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Abstract 
We study the baryon and tetraquark currents systematically in the flavor, color and 
Lorentz spaces. The tetraquark currents are also studied in both the diquark-antidiquark 
(qq)(qq) construction and meson-meson (qq)(qq) construction, which are proved to be 
equivalent. By using these currents, we perform the QCD sum rule analyses, and study 
light scalar mesons (0"(600), ,.,;(800), ao(980) and 10(980)) with quantum numbers J Pc = 
0++, Y(2175) with J Pc = 1--, 1fl(1400), 1fl(1600) and 1fl(2000) with JGJPc = 1-1-+. 
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Preface 

The theory of the strong interactions, Quantum Chromodynamics (QCD), originated 
from the systematics of hadron spectroscopy. The spectroscopy contains meson and 
baryon states, many of which are well classified by the quark model with quark contents . 
qij and qqq. Besides the quark model, QCD allows much richer hadron spectrum such 
as multiquark states, hadron molecules, hybrid states, and glueballs etc. However the 
spectrum of QCD seem to saturate at qij and qqq. Therefore, we call these spectrum 
beyond qij and qqq exotic hadrons ( exotica) . 

Exotica have been studied more than thirties years. R. L. Jaffe wrote two famous 
papers about scalar tetraquark states in 1976 [93,94], whose structure is still not clear 
yet. In 2003, the pentaquark 8+ was observed in several experiments, but then several 
experiments denied its existence. After five years of intense study, the status of 8+ is 
still controversial [137]. There are many other exotic candidates, such as 7[1(1400) [10], 
DsJ(2317) [18], X(3872) [45], and Y(4260) [19], etc. Their properties are difficult to be 
explained by the conventional picture of qij and qqq. 

In order to study these exotica, lots of methods have been used. Although we have 
known a lot about QCD, but still there are many important and essential dynamical 
aspects that we need to clarify. As a doctor student in RCNP, Osaka University, I spent 
my latest three years on the study of QCD. I hope I contributed, although the time is 
not long, and my contribution is rather restricted. Now I am trying to graduate and 
changing my career in the research, and I am required to write this doctor thesis. 

The method we used in this thesis is the QCD sum rule, which has proven to be 
a powerful and successful non-perturbative method for the past decades [155,160]. An 
introduce of QCD sum rule is written in Chapter 1, which contains the SVZ sum rule, 
and the finite energy sum rule. 

This thesis is separated into two parts. In the first part, we classify the interpolating 
fields (currents) for hadrons in QCD, which are used in the QCD sum rule analysis in the 
second part. QCD currents can contain quark fields, antiquark fields and gluon fields. 
The quark and antiquark fields are Dirac spinors, and so currents can also be spinors, 
such as baryon current 
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2 CHAPTER o. PREFACE 

Currents can also be scalars other than matrices, such as the meson current 

The notations and conventions we used are written in Chapter 1, where we construct 
meson currents (qq), diquark currents (qq) and antidiquark currents (qq). In Chapters 2 
and 3, we construct baryon currents and tetraquark currents, respectively. Chapter 4 is 
the discussion of color structure of multiquark currents. 

After classifying current in the first part, we can start to perform the QCD sum rule 
analysis, which is the second part of this thesis. We have three important criteria: 

1. Convergence of Operator Product Expansion (OPE), 

2. Positivity of spectral density, 

3. Sufficient amount of pole contribution. 

We take udss currents as an example and show our QCD sum rule analysis in Chapter 5. 
This procedure will be used in the following chapters: in Chapter 6, we study light scalar 
mesons; in Chapter 7, we study Y(2175) as a tetraquark states; in Chapter 8, we study 
1fl(1400), 1fl(1600) and 1fl(2015). In Chapter 9, the QCD sum rule is used to study the 
bottom baryons which contain heavy quarks. 

Above I just gave a short introduction to my thesis. In my three years' research, I 
learned much and had a great deal of fun. I hope the readers would enjoy my thesis. 



Notations and Conventions 

Notations and conventions used in this thesis mostly follow the book "An Introduction to 
Quantum Field Theory" written by M. E. Peskin and D. V. Schroeder (Addison-Wesley 
Publishing Company, 1997) [152]. 

Quark field q~(x) is a Dirac spinor at location x, and contains a flavor index A and a 
color index a. For antiquark field, we use q~(x). By using the following 'Y-matrices: 

( 1 0) (0 O"i) (0 1) 
'Yo = 0 -1 ,'Yi = -O"i 0 ,'Y5 = 1 0 ' 

where 

( 0 1) (0 -i) (1 0) 
0"1 = 1 0 ,0"2 = i 0 ,0"3 = 0 1 ' 

we can write the quark field as a combination of left- and right-handed fields: 

where 

1 - 'Y5 1 + 'Y5 
qL = -2-q ,qR = -2-q · 

For gluon field, we use G~v, which has a color index n. The covariant derivative is 

where we take the fix-point gauge 
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4 CHAPTERO. PREFACE 

The coupling constant gs defined here is different from Peskin's book, where D = 8-igsA. 
But it is used in some other QCD sum rule studies [85,177]. 

We work under the metric tensor: 

9 
_gflV_ 

flV - -

(

1000) o -1 0 0 
o 0 -1 0 
o 0 0 -1 

with Greek indices running over 0, 1, 2, 3. 
We use SABC ... to represent a totally symmetric matrix, and EABC ... to represent a 

totally antisymmetric matrix. Especially, we use EflVPtJ in the four-dimension: 

E0123 = -1. 

In order to describe the color structure of QCD, SU(3)c, we use the eight .Gell-Mann 
matrices: 

0 1 D ,A2~ 0 -'/, ~ ) ,A3 ~ ( ~ A1 = 0 0 
0 o 0 0 

n 0 D CO-i) 0 A4 = 0 ,A5 = o 0 0 ,A6 = 
0 i 0 0 

A7~ 0 00) leO 0) o -i , As = J3 0 1 0 
i 0 3 0 0 -2 

They are traceless, Hermitian, and their normalizations are 

Tr(AiAi) = 2oij . 

The three discrete symmetries of QCD are 

1. Parity (P): 

Pq(t, x)P = AOq(t, -x) ; 

2. Time Reversal (T): 

3. Charge Conjugation (C): 

Cq(t, x)C = -Cq(t, x), 

0 n -1 
0 

0 n 0 
1 

where the charge-conjugation operator C is defined to be C = i"?"·l. 



Chapter 1 

Introduction 

1.1 QeD Lagrangian 

Quantum Chromodynamics (QCD), the theory of strong interactions among quarks and 
gluons, is a quantum field theory of a special kind called non-Abelian gauge theory. The 
gauge invariant QCD Lagrangian is: 

oT..(irvJ.L(D ) .. - m5 .. )01 .. - ~Ga GJ.LV 
'f/t I J.L ~J ~J 'f/J 4 J.LV a . (1.1) 

oT.. (,;rvJ.L8 _ m) 01,. _ gAaoT..rvJ.LTaol,. _ ~Ga GJ.LV 
'f/~ 0 I J.L 'f/~ J.L 'f/~ I ij 'f/ J 4 J.LV a , 

where 7/Ji(X) (i = 1,2,3) is the quark field, the fundamental representation of the SU(3) 
gauge group; A~ are the gluon fields, the adjoint representation of the SU(3) gauge group; 
IJ.L are the Dirac matrices, connecting the spinor representation to the vector represen­
tation of the Lorentz group; and ~j (a = 1,2" .. ,8) are the generators, connecting the 
fundamental, anti-fundamental and adjoint representations of the SU(3) gauge group. 
The Gell-Mann matrices )..ij provide one such representation for the generators: 

)..a. 
Ta. = ~ 

~J 2 

We emphasize here that the covariant derivative in this thesis is defined to be 

(DJ.L)ij = 8J.Ldij + igA~~j . 

(1.2) 

(1.3) 

Although we know QCD Lagrangian very clearly, its non-Abelian nature prevents us 
to solve it accurately. There are many different kinds of theories, such as Lattice QCD, 
liN expansion and many effective theories. QCD sum rule is one of them. The QCD 
sum rule has proven to be a very powerful and successful non-perturbative method for the 
past decades [155,160]. The idea is to work with gauge invariant operators and operator 
product expansions of them. 
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6 CHAPTER 1. INTRODUCTION 

1.2 Two-point Correlation Function 

In both the Lattice QCD and the QCD sum rule we need to study the two-point corre­
lation function: 

II(x) = (nIT4>(x)4>(O)ln) , (1.4) 

where In) denotes the ground state, and T is the time-ordering operator. Correlation 
functions contain information about the distribution of points or events, or things across 
some spacetime. It is used in in astronomy, financial analysis, quantum field theory and 
statistical mechanics, etc. In the quantum field theory the two-point correlation function 
can be interpreted as the amplitude for the particle propagation or particle excitation. 

In lattice QCD spacetime is represented not as continuous but as a crystalline lattice, 
vertices connected by lines. Therefore, we use following correlation function: 

II(L) = (nIT4>(L)4>(O) In) , (1.5) 

whereL is not discrete rather than continuous, and we work in the region L -7 Large. 
While in the QCD sum rule we use the dispersion relation: 

2 (q2)N 100 ImII(s) N-l 2 n 
II (q ) = - ds N ( 2· ) + L (q ) an, 

7f 0 S S - q - 'lE n=O 
(1.6) 

which is derived from the integration shown in Fig. 1.1. Here we need to work in the 
region _Q2 -7 00. In this region, we can use a method called operator product expansion 
to calculate the two-point correlation function. 

1.3 OPE 

The method of operator product expansion is useful not only in QCD, but also in the more 
general quantum field theory. Its basic idea is to replace a product of several operators 
with a single effective vertex, which was first studied by Kenneth G. Wilson [176]. 

First we assume that there are two operators Ol(X) and O2 (0), with a small distance 
x. As an example, we choose 

(1.7) 

whose product is just the weak interaction vertex. By studying this product, we can 
study the renormalization of the weak interaction in QCD. 

In order to study this product, we define the following Green's function: 

(1.8) 
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Figure 1.1: Contour of integration involved in the QCD sum rule. 

where 'TJi(Yi) are the fields located much farther away, and so irrelevant with the calculation 
of the product of 0 1 and O2 . We assume x ----+ 0, and so the effect of this product can be 
described as the effect of a local operator placed at O. It is natural to assume that there 
is a standard basis of operators, and so the local operator coming from the product is 
just a linear combination of these basic operators: 

(1.9) 
n 

where 0 12 (x) are the coefficients depending on the small distance x. The Green function 
G(x; Yl,· .. ,Ym) can be then expanded: 

(1.10) 
n 

To calculate the product of 01(X) and O2 (0), we need to calculate the QeD corrections 
to the strength of the non-Ieptonic weak interaction vertex. We just show the final result 
here: 

[010 2l1M (1.11) 

,Jl + a11 ,Jol + a12,Ji , 
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where the subscript 0 is used to denote that the operator is located at location 0, and M 
is the renormalization scale (in this case it is of order mi,l}). The operator :102 is another 
local operator used in the weak interaction vertex: 

(1.12) 

where 

(1.13) 

Two coefficients all and a12 are counterterms, which depend on the renormalization scale 
M: 

12 g2 r(2 - d/2) 
a = +3 167f2 (M2)2-d/2 . 

(1.14) 

We can also study the operator product :12: 

[030 4 ] 1M (1.15) 

:1~ + a21 :1l + a22 :102 , 

where 

(1.16) 

So we can obtain the Callan-Symanzik equation, and now the matrix "( linking two 
operators :11 and :12 is 

The eigen-operators are: 

with the eigenvalues: 

EJ g2 (-2 6 ) 
"( = 1\II EJM[-a] = 167f2 6 -2 . 

g2 
"(3 = +4--

2
. 

'2 167f 

(1.17) 

(1.18) 

(1.19) 

The first eigen-operator has isospin 1/2, and the second one has isospin 3/2. Indeed 
these two eigen-operators have also been differentiated in the experiments, and we have 
the OZI rule that the first process is much faster that the second one [87,147,188]. 
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1.4 QeD sum rule 

In QeD sum rule, we use the method of operator product expansion, and now the local 
operators are unit operator I and those constructed from quark and gluon fields, for 
example: 

Ga GIlV ... 
IlV a' (l.20) 

These operators have non-zero vacuum expectation values due to non-perturbative QeD 
effects. In the asymptotically free limit, this expansion can be calculated by using the 
perturbative method. Then we can relate this to the quantities of QeD at the low energy 
side by using dispersion relations. At the low energy region, the degrees of freedom are 
hadrons other than quarks and gluons. By relating them, we can obtain their masses and 
decay widths. 

In QeD sum rule, first we consider two-point correlation functions: 

(l.21) 

where TJ is an interpolating current, which is written as a combination of quark fields 
and gluon fields. We can calculate it at the quark-gluon level up to certain order in the 
expansion, by using the method of perturbative QeD with non-zero quark and gluon 
condensates, such as (qq) and (g2GG), etc. The obtained OPE can be matched with a 
hadronic parametrization at the hadronic level to extract information of hadron proper-

. ties. At the hadron level, we express the correlation function in the form of the dispersion 
relation with a spectral function: 

II( ) = 1= p(s) d p 2 . s, 
o s - p -?'c 

(l.22) 

where 

n 

f~5(s - M~) + higher states. (l.23) 

By assuming that these exists a kinematic region where these two aspects both works, 
we can evaluate many physical observables, such as masses, coupling constants, etc. For 
the second equation, as usual, we adopt a parametrization of one pole dominance for the 
ground state X and a continuum contribution. The sum rule analysis is then performed 
after the Borel transformation of the two expressions of the correlation function, (l.21) 
and (l.22) 

(l.24) 
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Assuming that the contribution from the continuum states can be approximated well by 
the spectral density of OPE above a threshold value So (duality), we arrive at the sum 
rule equation 

II(M~) - lJce-M1!M1 = l s0 
e-s/M1 p(s)ds. (1.25) 

The use of the OPE expression for the continuum part (s > so) of the spectral density 
p( s) which is the basic assumption of the duality greatly simplifies the actual sum rule 
analyses. Although ambiguities coming from the uncertainties in the continuum contri­
bution exist [127], we shall rely on that assumption as in most of the previous studies. 

Differentiating Eq. (1.25) with respect to ~2 and dividing it by Eq. (1.25), finally we 
B 

obtain 
2 J;O e-s/M1 sp(s)ds 

Mx = 2 (1.26) J;o e-s/MBp(s)ds 

Another sum rule which is widely used is the so-called finite energy sum rule (FESR). 
In order to calculate the mass in the FESR, we first define the nth moment by using the 
spectral function p(s) in Eq. (1.23) 

to 
W(n, so) = io p(s)snds. (1.27) 

This integral is used for the phenomenological side, while the integral along the circular 
contour of radius So on the q2 complex plain should be performed for the theoretical side. 

With the assumption of quark-hadron duality, we obtain 

··W(n,so)1 =W(n,so)1 . 
Hadron OPE 

(1.28) 

The mass of the ground state can be obtained as 

M 2( )_W(n+1,so) 
y n,so - W( ). n, So 

(1.29) 

Here we just briefly introduced the basic concept of the QCD sum rule. While a 
detailed example is given in Chapter 5. 

During the studies of multiquark system, we found that the most complicated part is 
the construction of interpolating current T}, which is written as a combination of quark 
fields and gluon fields, and can couple to the physical states. It has almost all the 
properties that the physical states have, such as the flavor structure, color structure, and 
quantum numbers J, P and C, etc. Therefore, to begin the discussion, we first study the 
basic currents: 

1. meson current, which contains one quark field and one antiquark field, 
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2. diquark current, which contains two quark fields. 

We will just study the local fields which do not contain derivatives, while those containing 
derivatives couple to excited states, which are beyond our studies. The properties of the 
currents corresponding to these objects can be easily obtained, and so we will just show 
the results. In the following chapters, we will use these simple objects to construct 
currents for the baryon and tetraquark which are more complicated. 

1.5 Meson 

In this section, we study interpolating fields which contain one quark and one antiquark. 
They couple to meson states, such as Jr, p, etc. Due to the confinement nature of QeD, 
there is only one choice for its color structure: 

The flavor can be either octet (ilA>.IJ.BqB) or singlet (iJAqA). In the following, we will just 
keep iJAqB, then the flavor octet and singlet can be constructed by adding >'IJ.B and 6AB, 
respectively. The Lorentz structure can be differentiated by using 'Y-matrices, and we 
can construct five different interpolating fields: 

1. Scalar: 

S = ifA(x)qB(x) . (1.30) 

It has quantum numbers JP = 0+. 

2. Vector: 

(1.31) 

It has spin J = 1 and parity P = (-l)Jl, where (-l)Jl = 1 for f-l = 0, and (-l)Jl = -1 
for f-l = 1,2,3. For simplicity, we write it as JP = 1-. 

3. Tensor: 

(1.32) 

It has quantum numbers JP = 1 ±, and can be separated into two parts: TOi and 
Iij. TOi has quantum numbers JP = 1- and Iij has quantum numbers JP = 1+. 

4. Axial-Vector: 

AJl = ifA(XhJl'Y5qB(X) . (1.33) 

It has quantum numbers JP = 1+. 
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5. Pseudoscalar: 

(1.34) 

It has quantum numbers JP = 0-. 

Besides the tensor current listed above, there is another one: 

(1.35) 

By using the equation 

It can be related to TfJ,v. And so, it just has an opposite parity. T6i has quantum numbers 
JP = 1+ and Tfj has quantum numbers JP = 1-. 

1.6 Diquark an,d Antidiquark 

The diquark and antidiquark can not be combined to be color singlet, and so they do 
not exist by themselves. But it is still useful to study them in order to study baryon 
and tetraquark currents, which can be constructed by these basic fields together with 
quark fields and antiquark fields. In this section, we just study diquark currents, and 
antidiquark currents can be studied similarly. 

The diquark field contains two quark spinors, and its color can be either 3e (Eabcqb qC) 
or 6e (S~bqaqb). The flavor can also be either 3r (EABCqBqC) or 6r (stlqAqB) , where 
EABC is the totally antisymmetric matrix, and stl is the totally symmetric matrix with 
N = 1, ... ,6. Together with !,-matrices and the charge-conjugation operator C, we can 
construct the diquark currents: 

1. Scalar: 

Eabcqb]'(X)C!'5qB(X) , 
qf(X)C!'5q~(X) + qb]'(X)C!'5qB(X). 

(1.36) 

The first one S3 has color 3e . It has antisymmetric color structure, antisymmetric 
spin structure and symmetric orbital structure, and so it should have antisymmetric 
flavor 3r due to the Pauli principle. The second one S6 has color 6e and so flavor 
6r. They both have quantum numbers JP = 0+. The spin can be studied more 
carefully: 

S=O,L=O,J=O, 

which can be written as ISO. 
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2. Vector: 

Eabcq'f(x)c"'/fl-"'/5qB(X) , 

qf(X)C"'/fl-"'/5q~(X) + q'f(X)C"'/fl-"'/5q'B(X) . 
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(1.37) 

The first one V; has color 3c and flavor 3r; the second one V; has color 6c and 
flavor 6r. They both have quantum numbers JP = 1- e Pr). 

3. Tensor: 

Eabcq'f(X)CO"fl-vqB(X) , 

q~T(X)CO"fl-vq~(x) + q'f(x)CO"fl-vqB(x). 

(1.38) 

The first one T~v has color 3c and flavor 6r; the second one T~v has color 6c and 
flavor 3r. They bothhave quantum numbers JP = 1±. T5i and T8i have quantum 
numbers JP = 1+ eSt), and Ti} and T;~ have quantum numbers JP = 1- eH). 

4. Axial-Vector: 

Eabcq'f(X)C"'/fl-qB(X) , 

qf(x)c"'/fl-q~(x) + q'f(x)C"'/fl-qB(x). 

(1.39) 

The first one A! has color 3c and flavor 6r; the second one A~ has color 6c and 
flavor 3r. They both have quantum numbers JP = 1+ eSt). 

5. Pseudoscalar: 

Eabcq'f (x )CqB(x) , 
q~T(X)Cq~(x) + q'f(x)Cq'B(x) . 

(1.40) 

The first one p 3 has color 3c and flavor 3r; the second one p6 has color 6c and 
flavor 6r. They both have quantum numbers JP = 0- e Po). 

Again, we emphasize here that there are two other tensor currents: 

Eabcq'f (x) CO" fl-v"'/5qB (x) , 

q~T(x)CO"fl-vq~(x) + q'f (x) CO"fl-v"'/5qB(X) . 

which can be related to tensor currents T~v and T~v, but have an opposite parity. 

(1.41) 

Altogether we have ten different kinds of diquark currents which are listed in Ta­
ble 1.1. By using these diquark currents and adding another quark spinor, we can con­
struct baryon currents; while by adding another antidiquark current, we can construct 
tetraquark currents. It is also interesting to study the diquark itself [97,153], which we 
will not discuss in this thesis. 
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Table 1.1: Diquark Properties of Single Currents. 

(qq) 83 V3 T6 A6 Ps 86 V6 T3 A3 P6 
Flavor (f) 3 3 3 3 3 6 6 6 6 6 
Color (c) 3 3 6 6 3 6 6 3 6 3 
Spin (8) 0 0 (0, 1) 1 1 0 0 (0, 1) 1 1 

Orbit angular momentum (L) 0 1 (1, 0) 0 1 0 1 (1, 0) 0 1 
Total Spin (J = 8 + L) 0 1 1 1 0 0 1 1 1 0 



Chapter 2 

Baryon Fields 

In this chapter, we perform a complete classification of baryon fields written as local 
products (without derivatives) of three quarks according to the chiral symmetry group 
SU(3)L 0 SU(3)R. The case of flavor SU(2) has been studied in the reference [136]. 
These baryon fields have been studied long time ago, and are used as interpolators for 
the study of two-point correlation functions in the QCD sum rule approach and in the 
lattice QCD [38,48,51,65,65,88,103,120,122,180]. Although the chiral structure of an 
interpolator does not directly reflect that of the physical state when chiral symmetry is 
spontaneously broken, the minimal configuration of three quarks provides at least a guide 
to the simplest expectations for baryons. 

We first establish a classification under the ordinary (vector) flavor SU(3) symme­
try, and then investigate the properties under the full chiral symmetry group SU(3)L ® 
SU(3)R. Here, we want to study chiral symmetry together with the flavor symmetry, the 
reason is that there are situations when it makes sense to consider algebraic aspects of 
chiral symmetry, i.e. the chiral multiplets of hadrons, as pointed out by Weinberg [173], 
and studied in many other references [79,103,118,119]. We can also use the chiral rep­
resentation as a theoretical probe for the internal structure of hadrons. For instance, for 
a qq spin-one meson, the possible chiral representations are (8,1) and (3,3) and their 
left-right conjugates for flavor octet mesons. As a matter of fact, for the multiquark 
hadrons, the allowed chiral representations can be more complicated/higher dimensional 
with increasing number of quarks and antiquarks. Hence the study of chiral representa­
tions may provide some hints to the structure of hadrons, extending possibly beyond the 
minimal constituent picture [27,28,55,77,101,102]. 

We first establish a classification under the ordinary (vector) flavor SU(3) symmetry, 
and then investigate the properties under the full chiral symmetry group. The method 
is based essentially on the tensor method for the SU(3) group representations, while the 
Fierz method for the Pauli principle associated with the structure in the color, flavor and 
Lorentz (spin) spaces is utilized when establishing the independent fields. It turns out 
that for local three-quark fields, the Pauli principle puts a constraint on the structure of 

15 
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the Lorentz and chiral representations. This leads essentially to the same permutation 
symmetry structures as in the case of flavor SU(2) symmetry, with the one important 
difference being the existence of flavor singlets in the present case: 

2.1 Flavor Symmetries of Three-Quark Baryon 
Fields 

Local fields for baryons consisting of three quarks can be generally written as 

(2.1) 

where a, b, c denote the color and A, B, C the flavor indices, C = i"(2'YO is the charge­
conjugation operator, qA(X) = (u(x), d(x), s(x)) is the flavor triplet quark field at 
location x, and the superscript T represents the transpose of the Dirac indices only (the 
flavor and color SU(3) indices are not transposed). The antisymmetric tensor in color 
space Eabc, ensures the baryons' being color singlets. For local fields, the space-time 
coordinate x does nothing with our studies, and we shall omit it. The matrices r 1,2 are 
Dirac matrices which describe the Lorentz structure. With a suitable choice of r 1,2 and 
taking a combination of indices of A, Band C, the baryon operators are defined so that 
they form an irreducible representation of the Lorentz and flavor groups, as we shall show 
in this section. 

We employ the tensor formalism for flavor SU(3) a la Okubo [78,129,145,146,158] 
for the quark field q, although the explicit expressions in terms of up, down and strange 
quarks are usually employed in lattice QCD and QCD sum rule studies. We shall see 
that the tensor formulation simplifies the classification of baryons into flavor multiplets 
and leads to a straightforward, but lengthy derivation of the Fierz identities and the 
chiral transformations of baryon operators. This is in contrast to the Nf = 2 case where 
we explicitly included isospin/flavour into the r 1,2 matrices and thus produced isospin 
invariant/covariant objects [136]. 

2.1.1 Flavor SU(3)J decomposition for baryons 

For the sake of notational completeness, we start with some definitions. The quarks of 
flavor SU(3) form either the contra-variant (3) or the covariant (3) fundamental repre­
sentations. They are distinguished by either upper or lower index as 

(2.2) 

(u*, d*, s*). 
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The two conjugate fundamental representations transform under flavor SU(3) transfor­
mations as 

q ~ 
(. X __ ) 

exp 'l,2"a q, (2.3) 

qt ~ qt exp( -i~a) , 
where aN (N = 1"",8) are the octet of SU(3)F group parameters and AN are the 
eight Gell-Mann matrices. Since the latter are Hermitian, we may replace the transposed 
matrices with the complex conjugate ones. The set of eight )..N = -(ANf = _(AN)* 
matrices form the generators of the irreducible 3 representation. 

Now for three quarks, we show flavor SU(3) irreducible decomposition 3 ® 3 ® 3 = 
1 EEl 8 EEl 8 EEl 10 explicitly in terms of three quarks. It can be done by making suitable 
permutation symmetry representations of three-quark products qAqBqC. 

1. The totally antisymmetric combination which forms the singlet, 

W[ABC] = N (qAqBqC + qBqcqA + qCqAqB - qBqAqC - qAqCqB - qCqBqA). (2.4) 

The normalization constant here is N = 1/ V6. In the quark model this corresponds 
to A(1405). In order to represent this totally antisymmetric combination, we can 
use the totally antisymmetric tensor EABC . Then the flavor singlet baryon field A 
can be written as: 

A _ABC (aTcr b) r c = E Eabc qA lqB 2qC' (2.5) 

2. The totally symmetric combination which forms the decuplet, 

W {ABC} = N (qAqBqC + qBqcqA + qCqAqB + qBqAqC + qAqCqB + qCqBqA). (2.6) 

The normalization constant depends on the set of quarks for baryons. For example, 
for qA,qB,qC = u,d,s, N = 1/V6, while it is 1/6 for qA,qB,qC = U,U,U. In 
order to represent this totally symmetric flavor structure, we introduce the totally 
symmetric tensor SftBC (P = 1," . ,10). Then the flavor decuplet baryon field .6-
can be written as: 

"p - SABC (aTcr b) r c (2.7) u = p Eabc qA 1 qB 2qc . 

The non-zero components of SftBC (= 1) are summarized in Table 2.1. The rest of 
components are just zero, for instance, Sp2 = O. 

3. The two mixed symmetry tensors of the p and A types are defined by 

W[A{B]C} 

W~A[B}C] 

N (2qAqBqC - qBqCqA - qCqAqB - 2qBqAqC + qAqCqB + qCqBqA) , 

N (2qAqBqC - qBqCqA - qCqAqB + 2qBqAqC - qAqCqB - qCqBqA) . 

