strategy de­

scribed in Section 4.4.2 works well. For that we have set the 2 scenarios shown in Fig.

4.11 which illustrates a part of the overlay nodes (machines) we used and the 802.11 b

wireless links. Fig. 4.11-(a) represents a case, where a congestion occurs on a unicast

link between 2 nodes, and Fig. 4.11-(b) is another case, where a congestion occurs on

the physical network link connected to a node. For each of these cases we have used

a 256 Kbps media stream as the multicast media and a wireless node to make the con­

gestions. And also the lower threshold of the bit-rate, below which a node detects that

a network congestion has occurred, has been set to -20% (205 Kbps) of the stream's

60

300

50

MODE * ... '"
STS --*­

of nodes _ -

60

50

40

'" 30 -2l g
"­o

20 'It

10

OL---~ ____ ~ ____ ~----~----~--~~--~~--~ 0
o 50 100 155 200 250 300 350 400

timers)

Figure 4.10: Dynamics of Sender Dependant Diameters (S-Daimeters) in Real Net­
work Experiments

real bit-rate.

In the first case, we have generated some additional traffic across the link between

pc2 and pc4. Then we could see node pc2 has detected the congestion on the down link

to pc4, where it has sent a compulsory-leave message to pc4. Then pc4 successfully has

left and rejoined the session. In the second case, we have generated a separate process

requires some additional traffic, which is enough to make a congestion on the physical

network link, on pc2. Here we have found that nodes pel and pc2 have detected that

downward links are congested, after receiving RTCP reports from their child nodes.

Then pc2 has sent a compulsory-leave message to pc3 and pc4 (these are randomly

selected to occupy around 50% of the total connection count, in our experiments).

Here, the forcibly disconnected node, which is subjected to follow the ordinary join

procedure, has rejoined to the tree after 1.28 second average value. And the isolated

sub-tree, which was located under the forcibly disconnected node, has reconnected to

the tree after average 0.43 milliseconds following the ordinary repair procedure.

Time Required for JoinlRepair Procedures: We have measured the time required

to complete the join and repair procedures. Their average and maximum values are

shown in Table 4.3. We can confirm that the time required for a repair procedure is

small even in the worst case. Here, the time for join procedures remains higher. This

is because we have made each joining node wait at least I seco~d before making a link

61

~
---- wired links

c;J pcl wireless links
- IIIIIIUIII'" cross traffic

I
)F~~~tpc2

pc3/ L~pC5
)8t pc;~, J8t

(a) (b)

Figure 4.11: Degree Adaptation Experiment

Table 4.3: Time Required for Join and Repair Procedures
I procedure II average[ms] I worst[ms] I

I r~;:r II ~21~2 I 17~i I

to.the tree. It allows a node to receive as many permission messages as possible (see

Section 4.3.1). This contributes to let the joining node connect to more closer node to

the center node.

Table 4.4: Packet Loss Ratio Against a Single Repair Procedure
I bit-rate [bps] II data 10ss(KBytes)/restoration I

64[K] 5
128[K] 11
256[K] 24
512[K] 54
1024[k] 123

Also some packets may be lost in the restoration processes for nodes' disappear­

ances. We have measured this loss using several video streams of different qualities.

The average data loss per a single repair procedure is shown in Table 4.4 against the

various video bit-rates.

62

We can see that the loss is low enough. Considering the fact that the repair proce­

dure completes less than in one second, we do not have serious distortion in playback of

received video. The packet loss ratio has increased with the bit-rate as we can predict.

Currently STS nodes convey each multimedia data packet to the corresponding

neighbor nodes without using the cache (the ring buffer) to support the real-time video

conferences. But, readers may understand that STS can be simply modify to adapt

applications requiring a higher quality playback (Le.lower jitter, less stream loss) by

using the ring buffer, where the jitter can be made lower and the data loss in sub-tree

restoration process can be get to zero or to a negligible value.

63

4.7 Consideration of Heterogeneous Users

With the recent rapid deployment of high-spec mobile devices, the end-users are shift­

ing from the conventional desktop pes to various hand-held devices, such as mobile

phones or PDAs. Therefore, some nodes participate in a ALM application may be

mobile terminals, and those hosts may not be stable due to limitation of batteries, com­

puting and communication capabilities and so on. Hence, they may not be stable to

relay data packets. Moreover, they may use wireless links and thus delay of the overlay

links connected to those nodes may not be stable also. In such an environment, over­

lay multicast should be constructed carefully and dynamically to prevent those hosts

from staying at critical positions that affect the diameter and stability of the overlay

multicast.

The protocols, MODE in our previous work and OMNI[7] have presented dis­

tributed solutions for the requirements (i) and (ii). However, as far as we know, none

of the existing work, including MODE and OMNI, has not dealt with the third issue,

. which is a very important issue to realize seamless communication between non-mobile

and mobile nodes in group communication.

In this chapter, we present a protocol called, MODE-for-mobile (MODE-m in short),

MODE-m is extended from MODE protocol to incorporate instable and less power­

ful hosts such as mobile nodes. The original MODE aims at constructing a Degree­

Bounded Minimum Diameter Tree (DBMDT) in a distributed manner. MODE-m has

the same goal as MODE, however supporting mobile nodes is a new feature to handle

group communication with diverse hosts. In MODE-m, if mobile nodes occupy inter­

mediate positions of the current tree and the diameter becomes large, such nodes are

set to leave and re-join the tree so that the diameter of the tree can be held short. Our

experimental results have shown that this feature is very effective to keep the diameter

as small as possible under the existence of mobile nodes,

4.8 Motivation

MODE-m described this chapter can adaptively determine the positions of mobile

nodes to prevent these incapable nodes from affecting the diameters. We illustrate

how MODE-m works in comparison with MODE in Fig.4.l2. For simplicity, in the

following figures, we only illustrate overlay networks, and physical networks are omit­

ted. Also an integer on an overlay link represents its delay, and description of delay

64

(a)

j4
($>.:: .. ::

3

~ b'"
3

e

@-2-<f2 ~
@ CD

(d)

Figure 4.12: Concept of MODE-m

"1" is omitted. Finally, diameter paths are denoted by. thick lines. The essential dif­

ference between MODE and MODE-m is illustrated in FigA.12(a) and FigA.12(b). In

FigA.12(a), non-mobile nodes (white circles) with degree four are connected near the

center (node e in this case) of the tree, and mobile nodes (meshed circles) with degree

one (i. e. they never relay packets) are located in the leaf positions. On the other hand,

in FigA.12(b), a mobile node X is connected to node e, thus node a is connected to

node c and consequently they form a longer diameter path. The case of FigA.l2(b)

will happen in MODE, in case of node X's prior arrival to node a in the assumed in­

cremental joining to the current tree, since the tree optimization is done only when a

node in the tree leaves. Therefore, once a mobile node occupies a position close to

the center, it continues to keep the position without providing degrees. This results

in pushing the following joining nodes like node a away from the center and making

the diameter longer. In MODE-m, if a non-mobile node with higher degree bound

65

joins the current tree, our protocol makes it preempt the position of a mobile node near

the center by letting the mobile node leave and re-join the tree. Thus we can expect

that a tree like Fig.4.12(a), which is well organized and has a shorter diameter, will be

formed eventually. Another feature is that mobile nodes adaptively move if they know

that they become to fonn° diameter paths due to variation of overlay link delay. For

example, in FigA.12(c), the diameter path is the path between node Y and Z. Then let

us assume that the delay of overlay link X -a changes to 3 and the path X -Z becomes

the diameter path. In the original MODE, each node knows the current diameter and

the "height" of the tree rooted at the neighbor of the node by periodical collection of

diameter information2• Using this information, node X can know whether the variation

of delay makes the path be the diameter path or not. In MODE-m, if it is true, node X

spontaneously leaves arid re-joins the tree to find a better position (FigA.12(d)). If this

variation is caused by the "last one hop" wireless link, the overlay link delay between

X and the new neighbor may be the same as before. However, the diameter, and thus

the session delay, will be improved as in FigA.12(d).

4.9 Overview of MODE-m

In this chapter, we assume that nodes are classified into two types, mobile nodes and

non-mobile nodes. Also we assume that the degree bounds of the mobile nodes are all

one and the delay of overlay links connected to mobile nodes may change from time to

time.

4.9.1 Outline of MODE for Mobile

The main effort of our research is to present a new DB MDT constructing protocol to

support mobile nodes. The basic idea is inspired from the protocol MODE, which is

one of our prior works. Mobile nodes we discuss here are nodes with low-bandwidth

and less capability of computing, which are connected via wireless links to wired net­

works. Therefore, we set mobile nodes' degree bounds to only one (i.e. they never

relay packets) and treat them in a special way where we always keep them as leaf

nodes ofthe tree.

In MODE-m, we follow MODE's concept of repeating two phases, the collection

phase and the normal phase, alternately. The protocol carries out a certain informa-

2The information is aggregated at each node and the amount of information is very small in each collec­
tion packet. This is one of the key advantages of MODE.

