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Abstract

We study the baryon and tetraquark currents systematically in the flavor, color and
Lorentz spaces. The tetraquark currents are also studied in both the diquark-antidiquark
(99)(gG) construction and meson-meson-(gg)(dq) construction, which are proved to be
equivalent. By using these currents, we perform the QCD sum rule analyses, and study
light scalar mesons (¢(600), x(800), ao(980) and f,(980)) with quantum numbers JF¢ =
0+, Y(2175) with JF¢ = 17—, m;(1400), m;(1600) and ;(2000) with I¢JP¢ = 1717+,
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Preface

The theory of the strong interactions, Quantum Chromodynamics (QCD), originated
from the systematics of hadron spectroscopy. The spectroscopy contains meson and
baryon states, many of which are well classified by the quark model with quark contents
qq and gqq. Besides the quark model, QCD allows much richer hadron spectrum such
as multiquark states, hadron molecules, hybrid states, and glueballs etc. However the
spectrum of QCD seem to saturate at g7 and gqq. Therefore, we call these spectrum
beyond ¢g¢ and ¢qq exotic hadrons (exotica).

Exotica have been studied more than thirties years. R. L. Jaffe wrote two famous
papers about scalar tetraquark states in 1976 [93,94], whose structure is still not clear
yet. In 2003, the pentaquark ©% was observed in several experiments, but then several
experiments denied its existence. After five years of intense study, the status of ©F is
still controversial [137]. There are many other exotic candidates, such as m1(1400) [10],
D,;(2317) [18], X (3872) [45], and Y (4260) [19], etc. Their properties are difficult to be
explained by the conventional picture of ¢4 and qqq.

In order to study these exotica, lots of methods have been used. Although we have
known a lot about QCD, but still there are many important and essential dynamical
aspects that we need to clarify. As a doctor student in RCNP, Osaka University, I spent
my latest three years on the study of QCD. I hope I contributed, although the time is
not long, and my contribution is rather restricted. Now I am trying to graduate and
changing my career in the research, and I am required to write this doctor thesis.

The method we used in this thesis is the QCD sum rule, which has proven to be
a powerful and successful non-perturbative method for the past decades [155,160]. An
introduce of QCD sum rule is written in Chapter 1, which contains the SVZ sum rule,
and the finite energy sum rule.

This thesis is separated into two parts. In the first part, we classify the interpolating
fields (currents) for hadrons in QCD, which are used in the QCD sum rule analysis in the
second part. QCD currents can contain quark fields, antiquark fields and gluon fields.
The quark and antiquark fields are Dirac spinors, and so currents can also be spinors,
such as baryon current

€abeds” CYsq54s -
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2 CHAPTER 0. PREFACE

Currents can also be scalars other than matrices, such as the meson current

41593 -

The notations and conventions we used are written in Chapter 1, where we construct
meson currents (gg), diquark currents (gg) and antidiquark currents (gg). In Chapters 2
and 3, we construct baryon currents and tetraquark currents, respectively. Chapter 4 is
the discussion of color structure of multiquark currents.

After classifying current in the first part, we can start to perform the QCD sum rule
analysis, which is the second part of this thesis. We have three important criteria:

1. Convergence of Operator Product Expansion (OPE),

2. Positivity of spectral density,
3. Sufficient amount of pole contribution.

We take ud3s currents as an example and show our QCD sum rule analysis in Chapter 5.
This procedure will be used in the following chapters: in Chapter 6, we study light scalar
mesons; in Chapter 7, we study Y (2175) as a tetraquark states; in Chapter 8, we study
m1(1400), 71(1600) and 71(2015). In Chapter 9, the QCD sum rule is used to study the
bottom baryons which contain heavy quarks.

Above I just gave a short introduction to my thesis. In my three years’ research, I
learned much and had a great deal of fun. I hope the readers would enjoy my thesis.



Notations and Conventions

Notations and conventions used in this thesis mostly follow the book “An Introduction to
Quantum Field Theory” written by M. E. Peskin and D. V. Schroeder (Addison-Wesley
Publishing Company, 1997) [152].

Quark field ¢4(z) is a Dirac spinor at location z, and contains a flavor index A and a
color index a. For antiquark field, we use ¢4(z). By using the following y—matrices:

(1 0 (0 o (01
M=V 21 )% T\ =6, 0 )T 10 )

where

(01 (0 — (10
1= 10)27 i 0 )0 o1 )
we can write the quark field as a combination of left- and right-handed fields:

=4qr+4qr,

where

_1l-% _ 14
qar ) 4,9Rr B

q.
For gluon field, we use G}, which has a color index n. The covariant derivative is
n

A
D,u = 3M + 2957/12 s

where we take the fix-point gauge

n 1 Vo
A#=—§.’L' G,U.I/'

3



4 CHAPTER 0. PREFACE

The coupling constant g, defined here is different from Peskin’s book, where D = 9—ig A.
But it is used in some other QCD sum rule studies [85,177].
We work under the metric tensor:

o
T
<
|
Nl
=
<
I
O OO =
o
I
—

with Greek indices running over 0, 1, 2, 3.
We use Sapc... to represent a totally symmetric matrix, and espc... to represent a
totally antisymmetric matrix. Especially, we use €., in the four-dimension:

o123 = —1.

In order to describe the color structure of QCD, SU(3)c¢, we use the eight Gell-Mann
matrices: -

010 0 — 0 1 0 0
)\1= 1 00 ,)\2: 7 0 0 ,)\3— 0 -1 0 y
0 00 0 0 0 0 0 O
0 01 0 0 — 00O
/\4: 0 00 ,)\5: 00 0 ,)\6— 0 01 3
100 i 0 0 010
0 0 O 1 1 0 0
M=[00 —i |, =—4|01 0
0 ¢« O V3 0 0 -2

They are traceless, Hermitian, and their normalizations are
' Tr(XAi) = 20;5.
The three discrete symmetries of QCD are
1. Parity (P):
' Pq(t, 7)P = \oq(t, -7 ;
2. Time Reversal (T):
Tq(t, &)T = —ixN3q(—t,7);
3. Charge Conjugation (C):
Cq(t, 2)C = ~Cq(t,3),

where the charge-conjugation operator C is defined to be C = iy?+°.



Chapter 1

Introduction

1.1 QCD Lagrangian

Quantum Chromodynamics (QCD), the theory of strong interactions among quarks and
gluons, is a quantum field theory of a special kind called non-Abelian gauge theory. The
gauge invariant QCD Lagrangian is:

7. . 1 a v
¢ - ¢i(wﬂ(pﬂ)ij—m5ij)¢j-ZGWGZ | (1.1)
’ A . a7 a 1 a v
= (70, — m) s — g AL Ty — 7GR, G

where ¢;(z) (i = 1,2,3) is the quark field, the fundamental representation of the SU(3)
gauge group; Af, are the gluon fields, the adjoint representation of the SU(3) gauge group;
7. are the Dirac matrices, connecting the spinor representation to the vector represen-
tation of the Lorentz group; and T (a = 1,2,---,8) are the generators, connecting the
fundamental, anti-fundamental and adjoint representations of the SU(3) gauge group.
The Gell-Mann matrices A}, provide one such representation for the generators:

a
A

T 5 - (1.2)
We emphasize here that the covariant derivative in this thesis is defined to be
(D#)ij = B,Léij + igAZjTZ- . (13)

Although we know QCD Lagrangian very clearly, its non-Abelian nature prevents us
to solve it accurately. There are many different kinds of theories, such as Lattice QCD,
1/N expansion and many effective theories. QCD sum rule is one of them. The QCD
sum rule has proven to be a very powerful and successful non-perturbative method for the
past decades [155,160]. The idea is to work with gauge invariant operators and operator
product expansions of them.
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1.2 Two-point Correlation Function

In both the Lattice QCD and the QCD sum rule we need to study the two-point corre-
lation function:

Ii(z) = (QIT¢(-’E)¢(0)IQ> ) (1.4)

where |Q) denotes the ground state, and T is the time-ordering operator. Correlation
functions contain information about the distribution of points or events, or things across
some spacetime. It is used in in astronomy, financial analysis, quantum field theory and
statistical mechanics, etc. In the quantum field theory the two-point correlation function
can be interpreted as the amplitude for the particle propagation or particle excitation.
In lattice QCD spacetime is represented not as continuous but as a crystalline lattice,
vertices connected by lines. Therefore, we use following correlation function: '

(L) = (QT$(L)$(0)[2) , (1.5)

where L is not discrete rather than continuous, and we work in the region L — Large.
While in the QCD sum rule we use the dispersion relation:

) = L5 "o S, (16)

which is derived from the integration shown in Fig. 1.1. Here we need to work in the
region —Q? — oco. In this region, we can use a method called operator product expansion
to calculate the two-point correlation function.

1.3 OPE

The method of operator product expansion is useful not only in QCD, but also in the more
general quantum field theory. Its basic idea is to replace a product of several operators
with a single effective vertex, which was first studied by Kenneth G. Wilson [176].

First we assume that there are two operators O(z) and O3(0), with a small distance
z. As an example, we choose

O = CZL')’,u'UfL; Oy = UL YuSL, (1-7)

whose product is just the weak interaction vertex. By studying this product, we can
study the renormalization of the weak interaction in QCD.
In order to study this product, we define the following Green’s function:

G(@; 91,5 Ym) = (O1(2) O20)m1 (91) -+ Th (Ym)) (1.8)
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Figure 1.1: Contour of integration involved in the QCD sum rule.

where 7;(y;) are the fields located much farther away, and so irrelevant with the calculation
of the product of O, and O,. We assume z — 0, and so the effect of this product can be
described as the effect of a local operator placed at 0. It is natural to assume that there
is a standard basis of operators, and so the local operator coming from the product is
just a linear combination of these basic operators:

2)04(0) = Z (1.9)

where C7,(z) are the coefficients depending on the small distance z. The Green function
G(z;y1, -, Ym) can be then expanded:

G 1,y Ym) = Z S (2N On (@) (1) -+ N (Ym) - (1.10)

To calculate the product of O (x) and O5(0), we need to calculate the QCD corrections
to the strength of the non-leptonic weak interaction vertex. We just show the final result
here:

T = [0:05]|u (1.11)
— %1+a11%1+a12%2,
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where the subscript 0 is used to denote that the operator is located at location 0, and M
is the renormalization scale (in this case it is of order my;'). The operator Jg is another
local operator used in the weak interaction vertex: '

J? = 0304, (1.12)

where

03 = aL'Yu“L; 04 = CZL’)/MSL. (113)

Two coefficients a'! and a'? are counterterms, which depend on the renormalization scale

M:

2 2
m_ _ 9 I'2-4d/2) 12 _ g I'(2-4d/2)
T Tiew g ¢ T P e R (44
We can also study the operator product J?2:
Ty = (0304 (1.15)
— \702 +a21%1 +a22%2,
where

a®'=a"?, d*® =q' (1.16)

So we can obtain the Callan-Symanzik equation, and now the matrix v linking two
operators J! and [J? is

0 ¢ (-2 6 '

The eigen-operators are:

1 1 - _
TV = (T = T% = Z(dpyurtoyest — ryuurdrvuse) , (1.18)
2 2

1 L - 7
J32 = _(jl + j2) = —(dr Y urUryuSt + UL YuuLdry,sL) ,
2 ) 2

with the eigenvalues:
2 2
g g
Ton2 3 e
The first eigen-operator has isospin 1/2, and the second one has isospin 3/2. Indeed
these two eigen-operators have also been differentiated in the experiments, and we have

the OZI rule that the first process is much faster that the second one [87,147,188].

v (1.19)

N
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1.4 QCD sum rule

In QCD sum rule, we use the method of operator product expansion, and now the local
operators are unit operator I and those constructed from quark and gluon fields, for
example:

meqq, GLGY .- (1.20)

These operators have non-zero vacuum expectation values due to non-perturbative QCD
effects. In the asymptotically free limit, this expansion can be calculated by using the
perturbative method. Then we can relate this to the quantities of QCD at the low energy
side by using dispersion relations. At the low energy region, the degrees of freedom are
hadrons other than quarks and gluons. By relating them, we can obtain their masses and
decay widths.

In QCD sum rule, first we consider two-point correlation functions:

() = i / &2 (0| ()’ (0)[0) (1.21)

where 7 is an interpolating current, which is written as a combination of quark fields
and gluon fields. We can calculate it at the quark-gluon level up to certain order in the
expansion, by using the method of perturbative QCD with non-zero quark and gluon
condensates, such as (gq) and (g?GG), etc. The obtained OPE can be matched with a
hadronic parametrization at the hadronic level to extract information of hadron proper-

ties. At the hadron level, we express the correlation function in the form of the dispersion
' relation with a spectral function:

II(p) = /000 Ads, (1.22)

s—p?—ie

where

pls) = Y 8(s— M)(0lnln) {nln'|0)

= f28(s— M%) n higher states. (1.23)

By assuming that these exists a kinematic region where these two aspects both works,
we can evaluate many physical observables, such as masses, coupling constants, etc. For
the second equation, as usual, we adopt a parametrization of one pole dominance for the
ground state X and a continuum contribution. The sum rule analysis is then performed
after the Borel transformation of the two expressions of the correlation function, (1.21)
and (1.22)

D (M2E) = BM%H(p2) = / e—s/M%p(s)ds. (1.24)
0
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Assuming that the contribution from the continuum states can be approximated well by
the spectral density of OPE above a threshold value s, (duality), we arrive at the sum
rule equation .
S0
(M3 = ]”)2(6_]‘452(/]”12‘)3 = / e_s/M%p(s)ds. ' (1.25)
0

The use of the OPE expression for the continuum part (s > sq) of the spectral density
p(s) which is the basic assumption of the duality greatly simplifies the actual sum rule
analyses. Although ambiguities coming from the uncertainties in the continuum contri-
bution exist [127], we shall rely on that assumption as in most of the previous studies.

Differentiating Eq. (1.25) with respect to Vlf and dividing it by Eq. (1.25), finally we
B

obtain . )

M2 = [ e~ Mesp(s)ds ‘
XS MEp(s)ds

Another sum rule which is widely used is the so-called finite energy sum rule (FESR).

In order to calculate the mass in the FESR, we first define the nth moment by using the
spectral function p(s) in Eq. (1.23)

(1.26)

W(n,sp) = /030 p(s)s"ds. (1.27)

This integral is used for the phenomenological side, while the integral along the circular
contour of radius sy on the ¢* complex plain should be performed for the theoretical side.
With the assumption of quark-hadron duality, we obtain

f W (n, sp)

= W(n, 50)' . (1.28)

Hadron OPE

The mass of the ground state can be obtained as

W(n+1,sp)

Miz’(na SO) = W(TL 50)

(1.29)

Here we just briefly introduced the basic concept of the QCD sum rule. While a
detailed example is given in Chapter 5. ' ‘

During the studies of multiquark system, we found that the most complicated part is
the construction of interpolating current 5, which is written as a combination of quark
fields and gluon fields, and can couple to the physical states. It has almost all the
properties that the physical states have, such as the flavor structure, color structure, and
quantum numbers J, P and C, etc. Therefore, to begin the discussion, we first study the
basic currents:

1. meson current, which contains one quark field and one antiquark field,
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2. diquark current, which contains two quark fields.

We will just study the local fields which do not contain derivatives, while those containing
derivatives couple to excited states, which are beyond our studies. The properties of the
currents corresponding to these objects can be easily obtained, and so we will just show
the results. In the following chapters, we will use these simple objects to construct
currents for the baryon and tetraquark which are more complicated.

1.5 Meson

In this section, we study interpolating fields which contain one quark and one antiquark.
They couple to meson states, such as 7, p, etc. Due to the confinement nature of QCD,
there is only one choice for its color structure:

3.3, — 1..

The flavor can be either octet (7aAYgqs) or singlet (§aga). In the following, we will just
keep Gags, then the flavor octet and singlet can be constructed by adding Mg and 45,
respectively. The Lorentz structure can be differentiated by using y—matrices, and we
can construct five different interpolating fields:

1. Scalar:
S = gi(z)gp(z). (1.30)
It has quantum numbers J© = 0%.
2. Vector: | _
Vi = Ga(2)yugp(2) - (1.31)

It has spin J = 1 and parity P = (—1)#, where (—1)¥ = 1for p = 0, and (—1)* = —1
for u = 1,2,3. For simplicity, we write it as JF = 1.

3. Tensor:
T = G4(@)ouds @) (1.32)

It has quantum numbers J? = 1%, and can be separated into two parts: Tp; and
Ti;. To; has quantum numbers JP =17 and T;; has quantum numbers JP =17,

4. Axial-Vector:

Ap = 3a()1uv595(7) - (1.33)

It has quantum numbers J¥ = 17F.
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5. Pseudoscalar:

P = @3 (e)sa (@) (1.34)
It has quantum numbers J* = 0~.

Besides the tensor current listed above, there is another one:

T = 4(2)0w545(2) - | (1.35)

By using the equation

]
— po
OwYs = Ee;wpao' ’

It can be related to T},,. And so, it just has an opposite parity. Tj; has quantum numbers
- JP = 1% and T}; has quantum numbers J* = 1"

1.6 Diquark and Antidiquark

The diquark and antidiquark can not be combined to be color singlet, and so they do
not exist by themselves. But it is still useful to study them in order to study baryon
and tetraquark currents, which can be constructed by these basic fields together with
quark fields and antiquark fields. In this section, we just study diquark currents, and
antidiquark currents can be studied similarly.

The diquark field contains two quark spinors, and its color can be either 3. (e44.6°q°)
or 6. (S7%q°¢®). The flavor can also be either 3¢ (¢4Z%ggpqc) or 6¢ (S%Pqagr), where
- €4BC is the totally antisymmetric matrix, and S4F is the totally symmetric matrix with
N =1,.--,6. Together with y—matrices and the charge-conjugation operator C, we can
construct the diquark currents:

1. Scalar:
Ss = Eabcqu(x)Cf%qg(x): (136)
S® = ¢ (2)Cysds(x) + ¢ (2)Crsgi(a) -

The first one S® has color 3.. It has antisymmetric color structure, antisymmetric
spin structure and symmetric orbital structure, and so it should have antisymmetric
flavor 3¢ due to the Pauli principle. The second one S® has color 6. and so flavor
6¢. They both have quantum numbers JE = 0. The spin can be studied more
carefully:

S=0,L=0,J=0,

which can be written as 1.S;.
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2. Vector:
Ve = ewcdd (@)Ovuvsi(), (1.37)
Ve = ¢i (@)Cvursas(z) + ¢4 (2)Cvuvsas () -

The first one V:’ has color 3, and flavor 3¢; the second one Vl? has color 6. and
flavor 6¢. They both have quantum numbers J* = 1= 3P).

3. Tensor:

Tiy = eabchT(.’E)CO'MVq%(ZIJ) ) (1'38)
Ty, = ¢i (2)Couwgs(z) + ¢4 (2)Couwap(z).
The first one Tj’y has color 3. and flavor 6¢; the second one TS,, has color 6, and

flavor 3¢. They both have quantum numbers JZ = 1%. T3 and T§ have quantum
numbers JZ = 1% (351), and T} and T}, have quantum numbers J* =1~ (*P).

4. Axial-Vector:
A = eaedd (2)Cyugi(z), (1.39)
A = ¢ (2)Cyuap(z) + ¢ (2)Cyugh () -

The first one AZ has color 3. and flavor 6¢; the second one Aﬁ has color 6. and
flavor 3¢. They both have quantum numbers JZ = 1+ (35)).

5. Pseudoscalar:
P3 = Eabcqu(x)chB(x)) (140)
P = i (2)Cqy(z) + ¢ (z)Cap(x).

The first one P2 has color 3. and flavor 3¢; the second one P® has color 6. and
flavor 6¢. They both have quantum numbers J* = 0~ (3 R).

Again, we emphasize here that there are two other tensor currents:

T, = eaedn (@)Cowrsah(z), (1.41)
T8 = ¢ (2)Coumds(z) + ¢ () Coumysas(z).

which can be related to tensor currents Tj’y and TS,,, but have an opposite parity.

Altogether we have ten different kinds of diquark currents which are listed in Ta-
ble 1.1. By using these diquark currents and adding another quark spinor, we can con-
struct baryon currents; while by adding another antidiquark current, we can construct
tetraquark currents. It is also interesting to study the diquark itself [97,153], which we
will not discuss in this thesis.
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Table 1.1: Diquark Properties of Single Currents.

(qq) 53 Vs Ts  As P51 S¢ Vo Ts As B

Flavor (f) 3 3 3 3 3|6 6 6 6 6

Color (c) 3 3 6 6 3|6 6 3 6 3

Spin (S) 0 0 (01) 1T 1|0 0 (0,1) 1 1

Orbit angular momentum (L) | 0 1 (1,0) 0 1|0 1 (1,00 0 1
TotalSpin J=S+L) [0 1 1 1 0]06 1 1 1 0




Chapter 2

Baryon Fields

In this chapter, we perform a complete classification of baryon fields written as local
products (without derivatives) of three quarks according to the chiral symmetry group
SU3)r ® SU(3)g. The case of flavor SU(2) has been studied in the reference [136].
These baryon fields have been studied long time ago, and are used as interpolators for
the study of two-point correlation functions in the QCD sum rule approach and in the
lattice QCD [38,48,51,65,65,88,103,120,122,180]. Although the chiral structure of an
interpolator does not directly reflect that of the physical state when chiral symmetry is
spontaneously broken, the minimal configuration of three quarks provides at least a guide
to the simplest expectations for baryons.

We first establish a classification under the ordinary (vector) flavor SU(3) symme-
try, and then investigate the properties under the full chiral symmetry group SU(3). ®
SU(3)g. Here, we want to study chiral symmetry together with the flavor symmetry, the
reason is that there are situations when it makes sense to consider algebraic aspects of
chiral symmetry, i.e. the chiral multiplets of hadrons, as pointed out by Weinberg {173],
and studied in many other references [79,103,118,119]. We can also use the chiral rep-
resentation as a theoretical probe for the internal structure of hadrons. For instance, for
a gq spin-one meson, the possible chiral representations are (8,1) and (3,3) and their
left-right conjugates for flavor octet mesons. As a matter of fact, for the multiquark
hadrons, the allowed chiral representations can be more complicated/higher dimensional
with increasing number of quarks and antiquarks. Hence the study of chiral representa-
tions may provide some hints to the structure of hadrons, extending possibly beyond the
minimal constituent picture [27,28,55,77,101,102]. v

We first establish a classification under the ordinary (vector) flavor SU(3) symmetry,
and then investigate the properties under the full chiral symmetry group. The method
is based essentially on the tensor method for the SU(3) group representations, while the
Fierz method for the Pauli principle associated with the structure in the color, flavor and
Lorentz (spin) spaces is utilized when establishing the independent fields. It turns out
that for local three-quark fields, the Pauli principle puts a constraint on the structure of

15
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the Lorentz and chiral representations. This leads essentially to the same permutation
symmetry structures as in the case of flavor SU(2) symmetry, with the one important
~difference being the existence of flavor singlets in the present case:

2.1 Flavor Symmetries of Three-Quark Baryon
Fields

Local fields for baryons consisting of three quarks can be generally written as

B(z) ~ eate (44 (2)CT145(2)) T2gé(x) (2.1)

where a, b, ¢ denote the color and A, B, C the flavor indices, C = iy, is the charge-
conjugation operator, g4(z) = (u(z), d(z), s(z)) is the flavor triplet quark field at
location z, and the superscript T" represents the transpose of the Dirac indices only (the
flavor and color SU(3) indices are not transposed). The antisymmetric tensor in color
space €gpe, ensures the baryons’ being color singlets. For local fields, the space-time
coordinate x does nothing with our studies, and we shall omit it. The matrices I'; 5 are
Dirac matrices which describe the Lorentz structure. With a suitable choice of I'; 2 and
taking a combination of indices of A, B and C, the baryon operators are defined so that
they form an irreducible representation of the Lorentz and flavor groups, as we shall show
in this section.

We employ the tensor formalism for flavor SU(3) a la Okubo [78,129,145,146, 158]
for the quark field g, although the explicit expressions in terms of up, down and strange
quarks are usually employed in lattice QCD and QCD sum rule studies. We shall see
that the tensor formulation simplifies the classification of baryons into flavor multiplets
and leads to a straightforward, but lengthy derivation of the Fierz identities and the
chiral transformations of baryon operators. This is in contrast to the Ny = 2 case where
we explicitly included isospin/flavour into the I';  matrices and thus produced isospin
invariant/covariant objects [136].

2.1.1 Flavor SU(3); decomposition for baryons

For the sake of notational completeness, we start with some definitions. The quarks of
flavor SU(3) form either the contra-variant (3) or the covariant (3) fundamental repre-
sentations. They are distinguished by either upper or lower index as

¢'eq = | d|, (2-2)

ga € qT = (’U,*, d*7 S*)'
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The two conjugate fundamental representations transform under flavor SU(3) transfor-
mations as

—

g — exp(i%d’)q, : .(2.3)

qT

e,
where ay (N = 1,---,8) are the octet of SU(3)r group parameters and A" are the
eight Gell-Mann matrices. Since the latter are Hermitian, we may replace the transposed
matrices with the complex conjugate ones. The set of eight AV = —(A)T = —(AV)*
matrices form the generators of the irreducible 3 representation.

Now for three quarks, we show flavor SU(3) irreducible decomposition 3 ® 3 ® 3 =
1@ 8@ 8 P 10 explicitly in terms of three quarks. It can be done by making suitable
permutation symmetry representations of three-quark products gagrgc.

1. The totally antisymmetric combination which forms the singlet,

Uiasc) = N (qaq849c + 4BGcqa + 4cqads — qBqage — qadeds — 4cqpqa) - (2.4)

The normalization constant here is A" = 1/4/6. In the quark model this corresponds
to A(1405). In order to represent this totally antisymmetric combination, we can
use the totally antisymmetric tensor €48¢. Then the flavor singlet baryon field A

can be written as:
A =eBC,, (quCqu%) Y o (2.5)

2. The totally symmetric combination which forms the decuplet,

Wiapcy = N (gag89c + qBYcqa + 4cdads + qBqage + 949cqs + qcgpqa) - (2.6)

The normalization constant depends on the set of quarks for baryons. For example,
for qa,q8,9c = u,d,s, N' = 1/+/6, while it is 1/6 for qa,q5,9¢c = u,u,u. In
order to represent this totally symmetric flavor structure, we introduce the totally
symmetric tensor SAZ¢ (P = 1,---,10). Then the flavor decuplet baryon field A
can be written as:

AP = 585 (¢5T CT1¢%) Tagls - (2.7)
The non-zero components of SAZ¢ (= 1) are summarized in Table 2.1. The rest of
components are just zero, for instance, SH1% = 0.

3. The two mixed symmetry tensors of the p and A types are defined by

‘I’fA{B]C} = N (2949B9c — 9B9c9a — 4cqaqB — 29B4AGC + GadcdB + qoqBqa)

‘I’/{\A[B}o] = N (2949B9c — qB9CqA — 40qaqB + 29BGadc — 9AqcqB — qoqBYA) -
(2.8)
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Table 2.1: Non-Zero Components of SAZC(=1)
P 1 2 3 4 5 6 7 8 9 10
AB 111 112 113 122 123 133 222 223 233 333
Baryons | ATt AT ¥ A0 30 =0 A- ¥ = O

Here the two symbols in { } are first symmetrized and then the symbols in [ | are
anti-symmetrized. The normalization constant depends again on the number of
different kinds of terms. The correspondence of the octet fields of (2.8) and the
physical ones can be made first by taking the following combinations

, Né\f\ = GBCD(/\N)DA‘I”{\A[B}C] )
where N is an octet index N = 1,2,---,8. This kind of “double index” (DC for

N{J and DA for N{Y) notation for the baryon flavor has been used by Christos [47].
In our discussions, we shall use the following form for the flavor octet baryon field

NN = ePP(AN)poease (¢4 CT16%) Tag . (2.10)

It is of the p type. But after using Fierz transformations to interchange the second

and the third quarks, the transformed one contains A type also, as we shall show

in the following. The octet of physical baryon fields are then determined by
N'+iN?*~3F N3 ~20 Ne~A, (2.11)
N*+iN°~Z",p, NS+iN ~E°n,

or put into the 3 x 3 baryon matrix

»0 A8 2_|_

75_1_% 0 8 p
N = > =+ o : (2.12)
0 2

= = _.2 A8
= = \/EA

2.1.2 Dirac fields

In this section we investigate independent baryon fields for each Lorentz group represen-
tation which is formed by three quarks. The Clebsch-Gordan series for the irreducible
decomposition of the direct product of three (%, 0) @ (0, %) representations of the Lorentz
group (the three quark Dirac fields) is

(Goe0p) ~(Goeop)s(apein)e(Goend),
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where we have ignored the different multiplicities of the representations on the right-
hand side. The three representations ((3,0) @ (0,1)), ((1,3) @ (3,1)), (3,00 ® (0,))
describe the Dirac spinor field, the Rarita-Schwinger’s vector-spinor field and the
antisymmetric-tensor-spinor field, respectively. In order to establish independent fields
we employ the Fierz transformations for the color, flavor, and Lorentz (spin) degrees of

freedom, which is essentially equivalent to the Pauli principle for three quarks.

The Flavor S’inglet Baryon

Let us start with writing down five baryon fields which contain a diquark formed by five
sets of Dirac matrices, 1,75, v, 7475 and o,

Ay = €407 (57 O gl ) 154

Ay = EabcﬁABC( C’yqu)qC )

Az = g€ (g% C")’MYSQB)’)’”QC , (2.14)
Ay = eape€™B9 (g4 Cqu)v“’ysqc ,

A5 = €abc€ABC(qA CU#UQB)UMV’Y5QC

Among these five fields, we can show that the fourth and fifth ones vanish, Aj5 = 0.
This is due to the Pauli principle between the first two quarks, and can be verified, for
instance, by taking the transpose of the diquark component and compare the resulting
three-quark field with the original expressions [47]. The Pauli principle can also be used
between the first and the third quarks, so we construct the primed fields where the second
and the third quarks are interchanged, for instance,

A7 = earee (g8 O )5l - |

Now expressing A; in terms of the Fierz transformed fields A}, we find the following
relations (see Appendix B), '

A 1 A/ 1 A/ 1 Lar ,

Lo % % 1 ;

Ay = 75,

As = A’ -I— A’2 1A'
On the other hand, by changing the indices B, C and b, ¢, for instance,
AP (g5 Cap )t

ABC (s C ) ysat

we see that the primed fields are just the corresponding unprimed ones, A} = A;. Con-

sequently, we obtain three homogeneous linear equations whose rank is just one, and we
find the following solution

!
A, = egme

= €ghet

As=4Ay = —4A; Ay = A5 = 0. (2.15)

We see that there is only one non-vanishing independent field, which in the quark model
corresponds to the odd-parity A(1405).
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The Flavor Decuplet Baryons

Among the five decuplet baryon fields formed by the five different y-matrices, only two
are non-zero:

AL = €aneSHP (057 Crua) v 1508 (2.16)
Ag = EabCSABC( ZTCO',uuqu)auu')’ng : ‘
Performing the Fierz transformation and with the relation AP = —AP (¢, S48 =

——eachPB ), we find that there is only a trivial (null) solution to the homogeneous linear
equations. Therefore, the Dirac baryon fields (fundamental representation of the Lorentz
group) formed by three quarks can not survive the flavor decuplet.

The Flavor Octet Baryon

Let us start once again with five fields, which have three potentially non-zero ones

N{V = eabceABDAgC(qf&TCQ%)'Ynga

NéN=€abc6ABD>\N (g% C%QB)QC’

NS{V = Eabc )‘N (q C’YM’YSQB)’Y#QC’ (2'17)
Ny = €gpeeBP )‘N (g Cryuds) v vs98 = 0,

NSN = eabcEABD)‘JL\DIC(QiTCUWQ%)UW'YSQE' =0.

These octet baryon fields have been studied in Refs [48,65, 88|, where the independent
ones are clarified. As before, we perform the Fierz rearrangement to obtain five equations
with the primed fields, while N} and N2¥ are not zero. For the first three equations,
Ni 23 on the left hand side should be expressed by the primed fields. To this end, we can
use the Jacobi identity

ABPAY +eBCD)\N +CAPNN . =0, (2.18)

which can be used to relate the original fields NV and primed ones N;¥', for instance,

(#5250 + PO, + AN (i sd = O,

from which we find

N iN, = _lN f\f )
2
and the same relations for N7%. There are no relations between Ny and Nj¥. Altogether,
we have five equations. The equations related to N} and NY are also necessary because
the corresponding primed ones are not zero. They can be solved to obtain the following
solutions: 5

gN;V’ = NN =NV - NY NN = —3(NN + N, (2.19)
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which indicates that there are two independent octet fields, for instance, NV and NJ'.
Thus we have shown the same result just as in the two-flavor case [136]. In the following
sections we shall show that the difference between the two fields N; and N, lies in their
chiral properties: N{¥ — NIV together with A belong to (3, 3) @ (3, 3), and the other
N} + N¥ belongs to (8, 1)@ (1, 8). » »

There are two ways to construct the octet baryon fields. One is done already as
shown in Eqgs. (2.17), whose flavor structure is the same as the p type baryon field Né\;
in Egs. (2.9):

333 — (3®3)®3—3Q3 —8,. (2.20)
The other X type baryon field N is complicated when used straightforwardly:

333 — (3®3)®3 — 63 —8,. (2.21)
Therefore, we use another way based on

3393 —3®(3®3) —3®3— 8. (2.22)

This contains partly 8,, and it is easily to verify that (2.20) and (2.22) compose a full
description of octet baryon which is also fully described by using (2.20) and (2.21). The
way 8, leads to octet fields N}V, and the other way 8/, leads to other five ones

]! 1N = eabcfACD)‘gB(Q?&TCqu)'YSQE’ )
Ny = eapee®PAY (g C50%) g6
NI = eaneePAY (¢4 Crusa )19 (2.23)

Ny = e P AS 5 (¢4 Cyuds )y 1548 »
NE = €PN 5057 Co ) o159 -

However, these fields can be related to the previous ones by changing the flavor and color
indices B, C and b, c: _
NN =N}V (2.24)

In nearly all the cases, the octet baryon fields from the second way can be related to the
ones from the first way. Therefore, we shall omit the discussion of the second octet.

2.1.3 Rarita-Schwinger fields
In this section, we study the properties of Rarita-Schwinger fields, in the form of

By(z) ~ easc(qy’ (2)CT1qp(2)) 245 () , (2.25)
where there are eight possible pairs of I'; and I's,

(Tr, T2) = (1, W)y (0 %) (s, ) (V5 ows),
(’Yua 1)) (’VV, J,uu)u (0'“,,, 7V)7 (Uuu757 ’VV’YS)-

The discussion is separated into singlet, decuplet and octet.
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The Flavor Singlet Baryon

For flavor singlet fields, there are four apparently non-zero fields

Ay = eanc€®B (5T Ol ) vuats

Ay = eabceABC(anC”ys%)’Yﬂs%a _ (2.26)
(@5 Cyuvsds) 15498 '

A4p. = €ahct (QZTC,VVrYquB)U,uV'YSQEJ .

As before, the Fierz transformed fields (primed fields) are just the corresponding unprimed
ones, A}, = Ay,. By performing the Fierz transformation (see Appendix. B), we obtain
four equations

A1#= lA/ A 1A/ i il;m

A2 — lA/ A 1A/ z 11

A3“=1AI lA/ 1A/ _l / "
L4

4p 0
Ay,

% A 3z A/ 31 Al 1 A/

Thus we find the following solution
Al.u = —Agu = Ag‘u = —§A4” ’)’M")/5A1 R A6p. = A7H« = Agﬂ =0. (227)

We see that there is only one non-vanishing independent field. However, it has a structure
of v,A; . Therefore, they are all Dirac fields, and there is no flavor singlet fields of the
Rarita-Schwinger type.

The Flavor Decuplet Baryon

For flavor decuplet fields, we have four potentially non-zero interpolators

Ag = €abe ABC( C’Y/LQB)QE%

Aﬁ €achABC( aTC’Y )U# qg’a (2 28)
Az, = Each C( CUW(]B)'Y 9 '
Asu €abeSHPC (05 L Cowsq3) Y 1596 -

As before, the Fierz transformed fields can be related to the corresponding unprimed
ones, Al = —AF . Similarly performing the Fierz transformation to relate AN and AlY,
we obtain the solution

AL =iAf = —in, =inL . (2.29)

There are no Dirac decuplet fields. Therefore, we obtain one extra non-vanishing field.
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The Flavor Octet Baryon

To study the octet baryon fields, we start with eight baryon fields:

Nﬁi = EabceABD/\gC(qngCqu)’)/#qg‘ ’

Ny, = €anc€*PPAD (¢4 Crsd)vusdé

N3 = €ace®BPAS o (g8 Cyuvsdy) 1548 » |

Ny, = eancc* P2 N30 (05 O Y503) 07508 (2.30)
NE, = €apce*BPAS (¢4 Cyugl)ae = 0, '
Né\[c = GabcfABDAgc(QiTCVVQ%)UuVQEJ =0,

N’{'}i = GabceABD)‘gC(quOU#quB)’yng =0,

N, = €aceBPAS (05T Coys g )y 508 = 0.

There are four zero fields, but the Fierz transformed ones are non-zero. By using the
Jacobi identity in Eq. (2.18), we obtain
. .

N{\/il - —EN{YL,

) .
Né\g - —§N£L 3

1 1
N1 __ N Nr N
N3/1‘ — _§N3,LL7N4[L — _§N4/J'
Similarly performing the Fierz transformation to relate NY and N2’ we obtain the
b iu
solution

N _ _ NN NN s NN
N4ﬂ__ZN1N+ZN2lL_ZN3ﬂ’

N/ _ _1nN L 1N _ 139N
iy Sy il
p— y Y 1
NGAU' — _ZNll,L +’LN2# + §N3}L7

Ng! = iN{, + 5Ny, + z’N:,}]\é ,
Né’\[[ = %N{\L + iNé\L — iNgu.
Thus we have shown that there are three different kinds of octets. N{Z and Nﬁ have

a structure of v, N{¥ and ~,NJ'. Therefore, we only obtain one extra octet baryon field
Nj.