(2.8) 
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Table 2.1: Non-Zero Components of Sj}BC(=I) 

P 1 2 3 4 5 6 7 8 9 10 
ABC 111 112 113 122 123 133 222 223 233 333 

Baryons ,0.++ ,0.+ ~*+ D.u ~*o ,;:;,*0 ,0. ~* ';:;'* n 

Here the two symbols in { } are first symmetrized and then the symbols in [ ] are 
anti-symmetrized. The normalization constant depends again on the number of 
different kinds of terms. The correspondence of the octet fields of (2.8) and the 
physical ones can be made first by taking the following combinations 

N~ 
Ntf 

ABD ( , N) ,T,P 
E A DC ':I! [A{B]C} , 

BCD ( , N) ,T,.x 
E A DA':I! {A[B}C] , 

(2.9) 

where N is an octet index N = 1,2", . ,8. This kind of "double index" (DC for 
N~ and DA for Ntf) notation for the baryon flavor has been used by Christos [47]. 
In our discussions, we shall use the following form for the flavor octet baryon field 

NN = EABD(,XN)DCEabc (qfCrlq~) r 2qc. (2.10) 

It is of the p type. But after using Fierz transformations to interchange the second 
and the third quarks, the transformed one contains ,\ type also, as we shall show 
in the following. The octet of physical baryon fields are then determined by 

N 1 ± iN2 
rv ~=f N 3 

rv ~o N 8 
rv A , , , (2.11) 

N 4 ± iN5 
rv :=;- ,p , N 6 ± iN7 rv :=;0, n , 

or put into the 3 x 3 baryon matrix 

~+ 
~o AS 

-V2+y'6 (2.12) 
SO 

2.1.2 Dirac fields 

In this section we investigate independent baryon fields for each Lorentz group represen­
tation which is formed by three quarks. The Clebsch-Gordan series for the irreducible 
decomposition of the direct p~oduct of three (~, 0) EB (O,~) representations of the Lorentz 
group (the three quark Dirac fields) is 

(2.13) 
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where we have ignored the different multiplicities of the representations on the right­
hand side. The three representations (a,O)EB(O,~)), ((1,~)EB(~,1)), ((~,O)EB(O,~)) 
describe the Dirac spinor field, the Rarita-Schwinger's vector-spinor field and the 
antisymmetric-tensor-spinor field, respectively. In order to establish independent fields 
we employ the Fierz transformations for the color, flavor, and Lorentz (spin) degrees of 
freedom, which is essentially equivalent to the Pauli principle for three quarks. 

The Flavor Singlet Baryon 

Let us start with writing down five baryon fields which contain a diquark formed by five 
sets of Dirac matrices, 1, 1'5, l' p" l' p, 1'5 and CT p,v, 

A _ABC ( aTe b) c 
1 - tabct qA qB 1'5qc , 

A - ABC( aTe b) c 
2 - tabc t qA 1'5qB qc, 

A - ABC( aTe b) p, c 3 - tabc t qA 1'p,1'5qB l' qc, (2.14) 
A ABC( aTe b) p, c 

4 = tabc t qA 1'P,qB l' 1'5qc, 

A ABC (aTe b ) c 5 = tabc t qA CT p,vqB CT p,v1'5qC . 

Among these five fields, we can show that the fourth and fifth ones vanish, A4,5 = O. 
This is due to the Pauli principle between the first two quarks, and can be verified, for 
instance, by taking the transpose of the diquark component and compare the resulting 
three-quark field with the original expressions [47]. The Pauli principle can also be used 
between the first and the third quarks, so we construct the primed fields where the second 
and the third quarks are interchanged, for instance, 

A' ABC(aTec) b 1 = tabct qA qc 1'5qB . 

N ow expressing Ai in terms of the Fierz transformed fields A~, we find the following 
relations (see Appendix B), 

A lA' lA' lA' 
1 = -1 ; - 1 7 - 1 ~' 

A2 = -::tAl - ::tA2 + ::tA3' 

A3 = -A~ + A; + ~A~. 
On the other hand, by changing the indices B, e and b, c, for instance, 

A' ACB( aTe b) c 
1 = tacbt qA qB 1'5qC 

ABC( aTe b) c = tabc t qA qB 1'5qc, 

we see that the primed fields are just the corresponding un primed ones, A~ = Ai. Con­
sequently, we obtain three homogeneous linear equations whose rank is just one, and we 
find the following solution 

(2.15) 

We see that there is only one non-vanishing independent field, which in the quark model 
corresponds to the odd-parity A(1405). 
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The Flavor Decuplet Baryons 

Among the five decuplet baryon fields formed by the five different l'-matrices, only two 
are non-zero: 

(2.16) 

Performing the Fierz transformation and with the relation Llf' = -Llf (EacbS:CB = 

-EabcS:BC), we find that there is only a trivial (null) solution to the homogeneous linear 
equations. Therefore, the Dirac baryon fields (fundamental representation of the Lorentz 
group) formed by three quarks can not survive the flavor decuplet. 

The Flavor Octet Baryon 

Let us start once again with five fields, which have three potentially non-zero ones 

N N ABD ,N ( aTc b) c 
1 = EabcE ADC qA qB 1'5qc, 

NoN ABD ,N (aTC b) c 
2 = EabcE ADC qA 1'5qB qc, 

Nf = Eabc EABD ),ljydqATCI'J1-1'5q~hJ1-qc, 
Nf = Eabc EABD ),ljydqATCI'J1-q~hJ1-1'5qC = 0, 
Nf = Eabc EABD )'ljyd qAT C()" J1-vq~)()" J1-vl'5qC = o. 

(2.17) 

These octet baryon fields have been studied in Refs [48,65,88]' where the independent 
ones are clarified. As before, we perform the Fierz rearrangement to obtain five equations 
with the primed fields, while Nt' and Nf' are not zero. For the first three equations, 
N 1,2,3 on the left hand side should be expressed by the primed fields. To this end, we can 
use the Jacobi identity 

(2.18) 

which can be used to relate the original fields Nt and primed ones Nt', for instance, 

(EABD ),}jc + EBCD )'}jA + ECAD ),}jB) (qATCq~h5qC = 0, 

from which we find 

and the same relations for Nt!3. There are no relations between Nf5 and Nf;. Altogether, 
we have five equations. The ~quations related to Nf and Nf are' also nec~ssary because 
the corresponding primed ones are not zero. They can be solved to obtain the following 
solutions: 

~Nf' = Nt! = Ni' - N: ,Nt" = -3(Ni' + N:) , (2.19) 
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which indicates that there are two independent octet fields, for instance, Nt' and Nt'. 
Thus we have shown the same result just as in the two-flavor case [136]. In the following 
sections we shall show that the difference between the two fields Nl and N2 lies in their 
chiral properties: Nt' - Nt' together with A belong to (3, 3) EB (3, 3), and the other 
Nt' + Nt' belongs to (8, 1) EB (1, 8). 

There are two ways to construct the octet baryon fields. One is done already as 
shown in Eqs. (2.17), whose flavor structure is the same as the p type baryon field N~ 
in Eqs. (2.9): 

3 ® 3 ® 3--7 (3 ® 3) ® 3 --7 3 ® 3 --7 8p . 

The other). type baryon field N£f is complicated when used straightforwardly: 

3 ® 3 ® 3 --7 (3 ® 3) ® 3 --7 6 ® 3 --7 8,\. 

Therefore, we use another way based on 

3 ® 3 ® 3 --7 3 ® (3 ® 3) --7 3 ® 3 --7 8~ . 

(2.20) 

(2.21) 

(2.22) 

This contains partly 8,\, and it is easily to verify that (2.20) and (2.22) compose a full 
description of octet baryon which is also fully described by using (2:20) and (2.21). The 
way 8p leads to octet fields NiN, and the other way 8~ leads to other five ones 

N-N - ACD,N ( aTe b) c 
1 - Eabc E /lDB qA qB "(5qC , 

n- N - ACD, N (aTe b) c 
2 - Eabc E /lDB qA "(5qB qc, 

N!! = EabcEACD ).lJyB( qAT e"(/1-"(5q~h/1-qc , (2.23) 

Nfl = EabcEACD ).lJyB(qATe"(/1-q~h/1-"(5qc, 
N-N - ACD,N (aTe b) c 

5 - Eabc E /I DB qA (J /1-vqB (J /1-v"(5qc . 

However, these fields can be related to the previous ones by changing the flavor and color 
indices B, e and b, c: 

NiN = -N[V' . (2.24) 

In nearly all the cases, the octet baryon fields from the second way can be related to the 
ones from the first way. Therefore, we shall omit the discussion of the second octet. 

2.1.3 Rarita-Schwinger fields 

In this section, we study the properties of Rarita-Schwinger fields, in the form of 

B/1-(x) rv Eabc(q~T(x)eflq~(X))r2qC(X) , 

where there are eight possible pairs of fl and f2' 

(fl' f 2) = (1, "(/1-), h5, "(/1-"(5), h/1-"(5, "(5), h V
"(5, (J/1-v"(5) , 

h/1-' 1), h V
, (J/1-V) , ((J/1-V, "(V), ((J/1-v"(5, "(v"(5)· 

The discussion is separated into singlet, decuplet and octet. 

(2.25) 
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The Flavor Singlet Baryon 

For flavor singlet fields, there are four apparently non-zero fields 

(2.26) 

As before, the Fierz transformed fields (primed fields) are just the corresponding unprimed 
ones, A~IL = Aiw By performing the Fierz transformation (see Appendix. B), we obtain 
four equations 

Thus we find the following solution 

(2.27) 

We see that there is only one non-vanishing independent field. However, it has a structure 
of IILAi . Therefore, they are all Dirac fields, and there is no flavor singlet fields of the 
Rarita-Schwinger type. 

The Flavor Decuplet Baryon 

For flavor decuplet fields, we have four potentially non-zero interpolators 

(2.28) 

As before, the Fierz transformed fields can be related to the corresponding unprimed 
ones, ,6.C = -,6.-I:. Similarly performing the Fierz transformation to relate ,6.~ and ,6.f,;, 
we obtain the solution 

(2.29) 

There are no Dirac decuplet fields. Therefore, we obtain one extra non-vanishing field. 
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The Flavor Octet Baryon 

To study the octet baryon fields, we start with eight baryon fields: 

(2.30) 

There are four zero fields, but the Fierz transformed ones are non-zero. By using the 
Jacobi identity in Eq. (2.18), we obtain 

Similarly performing the Fierz transformation to relate Nt: and Ni~/ we obtain the 
solution 

N N 'NN 'NN 'NN 
4p. = -'t Ip. + 't 2p. - 't 3p.' 

N NI INN INN INN 
5p. = - '2 Ip. + '2 2p. - '2 3p.' 

N NI - 'NN 'NN iNN 
6p. - -'t Ip. + 't 2p. + '2 3p.' 

N NI 'NN iNN 'NN 
7 p. = 't Ip. + '2 2p. + 't 3jl' 

NNI iNN 'NN 'NN 
8p. = '2 Ip. + 't 2p. - 't 3p.· 

Thus we have shown that there are three different kinds of octets. Nf: and N~ have 
a structure of ,,/p.N[l and ,,/p.Nf. Therefore, we only obtain one extra octet baryon field 
N~. 

2.1.4 Tensor Fields 

In this section, we study the baryons fields with two free antisymmetric Lorentz indices: 
Jp.v, if Jp.v = -Jvp., it can have spin 3/2. For the tensor fields, we can form nine three­
quark fields where the possible pairs of r 1 and r 2 are 

(r1, r 2 ) = bp., "/v"(5) - (/1 <---7 v), bp."/5, "/v) - (/1 <---7 v), 
tp.vpO'bP, ,,/0'), tp.vpO' b P"/5, ,,/0'''(5), (1, CY p.v"(5) , b5, CY p.v), 

(CYp.v, "(5), (CYp.v"/5, 1), tp.vw(CYpl' CYO'I)' 

The discussion is separated into singlet, decuplet and octet. 
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The Flavor Singlet Baryon 

The flavor singlet baryon fields have four potentially non-zero interpolators among nine 
fields: 

(2.31) 

As before, the Fierz transformed fields are just the corresponding unprimed ones, A~J.Lv = 

AiJ.Lv. Similarly performing the Fierz transformation to relate AiJ.Lv and A;J.Lv, we obtain 
the solution: 

The Fierz transformation is listed in the Appendix B. There is only one independent 
field. However, it has a structure of (J J.LvAi . Therefore, there are no extra fields. 

The Flavor Decuplet Baryon 

The flavor decuplet baryon fields have five potentially non-zero interpolators: 

(2.32) 

As before, the Fierz transformed fields can be related to the corresponding unprimed 
ones, fl.:f;:J.L = -fl.~w Similarly performing the Fierz transformation to relate fl.f;w and 
fl.:f;:v, we obtain two independent fields: fl.fJ.LV and fl.fJ.Lv: 

AP ·AP AP ·AP AP AP ·AP 2AP 
Ll.3J.Lv = -~Ll.1J.Lv , Ll.SJ.LV = ~Ll.1J.Lv + Ll.7J.Lv ,Ll.9J.Lv = -~Ll.1J.Lv - Ll.7J.Lv· 

The first one fl.fJ.Lv can be related to the Rarita-Schwinger baryon fields, but the second 
one fl.fJ.Lv can not. Therefore, we obtain one extra decuplet fields. 
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The Flavor Octet Baryon 

To study the octet baryon fields, we start with nine octet baryon fields 

(2.33) 

There are five zero fields, but the Fierz transformed ones are non-zero. By using the 
Jacobi identity in Eq. (2.18), we obtain 

Similarly performing the Fierz transformation to relate N::v and N[:~, we find that there 
are three independent fields N~v, N~v and N~v. Here are the relations: 

All these three fields can be related to the Rarita-Schwinger fields. Therefore, there are 
no extra octet fields. 

2.1.5 A short summary of independent baryon fields 

Here we shall make a short summary of independent baryon fields for all cases constructed 
from three quarks. For simplicity, here we suppress the antisymmetric tensor in color 
space Cabe, since it appears in all baryon fields in the same manner. Furthermore, it is 
convenient to introduce a "tilde-transposed" quark field if as follows 

(2.34) 

which differs from the two-flavor definition in Ref. [136] by the absence of the flavor 
(G-parity) matrix. 
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As we have shown already, for Dirac fields without Lorentz index, there are one singlet 
field A and two octet fields N[i and Nt': 

For the Rarita-Schwinger fields with one Lorentz index, we would consider one singlet, 
three octet and one decuplet fields: 

A ABC(-) IJL E qA'Y5qB 'YJLqc, 

N N ABD\N (- ) IJL E ADC qA'Y5qB 'YJLqc , 

N~ EABD A~cCqAqBhJL'Y5qC , 

N~ _E
ABD A~cCqA'YJLqBh5qC, 

t::.fJL -S:BC((fA'YJL'Y5qB)qC. 

However, we find that AIJL = 'YJL'Y5A, Nf'i. = 'YJL'Y5N[i and N~ = 'YJL'Y5Nt'. So, there are 
two non-vanishing independent fields: one octet field N{! and one decuplet field t::.w By 
using the projection operator: 

(2.35) 

they can be written as 

( 1 ) ABD N (- ) - 9JLv - 4'YJL'Yv E ADC qA'YJLqB 'Y5qC 

N 1 N N 
N3JL + 4'YJL'Y5(NI - N2 ) , 

( 1 ABC - ) - 9JLv - 4'YJL'Yv)Sp (QA'YJL'Y5QB Qc 

t::.fJL" 

For tensor fields with two antisymmetric Lorentz indices, we would have one singlet, 
three octet and two decuplet fields: 

AIJL 

N~v 
NfoJLv 

NiiJLV 

t::.fJLV 

t::.fJLV 

ABC(- ) 
E QA'Y5QB a-JLv'Y5QC, 

_EABD A~d(fA'YJLQBhvQc + (f-l +-t v) , 

EABD A~d(fA'Y5QB)a-JLv'Y5QC , 
ABD \N (- ) 

E ADC QAQB a-JLvQc , 

-S:BC((fA'YJL'Y5QBhv'Y5QC + (f-l +-t v), 

S:BC ((fAa-JLv'Y5QB h5QC . 
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But in this case, we can show that there is only one non-vanishing field llJ.Lv: 

where 

(2.36) 

2.2 Chiral Transformations 

In this section, we establish the chiral transformation properties of the baryon fields which 
we have obtained in the previous section. Technically, this leads to somewhat complicated 
algebraic results. However, the final result will be understood by making the left- and 
right-handed decomposition, which we shall perform in the next section. 

Let us start with the chiral transformation properties of quarks which are given by 
the following equations: 

U(l)y 
).0 

q -7 exp(i
2

ao)q = q + 5q, 

SU(3)y X -
q -7 exp ( i"2 . a) q = q + 5a q , (2.37) 

).0 
q -7 exp(i'Y52bo)q = q + 55q, 

where ).0 = .J2l3 1, X are the eight Gell-Mann matrices and 1 is a 3 x 3 unit matrix. 
Here aO is an infinitesimal parameter for the U(l)v transformation, athe octet of SU(3)v 
group parameters, bO an infinitesimal parameter for the U(1)A transformation, and b the 
octet of the chiral transformations. 

The U(l)v chiral transformation is trivial which picks up a phase factor proportional 
to the baryon number. The U(l)A chiral transformation is slightly less trivial, and the 
baryon fields are transformed as 
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(2.38) 

We note that the combinations of Nt' ± Nt: form different representations. 
To study the vector chiral transformation and axial-vector chiral transformation, we 

first show the following equation which define the d and j coefficients 

(2.39) 

Furthermore, the following formulae define the coefficients g3, g5 and g7, which are proved 
by using M athematica, a software good at matrix calculation: 

EADE AN AM _ gNMOEABD A 0 + gNMOEACD \ 0 + gNMPSABC + gNM ABC 
DB EC - 1 DC 2 "'DB 3 P 4 E , 

SABD AM _ gQMOEABD A O + gQMO EACD A O + gQMPSABC + gQMEABC 
Q DC - 5 DC 6 DB 7 P 8 , 

(2.40) 

where indices A rv E take values 1, 2 and 3, N, M and 0 1"",8, and P and Q 1"",10. 
The coefficients g3, g5 and g7 are listed in Table 2.2, where we use "0" instead of "10". 
Other coefficients can be related to d, j, g3, g5 and g7: 

_dMNO _ !:"jMNO 

3 ' 
dMNO _ !:"jMNO 

3 ' 
_~5MN 

3 ' 
(2.41) 

2 QMO 
- g5 , 

O. 

Let us explain Eqs. (2.40) a bit more. The quantities on the left hand side have three 
indices A, Band C, and therefore, they are regarded as direct products of three funda­
mental representations of SU(3): 3 ® 3 ® 3. They can be decomposed into irreducible 
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Table 2.2: g-Coefficients Defined by Eqs. (2.40) 
93 133, 138, 144, 146, 254, 256, 272, 279, 439, 463, 468, 573, 578, 612, 619, 636 1 3 

162, 169, 313, 318, 349, 366, 414, 416, 524, 526, 643, 648, 722, 29, 753, 758 1 3 
154, 179,215,233,246, 269, 3~8, 359, 376, 424, 455, 478, 516, 563, 62~, 658, 712, 743, 765 i 3 
125, 156, 172, 238, 244, 262, 323, 426, 473, 514, 539, 545, 568, 629, 653, 675, 719, 736, 748 i 3 

183, 686, 818, 835, 849 1/v'3 167, 251, 277, 411, 570, 640 1 342,364 2/3 
188, 385, 489, 813, 866 1/v'3 141, 460, 521, 617, 727, 750 1 432,634 2/3 

283, 288, 589, 876 -i/v'3 177, 421, 470, 511, 560, 627 -i 352,374 2i/3 
786, 823, 828, 859 i/v'3 151, 241, 267, 650, 717, 740 i 532,734 2i/3 

95 125, 141, 227, 261, 313, 346, 357, 414, 425, 614, 625 1/6 318, 668, 881, 984 1/2v'3 
663,716,727, 813, 846, 857, 927, 943, 961, 057, 064 381,686,818, 948 1/2v'3 
114,152,216,272,331,364,375,441,452,636,641 1/6 382,678,882,985 i/2v'3 
652,761,772, 831, 864, 875, 916, 934, 972, 046, 075 328, 687, 828, 958 i/2v'3 
115, 124, 217, 226, 332, 347, 365, 424, 451, 615, 642 i/6 234,436 1 3 
673, 726, 771, 823, 856, 874, 953, 962, 971, 065, 074 243,463 1 3 
14~, 1b1, ~b~, ~71, "~'" "bb, ,,74, 'l1b, 44~, 0~4, 007 '/0 ~b0, ,,7 , l~, bb", 5 7 i 
651,717,762,832,847,865,917,926,935,047,056 ~"b, ""7, b~ , b"", b70 il" 

583 1/v'3 538 1/v'3 

97 112, 143, 232, 245, 263, 315, 362, 448, 465, 619 1/3 214, 333, 346, 412, 513, 518 2/3 
636, 665, 714, 768, 815, 844, 916, 945, 046, 069 542, 549, 564, 566, 643, 869, 968 

434,939 1 3 838 2 3 
372, 675, 724, 825, 854, 926, 955, 056, 079 i 3 422, 5~3, 552, 574, 653, 978 2i 3 
122, 153, 255, 273, 325, 458, 475, 629, 778 ; 3 224, 356, 528, 559, 576, 879 2; 3 

131,211,341, 417, 640, 867, 960 1 181, 282, 484, 787 1/v'3 
737 1 686, 989 1/v'3 

221, 351, 877 i 080 2/v'3 
4~~, 05U, H7U , 

components by applying the four kinds of operators: EABC, EABD AlSc , EACD AlSB and SftBC , 
which correspond to 1, 8, 8 and 10 of SU(3), respectively. 

Under the vector chiral transformation, the fields A, Nf and Nt' are transformed as 

8(1 A EabcEABC (q'Jt Cq~h5( iAlJDaN qn) 

+ EabcEABC(qjtC(iAfwaNqt)h5qo 

+ EabcEABC ( ( qIT iA1J..D aN) C q~ h5 qo 

iaN EabcEABD A ~d q~T C q~ h5qo 

2 · N ACD \N ( aTc b) c 
'La Eabc E ADB qA qB "(5qC 

iaNNf - iaNNf 

0, (2.42) 
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and 

~i aN A + iaM (dNMO + ifNMO)NP 

~i aN A _ iaM (dMNO + ifMNO)NP 

-2aMfNMONo 1 , 
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(2.43) 

fl-N: Eabc EABD .\ljyc(q'f C'Y5q~)(i.\~EaM qE) 

+ EabcEABD .\ljyc(q'f C'Y5(i.\~EaM q~))qc 
+ EabcEABD .\ljyc((qfli.\~aM)C'Y5q~)qc 

iaM EabcEABD .\ljyE.\~c( q'f C'Y5q~)qC 
·M EAB\N\M(aTC b)c 

'La . EabcE /\DC/\ED qA 'Y5qB qc 
2i 
"3aN EabcEABC (q'f C'Y5q~)qC + iaM (dNMO + ifNMO) EabcEABD .\gc(q'fC'Y5q~)qC 

2i "3 aN EabcEABC (q'f C'Y5q~)qC - iaM (dMNO + ifMNO) EabcEABD .\gc(q(fC'Y5q~)qC 

_ ~i aN A + iaM (dNMO + ifNMO)N? 

+ ~i aN A _ iaM(dMNO + ifMNO)N? 

-2aM fNMO N? . (2.44) 

To study the vector chiral transformation of N{:, we first calculate the transformation 
of N~ 
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- 2i 
+ 2iaMgMNO NO + 0 - _aN A 

2 3J.L 3 3J.L 

-2aMfNMON~. 

Hence, the vector chiral transformation of N{! is 

- N N 1 N N 
5a NJ.L 5N3J.L + 45(N1J.L - N2J.L) 

-2aM fNMO NO _ !aM fNMO(NO _ NO) 
3J.L 2 IJ.L 2J.L 

-2aM fNMO N{! . 

The chiral transformation of ~~ is 

5a~~ EabcS:BC (q'f CrJ.Lq~)(i)..~EaMq~) 

+ Eabc S: BC (q~TCrJ.L(i)..9fEaM q~))qc 
+ EabcS:BC((qC;;Ti)..'1EaM)CrJ.Lq~)qc 

iaM EabcS: BE )..l£d qf CrJ.Lq~ )qc 

+ 2iaMEabcS:cE)..l£B(qfCrJ.Lq~)qc 
_2iaMgPMONO +iaMgPMQ~Q 

5 5J.L 7 5J.L 

+ 2iaMgPMO NO + 2iaMgPMQ ~ Q 
5 5J.L 7 5J.L 

3 · M PMQAQ 
W g7 uJ.L . 
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(2.45) 

(2.46) 

(2.47) 

To study the vector chiral transformation of ~~v' we first calculate the transformation 
of .6fJ.Lv 

(2.48) 

Therefore, the chiral transformation of ~~v is 
. . 

P 2 P 2 P 
5~7J.LV - 2rJ.Lr55~5V + 2rVr55~5J.L 

. . 
. M PMQ Q 2 P 2 P 

3w g7 (~7J.Lv - 2rJ.Lr5~5V + 2rVr5~5J.L) 
3 · M PMQAQ 

2a g7 uJ.Lv· (2.49) 



32 

as 

CHAPTER 2. BARYON FIELDS 

In summary, under the vector chiral transformation, the baryon fields are transformed 

5A 

5aNf 

5aN: 
5aN N 

J.L 

5a .6,.P 
J.L 

5a .6,.P 
J.LV 

0, 
-2aMfNMONO 1 , 

-2aMfNMONo 2 , 

_2aMf NMONN 
J.L ' 

3iaMgPMQ .6,. Q 
7 J.L' 

3 · M PMQAQ 
2a g7 L..:lJ.LV' 

(2.50) 

which show nothing but the isospin conservation with the coefficients on the right hand 
side reflect the isospin charge of the baryons. 

Then we go on to study the axial-vector chiral transformation of baryon fields. Under 
the axial-vector chiral transformation, the field A is transformed as 

5gA EabcEABC (qf C q~ h5 (i"(5 Af:D aN qD) 

+ EabcEABC (q':t C( h5A¥JDaN qt) h5qC 

+ EabcEABC (( q'ff hr AIJDaN)Cq~h5qc 
· N ABD \ N ( aTc b) c 2'Y5a EabcE "'DC qA qB 'Y5qC 
· N ACD \N (aTC b) c 2'Y5a EabcE "'DB qA 'Y5qB qc 
· N BCD \ N (aTC b) c + 2'Y5a EabcE "'DA qA 'Y5qB qo . . 
· NN 2 NN 2 NN 
2'Y5 a Nl - 2"'Y5 a N2 - 2"'Y5 a N2 

· NNN . NNN 
2"(5 a 1 - '/;'Y5 a 2· 

The transformation for Nf and N: are 

5bN N 
5 1 

Eabc EABD AlJyd q':r Cq~h5( i"(5A~EaM qE;) 

+ Eabc EABD AlJyd q':,t C( i"(5 Ar!EaM q~) h5qC 
ABD\N (( aT· T\M M)C b) c + Eabc E "'DC qE 2"15 "'AE a qB 'Y5qC 

. M' ABD \ N \ M ( aTc b) c 2'Y5 a EabcE "'DE"'EC qA qB 'Y5qC 

. M EAB \ N \ M (aTC b) c 2'Y5 a EabcE "'DC"'ED qA 'Y5qB qc 

(2.51) 

2· 
3

2 
"15 aN EabcEABC(qATCq~h5qc + h5aM (dNMO + ifNMO) Eabc EABD AgdqATCq~h5qC 

~i "15 aN EabcEABC(qATC'Y5q~)qc - h5aM (dMNO + ijIVINO)EabcEABD AgdqATC'Y5q~)qC 
2i . 
3"15 aN A + h5aM(dNMO + ifNMO)Nf 
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2i + 3 i5aN A - ii5aM (dMNO + ifMNO)N!} 

~i i5aN A + ii5aM(dNMO + ifNMO)NP - ir5aM(dMNO + ifMNO)N!} , (2.52) 

and 



34 CHAPTER 2. BARYON FIELDS 

+ 2irv aMgMNO iVP + 2irv aMgMNP!:1P - 0 ,5 . 2 5Jl ,5 3 5Jl 
2i 

-"3"/JlaN A + i"/5aM (dNMO + ifNMO + gt:NO)N~ 
i"/JlaMgt:NO(NP - Nf]) + 2h5aMg~NP!:1~. (2.54) 

Therefore, the chiral transformation of N{! is 

The chiral transformation of !:1~ is 

(2.56) 

To study the vector chiral transformation of !:1fJlv, we first calculate the transformation 
of !:1~v' Again we need to use the Eq. (2.40), and obtain: 
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2
· M PMoN-o . M PMQAQ 

- "''"'(5 a 95 7/1,v + "''"'(5 a 97 u7J1v 

2 · M PMoN-o 2· M PMQ AQ + "''"'(5 a 95 8J1v + "''"'(5 a 97 u8J1v 

2 M PMoNo . M PMo(No NO) 
'"'(5 a 95 2J1v - "''"'(5 a 95 5J1v - 6J1v 

3
· M PMQAQ 2 M PMQAQ + "''"'(5 a 97 u7J1v - '"'(5 a 97 ulJ1v 

2 M PMO( NO NO). M PMO (No NO) 
'"'(5 a 95 '"'(V '"'(5 3J1 - '"'(J1'"'(5 3v - "''"'(5 a 95 0' J1V 1 - 2 

3 · M PMQAQ 2 M PMQ( AQ AQ) + "''"'(5 a 97 u7J1v - '"'(5 a 97 '"'(v'"'(5 U J1 - '"'(J1'"'(5 u v . 