66

tion gathering in the collection phase and this information is used to construct, refine

and repair the spanning tree in the normal phase which starts right after that collection

phase. The normal phase stands for the time-period between two collection phases.

MODE-m has three procedures, join procedure, refresh ·procedure and leave proce­

dure, in addition to the information collection. These are responsible for adding newly

joining nodes, stabilizing the diameter fluctuation caused by mobile nodes and repair­

ing isolated trees caused by nodes' disappearance, respectively.

As stated before we have used the basic ideas of our previous work MODE for the

join, repair and information collection procedures. Since the center node of MODE­

m have the similar responsibility as the center node of MODE, we can use the same

repair procedure of MODE except for the following behavior. The mobile nodes never

become repair masters (refer Fig. 3.5) neither repair initiators as they reside as leaves.

However, they may become repair sub-initiators or repair sub-masters only for the

subtrees those consist of a single mobile node. In this case, the repair procedure may

not get completed due to the message loss caused by the mobile node link. As a result

isolated subtrees may generate. Our protocol overcomes these isol~tions by making the

root nodes of the isolated subtrees perform a usual join attempt after a certain timeout.

Again we can use the same information collection procedure as we utilize the same

. information. Therefore, we omit the discussion of the repair procedure and information

collection here. However, the join procedure of MODE-m is somewhat different from

that of MODE, because of its consideration to the existence of mobile nodes. Hence,

we discuss the design of join procedure in detail here.

4.9.2 Join Procedure

In MODE-m, the basic policy to accept a new node is to connect the new node to a

existing tree's node with more than one residual degree, which places the new node

closest to the center node. This basic approach provides quite reasonable diameters in

an incremental way. However, as we stated in Section 4.8, this approach fails to make

trees with reasonable diameters when mobile nodes' participation takes place. So we

move the mobile nodes so that they become leaf nodes in the following manner. Every

non-mobile node replaces one of its mobile node neighbors (say m) with the newly

joining non-mobile node by forcibly disconnecting m, only if that makes the new node

closest to the center node. Here the node m is selected randomly, and m is subjected

to rejoin the tree in the same way as a newly joining mobile node. Note that newly

67

· . • mobile node
~?~~. node c re!.~~?. node c O. non-mobile node node c

nOd~··· 3~2 nOde~·· 3~2 3~~
~depl A - ~dePA . "'R - KnodePA H

3 I /\ I 2 3 I (h c/ 2 3 I (f 0 1
2

~ 00 ,-0 •. ~ 06 i "-r:,) ~. 6 'b61 •
node m node m 0 \node m I 0 node m •

node 11 node m 6 node 11

(a) (b) forcibly (c)
degree = 3 at every node dis-connected by p

Figure 4.13: Mobile Node Rejoin in Join Procedure

joining mobile nodes cannot replace them with the existing mobile nodes. The detailed

join procedure is as follows.

A new node which wants to join the current tree first sends a query message to the

root node 3 to ask the address of the center node. In MODE-m, any node can calculate

the center node of the tree using the sub-tree information described in the previous sub­

section. So the root node can send the center node's address to the new node. In case

that the root node does not know the center node (i.e. before the first collection phase

has been completed) or the center node has already disappeared, the root node sends

the address of itself instead.

Once the joining node receives the reply from the root node, it sends a connection

request message to the center node (Fig.4.l3(a)). The center node (say c), which re­

ceives the connection request message, sends a connection permission message to the

joining node if at least one of the following two conditions, (i) c has more than one

residual degree or (ii) the joining node is a non-mobile node and c has at least one

mobile node as a neighbor, is satisfied. At the same time, it broadcasts the connec­

tion request message to its neighbors4. The neighbors also treat the connection request

message in the same way. Note that these nodes send no message to the joining node if

they satisfy neither of the conditions (i) and (ii) stated earlier. Here the delay from the

center node is also added to the connection request message before it is broadcast to

the neighboring nodes. So every node which sends a connection permission message

3This is because we assume that a new node only knows the root node as the well-known node (see
assumption 02). To avoid access concentration, several well-known nodes may be assumed rather than a
single node.

4Here we can set a suitable forwarding count limit to prevent the joining node from receiving a huge
number of connection permission messages.

68

to the joining node also includes the delay from the center node to the node itself. Then

the joining node uses these values and the delay to each node which has sent a connec­

tion permission message (this can be measured using ping for instance) to select the

node (say p) which can place this node closest to the center node. Then it establishes

an overlay link with the node p. If this overlay link violates the degree constraint at p

(Fig.4.l3(b)), that is p has accepted the new node according to the condition (ii), then

the node p forces one of its neighboring mobile nodes to rejoin the tree (FigA.13(b)).

As a result of these rejoin processes, the mobile nodes shift themselves from positions

close to the center node to leaves of the tree.

4.9.3 Refresh Procedure

Refresh procedure is applied only to mobile nodes, to prevent the diameter from being

affected by mobile nodes' delay fluctuation. Mobile nodes become leaf nodes accord­

ing to the above join procedure and that helps to construct a spanning tree with a shorter

diameter. However, the diameter path's both ends may be occupied with mobile nodes

in many cases. Therefore, the diameter becomes sensitive to the mobile nodes' delay

fluctuation. To avoid this phenomenon we make mobile nodes rejoin the tree if its wire­

less characteristics result in a longer diameter. We name this process refresh 5. Note

that mobile nodes can detect the change of the delay to its neighbor according to the

assumption G 1.

A mobile node m performs a refresh procedure if the following statement is true.

Here n denotes the neighboring node of m.

c(m, n) + depthTmn > dianow + O!

Here, c(m, n) denotes the delay ofthe link from m to n, depthTmn denotes the longest

depth of the subtree T mn and dianow denotes the current diameter of the tree. Here

O! regulates the refresh frequency. In other words the refresh procedure does not take

place if the new diameter exceeds the previous one by not more than O!. Without this

the mobile nodes may oscillate in the tree. FigA.14 illustrates this refresh strategy.

FigA.l4(a) shows a case that a mobile node(m) finds that the above condition is

true after detecting the change of the delay to its peer (c(m, n)). Then m rejoins the

tree as shown in the FigA.l4(b) to prevent the diameter from increasing. Note that

5We assume that the link delay variation of non-mobile nodes are negligible, hence non-mobile nodes are
not concerned for the refresh procedure.

69

m keeps checking the above condition whenever it detects a new delay, despite its

previous refresh tasks. To avoid infinite refresh tasks, we have set the mobile nodes

not to perform a second refresh procedure, if it got connected to the same peer after

rejoining the tree.

• mobile node
o non-mobile node

m rejoins the tree

c(m,n) + depth(Tm,n) > current tree diameter + ex c(m,n') + depth(Tm,n') <= current tree diameter + ex

(a) (b)

Figure 4.14: Mobile Node Refresh Strategy

4.10 Performance Evaluation

4.10.1 Simulation Setup

We have implemented our MODE-m protocol on ns-2 to evaluate the enhancement

against MODE. In our experiments, networks with about 400 physical nodes have been

generated and used as underlying networks. We have selected 200 nodes, including

both mobile and non-mobile nodes, as overlay participant nodes. Here we define the

mobile node occupancy (as a percentage of the entire nodes) as an evaluation param­

eter m. We have set mobile nodes change their end-to-end delay (overlay link delay)

randomly from 50msto 300ms, hence emulated random movement during the simula­

tion. And constant delays vary from 10ms to 200ms have been set for the overlay links

between non-mobile nodes.

Considering practical situations, we have prepared the following scenario that sim­

ulates a real-time session in collaborative applications such as video-based meetings

or groupwares. Note that we have set the interval between collection phases to 30

seconds. The degree bound on each non-mobile node was set to a randomly selected

70

constant value, which ranges from 3 to 7, while that of each mobile node was set to

I. The scenario is as follows. (i) The session period is 300 seconds. (ii) Each of 200

nodes joins the session only once and eventually leaves the session. (iii) Within the

first 30 seconds, about 60 nodes join the session. (iv) From 30 seconds to 250 seconds,

additional joins are processed. Also some existing nodes leave the session. The col­

lection phases take place at 30, 60, 90, 120, 150, 180, 210, 240, 270 and 300 seconds

successively. (v) Mobile nodes are set to refresh their delay in each 5 seconds. And the

value a (see Section 4.9.3) is set to 50[ms]. (vi) After 250 seconds, no join takes place

and about 40 nodes leave the session.

We have evaluated MODE-m following the above scenario setting m (ratio ofmo­

bile nodes to all the nodes) to 5%, 10%,20%,30% and 40%. Here, we have limited

the upper margin of m to 40% considering the fact that construction of DB MDT might

be impossible with a larger percentage of mobile nodes where dmax = 1 6. In Fig.4.15

and Fig.4. 16, the number of nodes on the tree at every second together with the num­

bers ofjoinlIeave operations are shown, to make it facilitate to see the dynamics of the

metrics according to the scenario.