2.1.4 Tensor Fields

In this section, we study the baryons fields with two free antisymmetric Lorentz indices:
Juwy if Jw = —Jyy, it can have spin 3/2. For the tensor fields, we can form nine three-
quark fields where the possible pairs of I'y and I'y are

(I, T2) = (v, wys) = (e V), (s, W) — (1o v),
€wpe (V> V)5 €upe (VY5 Y¥5), (1, 0wys), (05, ow),
(O';Lu, ’YS); (Uuu75a 1), e,wfpa(o'plao-al)-

The discussion is separated into singlet, decuplet and octet.



24 - CHAPTER 2. BARYON FIELDS

The Flavor Singlet Baryon

The flavor singlet baryon fields have four potentially non-zero interpolators among nine
fields:

Mgy = eabceABg(q,‘ﬁTO'msq%)%QS— (ke v),
A4MV = EabcfABCE#VPU(QZTC’YP’%qu)’Ya'Yng’ ) (231)
ASWI = GabcfAB (QiTCQ%)UMVfYSQE'a ’

ABC (¢l Csq) 0w gs -

A6;uz = €abc€
As before, the Fierz transformed fields are just the corresponding unprimed ones, A

Ay Similarly performing the Fierz transformation to relate A;,, and A]
the solution:

z,uu -

> We obtain

iAQ;w = A4,u.u = 2A5;u/ = _2A6uu7

The Fierz transformation is listed in the Appendix B. There is only one independent
field. However, it has a structure of o, A; . Therefore, there are no extra fields.

The Flavor Decuplet Baryon

The flavor decuplet baryon.ﬁelds have five potentially non-zero interpolators:

Al,,u/ = eachABC(anC’Y/LquYVFYSQC (,U, Al V) ’

Fg,u/ = €abed ABCGAWPU(QA C"YPQB)’YJQC )

7/11/ = EachABC(anCO-#VQB)fyf)QC ’ (232)
A = €acS P (a8 Cowysah) et
AQ;W - eachABceuvpa(QA OO_plQB)UUZQE} .

As before, the Fierz transformed fields can be related to the corresponding unprimed

ones, Afﬂ’ﬂ = Af;m Similarly performing the Fierz transformation to relate va and
Afﬂ’y, we obtain two independent fields: Af , and A :
P P P P
AS,U.V - ZAl;w ) Asz ZAl,uu + A’Tp,r/ ’AQ/.LV = ZAl;u/ 2A7;u/ :

The first one AlW can be related to the Rarita-Schwinger baryon fields, but the second
one Ahw can not. Therefore, we obtain one extra decuplet fields.
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The Flavor Octet Baryon

To study the octet baryon fields, we start with nine octet baryon fields

Nﬁrw = eabcfjii)‘%c(QZTC7MQ%);YVVSQE‘ —(pev)=0,
N21Yw €abc€ BD)\gc(QiTC’Yu’YSQB)%QE —(uv),
N:%’Yw €ac€” /\DCEWPU(Q,(ZTC%Q%)’YJQE‘ =0,

Nﬁw = EabcfABD)‘gCGWpo(quC’Yp%‘Z%)’)’o%qg )

NSAZW = GabcfABD)‘gC(QQTOQJI’B)UW'YSQE' ) (2.33)
Ny = €anc€ PPAE (04 Crsa5) 0w

N’;Yw = EabcfABDAgC(Q%TCUMVQ%)'YSQE' =0,

N ABD\yN T b —
Ngy = €abcfABD/\£C(qu Cowsds)de =0,

N T —
Ny, = €abct )\Dcf;wpa(Q,azl Caplqu)UUZQE' =0.

There are five zero fields, but the Fierz transformed ones are non-zero. By using the
Jacobi identity in Eq. (2.18), we obtain

1 1
N/ __ N N1 __
N2;u/_ _§N2/JJ/7N4/J,V __5

1 1
Ny, Ni, = —§NN NN —

N
Suv 2+ Y6uy _ENG/JV .

Similarly performing the Fierz transformation to relate Nijxy and N{X{,, we find that there

are three independent fields N , NN and N . Here are the relations:

2uv Suv Gur
N _ _:.nN N N
N%u/ - _’Z;.N2]l<lu - NS;AK[_F N6;u/]\;
7 o 1 . o
Nlp,v - 2N2;1.1/+’LN5;W ZN6 v
N NN AN LN
3uvy T 2+ 2uw 2+ Youv 2+ Y6uv
NN/ _ _1NN o _1_NN
Tuvy — 24 '2uw 24 Y Buv »
NN/ _ l'NN _ lNN
8]\/.[&1/ ) 2%1/ 2 1\6];1.1/7
[ — [
NQ;W - NS/,W N6;w

~ All these three fields can be related to the Rarita-Schwinger fields. Therefore, there are
no extra octet fields.

2.1.5 A short summary of independent baryon fields

- Here we shall make a short summary of independent baryon fields for all cases constructed
from three quarks. For simplicity, here we suppress the antisymmetric tensor in color
space €ae, since it appears in all baryon fields in the same manner. Furthermore, it is
convenient to introduce a “tilde-transposed” quark field ¢ as follows

a= qTC"y5 . (234)

which differs from the two-flavor definition in Ref. [136] by the absence of the flavor
(G-parity) matrix.
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As we have shown already, for Dirac fields without Lorentz index, there are one singlet
field A and two octet fields N{¥ and NJ':

A o= 6ABC(5A75QB)75QC )
NI = e*PPAL(quysqB)vsdc »
Ny = *PPASc(dagn)ac -

For the Rarita-Schwinger fields with one Lorentz index, we would consider one singlet,
three octet and one decuplet fields:

Ay = €B(Gavsas)vugo

Nﬁb = 6ABD>‘%C(5A75QB)%Q@
Nﬁ = 5ABD)\%0(§AQB)%75QC,
Né\[a = _EABD)‘gC(ZjA'VMQB)'Ych,
Af, = —SpP(qavuvsas)ac -

However, we find that Ay, = v,7A, N{)’L = 7,75 N¥ and NQJ\[‘ = 7,75 N4'. So, there are
two non-vanishing independent fields: one octet field NLJLV and one decuplet field A,. By
using the projection operator:

1 _
Pal? = (9w = 3mW). (2.35)
they can be written as
1 ~
NAJLV = PA%ZN?JAVI = —(gw — Z’Yy%)fABD/\gC(QA”YMQB)’YSQC

1
= Nj, + 71 (N — Ny,

1 ~
Afj = Pﬁ,{zAfy = —(gw — nyufy,,)SﬁB C(QA’Y;[YBQB)QC
— AR,

For tensor fields with two antisymmetric Lorentz indices, we would have one singlet,
three octet and two decuplet fields:

Alu = ¢ (@475(13)0 wY54C
N, = —e*PPASc(@avuas)nac + (u < v),
Ny = *PPASc(@ar598)0msdc ;
N{\{uv = GABD)‘gC(aAQB)UWQC )
As, = =8P (Qavursas)wrsac + (k= v),

AL, = SpP(Gaowrs8) 1590 -
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But in this case, we can show that there is only one non-vanishing field A,
Aﬁt/ = ijaﬂAfm/ = FuuaﬂS?Bc (aAU#V'YBQB)%')qC
1 1
= A, - §7u’75A5Py + 5%75A5P,u

where

V&, & U, 1 14 o 1 V_ o 1 vV Q&
Dol = (99" = 5g"7"y™ + 5g"7"y™ + S0 o). (2.36)

2.2 Chiral Transformations

In this section, we establish the chiral transformation properties of the baryon fields which
we have obtained in the previous section. Technically, this leads to somewhat complicated
algebraic results. However, the final result will be understood by making the left- and
right-handed decomposition, which we shall perform in the next section.

Let us start with the chiral transformation properties of quarks which are given by
the following equations:

)\0
U)v : g—exp(igan)g=gq+4q,

A "
SUB)v : gq— exp(iz-d)g=q+3%, (2.37)

A0
UL)a : q— exp(i1s5bo)a = q +sq,

-

A o 7
SU(3)a : q—>exp(2’rs§-b)q=q+5§q,

where \% = \/2/—3 1, X are the eight Gell-Mann matrices and 1 is a 3 X 3 unit matrix.
Here a' is an infinitesimal parameter for the U(1)y transformation, @ the octet of SU(3)y
group parameters, b° an infinitesimal parameter for the U(1), transformation, and b the
octet of the chiral transformations.

The U(1)y chiral transformation is trivial which picks up a phase factor proportional
to the baryon number. The U(1)4 chiral transformation is slightly less trivial, and the

baryon fields are transformed as

SN = —ivs \/gbOA R

) 1
SN = ) = iy Y,
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3
Y+ D) = e[S+ ),
1
5NV = m\/gbozvjf , (2.38)
N
(55A/}j = 7,’)/5\/21)0A5,

, 3
(55Aﬁu = 175\/;60A5,,.

We note that the combinations of N{ & N form different representations.
To study the vector chiral transformation and axial-vector chiral transformation, we
first show the following equation which define the d and f coefficients

1 1
Mprse = (WA)ac = {0, M ao + S W, M40 (2.39)
— §5NM6AC + (dNMO +_Z'fNMO)>\§C )
Furthermore, the following formulae define the coefficients g3, g5 and g7, which are proved

by using Mathematica, a software good at matrix calculation:

ADE\N \M NMO _ABD\O NMO_ACD\O NMP qABC |, .NM _ABC
€T AppABc =91 €T Apotgg e Apg g3 Sp - gy €
ABD\ M MO _ABD\O MO _ACD\O MP GABC M _ABC
S57 " Apc = ng €7 Abe + gf? """ App + 9? Spo7 + gg €

b

7

(2.40)

where indices A ~ E take values 1,2and 3, N, M and O 1,---,8, and Pand Q 1, -- -, 10.
The coefficients gs, g5 and g; are listed in Table 2.2, where we use “0” instead of “10”.
Other coeflicients can be related to d, f, g3, g5 and g7:

gMNo . _gMNO _ % FMNO.

giNo . gMNO _ % FMNO

g = —%WN, (2.41)
gt = —2g9MC,

g = 0.

Let us explain Egs. (2.40) a bit more. The quantities on the left hand side have three
indices A, B and C, and therefore, they are regarded as direct products of three funda-
mental representations of SU(3): 3 ® 3 ® 3. They can be decomposed into irreducible
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components by applying the four kinds of operators: espc, €

Table 2.2: g-Coeflicients Defined by Egs. (2.40)

93 133, 138, 144, 146, 254, 2566, 272, 279, 439, 463, 468, 573, 578, 612, 619, 636 —1/3
162, 169, 313, 318, 349, 366, 414, 416, 524, 526, 643, 648, 722, 729, 753, 768 173
154, 179, 215, 933, 246, 260, 328, 359, 376, 424, 455, 478, 516, 563, 622, 658, 712, 743, 765 —i/3
125, 156, 172, 238, 244, 262, 323, 426, 473, 514, 539, 545, 568, 629, 663, 675, 710, 746, 748 i/3
183, 686, 818, 835, 849 | —1/+/3 | 167, 251, 277, 411, 570, 640 | —1 343, 364 —32/3
188, 385, 480, 813, 866 1/V3 141, 460, 521, 617, 727, 750 T 433, 634 273
283, 288, 589, 876 —i/v/3 | 177, 421, 470, 511, 560, 627 | —i 352, 374 —27/3
786, 823, 828, 859 i/ V3 151, 241, 267, 650, 717, 740 7 532, 734 27/3
g5 | 125, 141, 227, 261, 313, 346, 357, 414, 425, 614, 625 1/6 318, 668, 881, 984 1/2V/3
663, 716, 727, 813, 846, 857, 927, 943, 961, 057, 064 381, 686, 818, 948 —1/2V3
114, 152, 216, 272, 331, 364, 375, 441, 452, 636, 641 | —1/6 382, 678, 882, 985 /233
652, 761, 772, 831, 864, 875, 916, 934, 972, 046, 075 328, 687, 828, 958 —3/2/3
115, 124, 217, 226, 332, 347, 365, 424, 451, 615, 642 7/6 234, 436 173
673, 726, 771, 823, 856, 874, 953, 962, 971, 065, 074 243, 463 —1/3
123,151, 263, 271, 323, 356, 374, 415, 442, 624, 637 | —4/6 D53, 473, 512, 554, 567 773
651, 717, 762, 832, 847, 865, 917, 926, 935, 047, 056 238, 437, 521, 545, 576 =73
583 1/V3 538 —1/V3
97 112, 143, 232, 245, 263, 315, 362, 448, 465, 619 1/3 214, 333, 346, 412, 513, 518 273
636, 665, 714, 768, 815, 844, 916, 945, 046, 069 542, 549, 564, 566, 643, 869, 968
434, 939 —1/3 838 =273
372, 675, 124, 825, 854, 026, 955, 056, 079 73 . 122, 523, 552, 574, 653, 978 27/3
122, 153, 255, 273, 325, 458, 415, 629, 778 —-i]3 224, 356, 528, 559, 576, 879 —2i/3
131, 211, 341, 417, 640, 867, 960 1 181, 282, 484, 787 1/V3
737 —1 686, 989 —1//3
521, 351, 877 7 080 —2/V/3
137, 650, 970 =7

ABD\O ACD\O ABC
)‘DCa € )‘DB SP "

and

which correspond to 1, 8, 8 and 10 of SU(3), respectively.
Under the vector chiral transformation, the fields A, NV and N are transformed as

h+ + 1

Il

A = eance® (g8 Cap)ys(iAGpa” ¢p)
earo” P (¢4 C(iMFpa™ qh) )56
EabCGABC((QBTi)‘JXDaN)OQ%)Vsqg

ia" €apee PP AD (g5 Ca%) 1546
— 200N e P AP 5 (a8 Cay )54
iav NlN —ia NlN

= 0, (2.42)

m + +

I

eabc€* PP AN (g5 O ) s (i a g)

cact PP Ao (qh CiMERa qk) ) 1546

eabc€ PP ADo((gF iMNEa™) Cay)vsaé

10 eanee  PPAD g Ao (44 Cap) 508

iaMeabceEAB /\gc)‘]gp (qg{T Cqu)’quEv

23_ZaN€abC6ABC (qiTCqu)’Y.Sq((:j + Z'd]\l (dNMO + ’l;fN]V[O)EabceABD)\gC(qucq%)’YE)qg‘

Za" e (¢4 Ol ) 508 — 1a™ (MO + 4 fMNO)

ABD/\

eabc€* PPNG (g5 Ol ) 1595
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(=]
o
&
2
b+ o+

of Né)’t

JaNé‘,’L

ABD
=  €agbc€

m+ +

+

9
_ZaNA+,L-aM(dNMO+Z-fNA/[O)N10
ECLNA iaM (dMNO 4 ; fMNO) NO

—2(IMfNMONlo ’

€abce PPN (d5 C%qs)(M a™q5)
ABD)Y C(q O’YS(MBEG (ZE))QE*
€abc€ C((q )075QB>QC
iaM e BONY /\Ec(qA Csq3)46
ia™ eqpee " P AN A (¢4 Crsa3) a6
2t n

€abc€
ABD A

3

30 €abct P (¢ Cysq) g —
21
~ 3" A+iaM (@M 4 ifMO)ND

0 ,
ga’NA__iaM(dMNO_]_ifMNO)NS
—QQN[fNMONQO.

eabceA DA

6abcfABD A C((q

iaM e p.e A BP AN E)\

AED
2iaM e € AN DC)\

M(dMNO e ifMNO)EabceABDAgC(
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(2.43)

= aM eacc®C (¢4 Csqp)al + ia™ (VMO + 5 M) e PP NG (¢4 Csap) 4

¢ Cysas) g

(2.44)

To study the vector chiral transformation of N ZLV , we first calculate the transformation

XD a8 Cruvsdi) s (idiza q5)
polda C7u75(2/\BEa ) V598
AEaM)C’Yu’)%QB)%QC
(QA O’Yu’YSQB)’YSQC
50X Cruvsah) 1596

+ o+ + 4+

27
Zaleppee C”Yp’YS‘JB)’)’ng

3

aM (dVMO + 4 FYMOYe e PPAG (g4 Cyuvsds) 1546
2mMgf”O ABDAD (¢ Cryuvs gl )5
28(ad Crvsds) 154

ABC'( aT

€abc€

M MNO

2ia €anc€ CPAG

27
QWMQ:IJ,VINPGachABC(Q C’Yu’)’5qB)’75qC - _aNfabCE

3

21
32 NAgﬂ—{-za (dNMO—I-szMO)N3M—I-2mMg{”NON3u

A5G (g2 Cy,v505) V505
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~ 2
+ 2iaMg§4NoNgL +0— —éaNAgu

= —2aMfNMOND . (2.45)

Hence, the vector chiral transformation of N [LV is

. 1
FNY = 5N§Z + Za(N{; ~Nj))

1
_ _2aMfNMON£L _ _aMfNMO(NﬁL . N2Ou)

2
= —2MfNMONY (2.46)
The chiral transformation of Af is
PN = eweSp 0 (qF Crugp) (INER" 5)

eabe 57 (05 Cru(irpa ak)) g

€abeSp7C (g8 iA MR Cruds)gé

0™ eaeSE7 Ao (44 Crpds)ae

2ia™ eape SH NGB (05 Cruan) 6

—92iaM géJMO Ni +iaM ngQ A5Qu

+ 2iaMg§MO]V5(L + 2iaMg$MQA5QM

= 3iaMg;MoAY. (2.47)

P
jn2

I+ +

_|_

To study the vector chiral transformation of A . we first calculate the transformation

of AP

Ty
AL, = eaeSEP(gY Couway)1s(irdpa q%)
€abeSpT (qX Co (INga™ ¢5)) 1596
eaeSp"C (g% iINE5a™)Cow iy )15
meabcsgBE)‘%C (QZTCU MV‘J%)%QE‘
2iaM e S NGB (a4 Codh) 1508
~2iaM gEMONG,, +ia g MAAT,
+ ZiaMngO]_A\f%, + 2iaMg$MQA$W

= 3iaMgiMeNT, . (2.48)

I+ +

+

I

Therefore, the chiral transformation of Aﬁu is
& i i
5 Aﬁy = 5A7ij - §7N755A5PV + §’YV’}/5(SA5P#

= ?)ZGMQ7 Q(A%W - 57}[75Agu + 571/75A§;4)

= 3iaMg$MQA§V . (2.49)
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In summary, under the vector chiral transformation, the baryon fields are transformed

as

SA = 0,

FNY = —2aMfYMONYD,
55NQN — _zaN[fNIV[ONZO ,
51’1’Ni\/ — —QCLMfNIVIONN,
55A5 = 3ia gPMQAQ
56A5y = 3ia gPMQAfo ,

(2.50)

which show nothing but the isospin conservation with the coeﬂiments on the right hand
side reflect the isospin charge of the baryons.
Then we go on to study the axial-vector chiral transformation of baryon fields. Under

the axial-vector chiral transformation, the field A is transformed as

Il

5§A N Nc)

€anc€ PO (¢ Caly)vs(ivsAEpa® g5

GabcﬁABC(q O(Z’Ys/\BDa CJD))’YSQC

+ +

€abe EABC’ (

. N
Y54 €gpc€
. N
1Y5Q  €gpc€

. N
4 1Y5a €gpet

ABDAE C’(q CQB)’YSQC

B(q C’YSQB)QC
paldi C%QB)QC‘

ACD)\
BCDA

= {ysa N — 275aNN2N - —75aNNN

2
= iysa® NN —iysa" NY .-

The transformation for N{¥ and N are

=+ -+ |

SENN

€abc€ ABD)‘DC(QA 093)75(2’)’5>\CE‘1 q%)
eabc€” PP XD (g5 Civs B ga™ a%)) 1506
€abc€ ABD/\DC((QE Y5 )‘AEa )CCJB)%QCC
i750™ €apoe PPN A (a8 Caly) 508

(a5 ivs Xipa™)Cay)vsqé

(2.51)

5™ €apee TP AN AL (05 Cysal) g
2 : N c . .
g%a fabcﬁABC(qA CQB)’)’SQC —+ Z’YSCLM (dNMO' + ZfNMO)fabc ABD/\Dc(qA CqB)%qC

3

2t . PN M
g,ysaNA_*_i,ysaM(dNMO_I_ZfNMO)Nlo

21 o . .
= 750" €arce " (g Cysap)a& — iysa™ (AMNC + if MO )euee PP AT (g8 Csap) g
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21

+ —3—75a NA — iysa™ (dMNO 4§ fMNOYND
by . v
_ EZ,YSGNA_i_,L-,ySaM(dNMO_l_ifNMO)Nlo_i75aﬂ4(dMNO+ifMNO)N2O, (2.52)
and
5§N2N
= e’ PP AS (a5 Crysgly) (ivs Niga™ ¢5)
+ apee™” D)‘DC(QA Crs (ivs A pea™ q%))aé
+ GabcfA D)\DC((Q%TZ%T /\AEa )C’YSQB)QZ’

= i50Meance PP AL p Ao (dh Cysa) a6
i75aM€abc€EAB)‘N M (quCqu)’%qé
21 c
= 30 N eaeePC (g Cysh)ge + 175a™ (VMO + 4 fNMO)eanee PP AD o (45 Crsas ) g
2 o c . . a c
- g’YSGNGachABC(QATCQ?;)’YSQC - 2’)’5CLM(dMNO +if MNO)ﬁachABD)‘(LJJC(QATCQ%)75‘10
9
=~ + iysa (@O 4 i fNMO)ND
o :
— 3275@ A — iy5a™ (@MNO 4 4 fMNOYNO
43
_ ——Z’YsaNA + iysaM (VMO 4 fNMOYNO _ o oM (gMNO y ; £MNOYNO 2.53
3 2 1

"To study the vector chiral transformation of N, N we first calculate the transformation
of N3, V. Here we need to use the Eq. (2.40), and obtaln

SENDY
€abc€ PP AD (05T Cyuysds ) s (ivs A epa™ g )
€abc€” P AD (@5 Cyus (s A BEa™ d) ) vs 46

o((a&iva Nia™) Crysals) vsq6

ABD/\N

+ o+

6abceABDA
iy5a™ € apet N A0 Cyuvsgs ) 1598
2i75aM6abc AED/\ )‘EB(q C”yqu)qC

21 (ABC (

E’Ysa €abc€ T Cryuysd) 1505

iy5a™ (VMO 4 4 FMOYe e PP XD o (05T Cruvs gl 1548

22,75aM MNOEabceABD)\OC(QA C,y“qB)qc_{_Qi,ysaMgé\/INOEabceACD)\O (an

+ |

C’Y,u qu )96

+ o+ +

M MNP SABC( a

21
27’750’ €abe AT O,YMQ%)QE' - 375 aNeabceABC(q

C’YMQB)

Il

21 ) .
gfwaAgy, + 175aM(dNMO + szMO)Ngt +0
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+ 2z"y5aMg§"NO]’\vfgL + 2ify5aMg§4NPA§u -0

24 . .
= —E-ﬂy#aNA + drysaM (dVMO 4 VMO gé”NO)NgL

- ua

MgMNO(NO — N2) + 2i75aMg£4NPA5. (2.54)

Therefore, the chiral transformation of NNV, /{LV is

SNV =

1
85 N3, + 155(1\7{,{ =\

1 N
(55Né>2 + 17“7555(.7\7{\] - NZN)

1 81 .
05 N, + 775 (5 50" A + 2iysadMO (NP = V7))

27 7 '
= (55N§>:+ g'y#aNA + -2-fyuaMdNMo(Nlo — N$)
) 43 1 .
= iysa™(2dMNO - ngNO)(Nng + Z’sz(Nlo — NY)) + 2iysa™ giNE AL
. 43 .
= iysa™(2dMN0 — ngNO)NE + 2ivsa™ gg ™ F AL (2.55)
The chiral transformation of Afj is
BAL = €SP (a5 Cyudl) (ivs Apa g5)
+ €S C (g5 Crulins Ayga™ dy))ae
+ eaneSHTC (a5 178 Xypa)Crua) a6
= 7;75aMfabcsgBE)‘%[C(quC’YNQ%)qg’
+  2i50M e SEOE MY (05T Cruvsdy) 1508
= —2iysaMgfMONg, + iysa g MO AT,
+ iysagfMONg, — diysa™ gfMO NG,
= —4iysa gEMON? +iysa™ gr MO NS (2.56)

To study the vector chiral transformation of A¥ , we first calculate the transformation
of AL, Again we need to use the Eq. (2.40), and obtain:

SEA

P
Tuv

SpP(q Co g ) s (ivsrEma™ qf)
S%° (g4 Co (ins A B ma™ qi)) 156
BC((qiing Miza™) Cowal)vsaé
150" €abeS PN (04 Co ) 1546

207150 €areSp T AR5 (05T Co155)as

= €abe

€abe

+ +

A
€abe S P

I

+
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—2ivsaM g

PMO 370 . M _PM
N7#,,+Z’)’5CL 97 QAQ

T
+ 2iysa™gPMONG, + 2iysa™ gf MOAG,,
= 2y5aMgfMONG, — ivsa gEMO (NS, — Ng,)
+ 3iysaMgr MOAL, — 2vsaM gy MOAL,
= 2va"gf MO (15N, — Va1 Ney) — i5a™ g2 90, (NP — Ny
+ 3ivsaM g MCAS, — 2v5aM g MO (1, 1AL — 4,15A2) . (2.57)

Therefore, the chiral transformation of AL is

AP = AP

iz

M PMO(7V75N§L - 7#75N301/) - 7;’75aMgéDMOauy(N10 - Nzo)
MQAQ

= 2750

+ 3iysaMyl
— 27, gfMONG + 2v,aMgEMONG

1

M
+ 57#6‘ g

= 3ipsagr MOAY, . (2.58)

; ;
- 5%7555A5P,, + 51554,

Tur Q'VBG'MQ;)MQ (’YV'Y5AS - 7“75A’?)
"

PM
5wator NG

In summary, we show therefore the final result of the axial transformation

SEA

SE(NY — NYY)
SE(NY + NI
SENY

NA

SEAT

iysb" (VT — NzN),

%%bNA + 2iysbMdVMO(NP — NP,

—2ysbM fYMO(NY + D),

irysb™ (2dMNO — % FMNOYVNG + 2insb™ gg™ P AT (2.59)
— LiryshM gPMONO 4 iy gPMe A2, ‘
3i75ng$ MQA/?V .

2.3 Chiral representations

So far, we have performed classifications without explicitly taking into account the left-
and right-handed components of the quark fields. However, it does not require great
imagination to see that the chiral properties are also conveniently studied in that lan-
guage, since chiral symmetry is defined as the symmetries upon each chiral field. Hence,
we define the left- and right-handed (chiral or Weyl representation) quark fields as

L

Il

= 1_75

qar

1475
5 q

and R=gqgr= (2.60)

2(1»
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They form the fundamental representations of both the Lorentz group and the chiral
group,

1 |
L: Lorentz: (5,0) , Chiral: (3,1),
1
R: Lorentz: (0, 5) , Chiral: (1,3).

It is convenient first to note that y-matrices are classified into two categories; chiral-even
and chiral-odd classes. The chiral-even y-matrices survive forming diquarks with identical
chiralities, while the chiral-odd ones form diquarks from quarks with opposite chiralities.
The chiral-even and -odd y-matrices are '

chiral-even:  1,%%,0.,,
chiral-odd: 7y, 7,75 -
Therefore, we have six non-vanishing diquarks in the chiral representations,

ITCL = —ITCsL
RTCR=+RTCywR

(0,0) ® (0,0), 3, )& (1, 3),

LTCyysR = +L"CyuR 11, 11

RTC'Y#’YSL = “RTO’)’#L (27 —2-) b (57 5) > (3, 3) S (3, 3) s
LTCo,,L .
RTCO'M,,R } (1,0)® (0,1), (6, 1)® (1, 6),

where we have indicated the Lorentz and chiral representations of the diquarks.
For three quarks, we have

LLL L0e(3,0, 1O,1)e(81)e(8,1)a(10,1)
1.1

LLR (0,3)®(1,3), (3,3)®(6,3) (2.61)

@+ rf - {

and together with the terms where L and R are exchanged. Now we discuss the indepen-
dent fields in terms of the chiral representations.

2.3.1 Chiral properties of Dirac fields
Independent fields of (LL)L

The (LL)L must belong to one of the following chiral representations: (1,1) @ (8,1) ®
(8,1)®(10,1). For each chiral representation, there is one flavor representation available.
For (1, 1) — 1¢, there are apparently two non-zero fields

Ap = fabcfABC(LZTCL?B)'ﬁL% )

Az = €apeeBC (L Crys LY) LG, (2.62)
Aps = eapee™C (LY Crypys L)y L = 0,
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where AL vanishes because 7,5 is chiral-odd
LTCy,ysL =0. (2.63)

After performing the Fierz transformation to relate Ay; and A}, as we have done before,
and solving the coupled equations, we find the solution that all such fields vanish.
For (10, 1) — 10¢, we would have again two non-zero components:

A€4 = EabcsﬁBC(L%TC'YuL%)’Y“’YSLCC )

AL = e SABC (LY Co\yy L) o* s L, . (2.64)

Performing the Fierz transformation to relate AL, and AF!, we obtain the solution that
all such (LL)L fields vanish.
Finally for (8, 1) — 8¢, we may consider once again two non-zero fields to start with

NIJYl = EabceABD)‘gC(LZTCLbB)'%L%’ )

2.65
N, = €apeeBPAN (LT Crys L) LG . (2.65)

Applying the Fierz transformation to relate NY and NV, we obtain the solution
NP, = Nj°. A (2.66)
Therefore, there is only one independent (LL)L 8; field.

Independent (LL)R fields

The chiral representations of (LL)R are (3, 3) ® (6, 3). We will study them separately
in the following.
For (3, 3) — 1¢, there appears to exist two non-zero components among the five

fields,

At = eanee™PC (LY CLy)vs R,

Apr2 = €apceB9 (LY Cys L) RS,

AM3 = EabceABC(L%TC’)/u’)’sL%)’)/“Ré = 0, (267)
Anra = eapee’ P (LG Cyu L)y 45 RE = 0,

AM’S = EabceABC(L?{TcauvaB)o-NU’75R8 = 07

where M (mixed) indicates that the fields contain both left and right handed quarks.
Performing the Fierz transformation to relate Ap; and A)y,, we obtain the following
relations

A,]VI4 = —AI]\/I3 = —2AM2 = 2AM1 . (268)
We may consider other ten combinations formed by (LR) and (RL) diquarks, (LR)L and
(RL)L. However, they can be related to the above ones of (LL)R by a rearrangement of
indices as well as the Fierz transformation, for instance,

Apte = €ape€BC (LT CRY) s LS = Ny, - (2.69)
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Therefore, we have only one independent field.

For the chiral representation (6, 3) — 10¢, we can write five fields containing diquarks
formed by five Dirac matrices. However, we can show that after performing the Fierz
transformation all fields vanish. Therefore, this representation can not support three-
quark fields.

The baryon fields of chiral representations (3, 8) — 8¢ can be formed

Ny = €ance PP ABo(LY CLE )y R

NAJ\}Z = fabceABD/\gC(L%TO’%L?B) ¢

N]\]\if3 = GabceABD/\gC(L%TC’)/IfYF)LbB)’yMR%' =Y, (270)
Nija = éabceABD/\gC(L%TC’Y#LlJJB)’)’“’YSR% =0,

N = €apee*BPAN (L Coy Ly )o* s RS = 0,

where we see that there are two non-zero fields. Applying the Fierz transformation, we
can verify that there is only one independent field with the following relations

N = —NJ. = 2N, = 2NJ}, . (2.71)

Another chiral representation (6, 3) — 8¢ can be constructed by the combinations
similar to (2.70), for instance,

N = €ace” AR p{(LY CLp)s R + (LY CLY)vsRE} - (2.72)

After similar algebra we can verify that all these fields vanish.

2.3.2 Chiral properties of Rarita-Schwinger fields

As previously, we only need to study the properties of (LL)L, (LL)R, (LR)L and (RL)L.
Others are similar.

Chiral properties of (LL)L

The chiral representations of (LL)L are (1, 1)& (8, 1)@ (8, 1)® (10, 1). We will study
them separately in the following. ,
(1) The chiral representation (1, 1) has just two non-zero fields:

Ar1, = eaeeBC (L CLY) Y, LE

2.73
AL2,u = eabceABC(LiTCWSL%),Y#fYSLE' . ( )

Similarly performing the Fierz transformation to relate Az;, and A%, ,, we obtain the
solution that all such kind of fields vanish. '
(2) The chiral representation (10, 1) has two non-zero fields:

Afw = fachﬁBC(LaATCO'#VLbB)’YVLCC ;

a v 274
Af&u = EachﬁBC(LATCU;w'YSL?B)’Y ’YSLE’ . ( )
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and AF/

Liy> We obtain the

Similarly performing the Fierz transformation to relate Af
solution that all such kind of fields vanish.

(3) The chiral representation (8, 1) has two non-zero fields:

Lip

NP, = eabceABD)\N L CLY )y, Lg

Ly Cys Ly )vuvs Lt

Nﬁm = €ape€’ D /\N LA Cry s Ly )vs LS = 0,
N[JXLM = EabceA D)‘N LaT07 'YSLB)U/W"%L% - Oa

(
N 52” = €ape BPAN (
ol
ol
N}JVS” = eabce Np(LCy, LY Le =0,
Ne(L
5(
Ba(

(2.75)

Nf%u = eabce “TC’}/”LB)UWLC =0,
N}}u = Eabcﬁ D)\N LT Co, LY)yLE =0,
NLS“ - 6abc6 LaTCO-/,w’YSLbB)’VV’YE')LCC = O *

Similarly performing the Fierz transformation to relate N7y, and N{!, we obtain the
solution

RY 3

5 =N, = gN,{VlM. (2.76)

Others are just zero. There is only one non-vanishing octet baryon field.

NL7,u. NLS;L

Chiral properties of (LL)R, (LR)L and (RL)L "

The chiral representations of (LL)R, (LR)L and (RL)L are (3, 3) ® (6, 3). We will
study them separately in the following.
(1) The chiral representation (3, 3) — 1¢ has two non-zero components:

AMlu = EabceABC(LiTCL?B)rYMRE‘a

Anrzp = €ance” P (LG Cys L) yuvs RE:

Anpzy = GabcéABC(LaATC’Yu%L%)’YSR% =0,
AM4,u. = eabceABC(LaTO’Y '75L )O-MV’YLE)RC = 0;
AM5;L = EabcfABC<LaT07ML )RC - 0

AM6;,L = €abc€ ABC(LGTCVVLB)O-,W/RC - 0’
Anrry = €apee®BC (LY Copy L)y RE =

A]\/[S,u. = eabceABC(L%TCO-MV’YSLIJB)’YU’YSRE’ =0.

(2.77)

Similarly performing the Fierz transformation to relate Aaz, and A}y, ,, we obtain the
solution
" / . / 3i 3i
3ZAM'3# = AM4;L = _32AM5;1. = —AMSM = 5./\]\41# = _EAM2I-‘ . i (278)
Others are just zero. There is only one non-vanishing field. Others (LR)L and (RL)L
can be related to this one.
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(2) The chiral representation (6, 3) — 10¢ has two non-zero components:

AMlM €abeSABC (LT C LY )y, R, = 0,
AMZ/J, = ﬁabcsiig(La;C%LB)’Yu’)’sRc =0,
AM3,u = €abed ABC(LGTO%’YSLB)’YSRC =0,
A]\lél,u = EachABC(La C’)’ 75L )o-,uv’Y5RC - 07
AMW = €apoSABC(LAT Cry, I8 RS, =

Al = eachABC(L“TC'y”LB)UW = O,
AM7u eachABC(LaTCUHVLB) C )
AM&u - EachABC(LaTCU;u/YSLB) 75RE' :

(2.79)

Others are just zero. Similarly performing the Fierz transformatlon to relate A, and
ALY, we obtain the solution

. 1
Aﬂ?ﬁu AM4u Aﬂw = —2A5\DJIGM = —§A1}CJ7M AMS;L (2.80)

There is only one non-vanishing field. Others (LR)L and (RL)L can be related to this
one.

(3) The chiral representations (3, 3) — 8; has only two non-zero interpolators:

NI, = eanc PPN (T CLY v RE

Nﬁ% = €abe" PPN (LY Cys L) 1,5 RE

NM3,U. = EabcfA D)‘N (LaT07u75L%)75RE‘ =0,
NM4y, = 6abc6 (LaTc’Y ’YSLB)UW’)’SRCC =0,
Nils, = eabce D)\N (LY Cry, LY)RS =0,

Nﬁau = eabce D)\N (L Cy LYy )JWRC =0,
NMm = €gpe€? D)\N (L Co L)y RS =0,
Nilsu = €anet BD)\N (LT Co s L)y s RS = 0.

(2.81)

Similarly performing the Fierz transformatlon to relate NMW and N, Aiys We obtain the
solution

, 31 31
37'N]\43u - N]\]XCL;L = _3ZN]]\\J]/5,U, N]\/I6p, Nﬁl/.& = _?NJ\JXZ;L : (282)

In order to study the chiral representations (6, 3) — 8¢, we need to consider the second
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way (see the discussion in the section 2.1.2) which has four non-zero interpolators:

]YJ\]\/}lu = EabceACD/\gB(L%TCL%)')’M ¢

Nifow = €avee P AP (LY Cvs L) vuvs R,
NM3H = €ape€ CPAY (LA Cryrys L) v RS = 0,
NM4;¢ = 6ccbceACD)‘N (LaTO'YVVSLI]B)UW’)%R% =0,

2.83
NM5“ = eabceACD)\N (LaTC"y#L%)RCC =0, ( )
Nﬁﬁu = fabc€ D/\N (L Cy L))o, RS =0,
{Yﬁ?u = €abec* PN (LY O L)Y RE
Nifsy = €ance™? AN s(LY Co s L)y 15 RE -
By using the Jacobi identity in Eq. (2.18), we obtain:
~ 1 1
Nﬁl,u. 2NM1u7 N]\]}IZu: ENJ\IYIZ;L‘ (284)

Similarly performing the Fierz transformation to relate N, ﬁiu and N/ M1y We obtain the
solution

ATN NN _ _1azN
Nsz :]VVMlu = _~§NM1,“
Nt _ 1 AN i ATIN
NM3;L NMl,u NM7;1.7
31 N
NM4/,L NMlp. NM?/.H

_ _1a/N i NN
NM5/L ]\,];Ml//. ALM?;L:
N/ _ 31’ N 1 N
Nyreu = =5 Narp + 5N,

NMS,u NM7;¢

All together there are two non-vanishing independent fields. Others (LR)L and (RL)L
can be related to (LL)R. Chiral properties of the tensor fields can be also explored in
completely the same manner explained here. Therefore, we do not show this case any
more.