Therefore, the chiral transformation of ~~v is 
. . 

P '" P '" P 65~7J1v - 2'"'(J1'"'(565~5V + 2'"'(V'"'(565~5J1 
2 M PMO( NO NO). M PMO (No NO) 

'"'(5 a 95 '"'(V '"'(5 3J1 - '"'(J1'"'(5 3v - 'l'"'(5 a 95 O'J1V 1 - 2 

3 · M PMQAQ 2 M PMQ( AQ AQ) + "''"'(5 a 97 u7J1v - '"'(5 a 97 '"'(v'"'(5 U J1 - '"'( J1'"'(5 U v 

2"1 aM9PMO NO + 2"1 aM9PMO NO 
'J1 5 v fl/ 5 J1 

1 M PMQAQ 1 M PMQAQ + 2'"'(J1a 97 U v - 2 '"'(v a 97 uJ1 

3
· M PMQAQ 

"''"'(5 a 97 uJ1V . 

In summary, we show therefore the final result of the axial transformation 

6~(Nf + N~) 
6bN N 

5 J1 

l)~p 
5 J1 

6~~=v 

h5bN(Nf - N~), 

8i'V bN A + 2i'V bMdNMO(No _ NO) 3 ,5 ,5 1 2' 

-2'"'(5bM fNMO(Nf + Nf), 

h5bM (2d
MNO 

_ ~i fMNO)N~ + 2h5bM 9t:INP ~= ' 
-4i'V bM9PMO NO + i'V bM9PMQ ~Q 

,5 5 J1 ,5 7 J1 ' 

3h5bM 9f
MQ ~~V . 
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(2.57) 

(2.58) 

(2.59) 

So far, we have performed classifications without explicitly taking into account the left­
and right-handed components of the quark fields. However, it does not require great 
imagination to see that the chiral properties are also conveniently studied in that lan­
guage, since chiral symmetry is defined as the symmetries upon each chiral field. Hence, 
we define the left- and right-handed (chiral or Weyl representation) quark fields as 

1 - '"'(5 1 + '"'(5 
L - qL = -2-q , and R = qR = -2-q . (2.60) 
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They form the fundamental representations of both the Lorentz group and the chiral 
group, 

L: Lorentz: 
1 

(2,0) , Chiral : (3,1) , 

R: Lorentz: 
1 

(0, 2) , Chiral : (1,3) . 

It is convenient first to note that /,-matrices are classified into two categories; chiral-even 
and chiral-odd classes. The chiral-even /'-matrices survive forming diquarks with identical 
chiralities, while the chiral-odd ones form diquarks from quarks with opposite chiralities. 
The chiral-even and -odd /,-matrices are 

chiral-even: 

chiral-odd: 
1, /'5, 0" /-LV , 

Therefore, we have six non-vanishing diquarks in the chiral representations, 

LTCL = -LTC/'5 L } (0,0) EB (0,0) , (3, 1) E9 (I, 3), 
RTCR =+RTC/'5 R 

LTC/'/-L/'5R = +LTC/'/-LR } 1 1 1 1 
(3, 3) E9 (3, 3), 

RTC/'/-L/'5L = -RTC/'/-LL (2' 2) EB (2' 2)' 

LTCO"/-LVL } 
RTCO"/-LvR (1,0) EB (0,1) , (6, 1) E9 (I, 6), 

where we have indicated the Lorentz and chiral representations of the diquarks. 
For three quarks, we have 

(~,O) EB a,O), 
(0, ~) E9 (1,~) , 

(1,1) EB (8,1) E9 (8,1) E9 (10, 1) 
(3,3) E9 (6,3) 

(2.61) 

and together with the terms where Land R are exchanged. Now we discuss the indepen­
dent fields in terms of the chiral representations. 

2.3.1 Chiral properties of Dirac fields 

Independent fields of (LL)L 

The (LL)L must belong to one of the following chiral representations: (1,1) E9 (8,1) E9 
(8,1) EB (10,1). For each chiral representation, there is one flavor representation available. 

For (I, 1) ---+ If, there are apparently two non-zero fields 

ALl = EabcEABC(LaICL~h5Lc, 
AL2 = EabcEABC(LATC/'5L~)Lc, 
AL3 = EabcEABC(LATC/'/-L/'5L~h/-LLc = 0, 

(2.62) 
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where Af vanishes because "(p,"(5 is chiral-odd 

LT C"(p,"(5 L = o. (2.63) 

After performing the Fierz transformation to relate ALi and A~i as we have done before, 
and solving the coupled equations, we find the solution that all such fields vanish. 

For (10, 1) ---? lOr, we would have again two non-zero components: 

~f4 = EabcS-jBC (DfC"(p,L~hP,"(5Lc , 
~f5 = EabcS-jBC(LfC(Yp,vL~)(YP,v"(5Lc· (2.64) 

Performing the Fierz transformation to relate ~fi and ~fL we obtain the solution that 
all such (LL) L fields vanish. 

Finally for (8, 1) ---? 8r , we may consider once again two non-zero fields to start with 

N N - c c ABD \ N (LaTCLb)rv LC L1 - LabcL ADC A B ,5 C, 

N N - c c ABD \ N (LaTCrv Lb )LC L2 - LabcL ADC A ,5 B C· 
(2.65) 

Applying the Fierz transformation to relate Nt and Nt', we obtain the solution 

N~ = Nfr. (2.66) 

Therefore, there is only one independent (LL) L 8r field. 

Independent (LL)R fields 

The chiral representations of (LL)R are (3, 3) EEl (6, 3). We will study them separately 
in the following. 

For (3, 3) ---? 1r, there appears to exist two non-zero components among the five 
fields, 

(2.67) 

where M (mixed) indicates that the fields contain both left and right handed quarks. 
Performing the Fierz transformation to relate AMi and A~i' we obtain the following 
relations 

A~I4 = -A~3 = -2AM2 = 2AM1 . (2.68) 

We may consider other ten combinations formed by (LR) and (RL) diquarks, (LR)L and 
(RL)L. However, they can be related to the above ones of (LL)R by a rearrangement of 
indices as well as the Fierz transformation, for instance, 

(2.69) 
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Therefore, we have only one independent field. 
For the chiral representation (6, 3) -------7 lOr, we can write five fields containing diquarks 

formed by five Dirac matrices. However, we can show that after p~rforming the Fierz 
transformation all fields vanish. Therefore, this representation can not support three­
quark fields. 

The baryon fields of chiral representations (3, 3) -------7 8r can be formed 

N N ABD \ N (LaTeLb ) Re 
Ml = EabeE /lDC A B 1'5 C, 

N N ABD \N (LaTe Lb )Re 
M2 = EabeE /lDC A 1'5 B C, 

NfJ3 = EabeEABD),ljydLalel'p,I'5L~hP,Rc = 0, 
NfJ4 = Eabe EABD ),ljydLalel'p,L~hp,I'5Rc ~ 0, 
NfJ5 = Eabe EABD ),ljydL'f'e(Yp,1/L~)o-p,1/I'5Rc = 0, 

(2.70) 

where we see that there are two non-zero fields. Applying the Fierz transformation, we 
can verify that there is only one independent field with the following relations 

(2.71) 

Another chiral representation (6, 3) -------7 8r can be constructed by the combinations 
similar to (2.70), for instance, 

N~,3)1 = EabeEACD),~B{(V5teL~h5Rc + (UleL~h5Rc}· 
After similar algebra we can verify that all these fields vanish. 

2.3.2 Chiral properties of Rarita-Schwinger fields 

(2.72) 

As previously, we only need to study the properties of (LL)L, (LL)R, (LR)L and (RL)L. 
Others are similar. 

Chiral properties of (LL)L 

The chiral representations of (LL)L are (1, 1) EEl (8, 1) EEl (8, 1) EEl (10, 1). We will study 
them separately in the following. 

(1) The chiral representation (1, 1) has just two non-zero fields: 

AL1p, = EabeEABC(L'f'eL~hp,Lc, 
AL2p, = EabeEABC (L';rel'5L~hp,I'5Lc· 

(2.73) 

Similarly performing the Fierz transformation to relate ALip, and A~iP,' we obtain the 
solution that all such kind of fields vanish. 

(2) The chiral representation (10, 1) has two non-zero fields: 

A P sABC(LaTC Lb) 1/Le Ll.L7p, = Eabe P A (Yp,1/ B I' C, 
A P _ SABC(LaTC Lb) 1/ Le 

Ll. LSp, - Eabe P A (Y p,1/ 1'5 B I' 1'5 C· 
(2.74) 
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Similarly performing the Fierz transformation to relate b.fiJ-t and b.nJ-t' we obtain the 
solution that all such kind of fields vanish. 

(3) The chiral representation (8, 1) has two non-zero fields: 

N N - ABD ,N (LaTeLb) LC LIJ-t - EabcE /\DC A B 'YJ-t C, 

N N - ABD ,N (LaTe Lb) LC L2J-t - EabcE /\DC A "15 B 'YJ-t'Y5 C, 

Ni:JJ-t = EabcEABD YfydLfe'YJ-t'Y5L~h5LC = 0, 
N N - ABD ,N (LaTe v Lb) LC - 0 L4J-t - EabcE /\ DC A "I "15 B 0" J-tv'Y5 C - , 

N N - ACD ,N (LaTe Lb )LC - 0 L5J-t - EabcE /\DB A 'YJ-t B C - , 

N N - ACD ,N (LaTe vLb) LC - 0 L6J-t - EabcE /\DB A "I B 0" J-tV C - , 

N N ACD ,N (LaTe Lb ) vLc 0 L7J-t = EabcE /\DB A O"J-tV B "I C = , 
N N - ACD,N (LaTe Lb) v LC - 0 L8J-t - EabcE /\DB A 0"J-tv'Y5 B "I "15 C - . 

(2.75) 

Similarly performing the Fierz transformation to relate NfiJ-t and Nfi~, we obtain the 
solution 

NI NI 3i N 3i N 
NL7J-t = NL8J-t = "2NL2J-t = "2NLIJ-t' (2.76) 

Others are just zero. There is only one non-vanishing octet baryon field. 

Chiral properties of (LL)R, (LR)L and (RL)L 

The chiral representations of (LL)R, (LR)L and (RL)L are (3, 3) E9 (6, 3). We will 
study them separately in the following. 

(1) The chiral representation (3, 3) -t If has two non-zero components: 

(2.77) 

Similarly performing the Fierz transformation to relate AMiJ-t and A~iJ-t' we obtain the 
solution 

'A' A' 'A' A' 3i 3i () 32 M3J-t = M4J-t = -32 M5J-t = - M6J-t = "2AMIJ-t = -"2AM2J-t. 2.78 

Others are just zero. There is only one non-vanishing field. Others (LR)L and (RL)L 
can be related to this one. 
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(2) The chiral representation (6, 3) ----? lOf has two non-zero components: 

AP - SABC(LaTeLb ) RC - 0 uM1J.l - Eabc A B "YJ.l C - , 
A P _ SABC(LaTe Lb) RC - 0 uM2J.l - Eabc A "Y5 B "YJ.l"Y5 C - , 

~~3J.l = EabcSABC(L'fe"YJ.l"Y5L~h5Rc = 0, 
AP _ SABC(LaTe v L b ) RC - 0 uM4J.l - Eabc A "Y "Y5 B CT J.lv"Y5 C - , 
A P - SABC(LaTe Lb )RC - 0 

U M5J.l - Eabc A "Y J.l B C - , 
A P - SABC(LaTe VLb) RC - 0 UM6J.l - Eabc A "Y B CTJ.lv C - , 
AP SABC(LaTe Lb) vRc 

U M7 J.l = Eabc A CT J.lV B "Y C , 
A P SABC(LaTe Lb) v RC UM8J.l = Eabc A CT J.lv"Y5 B "Y "Y5 C· 

(2.79) 

Others are just zero. Similarly performing the Fierz transformation to relate ~~iJ.l and 
~f,;iJ.l' we obtain the solution 

(2.80) 

There is only one non-vanishing field. Others (LR)L and (RL)L can be related to this 
one. 

(3) The chiral representations (3,. 3) ----? 8f has only two non-zero interpolators: 

N N ABD \ N (LaTeLb) RC M1J.l = Eabc E ADC A B "Y J.l C, 
N N ABD \ N (LaTe L b ) RC 

M2J.l = Eabc E ADC A "Y5 B "YJ.l"Y5 C, 

N N - ABD\N (LaTe Lb) RC - 0 M3J.l - Eabc E ADC A "YJ.l"Y5 B "Y5 C - , 

N N - ABD\N (LaTe v Lb) RC - 0 M4J.l - Eabc E ADC A "Y "Y5 B CT J.lv"Y5 C - , 

N~5J.l = Eabc
EABD >.lJydLfe"YJ.lL~)Rc = 0, 

N N - ABD \N (LaTe vLb) RC - 0 M6J.l - EabcE ' A DC A "Y B CT J.lV C - , 

N N - ABD \N (LaTe Lb) vRc - 0 M7J.l - Eabc E ADC A CTJ.lv B "Y C - , 
N N - ABD \ N (LaTe Lb) v RC - 0 M8J.l - Eabc E A DC A CT J.lv"Y5 B "Y "Y5 C - . 

(2.81) 

Similarly performing the Fierz transformation to relate N~iJ.l and N~~J.l' we obtain the 
solution 

(2.82) 

In order to study the chiral representations (6, 3) ----? 8f, we need to consider the second 
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way (see the discussion in the section 2.1.2) which has four non-zero interpolators: 

N- N - ACD \ N (LaTeLb) RC MIJ.L - EabcE "'DB A B '"'IJ.L C, 

N-N - ACD\N (LaTe Lb) RC M2J.L - EabcE "'DB A '"'15 B '"'IJ.L'"'I5 C, 

N-N - ACD \N (LaTe Lb) RC - 0 M3J.L - EabcE "'DB A '"'IJ.L'"'I5 B '"'15 C - , 

N-N - ACD\N (LaTe v Lb) RC - 0 M4J.L - EabcE "'DB A '"'I '"'15 B (J J.Lv'"'l5 C - , 

NfJ5J.L = EabcEACD Y!JB(U;te'"'lJ.LL~)Rc = 0, 
N- N ACD \N (LaTe VLb ) RC 0 M6J.L = EabcE "'DB A '"'I B (J J.LV C = , 
N- N ACD \ N (LaTe Lb ) vRc M7J.L = EabcE "'DB A (J J.LV B '"'I c, 
N- N ACD \N (LaTe Lb ) v RC M8J.L = EabcE "'DB A (J J.Lv'"'I5 B '"'I '"'15 c· 

(2.83) 

By using the Jacobi identity in Eq. (2.18), we obtain: 

-N 1 N -N 1 N 
NMIJ.L = "2NMIJ.L' NM2J.L = "2NM2J.L· (2.84) 

Similarly performing the Fierz transformation to relate NfJiJ.L and NfJ~J.L' we obtain the 
solution 

All together there are two non-vanishing independent fields. Others (LR) Land (RL) L 
can be related to (LL) R. Chiral properties of the tensor fields can be also explored in 
completely the same manner explained here. Therefore, we do not show this case any 
more. 

2.3.3 A Short Summary for Chiral representations 

To summarize this section, we find that possible chiral representations for Dirac spinor 
baryon fields without Lorentz index are: 

A EabcEABC(L'feL~h5Rc + EabcEABC(R'feR~h5Lc 
AMI + (L ...... R), 

2EabcEABD >.IJyc(LfeL~h5Rc + 2EabcEABD >.IJyc(Rf eR~h5Lc 

(2.85) 

2NfJI + (L ...... R) , (2.86) 

2EabcEABD >.IJyc(L~TeL~h5Lc + 2EabcEABD >.IJyc(R~TeR~h5R'b 

2N~ + (L ...... R) . (2.87) 
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So we can see that the fields A and Nfl -Nt: has a type of LLRtfJRRL, and belong to the 
chiral representation (3,3) tfJ (3, 3); while the field Nfl + Nt: has a type of LLL tfJ RRR, 
and belongs to the chiral representation (8, 1) tfJ (1, 8). 

We summarize the results here: 

N{: 2EabcEABD )'~c(D:tC'"'I/1'"'15R~h5Lc + 2EabcEABD )'~c(RATC'"'I/1'"'15L~h5Rc 

+ 1 ABD ,N (LaTCLb) RC 1 ABD ,N (RaTCRb ) LC (2.88) "2 EabcE ADC A B '"'1/1 C + "2EabcE ADC A B '"'1/1 C, 

,0.~ 2EabcS:BC(LATC'"'I/1R~)Lc + 2EabcS:BC(RATC'"'I/1L~)Rc. (2.89) 

So we see that N{: and ,0.~ are of the type LLR tfJ RRL, and belong to the chiral 
representation (6,3) tfJ (3,6). The (similar) results for ,0.~v, which is of the type LLL tfJ 
RRR, and belongs to the chiral representation (10,1) tfJ (1,10), are omitted here. 

2.4 Axial coupling constants 

As a simple application of the present mathematical formalism, we can extract the (di­
agonal) axial coupling constants gA for these baryons. All information is contained in 
Eqs. (2.38) and (2.59), from which one can extract the Abelian U(l)A axial coupling con­
stant g~ and the non-Abelian SU(3)v x SU(3)A diagonal axial coupling constants, g~ and 
g~. The latter two can be extracted from the 8g3 and 8g8 subset of chiral transformations 
Eqs. (2.59), respectively. 

In general, the diagonal elements of the SU(3) gA'S can be decomposed into so-called 
F and D components, which are defined by the axial vector current A~ (a = 0, 1, ... 8) 

(2.90) 

where S)1 is the 3 x 3 baryon octet matrix, Eq. (2.12). Therefore, we have 

A! (g~ + g~) (p+p - n+n) (2.91) 

+ 2g~ ((~+)+~+ - (~-)+~-) 

+ (g~ - g~) ((SO)+so - (S-)+S-) , 

A~ (V3g~ - ~) (p+p + n+n) (2.92) 

+ ~ ((~+)+~+ + (~-)+~- ) 

+ (-V3g~ - ~)((SO)+SO+ (S-)+S-) - ~(A8)+A8, 



2.4. AXIAL COUPLING CONSTANTS 

where we omit the Lorentz indices. In other words, 

g~(N) 

g~(N) 
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(2.93) 

8 (A) rv _ 2g:1 
gA J3' 

for the octet parts. The operator I z is the third component of isospin, whereas the SU(3) 
singlet term g~ contains only the D term and is therefore trivial. 

For the decuplet baryons, the SU(3) coupling constants contain only one SU(3) irre­
ducible term because the SU(3) Clebsch-Gordan series for 1-0 ® 1008 contains only one 
singlet. In order to extract the coupling constants, we first rewrite Eqs. (2.38) and (2.59) 
in the following form, for all the singlet, octet and decuplet baryon fields: 

1. The Abelian g~ basically counts the difference between the numbers of left- and 
right-handed quarks in a baryon of definite/positive chirality (helicity). Several 
definitions of g~ can be found in the literature. No matter what convention we 
adopt, we must make sure that it is consistent with the definition of the SU(3) 
singlet vector current that counts the baryon-, or the quark number. So, either 
we normalize g~ to the baryon number, or to the quark number. Of course, the 
difference is just a multiplicative factor (3), but inconsistent definitions will lead to 
confusion later on when one constructs chi rally invariant interactions. At this time 
we shall adopt the latter (quark number) normalization. 

Because A~l = Ag2 = A~3 for g~, the chiral transformations 65 are identical for all 
baryon fields within the same chiral representation, so we may define g~ by 

6 B -' AOnbo ° B - h5bO ° B 
5 - 1,,5 2 gA - J6 gA , (2.94) 

where B represents the baryon field, such as A and Nt' - Nf etc. This convention 
is based on the quark number, implying that the SU(3) singlet vector charge of a 
nucleon is three (+3). 

2. For g~, because A{l = -A~2' the chiral transformation 6g3 is proportional to the 
isospin value of I z , which is factored out from the definition of g~ 

6~3 B = h5b3g~IzB + ... , (2.95) 

where the ellipsis· .. on the right-hand side denote the off-diagonal terms. 

3. For g~, because A~l = A~2' the chiral transformations 6g8 is the same for the baryon 
fields belonging to one isospin multiplet. We define it to be 

(2.96) 
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Table 2.3: Axial Coupling Constants g~, g~ and g~. In the last column ex = g1]./(glft + g1].). 

SU(3)L 0 SU(3)R SU(3)p g~ g~ g~ ex 

1 A -1 - - -

N_ -1 1 -1 
(3, 3) EB (3, 3) ~- -1 0 2 

8 ~- -1 -1 -1 1 
A_ -1 - -2 

N+ 3 1 3 
~+ 3 1 0 

(8, 1) EB (1, 8) 8 .::.+ 3 1 -3 0 

A+ 3 - 0 

NJ.L 1 5/3 1 
~J.L 1 2/3 2 

8 - 1 -1/3 -3 3/5 ~J.L 

AJ.L 1 - -2 
(3, 6) EB (6, 3) D..J.L 1 1/3 1 

~* 't.t 1 1/3 0 
10 ';:;'* 1 1/3 -1 -

~J1-

DJ.L 1 - -2 

D..J.Ll/ 3 1 3 
~:l/ 3 1 0 

(10, 1) EB (1, 10) 10 ';:;'* 3 1 -3 -
~t.tl/ 

DJ.Ll/ 3 - -6 

The resulting axial coupling constants g~, g~ and g~ are shown in Table 2.3, where 
A is the (only) singlet field A; then N _, ~_, ::L and A_ are the octet fields of the type 
Ni' - Nt'; the N+, ~+, 3+ and A+ are the octet fields of the type Ni' + Nt'; the NJ.L' 
~J.L' 3J.L and AJ.L are the octet fields N{:; the D..J.L' ~~, 3~ and DJ.L are the decuplet fields 
D..~; D..J.Ll/' ~~l/' 3~l/ and DJ.Ll/ are the decuplet fields D..~l/. 

From the values in Table 2.3, one can compute the F and D couplings easily for the 
three octet baryon fields Nfl - Nt', Nfl + Nt', and N{:: 

1. Nf - Nt'. For),3 and ),8, respectively 

. b (gIft + g1]. ) 1/'(5 3 2 p 
-- gA 

2 gIft - g1]. ( 

1/2 Xl) 
i{5b3 1 x 0 , 

1/2 x (-1) 
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D 

V3g~ -7s 
29:i 
y'3 

D 

-V3g~ -7s 
29:i 

-y'3 
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= ir'5b
S ( -;1 ) 

2V3 -1 ' 
-2 

where the right-hand side of these equations is just g~ and g~, and we show the 
results explicitly. The solution is g~ = 0 and g!i = 1. Therefore, Nf - Nt' only 
contains D terms. 

2. Nf + Nt'. For ,\3 and ,\S, respectively 

= ir'5
b

S ( ~ ) 2V3 -3 ' 
o 

where the solution is g~ = 1 and g!i = o. Therefore, Nf + Nt' only contains F 
terms. 

3. N/:. For ,\3 and ,\S, respectively 

. b (g~ + g!i ) Z"(5 3 2 F -- gA 
2 g~ - g:i. 

D I3gF _ gA 
y0 A y'3 

29:i 
y'3 

;7) F gD 
-y39A - ~ 

29:i 
-y'3 

( 

1/2 x 5/3 ) 
ir'5b3 1 x 2/3 

1/2 x (-1/3) 

= ir'5
b

S ( ~ ) 2V3 -3 
-2 

where we obtain the solution that g~ = 2/3 and g:i. = 1. Therefore, N/: contains 
both F terms and D terms. 

The resulting F / D ratio, 

(2.97) 
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is also tabulated in the last column of Table 2.3. Empirically, a rv 0.6, which is fairly 
close to the SU(6) quark model value. In the present formalism we see that only the 
(3, 6) E9 (6, 3) chiral multiplet/representation reproduces this value. Previous works 
have shown that this value is physically related to the coupling of the nucleon to the 
6.(1232), as demonstrated in the Adler-Weisberger sum rule [11,175]. This was also 
shown algebraically by Weinberg [173]. In both cases, saturation of the pion (axial-vector) 
induced transition from the nucleon to the 6.(1232) is essential [58]. In the present study, 
this is realized by the chiral representation which includes both the nucleon (isospin 1/2) 
and delta (isospin 3/2) states. 

It is also interesting that Table 2.3 shows that g~(N) = 5/3,g~(N) = 1 for (3, 6) E9 
(6, 3), while g~(N) = 1,g~(N) = -1 for (3, 3) E9 (3, 3). 

The flavor singlet g~ corresponds to the so-called nucleon spin value, as measured 
in polarized deep-inelastic lepton scattering. A suitable superposition of the two chiral 
representations may improve the nucleon axial coupling in either the isovector and/or 
isosinglet sectors. The importance of such mixing for the isovector axial coupling constant 
has been emphasized by Weinberg since the late 1960-s, Ref. [173]. 

2.5 Conclusion 

In this chapter we have performed a classification of flavor vector and chiral symmetries, 
and established independence of several types of relativistic SU(3) baryon interpolat­
ing fields. The three-quark fields may belong to one of several different Lorentz group 
representations which fact imposes certain constraints on possible chiral symmetry rep­
resentations. This is due to the Pauli principle and has been explicitly verified by the 
method of Fierz transformations. 

As the present results reflect essentially the Pauli principle, they can be conveniently 
summarized by using the permutation symmetry group properties/representations, as 
shown in Table 2.4. This table "explains" also the previous results for the case of isospin 
SU(2)L x SU(2)R [136]. In the real world, with spontaneous breaking of chiral symmetry, 

Table 2.4:. Structure of allowed three-quark baryon fields. 
Lorentz J = Spin 

Young diagram Axial U(I~A 
Chiral BU(2) Chiral BU(3) Flavor BU(3) for Chiral rep. charge gO 

(t,O) Ell (0, t) 1/2 ,\\21J,' ~! Ell \ ,(21)1, 3 
(t,O) Ell (0, t) \?,~! Ell \I'~! 8 

([1], [11]) Ell ([11], [1]) -1 (3,3) Ell (3,3) 1,8 
(1,~) Ell (~, 1) 3/2 ([2], [1]) Ell ([1], [2]) 1 (~, 1) Ell (1,~) (3,6) Ell (6,3) 8, 10 
(;t,0) Ell (O,~) 3/2 ([3], -) Ell (-, [3]) 3 (;t,0) Ell (O,~) (10,1) Ell (1, 10) 10 

physical states of pure chiral (axial) symmetry representation do not occur, but in general 
they can mix in a state having a definite flavor symmetry. The present results show that 
the three-quark structures accommodate only a few (sometimes just one) chiral represen­
tations, for instance, for the total spin 1/2 field of Dirac spinor, there are two allowed 
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chiral representations, having the Young diagram structures ([21], -) and ([1],[11]), where 
- indicates the singlet. The ([21], -) Young diagram corresponds to the (~, 0) and (8,1) 
representations of 8U(2) and 8U(3) respectively, whereas the ([1], [11]) Young diagram 
corresponds to the (~, 0) and (3,3) of 8U(2) and 8U(3), respectively. 

Note that the N f = 2 chiral representations have the same form as those of the 
Lorentz group. In this way, the Lorentz (spin) and flavor structures are combined into a 
general structure with total permutation symmetry. As shown in the computation of gA, 

in general, various couplings depend on the chiral representations. 
We should conclude with a few historical remarks: the two-flavor baryon fields' Fierz 

identities have been known since the early days of QCD sum rules [88], whereas the three­
flavor ones presented here seem to be the first ones. Similarly, the chiral properties of 
the two-flavor baryon fields' have been known at least since the work of Christos [46, 47], 
but the three-flavor ones have been discussed by Christos and H. Q. Zheng [47,182,183]' 
but not systematically explored. 
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Chapter 3 

Tetraquark Fields 

"3.1 udss Currents of J P = 0+ 

The structure of tetraquark is much more complicated than qq mesons and qqq baryons. 
And so in this section, we fix quark contents to be udss. After studying this example, 
the general tetraquark currents will be studied in the following sections. 

Let us consider currents for the tetraquark udss having JP = 0+. Here again we only 
consider local currents, and we shall study the diquark-antidiquark currents ((qq)(qq)) 
first, while the meson-meson currents ((qq)(qq)) will be discussed later. To write a current, 
Lorentz and color indices are contracted with suitable coefficients (L~~e;a) to provide 
necessary quantum numbers, 

- Labed -/-L -v Pda (3 1) TJ - /-Lvpasasb ue d, . 

where the sum over repeated indices (p" v,·· . for Dirac spinor indices, and a, b, ... for 
color indices) is taken. 