4.10.2 Experimental Results

[Diameter Against the # of Nodes] We have measured the diameters of the trees at

every one second for MODE-m and MODE for various m's. The result for m = 30%

is shown in Fig.4.l5.

Obviously MODE-m could archive a shorter diameter. Especially in the period

with higher mobile node occupancy (within O[ms] to 75[ms] in Fig.4.l5), MODE's

performance has become poorer. Here the diameter difference of MODE and MODE-m

in the time period ofO[ms] to 30[ms] in Fig.4.l5, shows the validity of the improvement

done to the join procedure, while the rest part of the session shows the performance

gained by the mobile node specific refresh procedure. Considering both results we can

say that MODE-m well supports mobile nodes.

[Average Diameter and Rejoin-cost] We have measured the average diameters (in

miIIi seconds) for MODE-m and MODE after performing simulations for ten different

sessions, where each follows the above scenario. And also we calculated the rejoin­

cost for the MODE-m in each session and calculated the average value for the ten

6Readers may note that constructing of DBMDT will become possible with the existence of powerful
mobile nodes (nodes where dmax > 1).

71

1200 ,..--------;:----------------------,

0;'1000

.§ 800

j 600

;a 400

200

#ofnodes - #

MODE-m­
MODE ------

UJ

~
g
~

u 1
~ ~
~ 0 ~

~ 16!~. #Of join nodes - i ~ 1~ i . i\ ii 11.' . # of le~ve nodes

:~ ~ ~,WHilir!fu rfinm,ilb ~!h!IktiJD rrfbmflij" Hfinrllnm fl1lHMtm ~WH ,ljJ,croW
'tl a 50 100 150 200 250 300 . ~~

Figure 4.15: Dynamics of MODE-m Diameters

sessions. Rejoin-cost is the sum of the number of overlay links which are established

and disconnected due to the rejoin processes during the join and refresh procedures

over the session. Note that the rejoin-cost becomes two times of the number of rejoin

processes applied. The results for different values of m's are shown in Table. 4.5.

Table 4.5: Comparison of Diameter [ms] and Rejoin Cost [number of at­
tachedJdeta ched links] of Mobile Nodes

m 115% 10% 20% 30% 40%

MODE I diameter 467 513 565 585 646
-m I rejoin-cost 32 64 162 197 222
MODE diameter 494 569 633 736 801

The result shows that the performance of MODE-m increases with the growth of

the mobile node occupancy. At the same time we can note that the rejoin-cost also

keeps increasing with the mobile node occupancy.

The rejoin-cost discussed here reflects the disconnecting frequency of mobile nodes.

Considering that the mobile nodes always resides as leaf nodes, we can understand the

fact that non-mobile nodes remain unharmed in this regard. This implies that the ses-

72

400r-------~------~----------------------------~

350

'ii 300

g250
t)

IE 200

b 150

MODE-m­
MODE-

'" Q)
"CI.
g

60 ~
..:

~ ~
~ ~
~ O~

Jl16!~ • #oljoin nodes - ! ~ 12 !,' ,. # 01 leave nodes

. 13 : ! .ii Iii lit·;, "' ". . "' .. il. _ .. ', .~ o,mflillrHt, ff!!!.n",ifh ~ftt!lkwD nfhrnlliL ilflndJJJm rrfihrwM IllJ:dllliilj ,tIj"TlFlU
'l:; 0 50 100 150 200 250 300
~ ~~

Figure 4.16: Control Traffic of MODE-m

sion remains consistent for the rest of nodes, even if the rejoin-cost is considerably

large. However, we can say the rejoin-cost is reasonable enough considering the diam­

eter reduction gained compared to MODE, by these rejoin processes. Furthermore, the

rejoin-cost can be reduced by increasing the value of a (see Section 4.9.3), though this

might increase the diameter, which is in a trade-offwith the rejoin-cost.

[Traffic] We have measured the control traffic flows on the entire tree for the MODE-m

and MODE. The result is shown in FigA.16. The increased traffic amount in MODE-m

is mainly the traffic due to rejoin processes. And the highest traffic amount has been

generated around 30[ms] as the number of mobile nodes has reached to top. Taking this

peak value, 350[Kbps], together with the number of nodes in the session at that time

(90 nodes approximately), the average traffic amount on a single node can be calculated

as 4[Kbps]. We can say this value is small enough for real world applications.

[Time Required for Procedure Execution] Finally, we have measured join-time and

refresh-time, the time required to execute join and refresh procedures successively.

Note that here refresh procedure does not count for MODE, and the comparison of the

time required to repair is omitted here, since repair procedure is common to MODE and

MODE-m. Here, thejoin-time ofa node n includes n'sjoin time plus the time needed

73

Table 4.6: Comparison of the Time Required for Join and Refresh
I II join-time[s] I refresh-time[s] I
I ~g~:-m II ~:~i I 0.79 I

for the mobile node, which have been forcibly disconnected due to the join procedure

of n, to rejoin the tree. The expected average values for join-time and refresh-time

when m = 30 are shown in Table. 4.6. According to those results both the join-time

and the refresh-time hold values less than I second, which can be considered small

enough for real applications. Note that the values in Table. 4.6 remain almost same for

different values of m as well, according to the nature of the protocol.

4.11 Concluding Remarks

In this chapter, first we have stated the design and implementation of an overlay mul­

ticast protocol for interactive multimedia applications including media streaming. The

protocol is called Shared Tree Streaming (STS) protocol that constructs a shared tree

called s-DBMDT (sender-dependent Degree-Bounded Minimum Diameter Tree) as an

overlay network that involves all the participants of the application. We believe that

this is the first approach that defines s-DBMDT construction problem and presents a

distributed protocol for the purpose. Our implementation is done in Java where some

adaptation mechanisms are incorporated for media streaming. Our perfonnance evalua­

tion is based on experiments in both simulated networks and real networks that strongly

shows the efficiency an usefulness ofSTS protocol. Evaluating STS protocol on large­

scale, real environments such as PlanetLab is part of our future work.

Second, we have proposed a new overlay multicast protocol called MODE-m that

constructs a degree-bounded minimum diameter tree, supporting mobile hosts. MODE­

m is considerably enhanced from MODE so that it can achieve reasonable diameter

under the existence of heterogeneous hosts. The experimental results have shown the

advantage ofMODE-m compared with MODE.

74

Chapter 5

Decentralized Construction of
Stability Oriented Spanning
Trees in Multiple Source
Context

5.1 Introduction

Application Layer Multicast (ALM) has become an important research topic in past

decade because of its flexibility. This flexibility is caused by ALM's nature of us­

ing end-hosts to perform one-to-many data forwarding, which is known as multicast.

ALM has the biggest potential to realize the small to large scale group communication

infrastructures such as distance learning, internet games, audio or video streaming. In

contrast, reliability problems of end-hosts in ALM induce the one of major drawbacks

in terms of spreading through real world applications. One major issue that comes

up here is the heterogeneity of end-hosts (referred to as nodes below) to the ALM

session in which it is involved; since less-desired nodes leave the session sooner and

often without any prior notification or cause delay and hannfuljitter even they stay the

session, the participants in the downstream suffer considerable degradation of quality.

This chapter addresses this issue, the reliability of nodes. An example metric is life­

time of nodes, which helps to build reliable and stable ALM. We argue that this kind of

node specific factors, which are independent from the topological factors, have a great

influence on the efficiency of the underlying ALM scheme.

Meanwhile, we also consider the topological factors, which are also important to

75

support interactive multimedia applications. We can point out the characteristics of in­

teractive multimedia applications as follows. (1) Such an application may have several

sources. For example, in video-conferencing, pictures of some primary persons should

be continuously delivered to the other audience. (2) The delays from these sources

to each sender is bounded by a maximum delay constraint to make each node inter­

active. (3) Each node is associated with a bandwidth limitation (or degree in other

words), where the number of outgoing streams that can be handled by that node is re­

stricted. Considering the heterogeneity of Internet end-hosts, multicast topology may

be composed with nodes with variety of degrees including the large portion of zero­

contributors [31]. And (4) the nodes may show different desires. For example, some

survey studies conducted with real world data traces have shown that the older nodes

have longer residual lifetimes [31]. This property helps to predict nodes remaining

lifetime to make the multicast topology more robust to node departures.

In this chapter, an ALM scheme to meet the above requirements is proposed which

aims at constructing a multiple-sourced tree T, minimizing the bad affect caused by the

heterogeneity of nodes' reliability on the entire tree. At the same time it assures each

node's delay-from-sources to be within the provided delay constraint under degree con­

straints. The contributions of this chapter can be summarized into, (i) formulation of a

new problem associating nodes' reliability factors such as lifetime with delay and de­

gree constraints in a multiple-source context, (ii) proposing of a decentralized heuristic

algorithm which gradually transforms a simple initialtree to the targeted tree, and (iii)

discussion of the extensive experiments conducted in PlanetLab to show the proposal's

usability.