2.3.3 A Short Summary for Chiral representations

To summarize this section, we find that possible chiral representations for Dirac spinor
baryon fields without Lorentz index are:

A = euee®PC (LT CLY) Vs RS + eapee*PC (R CRY) s LS,

= M+ (Lo R), (2.85)
NY — NI = 2e006* PPN (LA CLY ) ys RS 4 2o PP AN (R C Ry )ys LS
= 2NN, +(L < R), (2.86)

NN+ NY = 2600 PPAS (LT CLY ) vs LS + 2€ane*BPAY o (R CRY ) ys RS
= 2NN+ (L R). (2.87)
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So we can see that the fields A and N — N2 has a type of LLR® RRL, and belong to the
chiral representation (3, 3) @ (8, 3); while the field N{¥ + NJ¥ has a type of LLL @ RRR,
and belongs to the chiral representation (8,1) @ (1, 8).

We summarize the results here:

NY = 2P AS0(LE Cruvs RR) s LE + 2eance P AP o (RE Cyuvs Lg)ys RS,

1 1
+ §eabceA DAR ALYFCLE)y, RS + ZeabceABD)\ o(RECRY)y, LS, (2.88)
AP = 264 SPPC(LET CyuRY) LE + 200587 (R Cyu L) RE, . (2.89)

So we see that N and AL are of the type LLR & RRL, and belong to the chiral
representation (6, 3) @ (3, 6) The (similar) results for A%, which is of the type LLL &
RRR, and belongs to the chiral representation (10,1) & (1 10), are omitted here.

2.4 Axial coupling constants

As a simple application of the present mathematical formalism, we can extract the (di-
agonal) axial coupling constants g4 for these baryons. All information is contained in
Eqgs. (2.38) and (2.59), from which one can extract the Abelian U(1)4 axial coupling con-
stant g% and the non-Abelian SU(3)y x SU(3) 4 diagonal axial coupling constants, g5 and
g%. The latter two can be extracted from the 6% and 628 subset of chiral transformations
Egs. (2.59), respectively.

In general, the diagonal elements of the SU(3) g4’s can be decomposed into so-called
F and D components, which are defined by the axial vector current A% (a = 0,1, ...8)

a v >\a < Aa
AL =g; Tr (%ﬂs [7‘71]) +g3 Tr (‘ﬁms {7‘31}) , (2.90)
where 91 is the 3 x 3 baryon octet matrix, Eq. (2.12). Therefore, we have
AL = (94t 9R) (p+p - n*ﬂ)’ (2.91)

+ 205((EY 8t - (2)'E)
+ (h-9) (<E°>+E° -(E)E),

Ai = (\/_gA ptp+n n) ' (2.92)

Il
+ %((zww + (z—)+z~)

—/34F SOV+E0 | (=) FE- 292 ABYVFAS
+ (—V3g4 — +(E7)TE —=(A°)TA%,

ﬁ(“ 3
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where we omit the Lorentz indices. In other words, ,
ga(N) ~ (g + 9L, gi(®) ~295L., gi(®) ~ (gh — 9L, (2.93)
8 V3dE 9 8 293 8 (= F_ 93 8 292
ga(N) ~ 394 — ==, gaX)~—%, ga(E)~ *\/E);QA — ==, ga(A)~——%

for the octet parts. The operator I, is the third component of isospin, whereas the SU(3)
singlet term g% contains only the D term and is therefore trivial.

For the decuplet baryons, the SU(3) coupling constants contain only one SU(3) irre-
ducible term because the SU(3) Clebsch-Gordan series for 10® 10 ® 8 contains only one
singlet. In order to extract the coupling constants, we first rewrite Egs. (2.38) and (2.59)
in the following form, for all the singlet, octet and decuplet baryon fields:

1. The Abelian ¢4 basically counts the difference between the numbers of left- and
right-handed quarks in a baryon of definite/positive chirality (helicity). Several
definitions of g% can be found in the literature. No matter what convention we
adopt, we must make sure that it is consistent with the definition of the SU(3)
singlet vector current that counts the baryon-, or the quark number. So, either
we normalize g4 to the baryon number, or to the quark number. Of course, the
difference is just a multiplicative factor (3), but inconsistent definitions will lead to
confusion later on when one constructs chirally invariant interactions. At this time
we shall adopt the latter (quark number) normalization.

Because A\Y; = A), = \; for ¢Y, the chiral transformations &5 are identical for all
baryon fields within the same chiral representation, so we may define g4 by

A%1bg 1ysbo
6:B = iy ——g°B = 220 B 2.94
5 Y5 5 ga \/6 gab, ( )

where B represents the baryon field, such as A and Nj¥ — NJ¥ etc. This convention
is based on the quark number, implying that the SU(3) singlet vector charge of a
nucleon is three (+3).

2. For g3, because A3, = —)\3,, the chiral transformation %3 is proportional to the
isospin value of I, which is factored out from the definition of g3

68°B = insbsgal,L B+ -, (2.95)
where the ellipsis - - - on the right-hand side denote the off-diagonal terms.

3. For g%, because \$; = AS,, the chiral transformations 2% is the same for the baryon
fields belonging to one isospin multiplet. We define it to be '

AN 1v5b
8B = U8 8 I8 B L 2.96
5 s 2 9a 2\/§gA ( )
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Table 2.3: Axial Coupling Constants g%, g5 and ¢§. In the last column a = g% /(g5 + ¢%).

SUB), ® SUB)r | SUB)r 9% | 94 | 9| «@
1 A | -1 - - -
N_ | -1 1 -1
(3, 3) @, 3) X |-1] 0 |2
8 =_ | -1 -1 -1 1
A_ | -1 - -2
N, | 3| 1 [3
S, 3| L |0
8, Va1, 8) '8 =, [ 3| 1 [-3] 0
A, 3] - 10
N, [ 1[5/3]1
S, | 1]2/3]2
8 5, | 1 [-1/3]-3] 3/5
A, 1| - |2
(3, 6) ® (6, 3) A, | T]1/3]1
S [T 130
10 =171/ [1] -
Q. 1] - [=2
Ao 3] 1 |3
X0, | 3 1 0
(10, 1) & (1, 10) 10 [z, ]3] 1 [-3] -
Quw | 3] - |6

The resulting axial coupling constants ¢9, ¢5 and g& are shown in Table 2.3, where
A is the (only) singlet field A; then N_, ¥_) =_ and A_ are the octet fields of the type
NIV — NY; the Ny, ©;, 2, and A, are the octet fields of the type N¥ + NI¥; the N,,,
¥, By and A, are the octet fields NJ; the A,, ¥% Z* and €, are the decuplet fields
AL AL, B, B, and O, are the decuplet fields AL .

From the values in Table 2.3, one can compute the F' and D couplings easily for the
three octet baryon fields N — Ny¥, N{¥ 4+ N}, and N

1. NN — NY¥. For A\* and A8, respectively
g5+ 9% 1/2x 1

295 = iYsb3 1x0 ;
gi — 94 1/2 x (-1)

~ 1ysbs
2
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V395 — %
. 2g2
Y5bs N
F_g
2 —V/3g5 — el
| 292
VA

Y508

2V3

-1
2
—1 ’
—2

45

where the right-hand side of these equations is just g3 and g8, and we show the
results explicitly. The solution is g§ = 0 and g% = 1. Therefore, N¥¥ — NY only

contains D terms.

2. NN + NY. For X* and )8, respectively

gh+ g5
294
95 — g%
. D
V3gh -4

29%

“sbs | /3
T a D
e | vag 4

_20p

V3

i5b3
2

= i’Ysbs

1y5bg

2v/3

1/2x 1
1x1
1/2x 1

3

-3 |
0

where the solution is g§ = 1 and g} = 0. Therefore, NV + Ny’ only contains F

terms.

N 3 8 :
3. N, . For A* and A°, respectively

9h + g%
295

95 — 9%

D
ﬁgi%)

Y503
2

2gAD

1¥5bs V3
F_ 93
2 —\/§9AD— ﬁ

V3

Y503

iY508

2v3

1/2 x5/3
1x2/3
1/2 x (-1/3)

1

2
-3 ’
-2

where we obtain the solution that g4 = 2/3 and ¢g§ = 1. Therefore, N IILV contains

both F terms and D terms.
The resulting /D ratio,

a=——,
gi+45

(2.97)
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is also tabulated in the last column of Table 2.3. Empirically, a ~ 0.6, which is fairly
close to the SU(6) quark model value. In the present formalism we see that only the
(3, 6) @ (6, 3) chiral multiplet/representation reproduces this value. Previous works
have shown that this value is physically related to the coupling of the nucleon to the
A(1232), as demonstrated in the Adler-Weisberger sum rule [11,175]. This was also
shown algebraically by Weinberg [173]. In both cases, saturation of the pion (axial-vector)
induced transition from the nucleon to the A(1232) is essential [58]. In the present study,
this is realized by the chiral representation which includes both the nucleon (isospin 1/2)
and delta (isospin 3/2) states.

It is also interesting that Table 2.3 shows that ¢3(N) = 5/3,9%(N) = 1 for (3, 6) @
(6, 3), while g3(N) =1,¢%(N) = —1for (3, 3)® (3, 3).

The flavor singlet g9 corresponds to the so-called nucleon spin value, as measured
in polarized deep-inelastic lepton scattering. A suitable superposition of the two chiral
representations may improve the nucleon axial coupling in either the isovector and/or
isosinglet sectors. The importance of such mixing for the isovector axial coupling constant
has been emphasized by Weinberg since the late 1960-s, Ref. [173].

2.5 Conclusion

In this chapter we have performed a classification of flavor vector and chiral symmetries,
and established independence of several types of relativistic SU(3) baryon interpolat-
ing fields. The three-quark fields may belong to one of several different Lorentz group
representations which fact imposes certain constraints on possible chiral symmetry rep-
resentations. This is due to the Pauli principle and has been explicitly verified by the
method of Fierz transformations.

As the present results reflect essentially the Pauli principle, they can be conveniently
summarized by using the permutation symmetry group properties/representations, as
shown in Table 2.4. This table “explains” also the previous results for the case of isospin
SU(2) x SU(2)g [136]. In the real world, with spontaneous breaking of chiral symmetry,

Table 2.4:- Structure of allowed three-quark baryon fields.

Lorentz J = Spin ‘f(:r“‘(‘:iif:g:a:’ A’C‘:‘a' ge(;zf‘ Chiral SU(2) Chiral SU(3) Flavor SU(3)
ep. ar, A
: 21], —) ® (=, [21]) 3 B8 1)@ (1,8 8
(3,080 3) 1/2 (i) & G -1 Goeedh | Gy2EY Ls
a3 3/2 (2. 1) & (A1, 2D 1 G he @i | (66663 8, 10
(8.0 (0, 3) 3/2 Bl. ) e (=.BD 3 2,09(0.3) | (16,1)® (1,10 10

physical states of pure chiral (axial) symmetry representation do not occur, but in general
they can mix in a state having a definite flavor symmetry. The present results show that
the three-quark structures accommodate only a few (sometimes just one) chiral represen-
tations, for instance, for the total spin 1/2 field of Dirac spinor, there are two allowed
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chiral representations, having the Young diagram structures ([21], —) and ([1],[11]), where
— indicates the singlet. The ([21], —) Young diagram corresponds to the (3,0) and (8,1)
representations of SU(2) and SU(3) respectively, whereas the ([1],[11]) Young diagram
corresponds to the (3,0) and (3,3) of SU(2) and SU(3), respectively.

Note that the Ny = 2 chiral representations have the same form as those of the
Lorentz group. In this way, the Lorentz (spin) and flavor structures are combined into a
general structure with total permutation symmetry. As shown in the computation of g4,
in general, various couplings depend on the chiral representations.

We should conclude with a few historical remarks: the two-flavor baryon fields’ Fierz
identities have been known since the early days of QCD sum rules [88], whereas the three-
flavor ones presented here seem to be the first ones. Similarly, the chiral properties of
the two-flavor baryon fields’ have been known at least since the work of Christos [46,47],
but the three-flavor ones have been discussed by Christos and H. Q. Zheng [47,182,183],

but not systematically explored.
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Chapter 3

Tetraquark Fields

3.1  uds5 Currents of JF =0t

The structure of tetraquark is much more complicated than gg mesons and gggq baryons.
And so in this section, we fix quark contents to be udss. After studying this example,
the general tetraquark currents will be studied in the following sections.

Let us consider currents for the tetraquark udss having J© = 0. Here again we only
consider local currents, and we shall study the diquark-antidiquark currents ((gg)(¢q))
first, while the meson-meson currents ((gq)(gg)) will be discussed later. To write a current,
Lorentz and color indices are contracted with suitable coefficients (L% ) to provide
necessary quantum numbers,

bed
n = L}, 85 ubdg, (3.1)
where the sum over repeated indices (4, v,--- for Dlrac spinor indices, and a,b, - - - for

color indices) is taken.
For the Dirac spinor space, using possible diquark and antidiquark bilinears [96, 109,
159, 165], there are five independent terms

Sabea = (3715C54 ) (ul Cysda)
Vared = (87715055 ) (ul Cy*y5da) ,
Tabed = (50, C5y ) (ul Cotdy) (3.2)
Adbed = (87,05, ) (uf Co*da) ,
Pabed = (3,05 ) (u¢ Cda)
Here, color indices are not yet specified. For the diquark and antidiquark pair, color
structures providing a color-singlet tetraquark are 3 ® 3 and 6 ® 6, which we will denote

by labels 3 and 6 for short.
Therefore, we have altogether ten terms of products

{S S V 7] T A ) P}Lorentz X {3 @ 6}C’alor . (33)

49
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However, half of them drop due to the Pauli principle. For instance

P3 = PLorentz & 3Color (34)
= eabc(EbC’S‘f)eabrCr(ug;Cdd) =0.

Eventually, we end up with five independent currents

Ss = (Ea’ysCE;‘,F)(uTC’%db) (35)
Ve = (32715033 ) (ug Oy yss) ,
T3 = (SaO'lu,CSb )( ZCO‘“de) R (36)

Az = (51,05 ) (ul Cy"dy)
Pﬁ = (EGC’E{)(UZCdb) .

In the non-relativistic language, these five terms correspond to combinations of diquarks
and antidiquarks

[(*S0)(*S0)]o+ » [(351)(351)]o+ . (CPYCP)or
[(CR)CPR)o+, [CP)CP)o+- (3.7)

Another possible piece of 3P, is irrelevant, since the five bi-linear forms ¢"Tq (I' =
S,V,T, A, P) can only have spin j < 1, while the 3P, diquark has j = 2.

Finally we consider the flavor structure. The 35 antidiquark is symmetric in flavor,
and hence belongs to the symmetric representation 6. If the other ud diquark belongs to
3, and so isospin I = 0, the diquark and antidiquark will have different flavor symmetry.
But they should have the same color and spin symmetries for composing a color-singlet
scalar tetraquark. Considering the Pauli principle, they must have different parity, and
hence their combination is a negative-parity scalar tetraquark. Accordingly, the other ud
diquark also belongs to 6, and so isospin I = 1. Among the irreducible representations
of the tetraquark

66=108¢ 27, (3.8)

S = +2 and I = 1 states are in the 27 representation of SU(3), which is the flavor
structure of the present tetraquark. As shown in Fig. 3.1, three iso-vector states of the
27; are uuss, 1/v/2(ud + du)35 and dd3s.

We have constructed five independent currents using diquark and antidiquark com-
bination. Similarly, we can also construct the tetraquark currents using g combination
(mesonic construction). Obviously, there are ten combinations of the Dirac (S, V, T, A
and P) and color (1 and 8) spaces:

St = (5aua) (Gpds) , Sg = (5. Agpus) (8:A0qda) ,
Vi= (ga’}’uua)(gb’wdb) ) Vs = (ga')’u/\nbubﬂg&y#/\nddd)
T1 = (500 Uq) (550" dp) Ty = (3,0, A ub) (Sc0" Alyda) (3.9)

BaVuYsUa)(S67 v5ds) s As = (Zayu s Agstn) (37 Vs A eada) »
5aY5Ua) (56Y5db) , Py = (Ba1s A gpun) (375 A 0ada) »

= (
= (
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27,(6, ®6,)
dd5s  udss  wiss

ss ssiid  ssdd
Figure 3.1: SU(3) weight diagram for 27, where the locations of three tetraquark com-
ponents of S =2 and I = 1 are shown.

where subscripts 1 and 8 denote color singlet and octet representations, respectively.
Unlike the diquark construction, all the ten currents in Eq. (3.9) remain finite. However,
it is possible to show only five of them (in fact any five of them) are independent. The
quark-antiquark pairs in different currents have different properties:

Syt (JF =0%,8;,1,), Sg: (JF =0%,8,8,),
Vi (JP =17,84,10), Ve : (JF =17,84,8,),
Ty (JP =17&17,8¢,1,), Ts : (JP = 17&17,8;,8,),
Ay (JF =17,84,10), Ag: (JF =1%,8;,8,),
P :(JP=07,8,1,), B : (JF=07,8;,8.).

In order to establish the five independent currents, first we change their color struc-
tures ‘

1 1
(Saup) (Sda) = g(gaua)(gbdb) + ’i(gaub)(_cdd)/\ab/\cdu
16 1 '
(Bata)(8edp) AapAea = ?(Eaua)(‘gbdb) - g(gaub)(gcdd)/\ab)\cd- (3.10)

Then we use the Fierz transformation [131]

5 (50ta) () + 5 (50) (e A |
= (Faw) (5oda) (311
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1 1
= - Z{(gaua) (gbdb) + (gar)’u'u'a) (gbfyudb) + 5 (gaalwua) (gbo'lwdb)
—(Bau5ua) (B Y 15d) + (5avsUa) (S6y50s) } -

We obtain 10 equations in all

1 1 1 1

§SI+ 558 = —Z{Sl+V1+ §T1 — A+ P},
16 1 1 1 :
3‘5’1_5‘5’8 = —Z{SS+‘/8+‘2‘T8—A8+P8},

1 1 1

§V1+§Vé = —1{451—21/1—2141—4131},
16 1 1

Vi — Vs = —{45s — 2V — 245 — 4P},

9 3 4

1 1 1

16 1 1

ETI - §T8 = _1{128’8 — 2T8 + 12P8} s

1 1 1

§A1+ §A8 - _Z{_4SI_2‘/1_2A1+4P1}7
16 1 1
—A1 - —Ag — __{_458_2%_2A8+4P8}7
9 3 4

1 1 1 1

§P1+§P8 = —Z{Sl—vi-i-‘éTl—!—Al-i-Pl},
16 1 1 1
?Pl — §Pg = —Z{SS—%+§T8+A8+PS}-

Solving these linear equations, we find that there are five independent currents. In other
words, the rank of the 10 x 10 coefficient matrix is five. Any five currents among (3.9)
are independent and can be expressed by the other five currents. For instance, we have
the relations as

7 1 1 1 1
Sg = —651—§W—1T1+§A1—§P17
1
Vo = =25+ Vit A +28,
1
T = —6%+ 3T 6P, (3.13)
1
As = 281+V1—I-§A1—2P1,
1 1 1 1 7
Bo= —3Si+3Vi- 70— 54— R

Note that the color octet combinations can be expressed only in terms of color singlet
combinations. This point will be discussed in more detail in Chapter 4.
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Finally, we establish the relations between the diquark currents and the mesonic
currents. For instance, we can verify the relations

1 1 1 1 1
S¢ = —151—1‘/14‘5711—2141*11317
1 1
Ve = S1—§V1+§A1—Pla
1
T3 = 351+§T1+3P1, (3.14)
1 1
A3 = Sl+§‘/1—§A1—P1,
1 1 1 1 1

3.2 Tetraquark fields with JZ =0

We have found five independent udss tetraquark currents which have the quantum num- -
bers J¥ = 0%, in both the diquark construction and the meson construction. From this
section, we will study the tetraquark currents having different quantum numbers. The
‘currents can be constructed by using diquark and antidiquark fields, and they can also
be constructed by using quark-antiquark pairs. The same as the udss scalar tetraquark
currents, we can find several independent currents.

Following the procedure in the previous section, we can obtain tetraquark currents
having other quantum numbers by using the diquark currents and antidiquark currents.
The diquark can have the flavor structure 3¢ and 6¢, and the antidiquark can have the
flavor structure 3¢ and 6¢;. Therefore, there are four combinations and we just need to
study three of them:

6;®6;,3;®6;,3;®3s,

while 6; ® 35 can be similarly studied as 3; ® 6;. For simplicity, we will suppress the
symbol ¢(z), and use the flavor indices instead of it:

¢4(z) ,q%(z) — Aa, B,, and §%(z), 3 (z) — X, ,Y,.
The favor structure of tetraquark is

333®3
(6D03)®(6®3)
27080 1)®(1008)® (I0d8)® (8 1), (3.15)

In this section, we study scalar currents of J¥ = 0F. The diquark and antidiquark can
have flavor structure 6;® 6, then the tetraquark currents have the flavor representations
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27¢, 8¢ and 1y; while they can also have the flavor structure 3;® 3, then the tetraquark
currents have the flavor representations 8; and 1;. The flavor structures 3; ® 6; and
65 ® 3; are not allowed as discussed in the previous section.

3.2.1 6;Q6;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 6; and 6y, respectively. We can
construct five diquark-antidiquark currents:

Ss = ATCsBy(XaysCYT + XyysCYT),

Vo = ALCy 5By X" 1CY + Xy vsCYT),
Ts = ATCo,, By(X,0"CYF — Xyot CYT),
Az = ALCy.By(XA'CY) — Xy CY]),

Ps = ATCBy(X,CYT + X,CY7T),

where the subscript is the color representation of the diquark (antidiquark) inside. These
five currents are independent. We can also construct ten currents by using quark-

antiquark pairs:

S1
Sg
W
Vs
Ty
Ty
Ay
Ag
Py
Pg

(Xoda) (Yo Bs) + (XoBa) (Y2 4s)

(XaAabAp) (YereaBa) + (Xadas By) (YereaAa) ,

(XavuAa) (Yoy* By) + (XavuBa) (Yo" Ay)

(XaVuAapAs) (Yer*AcaBa) + (Xayudan Bo) (Yer* Aeada) ,
(Xa0wAL) (Voo™ By) + (X000, Ba) (Vo™ Ap)
(Xa0wAapAp) (Y™ AedBa) + (Xa0uwAapBy) (Voo™ AcgAd) ,
(XaVuwvs4a) (Vv ¥5Bs) + (Xavu¥s Ba) (Vo1 154s)
(Xar 15 A abAp) (Yer vs AeaBa) + (Xavuvs Aav Bo) (Yer vs AcaAa)
(XavsAa)(Y5vs By) + (Xav5Ba) (Yors4s)

(XavsAapAb) (YevsAcaBa) + (XavsAan By) (YevsAeaAa) -

Among these ten currents, five are independent, and we can verify following relations:

7 1 1 1 1
Sg = —681_5%_ZT1+5A1_§P1’
1
Vs = —25’1+§V1+A1+2P1,
1
Ts = —6S1+§T1—6P1,

1
As = 25 +Vi+3A-2R,
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1 1 1 1 7

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1 1 1 1 1
Se = _ZSI_ZVl-l_ng_ZAl_ZPl’

1 1
Ve = 5'1—§V1+§A1—P1,

1
T3 = 351+ §T1 + 3P,

1 1
Ag = Sl‘f‘i‘/l_é'Al_Pl:

1 1 1 1

1
P6 = _ZSI+Z‘/1+§T1+ZA1_ZP1

3.2.2 3;®3;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 3; and 3y, respectively. We can
construct five diquark-antidiquark currents:

Ss = A;CysBy(XesCYy — XpysCY,),
Vi = A;CyuBy(Xay*15CY) — Xy'1sCY),
Te = ATCo0,,By(X,0"CY] + Xy CYT),
As = ALCH,By(X.y*CY,] + Xy CYT),
P, = ATCBy(X.CYT — X,C¥T),
which are independent. We can also construct ten currents by using quark-antiquark

pairs:

S1 = (Xada)(¥sBy) — (XaBa)(YpAs)

Ss = (XaAapAp)(YedeaBa) — (XodanBy) (YereaAa)

i = (X Yu a)(YEJ’V#Bb) (Xa'YuBa)(YE)'YuAb):

Vi = (Xavurasde)(Yer*AcaBa) — (XavudranBe) (Yer*AeaAa) ,

i = (Xa0wAd)(Ye0™ By) = (Xo0 Ba) (Voo™ As) ,

Ts = (Xa0uwAapAs)(Yeo™ AeaBa) — (Xa0mwAapBy) Yeo™ AegAd)

A1 = (XernsAa) (Yor" 15Bs) — (Xavws Ba) (Yor 154s)

As = (Xavursdands) (Yeor* vsAcaBa) — (XavuvsAan Bo) Yoy vs AeaAd) ,

Pl = (X 75*’4 )(YE)’YSBb) - (Xa")’SBa)(E’)’SAQ,

By = (Xovsrapds) YevsAeaBa) — (XavsAapBo) (YeysAcaAd) -
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Among these ten currents, five are independent, and we can verify following relations:

1 1 1 1 1
Sy = —'65'1+§V1+ZT1—§A1*§P1,
Vo= 25— 2Vi-Ai-2R,
T3 = 651 — §T1+6P1,
Ag = —251—‘/1—§A1+2P1,
1 1 1 1 1 '
Pg = 581_§V1+ZT1+§A1_6P1

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1 1 1 1 1

S3 = _151“1%+§T1*ZA1_ZP1;
1 1
V3 = Sl_évl‘{‘iAl_Pl)
1
Te = 35’1+§T1-|-3P1,
1 1
Ag = S1+*2-V1—§A1—P1>
1 1 1 1 1
P3 = —151+ZV1+§T1+1A1—ZP1.

3.3 Tetraquark fields with J =0~

In this section, we study scalar currents of J© = 0. The diquark and antidiquark can
have flavor structures 6; ® 6, 3 ® 3y, 3; ® 6; and 67 ® 3;. We will just study the first
three of them, since the last one have the similar structure as 3; ® 6;.

3.3.1 6;®86;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 65 and 6, respectively. We can
construct three diquark-antidiquark currents:

m = AEOBb(Xa’YSCY;)T + Xbr%CYaT) ’

= ALCBy(X.CY] + X,0Y]),
m = ATC0.,By(X.0" v CYE — Xy vsCY ),
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which are independent. We can also construct six currents by using quark-antiquark
pairs:
m = (XeAa) V15 Bs) + (XavsAa) (Yo By)
+(XaBa) (YEJ’VSAb) + (Xa'YBBa)(YEva) )
5 = (Xa'YuAa)(YEJ'Y#’Y'éBb) + (Xa'yu'YSAa)(Y;)'YMBb)
+(XavuBa) (Yor*v5As) + (Xavuvs Ba) (Vi7" As)
e = (XaUWAa)(YEzUW’)’SBb) + (XaUWBa)(EGW s V5 Ap)
M = AaAeal(Xads)(YersBa) + (Xav54)(YeBa)
+(XaBp) (YersAa) + (X5 Bo)(YeAa) }
s = )‘ab)‘cd{(Xa'YuAb)(}?C’YN'YSBd) + (Xa7u75Ab)(Y;'YHBd)
H(XavuBs) (Yer" 15 Aa) + (Xayuvs Be) (Yer* Aa) }
M = AabAed{(Xa0uwAs) Yoo y5Ba) + (X000 By) (Yoo vsA4) } .

Among these six currents, three are independent, and we can verify following relations:

5 1
= -5774—5776,
4
s = 57757
1
Ny = —6774+§776-

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

. o _1 1 n 1
m = 4774 4775 8776:
_ 1 n 1 n 1
M = 4774 4775 8776,
1
n3 = 3 — 5776- .

3.3.2 3;®3;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 3; and 3y, respectively. We can
construct three diquark-antidiquark currents:

m = AZOO‘MVBI,(XGO'“V’)%CY/I)T + XbO'“V’)%CYaT) ,
e = Ay CBy(X.1CY, — XsCY)),
ns = Ay CysBy(X.CY — X,CY)),
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which are independent. We can also construct six currents by using quark-antiquark
pairs:

m = (Xoda) Yy Bs) + (Xavs4a) (Yo By)
_(XaBa)(Yb'YSAb) - (Xa’YSBa)(YbAb) )

15 = (Xavuda) Vor"15Bs) + (Xavuvs4a) (Yo" By)
_(Xa’)’uBa)(ﬁ')’#')’!iAb) - (Xa'YM'YSBa)(E'YMAb) )

e = (XaowAas) Yoo v5Bp) — (Xo0uwBa) (Yo" v5.4s)

m = AsbAea{(XoAs)(Yers Ba) + (Xays4s) (Y Ba)
—(XaBy)(YevsAa) — (XavsBs) (YeAa)}

M8 = Aapded{(Xa¥uds)(Yer*v5Ba) + (Xavuv54s) (Yey* By)
—(XavuBo) Yer*v5Ag) — (Xavuvs Bo) (Yer" Ag)},

M = Aaprea{(XaouwAls)(Yeo™v5B4) — (Xa0uwBp) (Yoo y544) } .

- Among these six currents, three are independent, and we can verify following relations:

_1 1
nr = 3774 2776a
_ 8
g = 37757
5
Mg = 6774—5776.

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1
m = 3+ 57767

_ L1l
B VS T
3 = 4774 4775 8776-

3.3.3 3;Q6;

In this subsection, we study the tetraquark currents where the diquark and anti-diquark
components have a mixed flavor structure: 3; and 6, respectively. We can construct
two diquark-antidiquark currents:

m = ALCy.By( X 1CY + Xy 1CY)),

= ALCYusBy( X O — Xy CY),
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which are independent. We can also construct four currents by using quark-antiquark
pairs:
ns = (XoAa) Yo 15Bp) — (XavsAa) (YsBy)
—(XaBa) (Yiv54s) + (Xav5Ba) (Yo As)
n = (Xemuda) Vv 15 Bp) — (Xavuvs4a) (Y57 By)
~(XauBa) Ver"154s) + (XavuvsBa) (V67" Av)
M5 = AasbAca{(Xads)(Yeys Ba) — (Xov5.43)(YeBa)
—(XaBp)(YersAa) + (XavsBy) (YeAd)}
M6 = AsAcal(Xavuds)(Yer"v5Ba) — (Xavu1s4s) (Yey* Ba)
~(XauBp) (Yer* s Aa) + (Xavwys Bo) (Yer" Aa) } -

Among these four currents, two are independent, and we can verify following relations:

_ 2
s = 3773 4,
2
ne = —4nz— =M.

. 3
The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:
1

m = 773"5774,

1
M = 773+§774-

3.4 Tetraquark fields with J” = 1%

In this section, we study scalar currents of J© = 1*. The diquark and antidiquark can
have flavor structures 6; ® 64, 3y ® 3, 3; ® 6; and 6; ® 3;. We will just study the first
three of them, since the last one have the similar structure as 3; ® 6.

3.4.1 6;086;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 65 and 6y, respectively. We can
construct four diquark-antidiquark currents:

M = AgCBy(Xavu1sCY + XyyunsCYL)

Mo = ALCY B X CY + XWCY]),

Myp = AEC'YVBb(XaUW%CY;T - XbUMV'YSOYaT) )

My = AZOUuV'YSBb(Xa'YVCYbT - X—b’YVCYaT) )
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which are independent. We can also construct ten currents by using quark-antiquark
pairs:

Mo = (XaAa)Yevu15Be) + (Xavuy54a) (Yo By)
+(XoBa) (Yevu154s) + (XavuvsBa) (Yo Ay)

Nop = (Xa'YuAa)(YE)’YSBb) + (Xa’YSAa)(YEJ'YuBb)

| +(Xa'7uBa) (YE:'YSAb) + (Xa :’YsBa) (YZJ'YMAb)

My = (XaV54.) (Y30, By) + (Xa0,0Ad)(Yev" v5 By)
H( Koy v5Ba) (Yoo i Ab) + (Xa0 1 Ba) Yoy 15 4s)

778/1 = (Xa'YVAa)(YE)UW'YSBb) + (Xaaw’)’SAa)(YEJ'YVBb)
+(Xa’YVBa)(YEJO'W'75Ab) + (XaUuV’YSBa)(K’)’UAb) )

Moy = Aadea{(Xade) YevursBa) + (Xovuv54s) (YeBa)
+(XaBy) (Yeruy5Aa) + (Xavu¥5Bs) (YeAa) }

Mow = MasAea{(Xavuds)(Yers Ba) + (Xavs Ap) (YevuBa)
+(XavuBs) YersAa) + (XavsBs) YevuAa)}

Mipy = /\ab/\cd{(XﬂV%Ab)(Y;O’W—Bd) + (XaUuuAb)(Yc’YV75Bd)
H(Xa7 15 Bb) Yoo, Ag) + (Xa0 0 By) Yoy v544) }

M2 = )‘abAcd{(Xa’YVAb)(YcUuu’)’sBd) + (XaU,uu’YsAb) (Yc’YVBd)

+(Xa'YVBb) (YCUW'YSAd) + (XaUW’YSBb)(Yc’YVAd)} .

Among these eight currents, four are independent, and we can verify following relations:

5 ,
Mo = —§n5u — sy,
5 )
Top = —§776p. — M,

. 1
Mip = 37'776/.1. + 5777,11,7

. 1
Moy = 35, + 378 -

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1 1 ) 3

Mu = _1775;1. - 1776;» + 1777;1. + 1778/.L )
1 1 i i

Tow =~y 7M6u Vi 1778;5’
31 3 1 1

Map = T u + 2 on L + s

31 31 1 1
Nap = _ZT]S;A - ani,u, + 1777;1, + 1778/1. .
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3.4.2 3;®3;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 3; and 3y, respectively. We can
construct four diquark-antidiquark currents:
My = ALCY By(Xa0w:CYy' 4+ XoowsCY,),
Mow = AbCousBy(Xay" OV + Xy CY]),
My = AZCBb(Xa’YM'VSCY;T - Xb’YM'YSOY/;T) )
Mu = Ay CruvsBy(XoCYy — X,CY)),
which are independént. We can also construct ten currents by using quark-antiquark
pairs:
M = (Xada)(Ye1u15Bs) + (XavuvsAa) (Vs By)
_(XaBa)(YiJ’Yu')’SAb) - (Xa')’u%Ba) (YE?Ab) )
Mo = (XavuAa) Yo By) + (XavsAa) (Y51, By)
—(Xa¥uBa)(Yo1545) — (Xa5Ba) (Yo, 4s) ,
M = (XaVV540) Yoo Bp) + (Xa0Aa) (Ysy Y5 By)
_(Xa'YV’YSBa)(YEJUWAb) - (XaUuVBa)(E'YV'%Ab) )
My = (XaV Aa) Yoo 5Bs) + (Xa0w s Aa) Yoy’ By)
—(Xa'YVBa)(KUW%Ab) - (XaUW'%Ba)(YEfYVAb) )
Now = AabAea{(Xads) YevuvsBa) + (Xavuvs4s) (Yo By)
~(XaBy) Yeruvs Ad) — (Xavu15Bs) (YeAa) }
Mox = Aavrea{(Xa7uds) Yevs Ba) + (Xav54s) (Yo, Ba)
—~(XavuBs) (Yevs Aa) — (Xavs Bo) (Yeruda)}
i = Aapdea{(Xa? V540) (Yoo, Ba) + (Xa0u A) (Yey" v5 Ba)
~(Xav"15Bs) (Yoo v Ad) = (Xa0u Bo) Yoy 15 44)}
Moy = AavAea{(XaV"As) (Yoo 5 Ba) + (X0 vs4s) (Yey” Ba)
_(Xa'YVBb)(YcUW’YSAd) - (XaUW’YSBb)(?c'YVAd)} .

Among these eight currents, four are independent, and we can verify following relations:

1 .
Mo = g"?Su"‘”?Sua

1 .
Mop = M6 T M7,

3
: 5
Mmip = —32776u - 5777;1.;

. 5
Moy = —3Msu — 37
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The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

3t 3 1 1

Mp = = "bu + 2 Mou = + 778
31 37 1 1

Moy = _Z"ku - ani,u + Z"ﬁu + 1778;1.7
1 1 7 )

Mo = —gMou = 76u + UL + nes
1 1 ) )

My =~ T6p + 776n = 7w + neE

3.4.3 .‘?,f & f_if

In this subsection; we study the tetraquark currents where the diquark and anti—diqﬁark
components have a mixed flavor structure: 3y and 6y, respectively. We can construct
four diquark-antidiquark currents:

Mu = ALCYBy(Xa1sCYy + XpysCY),

Mow = ALCoLBy( Xy 10V + Xy :CY]),
N3y = AZCVSBb(Xa’YuC}_/bT - Xb’Y;LCY:;T) s

Ny = ALCY'v5By(Xe0uCYE — X0, CYY),

which are independent. We can also construct eight currents by using quark-antiquark
pairs:

Moy = (XaAa)(Yb’)’u%Bb) - (Xa'Yu’YSAa)(YE)Bb)
“(XaBa)(YE?’Yu’%Ab) -+ (Xa7M75Ba)(}7bAb) )

Mo = (Xa’YuAa)(YZ’Yst) - (Xa’YsAa)(}_/l»’YuBb)
_(Xa'YMBa)(Y;)'YSAb) + (Xa’YSBa)(YE»’YuAb) )

M = (X" V540) Y00 By) — (Xa0Aa) (Ysy" 15 Bs)
_(Xa’YV'YSBa)(EUWAb) + (XaUuVBa)(E’YU’YSAb) )

By = (XaW’VAa)(YE)UW%Bb) - (XaUuV’YsAa)(Y;J'VVBb)
~(Xa7" Ba) (Y50,u7548) + (Xa0 75 Ba) (Vi7" As)

Mo = Aabrea{(Xads) Yeru1sBa) — (XavuvsAs) (YeBa)
—(XaBb)(Yc’Yu%Ad) (Xa’Yy’Yst)(?;Ad)} )

Mo = AaAed{ (Xa¥uds) Yers Ba) — (XavsAs) (YevuBa)
(R Bo) (Yo Aa) + (o35 By) (T}
Mip = )‘ab/\cd{(XarYV’YSAb)(Y;:O'uqu) - (Xao‘;wAb)(Yc'YU'YE)Bd)
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~(Xav"5Bs) (Yoo 0 Ad) + (Xa0,0 Bp) (Yer" 15 44)}
Moy = AabAea{(XaV Ab)(Yeo Y5 Ba) — (Xa0uws54) Yoy By)
—(XaV" By) (Yeo 15 Ad) + (X0 ¥s By) (Yo" Aa) } -

Among these eight currents, four are independent, and we can verify following relations:

2 .