For the Dirac spinor space, using possible diquark and antidiquark bilinears [96,109, 
159, 165J, there are five independent terms 

Sabed = (SaI5CSn(U~C'5dd)' 
Vabed = (Sal/-L15CSn(U~CI/-L'5dd)' 
Tabed = (SaCT/-LvCSn(U~CCT/-LVdd), 
Aabed = (Sal/-LCSn(U~C,/-Ldd)' 
Pabed = (saCsn(U~Cdd). 

(3.2) 

Here, color indices are not yet specified. For the diquark and antidiquark pair, color 
structures providing a color-singlet tetraquark are 3 ® 3 and 6 ® 6, which we will denote 
by labels 3 and 6 for short. 

Therefore, we have altogether ten terms of products 

{S E9 V E9 T E9 A E9 Pharentz ® {3 E9 6}Color . (3.3) 

49 
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However, half of them drop due to the Pauli principle. For instance 

P 3 == PLarentz 0 3Color 

= Eabc(SbCS~)Eab'c'(uf,Cdc') = o. 
Eventually, we end up with five independent currents 

S6 = (SaI5CSn(U~C'5db), 
% = (SalJ-t15CSn(U~CIJ-t'5db), 
T3 = (saO"J-tvCsn(u~CO"J-tvdb)' 
A3 = (SalJ-tCSn(U~C,J-tdb) , 
P6 = (SaCsn(U~Cdb). 

(3.4) 

(3.5) 

(3.6) 

In the non-relativistic language, these five terms correspond to combinations of diquarks 
and antidiquarks 

WSo)eSo)]o+, [eSl)eSl)]O+, Wpl )epl )]o+, 
W Po)e Po)]o+ , [e H)(3 H)]o+ . (3.7) 

Another possible piece of 3 P2 is irrelevant, since the five bi-linear forms qTrq (r = 
s, V, T, A, P) can only have spin j ::; 1, while the 3 P2 diquark has j = 2. 

Finally we consider the flavor structure. The SS antidiquark is symmetric in flavor, 
and hence belongs to the symmetric representation 6 j. If the other ud diquark belongs to 
:3 j, and so isospin I = 0, the diquark and antidiquark will have different flavor symmetry. 
But they should have the same color and spin symmetries for composing a color-singlet 
scalar tetraquark. Considering the Pauli principle, they must have different parity, and 
hence their combination is a negative-parity scalar tetraquark. Accordingly, the other ud 
diquark also belongs to 6 j , and so isospin I = 1. Among the irreducible representations 
of the tetraquark 

6 0 6 = 1 E9 8 E9 27 , (3.8) 

S = +2 and I = 1 states are in the 27 representation of SU(3)j, which is the flavor 
structure of the present tetraquark. As shown in Fig. 3.1, three iso-vector states of the 
27j are uuss, l/V2(ud + du)ss and ddss. 

We have constructed five independent currents using diquark and antidiquark com­
bination. Similarly, we can also construct the tetraquark currents using ijq combination 
(mesonic construction). Obviously, there are ten combinations of the Dirac (S, V, T, A 
and P) and color (1 and 8) spaces: 

SI = (saua) (Sbdb) , 

VI = (SalJ-tUa) (SbiJ-tdb) , 
Tl = (saO" J-tvua) (SbO"J-tv db) , 

Al = (SalJ-t15Ua)(SblJ-t,5db) , 

PI = (SaI5Ua) (SbI5 db) , 

Sg = (SaA~bUb)(ScA~ddd) , 

Vg = (SalJ-tA~bUb)(SCIJ-tA~ddd), 

Tg = (SaO" J-tvA~bub)(ScO"J-tv A~ddd) , 

Ag = (SalJ-t15A~bUb)(SCIJ-t'5A~ddd) , 

Pg = (SaI5A~bUb)(SCI5A~ddd) , 

(3.9) 
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27f (6f ®6f ) 

ddSS udSS uuss 

usii'ii 

ssuu ssiid ssdd 
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Figure 3.1: 8U(3) weight diagram for 27, where the locations of three tetraquark com­
ponents of 8 = 2 and I = 1 are shown. 

where subscripts 1 and 8 denote color singlet and octet representations, respectively. 
Unlike the diquark construction, all the ten currents in Eq. (3.9) remain finite. However, 
it is possible to show only five of them (in fact any five of them) are independent. The 
quark-antiquark pairs in different currents have different properties: 

81 : (JP = 0+,8/, Ie), 

Vi: (JP = 1-,8/,le ), 

T1 : (JP = 1+&1-,8" Ie), 

AI: (JP = 1+,8/, Ie), 

PI : (JP = 0-,8/, Ie), 

8s : (JP = 0+,8" 8e ), 

Vs: (JP = 1-,8,,8e ), 

Ts: (JP = 1+&I-,8,,8e ), 

As: (JP = 1+,8/,8e ), 

Ps: (JP = 0-,8/,8e ). 

In order to establish the five independent currents, first we change their color struc­
tures 

1 1 
(SaUb)(Sbda) = 3(SaUa)(Sbdb) + "2 (SaUb)(Sedd)AabAed , 

16 1 
(saud)(Sedb)AabAed = g(Saua)(Sbdb) - "3 (SaUb)(Sedd)AabAed . (3.10) 

Then we use the Fierz transformation [131] 

1 1 
3(SaUa)(Sbdb) + "2(Saub)(Sedd)AabAed 

(SaUb) (Sbda) (3.11) 
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1 1 
-4{(SaUa)(Sbdb) + (SarJlUa) (SbrJldb) + "2 (saaJlvua) (SbaJlVdb) 

-(SarJlr5Ua)(SbrJlr5db) + (Sar5Ua)(Sbr5db)}. 

We obtain 10 equations in all 

1 1 
-Sl + -Ss 
3 2 

16 1 
-Sl - -Ss 
9 3 
1 1 
-Vl +-118 
3 2 

16 1 
-Vl - -118 
9 3 
1 1 
3"Tl + "2Ts 

16 1 
gTl - 3"Ts 
1 1 
-Al + -As 
3 2 

16 1 
-Al - -As 
9 3 
1 1 
-H + -Ps 3 2 

16 1 
-H - -Ps 
9 3 

1 1 
- 4 {Sl + Vi + "2 Tl - Al + Pl } , 

1 1 
-4{Ss + 118 + "2Ts - As + Ps}, 

1 
-4{4Sl - 2Vl - 2Al - 4Pd, 

1 
-4{ 4Ss - 2118 - 2As - 4Pg}, 

1 
-4{12Sl - 2Tl + 12Pl } , 

1 
-4{12Ss - 2Ts + 12Ps} , 

1 
-4{ -4Sl - 2Vl - 2Al + 4Pl } , 

1 
-4{ -4Ss - 2Vs - 2As + 4Ps} , 

1 1 
-4{Sl - Vl + "2Tl + Al + Pl }, 

1 1 
--{Ss - Vs + -Ts + As + Ps} 4 2 . 

(3.12) 

Solving these linear equations, we find that there are five independent currents. In other 
words, the rank of the 10 x 10 coefficient matrix is five. Any five currents among (3.9) 
are independent and can be expressed by the other five currents. For instance, we have 
the relations as 

7 1 1 1 1 
--Sl - -Vl - -Tl + -Al - -Pl 6 2 4 2 2' 

1 
-2Sl + 3"Vl + Al + 2Pl , 

Ts 
1 

-6Sl + 3Tl - 6Pl , (3.13) 

As 
1 

2Sl + Vl + 3" Al - 2Pl , 

Ps 
1 1 1 1 7 

--Sl + -Vl - -Tl - -Al - -Pl. 
2 2 4 2 6 

Note that the color octet combinations can be expressed only in terms of color singlet 
combinations. This point will be discussed in more detail in Chapter 4. 
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Finally, we establish the relations between the diquark currents and the mesonic 
currents. For instance, we can verify the relations 

1 1 1 1 1 
--81 - -V1 + -T1 - -A1 - -P1 4 4 8 4 4' 

1 1 
81-2V1+2A1-P1, 

1 
381 + 2T1 + 3Ft, (3.14) 

1 1 
81 + 2Vt - 2A1 - P1, 

1 1 1 1 1 
--81 + -V1 + -T1 + -A1 - -Ft. 

4 4 8 4 4 

3.2 Tetraquark fields with JP = 0+ 

We have found five independent udss tetraquark currents which have the quantum num­
bers JP = 0+, in both the diquark construction and the meson construction. From this 
section, we will study the tetraquark currents having different quantum numbers. The 

. currents can be constructed by using diquark and antidiquark fields, and they can also 
be constructed by using quark-antiquark pairs. The same as the udss scalar tetraquark 
currents, we can find several independent currents. 

Following the procedure in the previous section, we can obtain tetraquark currents 
having other quantum numbers by using the diquark currents and antidiquark currents. 
The diquark can have the flavor structure 3r and 6r, and the antidiquark can have the 
flavor structure 3r and 6r. Therefore, there are four combinations and we just need to 
study three of them: 

while 6f ® 3f can be similarly studied as 3f 06f. For simplicity, we will suppress the 
symbol q(x), and use the flavor indices instead of it: 

q'A(x) , q~(x) ~ Aa , Ea , and i[±(x) , iN(x) ~ Xa , Ya . 

The flavor structure of tetraquark is 

3030303 

(6 E9 3) ® (6 E9 3) 

(27 E9 8 E9 1) E9 (10 E9 8) E9 (1-0 EB 8) EB (8 E9 1) , (3.15) 

In this section, we study scalar currents of JP = 0+. The diquark and antidiquark can 
have flavor structure 6 f ® 6 f' then the tetraquark currents have the flavor representations 
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27f, 8f and If; while they can also have the flavor structure 3f03f, then the tetraquark 
currents have the flavor representations 8 f and If· The flavor structures 3 f 0 6 f and 
6 f 0 3 f are not allowed as discussed in the previous section. 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 6 f and 6 f, respectively. We can 
construct five diquark-antidiquark currents: 

where the subscript is the color representation of the diquark (antidiquark) inside. These 
five currents are independent. We can also construct ten currents by using quark­
antiquark pairs: 

SI (XaAa)Cf'bBb) + (XaBa)(Y'bAb) , 

Ss (XaAabAb)(YcAcdBd) + (XaAabBb) (YcAcdAd) , 
VI (XaI'ILAa)(Y'b1'1L Bb) + (XaI'ILBa)(Ybl'lL Ab) , 

Vs (XaI'ILAabAb)(YcI'ILAcdBd) + (XaI'ILAabBb) (YcI'ILAcdAd) , 
Tl (XaO"lLlIAa)(Y'bO"lLlI Bb) + (XaO"lLlIBa) (Y'b0"1L1I Ab), 

Ts (XaO" 1L1IAabAb) (YcO"lLlI AcdBd) + (XaO" 1L1IAabBb) (YcO"lLlI AcdAd) , 

Al (XaI'IL1'5 Aa)(Y'b1'1L1'5Bb) + (XaI'IL1'5 Ba)(Y'b1'1L1'5 Ab) , 

As (XaI'IL1'5AabAb)(YcI'IL1'5AcdBd) + (XaI'IL1'5AabBb)(YcI'IL1'5AcdAd) , 

H (XaI'5 Aa)(Yb/'5 Bb) + (XaI'5 Ba)(Y'b1'5Ab) , 

Ps (XaI'5AabAb)(YcI'5AcdBd) + (XaI'5 Aab Bb) (YcI'5 AcdAd) . 

Among these ten currents, five are independent, and we can verify following relations: 

Ss 
7 1 1 1 1 

--SI - -VI - -Tl + -AI --H 
6 2 4 2 2' 

Vs 
1 

-2S1 + 3" VI + Al + 2H , 

Ts 
1 

-6S1 + 3" Tl - 6H , 

As 
1 

2S1 + VI + 3" Al - 2P1 , 
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1 1 1 1 7 
Ps = - 2" 81 + 2" VI - 4 Tl - 2" A 1 - "6 PI . 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: :3 f and 3 f, respectively. We can 
construct five diquark-antidiquark currents: 

which are independent. We can also construct ten currents by using quark-antiquark 
paIrs: 

81 

8s 

lit 
118 
Tl 

Ts 

Al 

As 

Pr 
Ps 

-

(XaAa)(YbBb) - (XaBa)(YbAb) , 

(XaAabAb)(Yc)'cdBd) - (XaAabBb) (YcAcdAd) , 

(Xa'YIlAa) (Yb'Y1l Bb) - (Xa'YIlBa)(Yb'Y1l Ab) , 

(Xa'YIlAabAb) (Yc'Y1l AcdBd) - (Xa'YIlAabBb) (Yc'Yll AcdAd) , 
(XaO"llvAa) (YbO"IlV Bb) - (XaO"llvBa) (YbO"IlV Ab), 

(XaO" IlvAabAb) (YcO"IlV AcdBd) - (XaO" IlvAabBb) (YcO"IlV AcdAd) , 

(Xa'YIl'Y5 Aa)(Yb'YIl 'Y5 Bb) - (Xa'YIl'Y5 Ba) (Yb/'Il'Y5 Ab) , 

(Xa'YIl'Y5AabAb)(Yc'YIl'Y5AcdBd) - (Xa'YIl'Y5AabBb)(Yc'YIl'Y5AcdAd) , 

(Xa'Y5 Aa)(Yb'Y5 Bb) - (Xa'Y5 Ba)(Yb'Y5Ab) , 

(Xa'Y5 AabAb) (Yc'Y5 AcdBd) - (Xa'Y5 AabBb) (Yc'Y5 AcdAd) . 
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Among these ten currents, five are independent, and we can verify following relations: 

8s 
1 1 1 1 1 

--81 + -Vi + -T1 - -A1 - -P1 
6 2 4 2 2' 

5 
281 - "3 V1 - A1 - 2P1 , 

Ts 
5 

681 - "3T1 + 6P1, 

As 
5 

-281 - V1 - "3A1 + 2P1 , 

1 1 1 1 1 
- 81 - - V1 + -T1 + - A1 - - Pt . 
2 2 4 2 6 

Ps 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

3.3 Tetraquark fields with JP = 0-

In this section, we study scalar currents of JP = 0-. The diquark and antidiquark can 
have flavor structures 6 f 0 6 f' :3 f 0 3 f' :3 f 0 6 f and 6 f 0 3 f· We will just study the first 
three of them, since the last one have the similar structure as :3 f 0 6 f· 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 6f and 6f , respectively. We can 
construct three diquark-antidiquark currents: 

'f/1 

'f/2 

'f/3 
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which are independent. We can also construct six currents by using quark-antiquark 
pairs: 

TJ4 (Xa Aa)(Yb'Y5 Bb) + (Xa'Y5 Aa)(YbBb) 

+(XaBa)(Yb'Y5Ab) + (Xa'Y5 Ba)(YbAb) , 

TJ5 (Xa'YILAa)(Yb'YIL'Y5 Bb) + (Xa'YIL'Y5 Aa)(Yb'Y1L Bb) 
+(Xa'YILBa)(Yb'YIL'Y5Ab) + (Xa'YIL'Y5 Ba)(Yb'Y1L Ab) , 

TJ6 (XaIJ ILvAa)(YbIJILV 'Y5 Bb) + (XaIJ ILvBa) (YbIJ ILV ,'Y5Ab) 

TJ7 AabAcd{(XaAb) (Yc'Y5 Bd) + (Xa'Y5 Ab)(YcBd) 
+(XaBb)("Yc'Y5Ad) + (Xa'Y5 Bb) (YcAd)} , 

TJs AabAcd{(Xa'YILAb)(Yc'YIL'Y5Bd) + (Xa'YIL'Y5 Ab)("Yc'YILBd) 

+ (Xa'YILBb) ("Yc'Y 1L'Y5 Ad) + (Xa'YIL'Y5Bb) (Ye'Y 1L Ad)}, 
TJ9 = AabAcd{(XaIJlLvAb) (YeIJILV'Y5 Bd) + (XaIJlLvBb) (YeIJ ILV'Y5 Ad)} . 

Among these six currents, three are independent, and we can verify following relations: 

TJs 

TJ9 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 3f and 3f , respectively. We can 
construct three diquark-antidiquark currents: 
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which are independent. We can also construct six currents by using quark-antiquark 
pairs: 

'r/4 (Xa Aa)(Yb/'5 Bb) + (Xa'Y5Aa) (YbBb) 

-(XaBa)(Yb'Y5Ab) - (Xa'Y5 Ba)(YbAb) , 

'r/5 (Xa'YIt Aa)(Yb'YIt'Y5Bb) + (Xa'YIt'Y5 Aa)(Yb'Y1t Bb) 
-(Xa'YItBa)(Yb'YIt'Y5Ab) - (Xa'YIt'Y5 Ba)(Yb'Y1t Ab) , 

'r/6 (XaO"ltll Aa)(YbO"It1l'Y5Bb) - (XaO"ltllBa) (YbO"It1l'Y5 Ab) , 

'r/7 AabAcd{(XaAb)(Yc'Y5Bd) + (Xa'Y5 Ab) (YcBd) 
-(XaBb)(Yc'Y5Ad) - (Xa'Y5 Bb) (YcAd)} , 

'r/s AabAcd{(Xa'YItAb)(Yc'YIt'Y5Bd) + (Xa'YIt'Y5Ab) (Yc'Y1t Bd) 
-(Xa'YItBb)(Ycf'Itf'5Ad) - (Xa'YIt'Y5Bb) (Yc'Ylt Ad)} , 

'r/g = AabAcd{(XaO" jlllAb) (YcO"ltll f'5 Bd) - (XaO" 1t1lBb) (YcO"ltll 'Y5 Ad)} . 

Among these six currents, three are independent, and we can verify following relations: 

'r/s 

'r/g 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

1 
3'r/4 + 2'r/6, 

111 
- 4'r/4 - 4'r/5 + S'r/6 , 

111 
- 4'r/4 + 4'r/5 + S'r/6 . 

In this subsection, we study the tetraquark currents where the diquark and anti-diquark 
components have a mixed flavor structure: 3f and 6f, respectively. We can construct 
two diquark-antidiquark currents: 



3.4. TETRAQUARK FIELDS WITH JP = 1+ 59 

which are independent. We can also construct four currents by using quark-antiquark 
pairs: 

'f}3 (XaAa)(Ybr5 Bb) - (Xar5Aa)(YbBb) 
-(XaBa)(Ybr5Ab) + (Xar5 Ba) (YbAb) , 

'f}4 (Xarl_Aa)(YbrJLr5Bb) - (XarJLr5 Aa)(Ybr JL Bb) 
-(XarJLBa)(YbrJLr5Ab) + (XarJLr5Ba)(YbrJL Ab) , 

'f}5 AabAcd{(XaAb)("Ycr5Bd) - (Xar5Ab)(YcBd) 
-(XaBb)("Ycr5Ad) + (Xar5 Bb) (YcAd)} , 

'f}6 = AabAcd{(XarJLAb)(YcrJLr5Bd) - (XarJLr5Ab) ("YcrJL Bd) 
-(XarJLBb)("YcrJLr5Ad) + (XarJLr5Bb) ("YcrJL Ad)}. 

Among these four currents, two are independent, and we can verify following relations: 

'f}5 

'f}6 

2 
-3'f}3 - 'f}4, 

2 
-4'f}3 - 3'f}4. 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

1 
'f}1 'f}3 - '2'f}4, 

1 
'f}2 'f}3 + '2'f}4. 

3.4 Tetraquark fields with JP = 1+ 

In this section, we study scalar currents of JP = 1+. The diquark and antidiquark can 
have flavor structures 6f ® 6f , 3f ® 3f, 3f ® 6f and 6f 03f· We will just study the first 
three of them, since the last one have the similar structure as 3 f ® 6 f. 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 6f and 6f, respectively. We can 
construct four diquark-antidiquark currents: 
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which are independent. We can also construct ten currents by using quark-antiquark 
pairs: 

'fl511- (XaAa)CYb'YI1-'Y5 Bb) + (Xa'YI1-'Y5 Aa)(YbBb) 

+(XaBa)(Yb'YI1-'Y5 Ab) + (Xa'YI1-'Y5 Ba)(YbAb) , 

'fl611- (Xa'YI1-Aa)(Yb'Y5 Bb) + (Xa'Y5Aa)(Yb'YI1-Bb) 

+(Xa'YI1- Ba)(Yb'Y5Ab) + (Xa ,'Y5Ba)(Yb'YI1-Ab) 
'fl711- (Xa'Yv'Y5Aa)(YbO"l1-vBb) + (XaO"l1-vAa)(Yb'Yv'Y5Bb) 

+(Xa'Yv'Y5Ba)(YbO"l1-vAb) + (XaO"l1-v Ba)(Yb'Yv'Y5A b) , 

'flSI1- (Xa'Yv Aa)(YbO" I1-v'Y5 Bb) + (XaO" I1-v'Y5Aa) (Yb'Yv Bb) 

+ (Xa'Yv Ba)(YbO" I1-v'Y5Ab) + (XaO" I1-v'Y5Ba)(Yb'Yv Ab) , 

'fl911- AabAcd{(XaAb)(Yc'YI1-'Y5Bd) + (Xa'YI1-'Y5 Ab) (YcBd) 

+(XaBb)(Yc'YI1-'Y5Ad) + (Xa'YI1-'Y5 Bb) (YcAd)} , 

'fll011- AabAcd{(Xa'YI1-Ab)(Yc'Y5Bd) + (Xa'Y5Ab)(Yc'YI1-Bd) 

+(Xa'YI1-Bb)(Yc'Y5Ad) + (Xa'Y5Bb) (Yc'YI1-A d)} , 

'fl1l11- AabAcd{(Xaf'Y5Ab) (YcO"l1-v Bd) + (XaO"l1-v Ab) (Yc'Yv'Y5 Bd) 
+(Xa'Yv'Y5Bb)(YcO"l1-vAd) + (XaO"l1-vBb) (Yc'Yv'Y5 Ad)} , 

'fl1211- = AabAcd{(Xa'Yv Ab)(YcO"l1-v'Y5 Bd) + (XaO"l1-v'Y5Ab) (Yc'Yv Bd) 

+(Xa'YvBb)(YcO"l1-v'Y5Ad) + (XaO"l1-v'Y5Bb) (Yc'Yv Ad)}. 

Among these eight currents, four are independent, and we can verify following relations: 

5 . 
'fl911- - 3'fl511- - ~'flSI1- , 

5 . 
'fl1011- -3'fl611- - ~'fl711-' 

. 1 
'fl1l11- 3~'fl611- + 3'fl711- , 

. 1 
'fl1211- 3~'fl511- + 3'flsl1- . 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

IIi i 
'fl111- -"4'fl511- - "4'fl611- + "4'fl711- + "4'flSI1-' 

IIi i 
'fl211- -"4'fl511- + "4'fl611- - "4'fl711- + "4'flSI1-' 

3i 3i 1 1 
'fl311- -4"'fl511- + 4"'fl611- - "4'fl711- + "4'flSI1-' 

3i 3i 1 1 
'fl411- - 4"'fl511- - 4"'fl611- + "4'fl711- + "4'flSI1- . 
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In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 3j and 3j, respectively. We can 
construct four diquark-antidiquark currents: 

T - -T - -T 
TJlll Aa O'{ Bb (Xa 17llvr5 CYb + Xb 17 Ilvr5CYa ) , 

T - -T - -T 
TJ21l Aa Cl7llvr5Bb(XarvCYb + XnvCYa ), 

T - -T - -T 
TJ31l Aa CBb (Xarllr5 CYb - Xbrllr5CYa ) , 

T - -T - -T 
TJ41l Aa Crllr5Bb(XaCYb - XbCYa ) , 

which are independent. We can also construct ten currents by using quark-antiquark 
palrs: 

TJ51l (XaAa)(Ybrllr5Bb) + (Xarllr5Aa)(YbBb) 
-(XaBa)(Ynllr5Ab) - (Xarllr5Ba)(YbAb) , 

TJ61l (XarIlAa)(Ybr5Bb) + (Xar5Aa)(YbrIlBb) 
-(XarIlBa)(Ybr5Ab) - (Xar5Ba)(YbrIlAb) , 

TJ71l (XarV r5Aa)(YbI7 IlvBb) + (Xa17 IlvAa) (Ybrv r5 Bb) 

-(XarVr5Ba)(Ybl7llvAb) - (Xa 17llv Ba)(Ybfr5Ab) ' 
TJ81l (XarV Aa)(YbI7 Ilvr5 Bb) + (Xa17 Ilvr5Aa)(Ybf Bb) 

-(XarV Ba)(Ybl7llvr5Ab) - (Xa17llvr5Ba) (Ybrv Ab), 

TJ91l "\ab"\cd{(XaAb)(Ycrllr5Bd) + (Xarllr5Ab) (YcBd) 

-(XaBb)(Ycrllr5Ad) - (Xarllr5Bb) (YcAd)} , 

TJlOll ..\ab..\cd{(XarIlAb)(Ycr5Bd) + (Xar5Ab)(YcrIlBd) 

-(XarIlBb)(Ycr5Ad) - (Xar5 Bb) (YcrIlAd)} , 
TJllll "\ab"\cd{(XarVr5Ab) (Ycl7llv Bd) + (Xa 17llv Ab)(Ycrvr5Bd) 

-(Xafr5Bb)(Ycl7llvAd) - (Xal7llvBb)(Ycrvr5Ad)} , 

TJ1211 = ..\ab..\cd{(XarV Ab)(Ycl7llvr5Bd) + (Xal7llvr5Ab)(Ycrv Bd) 

-(Xaf Bb)(YcI7 Ilvr5Ad) - (Xa 17llvr5Bb) (Ycf Ad)}. 

Among these eight currents, four are independent, and we can verify following relations: 

1 , 
'3TJ51l + zTJ81l , 

1 . 
'3TJ61l + ZTJ71l , 

3
' 5 

- zTJ61l - '3 TJ71l , 

. 5 
-3ZTJ51l - '3TJ81l . 
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The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

3i 3i 1 1 
'TJlp, -4'TJ5p, + 4'TJ6p, - 4'TJ7p, + 4'TJ8p" 

3i 3i 1 1 
'TJ2p, -4'TJ5p, - 4'TJ6p, + 4'TJ7p, + 4'TJ8p" 

1 1 i i 
'TJ3p, -4'TJ5p, - 4'TJ6p, + 4'TJ7p, + 4'TJ8p" 

1 1 i i 
'TJ4p, - 4'TJ5p, + 4'TJ6p, - 4'TJ7p, + 4'TJ8p, . 

In this subsection, we study the tetraquark currents where the diquark and anti-diquark 
components have a mixed flavor structure: 3f and 6f, respectively. We can construct 
four diquark-antidiquark currents: 

which are independent. We can also construct eight currents by using quark-antiquark 
paIrs: 

'TJ5p, (XaAa)(Yb/,p,/,5 Bb) - (Xa/'p,/'5 Aa)(YbBb) 

-(XaBa)(Yb/,p,/'5Ab) + (Xa/,p,/'5 Ba) (YbAb) , 

'TJ6p, (Xa/,p, Aa)(Yb/'5 Bb) - (Xa/'5 Aa)(Yb/,p,Bb) 

-(Xa/,p,Ba)(Yb/'5Ab) + (Xa/'5 Ba)(Yb/,p,Ab) , 
'TJ7p, (Xa/'v /'5 Aa)(Yb 0" p,vBb) - (XaO" p,vAa)(Yb/,v /'5Bb) 

-(Xa/'v /'5 Ba)(YbO" p,vAb) + (XaO" p,vBa)(Yb/'v /'5Ab) , 

'TJ8p, (Xaf Aa)(YbO" p,v/'5 Bb) - (XaO" p,v/'5Aa)(Yb/,v Bb) 

-(Xa/,vBa)(YbO"p,v/'5Ab) + (XaO"p,v/'5 Ba) (Yb/,v Ab), 

'TJ9p, AabAcd{(XaAb)("Yc/'p,/'5Bd) - (Xa/'p,/'5 Ab)(YcBd) 

-(XaBb) ("Yc/'p,/'5 Ad) (Xa/'p,/'5 Bb) ("YcAd) } , 
'TJI0p, AabAcd{(Xa/'p,Ab)("Yc/'5Bd) - (Xa/'5 Ab)("Yc/,p,Bd) 

-(Xa/,p,Bb)("Yc/'5Ad) + (Xa/'5 Bb) (Yc/,p,Ad)} , 
'TJllp, AabAcd{(Xa/,v/'5Ab)("Yc0"p,vBd) - (XaO"p,vAb)("Yc/,v/'5Bd) 
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-(XarVr5Bb)(Yc(JJ.lvAd) + (Xa(JJ.lvBb) ("Ycrvr5 Ad)} , 

rJ12J.l ..\ab..\cd{(XarV Ab)("Yc(JJ.lvr5Bd) - (Xa(JJ.lvr5 Ab)("YcrvBd) 

-(XarV Bb)("Yc(JJ.lvr5Ad) + (Xa(JJ.lvr5Bb) ("Ycrv Ad)}. 
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Among these eight currents, four are independent, and we can verify following relations: 

2 . 
-3rJ5J.l - rJ6J.l- ZrJ7J.l' 

2 . 
-rJ5J.l - 3rJ6J.l + ZrJ8J.l , 

. 2 
3ZrJ5J.l - 3rJ7J.l - rJ8J.l , 

. 2 
- 3ZrJ6J.l - rJ7/-L - 3rJ8J.l . 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

IIi i 
rJIJ.l "4rJ5J.l + "4rJ6J.l - "4rJ7J.l + "4rJ8J.l , 

3i 3i 1 1 
rJ2J.l 4rJ5J.l - 4rJ6J.l + "4rJ7J.l + "4rJ8J.l' 

IIi i 
rJ3J.l "4rJ5J.l - "4rJ6J.l + "4rJ7J.l + "4rJ8J.l , 

3i 3i 1 1 
rJ4J.l 4rJ5J.l + 4rJ6J.l - "4rJ7J.l + "4rJ8J.l . 