The rest of the chapter is structured as follows. Section 5.2 analyzes and describes

the problem. Section 5.3 describes the proposed decentralized solutions. Section 5.4

describes the simulation and PlanetLab experiments. Section 5.5 concludes the chap­

ter.

5.2 Problem analysis

5.2.1 Problem definition

Let G = (R, E) denote a given undirected complete graph where R denotes a set

of receiver nodes (or simply nodes) and E denotes a set of potential overlay links

which are unicast connections between nodes. Also the followings are given. dmax (r)

76

denotes the degree bound of node r E R, h(i, j) denotes the delay of overlay link

(i, j) E E, sc(r) denotes the normalized stability coefficient of node r E R (sc(r) E

[0, 1 D, e.g. node lifetime, and 8 denotes the set of source nodes. We note that a source

node is also a receiver node (8 <:;;; R).

Our goal is to find a spanning tree T of G with maximum tree stability, while the

maximum overlay delay from 8 to nodes in R does not exceed a given delay bound

Dmax and degree of each node r E R (denoted by d(r)) does not exceed dmax (r). We

name this multiple-source Degree and Delay Bounded Maximum Stability Spanning

Tree (ms-DDBMSST) construction problem. The tree stability of T (denoted as stabT)

is defined as the sum of path stabilities of all the source-receiver paths 'on T. The path

stability of the source-receiver path from s E 8 to r E Ron T (denoted as stabT(s, r))

is the multiplication of the stability coefficients of nodes on the path. Their formal

definitions are given below.

stabT

stabT(s, r)

L stabT(s, r)
(s,r)ESxR

{ !c(r')' stabT(s, r')
(s = r)
(s =1= r)

Here, r' is the upstream neighbor of r on the path from s to r on T.

The decision problem ofms-DDBMSST, that is, the problem to find a degree and

delay bounded, stability-bounded spanning tree, is NP-complete. To prove this, we

first need to say that for any tree on G it can be verified in polynomial time whether the

tree satisfies the given bounds of degree, delay and tree stability. Obviously this holds.

Then we set the number of source nodes imd the stability coefficient of each node to

one. Then the Degree and Delay Bounded Spanning Tree decision problem, which

is known as a NP-complete problem [32}, can be transformed to our ms-DDBMSST

decision problem in polynomial time.

Further, Degree Bounded Maximum Stability Spanning Tree (DBMSST) construc­

tion problem has also been addressed in few previous lifetime-aware schemes ([26],

[27], [28]). The DBMSST construction problem is a version of the ms-DDBMSST

construction problem, and it is considerably simplified from the ms-DDBMSST con­

struction problem in such a way that delay is unbounded and the number of source

nodes is set to one. Though this problem is not our key concern, some characteristics

and methodologies discussed here are common with our ms-DDBMSST construction.

More precisely, the ms-DDBMSST construction described in Section 5.3 consists of

77

o : node spec = x

(b)

Figure 5.1: Two Simple Methods that Construct DBMSST: (a) stability-first (s-first)
and (b) stability-degree product-first (s·d-first)

a refinement phase, where nodes with ancestor-descendant relationship are swapped

to improve the stability of tree. Therefore, it is important to know which property of

nodes should be considered for this swapping and the rest of this section discusses

which property of nodes should be prioritized to maximize the stability of tree.

5.2.2 Learning from DBMSST

Existing approaches

Fig. 5.1 illustrates two simple methods of constructing DBMSST presented in [27].

The stability coefficients and degrees are given in the box of Fig. 5.1. In Fig. 5.1 (a) the

tree is constructed by greedily choosing the nodes with maximum stability coefficient

(this is called s-'first), while Fig. 5.1 (b) chooses the ones with maximum stability­

degree product (called s·d-first). The chosen nodes are connected to the current tree

at the peer node which provides the maximum path stability in both methods. The

tree stability ofTa is calculated as stabTa =L:i~l stabT)no, ni)= (1.0·1) + (1.0·1) +

(0.9·1.0)+ (0.9·1.0) + (0.8·1.0) + (0.8·1.0) + (0.8·1.0)+ (0.7·0.9·1.0)+ (0.7·0.9·1.0) +

(0.7·0.9·1.0) =8.09. In the same way, stabTb becomes 7.9, and that says s-first ap­

proach is better for this example.

Our approach to DBMSST problem

We describe a novel and better centralized mechanism, which considers the remaining

node count in addition to the lifetime and degree. Later, by simulation experiments,

we show that this centralized scheme performs better than the s-first and s·d-first ap-

78

proaches, which have been used in the early-stage lifetime aware schemes such as

[26], [27] and [28]. And also we apply the key idea ofthis centralized approach to the

construction of ms-DDBMSST, which is our main concern, where neither s-first nor

s·d-first approach is associated.

This consists of two main steps. First, it simply selects the peer node p from the

current tree, where p has the maximum path stability with at least one residual degree.

Second, the node for adding to the tree is selected. For this purpose, a new metric called

estimated tree stability is introduced, and the node that maximizes this value is selected

at the second step. This procedure is repeated until all the nodes are added to the tree.

This is the key feature in our approach. Note that the s-first and s·d-first approaches

have greedily selected the node with maximum lifetime or maximum lifetime-degree

product. In contrast, we estimate the stability ofthe final tree at each selection step.

We define the estimated tree stability and for that the following auxiliary parameters

are used.

• Tcur+u : the tree after adding node u to the current tree Tcur

• Rrem : the set of nodes that have not been included in Tcur+u

• §e: the average stability coefficient of nodes in Rrem

• d: the average degree of nodes in Rrem

• Rres : the set of nodes that have residual degrees on Tcur+u

• outd(t) : the total out degree of tree t

For the tree Tcur+u, we expect that the final tree T is obtained by organizing the nodes

in Rrem into the set of outd(Tcur) sub-trees and adding them to Tcur+u. For the

convenience, we denote these sub-trees by subT. (see Fig. 5.2). Then assuming

se(w)=§e and d(w)=d for all w E Rrem , we can define the stability of subT as follows

(s' is the root node of subT).

stabsubT L: stabsubT (s', r')
r' on subT
1 + §e . d + §e2 . d"2 + ... + §em . dm

(se· dr+l -1

§e· d-1

79

(a) (b)
(a) The current tree Tcur (b) The estimated tree after adding node u

Figure 502: Concept of the Centralized Heuristic Algorithm

Here, m = logJlsubTI where IsubTI = out1~T::I+u) (m is the number of maximum

hops from root in subT). The estimated tree stability of the final tree T, Eu[stabTl can

be defined as follows.

Eu[stabTl = stabTcur+u + L stabsubT·stabTcur+ . .,{s, r') . d(r')
r'ERres

Before we add a new node to the tree, Eu [stabT 1 is calculated for each u E R rem and

the node that gives maximum value is selected.

5.3 ms-DDBMSST construction

Before going deep into ms-DDBMSST construction methodologies, we discuss the

nature of our problem. Our mission is to find a spanning tree T that maximizes the tree

stability stabT in a manner where the degree bound of each node is not violated and

the delay of any source-receiver path on T does not exceed the given maximum bound

Dmax.

Hereafter we let depthT denote the maximum delay of source-receiver paths on

T. As we have seen before, stabT is influenced by nodes' stability coefficients and

degrees, while overlay link-delays and node degrees affect depthT' This implies that

stability coefficients of nodes and delays of overlay links play key roles in optimizing

stabT and depthT successively. On the other hand, it is known that there is no correla­

tion between node's lifetime and link delays [26] and similar argument can be applied

80

to the case of forwarding capabilities of nodes and link delays. Therefore, it is easily

understood that stabT and depthT are non-correlated metrics. This makes it clear that

ms-DDBMSST construction is a task of optimizing two independent metrics, which

prevents us from going for easy solutions, such as using a variation of minimum depth

spanning tree algorithm [11] with expressions like a . stabT + f3. depthT.

Following the above observations, we apply a two-step tree construction algorithm

to separate stabr and depthT optimization. There are (a) the initial tree construc­

tion step that optimizes depthT and (b) the tree refining step that optimizes stabT .

Considering the fact that depthT should not exceed the delay constraint D max , we

use the minimum depth spanning tree algorithm [11] to build the initial tree 1. By

this we can achieve almost the best possible depthT which is probably lower than the

given delay constraint Dmax. Then, the tree refining process takes place by moving

nodes throughout the tree so that stabT is improved. It is easily understood that this

refining step makes depthT increased in higher possibility as it destroys the depthT­

optimized initial tree in being transformed into the stabT-optimized one. So we have

to make sure that no refining step violates the maximum bound for depthT. Note that

if depthT is greater than Dmax after the initial tree construction step due to too tight

D max , no refining takes place for such cases obviously, and this initial tree remains as

it is. Therefore, we assume that Dmax suitable for real world applications is larger than

the depthT found by the initial tree construction algorithm.

We assume that most of the participant nodes arrive before the session starting time

and a few cannot make it to time. So it is feasible to build the initial tree using a central­

ized algorithm, as mentioned above, because the streaming session is not still started.