Moy = _5775;1. — Mep — M7
2 .

Mo = —TMsp — 5776/1. + M8y »

. 2
My = 35y — 3"~ Tsu

) 2
Mop = —3iNep — Ny — gﬂ&e .

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1 1 ) 1

My = 1775“ + 1776# - an + 1778/“
3t 31 1 1

Moy = ZT}@ - ZWGM + Zﬁm + 1778”;
1 1 g 7

My = ZUSM - 1776;1, + an + Z"?S;u
31 3¢ 1 1

Ny = 2“775,; + Zﬂﬁu — an + Znsu-

3.5 Tetraquark fields with JZ =1~

In this section, we study scalar currents of J© = 1=. The diquark and antidiquark can
have flavor structures 6; ® 6, 37 ® 3, 3; ® 67 and 6; ® 3;. We will just study the first
three of them, since the last one have the similar structure as 3; ® 6;.

3.5.1 6f ®6f

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 65 and 6y, respectlvely We can
construct four diquark-antidiquark currents:

M = ALCYBy( X sCYy + Xoyu1sCYS)
My = ALCYYBy(XaysCYy + XpsCY)),
N = AZCW”BI, (Xaaw,C'}_’;T - XbJWC'YaT) ,
Nap = AZCUuVBb(Xa’YVCYbT - Xb’YVCY;T) )
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which are independent. We can also construct eight currents by using quark-antiquark

pairs: .

Mop = (XaAa)(Ye7uBb) + (Xavuda)(¥oBs)
+(XoBa) Vov1uds) + (XavuBa) (Yo 4s)

Mop = (XaVu154a)(Yev5Bo) + (Xav54a) Yevuv15Bs)

-+ (XavwvsBa) Vo5 As) + (Xavs Ba) (Yorurs4s)

e = (Xa'YVAa)(EUWBb) + (XaUWAa)(YEfYVBb)
+(Xa’YVBa)(KUWAb) + (XaUﬂVBa)(Yb’YVAb) )

sy = (Xa'YV’YSAa)(YbUW’YSBb) -+ (XaUW')’SAa) (E’YU’Yst)

(X5 Ba) (Yoo w5 Ab) + (X015 Ba) (Voy 15 4s)

Now = Aasprea{(XaAs)Yev,Ba) + (X7, As)(YeBa)
+(XaBp)(YeruAa) + (XavuBs) (YeAa)}

Mo = AavAea{ (Xamuw1546) (Yers Ba) + (Xavs4b) (Yevuvs Ba)
+(XavusBs) (YersAa) + (XavsBy) YerursAa)}

Mip = )\ab)\cd{()za’YVAb) (Yco_uqu.) + (Xao_;wAb) (YC'YVBd)
+H(Xa7" By) (Yoo Aa) + (Xa0wBo)(Yev" Aa)}

Mop = AabAed{(XaV 154) (Yoo w15 Ba) + (Xa0 s As) Yoy v5 Ba)
+(Xa7y753b)(}7co'uu’)’5Ad) + (Xao'pu’)’SBb)(Yc'YV'YSAd)} .

Among these eight currents, four are independent, and we can verify following relations:
Mo = _gnfm - 7;778u s
Mou = —37leu M7y s
, 1
M = 3iNeu + 3

. 1
Moy = 32775“—#5778#.

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:
1 1 i 1
Mp = =g = 7w + G + i
1 1 1 )
o = ZMu — 7T6u + 2~ 778w
31 3i 1 1
Mo = e~ 6w + i 1778;“
3i 34 1 1
M = = e = Meu gt M8
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3.5.2 3,;,Q3;

In this subsection, we study the tetraquark currents where both the diquark and anti-
diquark components have a symmetric flavor structure: 35 and 3, respectively. We can
construct four diquark-antidiquark currents:

My = Ay Cv By(Xe0wCYy + XquVCYaT) )
M = Ay CowBy(Xay' O + Xy’ CY,l),

M = AICYyBy(XarusCY — XyyusCYL),
My = ALCy By Xe1sCY, — XyysCY,) ),

which are independent. We can also construct eight currents by using quark-antiquark

pairs:

i

UM

Ny

UL

Nou

Now

Mip

Teop

(X A )(YE?'VMBIJ) +( aVud )(YE,B(,)
( )(YE?’YMAb) (Xa')’u )(nAb)
(XavwsA )(Yev5Bs) + (Xav54a) (Yo7, 75Bs)
~(Xavu5Ba) (Y15 4) — (Xav5 Ba) YVoruv54s)
(Xa'YVAa)(Y;JJWBb) + (XGUNV a)(Y;'YVBb)
—(Xa'YVBa)(YbUWAb) - (XaauvBa)(Y;J'YVAb) )
(Xa’YV'YSAa)(YEJJquVE)Bb) + (XaUuV'YSAa)(YEJ’YV'}'SBb)
~(Xa7"15Ba) (Y0115 48) — (Xa0y5Ba) (V7" 15 4b)
AapAea{(XaAp) (YevuBa) + (Xovuds) (Yo By)
—(XaBp) (YeruAa) — (XavuBs) (YeAa)}
AapAeal (XaVuvsAs) Yevs Ba) + (Xavs Ab) Yevuvs Ba)
_(Xa’YM')’SBb)( 075Ad) (Xa’YBBb)(Yc”Yu’YSAd)}a
AapAed{ (Ko Av) (Yoo Ba) + (X0 Ap) (Yey” Ba)
—( XV By) (Yoo Ag) — (Xa0uwBy) Yoy Aa) }
AapAed{ (XY 15 40) Yoo v Ba) + (Xa0 w75 As) Yoy 15 Ba)
_(Xa'YV%Bb)(YcUW'YSAd) - (XaUW’YSBb)(YC'Y ')’5Ad)}-

Among these eight currents, four are independent, and we can verify following relations:

1 .
ou = §775u+“78u,
1 )
Mo = §776u+“77ua
. 5
Mip = —32776u—§777u7

. 5
M2y = _32775u_§778u-
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The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

3.56.3 gf ®6f

37 3 1 1
Mp = 7= 76w + 7w = e
31 31 1 1
Tp = —Z%u - Z"'Iﬁu + 4_1777“ + 1778“’
1 1 ) )
My = =M = 776u + UL + e

1 1 7 )
Mo = 7M6u = 776u + T

In this subsection, we study the tetraquark currents where the diquark and anti-diquark
components have a mixed flavor structure: 3y and 6y, respectively. We can construct
four diquark-antidiquark currents:

771/.1.
772/1.
UEM

N4y

AT Cr, By (X,.CY T + XYY,

Al Couys By( Xy vsCY, + Xy CY,)
ATC By (X1, CY — Xy, CYT),
AEC’YV'YSBb(XaUW’YSCET - Xbo'uv'YSCY;T) )

which are independent. We can also construct eight currents by using quark-antiquark

pairs:

M5

UM

U

UEm

Mop

ou

Mip

(XaAa) (H’YuBb) - (XA’Y;LA&) (YE,B(,)

_(XaBa)(YE)’YﬂAb) + (XafY/ABa)(Y;)Ab) 3

(Xa%fYSAa) (Y;)’YSBI)) - (XafYSAa) (}_/17'7#’)/5311)

—(Xa’Yu'YEJBa)(Yb’YSAb) + (Xa’YSBa)(%'VM’YL’)Ab) )

(Xa’YVAa)(Y;)UWBb) - (XaO'WAa)(YEfYVBb)

_(Xa'YVBa)(Y;)UuuAb) + (Xao',uuBa)(ﬁ’yyAb) ’

(Xa7"1540) (Vo075 By) — (Xa0 s Aa) (Yo 5 By)

—(Xav"¥5Ba) (Yoo 5 As) + (Xa0m s Ba) Yoy 15.40)

A

aprea{ (Xads) YevuBa) — (Xav,As) (YeBa)

—(XaBy) (Yevuda) + (XovuBs) (YeAd)}

A

abAca{(Xavuv5A) (Yers Ba) — (XavsAs) (Yevuvs Ba)

—(Xavu Y5 By)(Yers Aa) + (Xavs Be) (YevuvsAa) }

A

abAcd{(XafYVAb)(Yca;de) - (Xao-uuAb)(K’YVBd)
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—(Xa7"By) (Yoo Ad) + (Xa0 Bs) (Yoy" Ag)}
Mo = AabAeal{(Xa¥54) (Vo015 Ba) — (Xa0u¥54s) (Yo 75 Ba)
—(Xa7"15By) (Yeo w5 Ad) + (Xa0u 75 Bo) (Yer 15 44) } -
Among these eight currents, four are independent, and we can verify following relations:
2 .
Mop = —3Mbu + Mo — M s

2 .
Moy, = Ty — 5776;4 — 8w

) 2
Ty = 37/”75# - 5777# — M8 s
2

Moy = 3in6u = M — 5778;; .

The diquark construction and mesonic construction are equivalent, and they can be re-
lated to each other:

1 1 7 1
e = _4775u + 1776/1 + 1777/1 - 1778#’
3¢ 3i 1 1
Moy = Zﬂsu =+ Znﬁ" + an + 1778/“
1 1 7 1
My = ZUSM + Z%u + 1777/1 + 1778#7
31 33 1 1
Nap = _ZTIS;L + Z"?Gu + Z’?M - Znsu'

3.6 Relations between (qq)(¢7) and (gq)(gq) Structures

3.6.1 General Idea

In the previous sections, we find that there are always some relations between (gq)(gq)
and (gq)(gq) currents. In this section, we will do some detailed study on these relations.
The quark field used here is denoted as ¢%(x) again.

First, we consider the color and flavor structures. The interchange of both color and
flavor does not need to be antisymmetric, due to the extra orbital and spin degrees of
freedom. Therefore we can not use the Pauli principle such as ¢2¢? = —gPg? within the
color and flavor spaces. Altogether there are four types of diquark (gq) and four types of
quark-antiquark (gg). They are shown in Table 3.1, where the sum over repeated indices
(a,b,- - for color indices, A, B, - - - for flavor indices) is taken.

To construct a tetraquark by using (gq)(Gq), the color structure is either

B®3)3®3)—-3®3—1,
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Table 3.1: Color and flavor structures of qq and gq

(Color, Flavor) (3¢, 3¢) (3¢, 6¢) (6c, 3g) (B¢, 65)

Diquark (qq) ebeeapclaftal) | e*e(afaf +aBaf) | canclafaf +affad) | (@laf +9Pqd) +(a o b)

(Color, Flavor) (Le, 1¢) (Le, 8¢) (8¢, 1¢) (8¢, 8¢)
Quark-antiquark (3q) (@ta) A patel) A% (g4 aft) Al paabgtaly

or
B®3)(3®3)—> 66— 1;
the flavor structure is
B3)®B®3)=(346)3396)=1980801008d 100108 27.
To construct a tetraquark by using (Gq)(gq), the color structure is either
33)33®3)—191—1,
or
BR3)®B3®3) -8®8—1,

with the same flavor structure as before. In Table 3.2, we show all possible color and
flavor structures of tetraquark currents Tgl(FQ). Here F; denotes the flavor representation
of tetraquark; F; and C show the intermediate flavor and color representations of either
diquark (antidiquark) or quark-antiquark. S4BCP is the totally symmetric matrix. Be-
cause we would like to make a scalar tetraquark state, the diquark and antidiquark fields
should have the same color, spin and orbital symmetries. Therefore, they must have the
“same flavor symmetry, which is either symmetric (6¢ ® 6¢) or antisymmetric (3; ® 3¢).

If the orbital and spin structure between the two quarks (two antiquarks) are sym-

metric, then the color-flavor structure of diquark (antidiquark) should be anti-symmetric,

which means ¢*¢f = —¢Pq2 (43F = —g°q2). In this case, we can verify
T;(3) — T38(3) — T38(3,6) _ T310(3’6) — T68(6’3) — T610(6,3) —_ Tg(ﬁ) — TGS(G) — T627(6) =0,

: (3.16)
If the orbital and spin structure between two quarks (two antiquarks) are anti-symmetric,
then the color-flavor structure of diquark (antidiquark) should be symmetric, which means

Gady = 4w % (3% = G da). Then we can verify
T61(3) — TGS(S) — Tg(&ﬁ) — T610(3,6) — T;(6,3) — T310(6’3) — T31(6) — T38(6) — T327(6) =0.
(3.17)
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Table 3.2: Color and flavor structures of tetraquark currents

(323)R(B3®3)—3®3 — 1.

BR3)0BR3) 686 — 1,

(29)(79)

Bo3)eEed) c*ectdec  ppecpplafaf)@SaD) = T3 ® caspecpe(ate? +afaB)@SaP + afaD)
—3®8 —1f =2cappeopelataf)@C el +alal) =213 ®
—3®3 — 8 EabGECde)‘ﬁFEABEECDF(‘quhB)(‘75"55 =15® MiFeappecprlataf)@Cal +afal) = 2®

3(3,6) MFeappecer(afaP)@Caf +3030) = ’1’:(3’6)

etbeccderDF e sppecpr(egtaf)@Sal)y =Ty

— 386 — 8¢

, _C.Dy _ 10(3,6
bec0desCDE ., b (g aP) (3C5F) = TP

-C-D , ~Cx 10(3,6
SCPEe, pp(atel)@CaP +qF70) = 1299

—3®6 — 10¢

; _C Dy . -8(6,3
c@beccdenBF 4 preoprletaf)@Cap) = 78

. G- _C- 8(8,3
AP esprecpr(afaf )@ +dFdl) = Ta( )

— 6®3 — 8¢

—-6Q®3 — 10¢

~C = — 10(6,3
cebeecdesABE o p p(ataf) @ 5)) = T30

~C = ~C = 10(6,3
S4BBeopp(ataP)@CaP +afal) = 70

- 686 — 1

cabecede(qAgB |  BoAy(gAgE 4 afa;‘l)( )
—A - -B - —_ 6
= 2¢%becede(g A By (gAgh 4 g8g4) = 213

(a2ef +aBa@laf + Paf + (o B)
~A - -B - 1
=202 aB)a aE + Bl + (a o b)) = 212 (®

— 66 — 8¢

_C =

A = — 8(6
AN jeobecede(gAgB 4  BoAy(gAsl + gCg4) = 78(@

Ao +ala)@lal +aaf + (e o b)) =

2.

T:(G)

_C Dy _ 27(6
Sapopetteede(ghoB) (9 qR) = T27(®

=C = =C - 27(6
Sapopate)@Sal +afel) = 127

— 66 — 27¢

B®3)RB®S) -101 > 1,

BR3)(BE3) -8Q8 — 1,

(99)(79)

B®3)®(3E®3)
— 1®1—1¢

(@2ad)@led) = i

. - 1(1
(@222 q2) (§BAqE) = o™

— - 8(1, 8
A @2a@Edf) =1y . 8

— = 8(1, 8
Mio@iazte) @2 r5%ag) = 18 )

— 1Q8 — 8¢

a

_ _ _ 88,1
M @BeS) @ e) = T 6. 1

. . — 88,1
Mo@2rgtad) @irgted) = T8E D

- 8® 1 — 8¢

> 8®R8 — 1

— — — 1(8
@AY paB) @G apeP) = TH®

— - 1(8
(@AY paP) @AY pe2) = TR

q - - _ 8(8
AEEe opeppr(@teB) (G eD) = T8®

- _ _ 8(8
M Peacrenpr@drabof)@Srsde?) = TE( )

— 8®8 — 8¢

— 808 — 8%

3 = = _ 8 (8
ABF e someppr@taB)alel) = 78 &

. " _ 8'(8
ABFescmepmr(@ArebeB)(@CrcdqD) = TS ®

_ _ 10(8
cAfﬂqE):Ts (8)

_ . __ -10(8 _
> 8®8— 10¢ caceSppe(@td®)@l«dP) =1y ® eaceESEDE(TAN D) (g8
- = — 108 — _ 10/ (8
—8®8 —~10; cpppSace@ia®)@Cel) = 7" ® cBDESAcE(@AA2aB) (@S2 qR) = T3¢ )
— i — 27(8 . i 27(8
888 27 Sapop@faB)afel) = Ti7® Sapcp @2220aP) @S Ate?) = 127

3.6.2 Tetraquark Transformations

Now let us discuss the Fierz rearrangement in order to relate (¢¢)(¢g) and (gq)(gg) struc-
tures. First we perform it in the color and flavor spaces. To do this, it is convenient to

consider the interchange of color indices:

1
(QfQ5QEQ5)=3

AA (qAqB gl R = 5

which are obtained by using

1

16 )
—(idga a’) -

A B—C—D)
)

= 1 a Ci
(e @)+ R (A A

ABE ). (3.18)

1
g A"r];,b /\'fld ( 9, 9: 99 %

1
6ad5bc = _5ab50d + 5)\;1117)\70:1 3

3
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16 )
)\f:d)\ff’ = —0,0cd — —/\;‘Lb)\fld. (3.19)
9 3
We can obtain the same result for flavor structure.

Let us take T31 ®) as an example, and perform the simultaneous interchange of both
color and flavor indices

T3® = e ppecpp(aiad)(@Ca7)

(@) @) — (i) @al) - (qa“qb)(qaqb) (gal )@ a)
= () @) - (§<qa PNGTP) + PN @)

~(adaf) (@) + ( (a2af)(@af) + N alaP) @ ad))
= St - A“bxd(qquxq-qu)
2 (3P @ap) + 3 CD<qaqb><qfq£))
5 (3aale ><q-,;4qB> + MDA (glaf )P a) )
g@a V@) - L) alad) — 3NN (e @)
+3 I MM g20) ()

Because we only consider the color and flavor structures, by changing the ordering of the
second quark and third quark, we arrive at the result:

4 = = aby ¢ -
~ §(qfqa N@Pal) — A P g et dP) — 3 o @)@
+3 YA A“bACd(q-beﬁ(q—quS).
4 1(1 1 1(1 ]- 1(8 1 1(8
= §T1<>—§Tﬁ“—§T1()JFZTE;(’. (3.20)

Next we perform the Fierz rearrangement ih the Lorentz indices. The formulae is [67,
131]:

WasWrs = 3 Mas(Ds + 1(0)as0 s + 5 (Gwdas(o™)s (321)
~ Z0)as (P 35)25 + {(5)es(28)1

By using this equation, we can obtain various relations such as

((g2)" Cay' )@ C(a)")
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1

= (@ CO@E ) - (@ OnO@) N D)

~ 5 (@) CoC@RN @ o af) + (@) CrmsCla) )G )
1 A)Tovsc(q—fﬁ)(qf%qﬂ

= ——(qd TN q) + = (Qd TN @V a)) + ;(&5 o @) (@ o 7))
+i(§d Y5 ) (@5 v vs08) — i(@i V@) (T V5 ) - (3.22)

In order to label the Lorentz structure for a scalar tetraquark field, we introduce S,
V,T, A and P instead of T

S for (q7Cvs5q)(q1sCq") and (dq)(qq)

V for (" Cvu1s9)(@y*sCq") and (Gv.9) (37" q) ,

T for (¢" Cowq)(Ge* Cq") and (Gowq) (@™ q),
(q
(g

A for (¢" Cv,q)(gy*Cq") and (Fy,759)(3v*¥59) ,

P for (¢"Cq)(gC7") and (Gv5q)(qv5q) -

For example,
5" = Sapon(@/T Cwa) ) (EwCHT + a5 wCaT),
V2" = Sapon (@l W@l aP) - (3.23)

Diquarks belonging to 7" and A have a symmetric Lorentz structure (see Eq. 3.16)

(O'Yu)aﬁ = (CVM)ﬁa ) (CU/W)aﬁ = (CUW)ﬁaa (3.24)

so they have an anti- symmetrlc color-flavor Structure Therefore, currents having the
symmetric color-flavor structure vanish, such as

AF®) = eabeeedec, ppeonn((g2)T Crual) (@5 C(@0)T) = (3.25)

Similarly, dlquarks belonging to .S, V and P have an anti-symmetric Lorentz structure
(see Eq. 3.17)

(Cap = —(Clpa (Cruv5)ap = —(CYuY5)0 » (C5)ap = —(C5)par » (3.26)

and so they have a symmetric color-flavor structure.
By now, we have known the flavor, color and Lorentz structures of scalar tetraquark
fields, for both (¢q)(Gq) and (gq)(gq) structures, and are ready to derive some relations.
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3.6.3 Specifying the flavor structure

In order to establish the relations, we need to specify the flavor quantum numbers of the
tetraquark currents. As we are considering in this work, let us choose the flavor octet
states (3®3)® (3®3) — 3 ® 3 — 8 for the illustration.
In this case, diquarks and antidiquarks have an anti-symmetric flavor structure, and
we can verify v
Sa® =1g® =15 = A3® = P§¥ = 0. (3.27)

Therefore, there are five types of (¢q)(¢q) fields which are non-zero and independent:
Ss® V@ 18® | A5® | p3® (3.28)
while all ten types remain for the (gq)(gq) fields:
Sf(S) 7‘/18(8) ;T]_B(S) aAf(S) 7Pf(8) 7388(8) 7V88(8) )TSS(S) )Ag(S) ) PSS(S) 3 (329)

Among these ten (gg)(gq) fields, only five are independent. We can derive the following
five equation by applying the Fierz transformation for the (Gq)(gq) fields:

SE® _é S5O 4 %Vf(s) n %Tf(so _ % A3® _ % P

VE® _ 9g8® _ gvls(s) _ A%®) _ops®

¥ = 657® - ng(S) +6P;®, (3.30)
AB® _ _og8E) | y8®) _ g AB®) | ops®)

ps® % 58®) _ %‘/18(8) n in(@ n % 430 _ % ps®

Employing the five currents on the left hand sides of Egs. (3.30) as independent ones,
and applying the Fierz transformation, we can establish the following relations among
the five (gq)(gg) and five (Gq)(gq) structures:

1 9 1 Z 5 1 ’
"/;38(3) — 25«?(8) _ "/'18(8) + A?(s) _ 2P13(8) ’
. = 653® +17® +6P0® (3.31)

Ag(3) _ 25?(8) + VIS(S) _ A?(S) _ 2P18(8) ’

8(3 1 8](8 1 88' 1 8 1 8(8 ]- 8(8

1 1 1 1 1
S§(3) — —588(8) _ _VS(S) + Tls(s) _ 514?(3) _ 8(8)
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3.6.4 Specifying the color structure

For completeness of mathematical structure, one can specify the color quantum numbers
for the currents. For illustration, let us consider the color structure (3® 3)® (3® 3) —
3® 3 — 1.. In order to establish the relations between (qq)(gq) and (gq)(qq) currents,
we find that we need two flavor structures: (3 ® 3¢) ® (3¢ ® 3¢) — 3¢ ® 3¢ — 1¢ and
(3:®3¢) ® (3: ® 3¢) — 6: ® 6r — 1.

In this case, diquarks and antidiquarks have an anti-symmetric color structure. By
using the Pauli principle, we can verify

Ss ¥ =@ =13® = 43® = p;® = 0. (3.32)
Therefore, there are five types of (¢¢)(gq) fields, which are non-zero and independent:
53®) Y8 716 A6 ple) (3.33)

The single (¢g)(gg) fields can not have an anti-symmetric color structure. Therefore, we
need to use their combinations. By using Eq. (3.19), (g¢)(gq) fields can be combined to
have an anti-symmetric color structure:

_ . 1 — _ ab\ ¢
(@@ ) — (@)@ d?) = @a) @) - g(q:fqa T a) — 5&"%‘1(% )@ qy)
- Zgw_ 15';(” = g (3.34)

37t 2
Altogether there are ten types of non-vanishing (Gq)(gq) currents:
S AW gl 410 pla) gl e 71 416 pue)

Once again, among them only five are independent

518 _ _% P %V;(l) N %Tgm _ % AL _ % PO

yI® _ gl _ §V31<1> _ AW _gp)

;% = 65" - ng(” +6P Y, | (3.35)
AL® _ _ggl) _ 1) _ g AL 4 9p1®)

PI® _ % S _ %‘/—31(1) n 211_T31(1) n % AL _ é PO

The relations between (¢q)(¢g) and (gq)(gq) structures are:

1(3 law 1oww, Law 1w 1oia
53() — _5‘5’3()_5‘/3()+ZT3()_§A3()_§P3()7
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‘/231(3) — 251(1) +A1(1) _ 2P31(1)

e — e5i® +T;(1’ +6PrM (3.36)
A;(G) — 2831(1) _1_‘/31(1) _A;(l) —2P31(1)>,

1

law Lo law 1w Lae
555 +5Ve )+ T3 + s Ay ~ S Py

3.6.5 Specifying the Lorentz structure

Finally, let us consider the case where the Lorentz structure is specified. As an illustration,

let us consider a tetraquark current (q7 Cvsq)(GysCq*). Possible color structures are

B®3)®(3®3) 2383 —1.and (3®3)®(83®3) - 6®6 — 1; and possible flavor

structures are (3®3)®(3®3) 23®3 > 1l;and 3®3)®(3®3) - 626 — 1;.
By using the Pauli principle, we can verify

530 = §2® — ¢ | (3.37)

Therefore, there are two currents which are non-zero and independent:

S5V = e e, ppecpr(diCsel) (@107

SO = (GACHsaP) (@ ysCaE + PysCat + (a > b)),

Now from the combination of quark and antiquark, possible color structures are (3®3) ®
B®3)—>1®1—1.and (B3®3)®(3®3) — 8®8 — 1.; and possible flavor structures
are 3®3)®(3®3)>1®1— 1l;and (B3®3)® (3®3) —» 8®8 — 1;. Therefore,
there are four non-vanishing currents:

P = (g2 Cwad)@isCT)
B = ww( 20702 (@ %CaF)

Pr® = N ep @2 Crsay WalvsCF)
pl® AN /\ AN g2 Cys g (G C T -

I

The Lorentz structure is still specified to be (¢7Cv5q)(7ysCa*). However, if we inter-
change the second quark and third antiquark as done in Eq. (3.20) within the color and
flavor spaces structures, They are now “(dq)(gg)” currents. Among them, only two are
independent, through the following relations:

_ P

32
B - Do Iym) (3.38)

pre
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Y

Finally, relations between the (g¢)(g7) and “(Gq)(gq)” currents are

4
S; ® 3 Pil(l) ‘P811(1) )
55(6) 3P{1(1) Pél(l) ) (3.39)
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Chapter 4

Color Structure

In the previous chapter, we find that for all the currents constructed by using quark-
antiquark pairs, only half of them are independent. Therefore, all the tetraquark currents
which contain two color octet quark-antiquark pairs can be written as combinations of
the currents which just contain two color singlet quark-antiquark pairs. In this chapter,
we will study this, and we will find that every tetraquark current can be written as a
combination of the currents which just contain two color singlet quark-antiquark pairs.
This can also be proved in the case of pentaquark that every pentaquark current can
be written as a combination of the currents which just contain one color singlet quark-
antiquark pair and one color singlet three-quark baryon field.

4.1 Tetraquark Fields

Every tetraquark current can be written as a combination of two quark spinors, two
antiquark spinors, a Lorentz matrix L (Lorentz space), a color matrix C' (color space), a
flavor matrix F' (flavor space) and some derivatives 9,

n= L,w/pa'Fabadcijqugiqzjq(’?kqgl ) (41)

where the sum over repeated indices (u, v, - - - for Dirac spinor indices, a,b, - - - for flavor
indices, and i, j, - - - for color indices) is taken. The quark spinor ¢ may contain derivatives
and so there is an extra Lorentz index u.

We want to prove that every tetraquark current can be expressed by.two color singlet
quark-antiquark pairs (§°¢%)(¢7¢?). To do this, we need to perform some transformations
in color and Lorentz spaces.

First we simplify the Lorentz indices to make transformations easier. If two derivatives
contract with each other, we write them within the quark spinors

(310u42)(250"q4) = (0192)(Gs) - (4.2)

7
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If v, does not contract with any other one, which means that its Lorentz index remains
in the end, we write it with one quark spinor:

Yudi — 41 (43)

This can always be done since we can change the position of y-matrices:

DY VuVol2 = 29u0@Vel2 — Q1Yo (Vud2) (4.4)
= a@iVpdz + @Y Yod:
This may produce some extra metric matrixes 9uv, Which we keep to the end.
If v, contracts with a derivative 0* which is in the same quark-antiquark pair, we

can use the same procedure. If -y, contracts with another v* which is in the same quark-
antiquark pair, we can contract them directly

ql...ry'u‘...f)//"’...QZ=03(71...q2_ (45)

If v, contracts with a derivative 8* which is in the other quark-antiquark pair, we
need to use the Fierz transformation to put them together

(@ 1) 202)(@ ) (@) (46)
= Z 1)1 (0%q0) (@5 - 3)T (- 2 q2) -

This may produce some extra I' matrices. After contracting all these 'matrices, we arrive
at following expression

N = FPCoi(ET g (TT™dh) (4.7)

where the matrix I',,,... can be written as a combination of 1, 7,, 75 and o,,. The previous
coefficient L, is written inside with either I'y,... or I'***". By using the Eq. (4.4) again,
every tetraquark current can be written as a combination of five currents

7° = FCiun(@.a)(@d),

n’ = FCua(Gm.a) (@ d) .

T = F®C0(¢ouLa)(do™d,), (4.8)
nt = F“deCi]kl((jf{)’u’YSQi)(qc’)’ V54y) »

n = FC0(gsa) (T sdh)

where the quark spinors may contain some I' matrixes and derivatives. The currents
n? and 7 can be written in the form of ¥ and n° respectively. However, we will find
that they are necessary to compose a complete and independent basis. For tetraquark of
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different quantum numbers, the amount of independent currents may change, but there
are five independent currents at most, which are just these five ones.
There are two kinds of color structures, which are (¢'¢*)(¢7¢’) and (F\};¢?) (N q")-
" The flavor symmetry of diquark can be both symmetric and antlsymmetnc Here we fix
it to be symmetric, and the antisymmetric case can be similarly studied. Therefore, every
tetraquark current can be written as a combination of following ten currents

mn o= (6B + (e G4) 5

s = (BN BN + (@ € @),

o= (Bud)(BvE) + (2 € a),

ny = (Q1Az]7Mq2)( EARY L) + (@2 qa)

m = (Gowe) (B ) + (2 < ), (4.9)
s = (@ ijUILVQ2)(QS motqs) + (02 © ),

nt = (@) By sas) + (2 & a),

16 = (@G D) BN s4k) + (a2 < as)

mo= (@) (B ) + (e aw),

= (ENB) (BN qh) + (22 & ),

where the numbers 1, 2, 3 and 4 represent quark flavors, and the subscripts 1 and 8
represent color singlet and octet quark-antiquark pairs respectively.

By performing some transformations, we will see that these ten currents are not
independent. First we change their color structure

@d)dd) = ldid)dd) + < () @) (4.10)
@) @A = §<qq><q3q4> L@ d) @

Then we change their Lorentz structure by using the Fierz transformation
l o, 15 i\
35 = (Ge) @) + (22 < ) (4.11)
1 1 ‘
= —g{nd +n + o =i+ '}

We obtain ten equations in all

1 1 1 1
577f+§77§ = —Z{nf+mv+§n?—nf‘+nf},
16 1 1 1

37713—5?75 = —Z{n§+ngv+§ns ng +n},
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1 1 1
g Ao = — {4 —2n) — 2nft — i},
16 1 1
= =z = ——{4n5 — 20§ — 20§ — 4nd’},
9 3 4 -
1 1 1
g +5m = —7{12n — 27 + 127}, (4.12)
16 1 1
= - zmg = — {1205 — 205 + 1275},
9 3 4
1 1 1
g +gm = —p{=4m =2 =2 + 4},
16 1 1
—nft—-ng = ——{—4nf — 20§ —2n{ +4nf},
9 3 1
1 1 1 1
I M = —q{ni =+ 5771T+77{‘+77f},
16 1 1 1
5T 57751;3 = =75 =+ 5 0+

Solving these linear equations, we find that there are five independent currents at most
(some of them may disappear). In other words, the rank of this 10 x 10 coefficient matrix
is five at most. Any five currents among (4.8) can express all the ten currents. These five
currents can be either the five 1o ® 1¢ currents or the five 8- ® 8- currents.

If the diquark has a antisymmetric flavor structure, the procedure is similar. There-
fore, we arrive at our final conclusion that the tetraquark currents can be written as a
combination of two color singlet quark-antiquark pairs (they can also be written as a
combination of two color octet quark-antiquark pairs):

7 1 1 1 1
ns = —gnf —5m - ik oL

1
n = -2 + §n¥+nf‘+2n{°,

1
n = —6n + gnf —6nf , (4.13)

1
ngd = 27 +n + gnf—2nf,
1 1 1 1 7

g = —5m M - -y

To know more about this, we go on to study (§7)(gq) currents. We use the local scalar
tetraquark currents as an example. Because the anti-diquark and diquark must have the
same color, spin and orbital symmetries, their flavor symmetry must be the same, which
is either 3 ® 3 or 6 ® 6. However, half of them drop due to the Pauli principle. For
instance

n; (6£(72) ® 6¢(4q)) (4.14)
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= PLorentz & 3Color ® 6Fla'uor
= eun(@CB e (g Cdf) + (63 q)

Eventually, we end up with five independent currents

s = (ZvCHE )N Crsah) + (a3 < qa),

ms = @ sCR )@ Cv*ysd) + (g3 < qa)

M = (TowCaR )@ Co™q) + (g5 < au) (4.15)
18 = (@vCH NG Cv'ad) + (a3 € qa),

M = ([P B Cql) + (g5 < qa) -

The currents 735, 0¥, nf, ngd and n{ all disappear. There are ten (gg)(gq) currents
n? - -nf, and five of them are independent. By using the Fierz transformation, we can
establish the relations between the (gg)(gg) currents and the (Gd)(qq) currents

1

1 1 1 1
n = —17715—177}/+'8‘77?—Z7714—177{3;
1 1
me = m —=m +=ni—nr,
2 o'
1
n = 3+ 430, (4.16)
1 1
g = mAgm g -m,
1 1 1 1 1
= —Zﬂf+1ﬂ}/+§ﬂ?+znf—zﬂf-

Now we know the origin of our conclusion. This is due to the Pauli principle. If the hadron
contains two quarks and two antiquarks, after fixing the Lorentz and flavor structures,
the color representation of two quarks (antiquark) is also fixed to be either 3 or 6 (6 or
3). However, the color representation of the quark-antiquark pair can be both 1 and 8.
Therefore, the currents constructed by two color singlet quark-antiquark pairs and two
color octet pairs are not independent.

4.2 Pentaquark Fields

From the Young tableau, the only one anti-quark inside the pentaquark has two boxes,
while it should be accompanied with one quark (one box) in order to construct a color
singlet. Thus, by using the Fierz transformation, we can always change every field to a
combination of color singlet meson field and color singlet baryon field in the following
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way:

P(z) = (q*(z)Toxq"(x)) (" (2)CToyq"(2)) Tozg*(x) (4.17)
= Z (@*(2)Tixq"(2)) €sca (4" (2)CTivq°x)) Tizg*(z)

where the flavor indices are omitted, due to that we need to change the position of quarks.
If we change one antiquark to two quarks, we obtain pentaquark currents (gq)(gqq)-
There are three ways to compose a color singlet:

1. 3®3)®3®3®3)=1@1=1,
2. B3®3)(3®3®3)=80(3®3)=>8xR8=1,
3. B®3)®(333®3)=>8x®(603)=>8x8=1.

The second way and the third way are equivalent, for the color representation 8 (gqq)
has a mixed symmetry, and we can choose two quarks which have an antisymmetric
color structure (g°An g% (g'¢ A%qt). Just as we have proved, this can be expressed by
(i) €x(¢'¢? ¢%), which is the first way.

This analysis can be applied to the system which contains more quarks. The color
quantum number of quark and antiquark is 3 and 3 respectively. In order to compose
a color singlet multiquark current, there are two constructions: one is (gq) - - - (gq), the
other is (g---¢)(g---g). The amount of these combinations in different constructions are
the same. However, because of the Pauli principle, only one combination in the second
construction remains. Therefore, only one combination in the first construction remains,
which we can choose to be (7g)1c - (§¢)1c-

The tetraquark and pentaquark states are different from the currents. However, due
to Pauli principle, we can obtain the same result.

The quark-antiquark pair can have color representations 1 (7¢*) and 8 (¢*\;;¢’). In
the quark model, we can always fix the flavor structure of the diquark, either symmetric
(3) or antisymmetric (6). Take the symmetric case as an example. Considering the color
structure, there are two combinations

L TS = 6udu(@Bd5h) + Sud i BBED) |
2. T§ = Mai(@BEG) + A @RED)
By using of Egs. (4.10), we can verify
4TS = 317, (4.18)

which means that the states having color structures 1® 1 and 8 ® 8 are not independent.
This relation may be changed if we consider other structures.
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We can apply this analysis to pentaquark states, and obtain the same result.

Having done the analysis on the color structure, we can follow these procedures to
study the SU(3)s flavor structure. There are two tetraquark states which are flavor sin-
glets. In the quark-antiquark constructions, they are (§,q.)(%q) and (4,A%q)(q.A2%qq),
where a, b, ¢, d are flavor indices, and A is the matrix in the flavor space. Using the
same method, we find that they are not independent.

In conclusion we have studied the color structure of the tetraquark and the pentaquark
states first by using hadronic currents, and then by using group theory in the quark model.
We have found that there is only one color structure for tetraquark and pentaquark states,
just as for the conventional mesons and baryons.
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Chapter 5
QCD Sum Rule Study of udss

From this chapter, we will study several tetraquark candidates as well as some bottom
baryons by using the method of QCD sum rule. As the first example, we shall study the
tetraquark udss with the quantum numbers JF¢ = 0+ in this chapter.