3.5 Tetraquark fields with JP = 1-

In this section, we study scalar currents of JP = 1-. The diquark and antidiquark can 
have flavor structures 6f ® 6f, 3f 0 3f, 3f 0 6f and 6f ® 3f· We will just study the first 
three of them, since the last one have the similar structure as 3 f ® 6 f. 

In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: 6 f and 6 f' respectively. We can 
construct four diquark-antidiquark currents: 
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which are independent. We can also construct eight currents by using quark-antiquark 
paIrs: 

'rJ5p, (XaAa)Cf'b/,p,Bb) + (Xa/,p,Aa)CYi,Bb) 

+(XaBaKYi,/,p,Ab) + (Xa/'p,Ba)CYi,Ab) , 

'rJ6p, (Xa/,p,/'5 Aa)(Yb/'5 Bb) + (Xa/'5Aa) (y;'/'p,/'5 Bb) 

+( Xa/' p,/'5Ba) (Y;,/'5Ab) + (Xa/'5 Ba)(Y;,/' p,/'5Ab) , 
'rJ7p, (Xa/,lI Aa)(Y;,O"p,lIBb) + (XaO"p,lIAa)(y;'/,lI Bb) 

+ (Xa/,lI Ba)(Y;,O"p,lIAb) + (XaO"p,lIBa)(y;'f Ab) , 

'rJ8p, (Xa/,lI /,5Aa) (YbO" p,1I/'5 Bb) + (XaO" p,1I/'5Aa)(Y;,f /'5Bb) 

+( Xa/,lI /,5Ba) (Y;,O" p,1I/'5Ab) + (XaO" p,1I/'5Ba) (y;'/,1I /'5 Ab) , 

'rJ9p, AabAcd{(XaAb)(~/,p,Bd) + (Xa/,p,Ab)(YcBd) 

+(XaBb) (Yc/'p,Ad) + (Xa/,p,Bb) (YcAd)} , 

'rJ1Op, AabAcd{ (Xa/'p,/'5 Ab) (Ycl'5 Bd) + (Xa/'5 Ab) (Yc/'p,/'5 Bd) 

+ (Xa/'p,/'5Bb) (Yc/'5 Ad) + (Xa/'5Bb)(Yc/'p,/'5 Ad)} , 
'rJllp, AabAcd{(Xa/,lI Ab)(YcO"p,lI Bd) + (XaO"p,lI Ab) (Ycf Bd) 

+ (Xa/,lI Bb)(YcO"p,lIAd) + (XaO"p,lI Bb) (Yc/,lI Ad)}, 

'rJ12p, = AabAed{ (Xa/,lI /'5Ab) (YeO" p,1I/'5Bd) + (XaO" p,1I/'5Ab) (Yc/,lI /'5Bd) 

+(Xaf/'5Bb)(YcO"p,1I/'5Ad) + (XaO"p,1I/'5 Bb)(Ye/,1I/'5 Ad)}. 

Among these eight currents, four are independent, and we can verify following relations: 

5 . 
'rJ9p, - "3'rJ5p, - 2'rJ8p, , 

5 . 
'rJ1Op, -"3'rJ6p, - 2'rJ7p" 

1 
'rJllp, 3i'rJ6p, + "3'rJ7p, , 

. 1 
'rJ12p, 32'rJ5p, + "3'rJ8p, . 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

IIi i 
'rJIp, -4'rJ5p, - 4'rJ6P, + 4'rJ7p, + 4'rJ8p" 

1 1 i i 
'rJ2p, 4'rJ5p, - 4'rJ6p, + 4'rJ7p, - 4'rJ8P, , 

3i 3i 1 1 
'rJ3p, 4"'rJ5p, - 4"'rJ6P, + 4'rJ7p, - 4'rJ8p, , 

3i 3i 1 1 
'rJ4p, -4"'rJ5{L - 4"'rJ6p, + 4'rJ7p, + 4'rJ8p,. 
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In this subsection, we study the tetraquark currents where both the diquark and anti­
diquark components have a symmetric flavor structure: :3 f and 3 f' respectively. We can 
construct four diquark-antidiquark currents: 

T - -T - -T 
TJ1/-L Aa C"( Bb(Xa(} /-LvC}Ib + X b(} /-LvCYa ) , 
TJ2/-L A~C(}/-LvBb(XafCYt + Xb"(cY[) , 

T - -T - -T 
TJ3/-L Aa CI'5 Bb (Xa I'/-L 1'5 C}Ib - X bl'/-L1'5CYa ) , 

T - -T - -T 
TJ4/-L Aa CI'/-L1'5 Bb (XaI'5C}Ib - X bl'5CYa ) , 

which are independent. We can also construct eight currents by using quark-antiquark 
pairs: 

TJ5/-L (XaAa) (YbI'/-LBb) + (Xal'/-LAa)(YbBb) 

-(XaBa)(YbI'/-LAb) - (Xal'/-LBa)(YbAb) , 

TJ6/-L (Xal'/-L1'5 Aa)(YbI'5 Bb) + (XaI'5 Aa)(YbI'/-L1'5Bb) 
-(Xal'/-L1'5Ba)(YbI'5Ab) - (XaI'5 Ba)(YbI'/-L1'5Ab) , 

TJ7/-L (Xal'v Aa)(Yb() /-LvBb) + (Xa() /-Lv Aa)(Ybf Bb) 
-(Xal'v Ba)(Yb(}/-LvAb) - (Xa(}/-LvBa)(Ybl'v Ab), 

TJ8/-L (Xal'v 1'5 Aa)(Yb() /-LvI'5 Bb) + (Xa() /-Lv 1'5 Aa)(Ybl'v 1'5 Bb) 
-(Xal'vI'5Ba)(Yb(}/-LvI'5Ab) - (Xa(}/-LvI'5 Ba)(Ybl'vI'5 Ab) , 

TJ9/-L AabAcd{(XaAb)(YcI'/-LBd) + (Xal'/-LAb) (YcBd) 

-(XaBb)(Ycl'/-LAd) - (Xal'/-LBb) (YcAd)} , 

TJlO/-L AabAcd{ (Xa I' /-L 1'5Ab) (Yc1'5 Bd) + (Xa 1'5Ab) (Yc I' /-L1'5 Bd) 

-(Xal'/-L1'5 Bb)(YcI'5Ad) - (XaI'5 Bb) (YcI'/-L1'5 Ad)} , 
TJll/-L AabAcd{(Xaf Ab)(Yc(}/-LvBd) + (Xa(}/-LvAb) (Ycl'v Bd) 

-(Xal'v Bb)(Yc(}/-LvAd) - (Xa(}/-LvBb) (Ycl'v Ad)}, 

TJ12/-L = AabAcd{ (Xal'v 1'5Ab) (Yc() /-LvI'5 Bd) + (Xa() /-LvI'5 Ab) (Ycf 1'5 Bd) 
-(Xal'v 1'5Bb)(Yc() /-LvI'5Ad) - (Xa() /-LvI'5 Bb) (Ycl'v 1'5 Ad)} . 

Among these eight currents, four are independent, and we can verifY following relations: 

1 . 
3TJ5/-L + 2TJ8/-L , 

1 . 
3TJ6/-L + 2TJ7/-L , 

3
. 5 

- 2TJ6/-L - 3TJ7/-L , 

. 5 
-32TJ5/-L - 3 TJ8 /-L . 
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The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

3i 3i 1 1 
'fJlj.L 4'fJ5j.L - 4'fJ6j.L + "4'fJ7j.L - "4'fJ8j.L, 

3i 3i 1 1 
'fJ2j.L -4'fJSj.L - 4'fJ6j.L + "4'fJ7j.L + "4'fJ8j.L, 

IIi i 
'fJ3j.L - "4'fJ5j.L - "4'fJ6j.L + "4'fJ7j.L + "4'fJ8j.L , 

IIi i 
'fJ4j.L "4'fJSj.L - "4'fJ6j.L + "4'fJ7j.L - "4'fJ8j.L . 

In this subsection, we study the tetraquark currents where the diquark and anti-diquark 
components have a mixed flavor structure: 3f and 6" respectively. We can construct 
four diquark-antidiquark currents: 

which are independent. We can also construct eight currents by using quark-antiquark 
paIrs: 

'fJ5j.L (XaAa)(Yb'Yj.LBb) - (Xa'Yj.LAa)(YbBb) 

-(XaBa)(Yb'Yj.LAb) + (Xa'Yj.LBa)(YbAb) , 

'fJ6j.L (Xa'Yj.L'Y5 Aa)(Yb'Y5 Bb) - (Xa'YS Aa)(Yb'Yj.L'Y5 Bb) 

-(Xa'Yj.L'Y5 Ba)(Yb'Y5Ab) + (Xa'YsBa) (Yb'Yj.L'Y5 Ab) , 
'fJ7j.L (Xa'Yv Aa)(YbO" j.LvBb) - (XaO"j.LvAa)(Yb'Yv Bb) 

-(Xa'Yv Ba)(YbO"j.LvAb) + (XaO"j.LvBa)(Yb'Yv Ab), 

'fJ8j.L (Xa'Yv'Y5Aa)(YbO"j.Lv'YS Bb) - (XaO"j.Lv'Y5 Aa)(Yb'Yv'Y5 Bb) 

-(Xa'Yv'Y5Ba) (YbO"j.Lv'Y5 Ab) + (XaO"j.Lv'Y5 Ba)(Yb'Yv'YsAb) ' 
'fJ9j.L AabAcd{(XaAb)("Yc'Yj.LBd) - (Xa'Yj.LAb)(YcBd) 

-(XaBb) (Yc'Yj.LAd) + (Xa'Yj.LBb) (YcAd)} , 

'fJI0j.L AabAcd{(Xa'Yj.L'Y5Ab)("Yc'Y5Bd) - (Xa'Y5 Ab)(Yc'Yj.L'Y5 Bd) 

-(Xa'Yj.L'Y5 Bb)("Yc'Y5Ad) + (Xa'Y5 Bb) (Yc'Yj.L'Y5 Ad)} , 
'fJ11j.L AabAcd{(Xa'Yv Ab)(YcO"j.LvBd) - (XaO"j.LvAb)("Yc'YvBd) 
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-(XaiVBb) (YcO"/1vAd) + (XaO"/1vBb) (Yciv Ad)}, 

'fJ12/1 AabAcd{ (Xai
V
i5A b) (YcO" /1vi5 B d) - (XaO" /1vi5 A b) (Yci

v
i5B d) 

-(XaiVi5B b) (YcO"/1vi5 A d) + (XaO"/1vi5B b) (Yci
v
i5A d)} . 

Among these eight currents, four are independent, and we can verify following relations: 

2 
'fJ9/1 - 3'fJ5/1 + 'fJ6/1 - i'fJ7/1 , 

2 . 
'fJI0/1 'fJ5/1 - 3'fJ6/1 - 'l'fJ8/1 , 

. 2 
'fJll/1 3'l'fJ5/1 - 3'fJ7/1 - 'fJ8/1 , 

. 2 
'fJ12/1 3'l'fJ6/1 - 'fJ7/1 - 3'fJ8/1 . 

The diquark construction and mesonic construction are equivalent, and they can be re­
lated to each other: 

IIi i 
'fJl/1 -4'fJ5/1 + 4'fJ6/1 + 4'fJ7/1 - 4'fJ8/1' 

3i 3i 1 1 
'fJ2/1 Lf'fJ5/1 + Lf'fJ6/1 + 4'fJ7/1 + 4'fJ8/1 , 

IIi i 
'fJ3/1 4'fJ5/1 + 4'fJ6/1 + 4'fJ7/1 + 4'fJ8/1 , 

3i 3i 1 1 
'fJ4/1 -Lf'fJ5/1 + Lf'fJ6/1 + 4'fJ7/1 - 4'fJ8/1. 

3.6 Relations between (qq)(qq) and (qq)(qq) Structures 

3.6.1 General Idea 

In the previous sections, we find that there are always some relations between (qq) (qq) 
and (qq) ( qq) currents. In this section, we will do some detailed study on these relations. 
The quark field used here is denoted as qA(x) again. 

First, we consider the color and flavor structures. The interchange of both color and 
flavor does not need to be antisymmetric, due to the extra orbital and spin degrees of 
freedom. Therefore we can not use the Pauli principle such as q1qr = -qrq1 within the 
color and flavor spaces. Altogether there are four types of diquark (qq) and four types of 
quark-antiquark (qq). They are shown in Table 3.1, where the sum over repeated indices 
(a, b, ... for color indices, A, B,· .. for flavor indices) is taken. 

To construct a tetraquark by using (qq)(qq), the color structure is either 
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Table 3.1: Color and flavor structures of qq and qq 

(Color, Flavor) (3 e ,3f) (3e ,6f) (6e ,3f) (6e ,6f) 

Diquar k (qq) €abc€ABC(qAqB) €abc(qAqB + qBqA) €ABC(qAqB + qAqB) (qAqB + qBqA) + (a ~ b) 

(Color, Flavor) (le, If) (le, Sf) (Se,lf) (Se, Sf) 

Quark-antiquark (qq) (qAqA) )JIB(qAqB) Aab(qAqA) AI>( RAab(qAqB) 

or 

the flavor structure is 

(3 ® 3) ® (3 ® 3) = (3 EB 6) ® (3 EB 6) = 1 EB 8 EB 8 EB 10 EB 8 EB 10 EB 1 EB 8 EB 27. 

To construct a tetraquark by using (qq)(qq), the color structure is either 

or 

with the same flavor structure as before. In Table 3.2, we show all possible color and 
flavor structures of tetraquark currents T%1(F2). Here Fl denotes the flavor representation 
of tetraquark; F2 and C show the intermediate flavor and color representations of either 
diquark (antidiquark) or quark-antiquark. SABeD is the totally symmetric matrix. Be­
cause we would like to make a scalar tetraquark state, the diquark and antidiquark fields 
should have the same color, spin and orbital symmetries. Therefore, they must have the 
same flavor symmetry, which is either symmetric (6r ® 6r) or antisymmetric (3r ® 3r). 

If the orbital and spin structure between the two quarks (two antiquarks) are sym­
metric, then the color-flavor structure of diquark (antidiquark) should be anti-symmetric, 

h· h A B B A (-A-B -B-A) I thO 'fy w IC means qa qb = -qb qa qa qb = -qb qa . n IS case, we can ven 

T.1(3) _ T.8(3) _ T.8(3,6) _ r.10(3,6) _ T.8(6,3) _ r.1O(6,3) _ r.1(6) _ T.8(6) _ T.27(6) - 0 
3 -3 -3 -3 -6 -6 -6 -6 -6-' 

(3.16) 
If the orbital and spin structure between two quarks (two antiquarks) are anti-symmetric, 
then the color-flavor structure of diquark (antidiquark) should be symmetric, which means 
q:qf = qfq: (q:qf = qfq:)· Then we can verify 

r.1(3) _ r.8(3) _ r.8(3,6) _ T.10(3,6) _ T.8(6,3) _ T.10(6,3) _ r.1(6) _ T.8(6) _ r.27(6) - 0 
6 -6 -6 -6 -3 -3 -3 -3 -3-' 

(3.17) 
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Table 3.2: Color and flavor structures of tetraquark currents 

(qq)(ijij) (3 0 3) 0 (3 0 3) ---> 3 03 ---> Ie (303) 0 (3 0 3) ---> 6 06 ---> Ie 

(3 03) 0 (3 0 3) EabeEede'ABEECDE(q;;qf!)(ij'(ij5') == T:(3) EABEECDE(q;;qf! + q;;q;;) (ij<;!ijf? + qfq[!) 

---> 303 ---> 1r = 2EABEECDE(qAqB)(ijC ijD + ijCij[!) = 2T' (3) 

---> 303 ---> 8r EabeEcde A~P EABEECDP(qAqB)(ijC qD) == T:;(3) A~P EABEECDP(qAqB)(ijC qD + qC qD) == T:(3) 

---> 306 ---> 8r EabeEcde A~P EABEECEP(qAq{;')(qC qD) == 7'.:;(3,6) A~P 'ABEECEP(qAqB)(qC qD + qCqD) == 7~(3,6) 

---> 3 06---> lOr EobeEcdeSCDEEABE(qAqf!)(qCq5') == 7'.~0(3,6) SCDE'ABE(qAqf!)(ijCijD + ijCijD) == T~0(3,6) 

---76 ® 3 ---78f EabeEcde A~P EAEPECDE(qAqB)(ijC qD) = T:;(6,3) A~P EAEPECDE(qAqB)(qC ijD + ijfq[!) = T:(6,3) 

---> 6 03 ---> lOr EabeEcdeSABEECDE(qAqB)(qCijD) == T;0(6,3) SABEECDE(qAqB)(qCqD + qCqD) == T,;0(6,3) 

---76 ® 6 ---7 If €abeEcde(q~q~ + q~qt-)(fj;;ij:l + ij~ij:) (q;;qf! + q;;q;;) (q;;qf! + q;;q;; + (a ~ b)) 
= 2 Eabe Ecde(qAqB)(qAqB + qBq;[) == 2T;(6) = 2(qAqB)(qAqB + qBqA + (a ~ b)) == 2T~(6) 

---> 606 ---> 8r A~cEabeEcde(qAqB + qBqA)(ijAijJ' + qCqA) == 7'.:;(6) AJ¥,,(qAqB + qBqA)(qAqC + qCijA + (a ~ b)) == T:(6) 

---> 6 06 ---> 27r SABCDEabeEcde(qAqf!)(ijCqD) = T;7(6) SABCD (qAqB)(q<;!ijf? + ijfq;:) = T;7(6) 

(qq)(qq) (3 03) 0 (303) ---> 1 01 ---> Ie (303) 0 (3 0 3) ---> 8 08 ---> Ie 

(303) 0 (3 0 3) (q;;q;;)(qf!qf!) == T~(l) (q;;A,:;bq;;)(q~A';,dq!l) == T:(l) 
---7 1 ® 1 ---7 If 

---71 ® 8 ---78f Ait,-,(qAqA)(qBqC) == T8(1, 8) A~,-,(qA AabqA)(qB ACdqC) = T 8 (1, 8) 

---78 ® 1 ---78f AJ¥,,(qBqC)(qAqA) == T8(8, 1) AJ¥,,(qB AabqC)(qAACdqA) == T:(8, 1) 

---78 ® 8 ---7 If (qA A l'{BqB)(ijC A{jDqf?) == T~(8) (qA A':;b A:1BqB)(ijC A';,d A{jDqD) == T;(8) 

---> 808 ---> 8r AfrEEACEEBDP(qAqB)(ijCqD) == T 8 (8) Aj:;,EEACEEBDP(qA AabqB)(ijC Aed q5') = T:(8) 

---78(8)8 ---+ 8' A~P EACEEDEP(ijAqB)(ijCqD) == T 8' (8) A~PEACEEDEP(ijAAabqB)(ijCACdqD) == T:'(8) 

---78 ®8"---710£ EACESBDE(ijAqB)(ijfqf?) == T 'O (8) EACESBDE(ijAA~bqB)(ijCACdqD) == T;0(8) 

--->808 ---> 10~ EBDESACE(ijAqB)(ijCqD) == 1"0'(8) EBDESACE(qAAabqB) (ijC A';,d q5') = TiO'(8) 

---> 8 08 ---> 27r SABCD(ijAqB)(ijCqD) == T 27(8) SABCD (ijAAabqB)(qC AedqD) == 1';7(8) 

3.6.2 Tetraquark Transformations 

N ow let us discuss the Fierz rearrangement in order to relate (qq) (qq) and (qq) (qq) struc­
tures. First we perform it in the color and flavor spaces. To do this, it is convenient to 
consider the interchange of color indices: 

(q~qtq~qf) = ~(q~qtqfq~) + ~).~b).~d(q~q~ifiqf), 
).ab).cd(qAqBrfqD) = 16 (qAqBrfqD) _ ~).ab).cd(qAqBrfqD) (3.18) 

n n acbd 9 abba 3n n acdb' 

which are obtained by using 
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(3.19) 

We can obtain the same result for flavor structure. 
Let us take r;(3) as an example, and perform the simultaneous interchange of both 

color and flavor indices 

r 1(3) abe cde ( A B)(£-D) 
3 E E EABEECDE qa qb qc qd 

(q1qf) (q1qf) - (q1qf) (q~q~) - (q1qf) (q~ q~) + (q1qf) (qf (1) 

(q1qf) (q1qf) - (~( q1qf)( q1qf) + ~,\~b ,\~d( q1q~) (q~q:) ) 

-( q1qf)( q~ q~) + (~( q1qf) (q~ q~) + ~,\~b ,\~d( q1q~) (qf qt)) 

2 1 
3(q1qf)(q1qf) - 2,\~b ,\~d(q1q~)(q~q:) 

2 ( 1 A B -A -B 1 N N A C -B -D ) -3 3(qa qb )(qa qb ) + 2'\AB'\CD(qa % )(qa qb ) 

+!(~,\ab,\cd(qAqB)(q-Aq-B) + !,\N ,\N ,\ab,\cd(qAqC)(q-Bq-D)) 2 3 n n a c b d 2 AB CD n n a c b d 
4 1 1 
g( q1qf) (q1qf) - 3,\~b ,\~d( q1q~)( q~q:) - 3,\:tB'\~D( q1qf) (q~ qp) 

+ 1 \N \N \ab\cd( A C)(-B-D) "4AABACDAn An qa qc qb qd . 

Because we only consider the color and flavor structures, by changing the ordering of the 
second quark and third quark, we arrive at the result: 

4 1 1 
g( q1q1) (qf qf) - 3,\~b ,\~d( q~q1)( q: q~) - 3,\:tB'\~D( q~ q1) (qp qf) 

+ 1 \N \N \ab\cd(-B A)(-D c) "4AABACDAn An qb qa qd qc . 

~T1(1) _ !T.1(1) _ !T1(8) + !r.1(8) (3.20) 
9 1 3 8 3 1 4 8 

Next we perform the Fierz rearrangement in the Lorentz indices. The formulae is [67, 
131]: 

~ (1 )a8( 1 )1'/3 + ~ (r f.L)a8(rf.L)I'/3 + ~ ((J f.Lv) a8( (Jf.LV)I'/3 

-~(rf.Lr5)a8(rf.Lr5)1'/3 + ~(r5)a8(r5)1'/3. 
By using this equation, we can obtain various relations such as 

(( q1 f Cqf) (rt C( qff) 

(3.21) 
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1 1 
-4((q~fCC(ijff)(rtqf) - 4((q~fCrJ1C(ijff)(rtrJ1qf) 

1 1 
-"8((q~f C(}J1y C(ijff)(rt (}J1Y qf) + 4((q~f CrJ1r5C(ijff) (rtr J1r5qf) 

- ~(( q~f Cr5 C( ijff) (rt r5qf) 

1 (-D A)(-:C B) 1 (-D A)(-:C J1 B) 1 (-D A)(-:C J1Y B) -4 qd qa qc qb + 4 qd rJ1qa qc r qb +"8 qd (}J1yqa qc () qb 

1(_D A)(-:C J1 B) 1(_D A)(-:C B) +4 qd rJ1r5qa qc r r5qb - 4 qd r5qa qc r5qb . (3.22) 

In order to label the Lorentz structure for a scalar tetraquark field, we introduce S, 
V, T, A and P instead of T: 

For example, 

S for (qTCr5q)(ijr5CijT) and (ijq) (ijq) , 
V for (qTCrJ1r5q)(ijrJ1r5CijT) and (ijrJ1q) (ijr J1q) , 
T for (qTC(}J1yq)(ij(}J1YCijT) and (ij(}J1yq) (ij(}J1Yq) , 

A for (qTCrJ1q)(ijr J1CijT) and (ijrJ1r5q) (ijr J1r5q) , 
P for (qTCq)(ijCijT) and (ijr5q) (ijr5q) . 

(3.23) 

Diquarks belonging to T and A have a symmetric Lorentz structure (see Eq. 3.16) 

(3.24) 

so they have an anti-symmetric color-flavor structure. Therefore, currents having the 
symmetric color-flavor structure vanish, such as 

Similarly, diquarks belonging to S, V and P have an anti-symmetric Lorentz structure 
(see Eq. 3.17) 

(C)a(3 = -(C)(3a, (CrJ1r5 )a(3 = -(CrJ1r5 )(3a, (Cr5 )a(3 = -(Cr5 )(3a, (3.26) 

and so they have a symmetric color-flavor structure. 
By now, we have known the flavor, color and Lorentz structures of scalar tetraquark 

fields, for both (qq) (ijij) and (ijq) (ijq) structures, and are ready to derive some relations. 
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3.6.3 Specifying the flavor structure 

In order to establish the relations, we need to specify the flavor quantum numbers of the 
tetraquark currents. As we are considering in this work, let us choose the flavor octet 
states (3 ® 3) ® (3 ® 3) -+ 3 ® 3 -+ 8f for the illustration. 

In this case, diquarks and antidiquarks have an anti-symmetric flavor structure, and 
we can verify 

(3.27) 

Therefore, there are five types of (qq)(qq) fields which are non-zero and independent: 

8 S(3) v:S(3) r.S(3) AS(3) pS(3) 
3'3'6'6'3 , (3.28) 

while all ten types remain for the (qq)(qq) fields: 

8S(S) lI,S(S) ]:S(S) AS(S) }JS(S) 8 S(S) l1.S(S) jr,S(S) AS(S) pS(S) 
1,1,1,1,1,S,S,S,S,S, (3.29) 

Among these ten (qq)(qq) fields, only five are independent. We can derive the following 
five equation by applying the Fierz transformation for the (qq)(qq) fields: 

p.S(S) 
S 

(3.30) 

Employing the five currents on the left hand sides of Eqs. (3.30) as independent ones, 
and applying the Fierz transformation, we can establish the following relations among 
the five (qq)(qq) and five (qq)(qq) structures: 

8~(3) 

v:S(3) 
3 

r.S(3) 
6 

AS(3) 
6 

pS(3) 
3 

(3.31) 



3.6. RELATIONS BETWEEN (QQ)(QQ) AND (QQ)(QQ) STRUCTURES 73 

3.6.4 Specifying the color structure 

For completeness of mathematical structure, one can specify the color quantum numbers 
for the currents. For illustration, let us consider the color structure (3 ® 3) ® (3 ® 3) ---+ 

3 ® 3 ---+ Ie. In order to establish the relations between (qq)(ijij) and (ijq)(ijq) currents, 
we find that we need two flavor structures: (3f ® 3f) ® (3f ® 3f) ---+ 3f ® 3f ---+ If and 
(3f ® 3f) ® (3f ® 3f) ---+ 6f ® 6f ---+ If. 

In this case, diquarks and antidiquarks have an anti-symmetric color structure. By 
using the Pauli principle, we can verify 

(3.32) 

Therefore, there are five types of (qq)(ijij) fields, which are non-zero and independent: 

Sl(3) V;1(3) T 1(6) A 1 (6) p1(3) 
3,3'3,3'3· (3.33) 

The single (ijq) ( ijq) fields can not have an anti-symmetric color structure. Therefore, we 
need to use their combinations. By using Eq. (3.19), (ijq)(ijq) fields can be combined to 
have an anti-symmetric color structure: 

1 1 
(ij1q1) (ij~ q~) - 3 (ij1q1) (ij~ q~) - "2 )..~b )..~d( ij1q~) (ij~ q:) 

~Sl(l) _ ~Sl(l) = Sl(l) (3.34) 
3 1 2 8 - 3 

Altogether there are ten types of non-vanishing (ijq)(ijq) currents: 

Sl(l) V;1(1) ~1(1) A 1(1) p1(1) Sl(8) V;1(8) ~1(8) A1(8) p1(8) 
3,3,3,3,3'3,3'3'3,3· 

Once again, among them only five are independent 

S~(8) 

V
3
1 (8) 

T 1(8) 
3 

A1(8) 
3 

p1(8) 
3 

The relations between (qq)(ijij) and (ijq)(ijq) structures are: 

Sl(3) _ _~Sl(l) _ ~V;1(1) + ~~1(1) _ ~A1(1) _ ~p1(1) 
3 - 2 3 2 3 432323' 

(3.35) 
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(3.36) 

3.6.5 Specifying the Lorentz structure 

Finally, let us consider the case where the Lorentz structure is specified. As an illustration, 
let us consider a tetraquark current (qTC"/5q) (ij"/5 CiF)· Possible color structures are 
(303) 0 (30 3) ~ 303 ---+ Ie and (3 ® 3)0 (303) ---+ 60 (3 ---+ Ie; and possible flavor 
structures are (303) 0 (30 3) ---+ 30 3 ---+ If and (30 3) 0 (30 3) ---+ 60 (3 ---+ If. 