However, no centralized scheme is preferred once the streaming session is started to

maintain a seamless streaming session. Therefore, we go for a decentralized approach

as the tree refining procedure. Though there may be inter-session node joins and depar­

tures, we assume that they are handled by some existing decentralized protocols such

as [24] and mainly concentrate on the initial tree construction and refining procedures.

These procedures are described in detail in the following sections 2.

1 Although minimizing the depth is not an objective of our scheme, the construction of minimum depth
spanning tree is necessary at this stage to check whether the given maximum depth constraint is reachable.

2Considering the scalability, a decentralized minimum delay spanning tree scheme can be used to build
the initial tree when the maximum delay constraint is not so strict.

81

5.3.1 Initial Tree Construction

The initial tree is built in such a way that maximum delay from source nodes (depthT)

is minimum. If al1 the source nodes are located close to each other with smal1 overlay

link delays between them, we can treat them as a single source after arranging them

into a single group. This makes it easy to build the required tree. In this case we

can use minimum depth algorithm [11] to build a spanning tree with minimum delay

(depth) from the group of source nodes, because this group stands for the root node

of tree. However, general1y sources may be located anywhere and do not necessarily

have smal1er overlay link delays between them. So making them into a group wiII

result in unnecessary overlay delays to the entire tree and may make depthT larger.

Therefore, we refrain from using the grouping concept and use the fol1owing algorithm

inspired from the minimum depth algorithm. This builds the initial tree starting from a

, randomly selected source node So as the root node.

01: Tnode {= {so}, Tedge {= 0, S {= {so}, R {= R - {so};
02: while (R =1= 0)
03: find r E R\Tnode and r' E Tnode that minimizes

depth(TnodeU{r },TedgeU{(r' ,r)})
04: Tnode {= Tnode U {r};
05: Tedge {= Tedge U {(r',r)};
06: R {= R\{r};
07: if(r is a source node) then S {= S U {r};
08: endwhile;
09: return (Tnode, Tedge);

5.3.2 Tree refinement

Protocol outline

Let us remind our mission here: improve tree stability (stabT) in a decentralized man­

ner, without violating degree constraints and the upper bound for maximum delay from

sources (depthT). For simplicity, let us suppose that there is only one source node

positioned at the root of the tree. The most common decentralized way for improving

stabT in this case is, to exchange nodes u and v on T whenever it yields a better stabT.

For instance, suppose that node u is the upstream neighbor of node v, sc(u) < sc(v)

arid d(u) = d(v). According to the definition of tree stability, swapping u and v im­

proves stabT. So it sounds like quite an easy task and various combinations ofu and v

like parent-child, grand parent-grand child, siblings and random combinations can be

82

.... A·· .. i"" :
.... A· ...

j"" :

. ... A
f"" : \ A .. // \\

t.de';.,Mi:Kj

, .. -
: :

O=Omax. • • • •• . .• (~j
(b) (c) (z)

Figure 5.3: The Outline of the Pre-Session Refinement ofInitial Tree

considered to reach the target. However, the above transformations cannot be simply

performed because depthT may be violated. So a delay controlling mech~nism should

be associated with these node transformations. We propose a scheme for this decen­

tralized controlling of depthT, where each sub-tree has privilege to use only a portion

of tot at remaining maximum delay-play, which is expressed by Dmax - depthT. And

by assigning these portions in such a way where the summation of them is equal to

Dmax - depthT' we can always transform nodes in each sub-tree without violating

depthT restriction.

Our sub-trees for the above task are identified by making each sub-tree have max­

imum K hops. Basically, in each sub-tree, its root node u re-organizes the sub-tree to

improve stabT . This sub-tree is denoted by RejTu,K. And this process is done in a

bottom-up manner as outlined in Fig. 5.3.

Protocol design

The refinement procedure consists of the information collection phase which gathers

the information required for the rennement and the node exchange phase which takes

place right after the information collection phase and executes the required node ex­

changes depending on the collected information.

Information collection In order to refine the tree, alI the nodes periodically colIect

the information required to execute refine procedure by message exchange along the

current tree. The root node starts the information collection in the colIection phase for

83

every (regular) interval by broadcasting synchronization messages on the current tree.

Obviously, the number of synchronization messages is n - 1 where n is the number

of nodes on the current tree. When the root node (so) sends synchronization messages

to its neighboring nodes, it assigns a node ID 0 to itself and also assigns node IDs

l, ... ,d(so) to those neighboring nodes. The information included in this message are:

(i) lists of node IDs on the paths from So to other source nodes, (ii) delays to source

nodes from so, (iii) the value of D max , and (iv) the value of K. We assume the root

node knows last two values, which are application specific parameters.

Similarly, if a node v receives a synchronization message from a neighboring node

and if it knows that node ID n is assigned to itself, it assigns node IDs starting from

n x dmax + 1 up to n x dmax + d(v) - 1 to the rest of its neighboring nodes when it

sends messages to them (dmax denotes the maximum degree bound of all the nodes).

Finally all the nodes in the tree have unique node IDs. Note that these IDs are used to

identify parent-child relationship between neighboring nodes (a smaller ID indicates a

parent) as well as to determine descendant node positions in node exchange phases. In

addition to the information received from the upstream node, node v includes to the

synchronization message for children; (v) D(so, v), which is the delay from the root

node, and (vi) H(so, v), which is the hop count from the root node.

And also, using above (i), (ii) and (v), each node (say v) easily calculates the delay

(denoted by D(sf, v)) to the furthest source, sf, which is used in the refine procedure.

Node exchange A non-leaf node enters the collection phase ifit has received a syn­

chronization message from its parent and has sent synchronization messages to all its

children. A leaf node does not send synchronization messages. Instead, when it re­

ceives a synchronization message, it enters the collection phase and replies a collection

message to its parent. Each non-leaf node, except so, sends a collection message to its

parent node whenever it receives collection messages from all the child nodes. The in­

formation included in the collection message from node u to its parent is described later

in this section. Note that the number of collection messages required here is (n - 1).

So, totally, the number of messages required for the collection of the current status is

only 2 (n - 1), that is, only two messages are exchanged on each link of the tree.

Each node selects replace candidates among the child nodes3. Generally, node u se­

lects its descending node w as u's replace candidate only if that replacement improves

3The scope of this dissertation is restricted to K = 1 case,where K > 1 cases will be some of our future
work.

84

the tree stability of the subtree RefTu,K. The tree stability improvement (denoted by

~u,w) that can be achieved by replacing u with W is given by the followings.

~u,w =

2:~~l (sc(w) ~ sc(u))-stabT~n +
2:~~l(u)+l (sc(w) - sc(u) . R· sc(w)) . stabTYn

. (if d(w) ~ d(u), Fig.5.4(b»)

2:~C:2 (sc(w) - sc(u)) . stabT~n +
2:~~~(w)+l (sc(u) . R· sc(w) - sc(w)) . stabT~n

(ifd(w) < d(u), Fig.5.4(c»)

where R = sc(v) ... sc(Xl) (v is the parent of w), and here TXl exceptionally stands

for the sub-tree excluding the descending sub-trees TYl ... Tyd(u)'

The next step is to find out which candidate results a replacement within RefTu,K 's

delay portion. We consider each node involved in node replacement and denote it as

x. For instance, x stands for u, Wj (child nodes of u) and z (child nodes of Wj) in

case of replacing u by Wj in Fig. 5.5(a). Then, the delay portion allowed for each x is

calculated as follows.

O(X)max = {Dmax - D(sf'x) - depth (Tx)}/ H(Sf'x) (x~z)

o(z)max =o(Wj)max

Here, depth(Tx) is the maximum delay in the sub-tree rooted at x and H(s f' x) is the

hop count in the path from sf to x. This equation assigns the remaining delay-play at

node x equally among the nodes in the path from the furthest source node sf.

Finally u selects the child w, which gives the maximum ~u,w and 6(x) is less than

or equal to o(x)max for all involving x, where,

6(x) = D(sf, x)new - D(sf, x)prev

D(s f, Wj)new = D(sf' U)prev - D(v, u) + D(v, Wj)

D(sf' u)new = D(sf' Wj)new + D(wj, u)

{

D(Sf,Wj)new + D(wj,w) ifd(u) ~ d(wj)
D() (w is not moved along with u)

sf, W new = D(sf' u)new + D(u, w) else
(w is moved along with u)

{

D(Sf'U)new + D(u,z) ifd(wj) ~ d(u)

D()
_ (z is not moved along with Wj)

sf, z new - D() D() I Sf,Wj new + Wj,Z e se
(z is moved along with Wj)

85

(b)

k'= d(u) ,k"=d(w)

d(u) > d(w) -

k'-k" child nodes of u are
moved together with u

k"-k' child nodes of ware
moved together with w

Figure 5.4: Concept of Replacing Candidate Selection: (a) the initial tree (b) the tree
after swapping u and W when d(w) > d(u) (c) the tree after swapping u and W when
d(w) < d(u)

After replacement takes place, Wj sends its new parent v a new collection message

with (i) sc(Wj), (ii) depth (Twj) and (iii) D(Wj, v). If no replacement takes place, u

sends a similar collection message and refinement of RefTv,K is started when v re­

ceives collection messages from all its child nodes. This refinement procedure is prop­

agated towards the top of the tree until the root node receives the collection messages

from all of its child nodes.