Historically, tetraquark mesons were investigated long ago as an attempt to explain
relatively light masses and excess of states in scalar channels [37,93-95,174]. Just as in
the exotic baryons, it is interesting to consider genuine exotic states in the meson sector
whose minimal component is qqqg. Tetraquark states of ud3s component have been
studied as candidates of such exotic states. Since they may be obtained by replacing one
of ud diquarks in ©% by an § antiquark, similarities between Ot and ud5s have been
discussed, though precise analogy is a dynamical question [108,123,186].

In the former studies, the tetraquark ud3s of J© = 11 was investigated in detail, where
it was shown that the state has a relatively low mass and a narrow width decaying into
K*K in the flux tube model [105]. The narrow decay width is associated with the fact
that K K channel is forbidden due to the conservation of parity and angular momentum,
which partly motivated the study of the 17 channel.

In principle, it is also possible to study other channels of the ud3ss tetraquarks [33,
52,105]. From a naive point of view of mass, it is natural to investigate 0" scalar states.
In contrast to gg mesons, the tetraquark does not need orbital excitation to form the
quantum number 0%, but all quarks may occupy the lowest state. In this case, it is
shown that the tetraquark should have isospin one I = 1. This is the object that we
would like to study in this chapter.

In this chapter, we perform QCD sum rule analyses for the scalar (J¥ = 0%) and
isovector (I = 1) exotic tetraquark ud3s. The independent currents of I = 1 and J¥ = 0"
have been constructed in Section 3.1. We then consider two-point correlation functions
first by using a single current of various types. It turns out that many of them do not
achieve a good sum rule. Therefore, we attempt linear combinations of two independent
currents. This method was first proposed in Ref. [172]. We then find that there are several
cases with good Borel stability, indicating the mass of the tetraquark around 1.5 GeV.
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We also investigate the reliability of the sum rule not only from the Borel stability but
also from the dependence on the threshold value and the amount of the pole contribution
in the total sum rule. We also mention the convergence of OPE.

The difficulties to make a good sum rule for exotic particles of high dimensional
operators were nicely discussed in a recent work by Kojo et al. [115]. They proposed
a sum rule using a linear combination of two-point functions rather than currents in
order, for instance, to suppress large contributions from low dimensional terms that are
irrelevant to non-perturbative properties of hadrons. They have successfully achieved a
good sum rule that satisfy the necessary requirements. In our present study, our strategy
is different from theirs, but the consideration along their idea is certainly important in
the discussion of the tetraquark also.

5.1 Analysis of Single Diquark Currents

The scalar tetraquark currents have been classified in the previous section 3.1. There are
five independent non-vanishing currents: '

Se = (5.75C5; ) (us Cysds)

Vo = (5a7u75C5 ) (ug Cy*y5ds)

Tz = (3,0,,C8 ) (W Co*dy), (5.1)
Az = (327,05, ) (ug Cy ds)

Ps = (5,C50)(ulCdy) .

We can also construct ten currents by using quark-antiquark pairs:

S1 = (XaAd)(YyBy) + (XaBa)(Yeds),
Sz = (XaAawAs) YereaBa) + (XA Bo) (YereaAa)
Vi= (Xavuda) (Ye7"By) + (Xav,Ba) (Yo" As) ,
Vs = (XavuraAp) (Yer*AcaBa) + (Xavuras Bo) (Yer AcdAd)
Ti = (XaowAd) (Voo™ By) 4 (Ra0 Ba) (Yyo™ Ap)
Tz = (XaowAavAp)(Yeo™ AeaBa) + (X0 Aap Bo) (Yoo AegAd)
Al = (X 7540) Yev*15By) + (Xavu¥sBa) Yo" 154s)
As = (Xov1sAapAe) (Y vsAeaBa) + (XavuvsAab Bo) Yer" 15 A edAd) »
P = (Xovs4a)(Yey5Be) + (Xav5Ba) YsvsAs)
Py = (XovsAab o) (YersAeaBa) + (XavsAaBy) (YersAcala) -
Among these ten currents, five are independent. By using them as well as their liner com-

binations, we can perform a QCD sum rule analysis. In this section, we perform a QCD
sum rule analysis using the five independent diquark-antidiquark currents, separately.
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Let us first outline briefly how we performed the OPE calculation. For illustration, let
us take Fs. Then

M) = i / dizei= (0|T Py(z) P (0)]0)

= TT‘[C(SS“'({C))TCSZ”'(x)]TT[S;"“(—x)C(Si"b(—w))TC] (5:2)
+Tr[C(S5 (2)TCSYY (2)]|Tr[SE *(—2) C(8¢* ()T O

For the quark propagator, we use

iS'(z) = (0IT[g"(x)2(0)]|0)
6% i AT 1 §ob

= 27r2x4£ + 322 TgCGZ,,F(U“”:% + 20*) — E((jq) (5.3)
§%z? §%m,  i6%m 6% m?2
c_ G — q q /- \a q A

The two-point function is then divided into three parts:

1. Terms proportional to §% (a, b being color indices), where no soft gluon is emitted.
The lowest term of this kind is the continuum term.

2. Terms containing one Ay, (color matrix), where one soft gluon is emitted. The
lowest terms of this type contain condensates such as (9goGq) (¢ = u and d) and
(g50Gs).

3. Terms containing two \;’s, where two soft gluons are emitted. The lowest terms
of this type contain the condensate (g?G?). .

We have performed the OPE calculation for the spectral function up to dimension
eight, which is up to the constant (s”) term of p(s). Actual computation is very com-
plicated. We have performed this calculation using Mathematica with FeynCalc [66].
Mathematica programs are available from the authors. The results are

st ms2s> ms* mg(3s) B (*°GG)

_ _ . 2
psel®) = 144075 ~ 3072n0 T (25670 Toznt  1228876)°

mi(ss)  mig’GG) my(gsoGs)  (dg)* | (3s)®
=35 200675 64t T 2dn? T 2g2)® (5-4)
_malge)* | ma(3s)® | (q9){930Gy) | ms(g’GG)(Ss)
1272 4872 2472 153674
+<§8) (g50Gs)  m(g*GG)
2472 204876
ove(s) = st 5m,2s’ o mg* my(3s) 5(92GG>)82

153607 153676 6478 2474 614475
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m3(3s) 11mi(g*GG)  m,(g50Gs) (dq)*®  (3s)°

g 204876 ot 10w 12)® 09
L 2milae)?® | ma(ss)®  (d4){9q0Ga)
372 1272 1272
Tms(g°GG)(3s)  (35){g50Gs)
76874 1202
s me2s> 3mst my(8s)  (¢*GG). ,
Pr3(s) = 3007~ Toan® T 6ans T 1602 T 153676 )°
3m3(ss) mi{g’GG) |
+= 814 956x6 )s (5.6)
g | mss) | mu(gCC)(ss) _ milgG0)
2 42 10272 25676
‘ st ms2s> mst (FGG), ,
Pas(s) = gomons ~ To2ams T (Toams T 6144n6)
m3(ss)  3m2(¢*GG) m,(gsoGs) = (dg)®  (5s)° -
HoTem ~ oo T 64t oz Toget (60
m2(3s)? n (79)(9GoGq) . m(g°GG)(5s)  (3s)(g50Gs)
2472 2472 2567 Unz
st ms2sd mst my(3s)  (?GG) . ,
pre(s) = Giaaom 102400 T (25606 T Gant T 122385
m3(ss)  3mi(*GG)  ms{gs0Gs) (Gg)*  (5s)°
Hggm 409676 v, kv DR CL)
L milqe)” | mi(ss)?  (Ga)(9GoGq)  ms(g’GG)(5s)
472 4872 2472 51274
_ (35)(g950Gs) mi{g*GG)

2472 204876

In these equations, g represents a u or d quark, and s represents an s quark. (gg) and (Ss)
are dimension D = 3 quark condensates; (¢?GG) is a D = 4 gluon condensate; (9o Gq)
and (g50Gs) are D = 5 mixed condensates. As usual we assume the vacuum saturation
for higher dimensional operators such as (0|Gggq|0) ~ (0|gq|0)(0|7g|0). There is a minus
sign in the definition of the mixed condensate (g;goGgq), which is different with some
other QCD sum rule calculation. This is just because the definition of coupling constant
gs is different [85,177]. To obtain these results, we keep the terms of order O(m?) in the
propagators of a massive quark in the presence of quark and gluon condensates:

iS% = (0|T[g*(z)q"(0)]|0)

60 Ny 1 5%
- 27r2x4x 3272 —Q—ch‘“’ﬁ(au T+0t) - ﬁ@q)
dobg? Mm% i0%m,(gq) . 0mE
+og (997G — o 48 8niz2 (5.9)



5.1. ANALYSIS OF SINGLE DIQUARK CURRENTS 89

From these expressions, we observe the followings:

e The coefficients of the lowest dimension, or of the leading term in powers of s, have
the relations cglg = cgf% and cffg), =1/ QC%. These are the consequences of chiral

symmetry at the perturbative level [83].

e As empirically known, the terms of quark condensates have important contributions
to the sum rule.

For numerical calculations, we use the following values of condensates [71,85,89, 99,
140,148,177,179]:

(Gq) = —(0.240GeV)?,

(5s) = —(0.8 £0.1) x (0.240GeV)?,

(2GG) = (0.48 £0.14)GeV*,

ms(1GeV) = 0.11GeV , (5.10)

(9sG0Gq) = —Mg x (gq) ,
ME = (0.84+0.2)GeV?.

In Fig. 5.1, we show all five spectral densities p(s) as functions of s. From the definition
of (1.23) in Chapter 1, the spectral densities should be positive definite quantities. In
practical calculations, however, the positivity may not be necessarily realized, if the OPE
up to finite terms does not work due to, for instance, bad choice of currents, weak coupling
to physical states and so on. In the present analysis, we find that among the five cases,
two functions of Vg and Fs currents show such a bad behavior. In particular, the Py
current takes relatively large (in magnitude) negative values in an expectedly important
region of s ~ several GeV. Sum rule values then become negative when the threshold
value is chosen around sy ~ several GeV2, which is not physically acceptable. The Ty
current changes the sign twice as in the case of V5 and Fs currents, from positive to
negative and again to positive values. But the sum rule values take positive values for
sq ~ several GeV?2, :

The tetraquark currents Sg and As are constructed by diquark fields which correspond
to 1S, and 35 in the non-relativistic language, where the two quarks can be in the ground
state s-orbit. In contrast, the currents V3 and Py correspond to linear combinations of
3P, and 3Py, respectively, where one of the two quarks is in an excited p-orbit. The T3
current is a linear combination of *S; and ' P;. Therefore, we verify an empirical fact that
the sum rule constructed by currents having the s-wave components in the non-relativistic
limit works better than those dominated by p-wave components. For completeness, we
show the spectral densities with numerical coefficients for the three better cases, As, T3
and Sk

ppe = 1.69x 1078s* —1.23 x 1078s® — 2.35 x 107" s?
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Figure 5.1: Spectral densities pgs, pve, prs, pas and ppe as functions of s, in units of
GeVs. '

, —1.16 x 10755 + 1.13 x 1076,
pas = 3.390x1078s* —1.23 x 1078s% + 8.14 x 107842
+1.17 x 107%s — 1.08 x 107¢,
pr; = 2.03x1077s* —9.83 x 1078s% — 4.53 x 107" s (5.11)
+3.34 x 10785 +2.41 x 1077,
pve = 6.77x 10785 —4.10 x 105> = 1.17 x 107"
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—2.35x 10755 +2.23 x 1075,
pse = 1.69 x 1078s* —4.10 x 10793 + 2.55 x 107852
+1.17 x 10755 — 1.08 x 107 .

From these expressions, we observe that the convergence of the series does not seem very
good. Nevertheless, let us proceed further.

As explained in the beginning of this chapter, there are two important parameters
remaining in the sum rule analyses; they are the threshold value sy [GeV?] and the Borel
mass Mg [GeV]. For a good sum rule, the predicted masses should not depend on these
two parameters strongly with sizable pole contribution (Borel window). In Fig. 5.2, we
show the masses of the tetraquark as functions of the Borel mass for several threshold
values sq (Borel curves). We observe that the Borel mass dependence is somewhat strong
for the currents Sg and As in the region 1 < M]23 < 2 GeV?, which is expected to be a
reasonable choice of the Borel mass. For these currents Sg and As, however, we see that
the minimum occurs at around 3 GeV? when s is varied in the region M% > 1.5 GeV?.
(For the current Sg, the mass of so = 2 GeV? is far above the region shown in the figure.)
For this reason, we consider that so = 3 GeV? is a reasonable choice which we will mainly
use for the estimation of the mass of the tetraquark in the following sum rule analyses.
At this sg value, the mass of the tetraquark turns out to be about 1.6 GeV. For the Tj
current, the Borel stability seems better. The result, however, depends on the threshold
value sy to some extent. However, it is interesting to see that the mass of the tetraquark
is about 1.6 GeV when sg ~ 3 GeV?.

From the analysis of the single current of the diquark construction, we expect that
the mass of the tetraquark is about 1.6 GeV, although the stability against the variation
of both the Borel mass and the threshold parameter is not simultaneously achieved. As
we will see, however, a suitable linear combination will improve the stability.

5.2 Analysis of Single Mesonic Currents

In this section, we perform QCD sum rule analysis using the ten mesonic currents, S g,
Vis, Tis, A1 and P g, separately. Here we only show two important spectral densities:

st 19m 23 5mgt _ms@@ ms(§5>+17<92GG>

_ 2
pvs(s) T105027° ~ 552967 © 330478 ~ 4327t T 43274 T 3211847 )°
+(m§’ (dq) 5mi(ss) 13mi(¢’GG)  ms(9qGq)  5my(g5Gs)
7274 28874 2457676 230474 460874
= \2 = \2 = = 2/=.\2 2/=.\2
N (qq) N (5s) N (q(J)(SS))S L m;(dq)® = 5m2(3s) (5.12)

43272 43272 542 2772 43272
ms(739)(g°GG) | 5(dq)(9dGq) | m3(9qGq) mi(Gq)(3s) (93Gq)(5s)

691274 172872 14474 1872 86472
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Figure 5.2: Mass of the tetraquark calculated by the three currents Sg, Vi, Ts, As and Ps
as a function of the Borel mass square M3 for several threshold values s = 2,3,4 and 6

GeV?2.

prs(8)

ms(g°GG)(3s)  (dq)(95G's) , 5(3s)(g5Gs) mi(g’GG)
102474 86472 172872 921676 ’
st 5m?st ( 5mst  5mg(8s) 31<92GG>)32
1843276 23047 3846 2887 5529676
5m3(ss)  31m2(g*GG) 5m2(gq)?  5m2(3s)?
_ s . s L] S 1
I T T 79n7 (5.13)
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31my(¢°GG)(3s)  13m5{g’GG)
691274 921676

As shown in Fig. 5.3, we find that two spectral densities for Vs and Ty show good behavior:
prs is positive definite, while pyg takes negative values in the small region s < 0.2GeV2.

The currents V4, Vs, Py and Ps are constructed by mesonic fields (either color singlet
or color octet) which correspond to 3S; and 1S; in the non-relativistic language, where
two quark-antiquark pairs can be in the ground state s-orbit. Their spectral densities
then show similar behavior to Sg and Aj in the previous subsection. In contrast, Si,
Ss, A1 and Ag correspond to linear combinations of 3Py and 3P, respectively; T; and T
currents are the combinations of 35; and ' P;.

From the above argument, we might expect that six currents, Vi, Vg, P, Py, 17 and
Ty would work. However, if we test another condition that the quantity

S0
]”)2(6_]\/12/]\/12 = / e_S/M%p(s)ds, (5.14)
0
should be positive around s ~ several GeV?, we found that those by the currents Vi, P,
P and T} take negative values and therefore, they must be abandoned. Now there remain
only two better currents Vg and Ty in the mesonic construction. This is the reason that
we have shown their spectral densities in (5.12) and (5.13). Using the numerical values
of various condensates (5.10), we find the spectral densities

prs = 9.41 x 107%s* — 4.32 x 107%5% + 4.54 x 1078s?
+3.52 x 10775 —4.85 x 1078,

prs = 5.64x107%s* — 2.73 x 10785 4 6.14 x 10785” (5.15)
—4.32 x 107%s +4.89 x 1078

Once again the convergence of the series does not seem very good, though the coeflicient
of the constant term of pys (—4.85 x 1078) is smaller by about factor ten than that of
the first order term of s' (3.52 x 1077).

In Fig. 5.4, we show the masses of the tetraquark currents V3 and Ty as functions of
the Borel mass for several threshold values so (Borel curves). Asin the case of T3 current,
the Borel stability seems good but the result depends on the threshold value sq. However,
once again, if we take the threshold value at so ~ 3 GeV?, the mass of the tetraquark

turns out to be reasonable, though the precise values are slightly smaller: the mass of
Ty ~ 1.5 GeV and the mass of Vg ~ 1.4 GeV.

5.3 Analysis of Mixed Currents

In order to improve the sum rule, we attempt to make linear combinations of independent
currents for both diquark and mesonic currents. Since linear combinations of five currents
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contain ten mixing angles, the full consideration with these ten parameters is rather
cumbersome. Instead, we make a linear combination of two currents J; and Jo (any two
from the independent currents), 7 = cos8J; + sinfJ,, where 6 is a mixing angle. Then
the correlation functions are written as

(') = cos® B(J1J1) + sin? 0(JoJ3) + cos Osin 6(J1 JJ) + cos O sin §(JJ]) . (5.16)
The mixing is chosen with the following requirements:
1. The OPE has a good convergence as going to terms of higher dimensional operators.
2. The spectral density becomes positive quantity for all (or almost all) s values.
3. Pole contribution is sufficiently large.

We have tried various combinations of two currents to realize good sum rules. While
doing so, we have realized that the diquark currents are more independent than the
mesonic currents. This means that the cross terms of (5.16) have only a minor contribu-
tion for diquark currents, while they have a large contribution for mesonic currents.

According to the requirement (1), we would like to make a linear combination such
that the highest dimensional (eight) term is suppressed. For diquark currents, we find it
convenient to take two combinations:

n = cosfAs+sinfVs, (5.17)
§ = cosfBPF; +sinfSs. (5.18)

By choosing cot § ~ /2, we find that the term of dimension eight of (5.17) is suppressed,
while for cot 6 ~ 1, the term of dimension eight of (5.18) is suppressed. The spectral den-
sity of (5.18), however, takes negative values. Therefore, this current should be rejected
for the sum rule analysis. In this way we are lead to the current 7 of (5.17). From now
on, we will denote n — 7.
For the mesonic case, it turns out that the cross term contributions are large. Ac-
cordingly, we attempt a complex angle to improve the sum rule analysis. By choosing
t1 = 0.91, t2 = —0.41, we construct a current:

M2 = 51 + (tl + i?fg)Pl . (519)
The numerical spectral densities are:

pr = 45x107%* =22 x1078s% + 2.4 x 10775 (5.20)
—2.0x1078s+5.2x 107°,

p2 = 21x107%* — 1.0 x 1078s® + 4.2 x 10785?
—2.2%x 1078+ 8.3 x 1079,
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which may be compared with the spectral densities of the single currents (5.12) and
(5.15). It looks that the convergence of the series is improved significantly.

In Fig: 5.5, we show the mass calculated from 7; and 7, as functions of the Borel mass
square for several threshold values so. The Borel stability is improved from the cases of
the single currents. Furthermore, the dependence on sq is also reduced. When sy ~ 3
GeV?, we find the mass calculated from the two currents 7; and 7, is about 1.5 GeV.
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Figure 5.5: Mass of the tetraquark calculated by the mixing currents 7;(Left) and
na(Right), as a function of the Borel mass square M3 for several threshold values
so=2,3,4 and 6 GeV2.

At this point we should also comment on the pole contribution in the sum rule.
Generally we expect that the pole contribution should dominate the sum rule, preferably
at least more than several tens percent. In the present case, the pole contribution,
however, is not always dominant. We have found that it reaches up to 20 percent when we
use 71 and 72 and the Borel mass is chosen around 1 GeV. As the Borel mass increases, the
pole contribution decreases. This would be a general problem for the QCD sum rule for
currents of a high dimension, typically for exotic hadrons. Nevertheless, it is interesting
to see that a good Borel mass stability has been achieved as shown in Figs. 5.5. In any
event, we need further investigations as proposed by Kojo et al [115] to check the stability
of the sum rule.

Finally, in order to summarize our analysis, we show in Fig. 5.6 masses of the
tetraquark calculated by several reasonable currents used in the present study as func-
tions of the Borel mass square at so = 3 GeV2. They are S, A3 and T3 for the diquark
construction, Tg and Vg for the mesonic construction, and 7; and 7, for the mixing cur-
rents. The plots are extended to a wider region of M3 up to 4 GeV?. We verify once
again a good Borel mass stability for the mixing currents, while some of the single cur-
rents show good stability also (73,73 and Vg). The mass values varies slightly, while we
expect the mass of the tetraquark around 1.5 GeV.
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5.4 Conclusion

We have presented a QCD sum rule study of the ud33 tetraquark of J¥ = 0% and I =1,
both in the diquark ((g9)(gq)) and mesonic ((gg)(gg)) constructions. We have found that
in this channel of tetraquark, there are five independent currents, which is shown both in
the diquark and mesonic constructions. For each single current, we have tested the sum
rule analysis, but it is found that not all of them provide a good stability.

As an attempt to improve the stability of the sum rule, we have considered linear
combinations of independent currents. In order to simplify the analysis, we took a super-
position of various combinations of two currents. Among them, we have found two cases
that lead to good sum rules, where we investigated so (threshold value) and Mp (Borel
mass) dependence, and convergence of OPE. A reasonable choice of the threshold value is
taken at sy ~ 3 GeV2. A good Borel stability is then achieved in the region 1 < M2 < 4
GeV?, where the mass of the tetraquark turns out to be around 1.5 GeV.

Despite the seemingly good Borel mass stability, we think that we should investigate
" the following points more carefully. For instance, estimation of higher dimensional terms
of O(1/s) could be important, as we have found that the pole contribution is around 20%
at best. These problems might be related to the high dimensional operators for exotic
particles. Another question is the contribution of KK scattering states, since the mass
of the tetraquark is around 1.5 GeV, and it can fall apart into the K K states. Such a
contribution can be estimated by using the method proposed in Refs. [117,121]. These
will be further investigated in the future work.



Chapter 6

Light Scalar Tetraquark Mesons

The light scalar mesons ¢(600), x(800), a¢(980) and f(980) compose a nonet with the
mass below 1 GeV [5,8,9,13-15,17,179]. Almost thirty years ago, Jaffe suggested that
they can be tetraquark candidates, which can explain the mass spectrum of the light
scalar mesons and also their decay properties [93] (See also Ref. [98] for recent progress).

So far, several different pictures for the scalar mesons have been proposed. In the
conventional quark model, they have a g configuration of 3 Py whose masses are expected
to be larger than 1 GeV due to the p-wave orbital excitation [50]. Moveover, by a
naively counting of the quark mass, the mass ordering should be m, ~ m,, < m, <
my,. They are regarded as chiral partners of the Nambu-Goldstone bosons in chiral
models(m, K,n,7) [79], and their masses are expected to be lower than those of the
quark model due to their collective nature. Yet another interesting picture is that they are
tetraquark states [7,31,32,97,128,134,168,174,181]. In contrast with the gq states, their
masses are expected to be around 0.6 — 1 GeV with the ordering of m, < m, < Mg f,,
consistent with the recent experimental observations [5,13,14,179]. The lightness of these
states is expected to be explained by the strong attractive quark correlation in the scalar
and isoscalar channel. There are some lattice studies supporting this [125,162]. Besides
their masses, the decay properties are also interesting and important, and are studied in
many papers [35,74,75,151,184].

In this chapter, we perform the QCD sum rule analysis for the light scalar mesons.
We find once again that there are five independent currents for each scalar tetraquark
state. We perform a reliable QCD sum rule by using mixed currents as in the previous
chapter, and obtain the masses of the light scalar mesons. The results are consistent with
the experiments.

Unlike qq and gqq currents, tetraquark currents have complicated structure due to
multiquark degrees of freedom. As we will discuss in the next section in detail, there are
some independent currents for a given spin with different flavor structures. This is very
much different from the ground state baryons, where different flavor representations 8
and 10 correspond to different spins 1/2 and 3/2, which induce a mass splitting between

99
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A(1232) and N(939).

In this chapter, first we construct the tetraquark currents using diquark and antidi-
quark fields having the antisymmetric flavor 3¢ ® 3¢, which is in accordance with the
expected light scalar nonet. Furthermore, we construct another set of tetraquark cur-
rents by using diquark and antidiquark fields having the symmetric flavor 6; ® 6¢. We
do not, however, consider other possibilities such as 6¢ ® 3¢, since they can not produce
tetraquark currents having the scalar quantum numbers (color singlet and J¥ = 0%).
Then as we have done previously [38], we show that there are five independent currents
for both constructions. We will then search linear combinations of the currents that op-
timize the QCD sum rule and reproduce the results compatible with the expected light
scalar mesons. While performing a QCD sum rule analysis, we also find that the results
of the two constructions have some similarities. In fact, if we work in the SU(3); limit,
we obtain identical results for the operator product expansion (OPE).

‘ Since the scalar mesons, especially o, decays strongly to two pseudoscalar mesons,

their effects should be significant for quantitative discussions. The contamination from
such two-meson decay should be removed when performing the QCD sum rule analysis,
which is however a difficult theoretical problem so far. Nevertheless we consider a phe-
nomenological method by adding another parameter corresponding to a decay width for
the QCD sum rule analysis. '

6.1 Tetraquark Currents

In order to make a scalar tetraquark current, the diquark and antidiquark fields should
have the same color, spin and orbital symmetries. Therefore, they must have the same
flavor symmetry, which is either antisymmetric (3; ® 3¢) or symmetric (6¢ ® 6¢). The
possible flavor quantum numbers of the tetraquark states are then

3:®3; = 1; @8,

6 R6; = 1: D 8 P 27¢, (61)
where the corresponding weight diagrams are shown in Fig. 6.1. The scalar nonet 1 + 8
is therefore included in both representations, independently. For 3¢ x 3s = 1¢+ 8¢, x and

ag are the members of 8¢ while o and fy can be either in 1¢ or in isospin I = 0 component
of 8¢. Or, they can also mix and in particular the ideal mixing is achieved by

0 = a0 -l r=0),
0 = 20+ Hsar=0. (62)

where only isospin symmetry is respected and the currents are classified by the number
of strange quarks. We can find another set of linear combinations for the symmetric case.
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Hence, denoting light u, d quarks by ¢, o currents are constructed as qq@q, x currents by
qsqq and ag and fy currents by ¢sgs. A naive additive quark counting for this construction
is consistent with the observed masses, ¢(600), £(800), ao(980) and f,(980). Also, in the
QCD sum rule we find that the ideal mixing is needed in order to reproduce the expected
mass pattern of o, &, ag and fo.

_ 6xX6=1+8+27
3x3=1+8

Figure 6.1: SU(3) weight diagrams for tetraquark states of antisymmetric and symmetric
diquarks (antidiquarks).

Using the antisymmetric combination for diquark flavor structure, we arrive at the
following five independent currents which have been shown in Chapter 4:

S = (ug Crysdy)(UaysCdy — wyysCdL),

VY = (ug Cyuysdy) Uy 1sCdy — Gy 15Cdy)

T¢ = (ulC0oudy)(Tot” OdT + ot OdL), 6.3)
A = (ulCyudy)(Uy"Cdf + mpy*Cdy),

Py = (ugC0dy)(8,Cdy — wCdy) .

where the sum over repeated indices (u, v, - - - for Dirac, and a, b, - - - for color indices) is
taken. Either plus or minus sign in the second parentheses ensures that the diquarks form
the antisymmetric combination in the flavor space. The currents S, V, T, A and P are
constructed by scalar, vector, tensor, axial-vector, pseudoscalar diquark and antidiquark
fields, respectively. The subscripts 3 and 6 show that the diquarks (antidiquark) are
combined into the color representation 3. and 6. (3. or 6,), respectively.

We will perform the sum rule analysis using all currents and their various linear com-
binations. As we have found in the previous chapter, again the results for single currents
are not always reliable. In fact, we will find a good sum rule by a linear combination of
Ag and V5

n{ = cosfAZ +sinfVy (6.4)

where 6§ is the mixing angle. As we will discuss in Sec. 6.3, the best choice of the mixing
angle turns out to be cot @ = 1/4/2. The mixed currents for &, ag and f can be found in
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the similar way

nt = cosBOAf +sinfVvy,
Ny = cosfAg® +sinfVy® (6.5)
nfo = cosQAL +singvyo.

where the best choices are still cot § = 1/+/2.

The QCD sum rule results for ag and fy will give the same results in the QCD sum
rule, which is consistent with the experimental masses of ag and fy. For simplicity, we
will use the charged ag current

ni® = cosfAG" +singVgor | ' (6.6)
= cos0(ul Cy,sp)(day*C5L + dyy*C3L) + sin O(ul Cy,yssy) (dy v ysCEE — dyy*y5C5L) .

We can also construct the tetraquark currents of J¥ = 07 whose diquark and antidi-
quark have the symmetric flavor structure. We use the same superscripts o, x and ag
because of the same quark contents. There are five independent currents

S¢ = ¢LCwau(qrsCa + &sCa),

V& = @ Cvsn(@sCa + v rsCa ),

9 = qu’anb(q"aa’wC(jg — qba’“’C’tjg) , (6.7)
A] = ¢l Crug(@"CE — ay"Car),

P = ¢ Cq(3@Cq +@Car).

The quark contents are —=({uul{@a} — 2{ud}{ad} + {dd}{dd}) which compose an
isoscalar tetraquark. Either plus or minus sign in the second parentheses ensures that the
diquarks form the symmetric combination in the flavor space. We construct the similar
mixed currents for k, ap and fy

n5 = cosBA; +sinfVy

Nl cos A5 + sinVy* (6.8)
75" = cosfA +sinfV?,

n = cosAL +sinoVyo,

Here the optimal choice of the mixing angle is cotd = /2 for 7§ and 75°, but with
a slightly different value for nf§, which is 1.37. This shift is used to keep the spectral
density positive, and is due to the nonzero strange quark mass.

The currents 7; and 72 have similar structure. We can interchange them under the ex-
change of 7, < v,7s. We choose the mixing angle cot § = 1/+/2 for n;, which corresponds
to cot § = /2 for . :
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Concerning linear combinations, we have tested more general cases by using all five
currents. However, we could not find significant improvements over the present results of
using the two currents.

In Table 1.1, we show the diquark properties of ten single currents. The parity can
be obtained by using P = (—)f, which L is the orbital momentum. The structures of
tetraquark currents are complicated. The flavor symmetry is not subject to constraints
due to the color, spin and orbital symmetries. If the diquark and antidiquark have the
antisymmetric flavor, they can have both the antisymmetric color 3. ® 3. (S¢, V5 and
P?) and the symmetric color 6.® 6, (T¢ and AJ); they can have both the antisymmetric
spin Og ® Og (S¢ and V¥) and the symmetric spin 1 ® 1g (AZ and FY); they can have
both positive parity (S and AZ) and negative parity (V¥ and PY).

The situation is the same for the color, spin and orbital symmetries. If the diquark and
antidiquark have the antisymmetric color 3. ® 3., they can have both the antisymmetric
flavor (S¢, V¥ and PY) and the symmetric flavor (7§ and Ag); they can have both the
antisymmetric spin Og ® Og (S§ and V37) and the symmetric spin 1g ® 1g (A and Py);
they can have both positive parity (S§ and Af) and negative parity (V57 and FY).

We can also construct (§q)(dq) currents, and they are equivalent to the (qq)(gg) cur-
rents.

6.2 Analysis of Single Currents

In this section, we show the QCD sum rule analysis of s using single currents Sy, Vi,
T¢, Ag and Pf. The results for o, ap and fy are quite similar. We have performed the
OPE calculation up to dimension eight by using Mathematica with FeynCalc [66]. The
results are

x s mss®  (PPGG) my(qq)  ms(3s), 4
P5a(8) = Giazone ~ 3072re T (61ddn6  1o2ni T 38dnt )’
m2(*GG)  my(9qo0Gq)  (q9)* = (qq)(3s)
o @ms —  1me T oae T oae 8 (6.9)
_malqa)*  my(g*GC)(@q) | ms(g’GG)(5s)
1272 7687 153674
+(@q><gciqu> N (8s) (9o Gq) N (@q)(g50Gs)
Y 4872 4872
. st ms?s®  (PGG)  my{dg)  ms(3s),
vas) = T5ag0me ~ 76870 + (3oTams T oemt T ognt )

m2(’GG)  my(9doGq) (qq)* (qq)(5s)
02478 ot 12n% T 12w ) (6.10)
my{ga)® _ ms{g°GG)ae) | ms(g°CG)(ss)

672 38474 7687

+
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(79)(9a0Gq) _ (55)(9a0Gq) _ (39)(950Gs)

1272 4872 1672 ’
st ms2sd  11{g?GG)  m,(3s), ,
. _ B 11
P16(5) = Togoms ~ Gam® T\ 7688 st )° (6.11)
_1Im¥{(g*GG) - 11m4(g*GG) (3s)
2567 19274 ’
Fi(s) = st mgs (5(92GG>  ms{qq) ms(§8>)52
A6 "~ 7680m% 38470 307275 4874 4874
5m2(g?GG) = mg(9qoGq) . (dq)* | (qq)(5s)
_ s 12
02278 1ot T ez T gnz ) (6.12)
_melqe)?  ms(g*GG)(a) | 5ms(g*GG)(ss)
372 3844 76874
L {2a){9q0Gq) _ (3s){930Gq) | 3(da){g50Gs)
672 4872 1672 ’
. \ s* ms2s®  (*GG)  ms(Gg) = ms(3s),
Pra(s) = Giaaom 30720 T 61adn® T o2t T 3gamt )’
m2(g*GG) | ms(9qcGq) (q9)* (dq)(5s)
s — — 1 )
(—=0s8ms T 1o8r an? 2dn? )° (6.13)
L malaa) | mi(g*GG){ge) | ms(g°GG)(ss) _ (aa){g30Ga)
1272 76814 153674 2472
_(8)(930Gq) _ (49){930Gs)

4872 4872

For each single current, we have tested the QCD sum rule analysis, but the result is
not good just as in our previous paper [38]. The spectral densities are shown in Fig. 6.2
as functions of the energy square s. Due to the insufficient convergence of the OPE, the
positivity of p(s) may not be realized. We find that two functions of S§ and A§ currents
show such a bad behavior that p(s) becomes negative in the region of s = 0 ~ 1 GeV?,
and the QCD sum rule for these two single currents are not reliable.

The convergence of the OPE is another important issue. We show the Borel trans-
formed correlation functions for positive case of V3*, T¢ and P§ with numerical coefficients:

e = 1.6 % 1075MY0 — 1.3 x 107" M5 — 3.5 x 1075 M8
—2.8 x 107 Mz +2.4 x 1075 M3,

M = 2.0 x 107°ME — 1.5 x 107°M§ + 1.1 x 107° M} (6.14)
—3.3x 107" M3 —3.9 x 107" M3,

5 = 41107 MY — 3.2 x 107808 — 9.8 x 10788
~1.4x107°Mp + 1.2 x 107 M3

From these expressions, we observe that the convergence of the currents V¥ and FP§ is
not very good at a typical energy scale Mp ~ 1 GeV. We have also calculated the pole
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Figure 6.2: Spectral densities p(s) for the currents S§, V5*, Tg’, A§ and Pf as functions
of s, in units of GeV®.

contribution which is defined as

S0 ,—s/M3, ().
Pole contribution = J 0 € — p(s)ds ,
Jo” e*/Ms p(s)ds

However, due to the negative part of the spectral densities, the pole contribution is not
well defined. Take the current P§ as an example, when we choose sp = 1 GeV? and

(6.15)
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Mp = 0.5 GeV, the pole contribution is 101% (this is because some parts of the spectral
density become negative in the denominator), which is larger than 100%, and does not
make sense. The pole contribution is 26% for the current 7§, when we choose sp = 1
GeV? and Mg = 0.6 GeV.

Summarizing the QCD sum rule analysis for the single currents, including both the
(qq)(Gq) currents and (Gq)(gq), we found that T gives the best QCD sum rule, which
however is not yet good enough for quantitative discussion. In order to improve the sum
rule, we move on to study their linear combinations, which are the mixed currents.

6.3 Analysis of Mixed Currents

We have performed the OPE calculation for the mixed currents 7; and 7 up to dimen-
sion eight, which contains the four-quark condensates. The w and d quark masses are
considered in the case of the o meson, and neglected in other cases.

. 1 L, mE4+m? o, 6V2+7,,
PI(s) = 150755 ~ ogane ° T (garems 9 GG T
6\/5 + 7 2 2 2 mumd<ngG>
— qQq) 4 ulhd\g =]
(= Tpggme (Mu T ma0°GG) + 0 5
(g A+ ) (5 20mm + 5 )
972

67t
__6\/§ +1 _ mimg + my,m3){GoGq
V2L s+ ma) (g G6) () — L )G
1 4 mﬁ—i—mﬁ 3 6v2 + 7 9 (M +ma) (@) . ,
Ti520m° — “28g,® ° T (ggiges 9 GOV + g1 )8 (6.17)
W2+5, , 2y /2 myma{g*GG)

+(= W(mu +my){g°GG) — TTresnt
(7m3 + 8mimay + 8mumg + Tm3)(dq)

_ )s

1874
A2 ma e GG ) -
pils) = 115307&84_5:5653 (69\;12—647;67@2 ) %)52
_{eioGa) | {an)ogs) | SVBLT, | a s, (6.18)
115;07r654— 5:;563%(69\;?6;67@2 ) n;s2<jf>)52

(mu + md) (q(zﬂ )5‘2

— (6.16)

N (25m2 + 40m,mg + 25m32)(gq)*
2772

(m3 4 2m2mg + 2m,m?2 + m3){goGq)

1874 ’

p3(s) =
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= 63@;%5@2@@ - TeldoCia) ), me <g;8if4> (aa)
<§S>4<8(j:2Gq> - @qﬁ;@ 62\?{3 4;7% (g*GG) (5s)
Arle) = 115;o7r654_2;z§rss3 (69f6;67<920G>+%ﬁ§f—>)32
- iﬁ;ﬁmi@wm - %ﬁ - %%ﬁ@
Amaga | s 82T a6y (ss),
pe) = 11550%684_-2;7;3—683 (69£6;67<QZGG>+%§Z)32
= O T gy - TR, melP 00N
+4m9§gq>2 * '4m9§7<§s> : 61\1/32;7% (2GG) (55)
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(6.19)

(6.20)

(6.21)

For o, terms containing u, d quark masses m, are small. For instance, the term of m,(gq)
of dimension four is about ten times smaller than the other term of (¢°GG). For &, ag
and fo, the terms containing strangle quark mass are important but those containing «
and d quark masses are negligibly small. Therefore, we have ignored them in our sum

rule analysis.