By using the Pauli principle, we can verify 

(3.37) 

Therefore, there are two currents which are non-zero and independent: 

Now from the combination of quark and antiquark, possible color structures are (303) 0 
(303) ---+ I 0 I ---+ Ie and (303) 0 (303) ---+ 8 ® 8 ---+ Ie; and possible flavor structures 
are (3 ® 3) 0 (3 0 3) ---+ I 0 I ---+ If and (3 0 3) 0 (3 0 3) ---+ 80 8 ---+ If. Therefore, 
there are four non-vanishing currents: 

p~l(l) (q~c"/5qf)(ij~"/5Cijf) , 
p~l(l) ).~b ).~d(q~C"/5q~)(ijt"/5Cij:) , 

p~1(8) ).1J.B).~D(q~C"/5qf)(ij~"/5Cqf) , 
p~1(8) ).1J.B).~D).~b ).~d( q~C"/5q~) (ijf"/5 Cijf) . 

The Lorentz structure is still specified to be (qTC"/5q) (ij"/5 CijT). However, if we inter­
change the second quark and third antiquark as done in Eq. (3.20) within the color and 
flavor spaces structures, They are now "(ijq)(ijq)" currents. Among them, only two are 
independent, through the following relations: 

?:,l(l) 
8 , 

32 p'l(l) _ ~ ?:,l(l) 
9 1 3 8 . (3.38) 
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Finally, relations between the (qq)(qq) and "(qq)(qq)" currents are 

~ p/l(l) _ p'1l(1) 
3 I 8 

~ p~l(l) + p~l(l) . 
3 

(3.39) 
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Chapter 4 

Color Structure 

In the previous chapter, we find that for all the currents constructed by using quark­
antiquark pairs, only half of them are independent. Therefore, all the tetraquark currents 
which contain two color octet quark-antiquark pairs can be written as combinations of 
the currents which just contain two color singlet quark-antiquark pairs. In this chapter, 
we will study this, and we will find that every tetraquark current can be written as a 
combination of the currents which just contain two color singlet quark-antiquark pairs. 
This can also be proved in the case of pentaquark that every pentaquark current can 
be written as a combination of the currents which just contain one color singlet quark­
antiquark pair and one color singlet three-quark baryon field. 

4.1 Tetraquark Fields 

Every tetraquark current can be written as a combination of two quark spinors, two 
antiquark spinors, a Lorentz matrix L (Lorentz space), a color matrix C (color space), a 
flavor matrix F (flavor space) and some derivatives of.t 

(4.1) 

where the sum over repeated indices (p, 1/, ... for Dirac spinor indices, a, b, ... for flavor 
indices, and i, j, ... for color indices) is taken. The quark spinor q may contain derivatives 
and so there is an extra Lorentz index p. 

We want to prove that every tetraquark current can be expressed by two color singlet 
quark-antiquark pairs (ifqi)(qjqj). To do this, we need to perform some transformations 
in color and Lorentz spaces. 

First we simplify the Lorentz indices to make transformations easier. If two derivatives 
contract with each other, we write them within the quark spinors 

(4.2) 

77 
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If "IJ.L does not contract with any other one, which means that its Lorentz index remains 
in the end, we write it with one quark spinor: 

This can always be done since we can change the position of "I-matrices: 

2gJ.Laiinpq2 - iinp'Ya(rrJ.Lq2) 

::::} cliinpQ2 + c2iinp'YaQ; . 

This may produce some extra metric matrixes gJ.LV, which we keep to the end. 

(4.3) 

(4.4) 

If 'YJ.L contracts with a derivative f)J.L which is in the same quark-antiquark pair, we 
can use the same procedure. If 'YJ.L contracts with another 'YJ.L which is in the same quark­
antiquark pair, we can contract them directly 

(4.5) 

If 'YJ.L contracts with a derivative f)J.L which is in the other quark-antiquark pair, we 
need to use the Fierz transformation to put them together 

(iii" '1 'YJ.L)(' . '2 Q2)(ii3' . '3) (f)J.L Q4 ) ( 4.6) 

::::} I)iil"'l 'YJ.L)r(f)J.LQ4 )(ii3· . '3)r(- . '2 Q2) . 
I' 

This may produce some extra r matrices. After contracting all these rmatrices, we arrive 
at following expression 

_ pabcdC .. (=::ir roJ)(-krJ.Lv,,' l) rJ - 1Jkl Qa J.Lv···'-1b Qc Qd' (4.7) 

where the matrix r w" can be written as a combination of 1, 'YJ.L' 'Y5 and (J' J.LV' The previous 
coefficient LJ.Lvpa is written inside with either r J.LV'" or rJ.Lv .... By using the Eq. (4.4) again, 
every tetraquark current can be written as' a combination of five currents 

(4.8) 

where the quark spinors may contain some r matrixes and derivatives. The currents 
rJA and rJP can be written in the form of rJ v and rJs respectively. However, we will find 
that they are necessary to compose a complete and independent basis. For tetraquark of 
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different quantum numbers, the amount of independent currents may change, but there 
are five independent currents at most, which are just these five ones. 

There are two kinds of color structures, which are Ufqi)(qjqj) and (qi)..ijqj) (qk)"klql) . 
. The flavor symmetry of diquark can be both symmetric and antisymmetric. Here we fix 
it to be symmetric, and the antisymmetric case can be similarly studied. Therefore, every 
tetraquark current can be written as a combination of following ten currents 

(iii q~) (q~q~) + (q2 {:;> q4) , 

(iii)..0q~)(q~)..klq~) + (q2 {:;> q4), 

(qhJlq~)(q~I'Jlq~) + (q2 {:;> q4) , 
(iii)..ijI'Jlq~)(q~)..kOJlq~) + (q2 {:;> q4), 

( =i i)(-k JlV k) + ( ) ql (J Jlvq2 q3 (J q4 q2 {:;> q4 , 
( =i \ n j) (-k \ n JlV I) + ( ) ql /\ij(J Jlvq2 q3/\kl(J q4 q2 {:;> q4 , 

(iiiI'JlI'5q~)(~I'JlI'5q~) + (q2 {:;> q4) , 
( ~\n j)(-k\n Jl 1)+( ) ql/\ijl' Jll'5q2 q3/\kO 1'5q4 q2 {:;> q4 , 

(iiiI'5q~)(q~1'5q~) + (q2 {:;> q4) , 
(iii)..01'5~)(~)..k05qi) + (q2 {:;> q4), 

(4.9) 

where the numbers 1, 2, 3 and 4 represent quark flavors, and the subscripts 1 and 8 
represent color singlet and octet quark-antiquark pairs respectively. 

By performing some transformations, we will see that these ten currents are not 
independent. First we change their color structure 

(iii~)(~q~) 

(qt q~) (q~q~) .. 0)..kl 

Then we change their Lorentz structure by using the Fierz transformation 

(iii q~) (q§qi) + (q2 {:;> q4) 

1{ s v 1 TAP - 4 TJl + TJl + 2TJ1 - TJl + TJl } . 

We obtain ten equations in all 

(4.10) 

(4.11) 



80 CHAPTER 4. COLOR STRUCTURE 

- ~ {477r - 277i - 277f - 477f}, 

-~{ 477~ - 277r - 277: - 477f} , 

1{ s T P} - 4 12771 - 2771 + 12771 , (4.12) 

1{ S T P} - 4 12778 - 2778 + 12778 , 

-~{ -477r - 277i - 277f + 477i}' 

-~{ -477~ - 277r - 277: + 477f} , 

1{ S v 1 TAP 
- 4 771 - 771 + 2771 + 771 + 771 } , 

1 {S v 1 TAP} 
-4 778 - 778 + 2778 + 778 + 778 . 

Solving these linear equations, we find that there are five independent currents at most 
(some of them may disappear). In other words, the rank of this 10 x 10 coefficient matrix 
is five at most. Any five currents among (4.8) can express all the ten currents. These five 
currents can be either the five Ie ® Ie currents or the five 8e ® 8e currents. 

If the diquark has a antisymmetric flavor structure, the procedure is similar. There­
fore, we arrive at our final conclusion that the tetraquark currents can be written as a 
combination of two color singlet quark-antiquark pairs (they can also be written as a 
combination of two color octet quark-antiquark pairs): 

7S Iv IT lA Ip 
- "6 771 - 2771 - 4771 + 2771 - 2771 , 

2 s Iv A 2P - 771 + "3771 + 771 + 771 , 

sIT P 
-6771 + "3771 - 6771 , 

2 S vIA 2 P 
771 + 771 + "3771 - 771 , 

Is Iv IT lA 7p 
- 2771 + 2771 - 4771 - 2771 - "6771 

(4.13) 

To know more about this, we go on to study (ijij)(qq) currents. We use the local scalar 
tetraquark currents as an example. Because the anti-diquark and diquark must have the 
same color, spin and orbital symmetries, their flavor symmetry must be the same, which 
is either 3 ® :3 or 6 ® 6. However, half of them drop due to the Pauli principle. For 
instance 

( 4.14) 
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Eventually, we end up with five independent currents 

(4.15) 

The currents rJf, rJY, rJf, rJ~ and rJf all disappear. There are ten (qq) (qq) currents 
rJf ... rJ§, and five of them are independent. By using the Fierz transformation, we can 
establish the relations between the (qq)(qq) currents and the (qq)(qq) currents 

18 Iv IT lA Ip 
- 4rJ1 - 4rJ1 + SrJl - 4rJ1 - 4rJ1 

8 1 v 1 A P 
rJl - 2rJ1 + 2rJ1 - rJl , 

8 1 T P 
3rJl + 2rJ1 + 3rJl , (4.16) 

8 1 v 1 A P 
rJl + 2rJ1 - 2rJ1 - rJl 

18 Iv IT lA Ip 
- 4rJ1 + 4rJ1 + SrJl + 4rJ1 - 4rJ1 

Now we know the origin of our conclusion. This is due to the Pauli principle. If the hadron 
contains two quarks and two antiquarks, after fixing the Lorentz and flavor structures, 
the color representation of two quarks (antiquark) is also fixed to be either 3 or 6 (6 or 
3). However, the color representation of the quark-antiquark pair can be both 1 and 8. 
Therefore, the currents constructed by two color singlet quark-antiquark pairs and two 
color octet pairs are not independent. 

4.2 Pentaquark Fields 

From the Young tableau, the only one anti-quark inside the pentaquark has two boxes, 
while it should be accompanied with one quark (one box) in order to construct a color 
singlet. Thus, by using the Fierz transformation, we can always change every field to a 
combination of color singlet meson field and color singlet baryon field in the following 
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way: 

P(x) (<f(X)fOXqb(X)) (qCT(x)Cfoyqd(X)) fozqe(x) ( 4.17) 

L (<f(x)fixqa(x)) Ebcd (IT(x)CfiyqcX)) fiZqd(x) , 

where the flavor indices are omitted, due to that we need to change the position of quarks. 
If we change one antiquark to two quarks, we obtain pentaquark currents (qq)(qqq). 

There are three ways to compose a color singlet: 

1. (3 ® 3) ® (3 ® 3 ® 3) =? 1 ® 1 =? 1 ., 

2. (3 ® 3) ® (3 ® 3 ® 3) =? 8 ® (3 ® 3) =? 8 ® 8 =? 1 , 

3. (3 ® 3) ® (3 ® 3 ® 3) =? 8 ® (6 ® 3) =? 8 ® 8 =? 1 

The second way and the third way are equivalent, for the color representation 8 (qqq) 
has a mixed symmetry, and we can choose two quarks which have an antisymmetric 
color structure (ifP A;qqq) Eijk (qiqj Aklql). Just as we have proved, this can be expressed by 
(qlql)Eijk(qiqjqk), which is the first way. 

This analysis can be applied to the system which contains more quarks. The color 
quantum number of quark and antiquark is 3 and 3 respectively. In order to compose 
a color singlet multiquark current, there are two constructions: one is (qq) ... (qq) , the 
other is (q ... q) (q ... q). The amount of these combinations in different constructions are 
the same. However, because of the Pauli principle, only one combination in the second 
construction remains. Therefore, only one combination in the first construction remains, 
which we can choose to be (qq)lC· .. (qq)lC. 

The tetraquark and pentaquark states are different from the currents. However, due 
to Pauli principle, we can obtain the same result. 

The quark-antiquark pair can have color representations 1 (qiqi) and 8 (qiAijqj). In 
the quark model, we can always fix the flavor structure of the diquark, either symmetric 
(3) or antisymmetric (6). Take the symmetric case as an example. Considering the color 
structure, there are two combinations 

1. Tf = c5ikc5jl(iiirhq~qi) + c5ikc5jl(iiirhq~qD , 

2. T[ = AikAjl(iiirhq~qi) + AikAjl(iiirhq~q~) , 

By using of Eqs. (4.10), we can verify 

4Tf = 3Tf, (4.18) 

which means that the states having color structures 1 ® 1 and 8 ® 8 are not independent. 
This relation may be changed if we consider other structures. 
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We can apply this analysis to pentaquark states, and obtain the same result. 
Having done the analysis on the color structure, we can follow these procedures to 

study the SU(3)J flavor structure. There are two tetraquark states which are flavor sin­
glets. In the quark-antiquark constructions, they are (iJaqa) (iJbqb) and (iJa)..~bqb) (iJc)..~dqd), 
where a, b, c, d are flavor indices, and)" is the matrix in the flavor space. Using the 
same method, we find that they are not independent. 

In conclusion we have studied the color structure of the tetraquark and the pentaquark 
states first by using hadronic currents, and then by using group theory in the quark model. 
We have found that there is only one color structure for tetraquark and pentaquark states, 
just as for the conventional mesons and baryons. 
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Chapter 5 

QCD Sum Rule Study of udss 

From this chapter, we will study several tetraquark candidates as well as some bottom 
baryons by using the method of QCD sum rule. As the first example, we shall study the 
tetraquark udss with the quantum numbers JPc = 0++ in this chapter. 

Historically, tetraquark mesons were investigated long ago as an attempt to explain 
relatively light masses and excess of states in scalar channels [37,93-95, 174]. Just as in 
the exotic baryons, it is interesting to consider genuine exotic states in the meson sector 
whose minimal component is qqfjfj. Tetraquark states of udss component have been 
studied as candidates of such exotic states. Since they may be obtained by replacing one 
of ud diquarks in e+ by an s antiquark, similarities between e+ and udss have been 
discussed, though precise analogy is a dynamical question [108,123,186]. 

In the former studies, the tetraquark udss of JP = 1+ was investigated in detail, where 
it was shown that the state has a relatively low mass and a narrow width decaying into 
K* K in the flux tube model [105]. The narrow decay width is associated with the fact 
that K K channel is forbidden due to the conservation of parity and angular momentum, 
which partly motivated the study of the 1+ channel. 

In principle, it is also possible to study other channels of the udss tetraquarks [33, 
52,105]. From a naive point of view of mass, it is natural to investigate 0+ scalar states. 
In contrast to fjq mesons, the tetraquark does not need orbital excitation to form the 
quantum number 0+, but all quarks may occupy the lowest state. In this case, it is 
shown that the tetraquark should have isospin one I = 1. This is the object that we 
would like to study in this chapter. 

In this chapter, we perform QCD sum rule analyses for the scalar (JP = 0+) and 
isovector (I = 1) exotic tetraquark udss. The independent currents of 1= 1 and JP = 0+ 
have been constructed in Section 3.1. We then consider two-point correlation functions 
first by using a single current of various types. It turns out that many of them do not 
achieve a good sum rule. Therefore, we attempt linear combinations of two independent 
currents. This method was first proposed in Ref. [172]. We then find that there are several 
cases with good Borel stability, indicating the mass of the tetraquark around 1.5 Ge V. 
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We also investigate the reliability of the sum rule not only from the Borel stability but 
also from the dependence on the threshold value and the amount of the pole contribution 
in the total sum rule. We also mention the convergence of OPE. 

The difficulties to make a good sum rule for exotic particles of high dimensional 
operators were nicely discussed in a recent work by Kojo et al. [115]. They proposed 
a sum rule using a linear combination of two-point functions rather than currents in 
order, for instance, to suppress large contributions from low dimensional terms that are 
irrelevant to non-perturbative properties of hadrons. They have successfully achieved a 
good sum rule that satisfy the necessary requirements. In our present study, our strategy 
is different from theirs, but the consideration along their idea is certainly important in 
the discussion of the tetraquark also. 

5.1 Analysis of Single Diquark Currents 

The scalar tetraquark currents have been classified in the previous section 3.1. There are 
five independent non-vanishing currents: 

86 = (Sa'Y5CSn(U~C'Y5db), 
% = (Sa'Y/l-'Y5CSn(U~C'Y/l-'Y5db), 
T3 = (saCY/l-VCsn(u~Ccy/l-Vdb)' 
A3 = (sa'Y/l-Csn(U~C'Y/l-db) , 
P6 = (saCsn(U~Cdb). 

We can also construct ten currents by using quark-antiquark pairs: 

81 (XaAa)(YbBb) + (XaBa)(YbAb) , 

8s (XaAabAb) (YcAcdBd) + (XaAabBb)(YcAcdAd) , 

VI (Xa'Y/l-Aa)(Yb'Y/l- Bb) + (Xa'Y/l-Ba)(Yb'Y/l-Ab) , 

Vs (Xa'Y/l-AabAb)(Yc'Y/l-AcdBd) + (Xa'Y/l-AabBb) (Yc'Y/l-AcdAd) , 
Tl (XaCY/l-vAa)(Ybcy/l-V Bb) + (XaCY/l-vBa)(Ybcy/l-V Ab), 

Ts (XaCY/l-vAabAb) (Yccy/l-VAcdBd) + (XaCY/l-vAabBb)(Yccy/l-VAcdAd) , 

Al (Xa'Y/l-'Y5 Aa)(Yb'Y/l-'Y5 Bb) + (Xa'Y/l-'Y5 Ba)(Yb'Y/l-'Y5Ab) , 

As (Xa'Y/l-'Y5AabAb)(Yc'Y/l-'Y5AcdBd) + (Xa'Y/l-'Y5AabBb)(Yc'Y/l-'Y5AcdAd) , 

PI (Xa'Y5 Aa)(Yb'Y5 Bb) + (Xa'Y5Ba)(Yb'Y5Ab) , 

Ps (Xa'Y5AabAb)(Yc'Y5AcdBd) + (Xa'Y5 AabBb) (Yc'Y5 AcdAd) . 

(5.1) 

Among these ten currents, five are independent. By using them as well as their liner com­
binations, we can perform a QCD sum rule analysis. In this section, we perform a QCD 
sum rule analysis using the five independent diquark-antidiquark currents, separately. 
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Let us first outline briefly how we performed the OPE calculation. For illustration, let 
us take P6. Then 

i J d4xeiQX(OITP6(X)PJ(O)IO) 

Tr[c(s~af (X))TCS~bf (x)]Tr[S~fa( _x)C(S~fb( -x)f C] 
+Tr[C(s~af (x)fCS~bf (x)]Tr[S~fa( _x)C(S~fb( -x)fC]. 

For the quark propagator, we use 

(OIT[qa(x )t/(O)]IO) 
·'ab . \n 1 ,ab 

W A 2 /\ab Gn (/-tv A A /-tV) U (_) 
27f2X4 X + 327f22 gc /-tv x2 CY X + xCY ~ 12 qq 

8abx2 8abm i8abm i8abm2 
+ 192 (gcijcyGq) - 47f2X~ + 48 Q (ijq) x + 87f2X2Q x. 

The two-point function is then divided into three parts: 

(5.2) 

(5.3) 

1. Terms proportional to 8ab (a, b being color indices), where no soft gluon is emitted. 
The lowest term of this kind is the continuum term. 

2. Terms containing one Aab (color matrix), where one soft gluon is emitted. The 
lowest terms of this type contain condensates such as (gijcyGq) (q = u and d) and 
(g8cyGS). 

3. Terms containing two Aab'S, where two soft gluons are emitted. The lowest terms 
of this type contain the condensate (g2G2). 

We have performed the OPE calculation for the spectral function up to dimension 
eight, which is up to the constant (SO) term of p( s). Actual computation is very com­
plicated. We have performed this calculation using Mathematica with FeynCalc [66]. 
M athematica programs are available from the authors. The results are 

S4 ms2s3 ms4 ms(8s) (g2GG) 2 

614407f6 30727f6 + (2567f6 - 1927f4 - 122887f6)s 

( 
m~(8s) m;(g2GG) ms(g8cyGS) (ijq? (8S)2) +- + - +--+--s 

327f4 40967f6 647f4 247f2 247f2 
(5.4) 

m;(ijq)2 m;(8s)2 (ijq) (gijcyGq) ms(g2GG) (8S) 
- 127f2 + 487f2 + 247f2 + 15367f4 

(8S) (g8cyGS) m;(g2GG) 
+ 247f2 - 20487f6 ' 

S4 5ms2s3 ms4 ms(8s) 5(g2GG) 2 

153607f6 - 15367f6 + (647f6 + 247f4 + 61447f6 ) S 
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+( _ m~(8s) _ llm;(g2GG) + ms(g8cyGS) _ (qq)2 _ (8S)2)S 
81f4 20481f6 321f4 121f2 121f2 

(5.5) 

2m; (qq)2 m;(8s)2 (qq) (gqcyGq) 
+ 31f2 + 121f2 121f2 

7ms(g2GG) (8S) (8S) (g8cyGS) 
+ 7681f4 - 121f2 ' 

S4 ms 2 s3 3ms 4 ms (8S) (g2GG) 2 

51201f6 - 1281f6 + (641f6 + 161f4 + 15361f6 )S 

( 
3m~ (8S) m; (g2GG)) 

+ - 81f4 - 2561f6 S (5.6) 

m;(qq)2 m;(8s)2 ms(g2GG) (8S) m;(g2GG) 
+ 1f2 + 41f2 + 1921f4 - 2561f6 ' 

8
4 ms 2 S3 ms 4 (g2GG) 2 

307201f6 10241f6 + (1281f6 + 61441f6 )S 
+( _ m~(8s) _ 3m;(g2GG) _ ms(g8cyGS) + (qq)2 + (8S)2)S 

161f4 20481f6 641f4 241f2 241f2 
(5.7) 

m;(8s)2 (qq) (gqcyGq) ms(g2GG) (8S) (8S) (g8cyGS) 
+ 241f2 + 241f2 + 2561f4 + 241f2 ' 

S4 ms2s3 ms4 ms(8s) (g2GG) 2 

614401f6 - 10241f6 + (2561f6 - 641f4 - 122881f6)S 

+( _ m~(8s) + 3m;(g2GG) + ms(g8cyGS) _ (qq)2 _ (8S)2)S 
321f4 40961f6 641f4 241f2 241f2 

(5.8) 

m;(qq)2 m;(8s)2 (qq) (gqcyGq) ms (g2GG) (8S) 
+ 41f2 + 481f2 241f2 5121f4 

(8S) (g8cyGS) m;(g2GG) 
241f2 20481f6 · 

In these equations, q represents a u or d quark, and S represents an S quark. (qq) and (8S) 
are dimension D = 3 quark condensates; (g2GG) is aD = 4 gluon condensate; (gqcyGq) 
and (g8cyGS) are D = 5 mixed condensates. As usual we assume the vacuum saturation 
for higher dimensional operators such as (OlqqqqIO) rv (OlqqIO) (OlqqIO). There is a minus 
sign in the definition of the mixed condensate (gsqcyGq), which is different with some 
other QeD sum rule calculation. This is just because the definition of coupling constant 
gs is different [85,177]. To obtain these results, we keep the terms of order O(m~) in the 
propagators of a massive quark in the presence of quark and gluon condensates: 

(5.9) 
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From these expressions, we observe the followings: 

• The coefficients of the lowest dimension, or of the leading term in powers of s, have 
the relations c~ci = c~l and c~l = 1/2c~{ These are the consequences of chiral 
symmetry at the perturbative level [83] . 

• As empirically known, the terms of quark condensates have important contributions 
to the sum rule. 

For numerical calculations, we use the following values of condensates [71,85,89,99, 
140,148,177,179]: 

(qq) = -(0.240GeV)3 , 

(8S) = -(0.8 ± 0.1) x (0.240GeV)3 , 

(g;GG) = (0.48 ± 0.14)GeV4 , 

ms (lGeV) = O.l1GeV, 

(gsquGq) = -M6 x (qq) , 
M6 = (0.8 ± 0.2)GeV2. 

(5.10) 

In Fig. 5.1, we show all five spectral densities p(s) as functions of s. From the definition 
of (1.23) in Chapter 1, the spectral densities should be positive definite quantities. In 
practical calculations, however, the positivity may not be necessarily realized, if the OPE 
up to finite terms does not work due to, for instance, bad choice of currents, weak coupling 
to physical states and so on. In the present analysis, we find that among the five cases, 
two functions of V6 and P6 currents show such a bad behavior. In particular, the P6 

current takes relatively large (in magnitude) negative values in an expectedly important 
region of s rv several GeV. Sum rule values then become negative when the threshold 
value is chosen around So rv several Ge V2, which is not physically acceptable. The T3 
current changes the sign twice as in the case of V6 and P6 currents, from positive to 
negative and again to positive values. But the sum rule values take positive values for 
So rv several Ge V2 . 

The tetraquark currents 86 and A3 are constructed by diquark fields which correspond 
to 180 and 381 in the non-relativistic language, where the two quarks can be in the ground 
state s-orbit. In contrast, the currents V6 and P6 correspond to linear combinations of 
3 Pt, and 3 Po, respectively, where one of the two quarks is in an excited p-orbit. The T3 
current is a linear combination of 381 and 1 Pt. Therefore, we verify an empirical fact that 
the sum rule constructed by currents having the s-wave components in the non-relativistic 
limit works better than those dominated by p-wave components. For completeness, we 
show the spectral densities with numerical coefficients for the three better cases, A3, T3 
and 86 
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Figure 5.1: Spectral densities PS6, PV6, PT3, PA3 and PP6 as functions of 8, in units of 
GeV8

. 

-1.16 X 10-6
8 + 1.13 X 10-6

, 

PA3 3.39 X 10-8
8

4 
- 1.23 X 10-8

8
3 + 8.14 X 10-8

8
2 

+1.17 x 10-6
8 - 1.08 X 10-6

, 

2.03 X 10-78
4 

- 9.83 X 10-883 - 4.53 X 10-782 

+3.34 X 10-8
8 + 2.41 X 10-7 , 

6.77 X 10-884 - 4.10 X 10-883 - 1.17 X 10-782 

(5.11) 
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-2.35 X 10-6s + 2.23 X 10-6 , 

PS6 1.69 X lO-s S4 - 4.10 X 10-9 S3 + 2.55 X lO-S S2 

+1.17 x 1O-6s - 1.08 X 10-6 . 

91 

From these expressions, we observe that the convergence of the series does not seem very 
good. Nevertheless, let us proceed further. 

As explained in the beginning of this chapter, there are two important parameters 
remaining in the sum rule analyses; they are the threshold value So [Gey2] and the Borel 
mass MB [GeY]. For a good sum rule, the predicted masses should not depend on these 
two parameters strongly with sizable pole contribution (Borel window). In Fig. 5.2, we 
show the masses of the tetraquark as functions of the Borel mass for several threshold 
values So (Borel curves). We observe that the Borel mass dependence is somewhat strong 
for the currents 86 and A3 in the region 1 < M~ < 2 Ge y2, which is expected to be a 
reasonable choice of the Borel mass. For these currents 8 6 and A3 , however, we see that 
the minimum occurs at around 3 Gey2 when So is varied in the region M~ ;c, 1.5 Gey2. 
(For the current 86 , the mass of So = 2 Gey2 is far above the region shown in the figure.) 
For this reason, we consider that So = 3 Ge y2 is a reasonable choice which we will mainly 
use for the estimation of the mass of the tetraquark in the following sum rule analyses. 
At this So value, the mass of the tetraquark turns out to be about 1.6 GeY. For the T3 
current, the Borel stability seems better. The result, however, depends on the threshold 
value So to some extent. However, it is interesting to see that the mass of the tetraquark 
is about 1.6 Ge Y when So rv 3 Ge y2. 