Handling multiple sources Though it is not clearly stated, we did not pay much

attention to multiple sources in the tree refinement. Actually, it does not cause problems

as long as the exchanging nodes do not exist on a path between two source nodes (in

other words, no source node exists in the sub-trees routed at exchanging nodes). That

86

(a) (b)

Figure 5.5: Refinement of RejTu,K (a) before refining (b) after refining

is because node re-organization by such a sub-tree only makes sense to the nodes in

that sub-tree in terms of tree stability or maximum delay from sources. However, when

the refinement procedure progresses towards the top of the tree, the nodes which do

not follow the above requirement come across, including source nodes. We call these

nodes irregular nodes.

Here we describe the way that such nodes are treated using the example in Fig.

5.6. Nodes no and nl can be exchanged if tree stability of the whole tree is increased

and maximum delays are not violated. Let us calculate the resulted tree stability gain,

rER

stabTb - stabTa

L LstabTa(Sk,r)
Ok4rER

sc(SO) . sc(n2) . sc(no) .

87

([D : source nodes 0 : non-source nodes I(IIj, nk) : link-delay from IIj to nk

Ta

(a)

swap no, n1 -­.A:"-__

1b

(b)

Figure 5.6: Dealing with Multiple Sources: Exchanging nodes on paths between source
nodes (a) before exchange (b) after exchange

LrER stabTJsi, r) (i = 1,2,3) can also be expressed in the same way and then

stabTa is soon calculated. stabTb can also be known by similar method and then

Ano,nl can be evaluated to validate exchanging no, nl. Note that the maximum delay

from sources of Tb is validated before the actual replacement takes place. This can be

easily calculated by combining depth(TsubTk) (k = 0,1,2,3) values and link delays

around no and nl.

One important issue here is, it is impossible to cope with irregular nodes at dif­

ferent places simultaneously, as each of them is dominant on each other. Therefore,

"independent movements may not give the expected result or may violate the delay con­

straint. So when the refining process reaches an irregular node, it asks root node for the

permission and root node pennits once all regular node refining is done. And also the

information about each irregular node is sent to root node, where each of them receives

required data for the above calculations4 . and root node permits once all regular node

refining is done. And also the information about each irregular node is sent to root

node, where each of them receives required data for the above calculations5.

4lock-free control mechanism is not much time consuming as the amount of irregular nodes is usually
smaller

5lock-free control mechanism is not much time consuming as the amount of irregular nodes is usually
smaller

88

Table 5.1: Perfonnance of Proposed Protocol for Various Delay Bounds
number of nodes 100 200 500 1000

Initial depthT[ms] 258 279 289 306
tree stabT 0.37 0.27 0.18 0.13

Dmax= depthT[ms] 480 472 481 463
500[ms] stabT 0.46 0.46 0.38 0.34

oflink restore 72 107 378 301

Dmax= depthT[ms] 751 879 901 934
l[s] stabT 0.55 0.53 0.48 0.43

oflink restore 136 235 456 502

Dmax= depthT[ms] 1207 1324 1372 1402
1.5[s] stabT 0.62 0.62 0.58 0.52

of link restore 216 292 691 673

5.4 Experiments

5.4.1 Simulation Experiments

Extensive simulations have been conducted to evaluate how the nodes on the tree can

receive multimedia streams without outages. The tree stability (stabT) is the metric

used for this purpose, because, higher the tree stability, lower the data outages occur

from the upstream. Experiments were carried out with up to 1,000 overlay nodes using

our GUI-assisted ALM protocol simulator, which is based on our middleware [33] for

ALM protocols and will be open to the public soon.

Here, we denote the setting of our experiments. The node-to-node delays on the

overlay network (a full mesh) were generated from a standard distribution, where

/-L = lOO [ms], a = 20[ms] (i.e. N(lOO, 202). The degrees of nodes were set

to follow a. Pareto distribution [27] with parameters a = 0.6 and b = 20. We use

Pareto distribution in GNU scientific library where the distribution function is defined

as p(x) = (a * ba)/x(a+l) (x 2: b). The lifetimes of nodes were used as stability coef­

ficients of nodes, and were set to follow a Pareto distribution with parameters a = 1.2

andb = 1.

(Effect of maximum delay bounds (depthT)) First we have checked for the pro­

posed protocol's behavior at various delay bounds with different numbers of nodes.

Since our protocol improves stabT under the given delay bound, the improvement is

small when the delay bound is very small. Table 5.1 shows this situation. When the

89

Table 52· Swapping Policy Comparison ..
centralized decentralized

stabT depthT stabT depthT # oflink
[ms] [ms] restore

proposed 0.82 460 0.64 1238 843
s· d-first 0.80 536 0.62 1165 818

s-first 0.78 418 0.61 1330 827

delay bound becomes large, the tree is refined based on the given delay constraints and

the value of stabT can be improved. The value of stabT is degrading gradually with

increase of the number of nodes since in general a bigger tree is required for a bigger

delay constraint in order to maximize stabT.

[Effect of node swapping policies] We have compared the perfonnance of our node

swapping policy with s . d-first and s-first based swapping, where nodes with higher

s . d product and higher s are moved upwards. Here, basically a node u is replaced with

its child v if it improves the value of stabTu where Tu denotes the sub-tree rooted at u.

This s·d product has been used in some of the previous lifetime aware schemes like [27]

and [28]. Table 5.2 compares the perfonnance ofthose methods. Here we set depthT

to be large enough (=2[s)) to allow each method to work freely and also limited the

number of source nodes to one as those existing schemes only consider a single source

context. Our simulation results for the number of nodes = 500 show that the proposed

method achieves better stabT for both the centralized and de-centralized schemes. For

the centralized schemes, there exists no node swapping, but exists a policy for node

selecting order. Therefore, Table 5.2 compares the centralized algorithm described in

Section 5.2.2, with the s . d product and s prioritized methods. The results show that

our protocol is better for both the centralized and de-centralized schemes.

[Effect of source node count] Another interesting aspect to see is how our protocol

works with different numbers of source nodes. Table 5.3 illustrates the results. Here,

Dmax and the number of nodes were set to 1.5[s] and 500 respectively. This results

state that the perfonnance degrades slightly when the number of sources increases.

This is because the nodes are more restricted by multiple delay bounds to move when

there are more sender nodes.

90

instability distribution of Planet Lab nodes
14 ------------------.-----.------,

I--------------l 12

10

... •
4 ...

...
2 •••• II

•• * • •
o

0.1 1 10 100 1000

instability (application / phYlical network delay)

Figure 5.7: PlanetLab Instability Distribution

5.4.2 PlanetLab experiments

We have evaluated the performance of the proposed protocol through experiments on

PlanetLab. The experiments were carried out using our middleware [33]. This middle­

ware supports implementation and evaluation of various kinds of ALM protocols. We

have implemented our protocol and two greedy algorithms that construct a minimum

delay tree and a maximum bandwidth utilization tree respectively with greedy schemes.

These greedy algorithms selects current tree T's next adding node u from the remain­

ing nodes R - T in such a way, where T + u gives the minimum depth (or maximum

bandwidth utilization) among all nodes in R. We have compared the performance of

multimedia streaming delivery among these three protocols.