To obtain a reliable a QCD sum rule, the mixed currents 7, and 7, are chosen with
the following requirements: ‘

1. The OPE has a good convergence as going to terms of higher dimensional operators.
This can be examined by the following numerical Borel transformed correlation
functions, which have a good convergence

17 ()

5 (043)

I (M3)

115 (5)

T30 ()

2.2 x 107 MY — 2.5 x 107° M8 + 1.5 x 1075 M8
—4.4 x 1079ME — 4.8 x 107° M3,
2.2 x 1076 MY — 2.5 x 107° M8 + 1.5 x 1075 M§
~53 x 107°M3 — 1.5 x 1078M3
2.2 x 1075ME — 1.7 x 107" M§ + 1.3 x 107 M¢
+7.2x 1078 M3 — 2.3 x 1078 M3,
2.2 x 107 ML — 1.7 x 107" M5 + 1.3 x 107° M,
—28 x 107" Mz +3.4x 1078M3,
2.2 x 107 MY —3.4 x 107" M5 4-8.8 x 107" M
—4.1x 1078Mp + 1.1 x 107" M3,
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20 (M2) = 2.2x107°M} — 3.4 x 1077 M5 + 8.8 x 107" M
—4.1 x 1078ME +2.3 x 1078 M2 .

It is interesting to observe that the correlation functions of o have the most rapid
convergence, justifying the use of a smaller Borel mass Mp than the other cases of
K, ag and fo.

. The spectral densities p(s) become positive for almost all energy values, as shown

in Fig. 6.3. This can be examined for all the mixed currents except 75. Therefore,
we need to change the mixing angle of 75 a little, which is from V2 to0 1.37.

Pole contribution is sufficiently large. By choosing suitable Borel mass Mp and
threshold value sq, this can be satisfied. The Borel transformed correlation functions
are written as power series of the Borel mass Mp. Since the Borel transformation
suppresses the contributions from s > Mp, smaller values are preferred to suppress
the continuum contributions also. However, for smaller Mp convergence of the OPE
becomes worse. Therefore, we should find an optimal Mg preferably in a small value
region. We have found that the minima of such a region are 0.5 GeV for o, 0.6
GeV for k and 0.8 GeV for ag and f, where the pole contributions reach around
50 % for x, ag and fo, and is an acceptable amount for o, as shown in Table 6.1.
The pole contribution for the mixed current 7§ is improved as compared with the
single current 7.

Table 6.1: Pole contributions of various currents.

m"oom it s N
Mg (GeV) |05 0506 0608 0.8
V50 (GeV) |07 07| 1T 1 |13 13
Pole (%) | 28 21 |45 36 | 40 32

In the SU(3)y limit, we could find that the differences between p; and p vanish:

(m2 +md)($*GG) | 5m,mq(g°GG)

P (s) — p5(s)

307278 153676
N (2m3 — 2m2mg — 2m,m?% + 2m3)(gq) .
Ot
(10 4 20mumg — 10m3) (@0 _ (m. + ma) (6 G a0
2772 9674

(m2 — mZmg — m,m2 + m2){(goGq)

+ 1874 ’
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Figure 6.3: Spectral densities p(s) for ng, ng, 0¥, 0§, 0 70 and n2®/° as functions of s,

in units of GeV?.

. . my(qoGq)  m(g*GG){(qq) (3s)(GoGq) | (qq)(50Gs)
ps)—m(s) = —ra S~ oo a4z T g

a My <92GG> <Q_Q>
po(s) — pi(s) =~
From Egs. (6.16) - (6.21), we find that the gluon condensates are quite important.
In the chiral limit where all quark masses vanish, the masses of the scalar mesons are

(6.22)
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Table 6.2: Masses of scalar nonet.

Mass (MeV) o(600) %(800) ao(980) £0(980)
Experiments (PDG) | 400 ~ 1200 | 841+ 307%; [ 984.7+ 1.2 980+ 10
QCD sum rule | 600+ 100 [ 800+ 100 | 1000+ 100 | 1000 & 100

dictated only by the gluon condensate. Due to the small u and d quark masses, the
mass of the o is dominated by the gluon condensate. For other masses, however, other
condensates with finite value of m,; ~ 100MeV also play a significant role. As quarks (in
particular strange quark) become massive, the degeneracy resolves. We have also tested
the case of the SU(3) limit but with the average quark mass, m, ~ 50 MeV, and with
average condensates. Then the mass of the scalar mesons turns out to be about 0.8-0.9
GeV.

If the location of a physical state is well separated from the threshold sg, slight change
in sp should not affect much on the observables (mass) of the state. Hence we have
searched the region where the tetraquark mass varies significantly less than the change
in /sp. We have found such regions for sy at around 1 GeV? from the minimum for o
so(min) ~ 0.5 GeV?, for & so(min) ~ 1 GeV? and for ag and fy sp(min) ~ 1.7 GeV?, and
up to about 1 GeV? higher.

After careful test of the sum rule for a wide range of parameter values of Mp and
S0, we have found reliable sum rules, which are shown in Table 6.2. It is interesting to
observe that the masses appear roughly in the order of the number of strange quarks
with roughly equal splitting. In Fig. 6.4, the masses of the ¢(600), <(800), a¢(980) and
f0(980) are shown as functions of the Borel mass Mp. As we see, the mass is very stable
in a rather wide region of Borel mass Mp. '

The current 7; has the antisymmetric flavor structure and 7, has the symmetric flavor
structure. By using these currents with different flavor structures, we arrive at similar
QCD sum rule results. This suggests that the tetraquarks of different flavor structure
may mix with each other, and the tetraquark states can contain diquark and antidiquark
having the mixing of the symmetric flavor 6¢®6;¢ and the antisymmetric flavor 3;®3¢, just
like they can have a mixing of different color, spin and orbital symmetries. This is very
much different from the ground baryon states, where the different flavor representations 8
and 10 correspond to different spins 1/2 and 3/2, which induces a mass splitting between
A(1232) and N(939).
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Figure 6.4: Masses of the o, k, ag and fy as tetraquark states calculated by the mixed
currents 7; (solid line) and 7o (dashed line), as functions of the Borel mass Mp.

6.4 Finite Decay Width

The scalar mesons have large decay widthes, and it is important to consider their effect. In
. this section, we use a Gaussian distribution for the phenomenal spectral density, instead
of -function,

oY (Vs)dv/s

S Olaln) o 10) o= exp (- 5= o
= —fg(—exp( — M

— ) )dv/s + higher states,  (6.23)

where as usual the lowest state denoted by X is isolated from the rest of higher states.
The Gaussian width ox is related to the Breit-Wigner decay width I" by ox = I'/2.4.

Again we assume the continuum contribution can be approximated by the spectral
density of OPE above a threshold value sg, and we arrive at the sum rule equation for
state having a finite decay width

too 1 — My)? . '
IFPY (M32) = / e~5/Mp Wi exp ( — ———(\/5203( x) Ydv/s = /0 e_s/Mf%p(s)ds.
(6.24)
For a given I', the mass can be obtained by solving the equation
fj‘;o 6—3/]\4}238 exp( (\/_—1\4)() )d\/_ fso e—s/ BS,O(S)dS
S5 e ME exp (= M M"’2)d\f Jo" e /Mo p(s)ds -

—00

(6.25)

In Fig. 6.5, the masses of the ¢(600), x(800), a¢(980) and f,(980) are shown as
functions of the Borel mass Mg, by setting I' = 0, 100, 200 and 400 MeV respectively.
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We find that after considering the finite decay width by using the Gaussian distribution,
the predicted masses do not change significantly as far as the Borel mass is within a
reasonable range, where we can still reproduce the experimental data. However, the
question of finite decay width is very important, and we do not consider that our attempt
to use the Gaussian form is the final. We need further investigations, which we would
like to put as a future important work.

1.5 1.5
E 1 ___ e afo(s =1.7) E 1 - a,fa(s =1.7)
= | P, s <E1)
®n oo a = S
% 0.5 o(s,=0.5) g 0.5 o(50=0.5)
= =
0 0
0.5 1 1.5 2 0.5 1 1.5 2
Borel Mass [GeV] . Borel Mass [GeV]

Figure 6.5: Masses of the o, x, ap and fy as tetraquark states calculated by the mixed
currents 7; (left) and 7, (right), as functions of the Borel mass Mpg. For o and k, the
solid, short-dashed and long-dashed curves are obtained by setting I' = 0, 200 and 400
MeV respectively. For ay and fy, the solid, short-dashed and long-dashed curves are
obtained by setting I' = 0, 100 and 200 MeV respectively. '

6.5 Conventional gg Mesons

For comparison, we have also performed the QCD sum rule analysis using the gg current
within the present framework. The QCD sum rule analyses of conventional §g mesons
have been performed in Ref. [59,64,113,154]. The sum rules using the current j = §1¢2
are

82 37 2
1,9% , 1
—(_G? —
87r<47r ) 2M%
167r&_ _ 16w gs/,_ \» _ 2)
3M}23 47T<Q%91>(QQQ2> 27M§ 47r((qu]1) + (Gag2)" ) -

2
_M™a192) so 3 17 a, 3 ,
f(2q1q2)e Mg = /(; e 5/1\4123—.8(1 -+ ———)ds + —(ml <q2q2> + mgy <q1q1>>

(m1(92:0Ga) + malgmioGa))  (6.26)

In Fig. 6.6 we show the mass of the gg mesons as functions of Borel mass when the
threshold value sqg = 2.5 GeV2. The masses of o and ag are predicted to be around 1.2
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GeV, while the masses of k and f; are larger due to the strange quark content. Here
again we have tested other values of Mp and sy, and confirmed that the result shown is
optimal. These results are consistent with the previous work [59,64,113,154].

3 3
] B
o 2 e’
Mg2=1.5 50=2.5
0! 0!
0 1 n 1
@ S
= =
0 , 0
2 2.2 2.4 2.6 2.8 3 1 1.2 1.4 1.6 1.8 2
S, [Gev?] : Borel Mass? [Gev?]

Figure 6.6: Masses of the conventional §g mesons calculated by the current j = §1¢o, as
functions of the threshold value sp (left) and the Borel mass square M% (right).

6.6 Conclusion

We have performed the QCD sum rule analysis with tetraquark currents, and found the
masses of scalar mesons in the region of 600 — 1000 MeV with the ordering, m, < m, <
Mf,.00- We have also used the conventional gg currents, and verified their masses around
1.2 GeV. We have tested all possible independent tetraquark currents as well as their
linear combinations, and considered the effect of finite decay width. Our conclusions are,
therefore, rather robust.

The scalar tetraquark currents can have either the antisymmetric flavor or the sym-
metric flavor structures. We found that there are five independent currents for each
state. We investigated Borel mass Mp and threshold value sy, dependences, which are
quite stable. The convergence of the OPE is also good, the positivity (of spectral density)
is maintained, and the pole contribution is sufficient large. Therefore, we have achieved
a QCD sum rule which is the best reliable within the present calculation of OPE.

Our calculation supports a tetraquark structure for low-lying scalar mesons. We find
that the gluon condensate is quite large in the OPE of the mixed currents, which is
related to the question of the origin of the mass generation of hadrons [173]. We obtain
similar results by using the currents having both the antisymmetric flavor structure and
the symmetric flavor structure. This suggests that the tetraquark can have a mixing of
different flavor symmetries, as well as different color, spin and orbital symmetries. There
is a mass splitting due to the different flavor, color, spin and orbital structures. If this
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mass spitting is large enough to be observed in experiments, the tetraquark spectrum
would become much more complicated; If the mass splitting is too small to be observed
in experiments, a broad decay width would be observed. Such a tetraquark structure will
open an alternative path toward the understanding of exotic multiquark dynamics which
one does not experience in the conventional hadrons.



Chapter 7

The Y (2175) State

Recently Babar Collaboration observed a resonance Y(2175) near the threshold in the
process eTe” — ¢ f(980) via initial-state radiation [21-23]. It has the quantum numbers
JPC = 17~. The Breit-Wigner mass is M = 2.175 4 0.010 £ 0.015 GeV, and width is
I' =0.058 £ 0.016 4 0.020 GeV. It has been also confirmed by BES collaboration in the
process J/1¥ — n¢fo(980). A fit with a Breit-Wigner function gives the peak mass and
width of M = 2.186 £ 0.010 +0.006 GeV and I' = 0.065 & 0.023 & 0.017 GeV [6].

There are many suggestions to interpret this resonance. Ding and Yan interpreted it
as a strangeonium hybrid and studied its decay properties in the flux-tube model and the
constituent gluon model. Furthermore, for testing s5¢ scenario, they suggested searching
decay modes such as Y (2175) — K;(1400)K — nK*(892)K, Y (2175) — K;(1270)K —
pKK and Y(2175) — K;(1270)K — wK}(1430) [56]. In Ref. [57], the authors explored
Y (2175) as a 23D; s5 meson, and calculated its decay modes by using both the 3P,
model and the flux-tube model. They suggested experimental search of the decay modes
KK, K*K*, K(1460)K and hy(1380)n. The characteristic decay modes of Y (2175) as
either a hybrid state or an s3 state are quite different, which may be used to distinguish
the hybrid and s5 schemes. Wang studied Y (2175) as a tetraquark state ss3§5 by using
QCD sum rule and suggested that there may be some tetraquark components in the
state Y (2175) [169]. In a recent article [187], Zhu reviewed Y(2175) and indicated that
the possibility of Y(2175) arising from S-wave threshold effects can not be excluded.
Napsuciale, Oset, Sasaki and Vaquera-Araujo studied the reaction ete™ — ¢nr for pions
in an isoscalar S-wave channel which is dominated by the loop mechanism. By selecting
the ¢f,(980) contribution as a function of the ete™ energy, they also reproduced the
experimental data except for the narrow peak [138]. Bystritskiy, Volkov, Kuraev, Bartos
and Secansky calculated the total probability and the differential cross section of the
process ete” — ¢f(980) by using the local NJL model [34]. Anikin, Pire and Teryaev
studied the reaction y*y — pp, and calculated the mass of the isotensor exotic meson [16].
In Ref. [76], the authors performed a QCD sum rule study for 17~ hybrid meson, and
the mass is predicted to be 2.3 — 2.4, 2.3 — 2.5, and 2.5 — 2.6 GeV for ¢gg, ¢3¢, and s3g,
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respectively.

In this chapter, we revisit the possibility of Y (2175) as an tetraquark state sss3s.
The currents of JF¢ = 1~ have been constructed in Chapter 4, and we can select the
currents with charge-conjugation parity negative among them. We find that there are
two independent currents. They can have a structure of diquark-antidiquark (ss)(33), or
have a structure of meson-meson (35)(5s). We show that they are equivalent, as we have
verified many times. Then by using these two independent currents, we also perform a
QCD sum rule analysis. We calculate the OPE up to the dimension 12, which contains

the (gq)* condensates. In these two respects, our study differs from the previous one of
Ref. [169). '

7.1 Interpolating Currents

In this section, we construct currents for the state Y(2175) of J¥¢ = 17~ From the decay
pattern Y (2175) — ¢(1020) fo(980), we expect that there is a large $s55 component in
Y'(2175) since both ¢ and f; have a large §s component. We may add further quark and
antiquark pairs, but the simplest choice would be ss35. We will discuss later how this
simplest quark content will be compatible with the above decay pattern when considering
the possible structure of ¢(1020) and f,(980).

Let us now briefly see the flavor structure of the current. In the diquark-antidiquark
construction (ss)(33) where ss and 33 pairs have a symmetric flavor structure, the flavor
decomposition goes as

6f®6f: 1: ® 8 P 27¢. (71)

Therefore, the (s5)(35) state is a mixing of 1¢,8; and 27, multiplets in the ideal mixing
scheme.
Now we find that there are two non-vanishing currents for each state with the quantu

number JF¢ = 1=, For the state ss33: '
Mp = (sCY55) (57475055 ) — (8L Cyuv590) (5715C5; ) 5 (7.2)
Mp = (SZC'YVSb)(EaUWOEg) - (st’auysb)(Ea’yVC’§g) ) (7.3)

where the sum over repeated indices (i for Dirac spinor indices, and a, b for color indices)
is taken. C = i7y2p is the Dirac field charge conjugation operator, and the superscript T
represents the transpose of the Dirac indices only.

Besides the diquark-antidiquark currents, we can also construct the tetraquark cur-
rents by using quark-antiquark (8s) pairs. We find that there are four non-vanishing
currents:

N3 = (3a8a) (56 Vust) ,
Ny = (3a77554) (560550 ,
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Mo = AabAcd(5a5h)(8cVu8d) 5
Nep = )‘ab/\cd(ga’YV’YSsb)(gco'/u/)’Ssd) .
In Ref. [169], the author used 75, to perform QCD sum rule analysis, which is a mixing
of n1, and n,. We can verify the following relations by using the Fierz transformation:

5 . . 1
M = _§U3u — Uy, Mop = 3N + §774lt' (7'4)

Therefore, among the four (Gg)(gg) currents, two are independent. We can also verify the
relations between (ss)(55) currents and (Ss)(3s) currents, by using the Fierz transforma-
tion: '

Mp = —M3u + Mg, Mop = M3y — Nap - (7.5)

Therefore, these two constructions are equivalent, and we will use 7, and 7, for QCD
sum rule analysis.

7.2 QCD sum rule Analysis

For the currents 7, and 7., we have calculated the OPE up to dimension twelve, which
contains the (§g)* condensate:

[ * 24 2GG)  m,(3s)
H M2 = 5 — mSS (_ <g S > 2
1(M5) /Mmg [184327#5 25670\ 1843276 | 48mt J°

((53)2 _ m,(g50G's) 17m§(g2G’G))S

1872 4874 921676
(35)(g50Gs) ms(g°GG)(3s) 29m2(35)°\| _s/m2
(5 e e ) ¢ s
+(5<92GG) (3s)?  (g50Gs)? N 20m,(55)°  5m,(g’°GG)(g50Gs)
86472 4872 9 230474
_ 3mi(3s) (g§aGs)> N 1 (_ 329°(35)*  (9°GG)(3s)(950Gs)
272 M3 81 57672
_ 10m,(3s)*(g50Gs) N m2(g?GG)(3s)? N m?(gEaGs)2>
9 : 57672 1272 ’

(7.6)

%0 4 3m?s® (*?GG)  m(3s)
H M2 = s _ s < S ) 2
(M) /1 [122887r6 51276 ' \1843276 © 3271 J°

+<(§s)2 _ my(g50Gs) 35m§(g2GG)>
1272 3274 92167

m2
6m2
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g2 12874 - 8n?
+<5(92GG) (55)? N (g50Gs)®  10my(55)°  5ms(g°GG)(g50Gs)
2887r2 327r2 3 7687
_ 9mi(3s gsaGs)) N (_ 16¢°(55)*  (9°GG)(3s)(950Gs)
M
)

+ ( (35)(950Gs)  3ms(g*GG)(3s) 29m§<§5>2)] e—5/M3 g

472 27 19272
_ 5my(3s)® (gsaGs m2(g>GG) (3s)* N mﬁ(gEaGs)2)
57672 82 '

(7.7)

We find that there is an approximate relation between the correlation functions of 71,
and 7,,:

3 (M3) ~ 20y(M3), (7.8)

which is valid for the continuum, (3s), and (g.GgoGgq) terms, etc. So the numerical results
by using them are also very similar.

7.3 Numerical Analysis

First we want to study the convergence of the operator product expansion, which is the
cornerstone of the reliable QCD sum rule analysis. By taking sq to be co and the integral
subscript 16m? to be zero, we obtain the numerical series of the OPE as a function of
M B

I (M2) = 1.4x107°MP —38x107"M% —6.2 x 1077 M5 +4.2 x 107" M}

—1.2x1075M2 +4.7x 1078 — 1.5 x 107" M32, (7.9)
IL(M3) = 20x1075ME —57x107"M5 —8.0 x 107" M$ + 6.4 x 107" M3
~1.7x107M2E +1.0 x 1077 — 2.2 x 107" M52, (7.10)

After careful testing of the free parameter Borel mass Mg, we find for M3 > 2 GeV?,
which is the region suitable for the study of Y(2175), the Borel mass dependence is
weak. Moreover, the convergence of the OPE is satisfied in this region. The correlation
function of the current 7, is shown in Fig. 7.1, when we take sy = 5.7 GeV? (the integral
subscript is still 16m2).” We find that in the region of 2 GeV? < M3 < 5 GeV?, the
perturbative term (the solid line in Fig. 7.1) gives the most important contribution, and
the convergence is quite good.

It is important to note that the Y (2175) state is not the lowest state in the 17~
channel containing s3 and that the interpolating currents see only the quantum number
of the states. It is possible that the low-lying states ¢(1020) and ¢(1680) also couple to
the tetraquark currents 7y, and n,. If so, their contribution to the spectral density and
the resulting correlation function should be positive definite.
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2 3 4 5
Borel Mass? [GeV Y

Figure 7.1: Various contribution to the correlation function for the current 7;, as functions
of the Borel mass Mg in units of GeVI? at s; = 5.7 GeV2. The labels indicate the
dimension up to which the OPE terms are included.

However, we find that (1) the spectral densities p(s) for both currents 7, and 72,
are negative when s < 2 GeV?; (2) the Borel transformed correlation function II(M2) in
Eq. (1.25) is also negative in the region sy < 4.3 GeV? and 1 GeV? < M3 < 4 GeV2. As
an illustration, we show the correlation function as a function of sq in Fig. 7.2. This fact
indicates that the ss33 tetraquark currents couple weakly to the lower states ¢(1020) and
#(1680) in the present QCD sum rule analysis.

The pole contribution is not large enough for both currents due to a large contri-
bution from D = 10 perturbative term [;° e~/ M5 s4ds, which is a common feature for
any multiquark interpolating currents with high dimensions. The mixing of the currents
my and 72, does not improve the rate of the pole contribution. The small pole con-
tribution suggests that the continuum contribution to the spectral density is dominant,
which demands a very careful choice of the parameters of the QCD sum rule. In our
numerical analysis, we require the extracted mass have a dual minimum dependence on
both the Borel parameter Mg and the threshold parameter sq. In this way, we can find
a good working region of Mp and so (Borel window), where the mass of Y (2175) can be
determined reliably.

Now the mass is shown as functions of the Borel mass Mg and the threshold value sg
in Fig. 7.3 and Fig. 7.4. The threshold value is taken to be around 5 ~ 7 GeV?, where
its square root is around 2.2 ~ 2.7 GeV. We find that there is a mass minimum around
2.4 GeV for the current 7;,, when we take M2 ~ 4 GeV? and sq ~ 5.7 GeV2. While
this minimum is around 2.3 GeV for the current 7,,, when we take M3 ~ 4 GeV? and
30 ~ 5.4 GeV2,

In short summary, we have performed the QCD sum rule analysis for both 7, and 72,,.
The obtained results are quite similar. This is due to the similarity of the two correlation
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Figure 7.2: The correlation function for the current 7y, as a function of sy in units of
GeV?0. The curves are obtained by setting M3 = 1 GeV? (long-dashed line), 2 GeV?
(short-dashed line) and 4 GeV? (solid line).

functions as shown in Eq. (7.8). We have also considered their mixing, which also give
the similar result. The mass is predicted to be around 2.3 ~ 2.4 GeV in the QCD sum
rule.

7.4 Finite Energy Sum Rule

To test the validity of the results obtained in the SVZ sum rule in the previous section,
we use the method of finite energy sum rule (FESR) in this section. For the currents 7y,
and 7, the spectral functions p;(s) and pa(s) can be drawn from Egs. (7.6) and (7.7).
The d = 12 terms which are proportional to 1/(¢?)? do not contribute to the function
W (n, so) of Eq. (1.27) for n = 0, or they have a very small contribution for n = 1, when
the theoretical side is computed by the integral over the circle of radius sg on the complex
¢* plain. Therefore, the spectral densities for 7, and 73, take the following form up to
dimension 10,

st mgs® (°GG) | ms(3)\ »

Pl) = 3335 ~ 2560 T (_ 184327° © 43 )S
(3s)2  mys(g50Gs) 1Tm2(g*GG)
(187r2 © 48t T 921678 )
(5s)(g50Gs) ms(g?GG)(8s)  29m?2(ss)?
(g e TN
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Figure 7.3: The mass of Y(2175) as a function of Mp (Left) and sy (Right) in units of
GeV for the current ny,,.
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The mass is shown as a function of the threshold value sy in Fig. 7.5, where n is
chosen to be 1. We find that there is a mass minimum (stable region). It is around 2.3
GeV for the current 7;, when we take sy ~ 5.2 GeV?2, while it is around 2.2 GeV for
the current 7, when we take sy ~ 4.8 GeV?. For the current 7, the minimum point
occurs at /sy = 2.28 GeV where the mass takes 2.3 GeV, and the threshold value is
slightly smaller than the mass, unlike the ordinary expectation that ,/s¢ is larger than
the obtained mass. However, the minimum point is on the very shallow minimum curve
and the resulting mass is rather insensitive to the change in the ,/sq value. Therefore,

we can increase

so slightly more, for example 2.45 GeV, but the mass still remains at

around 2.35 GeV, which is smaller than /sy now. We interpret this fact as an indication
that the state Y (2175) has a narrow decay width which is around 58 MeV.
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Figure 7.4: The mass of Y (2175) as a function of Mp (Left) and so (Right) in units of
GeV for . '

7.5 Conclusion

In this chapter we have studied the mass of the state Y (2175) with the quantum numbers
JF€ = 177 in the QCD sum rule. We have constructed both the diquark-antidiquark
currents (ss)(35) and the meson-meson currents (3s)(3s). We find that there are two
independent currents for both cases and verify the relations between them. Then using
the two (ss)(55) currents, we calculate the OPE up to dimension twelve, which contains
the (5s)* condensates. The convergence of the OPE turns our to be very good. We find
that the OPE’s of the two currents are similar, and therefore, the obtained results are
also similar. By using both the SVZ sum rule and the finite energy sum rule, we find that
there is a mass minimum. For SVZ sum rule, the minimum is in the region 5 < 5o < 7
GeV? and 2 < M3 < 4 GeV2. For finite energy sum rule, the minimum is in the region
4.5 < s9 < 5.5 GeV2. It is about 2.2 ~ 2.4 GeV. Considering the uncertainty, the state
Y (2175) can be accommodated in the QCD sum rule formalism although the central
value of the mass is about 100 MeV higher than the experimental value.

We have investigated the coupling of the currents to the lower lying states including
#(1020) and found that the relevant spectral density becomes negative, implying that the
present four-quark currents can not describe those states properly. This fact indicates
that the four-quark interpolating currents couple rather weakly to ¢(1020), which is a
pure ss state. v

We can test the tetraquark structure of Y (2175) by considering its decay properties.
Naively, the ss55 tetraquark would fall apart via S-wave into the ¢(1020)f5(980) pair,
and would have a very large width. The experimental width of Y'(2175) is only about
60 MeV, which seems too narrow to be a pure tetraquark state. We can discuss the
decay of the Y (2175) by borrowing an argument based on a valence quark picture. The
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Figure 7.5: The mass of Y (2175) by using the current n, (solid line) and 7, (dashed
line) as a function of sy in units of GeV.

(8s)(3s) configuration for Y(2175) can be a combination of 3S; and 3Py, which may fall
apart into two mesons of 1~ and 0" in the s-wave. In the QCD sum rule the 1~ 3s
meson is well identified with #(1020), while the 0" 5s meson has a mass around 1.5
GeV and is hard to be identified with the observed f,(980). Therefore, such a fall-apart
decay would simply be suppressed due to the kinematical reason. The physical f3(980)
state may be a tetraquark state as discussed in the previous QCD sum rule study [39].
Then the transition Y (2175) — ¢(1020) + fo(tetraquark) should be accompanied by a
gq creation violating the OZI rule, as well as by an annihilation of one quanta of orbital
angular momentum. These facts may once again suppress the decay of Y(2175) —
$(1020) + f9(980). This fact was studied in the recent paper by Torres, Khemchandani,
Geng, Napsuciale and Oset [130]. They studied the ¢ KK system with the Faddeev
equations where the contained KK form the f;(980) resonance. The decay width they
calculated is around 18 MeV, not far from the experimental value. The all above evidences
would imply that the Y'(2175) is a possible candidate of a tetraquark state.

Y (2175) could be a threshold effect, a hybrid state s3G, a tetraquark, an excited
s5 state or a mixture of all the above possibilities. Because of its non-exotic quantum
number, it is not easy to establish its underlying structure. Clearly more experimental
and theoretical investigations are required.

One byproduct of the present work is the interesting observation that some type
of four-quark interpolating currents may couple weakly to the conventional g7 ground '
states. If future work confirms this point, we may have a novel framework to study the
excited g7 mesons using the four-quark interpolating currents, which is not feasible for
the traditional ¢¢ interpolating currents.
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Chapter 8

Vector Tetraquark Meson of
16JPC = 1717+

Hadrons beyond the conventional quark model have been studied for more than thirties
years. For example, Jaffe suggested the low-lying scalar mesons as good candidates of
tetraquark states composed of strongly correlated diquarks in 1976 [93]. Especially there
may exist some low-lying exotic mesons with quantum numbers such as (JFC) = (17+)
which §g mesons can not access [16,114]. However the hybrid mesons with explicit glue
can carry such quantum numbers. The experimental establishment of these states is
a direct proof of the glue degree of freedom in the low energy sector of QCD and of
fundamental importance.

The mass of the non-strange exotic hybrid meson from lattice QCD simulations in-
cludes: 2GeV [135], 1.74 GeV [80], and 1.8 GeV [29]. The mass of its strange partner is
1.92 GeV [80] and 2 GeV [29]. The hybrid meson mass from the constituent glue model
is 2 GeV [86] while the value from the flux tube model is around 1.9 GeV [90,150]. The
prediction from the QCD sum rule approach is around 1.6 GeV [44,104]. However, Yang
obtained a surprisingly low mass around 1.26 GeV for the 17 hybrid meson using QCD
sum rule [178].

Up to now, there are several candidates of the exotic mesons with I¢(JF¢) = 17(17+)
experimentally. They are m1(1400), 7 (1600) and 71(2015). Their masses and widths are
(1376 £ 17, 3004 40) MeV, (1653118, 225742) MeV, (2014 +20 £+ 16, 230 £21 £ 73) MeV,
respectively [179]. 71(1400) was observed in the reactions 7~p — n7°n [10]; pp — 7%
and pn — 7 7%y [4]; 7 p — nnp [164]. m1(1600) was observed in the reaction 77p —
w7 p (7 decays to nmtn~ with a fraction 44.5%) [92]. Both 7;(1600) and 7 (2015) were
observed in the reactions 7~p — wn~ 7% [126] and 77 p — nrtr 7" p [116]. However, a
more recent analysis of a higher statistics sample from E852 37 data found no evidence
of w1(1600) [61]. All the above observations were from hadron-production experiments.

Recently, the CLAS Collaboration performed a photo-production experiment to search
for the 17" hybrid meson in the speculated 37 final state in the charge exchange reaction
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vp — wtatn™ (n) [144]. If w1(1600) was an hybrid state, it was expected to be produced
with a strength near or much larger than 10% of the a3(1320) meson from the theoretical
models [12,49,91,163]. However m1(1600) was not observed with the expected strength. In
fact its production rate is less than 2% of the a3(1320) meson. If the 71(1600) signal from
the hadron-production experiments is not an artifact, the negative result of the photo-
production experiment suggests (1) either theoretical production rates are overestimated
significantly or (2) 71(1600) is a meson with a different inner structure instead of a hybrid
state.

In fact, the tetraquark states can also carry the exotic quantum numbers I¢(JF¢) =
17(17*). It is important to note that the gluon inside the hybrid meson can easily split
into a pair of ¢g. Therefore tetraquarks can always have the same quantum numbers
as the hybrid mesons, including the exotic ones. Discovery of hadron candidates with
JFP¢ = 17 does not ensure that it is an exotic hybrid meson. One has to exclude
the other possibilities including tetraquarks based on its mass, decay width and decay
patterns etc. This argument holds for all these claimed candidates of the hybrid meson.

Tetraquark states in general have a richer internal structure than ordinary ¢ states.
For instance, a pair of quarks can be in channels which can not be allowed in the ordinary
hadrons. The richness of the structure introduces complication in theoretical studies.
Therefore, one usually assumed one or a few particular configurations which are motivated
by some intuitions.

To study these states, we follow the same method used in previous sections which
is based on complete classification of independent currents. By making suitable linear
combinations of the independent currents we can perform advanced analysis as compared
with the analysis of using only one type of current which limits the potential of the OPE,
and sometimes leads to unphysical results.

In this chapter, we first classify the flavor structure of four-quark system with quan-
tum numbers J¥¢ = 17+, We find that there are five iso-vector states. Then we con-
struct tetraquark interpolating currents by using both diquark-antidiquark construction
((g9)(77)) and quark-antiquark pairs ((¢7)(qq)). We verify that they are just different
bases and can be related to each other. Therefore they lead to the same results. By using
diquark-antidiquark currents, we perform the QCD sum rule analysis, and calculate their
masses. Our results suggest that 71(1400) may not be explained by just using tetraquark
structure, and 71(1600) and 7;(2015) could be explained by the tetraquark mesons with
quark contents (gq)(¢g) and (gs)(@s) respectively. The diquark and antidiquark inside
have a mixed flavor structure (3 ® 6) ® (6 ® 3). .

This chapter is organized as follows. In Sec. 8.1, we construct the tetraquark currents.
The tetraquark currents constructed by using both diquark (¢g) and antidiquark (Gg) are
shown in Sec 8.1.1. The tetraquark currents constructed by using quark-antiquark (gq)
pairs are shown in Sec 8.1.2. In Sec. 8.2, we perform a QCD sum rule analysis by using
these currents, and calculate their OPEs. In Sec. 8.3, the numerical result is obtained for
their masses. In Sec. 8.4, we use finite energy sum rule to calculate their masses again.
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We discuss the decay patterns of these 1-F tetraquark states in Sec. 8.5. In Sec. 8.6, we
follow the same approach to study the isoscalar vector tetraquark states. Sec. 8.7 is a
summary.

8.1 Tetraquark Currents

In order to construct proper tetraquark currents, let us start with the consideration of the
charge-conjugation symmetry. The charge-conjugation transformation changes diquarks
into antidiquarks, while it maintains their flavor structures. If a tetraquark state has a
definite charge-conjugation parity, either positive or negative, the internal diquark (gq)
and antidiquark (Ggg) must have the same flavor symmetry, which is either symmetric
flavor structure 6¢ ® 6¢ (S) or antisymmetric flavor structure 3¢ ® 3¢ (A), and can not
have mixed flavor symmetry neither 3¢ ® 6¢ nor 6; ® 3¢ (M). However, combinations of
3: ® 6; and 6; ® 3¢ can have a definite charge-conjugation parity. Therefore, in order
to study the tetraquark state of IJP¢ = 1717+, we need to consider the following
structures of currents

qsqs(A) ~ 3:®3¢ (A),
qqqq(M) ,qsg5(M) ~ (3:®6¢) ® (6:®@3¢) (M),

where q represents an up or down quark, and s represents a strange quark. The flavor
structures are shown in Fig. 8.1 in terms of SU(3) weight diagrams. The quark contents
indicated at vertices follow the ideal mixing scheme for inner vertices where the mixing
is allowed. In the SU(3) limit, the quark contents are suitable combinations of the ones
shown in this figures. However, the strange quark has a significantly larger mass than
up and down quarks (current quark mass), and so, the ideal mixing is expected to work
well for hadrons except for pseudoscalar mesons. The flavor structure in the ideal mixing
is also simpler than that in the SU(3) limit. Therefore, we will use the ideal mixing in
our QCD sum rule studies.

In the following subsections, we first construct currents by using diquark (¢g) and
antidiquark (gg) currents as well as quark-antiquark (gg) pairs, and then we show the
currents with explicit quark contents. The tensor currents 7, (7, = —7vu) can also have
IGJFPC = 1717+, By using tensor currents, we obtain the similar results, which will be
shown in our future work.