From the analysis of the single current of the diquark construction, we expect that 
the mass of the tetraquark is about 1.6 GeY, although the stability against the variation 
of both the Borel mass and the threshold parameter is not simultaneously achieved. As 
we will see, however, a suitable linear combination will improve the stability. 

5.2 Analysis of Single Mesonic Currents 

In this section, we perform QeD sum rule analysis using the ten mesonic currents, 81,s, 
VI,S, Tl ,s, AI,S and H,s, separately. Here we only show two important spectral densities: 

pvs(s) = 
S4 19ms2s3 5ms4 ms(qq) ms(ss) 17(g2GG) 2 

1105927f6 - 552967f6 + (23047f6 - 4327f4 + 4327f4 + 2211847f6 )s 

( m~(qq) 5m~(ss) 13m; (g2GG) ms(gqGq) 5ms(gsGs) 
+ 727f4 - 2887f4 - 245767f6 + 23047f4 - 46087f4 

(qq)2 (SS)2 (qq) (ss)) m;(qq)2 5m;(ss)2 (5.12) 
+ 4327f2 + 4327f2 + 547f2 S + 277f2 + 4327f2 

ms(qq) (g2GG) 5 (qq) (gqGq) m~(gqGq) m;(qq) (ss) (gqGq) (ss) 
- 69127f4 + 17287f2 + 1447f4 - 187f2 - 8647f2 
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Figure 5.2: Mass of the tetraquark calculated by the three currents 86, l/6, T3, A3 and P6 
as a function of the Borel mass square M'§ for several threshold values So = 2,3,4 and 6 
GeV2

. 

ms(g2GG) (3S) (ijq) (g3GS) 5(3S) (g3GS) m;(g2GG) 
+ 10 247r4 - 8647r2 + 17287r2 - 92167r6 ' 

PT8(S) 
S4 5ms2s3 5ms4 5ms(3S) 31(g2GG) 2 

184327r6 - 23047r6 + (3847r6 + 2887r4 + 552967r6 )s 
5m~(3s) 31m; (g2GG) 5m;(ijq)2 5m;(3s)2 

+( - 487r4 - 92167r6 )s + 187r2 + 727r2 (5.13) 
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31ms(g2GG) (8S) 13m; (g2GG) 
+ 6912n4 - 9216n6 . 

As shown in Fig. 5.3, we find that two spectral densities for VB and Ts show good behavior: 
PTS is positive definite, while Pvs takes negative values in the small region S ::; 0.2Gey2. 

The currents 1/i, Vs, Pt and Ps are constructed by mesonic fields (either color singlet 
or color octet) which correspond to 381 and 180 in the non-relativistic language, where 
two quark-antiquark pairs can be in the ground state s-orbit. Their spectral densities 
then show similar behavior to 86 and A3 in the previous subsection. In contrast, 81 , 

8s, Al and As correspond to linear combinations of 3 Po and 3 Pt, respectively; T1 and Ts 
currents are the combinations of 381 and 1 Pl. 

From the above argument, we might expect that six currents, 1/i, VB, PI, Ps, T1 and 
Ts would work. However, if we test another condition that the quantity 

fJce-M2/M1 = l s0 

e-s
/ M1 p(s)ds, (5.14) 

should be positive around So rv several Ge y2, we found that those by the currents VI, PI, 
Ps and T1 take negative values and therefore, they must be abandoned. Now there remain 
only two better currents VB and Ts in the mesonic construction. This is the reason that 
we have shown their spectral densities in (5.12) and (5.13). Using the numerical values 
of various condensates (5.10), we find the spectral densities 

Pvs = 9.41 X 10-9 
S4 - 4.32 X 10-9 

S3 + 4.54 X lO-s 
S2 

+3.52 X 10-7 s - 4.85 X lO-s , 

PTS 5.64 X 1O-ss4 
- 2.73 X 1O-ss3 + 6.14 X 1O-ss2 

-4.32 X 10-9 s + 4.89 X lO-s . 

(5.15) 

Once again the convergence of the series does not seem very good, though the coefficient 
of the constant term of Pvs (-4.85 x lO-S

) is smaller by about factor ten than that of 
the first order term of Sl (3.52 x 10-7). 

In Fig. 5.4, we show the masses of the tetraquark currents VB and Ts as functions of 
the Borel mass for several threshold values So (Borel curves). As in the case of T3 current, 
the Borel stability seems good but the result depends on the threshold value So. However, 
once again, if we take the threshold value at So rv 3 Gey2, the mass of the tetraquark 
turns out to be reasonable, though the precise values are slightly smaller: the mass of 
Ts rv 1.5 GeY and the mass of VB rv 1.4 GeY. 

5.3 Analysis of Mixed Currents 

In order to improve the sum rule, we attempt to make linear combinations of independent 
currents for both diquark and mesonic currents. Since linear combinations of five currents 
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Figure 5.4: Mass of the tetraquark calculated by the currents 51, 5s, VI, 118, T1 , Ts, AI, 
As, H and Ps, as a function of the Borel mass square M"§ for several threshold values 
So = 2,3,4 and 6 GeV2

, 
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contain ten mixing angles, the full consideration with these ten parameters is rather 
cumbersome. Instead, we make a linear combination of two currents J1 and J2 (any two 
from the independent currents), 'T] = cosBJ1 + sinBJ2 , where B is a mixing angle. Then 
the correlation functions are written as 

(5.16) 

The mixing is chosen with the following requirements: 

1. The OPE has a good convergence as going to terms of higher dimensional operators. 

2. The spectral density becomes positive quantity for all (or almost all) 8 values. 

3. Pole contribution is sufficiently large. 

We have tried various combinations of two currents to realize good sum rules. While 
doing so, we have realized that the diquark currents are more independent than the 
mesonic currents. This means that the cross terms of (5.16) have only a minor contribu­
tion for diquark currents, while they have a large contribution for mesonic currents. 

According to the requirement (1), we would like to make a linear combination such 
that the highest dimensional (eight) term is suppressed. For diquark currents, we find it 
convenient to take two combinations: 

cos BA3 + sin BV6 , 

cos BP6 + sinBS6 . 

(5.17) 

(5.18) 

By choosing cot B rv V2, we find that the term of dimension eight of (5.17) is suppressed, 
while for cot B rv 1, the term of dimension eight of (5.18) is suppressed. The spectral den­
sity of (5.18), however, takes negative values. Therefore, this current should be rejected 
for the sum rule analysis. In this way we are lead to the current 'T] of (5.17). From now 
on, we will denote 'T] ---+ 'T]1· 

For themesonic case, it turns out that the cross term contributions are large. Ac­
cordingly,we attempt a complex angle to improve the sum rule analysis. By choosing 
t1 = 0.91, t2 = -0.41, we construct a current: 

The numerical spectral densities are: 

P1 = 4.5 X 10-8
8

4 
- 2.2 X 10-8

8
3 + 2.4 X 10-7

8
2 

-2.0 X 10-88 + 5.2 X 10-9 , 

P2 2.1 X 10-8
8

4 
- 1.0 X 10-883 + 4.2 X 10-88

2 

-2.2 X 10-8
8 + 8.3 X 10-9 , 

(5.19) 

(5.20) 
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which may be compared with the spectral densities of the single currents (5.12) and 
(5.15). It looks that the convergence of the series is improved significantly. 

In Fig. 5.5, we show the mass calculated from 'T/l and'T/2 as functions of the Borel mass 
square for several threshold values so. The Borel stability is improved from the cases of 
the single currents. Furthermore, the dependence on So is also reduced. When So f"V 3 
Gey2, we find the mass calculated from the two currents 'T/l and 'T/2 is about 1.5 GeY. 
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Figure 5.5: Mass of the tetraquark calculated by the mixing currents 'T/l(Left) and 
'T/2 (Right), as a function of the Borel mass square M~ for several threshold values 
So = 2,3,4 and 6 Gey2. 

At this point we should also comment on the pole contribution in the sum rule. 
Generally we expect that the pole contribution should dominate the sum rule, preferably 
at least more than several tens percent. In the present case, the pole contribution, 
however, is not always dominant. We have found that it reaches up to 20 percent when we 
use'T/l and 'T/2 and the Borel mass is chosen around 1 GeY. As the Borel mass increases, the 
pole contribution decreases. This would be a general problem for the QeD sum rule for 
currents of a high dimension, typically for exotic hadrons. Nevertheless, it is interesting 
to see that a good Borel mass stability has been achieved as shown in Figs. 5.5. In any 
event, we need further investigations as proposed by Kojo et al [115] to check the stability 
of the sum rule. 

Finally, in order to summarize our analysis, we show in Fig. 5.6 masses of the 
tetraquark calculated by several reasonable currents used in the present study as func­
tions of the Borel mass square at So = 3 Gey2. They are 56, A3 and T3 for the diquark 
construction, Ts and Vs for the mesonic construction, and 'T/l and 'T/2 for the mixing cur­
rents. The plots are extended to a wider region of M~ up to 4 Gey2. We verify once 
again a good Borel mass stability for the mixing currents, while some of the single cur­
rents show good stability also (T3, Ts and Vs). The mass values varies slightly, while we 
expect the mass of the tetraquark around 1.5 GeY. 
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Figure 5.6: Mass of the tetraquark calculated by the currents 'r/l, 'r/2, A3 , 56, T3 , Vs and 
Ts, as a function of the Borel mass square M~ in the region 2 < M~ < 4 Ge V2 for 
threshold value So = 3 GeV2. 

5.4 Conclusion 

We have presented a QeD sum rule study of the udss tetraquark of JP = 0+ and I = 1, 
both in the diquark ((qiJ)(qq)) and mesonic ((qq)(qq)) constructions. We have found that 
in this channel of tetraquark, there are five independent currents, which is shown both in 
the diquark and mesonic constructions. For each single current, we have tested the sum 
rule analysis, but it is found that not all of them provide a good stability. 

As an attempt to improve the stability of the sum rule, we have considered linear 
combinations of independent currents. In order to simplify the analysis, we took a super­
position of various combinations of two currents. Among them, we have found two cases 
that lead to good sum rules, where we investigated So (threshold value) and ME (Borel 
mass) dependence, and convergence of OPE. A reasonable choice of the threshold value is 
taken at So rv 3 Ge V2. A good Borel stability is then achieved in the region 1 ~ M~ ~ 4 
GeV2, where the mass of the tetraquark turns out to be around 1.5 GeV. 

Despite the seemingly good Borel mass stability, we think that we should investigate 
the following points more carefully. For instance, estimation of higher dimensional terms 
of 0(1/ s) could be important, as we have found that the pole contribution is around 20% 
at best. These problems might be related to the high dimensional operators for exotic 
particles. Another question is the contribution of K K scattering states, since the mass 
of the tetraquark is around 1.5 GeV, and it can fall apart into the KK states. Such a 
contribution can be estimated by using the method proposed in Refs. [117,121]. These 
will be further investigated in the future work. 



Chapter 6 

Light Scalar Tetraquark Mesons 

The light scalar mesons 0"(600), /1;(800), ao(980) and 10(980) compose a nonet with the 
mass below 1 GeV [5,8,9,13-15,17,179]. Almost thirty years ago, Jaffe suggested that 
they can be tetraquark candidates, which can explain the mass spectrum of the light 
scalar mesons and also their decay properties [93] (See also Ref. [98] for recent progress). 

So far, several different pictures for the scalar mesons have been proposed. In the 
conventional quark model, they have a qq configuration of 3 Po whose masses are expected 
to be larger than 1 GeV due to the p-wave orbital excitation [50]. Moveover, by a 
naively counting of the quark mass, the mass ordering should be ma rv mao < m~ < 
m fo . They are regarded as chiral partners of the N ambu-Goldstone bosons in chiral 
models(rr, K, T/, T/') [79], and their masses are expected to be lower than those of the 
quark model due to their collective nature. Yet another interesting picture is that they are 
tetraquark states [7,31,32,97,128,134,168,174,181]. In contrast with the qq states, their 
masses are expected to be around 0.6 - 1 GeV with the ordering of ma < m~ < mao,Jo, 

consistent with the recent experimental observations [5,13,14,179]. The lightness of these 
states is expected to be explained by the strong attractive quark correlation in the scalar 
and isoscalar channel. There are some lattice studies supporting this [125,162]. Besides 
their masses, the decay properties are also interesting and important, and are studied in 
many papers [35,74,75,151,184]. 

In this chapter, we perform the QCD sum rule analysis for the light scalar mesons. 
We find once again that there are five independent currents for each scalar tetraquark 
state. We perform a reliable QCD sum rule by using mixed currents as in the previous 
chapter, and obtain the masses of the light scalar mesons. The results are consistent with 
the experiments. 

Unlike qq and qqq currents, tetraquark currents have complicated structure due to 
multiquark degrees of freedom. As we will discuss in the next section in detail, there are 
some independent currents for a given spin with different flavor structures. This is very 
much different from the ground state baryons, where different flavor representations 8 
and 10 correspond to different spins 1/2 and 3/2, which induce a mass splitting between 

99 
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.6.(1232) and N(939). 
In this chapter, first we construct the tetraquark currents using diquark and antidi­

quark fields having the antisymmetric flavor 3r 0 3r , which is in accordance with the 
expected light scalar nonet. Furthermore, we construct another set of tetraquark cur­
rents by using diquark and antidiquark fields having the symmetric flavor 6r 0 6r. We 
do not, however, consider other possibilities such as 6r 0 3r, since they can not produce 
tetraquark currents having the scalar quantum numbers (color singlet and JP = 0+). 
Then as we have done previously [38], we show that there are five independent currents 
for both constructions. We will then search linear combinations of the currents that op­
timize the QeD sum rule and reproduce the results compatible with the expected light 
scalar mesons. While performing a QeD sum rule analysis, we also find that the results 
of the two constructions have some similarities. In fact, if we work in the SU(3}j limit, 
we obtain identical results for the operator product expansion (OPE). 

Since the scalar mesons, especially (j, decays strongly to two pseudoscalar mesons, 
their effects should be significant for quantitative discussions. The contamination from 
such two-meson decay should be removed when performing the QeD sum rule analysis, 
which is however a difficult theoretical problem so far. Nevertheless we consider a phe­
nomenological method by adding another parameter corresponding to a decay width for 
the QeD sum rule analysis. 

6.1 Tetraquark Currents 

In order to make a scalar tetraquark current, the diquark and antidiquark fields should 
have the same color, spin and orbital symmetries. Therefore, they must have the same 
flavor symmetry, which is either antisymmetric (3r 0 3r) or symmetric (6r 0 6r). The 
possible flavor quantum numbers of the tetraquark states are then 

lr EB 8r , 

l r EB 8rEB27r , (6.1) 

where the corresponding weight diagrams are shown in Fig. 6.1. The scalar nonet 1 + 8 
is therefore included in both representations, independently. For 3r x 3r = lr + 8r , /'i, and 
ao are the members of 8r while (j and fo can be either in lr or in isospin I = a component 
of 8r . Or, they can also mix and in particular the ideal mixing is achieved by 

(6.2) 

where only isospin symmetry is respected and the currents are classified by the number 
of strange quarks. We can find another set of linear combinations for the symmetric case. 
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Hence, denoting light u, d quarks by q, 0" currents are constructed as qqqq, I'\, currents by 
qsqq and ao and fo currents by qsqs. A naive additive quark counting for this construction 
is consistent with the observed masses, 0"(600), 1'\,(800), ao(980) and fo(980). Also, in the 
QCD sum rule we find that the ideal mixing is needed in order to reproduce the expected 
mass pattern of 0", 1'\" ao and fo. 

3x3=1+8 
6x6 = 1+8+27 

Figure 6.1: SU(3) weight diagrams for tetraquark states of antisymmetric and symmetric 
diquarks (antidiquarks). 

Using the antisymmetric combination for. diquark flavor structure, we arrive at the 
following five independent currents which have been shown in Chapter 4: 

(u; C'Ys db) (ua'Yscdf - Ub'YSC({J, 

(U;C'YIl-'YSdb) (ua'YIl-'Yscdf - Ub'YIl-'YSC({J, 
(u;CO"ll-vdb)(uaO"Il-Vcdf + UbO"Il-VCr{) , 
(U;C'Yll-db) (ua'Yll-cdf + Ub"(Il-Cr{) , 
(u;Cdb) (uaCdf - UbCr{). 

(6.3) 

where the sum over repeated indices (/-L, 1/, ... for Dirac, and a, b, ... for color indices) is 
taken. Either plus or minus sign in the second parentheses ensures that the diquarks form 
the antisymmetric combination in the flavor space. The currents S, V, T, A and Pare 
constructed by scalar, vector, tensor, axial-vector, pseudoscalar diquark and antidiquark 
fields, respectively. The subscripts 3 and 6 show that the diquarks (antidiquark) are 
combined into the color representation 3c and 6c (3c or 6c ), respectively. 

We will perform the sum rule analysis using all currents and their various linear com­
binations. As we have found in the previous chapter, again the results for single currents 
are not always reliable. In fact, we will find a good sum rule by a linear combination of 
A6 and V{ 

'rJf = cos () A~ + sin ()vt , (6.4) 

where () is the mixing angle. As we will discuss in Sec. 6.3, the best choice of the mixing 
angle turns out to be cot () = 1/ J2. The mixed currents for 1'\" ao and fo can be found in 
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the similar way 

cos eAao + sineVao 
6 3 , (6.5) 

cos eA[o + sin ev/o . 

where the best choices are still cot e = 1/ J2. 
The QCD sum rule results for ao and fo will give the same results in the QCD sum 

rule, which is consistent with the experimental masses of ao and fo. For simplicity, we 
will use the charged ao current 

We can also construct the tetraquark currents of JP = 0+ whose diquark and antidi­
quark have the symmetric flavor structure. We use the same superscripts CY, K, and ao 
because of the same quark contents. There are five independent currents 

s~ 

Vt 
Tf 
A~ 

P[ 

(6.7) 

The quark contents are ~({uu}{uu} - 2{ud}{ud} + {dd}{dd}) which compose an 
isoscalar tetraquark. Either plus or minus sign in the second parentheses ensures that the 
diquarks form the symmetric combination in the flavor space. We construct the similar 
mixed currents for K" ao and fo 

T/g cos eA~ + sineVt , 

T/; cos eA~ + sineVt , (6.8) 
T/go cos e A~o + sin ev6

ao , 
T/to cos eAJo + sin ev/o 

3 6 , 

Here the optimal choice of the mixing angle is cot e = J2 for T/~ and T/go, but with 
a slightly different value for T/2:, which is 1.37. This shift is used to keep the spectral 
density positive, and is due to the nonzero strange quark mass. 

The currents T/1 and T/2 have similar structure. We can interchange them under the ex­
change of "Ill- +-+ 'Y1l-'Y5· We choose the mixing angle cot e = 1/J2 for T/1, which corresponds 
to cot e = J2 for T/2. 
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Concerning linear combinations, we have tested more general cases by using all five 
currents. However, we could not find significant improvements over the present results of 
using the two currents. 

In Table 1.1, we show the diquark properties of ten single currents. The parity can 
be obtained by using P = (_)L, which L is the orbital momentum. The structures of 
tetraquark currents are complicated. The flavor symmetry is not subject to constraints 
due to the color, spin and orbital symmetries. If the diquark and antidiquark have the 
antisymmetric flavor, they can have both the antisymmetric color 3e 0 3e (S3, Vt and 
P3) and the symmetric color 6e ® 6e (T; and A6"); they can have both the antisymmetric 
spin Os 0 Os (S3 and V3) and the symmetric spin 1s 0 1s (A6" and P3); they can have 
both positive parity (S3 and A6") and negative parity (Vt and P3). 

The situation is the same for the color, spin and orbital symmetries. If the diquark and 
antidiquark have the antisymmetric color 3e 0 3e , they can have both the antisymmetric 
flavor (S3, Vt and P3) and the symmetric flavor (Tf and A3"); they can have both the 
antisymmetric spin Os 0 Os (S3 and 1130") and the symmetric spin 1s 0 1s (A3" and P3); 
they can have both positive parity (S3 and A3") and negative parity (Vt and P3). 

We can also construct (ijq)(ijq) currents, and they are equivalent to the (qq)(ijij) cur­
rents. 

6.2 Analysis of Single Currents 

In this section, we show the QCD sum rule analysis of /'l, using single currents S(3, V3K
, 

Tt, A6 and Pt· The results for (J, ao and fo are quite similar. We have performed the 
OPE calculation up to dimension eight by using Mathematica with FeynCalc [66]. The 
results are 

84 ms 2 83 (g2GG) ms (ijq) ms (88) 2 
614407r6 - 30727r6 + (61447r6 - 1927r4 + 3847r4 )8 

( 
m; (g2GG) ms (gij(JGq) (ijq) 2 (ijq) (88) ) 

+ - 20487r6 - 1287r4 + 247r2 + 247r2 8 
(6.9) 

m;(ijq)2 m s(g2GG) (ijq) m s(g2GG) (88) 
127r2 - 7687r4 + 15367r4 

(ijq) (gij(JGq) (88) (gij(JGq) (ijq) (g8(JG8) 
+ 247r2 + 487r2 + 487r2 ' 

84 m s283 (g2GG) ms(ijq) ms(88) 2 

153607r6 - 7687r6 + (30727r6 + 967r4 + 967r4 )8 
+( _ m;(g2GG) + ms(gij(JGq) _ (ijq)2 _ (ijq) (88))8 

10247r6 1287r4 127r2 127r2 (6.10) 

m;(ijq)2 ms(g2GG) (ijq) m s(g2GG) (88) 
+ 67r2 - 3847r4 + 7687r4 
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(qq) (gqCJGq) (88) (gqCJGq) (qq) (g8CJG8) 
121f2 481f2 161f2 

84 ms283 (11(g2GG) mS(88)) 2 ) 

12801f6 - 641f6 + 7681f6 + 81f4 8 (6.11 

11m; (g2GG) 11ms(g2GG) (88) 
- 2561f6 8 + 1921f4 ' 

84 m/83 5(g2GG) ms(qq) ms(88) 2 

76801f6 - 3841f6 + ( 30721f6 - 481f4 + 481f4 )8 

( 5m;(g2GG) ms(gqCJGq) (qq)2 (qq) (88)) (6.12) 
+ - 10 241f6 + 1281f4 + 61f2 + 61f2 8 

m;(qq)2 ms(g2GG) (qq) 5ms(g2GG) (88) 
31f2 - 3841f4 + 7681f4 

(qq) (gqCJGq) (88) (gqCJGq) 3(qq) (g8CJG8) 
+ 61f2 - 481f2 + 161f2 ' 

84 ms283 (g2GG) ms(qq) ms(88) 2 

614401f6 30721f6 + (61441f6 + 1921f4 + 3841f4 )8 
+( _ m;(g2GG) + ms(gijCJGq) _ (qq)2 _ (qq) (88))8 (6.13) 

20481f6 1281f4 241f2 241f2 
+ m;(qq)2 + ms(g2GG) (qq) + ms(g2GG) (88) _ (qq) (gqCJGq) 

121f2 7681f4 15361f4 241f2 
(88) (gqCJGq) (ijq) (g8CJG8) 

481f2 481f2 

For each single current, we have tested the QCD sum rule analysis, but the result is 
not good just as in our previous paper [38]. The spectral densities are shown in Fig. 6.2 
as functions of the energy square 8. Due to the insufficient convergence of the OPE, the 
positivity of p( 8) may not be realized. We find that two functions of S3 and A6 currents 
show such a bad behavior that p( 8) becomes negative in the region of 8 = 0 rv 1 Ge V2 , 

and the QCD sum rule for these two single currents are not reliable. 
The convergence of the OPE is another important issue. We show the Borel trans­

formed correlation functions for positive case of Vt, Tt and P!3 with numerical coefficients: 

IlK (all) 
V3 

IlK(all) 
P3 

1.6 X 10-6 M1° - 1.3 x 10-7 M~ - 3.5 X 10-6 M~ 

-2.8 X 10-6 M~ + 2.4 X 10-6 M~, 

2.0 X 10-5 M1° - 1.5 x 10-6 M~ + 1.1 X 10-5 M~ 

-3.3 X 10-7 M~ -3.9 X 10-7 M~ , 

4.1 X 10-7 M1° - 3.2 x 10-8 M~ - 9.8 X 10-8 M~ 

-1.4 X 10-6 M~ + 1.2 X 10-6 M~ . 

(6.14) 

From these expressions, we observe that the convergence of the currents ~K and P!3 is 
not very good at a typical energy scale ME rv 1 GeV. We have also calculated the pole 
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Figure 6.2: Spectral densities p( s) for the currents 83, Vt, T6', A6 and P; as functions 
of s, in units of GeV8

. 

contribution which is defined as 

. . _ J;o e-s/M1 p(s)ds 
Pole contnbutlOn = roo /M2 , 

Jo e-S 
B p(s)ds 

(6.15) 

However, due to the negative part of the spectral densities, the pole contribution is not 
well defined. Take the current P; as an example, when we choose So = 1 GeV2 and 
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!VIB = 0.5 GeY, the pole contribution is 101% (this is because some parts ofthe spectral 
density become negative in the denominator), which is larger than 100%, and does not 
make sense. The pole contribution is 26% for the current T;-, when we choose So = 1 
Gey2 and MB = 0.6 GeY. 

Summarizing the QCD sum rule analysis for the single currents, including both the 
(qq)(qq) currents and (qq)(ijq) , we found that T;- gives the best QCD sum rule, which 
however is not yet good enough for quantitative discussion. In order to improve the sum 
rule, we move on to study their linear combinations, which are the mixed currents. 

6.3 Analysis of Mixed Currents 

We have performed the OPE calculation for the mixed currents TJl and TJ2 up to dimen­
sion eight, which contains the four-quark condensates. The u and d quark masses are 
considered in the case of the ()" meson, and neglected in other cases. 

pHs) = (6.16) 

pHs) (6.17) 

p~(s) 

(6.18) 

p~(s) 
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(6.19) 

(6.20) 

(6.21) 

For 0", terms containing u, d quark masses mq are small. For instance, the term of mq(qq) 
of dimension four is about ten times smaller than the other term of (g2GG). For /'i" ao 
and fo, the terms containing strangle quark mass are important but those containing u 
and d quark masses are negligibly small. Therefore, we have ignored them in our sum 
rule analysis. 

To obtain a reliable a QeD sum rule, the mixed currents 'r/1 and 'r/2 are chosen with 
the following requirements: 

1. The OPE has a good convergence as going to terms of higher dimensional operators. 
This can be examined by the following numerical Borel transformed correlation 
functions, which have a good convergence 

I1~o(all) (M~) 

2.2 X 10-6 M1° - 2.5 x 10-9 M~ + 1.5 X 10-6 JvI~ 

-4.4 x 10-10 M~ - 4.8 X 10-9 M~ , 

2.2 X 10-6 M1° - 2.5 x 10-9 M~ + 1.5 X 10-6 M~ 

-5.3 X 10-10 M~ - 1.5 X 10-8 M~ , 

2.2 X 10-6 M1° - 1.7 x 10-7 M~ + 1.3 X 10-6 M~ 

+7.2 X 10-8 M~ - 2.3 X 10-8 M~, 

2.2 X 10-6 M1° - 1.7 x 10-7 M~ + 1.3 X 10-6 M~ 

-2.8 X 10-7 M~ + 3.4 X 10-8 M~ , 

2.2 X 10-6 M1° - 3.4 x 10-7 M~ + 8.8 X 10-7 M~ 

-4.1 X 10-8 M~ + 1.1 X 10-7 M~, 
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I1~o(all)(M~) = 2.2 X 10-6 M1° - 3.4 x 10-7 M~ + 8.8 X 10-7 M~ 

-4.1 X 10-8 M~ + 2.3 X 10-8 M~ . 

It is interesting to observe that the correlation functions of 0" have the most rapid 
convergence, justifying the use of a smaller Borel mass MB than the other cases of 
/'l" ao and fa. 

2. The spectral densities p( 8) become positive for almost all energy values, as shown 
in Fig. 6.3. This can be examined for all the mixed currents except 772. Therefore, 
we need to change the mixing angle of 772 a little, which is from J2 to 1.37. 