91

500
-ci.l 450

0..
~ 400
'-" 350
~ 300
~ 250
~
~ 200
~ 150
~ 100
~ 50

o

of nodes vs average bandwidth
,-~------------,

----------------- -+- delay_greedy

~~~1===~---------------·--_I~proposed 

f--~------"'-.~----"~------------___I-a- bandwidth_greedy 

20 40 60 80 100 120 140 160 180 200 

# of nodes 

Figure 5.8: Average Bandwidth vs Number of Nodes 

I 

Experimental environment 

First, we describe our experimental environment. PlanetLab nodes are located on all 

over the world and we have randomly selected those nodes. The number ofterminals is 

320. The terminal configuration is combination from Pentium 3 (l.2GHz) to Pentium 

4 (3.4GHz), and the memory sizes vary from 512MB to 3.6GB. They use Linux OS 

version 2.6.l2-1.1398.FC4.5.planetiab and JRE1.6 (Java version). 

In order to determine unstable PlanetLab nodes, we have compared physical net­

work delay and application level network delay. "ping" command can provide mea­

sures only for physical network delay. However, application level packet forwarding 

includes not only physical network delay but also delay caused by node state, packet 

generation, queuing and so on. Here, we define application level RTT(round trip 

time)/operating system level RTT of each PlanetLab node as their "instability". The 

distribution of instability of each PlanetLab node is shown in Fig. 5.7. It shows some 

nodes have much higher instability than the others in real environments. We consider 

the nodes with more than 1.5 instability are unstable. 

92 



45 

40 

~ 35 
UJ 

E 30 

~ 25 
:t3 
:::; 20 
cu 

~ 15 
~ 
~ 10 

5 

o 

# of nodes vs average jitter 

-+- delay....greedy 

--- proposed 
-.- bandwidth....greedy 

~ 
--

---~ --------/ ~ 
/ L 

.... ---~ 
--

20 40 60 80 100 120 140 160 180 200 

# of nodes 

Figure 5.9: Average Jitter vs Number of Nodes 

Scenario of experiments 

Jitter and bandwidth were selected as the streaming evaluation metrics. Two scenarios 

were used to compare the performance of our protocol and the greedy algorithms. We 

have evaluated the average jitter and bandwidth for (1) topology size and (2) the ratio 

of unstable nodes, respectively. 

The scenario ofthe experiment (1) is as follows. First, 20 nodes joined the applica­

tion forming the initial topology. Then streaming was started after assigning a "source 

node" as the streaming-source. Here, the node joined first was considered as the source 

node and the streaming-rate was set to 500kbps, where we assume a video streaming 

application. Note that we selected the same node as the source node in each protocol. 

Next, another 20 nodes were added and the same experiment was carried out, and this 

was repeated until the number of nodes reached 200. 

In the experiment (2), 200 nodes were selected and joined the session. The ratio of 

unstable nodes is changed from 0% to 25% at 5% intervals. The topology is constructed 

according to each protocol and the streaming-rate is also set to 500kbps. The quality 

of the streaming received at PlanetLab nodes can be confirmed on our web site [34]. 

93 



ratio of unstable nodes vs average bandwidth 

450 -------------------------r-~----~~ 
--+-- delay.....greedy 

'U:i' 400 
p.. 

~ 350 

~ 300 
.~ 250 _--.J 

'0 
~ 200 
~ 

,.Q 
a> 150 
bIl 
~ 100 
a> 

~ 50 

0 
o 5 10 15 20 25 

ratio of unstable nodes (%) 

Figure 5.10: Average Bandwidth vs Ratio of Unstable Nodes 

Experimental results 

Fig. 5.8 and Fig. 5.9 show the average bandwidth and jitter of each protocol over the 

number of nodes, respectively. The average bandwidth utilization is decreased with 

the increasing number of nodes on the delay greedy algorithm, which causes lower 

streaming qualities. The proposed protocol achieves bandwidth utilization close to that 

of bandwidth greedy algorithm, despite the latter is greedily optimized for bandwidth 

utilization. The average jitter of the receiving stream is lower on the proposed protocol 

compared to the other greedy algorithms. In particular, the bandwidth greedy algorithm 

that considers neither the delay nor the instabilitY of nodes has higher jitter. On the 

bandwidth greedy scheme, jitter is increased by the unstable nodes reside close to the 

source node and this lowers the bandwidth utilization. In contrast, such unstable nodes 

are located as lower as possible in the tree and the quality of the streaming is maintained 

higher. Fig. 5.10 and Fig. 5.11 also show that the quality of the streaming is highly 

influenced by the unstable nodes in the greedy algorithms. 

These real environmental experiments show that our protocol provides a better 

quality of streaming and scalability than delay based and bandwidth utilization based 

greedy algorithms by taking the instability of nodes into account. 

94 



50 
45 

C) 40 
Q) 

S 35 
~ 30 
Q) 

~ 25 . ....., 
~ 20 
~ 15 
~ 10 

5 
o 

--

-

-

ratio of unstable nodes vs average jitter 

-+- delay -weedy 
--- proposed 

~ -- bandwidth-weedy / 
/ / 

~ ~ 

o 5 10 15 20 25 

ratio of unstable nodes (%) 

Figure 5.11: Average Jitter vs Ratio of Unstable Nodes 

5.5 Concluding Remarks 

In this chapter, we have proposed a decentralized overlay multicast protocol for in­

teractive multimedia applications including media streaming. The protocol constructs 

a spanning tree where the receive path stability of the entire tree is maximized while 

satisfying the delay-from-source constraint and degree constraint for each node. This 

can minimize the negative impact of end-hosts' unexpected leaves. The protocol is 

designed to cope with mUltiple senders. Simulation experiments show that it can im­

prove the total receive path stability under given delay and degree constraints, and 

that the more delay constraints are relaxed, the more the total receive path stabil­

ity is improved. Our PlanetLab experiments show that the proposed protocol have 

outperformed greedy algorithms in terms of bit-rate and jitter. The media files re­

ceived in both cases are available from our web site http://www-higashi.ist.osaka­

u.ac.jp/software/stableJUulticast.html. 

95 



Chapter 6 

Conclusion 

The major contributions of the ALM schemes discussed in this dissertation are as fol­

lows. 

Cl. Decentralized construction of minimum delay spanning trees under bandwidth 

constraints 

C2. Formulation of a new problem associating multiple-sources in minimum delay 

spanning trees 

C3. Design and implementation of an adaptation mechanism that well supports me­

dia streaming 

. C4. Consideration of heterogeneous end-users for interactive overlay multicast 

C5. Decentralized construction of stability oriented spanning trees in multiple source 

context 

As for Cl, an ALM scheme called MODE has been proposed in order to meet the 

major demands of interactive group applications, which constructs a Degree Bounded 

Minimum Diameter Tree (DBMDT) in a de-centralized manner. The overlay tree, 

which is a spanning tree, constructed by this scheme satisfies the following condi­

tions: (i) the maximum delay between any pair of nodes is minimized (referred by 

"minimum diameter"), (ii) the number of overlay links connected to each node (de­

gree) is restricted by its bandwidth availability (referred by "degree bounded") and (iii) 

scalable with its de-centralized design. In addition to the above features, MODE is 

resilient for node failures (un-announced departures) by providing quick restoring for 

96 



broken trees. For this, MODE proactively calculates a node-to-connect for each node 

using some local information and this node is used in case of isolation from the main 

tree. The experimental results using ns-2 have shown that MODE could achieve shn,­

ilar diameters with CT[II] algorithm, a centralized scheme that greedily constructs a 

DBMDT, in a small computation time and small amount of control traffic even though 

MODE is autonomous and decentralized. 

C2 discusses the association of multiple sender nodes in minimum diameter span­

ning trees and minimizes the maximum delay from those sender nodes. This constructs 

a sender-dependant Degree Bounded Minimum Diameter Tree(s-DBMDT). A java mid­

dleware based on STS protocol has also been designed and implemented (C3). This 

middleware consists of an adaptation mechanism to identify and relocate the nodes of 

low streaming performance, and this helps to achieve a better multimedia streaming 

quality. The performance evaluation, which has been done based on experiments in 

both simulated networks and real n,etworks, strongly indicates the efficiency and use­

fulness of our protocol. 

C4 discusses the issues of mobile terminals in ALM schemes, and proposes a pro­

tocol called MODE-m extending from our initial work MODE. In MODE-m the ALM 

tree is constructed carefully and dynamically to prevent those hosts from staying at 

critical positions that affect the end-to-end latency and the stability of the ALM tree. 

The experimental results have shown that this dynamic feature is very effective to keep 

the diameter as small as possible under the existence of mobile nodes. 

The reliability problems of end-users have been discussed in C5. For example, less­

desired users leave the session sooner and often without any prior notification or cause 

delay and harmful jitters when they stay in the session, which makes the participants 

in the' downstream suffer considerable degradation of the quality. C5 addresses this 

reliability issue by recognizing it as the user-lifetime and propose a stability oriented 

overlay multicast scheme, which covers an aspect different from the previous MODE, 