8.1.1 (qq)(qq) Currents

We attempt to construct the tetraquark currents using diquark (gq) and antidiquark (gg)
currents. For each state having the symmetric flavor structure 6; ® 6¢ (S), there are two



128 CHAPTER 8. VECTOR TETRAQUARK MESON OF IGJPC_z 171+

(49)®(q9)=6, ®6, (S)

21,
ddss udss  uuss

8

f

dsss  usss

SS5S5

(q9)®@9)=3, ®3, (A) 8,

(99)®(79)=3,®6, (M) 10,
8f
usss dsss
usdy dsus
ds(ufi-dd)  fs(uii-dd) usdd ds(un+dd) Fs(uii+dd) dsii

Figure 8.1: Weight diagrams for 6; ® 6¢(S) (top panel), 3; ® 3¢(A) (middle panel), and
3:®6¢(M) (bottom panel). The weight diagram for 6; ® 3¢(M) is the charge-conjugation
transformation of the bottom one.
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(qq)(qq) currents of JP¢ = 1=+, which are independent

T = GaCr502(Bau1sCTp + Ga7u75C ) + UaCruysdes (33 15CT0 + GavysCTa8 1)

Vs, = GaCV 0003 Clp — T30 Cllty) + 11aC0 (3307 Clay — G567 Clly) »

where the sum over repeated indices (y, v,--- for Dirac spinor indices, and a,b, - - for
color indices) is taken. C' is the charge-conjugation matrix, ¢, and ¢, represent quarks,
and g3 and g4 represent antiquarks. For the antisymmetry flavor structure 3; ® 3¢ (A),
we also find that there are two independent (gq)(gg) currents,

Vi = @,C502(BaVu15CT — T3 715 Clay) + AaCYuYs026(E3a¥sClay — G 15C UL 2)
Vo = 0GaC7 0330w O + 33010 Cllay) + 41a00,25(G3a7" Cliy + T3y Clita) »

For each state containing diquark and antidiquark having either the flavor structure
3; ® 6¢ or 6; ® 3¢, there are no currents of quantum numbers JF¢ = 1=+, However,
their combinations (3¢ ® 6¢) ® (6¢ ® 3¢) can have the quantum numbers JF¢ = 1-+. We
first define the currents 9" which belong to the flavor representation 3¢ ® 6¢, and the
currents w%R which belong to the flavor representation 6; ® 3¢ separately. We find the
following four independent currents:

Yl = ¢ Cvue6(@3.C0, + T3 CTL)
Vit = q1,Cousae(@ay 15C T, + @37 15C )
ZbgMML = ¢1,002(@Ba7uCily — B367.Cds)

%\,{L = ¢1.CY 1592(BamsCp — 60 15Clsy) »

P = o Caon(B3a7uCly + T37:Clay)

PIE = gl Oy 15020(@3a0 15 C iy + B0, 15C )

Z/J%R = ¢1,C7uq2(33.C T4, — 3C4,) ,

Vil = 4],Com 500 (@3aY 15CT — G307 15 Clly) -
They all have quantum numbers J¥ = 1= but no good charge-conjugation parity. How-
ever, their mixing can have a definite charge-conjugation parity,

M — ]\4L:|: MR (83)

(7 T [T

where the + and — combinations correspond to the charge-conjugation parity positive
and negative, respectively. In the present work, we only consider the positive one.
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8.1.2 (gq)(gq) Currents

In this appendix, we attempt to construct the tetraquark currents using quark-antiquark
(Gq) pairs. For each state containing diquark and antidiquark having the symmetric flavor
6¢ ® B¢, there are four (gq)(gq) currents:

ffu = (@3aYuY5910) (Ga6Y5926) + (F3a7Y5910) (TabYuY592b)
HFaVuV5920) (anv5q1e) + (T3aY5920) (T Yuysqie) >

& = (B 910) (@0 a2) + (Ta0uwqia) (Tavy” G2s)
H(F307" 420) (G260 w0 G16) + (G300 10920 ) (GarY" q11)

f:??” = Aapdeal (@Y Y5915) (TacV592a) + (F3a75910) (Tac VY5 %24)
(T30 Y5926) (Tac V5 q1a) + (T307Y5926) (Tac Vi V5914) } 5

ffu = AsAea{(BaY 01) (G100 22d) + (T3a0w915) (GacY’ G2a)
+(F3ay” 926 )(G4cO 1 q1d) + (G300 1w G2n) (Gacy” q1a) } -

Among these currents, only two are independent. We can verify the following relations
5
S .
§3u = —gflsp - Zgégu 5
1
5 S S
£4p = 37’51;1, + §€2u .

Moreover, they are equivalent to the (¢q)(gg) currents

1 1
1/"11 = _5515/1 + §§§p,>
31 1
11[)25;1. = _ngu + 5525;1, :

For each state containing diquark and antidiquark having the antisymmetric flavor
3¢ ® 3¢, there are also four (gq)(dq) currents which are non-zero:

& = (Barrsqia) (@sv502) + (Ba¥sq1a) (TasVuVsd2s)
—(BaYu¥5%20) (apY5G15) — (@3a7V5924) (Tas Y ¥5q18)

§zi = (7347"91a)(qa60uq28) + (@300 q1a) (167" q2b)
— (03077 920) (G160 10 q16) — (G300 1 G20) (GarY" 18 ,

f?ﬁt = AapAea{ (GaVuY5915) (Gac¥592a) + (F3aV5916) (Fac Vi V5924)
—(BaVuV592) (Qac¥591d) — (F3av5G25) (TacVuYsq1d) } »

& = Aavrea{(@a7 1) (GacO1820) + (@00 Q1) (@acy” G24)
—(F3a7" @26 ) (G40 1 q1d) — (G300 G2n) (Gacy q1a) } 5
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where once again only two are independent
A Loa .4
£, = 551# + &5, 5
eh = -3t — e
They are equivalent to the (gq)(§d) currents
W = 3t Eh,
W o= et ot

For the currents which have a mixed flavor symmetry, we just show the (gq)(gq)
currents which belong to the flavor representation 3¢ ® 6¢. Those belonging to the flavor
representation 6¢ ® 3¢ can be obtained similarly.

f1Mu = (Ba1a)(TasYu26) — (BaVuG1a)(Fasqos)
—(730920) (GavYuq16) + (F3aVuq24) (Gap1b) 5
&r = (Bar"15q10)(Qay5920) — (T3aV5910) (T 7 ¥5425)
—(Ba Y ¥5920) (Tas¥5916) + (F30775924) (Tas ¥ V5 q15) 5
fé\,{ = (BaV" q10)(Ga600926) ~ (BaC v q1a)(GasY” G2b)
— (@307 020) (Qus T 15) + (B30T 1 G20) (Qas7” 15)
§4M# = (473a7VWSQ1a)(@4{;0“1/)/5(121:) — (@300 10 Y5910) (GavY” Y5G20)
' —(F307"V5920) (G160 Y5q10) + (03000 V5920) (GanY” V5410) -

There are also four currents which have a color 8. ® 8, structure, and they can be written
as a linear combination of the currents with color structure 1.®1.. The relations between

M oo
ML and &7 are:
ML Lo Lom B tom
1/}1u = —me + 152“ + Z&m - 154,“ v
ML Sty Sty 1oy 1oy
¢2u = me + ”4“52“ + me + 254“ )
1 1 7 i
Yo' = 78t 76t 78+ 76
mMr Sty Bty 1oy 1oy
Yy = “‘Z&N + me + Z§3u - Z&“ .

MR

We can obtain similar results for ;,™, which we do not show here any more.
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8.1.3 Iso-Vector Currents

For the study of the present exotic tetraquark state, we need to construct iso-vector
(I = 1) currents. There are two isospin triplets belonging to the flavor representation
67 ® 6, one isospin triplet belonging to the flavor representation 35 ® 3, and two isospin
triplets belonging to the flavor representation (37 ® 65) &

state, there are several independent currents. We list them in the following.

1. For the two isospin triplets belonging to 65 ® 6 (S):

\

\

where 771u and 772# are the two independent currents containing only hght flavors,

5, = ¥5,(qqqq) ~
(15, = ¥7,(qsqs) ~

15, = U5, (qsq5) ~

(7, = ¥5,(q939) ~ u Cvsdb(uawvstT + Uy, 15 CdL)

+’Uz O’)/#’)’5db(ua’)’50db + ’U/b’)’5CCZT)
TC’7 dy (11,0, Cd} — ty0,, CdL)
+ul Coydy Ty Cdf — yy’ CdY)
ul Cys sp(Tayu15C3L + UpyuysC3L)
+ul Cyv585(Ua 15 CSE + UyysC3L)
ul Cy” (1401, CSE — U0, C5L)
+ul Copsp(tgy" C5E — uyy? C3L).

and 773“ and 774 . are the two independent ones containing one s5 quark pair.

2. For the isospin triplet belonging to 3; ® 37 (A):

My = Y1,(455) ~

3y, = ¥4, (qsqs) ~

U2 Cy58(Ua Y, 1sCSE — Upy,¥sCSY)
+ul Cyu 555 (Ua15C8, — Uy15C3s )
ul C” 8p(140,,, CSE + 1y, C3L)

+ul'Co sy (Uey’ CSL + uyy? C3YL)

where 7714# and nﬁ are the two independent currents.

3. For the two isospin triplets belonging to (37 ® 65) ® (65 ® 35) (M):

(0t = M (qqqq) ~
772# V32 (qqqq) ~
N5y = ¥3,(qq3q) ~

Ty = Vun(4947) ~

qu’fyudb(’aaCJ{ + ﬁchZJ;)
+ug Cdy(Ua7,Cdf + Uy, Cdy)
UL Co 5y (T ysCf + vy 15 CdY)
+uc’11.10’yy’)’5db(ﬂao-pu750£z{1; + ﬂbo'uu’YSCd_Z) P
ul Cdy (17, Cd} — uyy,CdY)
+uy O'yudb(uaC’ch ubC’JT)
TC’Y 'YSdb(uaUuu’YSCczT - UbU,w’YsCCzT)
+ul Coysdy(Tay" vsCdf — Uy 15 CdY)

(65 ® 3;) (Fig. 8.1). For each
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( 71% = ?,blMu(qscﬁ) ~ ul'Cr,s,(4,C8 + 4, C8L)
+UZOSb(’L—La’)’#O§g1 —+ ﬂbfyﬂcgff) ,

nes = V3(qsqs) ~ ulCouvsse(tay vsC3F + Uy 15C3L)
+ul Cy"v58(Ua0 15 CSL + 10, 5C5L)

mh = 3(qsqs) ~ ulCsy(ta,C8E — Uy, C5L)
+ul Cy,sp(1,C3F — w4 C3Y),

778M/,L = 102%((15@5) ~ UEO’YU'YSSb(ﬂaO-MV’YSOgg - ﬂbUW%Ogg)

| +ul CoY555(Bay 15C5 — Uy 15C5L)

where 77{‘/-"2,374 are the four independent currents containing only light flavors, and
77%,3,4 are the four independent ones containing one s5 quark pair.

We use ~ to make clear that the quark contents here are not exactly correct. For instance,
in the current nfﬂ, the state usus does not have isospin one. The correct quark contents
should be (us5 — dsds). However, in the following QCD sum rule analysis, we shall not
include the mass of up and down quarks and choose the same value for (Zu) and (dd).
Therefore, the QCD sum rule results for n{* with quark contents uss and (usu3 — dsd3)
are the same.

8.2 SVZ sum rule

We have performed the OPE calculation up to dimension twelve:

3684876 1536076~ \1843276 | 1027 | 967
+( _ <Q_Q>2 . <§3>2 <(7Q> <§5> m8<gquGQ> m3<gs50G3> .

mA(M2) = /:0[ 1 4 17m} 3 4 ((932GG> +ms<Q-Q> ms<§5>)82

20 2% 1872 9674 19274
_mi(gﬁG@)S _ {d9)(9sG0Gq)  (35)(9s30Gs)  (Gq)(9s50Gs)
460875 4872 4872 2472
(35)(9sq0Gq) | ms(g3GG)(ga) mi(qq)® | mi(3s)”
2472 25674 1272 4872
m2(qq)(3s)] /2 (9:40Gq)*  (gs50Gs)?
L ]e Pds <“ 19272 19272
(9530 Ga)(9,50Gs) _ 5(92GC)(qa)(55) | ms(qa)*(s) _ 2ms(qq)(5s)”
4872 86472 3 9
5my(9:GG)(9,G0Gq) | m:(3a)(9s50G's) | me(Ss) (gscian>)
46087 1272 82
Ll (_ 1695(39)*(55)" | (9:GC)(qq)(9550Cs) | (92GG)(55)(g:G0Ga)
M2 81 115272 115272
my(Gq)*(gs50Gs)  my(3s)*(9,qoGq)  5m,(qq)(5s)(9:0Gq)
9 18 18
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ms{qq)(3s)(g:50Gs) N m2(g;qoGq)?>  m2(g,GoGq) (gﬁaGs)) ‘

18 4872 4872 (8-4)

L (Mp) = /030 [184;%6 ' 1<8j§26jr>652+ <1(§3q7322 + 10 39253 Gq}}E_S/M%dS
H(B - 286222 )
A;% ( B 32g§,3 (lqw , $9:GG) é{é{é)gsan@) ' (8.5)
3 (Mp) = /OSO {614147r6 '+ 1z§43§7i> s+ <67r>22 + 40 <Z;%6Gq>]e—S/M%ds
+(<gsfgf2q> 8647r2 )
12 (_ 32g7(qq)*  (95GG)(dq) <gsanq>) (8.6)
M2 27 57672
v - [ e+ G50 G o
(g M)
A;%(_ 169‘;,3 (1qQ> _ {g3GG) éﬂ;%);gsan@) . (8.7)

ol 1 (9;GG) (G9)® | (@9)(9:30Gq) | s
M 2 - 4 s 2 s/M
17 (M) /0 {122887r68 T 832" Tt T g #ds
+(<9560GQ>2 _ 5(9:GG)(qq)*
3272 86472
L (_ 169;(dq)* | (9:GG)(70) (gs(IGG@)
M2 27 57672 ’

(8.8)

1843276° 768070 1843276 9674 487"

+( _(a0)* | (qa)(ss) _ (85)°  my(9:30G) | ms(gs30Gs)
3672 972 3672 4874 9674
mi(QEGG>>S_ (49)(9:G0Gaq) , (70)(9:30Gs) |, (35)(9:30Gq)

460876 2472 1272 1272

m(M2) = /:0 [ 1 s 1Tmf 8 (_ (g3GG)  ms(dq) " ms<§3>>s2

m3

_|_
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(55)(g,50Gs) . ms{9:GC) (@g) m2ge)® m{dq)(5s)
2472 2564 672 272
2/ce\2 — 2 - _

g (5s) }e*s/M}z? ds 4 (_ (9:30Gq)* | (9s40Gq){gs50Gs)

2472 9672 2472
(9550Gs)* _ 5(9;GG)(qq)(55) | 2m(qq)*(s) . Am,(qa)(5s)’
9672 86472 3 9
5ms(gsGG) (9:q0Gq)  mi(3s)(gsGoGg)  mi(dq) (gs§0G8>.>
460874 472 672

1 <_ 3295(d9)*(55)* | (9:GC)(79)(9:30C) | (9:GG)(55){9:q0Cq)
M3 81 115272 115272
_2ms{Gq)*(9:50Gs) _ 5ms(qq)(35)(9:G0Ga)  ms(da) (55){gs50Gs)
9 9 9
ms(55)*(9,q0Gg) | mil9,40Ga)® _ mi{9:q0Ca) <gs§UG3>) (8.9)
9 2472 2472 ' '

%0 1 17m?2 11{(g2GG) my{(gq) ms(5s)
IM(M2) — 4 _ s .3 ( s _ms s ) 2
6 (Mp) A [61447r68 9560760 T \ 1843276  32rf T 16t J°

m2
_|_< _ <QQ>2 + <(jQ> <§3> _ <§5>2 . m6<gquGQ> . m5<gs§UG3>
1272 372 1272 1674 3274
_109m] (giGG>)S _ {a9){g,30Ga) _ (d9)(9:50Gs) . (55)(9:30Ca)
1843276 872 472 472
_ (8s)(9s50Gs)  3m,{g2GG)(dq) N 5m,(g3GG)(3s)  m3(qq)®
82 12874 25674 22
3m2(qq)(3s)  mi(5s)*| _s/mz (9:G0Gq)* | (9:G0Gq)(9s50G's)
vl LR (_ 3om2 T 82
_{gs30Gs)®  25(g2GG)(dg)* N 5(9:GG){Gg)(3s)  25(g3GG)(3s)*
3272 172872 14472 172872
5ms(g2GG)(gsqoGq) | 25my(g>GG)(g,50Gs) 9
- 9
7687 + 460874 + 2ms(7q)"(59)
4my(qq)(5s)>  m3(dq){gs50Gs)  3m2(3s) (gsancD)
3 272 472
1 <_ 3297(q9)*(55)* | 5(9:GC)(qa){9:q0Gg) _ (9:GG){Gg)(9:50G)
M123 27 115272 19272
_(9:GG)(55){9,q0Cq) | 5(g:GG)(55)(9,30Gs) _ 2ms(da)*(gs50Cs)
10272 115272 3
5ms(7q) (55)(9:q0Gq) | ms(qq)(35)(gs50Gs) = m,(3s)*(g,GoGq)
B 3 + 3 + 3
27,2 =\ 2 2/, = 2 5/ - _
_5m(g.GG)(8s)"  mi(g:q0Ga)®  m(9:q0Gq){9550Gs) ) (8.10)
115272 72 872

+

+
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so 1 17m2 Yelel (G (5
Y (Mg) = /4 [ o e 3y <<gs ) ™Ms{qg) L <35>)S2

3686476 1536070 1843276 ~ 1927% | 9674
+( _(@@)* | (q9)(ss) _ (55)" _ ms(9:80Gs) | ms(gs50Gs)
7272 1872 7272 9674 19274
_mi(gﬁGG)> s $99)(9:30Gq) | (G9)(9:50Gs) | (55)(9:30Ga)
460875 4877 2472 2472
_ (38)(gs80Gs)  ms(g2GG){qa) mi(dg)® mi(dq)(3s)
4872 ‘ 25674 1272 42
me(55)*] oz (9s40Gq)* | (9:70Gq)(gs50G's)
4872 }6 ds+ (- g+ g
(9550Gs)® | 5(g;GC)(qa)(3s) | ms(a)*(8s) | 2ms(qa)(3s)”
19272 86472 3 9
_ 5my(g2GG)(g:qoGq)  m2(3s){g-GoGg) mi(dq) (9550G8>)
460874 2 1272
1 (_ 16g2(qg)*(55)®  (92GG)(q9)(9s50Gs)  (g2GG)(3s)(9:G0Gq)
M 81 115272 115272
_ms(9)*(9,50G5) _ 5ms(qq)(55)(9:q0Ga) | ms(qa)(55)(9s50Gs)
9 18 18
(53)2 ( $§oGq) | mi(g:§oGq)®  mi{gs§oGq)(gs50Gs)
+ 4872 4872 ) ’ (8.11)

m3

- s0 1 17m? GG (G (3
Hé”(M%,) _ /4 [ 4 my S3+(<gs ) m(QQ>+m<SS>)52

1228876° 512076 1843276 6drnt 3274

f(- 0, @) (552 mulg:qoCa) , my(g:50Gs)
2472 62 2472, 327t 64t
_17m§(g§GG>) o @) l9sq0Gq) | (@a)(gs30Gs) | (55){9:00Gq)
1843276 1672 82 82
_{5s){g;50C's) | ms(g:GG)(ss) _ milga)® _ 3mi(qa)(5s)
1672 25674 472 472
me(35)°] _onsz (9s00Gq)* | (9:00Gq)(gs50Gs)
1672 ]e ds + (“ 64 1672
_(9:50Gs)*  5(g2GG)(qg)*  5(g;GG)(ss)> | 5m,(giGG){gs50Gs)
6472 172872 172872 460874
\2aa , 2ms(g)(37)  3mi(3s)(9:q0Gq)  mi(qgq)(gs50Gs)
me(aa)(55) + 3 872 42 )
1 (_ 1693(99)*(55)" | (9:GG)(49)(9:G0C) , (9:GC)(55)(gs50Cs)
M2, 27 115272 115272
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. 16725 >) . (8.12)

8.3 Numerical Analysis

For the currents which belong to the flavor representations 6¢ ® 6¢ (S) and 3¢ ® 3¢ (A),
the spectral densities turn out to be negative in the energy region 1 GeV ~ 2 GeV as
shown in Fig. 8.2. The spectral densities of these currents become positive in the region
s > 4 GeV2. They may couple to the state 71 (2015). However, after performing the sum
rule calculation, we find that the mass obtained from the currents 77{2; and ngi is larger
than 2.5 GeV, for instance, we show the mass calculated from the current 7}, in Fig. 8.4.
The curves are obtained by setting M3 = 2 GeV? (solid line), 3 GeV? (short-dashed line)
and 4 GeV? (long-dashed line). The left curves (disconnected from the right part) are
obtained from a negative Borel transformed correlation function, and have no physical
meaning. Therefore, our QCD sum rule analysis does not support 71(1400), 71(1600)
and 7;(2015) as tetraquark states with a flavor structure either 6¢ ® 6¢ or 3¢ ® 3¢.

s [GeV?]

Figure 8.2: Spectral densities for the current nflﬂ, 775‘“ (solid lines), 7719#, 7723u (short-dashed
lines), nggu and nfu (long-dashed lines). The labels besides the lines indicate the flavor

symmetry (S or A) and suffix i of the current 775;’4 (1=1,2,3,4).

When using the currents nfvlf , the spectral densities are positive as shown in Fig. 8.3.
And so we shall use these currents to perform a QCD sum rule analysis. First we need
to study the convergence of the OPE. The Borel transformed correlation function of
the current né‘ﬁ is shown in Fig. 8.5, when we take s; = 4 GeV2 Besides the first
term, which is the continuum piece, the D=6 and D=8 terms give large contributions.
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Figure 8.3: Spectral densities for the current nf‘;’ . The spectral densities for the currents
with the quark contents ggGq are shown in the left hand side, and those with the quark
contents ¢sds are shown in the right hand side. The labels besides the lines indicate the
suffix i of the current 7! (i =1,---,8).

' The D=6 terms contain (gg)2 and the D=8 terms contain (gq){g.GoGq), which are the
important condensates. We find that the convergence is very good in the region of
2 GeV? < M% < 5GeV2. Therefore, in this region, OPEs are reliable.

The mass is calculated by using Eq. (1.26), and results are obtained as functions of
Borel mass Mp and threshold value so. In Figs. 8.6, 8.7, 8.8 and 8.9, we show the mass
calculated from currents 77{‘:"“ 772Mu, 773M“ and n%, whose quark contents are gqgg. Although
these four independent currents look much different, we find that they give a similar
result. From figures at LHS, we find that the dependence on Borel mass is weak. From
figures at RHS where the mass is shown as functions of sp, we find that there is a mass
minimum for all curves where the stability is the best. It is 1.7 GeV, 1.6 GeV, 1.6 GeV
and 1.7 GeV for four independent currents, respectively. We find that sometimes the
threshold values become smaller than the mass obtained in the mass minimum region.
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1.0
2

So [GeV?]

Figure 8.4: The mass calculated by using the current nﬁ“ as functions of sy in units of
GeV. The curves are obtained by setting M3 = 2 GeV? (solid line), 3 GeV? (short-dashed
line) and 4 GeV? (long-dashed line). The left curves (disconnected from the right part)
are obtained from a negative correlation function, and have no physical meaning.

II [10°GeV']
S [o)

[\
T

3 4 5
Borel Mass? [GeVz]

Figure 8.5: Various contribution to the correlation function for the current 77% as functions
of the Borel mass Mg in units of GeV10 at sq = 4 GeV?2. The labels indicate the dimension
up to which the OPE terms are included.

This is due to the negative part of the spectral densities. We also met this in the study
of Y(2175). See Ref [42] for details. :

In Figs. 8.10, 8.11, 8.12 and 8.13, we show the mass calculated from currents né‘ﬁ,
nes, T and 7%, whose quark contents are gsg3. The results are similar as previous four
currents. But now the mass obtained is about 0.4 GeV larger than the previous ones.
The minimum occurs at 2.1 GeV, 2.0 GeV, 1.9 GeV and 2.0 GeV, respectively.

In a short summary, we have performed a QCD sum rule analysis for gggg and ¢sgs.
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Figure 8.6: The mass of the state gqGg calculated by using the current n%, as functions
of M3 (Left) and s (Right) in units of GeV.
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Figure 8.7: The mass of the state gqgq calculated by using the current 77%, as functions
of M% (Left) and s (Right) in units of GeV. :

The mass obtained is around 1.6 GeV and 2.0 GeV, respectively. There are four inde-
pendent currents for each case, which give a similar results. Their mixing would lead to a
similar result, too. Compared with the experimental data, they can be used to interpret
the states m;(1600) and m;(2015) of I¢JFC = 1717F. These analyses are very similar to
our previous paper [42], where we studied the state Y(2175) by using vector tetraquark
currents which have quantum numbers J¥¢ = 17~ and quark contents ss53.
The pole contribution '
f:: e~5ME p(5)ds

SO: e~s/M5 p(s)ds

is not large enough for all currents due to the high dimension nature of tetraquark cur-
rents. Another reason is that these currents have a large coupling to the continuum,

(8.13)
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Figure 8.8: The mass of the state qqgg calculated by using the current 773M#, as functions
of M% (Left) and s (Right) in units of GeV.
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Figure 8.9: The mass of the state gqgq calculated by using the current 774MM, as functions
of M% (Left) and sy (Right) in units of GeV.

which is difficult to be removed. Therefore, we arrive at a stable mass, but with a small

pole. To make our analysis more reliable, we go on to use the finite energy sum rule in
the following section.

8.4 Finite Energy Sum Rule

The spectral functions p}(s) can be drawn from the Borel transformed correlation func-
tions shown in section 8.2. The Dim = 12 terms which are proportional to 1/(¢?)? do
not contribute to the function W(n, sq) of Eq. (1.27) for n = 0, or they have a very small

contribution for n = 1, when the theoretical side is computed by the integral over the
circle of radius sy on the complex ¢? plain.
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Figure 8.10: The mass of the state ¢sgs calculated by using the current 775MN, as functions
of M% (Left) and sy (Right) in units of GeV.
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Figure 8.11: The mass of the state ¢sgs calculated by using the current "7&{: as functions
of M3 (Left) and so (Right) in units of GeV.

The mass is shown as a function of the threshold value sg in Fig. 8.14, where n is
chosen to be 1. We find that there is a mass minimum around which the result is stable
under the change in so. It is around 1.6 GeV for currents 74, 73, 3 and 7}, whose
quark contents are gqgg, while it is around 2.0 GeV for currents n?, n, nM and n}?,
whose quark contents are ¢gsg3s. In a short summary, we arrive at the same results as the
previous SVZ QCD sum rule.

8.5 Decay Patterns of the 17" Tetraquark States

In the Section 8.1.2, we have verified that (¢¢)(gg) construction and (gq)(gq) construction
are equivalent, and from the second one we can obtain some decay information. The four
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Figure 8.12: The mass of the state ¢sgs calculated by using the current 777#? as functions
of M2 (Left) and sy (Right) in units of GeV.
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Figure 8.13: The mass of the state ¢gsg3 calculated by using the current nsl“ as functions
of M3 (Left) and so (Right) in units of GeV.

independent (gg)(Gg) currents f,% lead to the same mass, and therefore, we shall study
the decay patterns from all these currents. We can obtain the S-wave decay patterns
straightforwardly: '

1. The current §1Mu naively falls apart to one scalar meson and one vector meson:

&+ m(1600) — 0F (o(600), fo(980) - - +) + 17 (p(770),w(782)---) , (8.14)
71(2000) — 0% (¢(600), £(800) - - -} + 17 (p(770), K*(892) - - -) .

2. The current 5% naively falls apart to one axial-vector meson and one pseudoscalar
meson:

& . m(1600) — 1+ (a1(1260),b,(1235) -+ -) + 0" (w(135)---) , (8.15)
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Figure 8.14: The mass calculated using the finite energy sum rule. The mass for the
currents 7}, 7%, 3 and n} is shown in the left hand side, and The mass for the
currents nsM#, né‘{, n%ﬂ and ngMp are shown in the right hand side. The labels besides the
lines indicate the suffix i of the current ! (i =1,---,8).

m1(2000) — 1% (a1(1260), K1(1270),---) + 07 (w(135), K(498) - - ) .
3. The current 51% naively falls apart to one vector meson and one axial-vector meson:

&M 7 (1600) — 17 (p(770),w(782) - - -) + 1% (a1 (1260), b:(1235) - --) , (8.16)

m1(2000) — 17 (p(770), K*(892) - - ) + 11 (a1(1260), K1(1270) - - -) .
4. The current Ei\;{ naively falls apart to one axial-vector meson and one vector meson:

&M . mi(1600) — 1* (a1(1260), b1 (1235) - - ) + 17 (p(770),w(782) - --) , (8.17)
71(2000) — 1% (a;(1260), K1(1270) - - -) + 17 (p(770), K*(892) - - -) -

m1(2000) contains one 3s pair, so its final states should also contain one §s pair, and its
decay patterns are more complicated than 7;(1600). We see that the decay modes (8.16)
and (8.17) are kinematically forbidden (or strongly suppressed) due to energy conser-
vation. The decay modes (8.14) are difficult to be observed in the experiments due to
the large decay width of scalar mesons (¢ and ). Moreover, the scalar mesons below 1
GeV are sometimes interpreted as tetraquark states, and if so, these decay modes should
be suppressed due to the extra gg pair [41]. Therefore, the decay modes (8.15) are pre-
ferred. The 71 meson first decays to one axial-vector meson and one pseudoscalar meson.
Then the axial-vector meson decays into two or more pseudoscalar mesons. However,
the second step is a P-wave decay. Considering the conservation of G parity, the decay
mode a;(1260)~ is forbidden. One possible decay pattern is that 7;(1600) first decays to
b1(1235)7, and then decays to wa.
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We can also check the P-wave decay patterns besides S-wave decay patterns. We find
that the current 6% leads to a decay mode of two P-wave pseudoscalar mesons by naively
relating ¢v,vsq and 0, '

m(1600) — 0~ (m,m,n )+ 0" (m,m,n ), (8.18)
7T1(2000) 0 (7_[_’77,77/...)4_0— (71-,77’77/_..) . : .

Considering the conservation of G parity, decay modes 77 and nn etc. are forbidden, and
possible decay modes are 7 and 7’ etc. Summarizing the decay patterns, there are two
possible decay modes: P-wave many body decay, such as wnm, and P-wave two body
decay, such as 7 and 77’. This is partly consistent with the experiments which observe
m1(1600) and m1(2015) in the decay modes 77/, wrm and nrrww. However, the experiment
has not observe them in the final state 7. Certainly it is desired to study these decay
patterns to obtain more information on the structure of the ms mesons.

8.6 The IJPC =(0t1~* Tetraquark State
The tetraquark currents with the quantum numbers JF¢ = 1= have been constructed
in the previous section. Now we need construct the isoscalar ones. The flavor structures
are shown in Fig. 8.1 in terms of SU(3) weight diagrams. The ideal mixing scheme is
used since it is expected to work well for hadrons except for the pseudoscalar mesons. In
order to have a definite charge-conjugation parity, the diquark and antidiquark inside can
have the same flavor symmetry, which is either symmetric 6¢ ® 6¢ (S) or antisymmetric
3¢ ® 3; (A). Another option is the combination of 3; ® 6; and 6; ® 3; (M), which can
also have a definite charge-conjugation parity.

From Fig. 8.1, we find that there are three isospin singlets belonging to the flavor
representation 6 ® 6, two isospin singlets belonging to the flavor representation 3 F®3y,
and one isospin singlet belonging to the flavor representation (35 ® 65) @ (67 ® 3):

q93q(8) , 5q5(S) , 5s35(S) ~ 6: © 6:  (S),
qq(jQ(A) ,quE(A) ~ gf @ 3f (A) ; (819)
qsqs(M) ~ (3¢ ® 6¢) ® (6; ® 3¢) (M),

where g represents an up or down quark, and s represents a strange quark. For each
state, there are several independent currents. We list them in the following,.

1. For the three isospin singlets of 6; ® 6 (S):

o, ~ ut Cysdy(TayuysCdf + awmcdf)_
+ul Cyvsdp(Bays Cd] + TpysCdY)

S, ~ AT u{a0 O} — 4 0T
+ul Cody (v’ Cdf — tyy’ CdY)

(8.20)
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CSS,u, ~ ugC'YSSb(ﬂaqu’YSngﬂ + ﬂb’)’u’Y5C§Z)
+ul Cyv585(Ta15CEL + UpysCSL)

v (= — _ 2, 8.21

5, ~ ulCy sp(tia0 CS] — Up0, C3L) (8:21)
+ulCo s (U7 CsF — Gyy? C35L).

(5~ 8 Cyssp(Bauys03] + 57,7057 )
+3507u753b(§a750'§g + §b750§2) ) (822)

Cﬁsu ~ SZC’YVSb(gaUWCE{ - EbUWC’E?;)
+3200uu8b(§a7”0§f - 55’)’1/055) .
where Cfn and ngﬂ are the two independent currents containing only light flavors;

Q‘g?# and .Cfu are the two indepel.ld}ent ones cont'a,ining one s3 pair; ngu and Cgu are
the two independent ones containing two ss pairs.

2. For the two isospin singlets of 3; ® 3; (A):

Cﬁz ~ ug‘o’ﬁdb(ﬂa'yp'%cczz — UpYuYs C&Z‘ )
+ul Cyuy5dy (UaysCdf — TyysCdL)

&~ uLCY dy(140, CdE + 10,0, CdT) (8.23)
+ul Co . dy(Uyy” CdL + wyy? CdY)

C?ﬁt ~ ufc755b(ﬂa’)’u75c*§g - ﬂb%%Cgf)
Ful Cyuyss6(TavsC8L — UyysC3L) s. 24)

C‘ﬁt ~ uchyysb(ﬂa.U“VC'§Z’ + ﬂbam,C’Ef)
+ul Coyy 54Uy O + " C5L),

where CfL and Cﬁ are the two independent currents containing only light flavors;
(g‘}i and Qﬁl are the two independent ones containing one s§ pair.

3. For the isospin singlet of (3; ® 65) @ (65 ® 3;) (M),

ClM;L ~ ZO’Yusb(ﬂacgg + ’L_LbCEZ)
+ul Csp(tyy,C3L + upy,C35L),
C2Mu ~ ugoauV’YSSb(ﬂa’)’y'YSng + ﬂb'YV’Y5C§Z)
+ul Cy" 585 (a0 s C8L + W0, 15CEL ),
¢~ ul Csy(Uay,C5L — Wyy,C32)
+ul Cry,56(G, C5T — 5, C5T)
Ci\/lj, ~ ;11,—‘0/7”7531)('&0.0-“1/’)’505{ - ﬂbO'“y’Yf,CgZ)
+U£O‘7uu’)’53b(ﬂa’)’u’)’50§bT - ﬂb’)’”’)’50§£) ,

(8.25)

where f‘;{ are the four independent ones containing one s3 pair. The above structure

has some implications on their decay patterns.

The expressions of Eqgs. (8.20)-(8.25) are not exactly correct, since they do not have a
definite isospin. For instance, the current Cé‘h should contain (usts + dsds) in order to



86. THE ISJFC — 0+1~+ TETRAQUARK STATE 147

have I = 0. However, in the following QCD sum rule analysis, we find that there is no
difference between these two cases in the limit that the masses and condensates of the
up and down quarks are the same. Actually we also ignore a small quark mass effect
(my ~ my S 10 MeV).

By using these tetraquark currents, we have performed the OPE calculation up to
dimension 12. Values for various condensates and m; follow the references [71,85,89,99,
140,148,177,179]. There are altogether 14 currents. It turns out that some of them lead
to the same results of OPEs as the previous ones in previous sections [43]:

CS ~ S

1,234 ™ T1,2,3,4u
A A

C3,4/L ~ 771,2/_1. ’

CM ~ M
1,2,3,4p ™~ 715,6,7,8u 5

Therefore, we just need calculate the OPEs of Cgﬁﬂ and Cf,lzﬂ- The full OPE expressions
are too lengthy and are omitted here. ,

In our previous paper [43] we have found that the OPEs of the currents {Z’S and (7}’s
lead to unphysical results where the spectral densities p(s) become negative in the region
of 2 GeV2 < s < 4 GeV?. We find this to be the case also for the isoscalar currents.
Therefore, our QCD sum rule analysis does not support a tetraquark state which has a
flavor structure either 6¢ ® 6; or 3; ® 3; and a mass less than 2 GeV.

We shall discuss only the currents of the mixed flavor symmetry. For the isoscalar
case, there is only one set of four independent currents as given in Egs. (8.25), unlike the
isovector case which have two sets. The spectral densities calculated by the mixed currents

{‘f are shown in Fig. 8.15, which are positive for a wide range of s. The convergence of
OPE is very good in the region of 2 GeV? < M3 < 5GeV? as in our previous study [43].
In general, the pole contribution should be large enough in the SVZ sum rule. However,
the pole contributions of multiquark states are rather small due to the large continuum
contribution. Therefore a careful choice of the threshold parameter is important in order
to subtract the continuum contribution. At this moment we do not have a complete
solution to this problem, while we can perform a sum rule analysis phenomenologically.
Besides the SVZ sum rule, we will also use the finite energy sum rule. As we shall discuss
in the following, the remarkable stability in both the SVZ sum rule and the finite energy
sum rule indicates the signal of the physical state of the present exotic channel with a
very similar mass.

When using the SVZ sum rule, the mass is obtained as functions of Borel mass Mp
and threshold value sq. As an example, we show the mass calculated from currents (%
in Fig. 8.16. The Borel mass dependence is weak, as shown in the upper figure; the sg
dependence has a minimum where the stability is the best, as shown in the bottom figure.
The minimum is around 2.0 GeV, which we choose to be our prediction. The other three
independent currents Cf‘ﬁ , (é‘l{ and 77}1‘/{ lead to similar results, which are around 2.1 GeV,
1.9 GeV and 2.0 GeV respectively.



148 CHAPTER 8. VECTOR TETRAQUARK MESON OF [¢JFC = 1717t
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Figure 8.15: Spectral densities for the currents n{‘ﬁ . The labels besides the lines indicate
the suffix i of the currents ¢} (i =1,---,4).
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Figure 8.16: The mass of the state qsqs calculated by using the current CZ#, as functions
of M} (upper) and sy (bottom) in units of GeV.

When using the finite energy sum rule, the mass is obtained as a function of the
threshold value sp, which is shown in Fig. 8.17. There is also a mass minimum around
2.1 GeV, 1.9 GeV, 1.9 GeV and 2.0 GeV for currents Clw €2w C&L and C4u respectively.
In a short summary, we have performed a QCD sum rule analysis for qsqs The mass
obtained is around 2.0 GeV. We label this state ¢1(2000).

Now let us discuss its decay properties as expected from a naive fall-apart process.
This has a direct relevance to the experimental observations. As shown in Egs. (8.25)
the currents contain one s§ pair. Therefore, we expect that the final states should also
contain one s§ pair. In order to spell out the possible spin of decaying particles and their
orbital angular momentum, we need perform a Fierz rearrangement to change (qq)(3g)
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Figure 8.17: The mass calculated using the finite energy sum rule. The mass for the
currents (17, (27, (37 and (}7 are shown. The labels besides the lines indicate the suffix i

of the current ¢}Y (:=1,---,4).

currents to (gq)(Gq) ones. For illustration, we use one of the four independent (gq)(gg)
currents [43]:

& = (57" ¥550) (UnYsus) — (5a755a) (T 7" V5up)
R (8.26)

All terms of this current have the structure (g,v*Y594)(@7595). Therefore, the expected

decay patterns are: (1) 17 and 0~ particles with relative angular momentum L = 0, and

(2) 0~ and 0~ particles with L = 1. ‘
For the S-wave decay, we expect the following two-body decay patterns

Ul(IGJPC - 0+1—+) N a1(1260)77, 0/17/, e
b1(1235)77, bl’)]l N (827)

If we consider, however, the G parity conservation, the fist line is forbidden and the
second line is the only one allowed. These modes can be observed in the final states wmn

and wmn'.
For the P-wave decay, we expect (with the G parity conservation):

a1(I9JPC = 0" 17%) — KK, n'n’ -~ . (8-28)

We can also estimate the (partial) decay width through the comparison with the
observed 71(2015) [126], which has I'yo; ~ 230 MeV. Assuming that the decay of 71(2015)
solely goes through S-wave b;7 and that of 01(2000) through b7, we expect I'y, ., ~ 160
MeV, as they are proportional to the S-wave phase space. For the P-wave decay there
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is an information m1(2015) — n'w, which corresponds to 01(2000) — 7/n (Because both
71(1600) and 7 (2015) have been observed in the final states 77’ other than 7n, we choose
71’ to be the final states of 01(2000) other than KK and 7n7). Assuming once again that
this is the unique decay mode, we expect that the decay width is approximately 130 MeV.
If the decay occurs 50% through by (b1n) and 50% through n'm ('n), we expect that
Iy, ~ 150 MeV.

In summary, we have performed the QCD sum rule analysis of the exotic tetraquark
states with I¢JP¢ = 0F17+. We test all possible flavor structures in the diquark-
antidiquark (gq)(gq) construction, 6 ® 6, 3 ® 3 and (3 ® 6) ® (6 ® 3). We find that
the former two cases can not result in a meaningful sum rule since the spectral func-
tions become negative. On the other hand, the mixed currents of the flavor structure
(3®6) ® (6 ® 3) allows a positive and convergent OPE with which we can perform a
QCD sum rule analysis. There is only one choice with the quark content g¢sgs, which
have four independent currents. We have then performed both the SVZ sum rule and the
finite energy sum rule. The resulting mass is around 2.0 GeV. The possible decay modes
are S-wave b1(1235)n and b,(1235)7/, and P-wave KK, nm, nif and /7, etc. The decay
width is around 150 MeV through a rough estimation.

8.7 Conclusion

In this chapter we have performed the QCD sum rule analysis of the exotic tetraquark
states with I6JP¢ = 1717+, The tetraquark currents have rich internal structure. There
are several independent currents for a given set of quantum numbers. We have classified
the complete set of independent currents and constructed the currents in the form of
either (¢q)(Gq) or (gq)(qq). As expected, they are shown to be equivalent by having the
complete set of independent currents. Physically, this seems to make it difficult to draw
interpretation of the internal structure such as diquark (gq) dominated or meson (Gq)
dominated ones. Using the complete set of the currents, one can perform an optimal
analysis of the QCD sum rule. A

Somewhat complicated feature arises from the flavor structure. We have tested all
possibilities for the isovector I = 1 states. In the SU(3) limit, there are three cases of,
in the diquark (gq)(gq) construction, 6 ® 6, 3 ® 3 and (3 ® 8) ® (6 ® 3). We find that
the former two cases can not result in meaningful sum rule since the spectral functions
become negative. On the other hand, the mixed case (3 ® 6) @ (6 ® 3) allows positive
OPE with which we can perform the QCD sum rule analysis. Actual currents have been
constructed in the limit of the ideal mixing where the currents are classified by the number
of the strange quarks. Hence the quark contents are either ggqq or ¢sgs.
~ We have then performed the SVZ and finite energy sum rules. The resulting masses
are around 1.6 GeV for ¢qgg, and around 2.0 GeV for gsgs. The four independent
currents lead to the same mass and couple to a single state as shown above. Hence
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one of our main conclusions is that the higher energy states m(1600) and m1(2015) are
well compatible with the tetraquark picture in the present QCD sum rule analysis. On
the other hand, any combination of the independent currents does not seem to couple
sufficiently to the lower mass state m1(1400), which was, however, described as a hybrid
state by K. C. Yang in Ref. [178]. He obtained a low mass around 1.26 GeV by using the
renormalization-improved QCD sum rules. The m;(1400) state seems somewhat special,
as the experiments show the similarity between m;(1600) and 71(2015) as well as the
difference between m1(1400) and the above two states, which we have discussed in the
introduction.

We have also studied their decay patterns and found that these states can be searched
for in the decay mode of the axial-vector and pseudoscalar meson pair such as b;(1235),
which is sometimes considered as the characteristic decay mode of the hybrid mesons.
The P-wave modes 7, 71 are also quite important.

It is also interesting to study the partners of ms. Especially, we can study the one
with quark contents uds3, which is at the top of the flavor representation 10 (see Fig. 8.1).
It has a mass around 2.0 GeV, and the decay modes are K+ (3u)K°(3d) (P-wave) and
KKK (P-wave) etc. BESIII will start taking data very soon. The search/identification of
exotic mesons is one of its important physical goals. Hopefully the dedicated experimental
programs on the exotic mesons at BESIII and JLAB in the coming years will shed light
on their existence, and then their internal structure. More work on theoretical side is
also needed. We will go on to study other tetraquark candidates.
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Chapter 9

Bottom Baryons

Recently CDF Collaboration observed four bottom baryons ©F and Ezi [1,72]. DO
Collaboration announced the observation of = [3], which was confirmed by CDF collab-
oration later [2,124]. Very recently, Babar Collaboration reported the observation of {2}
with the mass splitting mq. — mgq, = 70.8 £ 1.0 £ 1.1 MeV [20]. We collect the masses of
these recently observed bottom baryons in Table 9.1.

The heavy hadron containing a single heavy quark is particularly interesting. The
light degrees of freedom (quarks and gluons) circle around the nearly static heavy quark.
Such a system behaves as the QCD analogue of the familiar hydrogen bounded by elec-
tromagnetic interaction. The heavy quark expansion provides a systematic tool for heavy
hadrons. When the heavy quark mass mg — oo, the angular momentum of the light
degree of freedom is a good quantum number. Therefore heavy hadrons form doublets.
For example, €2, and {2 will be degenerate in the heavy quark limit. Their mass split-
ting is caused by the chromo-magnetic interaction at the order O(1/mg), which can be
taken into account systematically in the framework of heavy quark effective field theory
(HQET). ,

In the past two decades, various phenomenological models have been used to study
heavy baryon masses [24, 36,62, 100, 132, 156]. Capstick and Isgur studied the heavy
baryon system in a relativized quark potential model [36]. Roncaglia et al. predicted
the masses of baryons containing one or two heavy quarks using the Feynman-Hellmann
theorem and semiempirical mass formulas [156]. Jenkins studied heavy baryon masses
using a combined expansion of 1/mg and 1/N, [100]. Mathur et al. predicted the masses
of charmed and bottom baryons from lattice QCD [132]. Ebert et al. calculated the
masses of heavy baryons with the light-diquark approximation [62]. Using the relativistic
Faddeev approach, Gerasyuta and Ivanov calculated the masses of the S-wave charmed
baryons [69]. Later, Gerasyuta and Matskevich studied the charmed (70,17) baryon
multiplet using the same approach [70]. Stimulated by recent experimental progress,
there have been several theoretical papers on the masses of 3;, X} and &, using the
hyperfine interaction in the quark model [106,107,110-112,157]. Recently the strong
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Table 9.1: The masses of bottom baryons recently observed by CDF and DO collabora-
tions.

I mass (MeV) Experiment
3y || 5808755 (stat.) & 1.7(syst.)
oy 5816+1 O(stat.) + 1.7(syst.)

)
)

CDF [1,72]
St || 582977 (stat ) &+ 1.7(syst.

S 5837Jr s(stat.) £ 1.7(syst.
5774 + 11(stat ) £ 15(syst.) DO [3]

S5 || 5793 4 2.5(stat.) = 1.7(syst.) CDF [2,124]

decays of heavy baryons were investigated systematically using 3Py model in Ref. [40].

QCD sum rule (QSR) has been applied to study heavy baryon masses previously [24—
26, 53, 54, 60, 73, 84, 141, 161, 166, 167, 170, 185]. The mass sum rules of A.; and Z.p
were obtained in full QCD in Refs. [24,25,141]. The mass sum rules of ¥g and Ag in
the leading order of the heavy quark effective theory (HQET) have been discussed in
Refs. [26,73,161]. Dai et al. calculated the 1/mg correction to the mass sum rules of Ag
and Eg ) in HQET [53, 54]. Later the mass sum rules of Ag and Eg) were reanalyzed in
Ref. [166]. The mass sum rules of orbitally excited heavy baryons in the leading order
of HQET were discussed in Refs. [84,185] while the 1/mg correction was considered in
Ref. [167]. Recently Wang studied the mass sum rule of €}, [171] while Durées and
Nielsen studied the mass sum rule of =, using full QCD Lagrangian [60].

In order to extract the chromo-magnetic splitting between the bottom baryon doublets
reliably, we derive the mass sum rules up to the order of 1/mg in the heavy quark effective
field theory in this work. We perform a systematic study of the masses of =, =}, Zf,
4, and € through the inclusion of the strange quark mass correction. The resulting
chromo-magnetic mass splitting agrees well with the available experimental data. As a
cross-check, we reproduce the mass sum rules of Ay, 3 and X} which have been derived
in literature previously. As a byproduct, we extend the same formalism to the case of
charmed baryons while keeping in mind that the heavy quark expansion does not work
well for the charmed hadrons.

9.1 QCD sum rules for heavy baryons
We first introduce our notations for the heavy baryons. Inside a heavy baryon there are

one heavy quark and two light quarks (u, d or s). It belongs to either the symmetric 6g
or antisymmetric 3p flavor representation (see Fig. 9.1). For the S-wave heavy baryons,
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the total flavor-spin wave function of the two light quarks must be symmetric since their

color wave function is antisymmetric. Hence the spin of the two light quarks is either

S =1 for 6 or S = 0 for 3p. The angular momentum and parity of the S-wave heavy
1t 3 1+

baryons are J¥ = 1" or §+ for 6 and J¥ = 37 for 3p. The names of S-wave heavy

baryons are listed in Fig. 9.1, where we use * to denote %+ baryons and the / to denote
the J¥ = %Jr baryons in the 6p representation. In this work, we use B to denote the

heavy baryons with %Jr in 3g and B’ and B* to denote those states with %Jr and %+ in
6.

* o1 *YOU+H2 +1
POEP X Ag

Figure 9.1: The SU(3) flavor multiplets of heavy baryons. Here o, o + 1, o + 2 denote
the charges of heavy baryons.

We will study heavy baryon masses in HQET using QCD sum rule approach. HQET
plays an important role in the investigation of the heavy hadron properties [143]. In the
limit of mg — o0, the heavy quark field Q(z) in full QCD can be decomposed into its
small and large components

Q(z) = e ™V *[H, () + hy(z)), (9.1)

where v* is the velocity of the heavy baryon. Accordingly the heavy quark field h,(z)
reads

h) = emerrit L) (9.2
Hya) = emarsi-Po), (9.3)

The Lagrangian in HQET reads

_ 1 - g -
= v - Dh, —le 211_ mag 7 v uwjv-
Luger hyiv - Dhy, + ZmQh (¢Dy)*h, — C g4mQh_ owG*™h

(9.4)
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The second and third term in the above Lagrangian corresponds to the kinetic and
chromo-magnetic corrections at the order of 1/mg. Here D = D* —v#v - D and D* =
O#+1igA*. Crag(w) is renormalization coefficient Cruag(1) = (cis(mg) /s (p))¥/Po14 182s],
where (o = 11 — 2ns/3 and ny is the number of quark flavors [143].

In order to derive the mass sum rules of B, B’ and B*, we use the following interpo-

lating currents for the heavy baryons with J* = %+ in 6p, |
Jp(z) = eancldi” (2)Cnugs(x)n1she(2), (9.5)
Ter(z) = —eachi(@)rs 35 (2)CaT (2)]. |
For the heavy baryons with J¥ = %Jr in 6,
I0) = cala O (- g + 3ot ) i), (0.7
Ta() = eudi(@)( - o + 3o X [B(2)0.Cq (@) (9.8)
For the heavy baryons with JF = %+ in 3
JB(z) = emcldl (z)Crgs()]hg (), (9.9)
Jp(@) = —eawchi(2)[@(2)1Cq (2))- (9.10)

Here a, b and c are color indices, ¢;(x) denotes up, down and strange quark fields. T is the
transpose matrix and C is the charge conjugate matrix. g = g — vhvY, v = v# — por.

The overlapping amplitudes of the interpolating currents with B, B’ and B* are
defined as

(0lJ8|B) = fpus, (9.11)
OlJp|B) = fpus, (9.12)
(01J-|B") = 71‘§f3*“%*’ (9.13)

where . is the Rarita-Schwinger spinor in HQET. fz = fg- due to heavy quark
syminetry. _

The binding energy A; is defined as the mass difference between the heavy baryon and
heavy quark when mg — oo. In order to extract A;, we consider the following correlation
function

i [ dt 90Ty (0) T 00) = - Y P @)
| (9.14)

with w =v-gq.
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The dispersion relation for IT(w) is
() :
Mw)= | ————— 9.1
W= [ A, (0.15)
where p(w) denotes the spectral density in the limit of mg — co. At the phenomenological
level, |
: 2 _
M(w) = X - - + continuum. (9.16)

Making the Borel transformation with variable w, we obtain

_ wo
freM/T = / p(w)e /T dw, (9.17)
0

where T is the Borel mass obtained by using Borel transformation. We have invoked the
quark-hadron duality assumption and approximated the continuum above wy with the
perturbative contribution at the quark-gluon level. The mass sum rules of B, B’ and B*
are '

fhehelT =
/WB [ = - (mél + mgz — mqlqu)w‘Q’
o L2074 474
(P°GCw | Mg, (Bg2) + Mg, (Q1a1)
+ + w
12874 472
_ 2m‘12 (q_]-q1> + 2mq1 <q_2q2> :| e—w/wa
An? ,
Mg (920 Ga2) + My, (9010Gq1)
3272
I (9:010Gq1) + Mg, (9:20Gga) ° (1q1) (g2)
12 - 3272 6
(191) (920G q2) + (R92){9:.010G 1)
+ A e , (9.18)
féle—l_\B//T —
/ “B! [ 3w (3mgmg, —3m2 — 3m},)w?
0 2074 474
(PGGw  bmg (foge) + 61y, <Q_1Q1>w
12874 472

+3mq1 <q_1QI> -+ 3mq2 <q_2(h>q)
472

] e /T dw
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() (Bg)  3me (920Gas) + 3me; (9di0Gar)
2 3272
+ 5m41 (QccﬁUG%) + 5mq2 (gcq—ZUGQ2>
12872
(R292)(9:010Gq1) + (101) (920 G o)
3277

_.|_

+

. , (9.19)

The mass sum rule of B* is same as that of B’ at the leading order of HQET. In the
above equations, (g;) is the quark condensates, (¢g?GG) is the gluon condensate and
(9G;0Gq;) is the quark-gluon mixed condensate. The above sum rules have been derived
in the massless light quark limit in Refs. [26,53,54,73,161]. Up and down quark mass
correction is tiny for heavy baryons A;, ¥, and ¥;. In this work we have included the
finite quark mass correction which is important for heavy baryons 5, =}, =5, % and Q.

The binding energy A; can be extracted using the following formula,

- T? dR,;

where R; denotes the right-hand part in the above sum rules.

9.2 The 1/mg correction

In order to calculate the 1/mg correction, we insert the heavy baryon eigen-state of the
Hamiltonian up to the order O(1/mg) into the correlation function

i / d4:ceiq"f<0|T[Ji(x)Ji(o)]10). (9.21)

Its pole contribution is

_(f+ep?
W) = Tiom —w
f? from 2f0f
A—w (A—w)? +1_X—w’~

(9.22)

where both ém and ¢ f are O(1/my).
We consider the three-point correlation function

1+9
2
=7 / d*zd'ye™ e v (0| T1Ji(2)0(2) T ()]/0), (9.23)

6T (w, )
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where operators O = K and S correspond to the kinetic energy and chromo-magnetic
interaction in Eq. (9.4). The double dispersion relation for §°II(w,«’) reads

&S] 00 O /
5OH N — d ! 4 (8,8) ) ' 24
)= [ [ &2
At the hadronic level,
e
§<1I = — = 2
f2S;
551 N == = 2
with
_ 1 T )2 '
K; = 2mg (Bi|hy (3D 1)*hy| B;), (9.27)
1 _
. = —— (B, HY . .
S; Tmg (Bi|hygo,G* hy| B;). (9.28)

After setting w = o’ in Egs. (9.25) and (9.26) and comparing them with Eq. (9.22), we
can extract dm

5m; = —(KC; + ChaagSs). (9.29)

Here the renormalization coeflicient Cpqy for bottom baryons is Cpe, = 0.8 [185].

We calculate the diagrams listed in Fig. 9.2 to derive §°II(w,w’). After invoking
double Borel transformation to Eq. 9.24, we obtain the spectral density p°(s,s’). Then
we redefine the integration variable

'
o =315 (9.30)
2
so=2 _2'3 (9.31)

Now the integral in Eq. (9.24) is changed as

o] o] o] +54
/ ds/ ds’...:2/ ds+/ ds_.... (9.32)
0 0 0 -S4

In the subtraction of the continuum contribution, quark hadron duality is assumed for
the integration variable s; [30,142].



160 CHAPTER 9. BOTTOM BARYONS

b292020,
®OOO
D4 OO
RO O

Figure 9.2: The diagrams for the 1/mg corrections. Here the current quark mass cor-
rection is denoted by the cross. The first eleven diagrams correspond to the kinetic
corrections and the last five diagrams are chromo-magnetic corrections. White squares
denote the operators of 1/mg.

For B (—é— ) in 3, the 1/mg correction comes from the kinetic term only.

Kp= |
ehs/T wB 54w Wt )
meB {/ Tl - W(mﬂn +myg, — mthqu)
3(g°GGw 3w
* 128 -3l74 ' 4. 31752 (mq1 (Giq1) + Mg, {G2q2)

—2mg, (quq1) — 2my, (C.I_szz))

15; 2 (m‘” (9e010Gq1) + May (920 th))
312 [<‘J1‘5’1> (9:20Ga2) + (G2ge) (gcq_lanl>] } (9.33)
% =0 , (9.34)

Here Sp = 0 is consistent with the simple expectation in the constituent quark model
that the chromo-magnetic interaction (Sp - 7;) = 0 since j; = 0 for B(%+) in 3p.
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For B'(3 ) in 6, the 1 /mg corrections are

ICB/ =
eher/T 18-11w 9w?
4 4
meB,{/ T\ 5‘7T4( m - qu

(PGG)w? 3w? _
~3MaMe) = 198 3 T T30 (5’"‘11 (da)

54, (@202) — 6gs (G101) — 6 (G202))

11w .
+W (mql (.QCQ_IO'GQ1> + Mgy (gc@qu2>)] e /wa
3
32 [<Q1Q1><QCQWGQ2> {22) (gccﬁanl)] }

SB/ =
eha/T { /“’B’ [2ggw7 4 (*GGYw?

mo %, 10576 16 - 3lrd
w
3202

(mfh <QCQ10'GQI> + qu <QCQZUGQQ>

—2mg, (9.10Gq1) — 2my, <gcq_20'Gq2>) ] eI du

1

T [(q1q1> (9:020Gq2) + (2g2) (gcChUqu)] }

Through explicit calculation, we obtain
Kp« =Kpr,
Sp« = —-8p/2,
mps — Mp = gSéu

which are consistent with the heavy quark symmetry.

9.3 Results and discussion

161

(9.35)

(9.36)

(9.37)
(9.38)

(9.39)

In our numerical analysis, we use the previous values (5.10) as well as [68,71,89,99, 148,

177,179]:

m. = 1.25 £ 0.09 GeV, mp = 4.8 GeV .
as(m.) = 0.328, as(mp) = 0.189.
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The values of the u,d, s and charm quark masses correspond to the MS scheme at a
scale u = 2 GeV and u = 7, respectively [179]. The b quark mass is obtained from the
Upsilon 1S mass [81,82,179].

Since the energy gap between the S-wave heavy baryons and their radial/orbital exci-
tations is around 500 MeV, the continuum contribution can be subtracted quite cleanly.
We require that the high-order power corrections be less than 30% of the perturbative
term to ensure the convergence of the operator product expansion. This condition yields
the minimum value for the working region of the Borel parameter. In this work, we
choose the working region as 0.4 < T < 0.6 GeV.

In Fig. 9.3-9.5, we give the dependence of A, K;, S; and mass splitting mp; — mp; ON
T and w, for Xy, Z}, Q. The variation of a sum rule with both T and w; contributes to
the errors of the extracted value, together with the truncation of the operator product
expansion and the uncertainty of vacuum condensate values. We collect the extracted A,
K, S; and mass splitting mp« — mp; in Table 9.2.

The masses of bottom baryons from the present work are presented in Table 9.3. It’s
well known that the heavy quark expansion does not work very well for the charmed
baryons since the charm quark is not heavy enough to ensure the good convergence of
1/mg expansion. For example, the chromo-magnetic splitting between ) and €, from
our work is around 133 MeV, which is much larger than the experimental value 67.4
MeV. However, we still choose to present the masses of S-wave charmed baryons also in
Table 9.3 simply for the sake of comparison with experimental data.

Table 9.2: The central values in this table are extracted at T = 0.5 GeV, w; = 1.3 GeV
for Eé*), w; = 1.4 GeV for Eb(*), w; = 1.55 GeV for Qg*), w; = 1.1 GeV for Ay and w; = 1.25
GeV for 5 (in MeV).

> g o0 1 &K 5

A 95077 1042775 1169 £ 74 [ 7737 9087

om 5915 60+5 6771 6572 7241
mass splitting Mgy — Mz, Mgy — Mg Moy — My, - -
this work 261 26 =+ 1 2873 - -
experiment [1,72] 21 - - - -

In our calculation, we adopt the phenomenological spectral function by the classical
and simple ansatz of a single resonance pole plus the perturbative continuum. The
systematic uncertainty of hadron parameters obtained with such an approximation was
discussed recently in Ref. [127]. We have not considered the next-to-leading order o
corrections, which may also result in large contribution and uncertainty as indicated by
the study of the oy corrections in the light-quark baryon system in Ref. [149].
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Table 9.3: Masses of the heavy baryons from the present work and other approaches and
the comparison with experimental data (in MeV).

Baryon I(JT) |  Ours Ref. [36] Ref. [156]  Ref. [100]  Ref. [132] Ref. [62]  Ref. [166,171] | EXP [3,20,72,124,179]
e 1GT) | 241173 2440 2453 2452 2439 2470 2454.02(0.18)
= it 2508F57 2580 2580.8 2599 2578 2575.7(3.1)
[ o3™h) 2657t;32 2710 : 2678 2698 2697.5(2.6)
=* 1871 2534198 2495 2520 2538 2518 2590 2518.4(0.6)

c 5 31 -
= 13t | 2634t} 2650 2680 2654 2646.6(1.4)
Qr o(2%) .| 27901109 2770 2760.5 2752 2768 2790 ~ 2768

c 2 105
Ac o) 2271757 2265 2285 2290 2297 2286.46(0.14)
Zc 1) | 24321l 2468 2473 2481 2467.9(0.4)
=5 137 5809722 5795 5820 5824.2 5847 5805 5790 5808
= 131 | s903tig 5950 5950.9 5936 5937
Q o(Lt 6036 + 81 6060 6068.7 6040 6065

b 2
=3 1(37) | 5835752 5805 5850 5840.0 5871 5834 5820 5829
= 13Ty | 592075 5980 5966.1 5959 5963
Qi o2ty | 608333 6090 6083.2 6060 6088 6000
A, ot 5637138 5585 5620 5672 5622 5624(9)
=1 1% | sreotil 5810 5805.7 5788 5812 5774,5793

9.4 Conclusion

In short summary, inspired by recent experimental observation of charmed and bottom
baryons [1-3,20,72,124], we have investigated the masses of heavy baryons systematically
using the QCD sum rule approach in HQET. The chromo-magnetic splitting of the bottom
baryon doublet from the present work agrees well with the recent experimental data.
Recently E,(,*) was observed by CDF collaboration [1,72]. Our results are also consistent
with their experimental value. Our prediction of the masses of =, =5, €, and £} can be
tested through the future discovery of these interesting states at Tevatron at Fermi Lab.
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Figure 9.3: The dependences of /_\gb, Ks,, Sx,, and the mass splitting Mgy — My, ol
T. Here the dotted, solid and dashed line corresponds to the threshold value ws, =
1.2,1.3,1.4 GeV respectively.
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Figure 9.4: The dependences of ./_XE;,, ICEg, 852, and the mass splitting mg; — mz on T.
The dotted, solid and dashed line corresponds to w=; = 1.3,1.4,1.5 GeV respectively.
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Figure 9.5: The dependences of Aq,, Kq,, Sgb, and the mass splitting mqy — mgq, on T
The dotted, solid and dashed line corresponds to wg, = 1.45,1.55,1.65 GeV respectively.



Chapter 10

Summary and Outlook

Using the method of QCD sum rule, we have systematically studied many exotic hadrons:

1. light scalar mesons: ¢(600), %(800), ag(980) and fo(980). They have quantum
numbers JP¢ = 0**. In the conventional quark model, it is difficult to explain
many of their properties by using the gg structure. By using the QCD sum rule,
we find it is more convenient to interpret them as tetraquark states, while the gg
scalar meson have a mass around 1.2 GeV, which is considerably heavier.

2. Y(2175). It has quantum numbers JF¢ = 17~ and was observed near the threshold
in the process ee™ — ¢ f5(980) via initial-state radiation. By using the QCD sum
rule, we find it can be interpreted as a ss35 tetraquark state.

3. m1(1400), 71(1600) and m;(2000). They have quantum numbers I¢JF¢ = 1717+,
which gg mesons can not access. By using QCD sum rule, we find that m;(1600)
and 71 (2000) can be interpreted as tetraquark states with quark contents qqgg and
qs@s, respectively. While 71(1400) may be interpreted as a hybrid state.

To study these hadrons, first we do a systematical study on the independent cur-
rents, which may couple to these states. This is the first part of our thesis, containing
the classification of baryon currents and tetraquark currents. We find this step is very
important because there are always more than one currents for each exotic hadrons, and
it is important to choose the right one in order to perform a reliable QCD sum rule.
Then, in the second part of our thesis, we do this by using all independent currents, and
also by using their linear combinations out to two. For the case of light scalar mesons,
this largely improves our discussions. While for the cases of Y (2175) and s, all the
independent currents lead to the similar results. So does their mixing. We find that this
may be due to the similar chiral properties of these different single currents. At last, we
do a systematical study on bottom baryons.
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During our studies, we find that there are still many things not clear, and our QCD
sum rule analysis needs some improvements. We would like to note on the following
points:

1. There is a large contribution from the continuum for some exotic hadrons. For
example, for the case of ¢(600), it has a mass larger than the two-pion threshold,
and the two-pion contribution should be very large. This is also a difficult question
for many other theories when used to study exotic hadrons.

2. The pole contribution is not large enough sometimes. When we study the exotic
hadrons, we always meet this problem. This is also related with the first point: the
large continuum contribution makes the pole rather small.

3. The relation between currents and states are not so clear. There may be more
than one currents coupling to the same state, and one current may also couple to
many different states. The current contains quark and gluon fields which are the
basic objects of QCD. However, at the low energy region, the degrees of freedom
of QCD are hadron states other than quarks and gluons. For exotic hadrons it is
difficult to relate these states with the underlying quarks and gluons. Therefore,
unclear relation between currents and states is reasonable, while at the same time
very interesting.

4. In our studies, the mixed angle is determined by using a try and error process. We
just find that the certain mixed angle leads to a good result. However, there may
be some intrinsic limitations on this mixed angle, which is a interesting subject.

5. The internal structure of exotic hadrons is interesting. In our QCD sum rule analy-
sis, we find that the diquark-antidiquark ((¢q)(Gg)) construction and meson-meson
((q9)(@q)) construction are equivalent by using the Fierz transformation. However,
they can be different, and be studied by using other theories.

To end this thesis, we would like to note that we still have many things to study about -
exotic hadrons. It is important and interesting to study these exotic objects in order to
know the non-perturbative nature of QCD for hadron physics.



Appendix A

Calculation of OPE Using
Mathematica

A.1 Calculation of OPE Using Mathematica

In this appendix, we introduce the calculation of operator product expansion (OPE) using
Mathematica. First we need to install Mathematica and a Mathematica package named
FeynCalc. It can be downloaded at http://www.feyncalc.org.

Take the current P; as an example

N = (5aY5Ua) (BoY5ds) - (A1)
What we want to calculate is the correlation functions
(¢?) = i/d4xeiq”(0|T77(a:)77T(0)[0). (A.2)

Substituting Eq. (A.1) into Eq. (A.2), and contracting quark fields
(OTn(z)n'(0)[0) = Tr[iS*(—z)ysiSe” (z)ys] x Tr[iSL*(—2)ysiSy (z)7s]

—ThliS5* (—2) 118y (2)siS; (—2)15i8y ()], (AB)
where
Sz) = (OTl()2(0)0)
= it ot an Loma aom) - Tl + T 000
_ZZ;; iéjg’”‘l(q(;mﬂs;—?f@. (A.4)

Then we need to substitute the quark propagator Eq. (A.4) into Eq. (A.3). We divide it
into three parts:
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1. 6% part. Gluon part is emitted, and we only consider color matrix §%°. The lowest
term is the continuum term.

2. Two Ay part. We only consider gluon part in the two quark propagators. We only
need to consider color matrix A. The lowest condensate is (g°G?).

3. One Ay part. We consider gluon part in one quark propagator, and non-gluon part
in the other quark propagator. The lowest condensates are (ggoGq) and (g50G's).

A.1.1 6 Part

In quark propagator, a lot of terms have color structure %°. These parts can be computed
together and lead to the continuum contribution and condensates

Os = my(ga), Os = (ga)* , etc. (A-5)
We need some definitions:
i8%(a,b) = %x - %((M + 5:;22 (9.q0Gq) ,
iSS*(a,b) = %i’ - %<§S> + 5:;:;2 (g.50Gs) — i::;;; + MZQLS (38)%,
(CSC (0,0) = sz + oo i) — o o (g G,
iCSSC*'»(a, b) = %i + i—azb(gs) - %(9050&3) + i:::;; + ié‘;bgms (38)% .

Here iS™(a, b) represents iS2;(x), iSS* (a, b) represents iS’(z), and iCSSC*(a, b) repre-
sents

C x (i8%(z))" x C, (A6)

where C is the charge-conjugation operator. We can also define iS™(a,b) to represent
z’SZf’d(—:r). '
8% part can be written explicitly in Mathematica,
Quark Part =
Tr[iSS™ (a2, al)ysiSt(al, a2)ys] x Tr[iSS™ (62, b1)y5iSH(b1,2)y5] (A7)
—Tr[iSS™ (b2, al)v5iSt(al, a2)y5iSS™ (a2, b1)y5iS (b1, b2)7s] .

Use Mathematica to compute it, and sum color indices,

Sy "
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After using functions “DiracSimplify” and “Expand”, finally we obtain the results of §*
part. There are a lot of terms, and we only choose necessary ones that have a lower
dimension.

A.1.2 Two A Part
When writing propagators in the previous subsection, the gluon part is
3272 2

For computing two A part, the definition of A matrices is needed, and also some more
definitions:

a
167222 TW i

1 A
8.7, — (0" & + 2o™) =

G 5 5 X chZVe“”"ﬁ:rg. | (A.9)

3 + i )\Zb
1SG (a,b,ﬁ) = —WT’)’IQ’Y,{,

Here we have taken g.G7,,e*7Pz, out.

Then We write (0|Tn(z)n'(0)|0) with two A explicitly in Mathematica. Because every
two propagators together can contribute a two-gluon condensate (g>G?), every term in
the previous subsection is separated into six terms.

Gluon Part =

Tr[iSSG™ (a2, al, B1)v5iSG*(al, a2, B2)ys] x Tr[iSS™ (b2, b1)y5iSt (b1, b2)7s]
+Tr[iSSG™ (a2, al, B1)v5iST(al, a2)ys] x Tr[iSSG™ (b2, b1, B2)v5iST (b1, b2)7s]
Tr[iSSG™ (a2, al, B1)75iS* (al, a2, B2)ys] x Tr[iSS™ (b2, b1)vsiSGT (b1, b2)s]
Tr[iSS™ (a2, al, B1)7v5iSGT (al, a2, B2)ys] x Tr[iSSG~ (b2, b1)5iST (b1, b2)7s]
Tr[iSS™ (a2, al, B1)v5iSG™ (al, a2, B2)ys] x Tr[iSS™ (b2, b1)y5iSGT (b1, b2)7s]
Tr[iSS™ (a2, al, B1)y5iST(al, a2, B2)ys] x Tr[iSSG™ (b2, b1)y5iSGT (b1, b2)7s] -

We should add the parts which we have taken away (together two chZl,e“”"ﬁxU). It
is

n 1vlelpl m 2020232
ch e o To1 X Ge e g T2

plvl $2v2
2G2
%flénm(xmxm - gﬁwszz) ) (A.lO)

Here we have already used the condition n = m (6™™) when writing the Gluon Part.

Use Mathematica to compute (A.10)x(A.10), then use the function “Contract” to
reduce redundant indices, do summing in color space, use the functions “DiracSimplify”
and “Expand” to simplify them, finally we get the results of step 2. ‘
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A.1.3 One )\ Part

One gluon and a quark-antiquark pair can form a mixed condensate:

P
<gcq_UGQ> = (gcq_ao'uUTGbanjqw . (All)

In this part we need to change one quark propagator into ¢®gq°. For the other propa-
397 ’\g” g.G}, 2= (0" & + £0*). More definitions are
needed Pay attention that the definition in step 3 is inconsistent with step 2, so we need

to compute them separately,

,l: n

8G(a,0) = —Te5r o W sTase™ L,
, 1
iSQG*(a,b) = ~19—2—2—aa4g4<gcanq>

In these definitions, we have substituted the g.G}, part of iSG*(a,b) (which contributes
a gluon) into iSQG™(a, b) (which contributes a gg or 3s pair).

We write the (0]Tn(x)n'(0)|0) of one A part explicitly in Mathematica. Every term
in the previous subsection is separated into two parts again (so twenty four terms in all):

Quark-Gluon Part =

Tr[iSSQG (a2, al)ysiSG(al, a2)~ys] x Tr[iSS™ (b2, b1)75iST (b1, b2)7s]
+Tr[iSSG ™ (a2, a1)v5iSQG*(al, a2)ys] x Tr[iSS™ (b2, b1)~5iST (b1, b2)s]
+ e

Use Mathematica to compute (A.12), use the function “Contract” to reduce redundant
indices, do summing in color space, use the functions “DiracSimplify” and “Expand” to
simplify them, finally we get the results of step 3.

A.2 Fourier Transformation and Borel Transforma-
tion

After step 1, 2 and 3, we can sum 3 parts together, and get the final (0|Tn(z)n*(0)|0).
To do the Fourier Transformation, we use the formulae:

1 —1x n7.‘.224—2np2*n—4

2 (n-1)l(n—2) In(—p*) Forn 2 2, (4-12)

This can also be done by Mathematica easily.



A.2. FOURIER TRANSFORMATION AND BOREL TRANSFORMATION

Important Borel transforms include:

22 1 —a/M?
)ﬁ] = (-1)?(M) ﬁme e,

1
B[(pz)mln( p2)] - m](M2)m+1 :
B[(p*)"] =0,m a non—negatlve 1nteger

BIf(s%)] = / dstm (s
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Appendix B

Fierz Transformation

In this appendix, we list the Fierz transformations used in our calculation. Here we would
like to show only the change in the structure of Lorentz indices of direct products of two
Dirac matrices under the Fierz rearrangement. Therefore, in the following equations,
we do not include the minus sign which arises from the exchange of quark fields. The
formulae go for the three cases corresponding to the Dirac, Rarita-Schwinger and tensor
fields when applied to three-quark fields.

1. Products of two Dirac matrices without Lorentz indices:

1@ bbb b3 (e
Yu ® Y5 -1 -3 0 -11 Yo ® VY5
O @ o5 =3 0 —% 0 3 O ® o5 (B.1)
VuYs @ v* 1 -3 0 -3 -1 Vu¥s ® v*
o1 ab,ed i i 85 i1 V@1 ad,be
2. Products of two Dirac matrices with one Lorentz index:
1®*
el
Y5 & YuYs ‘
YuYs @ Vs _ (B.2)
v ® o
O @Y
VY5 ® T Ys

T Y5 ® ,VV’YS ab,cd
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1011 1 _iii i u
S A TR A P I AR N
1 1 ~1 1 i _i i o1 n
A T O A L I P T N
1 i1 iz

4 4 4 4 1 1 T4 4 Vs @ VuVs
1 1 1 1 1 1 i _: ®

4 4. 4. 4_ 4 4 1 1 YuYs & Vs
st Za o Za o la L1 Z1 i1 ' o

L 2 Y Y 1 1 i 1 Y v
Caowt & & 1 1 1% T T @

L 01y wt 4 17% 1 4 it

1 i 7 % vV
% Ti o1, Gt [id T§ 7% VY Q TwYs
& s fwomt o1t 1 1t O @ A
4 4 L 4 4 4 1 "1 w5 OV Y5/ pape

3. Products of two Dirac matrices with two anti-symmetric Lorentz indices:

( 1 ® OuwYs
Vs ® Oy
T @ Vs
OuwYs @1 : :
€y poOpl X 041 = (B3)
Tu @ W5 — (1 < v)
VY5 ® Y — (1 v)
\ €uvpcp ® Yo

€uvpeYp Vs ® YoYs ab,cd
11 1 1L 1 i _i 1 _1 1®0
(1 1 % f f &, v, e
1 1 1 1 1 V5 O O
S GRS SR G S S S O @
S S S B DL B PRI B N It
i 1 i 71 Tid Ti 711 TYs @1
1 ‘ ]_ ——1 —1 0 0 0 0 O €uvpa O pl ® 051
—£ i i -io0o 0 0 i i Tu ® Wy — (1 v)
P i3, 0 0 0 5 b s -(kow)
2, 722, 720 -3 =500 Cuvpo Vo @ Vo
\_5 z -5 3 0 —% —% 0 0 EvpaYp Vs & Vo V5 ad,be
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