STS or MODE-m. The extensive simulations and experiments conducted in PlanetLab 

have shown the usability of this protocol. 

The future work of this study includes conducting larger scale real world experi­

ments with the proposed ALM schemes to investigate their pros and cons in various 

real world situations. We strongly hope those will help ALM technology to spread 

through the real world network applications to realize the next generation communica­

tion paradigm. 

97 



Acknowledgement 

My foremost thank goes to my supervisor Professor Teruo Higashino of Osaka Uni­

versity. Without him, this dissertation would not have been possible. I thank him for 

his patience, kindness and excellent understanding that carried me on through difficult 

times of both research and personal life, and for his continuous support, encouragement 

and guidance of the work. 

I am very grateful to Professor Makoto Imase, Professor Koso Murakami, Profes­

sor Masayuki Murata and Professor Hirotaka Nakano of Osaka University for their 

invaluable comments and helpful suggestions concerning this thesis. 

I would like to express my sincere and 'deep gratitude to Associate Professor Hi­

rozumi Yamaguchi of Osaka University for the continuous guidance, valuable sug­

gestions and discussions throughout this work. His valuable feed back has contributed 

greatly to this dissertation. And also I would like to express my thank to Professor Akio 

Nakata of Hiroshima City University, Associate Professor Keiichi Yasumoto of Nara 

Institute of Science and Technology who have provided many valuable comments. 

I am very grateful to Assistant Professor Takaaki Umedu of Osaka University for 

his insightful and constructive comments. And also a big thank goes to all the members 

of Higashino Laboratory of Osaka University for their helpful advice. 

I am also grateful to Kyouritsu International Exchange Foundation, Ito Foundation 

For International Education Exchange and International Communications Foundation 

(lCF) in Japan for supporting me financially from under graduate to post graduade 

studies. 

Again my deep gratitude goes to my parents who educated me being in infinite 

difficulties, and to my two bothers for their support and encouragement.. 

Finally, I would like to thank my wife Malee, daughter Sayumi and son Misaka for 

their infinite patience, encouragement and understanding. 

98 



Bibliography 

[1] Y. H. Chu, S. G. Rao, and H. Zhang. A case for end system multicast. In 

Proc. of ACM Int. Conf. on Measurement and Modeling of Computer Sys­

tems (SIGMETRICS '00), pages 1-12, 2000. Tools are provided: http://www-

2.cs.cmu.edul streaming/index.html. 

[2] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling conferencing applica­

tions on the internet using an overlay multicast architecture. In Proc. of ACM Int. 

Conf. on Applications, Technologies, Architectures, and Protocols for Computer 

Communications (SIGCOMM'OJ), pages 55-67, 2001. 

[3] V. Roca and A. El-Sayed. A host-based multicast (HBM) solution for group 

communications. In Proc. of IEEE Int. Conf. on Networking (ICN'OJ), pages 

610-619,2001. 

[4]. P. Francis. Yoid: Extending the internet multicast architecture. 

http://www.isi.eduldiv7 /yoid/, 2002. 

[5] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An application level 

multicast infrastructure. In Proc. of USENIX Symp. on Internet Technologies and 

Systems (USITS'OJ), pages 49-60, 2001. 

[6] S.Y. Shi, 1.S. Turner, and M. Waldvogel. Dimensioning server access bandwidth 

and multicast routing in overlay networks. In Proc. of ACM Int. workshop on Net­

work and Operating Systems Supportfor Digital Audio & Video (NOSSDAV'OJ), 

pages 83-91, 2001. 

[7] S. Banerjee, C. Kommareddy, K. Kar, S. Bhattacharjee, and S. Khuller. Construc­

tion of an efficient overlay multicast infrastructure for real-time applications. In 

99 



Proc. of IEEE Int. Conj on Computer Communications (INFOCOM'03), pages 

1521-1531,2003. 

[8] R. Cohen and G. Kaempfer. A unicast-based approach for streaming multicast. In 

Proc. of IEEE Int. Conf. on Computer Communications (INFOCOM'OI), pages 

440-448, 2001. 

[9] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable application layer 

multicast. In Proc. of ACM Int. Conj on Applications, Technologies, Architec­

tures, and Protocols for Computer Communications (SIGCOMM'02), pages 205-

217,2002. 

[10] X. Zhang, J. Liu, B. Li, and y'-S.P. Yum. Coolstreaming/donet: a data-driven 

overlay network for peer-to-peer live media streaming. In Proc. of IEEE Int. 

Conf. on Computer Comm1Jnications (INFOCOM'05), pages 2102-2111,2005. 

[11] S. Shi andJ. Turner. Routing in overlay multicast networks. In Proc. of IEEE Int. 

Conj on Computer Communications (INFOCOM'02), pages 1200-1208,2002. 

[12] H. Yamaguchi, A. Hiromori, T. Higashino, and K. Taniguchi. An autonomous 

and decentralized protocol for delay sensitive overlay multicast tree. In Proc. of 

IEEE Int. Conj on Distributed Computing Systems (ICDCS'04), pages 662-669, 

2004. 

[13] E. M. Royer and C. E. Perkins. Multicast ad hoc on-demand distance vector 

(maodv) routing. In IETF Internet Draft, draft-ietf-manet-maodv-OO.txt, 2000. 

[14] D. Thaler and C. V.Ravishankar. Distributed center-location algorithms. IEEE 

Journal on Selected Areas in Communications, 15(3):291-303, April 1997. 

[15] J. C.-H. Lin S. Paul, K. K. Sabnani and S. Bhattacharyya. Reliable multicast 

transport protocol (rmtp). IEEE Journal on Selected Areas in Communications, 

15(3):407-421,ApriI1997. 

[16] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable multicast for het­

erogeneous networks. In Proc. of IEEE Int. Conj on Computer Communications 

(INFOCOM'OO), pages 795-804,2000. 

[17] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering 

multicast to end users. In Proc. of IEEE Int. Conj on Computer Communications 

(INFOCOM'02), pages 1366-1375,2002. 

100 



[18] S. McCanne and V. Jacobson. Vic: A flexible framework for packet video. In 

Proc. of ACM Int. Conf on Multimedia (MULTIMEDIA '95), pages 511-522, 

1995. 

[19] J. Liebeherr and T. K. Beam. HyperCast: A protocol for maintaining multicast 

group members in a logical hypercube topology. In Proc. of Int. Workshop on 

Networked Group Communication (NGC '99) (LNCS 1736), pages 72-89,1999. 

[20] J. Liebeherr and M. Nahas. Application-layer multicast with delaunay triangula­

tions. In Proc. of IEEE Global Telecommunications Conf. (Globecom '01), pages 

1651-1655,2001. 

[21] N. Mimura, K. Nakauchi, H. Morikawa, and T. Aoyama. RelayCast: A middle­

ware for application-level multicast services. In Proc. of Int. Workshop on Global 

and Peer-to-Peer Computing on Large Scale Distributed Systems (GP2PC'03), 

pages 197-212,2003. 

[22] Y. Cui, B. Li, and K. Nahrstedt. ostream: Asynchronous streaming multicast in 

application-layer overlay networks. IEEE Journal on Selected Areas in Commu­

nications, pages 91-106, June 2004. 

[23] M. Yang and Z. Fei. A proactive approach to reconstructing overlay multicast 

trees. In Proc. of IEEE Int. Conf. on Computer Communications (INFOCO M'04), 

pages 2743-2753,2004. 

[24] T. M. Baduge, A. Hiromori, H. Yamaguchi, and T. Higashino. Design and im­

plemetation of overlay multicast protocol for multimedia streaming. In Proc. of 

IEEE Int. Conf. on Parallel Processing (ICPP'05), pages 41-48, 2005. 

[25] Y. Nakamura, H. Yamaguchi, A. Hiromori, K. Yasumoto, T. Higashino, and 

K. Taniguchi. On designing end-user multicast for multiple video sources. In 

Proc. of 2003 IEEE Int. Conf. on Multimedia and Expo (ICME'03), pages III 

497-500,2003. 

[26] K. Sripanidku1chai, A. Ganjam, B. Maggs, and H. Zhang. The feasibility of 

supporting large-scale live streaming applications with dynamic application end­

points. In Proc. of ACM Int. Conf. on Applications, Technologies, Architectures, 

and Protocols for Computer Communications (SIGCOMM'04), pages 107-120, 

2004. 

101 



[27] M. Bishop, S. Rao, and K. Sripanidkulchai. Considering priority in overlay mul­

ticast protocols under heterogeneous environments. In Proc. of IEEE Int. Conf. 

on Computer Communications (INFOCOM'06), pages 1-13,2006. 

[28] Guang Tan and Stephen A. Jarvis. Improving the fault resilience of overlay multi­

cast for media streaming. IEEE Transactions on Parallel and Distributed Systems, 

18(6):721-734, June 2007. 

[29] R. L. Graham and P. Hell. On the history of the minimum spanning tree problem. 

IEEE Annals of the History of Computing, 7(1):43-57, January 1985. 

[30] P. Huang and 1. Heidemann. Minimizing routing state for light-weight network 

simulation. In Proc. of Int. Symp. on Modeling, Analysis and Simulation of Com­

puter and Telecommunication Systems, pages 108-116, 2001. 

[31] K. Sripanidkulchai, B. Maggs, and H. Zhang. An analysis oflive streaming work­

loads on the internet. In Proc. of ACM SIGCOMM Conf. on Internet Measure­

ment, pages 41-54, 2004. 

[32] M. R Garey and D. S. Johnson. Computers and Intractability: A Guide to 

the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). 

W.H. Freeman & Company, third edition, 1979. 

[33] K. Ikeda, T. M. Baduge, T. Umedu, H. Yamaguchi, and T. Higashino. A 

middleware for implementation and evaluation of application layer multi­

cast protocols in real environments. In Proc. of Int. workshop on Network 

and Operating Systems Support for Digital Audio & Video (NOSSDAV'07), 

pages 125-130, 2007. Tools are provided: http://www-higashi.ist.osaka­

u.ac.jp/softwarel ALM/middlewareAPII. 

[34] T. M. Baduge, K. Ikeda, H. Yamaguchi, and T. Higashino. Our web site. 

http://www-higashi.ist.osaka-u.ac.jp/software/stableJllulticast.html. 

102 