3. Pole contribution is sufficiently large. By choosing suitable Borel mass MB and 
threshold value 80, this can be satisfied. The Borel transformed correlation functions 
are written as power series of the Borel mass MB. Since the Borel transformation 
suppresses the contributions from 8 > M B , smaller values are preferred to suppress 
the continuum contributions also. However, for smaller MB convergence of the OPE 
becomes worse. Therefore, we should find an optimal MB preferably in a small value 
region. We have found that the minima of such a region are 0.5 GeV for 0", 0.6 
GeV for /'l, and 0.8 GeV for ao and fa, where the pole contributions reach around 
50 % for /'l" ao and fa, and is an acceptable amount for (J, as shown in Table 6.1. 
The pole contribution for the mixed current 77'1 is improved as compared with the 
single current T/j. 

Table 6.1: Pole contributions of various currents. 

771 77'2 77'1 772 77~o 77~o 

MB (GeV) 0.5 0.5 0.6 0.6 0.8 0.8 
Fa (GeV) 0.7 0.7 1 1 1.3 1.3 
Pole (%) 28 21 45 36 40 32 

In the SU(3)J limit, we could find that the differences between Pl and P2 vanish: 

p~ ( 8) - p~ ( 8 ) = 
(m~ +m~)(g2GG) 5mumd(g2GG) 

30721[6 8 + 15361[6 8 

(2m~ - 2m~md - 2mum~ + 2m~) (qq) 
+ 91[4 8 

(-lOm~ + 20mumd -10m~)(qq)2 (mu + md)(g2GG) (qq) 
+ 27~ OO~ 
(m~ - m~md - mum~ + m~)(q(JGq) 

+ 181[4 ' 
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p~ ( s) - p~ ( s ) 

(6.22) 

From Eqs. (6.16) - (6.21), we find that the gluon condensates are quite important. 
In the chiral limit where all quark masses vanish, the masses of the scalar mesons are 
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Table 6.2: Masses of scalar nonet. 

Mass (MeV) 0"(600) r;;(800) ao(980) 10(980) 
Experiments (PDG) 400 rv 1200 841 ± 30:::~~ 984.7 ± 1.2 980 ± 10 

QCD sum rule 600 ± 100 800 ± 100 1000 ± 100 1000 ± 100 

dictated only by the gluon condensate. Due to the small u and d quark masses, the 
mass of the 0" is dominated by the gluon condensate. For other masses, however, other 
condensates with finite value of ms rv 100Me V also playa significant role. As quarks (in 
particular strange quark) become massive, the degeneracy resolves. We have also tested 
the case of the SU(3) limit but with the average quark mass, mq rv 50 MeV, and with 
average condensates. Then the mass of the scalar mesons turns out to be about 0.8-0.9 
GeV. 

If the location of a physical state is well separated from the threshold So, slight change 
in So should not affect much on the observables (mass) of the state. Hence we have 
searched the region where the tetraquark mass varies significantly less than the change 
in Fa. We have found such regions for So at around 1 GeV2 from the minimum for 0" 

so(min) rv 0.5 GeV2, for r;; so(min) rv 1 GeV2 and for ao and 10 so(min) rv 1.7 GeV2, and 
up to about 1 GeV2 higher. 

After careful test of the sum rule for a wide range of parameter values of MB and 
So, we have found reliable sum rules, which are shown in Table 6.2. It is interesting to 
observe that the masses appear roughly in the order of the number of strange quarks 
with roughly equal splitting. In Fig. 6.4, the masses of the 0"(600), r;;(800) , ao(980) and 
10(980) are shown as functions of the Borel mass M B . As we see, the mass is very stable 
in a rather wide region of Borel mass M B . 

The current 'f/lhas the antisymmetric flavor structure and 'f/2 has the symmetric flavor 
structure. By using these currents with different flavor structures, we arrive at similar 
QCD sum rule results. This suggests that the tetraquarks of different flavor structure 
may mix with each other, and the tetraquark states can contain diquark and antidiquark 
having the mixing of the symmetric flavor 6f06f and the antisymmetric flavor 3f03f, just 
like they can have a mixing of different color, spin and orbital symmetries. This is very 
much different from the ground baryon states, where the different flavor representations 8 
and 10 correspond to different spins 1/2 and 3/2, which induces a mass splitting between 
~(1232) and N(939). 
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Figure 6.4: Masses of the 0", "", ao and fo as tetraquark states calculated by the mixed 
currents 'f/l (solid line) and 'f/2 (dashed line), as functions of the Borel mass M B. 

6.4 Finite Decay Width 

The scalar mesons have large decay widthes, and it is important to consider their effect. In 
this section, we use a Gaussian distribution for the phenomenal spectral density, instead 
of 6-function, 

1 (y's - M )2 
L(OI'f/ln) (nl'f/tIO) f(C exp( - 2 2 n )dvs 

y 21f0" * O"n n 

f2 (y's - MX)2 
~ exp ( - 2 )dVS + higher states, (6.23) 

y21f0" 2*O"x 

where as usual the lowest state denoted by X is isolated from the rest of higher states. 
The Gaussian width O"x is related to the Breit-Wigner decay width r by O"x = r /2.4. 

Again we assume the continuum contribution can be approximated by the spectral 
density of OPE above a threshold value So, and we arrive at the sum rule equation for 
state having a finite decay width 

IIFDW(M~)_ e-s/M1--exp(- YU-
2 

X )dvs= e-s/!vJ'~p(s)ds. 1+00 1 (IS M)2 l s0 

-00 V2K0" 20"x 0 

(6.24) 
For a given r, the mass can be obtained by solving the equation 

J+OO e-s/M1 s exp( - (VS- MX)2)d IS rSO -s/M2 ()d 
-00 20"1 y U Joe B s p S S 

-:----------,~___:_':''--:-;:--e = ~:_____,____,,_---'---'-

J+ooe-s/M1exp(- (VS-Mx)2)d IS rsoe-s/M1p(s)ds 
-00 2~ yu Jo 

(6.25) 

In Fig. 6.5, the masses of the 0"(600), ",,(800), ao(980) and fo(980) are shown as 
functions of the Borel mass M B , by setting r = 0, 100, 200 and 400 MeV respectively. 
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We find that after considering the finite decay width by using the Gaussian distribution, 
the predicted masses do not change significantly as far as the Borel mass is within a 
reasonable range, where we can still reproduce the experimental data. However, the 
question of finite decay width is very important, and we do not consider that our attempt 
to use the Gaussian form is the final. We need further investigations, which we would 
like to put as a future important work. 
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Figure 6.5: Masses of the 0", K" aD and fa as tetraquark states calculated by the mixed 
currents TJl (left) and TJ2 (right), as functions of the Borel mass M B . For 0" and K" the 
solid, short-dashed and long-dashed curves are obtained by setting r = 0, 200 and 400 
MeV respectively. For ao and fa, the solid, short-dashed and long-dashed curves are 
obtained by setting r = 0, 100 and 200 MeV respectively. 

6.5 Conventional qq Mesons 

For comparison, we have also performed the QCD sum rule analysis using the qq current 
within the present framework. The QCD sum rule analyses of conventional qq mesons 
have been performed in Ref. [59,64,113,154]. The sum rules using the current j = qlq2 
are 

180 

e-
8

/
MiJ 8~2 S ( 1 + 1; ~ ) ds + ~ ( ml (q2q2) + m2 (qlql) ) 

1 g2 1 ( ) + 87f (47f G
2
) - 2M~ ml (gq20"Gq2) + m2 (gqWGql) (6.26) 

167f g8 (_ ) _ 167f g8 ((_ 2 _ 2) 
- 3M~ 47f qlql (q2q2) - 27 M~ 47f qlql) + (q2q2) . 

In Fig. 6.6 we show the mass of the qq mesons as functions of Borel mass when the 
threshold value So = 2.5 GeV2. The masses of 0" and ao are predicted to be around 1.2 
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GeV, while the masses of K and fo are larger due to the strange quark content. Here 
again we have tested other values of ME and so, and confirmed that the result shown is 
optimal. These results are consistent with the previous work [59,64,113,154]. 
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Figure 6.6: Masses of the conventional qq mesons calculated by the current j = qlq2, as 
functions of the threshold value So (left) and the Borel mass square M1 (right). 

6.6 Conclusion 

We have performed the QCD sum rule analysis with tetraquark currents, and found the 
masses of scalar mesons in the region of 600 - 1000 MeV with the ordering, m(}" < m". < 
mfo,ao. We have also used the conventional qq currents, and verified their masses around 
1.2 GeV. We have tested all possible independent tetraquark currents as well as their 
linear combinations, and considered the effect of finite decay width. Our conclusions are, 
therefore, rather robust. 

The scalar tetraquark currents can have either the antisymmetric flavor or the sym­
metric flavor structures. We found that there are five independent currents for each 
state. We investigated Borel mass ME and threshold value So dependences, which are 
quite stable. The convergence of the OPE is also good, the positivity (of spectral density) 
is maintained, and the pole contribution is sufficient large. Therefore, we have achieved 
a QCD sum rule which is the best reliable within the present calculation of OPE. 

Our calculation supports a tetraquark structure for low-lying scalar mesons. We find 
that the gluon condensate is quite large in the OPE of the mixed currents, which is 
related to the question of the origin of the mass generation of hadrons [173]. We obtain 
similar results by using the currents having both the antisymmetric flavor structure and 
the symmetric flavor structure. This suggests that the tetraquark can have a mixing of 
different flavor symmetries, as well as different color, spin and orbital symmetries. There 
is a mass splitting due to the different flavor, color, spin and orbital structures. If this 



114 CHAPTER 6. LIGHT SCALAR TETRAQUARK MESONS 

mass spitting is large enough to be observed in experiments, the tetraquark spectrum 
would become much more complicated; If the mass splitting is too small to be observed 
in experiments, a broad decay width would be observed. Such a tetraquark structure will 
open an alternative path toward the understanding of exotic multiquark dynamics which 
one does not experience in the conventional hadrons. 



Chapter 7 

The Y(2175) State 

Recently Babar Collaboration observed a resonance Y(2175) near the threshold in the 
process e+e- ----> ¢fo(9S0) via initial-state radiation [21-23]. It has the quantum numbers 
JPc = 1--. The Breit-Wigner mass is M = 2.175 ± 0.010 ± 0.015 GeV, and width is 
r = 0.05S ± 0.016 ± 0.020 GeV. It has been also confirmed by BES collaboration in the 
process J/'l/J ----> TJ¢fo(9S0). A fit with a Breit-Wigner function gives the peak mass and 
width of M = 2.1S6 ± 0.010 ± 0.006 GeV and r = 0.065 ± 0.023 ± 0.017 GeV [6]. 

There are many suggestions to interpret this resonance. Ding and Van interpreted it 
as a strangeonium hybrid and studied its decay properties in the flux-tube model and the 
constituent gluon model. Furthermore, for testing 8sg scenario, they suggested searching 
decay modes such as Y(2175) ----> K l (1400)K ----> 7fK*(S92)K, Y(2175) ----> Kl(1270)K ----> 

pKK and Y(2175) ----> Kl(1270)K ----> 7fK~(1430) [56]. In Ref. [57], the authors explored 
Y(2175) as a 23 Dl 8S meson, and calculated its decay modes by using both the 3 Po 
model and the flux-tube model. They suggested experimental search of the decay modes 
K K, K* K*, K(1460)K and hl (13S0)TJ. The characteristic decay modes of Y(2175) as 
either a hybrid state or an 8S state are quite different, which may be used to distinguish 
the hybrid and 8S schemes. Wang studied Y(2175) as a tetraquark state 88SS by using 
QCD sum rule and suggested that there may be some tetraquark components in the 
state Y(2175) [169]. In a recent article [lS7], Zhu reviewed Y(2175) and indicated that 
the possibility of Y(2175) arising from S-wave threshold effects can not be excluded. 
Napsuciale, Oset, Sasaki and Vaquera-Araujo studied the reaction e+e- ----> ¢7f7f for pions 
in an isoscalar S-wave channel which is dominated by the loop mechanism. By selecting 
the ¢fo(9S0) contribution as a function of the e+e- energy, they also reproduced the 
experimental data except for the narrow peak [13S]. Bystritskiy, Volkov, Kuraev, Bartos 
and Secansky calculated the total probability and the differential cross section of the 
process e+ e- ----> ¢ fa (9S0) by using the local N JL model [34]. Anikin, Pire and Teryaev 
studied the reaction ,*, ----> pp, and calculated the mass of the isotensor exotic meson [16]. 
In Ref. [76], the authors performed a QCD sum rule study for 1-- hybrid meson, and 
the mass is predicted to be 2.3 - 2.4, 2.3 - 2.5, and 2.5 - 2.6 GeV for qqg, qsg, and 8sg, 

115 
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respectively. 
In this chapter, we revisit the possibility of Y (2175) as an tetraquark state ssss. 

The currents of ]Pc = 1- have been constructed in Chapter 4, and we can select the 
currents with charge-conjugation parity negative among them. We find that there are 
two independent currents. They can have a structure of diquark-antidiquark (ss)(ss), or 
have a structure of meson-meson (ss)(ss). We show that they are equivalent, as we have 
verified many times. Then by using these two independent currents, we also perform a 
QCD sum rule analysis. We calculate the OPE up to the dimension 12, which contains 
the (qq)4 condensates. In these two respects, our study differs from the previous one of 
Ref. [169]. 

7.1 Interpolating Currents 

In this section, we construct currents for the state Y(2175) of ]Pc = 1--. From the decay 
pattern Y(2175) ---+ ¢(1020)fo(980), we expect that there is a large ssss component in 
Y(2175) since both ¢ and fo have a large ss component. We may add further quark and 
antiquark pairs, but the simplest choice would be ssss. We will discuss later how this 
simplest quark content will be compatible with the above decay pattern when considering 
the possible structure of ¢(1020) and fo(980). 

Let us now briefly see the flavor structure of the current. In the diquark-antidiquark 
construction (ss)(ss) where ss and ss pairs have a symmetric flavor structure, the flavor 
decomposition goes as 

6r ® 6r = Ir EEl 8r E9 27 r . (7.1) 

Therefore, the (ss) (ss) state is a mixing of If, 8 f and 27 f multiplets in the ideal mixing 
scheme. 

Now we find that there are two non-vanishing currents for each state with the quantum 
number ]pc = 1--. For the state ssss: 

(S~CI'5Sb)(Sal'p,1'5CSn - (S~CI'p,1'5Sb)(SaI'5CSn, 
(S~Cl'vSb)(SaO"p,vCsn - (s~CO"p,vSb)(Sal'vCSn, 

(7.2) 

(7.3) 

where the sum over repeated indices (p, for Dirac spinor indices, and a, b for color indices) 
is taken. C = hno is the Dirac field charge conjugation operator, and the superscript T 
represents the transpose of the Dirac indices only. 

Besides the diquark-antidiquark currents, we can also construct the tetraquark cur­
rents by using quark-antiquark (ss) pairs. We find that there are four non-vanishing 
currents: 

~3p, (saSa)(Sbl'p,Sb) , 

~4p, (Sal'vI'5 Sa) (SbO"p,vI'5 Sb) , 
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~5~ AabAcd(SaSb)(Scl~Sd) , 

~6~ AabAcd(Sal1/'5Sb)(Sc(]"~1/15Sd). 

In Ref. [169], the author used ~5~ to perform QCD sum rule analysis, which is a mixing 
of ~1~ and ~2w We can verify the following relations by using the Fierz transformation: 

(7.4) 

Therefore, among the four (qq)(qq) currents, two are independent. We can also verify the 
relations between (ss)(ss) currents and (ss)(ss) currents, by using the Fierz transforma­
tion: 

(7.5) 

Therefore, these two constructions are equivalent, and we will use ~1~ and ~2~ for QCD 
sum rule analysis. 

7.2 QeD sum rule Analysis 

For the currents ~1~ and ~2~, we have calculated the OPE up to dimension twelve, which 
contains the (qq)4 condensate: 

(7.6) 
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( 
(3S) (g3cyGS) _ 3ms(g2GG) (3S) _ 29m;(3S)2)] -s/M1 d 

+ 87[2 1287[4 87[2 e S 

(
5(g2GG) (3S)2 (g3cyGS) 2 10ms (3S)3 5ms (g2GG) (g3cyGS) 

+ 2887[2 + 327[2 + 3 7687[4 
_ 9m;(3S) (93CYGS)) _1_( _ 16g2(3s)4 (g2GG) (3S) (g3cyGS) 

47[2 + M~ 27 1927[2 

_ 5ms (3S)2 (g3cyGS) _ m;(g2GG) (3S)2 + m;(gsCYGS)2) 
3 5767[2 87[2· 

(7.7) 

We find that there is an approximate relation between the correlation functions of 'r/lJ.L 
and'r/2J.L: 

(7.8) 

which is valid for the continuum, (3S), and (gcfjcyGq) terms, etc. So the numerical results 
by using them are also very similar. 

7.3 Numerical Analysis 

First we want to study the convergence of the operator product expansion, which is the 
cornerstone of the reliable QCD sum rule analysis. By taking So to be 00 and the integral 
subscript 16m; to be zero, we obtain the numerical series of the OPE as a function of 
ME: 

1.4 X 10-6 M1° - 3.8 x 10-7 M~ - 6.2 X 10-7 M~ + 4.2 X 10-7 M~ 

-1.2 X 10-6 M~ + 4.7 X 10-8 - 1.5 X 10-7 MB2, (7.9) 

2.0 x 10-6 M1° - 5.7 x 10-7 M~ - 8.0 X 10-7 M~ + 6.4 X 10-7 M~ 

-1.7 X 10-6 M~ + 1.0 X 10-7 - 2.2 X 10-7 MB2 . (7.10) 

After careful testing of the free parameter Borel mass ME, we find for M~ > 2 Gey2, 
which is the region suitable for the study of Y(2175), the Borel mass dependence is 
weak. Moreover, the convergence of the OPE is satisfied in this region. The correlation 
function of the current 'r/lJ.L is shown in Fig. 7.1, when we take So = 5.7 Ge y2 (the integral 
subscript is still 16m;). We find that in the region of 2 Gey2 < M~ < 5 Gey2, the 
perturbative term (the solid line in Fig. 7.1) gives the most important contribution, and 
the convergence is quite good. 

It is important to note that the Y(2175) state is not the lowest state in the I-­
channel containing ss and that the interpolating currents see only the quantum number 
of the states. It is possible that the low-lying states 1>(1020) and 1>(1680) also couple to 
the tetraquark currents 'r/lJ.L and 'r/2w If so, their contribution to the spectral density and 
the resulting correlation function should be positive definite. 
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Figure 7.1: Various contribution to the correlation function for the current 'r/lJL as functions 
of the Borel mass MB in units of GeV10 at So = 5.7 GeV2. The labels indicate the 
dimension up to which the OPE terms are included. 

However, we find that (1) the spectral densities p(s) for both currents 'r/lJL and 'r/2JL 

are negative when S < 2 GeV2; (2) the Borel transformed correlation function II(M~) in 
Eq. (1.25) is also negative in the region So < 4.3 GeV2 and 1 GeV2 < lvI~ < 4 Gey2. As 
an illustration, we show the correlation function as a function of So in Fig. 7.2. This fact 
indicates that the ssss tetraquark currents couple weakly to the lower states ¢(1020) and 
¢(1680) in the present QeD sum rule analysis. 

The pole contribution is not large enough for both currents due to a large contri­
bution from D = 10 perturbative term J;o e-s/M~s4ds, which is a common feature for 
any multiquark interpolating currents with high dimensions. The mixing of the currents 
'r/lJL and 'r/2JL does not improve the rate of the pole contribution. The small pole con­
tribution suggests that the continuum contribution to the spectral density is dominant, 
which demands a very careful choice of the parameters of the QeD sum rule. In our 
numerical analysis, we require the extracted mass have a dual minimum dependence on 
both the Borel parameter MB and the threshold parameter So. In this way, we can find 
a good working region of MB and So (Borel window), where the mass of Y(2175) can be 
determined reliably. 

Now the mass is shown as functions of the Borel mass MB and the threshold value So 

in Fig. 7.3 and Fig. 7.4. The threshold value is taken to be around 5 rv 7 GeV2 , where 
its square root is around 2.2 rv 2.7 Ge V. We find that there is a mass minimum around 
2.4 GeV for the current 'r/lJL' when we take M~ rv 4 GeV2 and So rv 5.7 GeV2

. While 
this minimum is around 2.3 GeV f01; the current 'r/2JL' when we take M~ rv 4 GeV2 and 
So rv 5.4 GeV2. 

In short summary, we have performed the QeD sum rule analysis for both 'r/lJL and 'r/2w 

The obtained results are quite similar. This is due to the similarity of the two correlation 
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Figure 7.2: The correlation function for the current 'r/l·J.t as a function of So in units of 
GeYlO. The curves are obtained by setting M~ = 1 Gey2 (long-dashed line), 2 Gey2 
( short-dashed line) and 4 Ge y2 (solid 'line) . 

functions as shown in Eq. (7.8). We have also considered their mixing, which also give 
the similar result. The mass is predicted to be around 2.3 rv 2.4 GeY in the QeD sum 
rule. 

7.4 Finite Energy Sum Rule 

To test the validity of the results obtained in the SYZ sum rule in the previous section, 
we use the method of finite energy sum rule (FESR) in this section. For the currents 'r/1J.t 
and 'r/2J.t, the spectral functions Pl(S) and P2(S) can be drawn from Eqs. (7.6) and (7.7). 
The d = 12 terms which are proportional to 1/(q2)2 do not contribute to the function 
W(n, so) of Eq. (1.27) for n = 0, or they have a very small contribution for n = 1, when 
the theoretical side is computed by the integral over the circle of radius So on the complex 
q2 plain. Therefore, the spectral densities for 'r/1J.t and 'r/2J.t take the following form up to 
dimension 10, 
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Figure 7.3: The mass of Y(2175) as a function of ME (Left) and So (Right) in units of 
Ge Y for the current TJIJ.f,. 

(7.11) 

(7.12) 

The mass is shown as a function of the threshold value So in Fig. 7.5, where n is 
chosen to be 1. We find that there is a mass minimum (stable region). It is around 2.3 
GeY for the current TJIJ.f, when we take So rv 5.2 Gey2, while it is around 2.2 GeY for 
the current TJ2J.f, when we take So rv 4.8 Gey2. For the current TJIJ.f,' the minimum point 
occurs at .;so = 2.28 GeY where the mass takes 2.3 GeY, and the threshold value is 
slightly smaller than the mass, unlike the ordinary expectation that .;so is larger than 
the obtained mass. However, the minimum point is on the very shallow minimum curve 
and the resulting mass is rather insensitive to the change in the .;so value. Therefore, 
we can increase .;so slightly more, for example 2.45 GeY, but the mass still remains at 
around 2.35 GeY, which is smaller than .;so now. We interpret this fact as an indication 
that the state Y(2175) has a narrow decay width which is around 58 MeV. 
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Figure 7.4: The mass of Y(2175) as a function of ME (Left) and So (Right) in units of 
Ge Y for TJ2p,' 

7.5 Conclusion 

In this chapter we have studied the mass of the state Y (2175) with the quantum numbers 
JPc = 1-- in the QCD sum rule. We have constructed both the diquark-antidiquark 
currents (ss)(ss) and the meson-meson currents (ss)(ss). We find that there are two 
independent currents for both cases and verify the relations between them. Then using 
the two (ss)(ss) currents, we calculate the OPE up to dimension twelve, which contains 
the (SS)4 condensates. The convergence of the OPE turns our to be very good. We find 
that the OPE's of the two currents are similar, and therefore, the obtained results are 
also similar. By using both the SYZ sum rule and the finite energy sum rule, we find that 
there is a mass minimum. For SYZ sum rule, the minimum is in the region 5 < So < 7 
Ge y2 and 2 < M~ < 4 Ge y2. For finite energy sum rule, the minimum is in the region 
4.5 < So < 5.5 Gey2. It is about 2.2 rv 2.4 GeY. Considering the uncertainty, the state 
Y(2175) can be accommodated in the QCD sum rule formalism although the central 
value of the mass is about 100 MeY higher than the experimental value. 

We have investigated the coupling of the currents to the lower lying states including 
4>(1020) and found that the relevant spectral density becomes negative, implying that the 
present four-quark currents can not describe those states properly. This fact indicates 
that the four-quark interpolating currents couple rather weakly to 4>(1020), which is a 
pure ss state. 

We can test the tetraquark structure of Y(2175) by considering its decay properties. 
Naively, the ssss tetraquark would fall apart via S-wave into the 4>(1020)10(980) pair, 
and would have a very large width. The experimental width of Y(2175) is only about 
60 MeY, which seems too narrow to be a pure tetraquark state. We can discuss the 
decay of the Y(2175) by borrowing an argument based on a valence quark picture. The 
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Figure 7.5: The mass of Y (2175) by using the current 'T}1p, (solid line) and 'T}2p, (dashed 
line) as a function of So in units of GeV. 

(ss)(ss) configuration for Y(2175) can be a combination of 381 and 3 Po, which may fall 
apart into two mesons of 1- and 0+ in the s-wave. In the QCD sum rule the 1- ss 
meson is well identified with ¢(1020), while the 0+ SS meson has a mass around l.5 
GeV and is hard to be identified with the observed 10(980). Therefore, such a fall-apart 
decay would simply be suppressed due to the kinematical reason. The physical 10(980) 
state may be a tetraquark state as discussed in the previous QCD sum rule study [39]. 
Then the transition Y(2175) ----7 ¢(1020) + 10(tetraquark) should be accompanied by a 
qq creation violating the OZI rule, as well as by an annihilation of one quanta of orbital 
angular momentum. These facts may once again suppress the decay of Y(2175) ----7 

¢(1020) + 10(980). This fact was studied in the recent paper by Torres, Khemchandani, 
Geng, Napsuciale and Oset [130]. They studied the ¢KK system with the Faddeev 
equations where the contained KK form the 10(980) resonance. The decay width they 
calculated is around 18 MeV, not far from the experimental value. The all above evidences 
would imply that the Y(2175) is a possible candidate of a tetraquark state. 

Y(2175) could be a threshold effect, a hybrid state ssG, a tetraquark, an excited 
ss state or a mixture of all the above possibilities. Because of its non-exotic quantum 
number, it is not easy to establish its underlying structure. Clearly more experimental 
and theoretical investigations are required. 

One byproduct of the present work is the interesting observation that some type 
of four-quark interpolating currents may couple weakly to the conventional qq ground' 
states. If future work confirms this point, we may have a novel framework to study the 
excited qq mesons using the four-quark interpolating currents, which is not feasible for 
the traditional qq interpolating currents. 
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Chapter 8 

Vector Tetraquark Meson of 
IG JPC == 1-1-+ 

Hadrons beyond the conventional quark model have been studied for more than thirties 
years. For example, Jaffe suggested the low-lying scalar mesons as good candidates of 
tetraquark states composed of strongly correlated diquarks in 1976 [93]. Especially there 
may exist some low-lying exotic mesons with quantum numbers such as (JPC ) = (1-+) 
which qq mesons can not access [16,114]. However the hybrid mesons with explicit glue 
can carry such quantum numbers. The experimental establishment of these states is 
a direct proof of the glue degree of freedom in the low energy sector of QCD and of 
fundamental importance. 

The mass of the non-strange exotic hybrid meson from lattice QCD simulations in­
cludes: 2GeV [135], 1.74 GeV [80], and 1.8 GeV [29]. The mass of its strange partner is 
1.92 GeV [80] and 2 GeV [29]. The hybrid meson mass from the constituent glue model 
is 2 GeV [86] while the value from the flux tube model is around 1.9 GeV [90,150]. The 
prediction from the QCD sum rule approach is around 1.6 GeV [44,104]. However, Yang 
obtained a surprisingly low mass around 1.26 GeV for the 1-+ hybrid meson using QCD 
sum rule [178]. 

Up to now, there are several candidates of the exotic mesons with JG( J PC ) = 1-(1-+) 
experimentally. They are 1fl(1400), 1fl(1600) and 1fl(2015). Their masses and widths are 
(1376±17, 300±40) MeV, (1653:::i~, 225:::~~) MeV, (2014±20±16, 230±21±73) MeV, 
respectively [179]. 1fl (1400) was observed in the reactions 1f-P -? 1]1fon [10]; PP -? 1fo1f01] 

and pn -? 1f-1f01] [4]; 1f-P -? 1]1f-P [164]. 1fl(1600) was observed in the reaction 1f-P -? 

1]'1f-P (1]' decays to 1]1f+1f- with a fraction 44.5%) [92]. Both 1fl(1600) and 1fl(2015) were 
observed in the reactions 1f-P -? W1f-1fop [126] and 1f-P -? 1]1f+1f-1f-p [116]. However, a 
more recent analysis of a higher statistics sample from E852 31f data found no evidence 
of 1fl(1600) [61]. All the above observations were from hadron-production experiments. 

Recently, the CLAS Collaboration performed a photo-production experiment to search 
for the 1-+ hybrid meson in the speculated 31f final state in the charge exchange reaction 

125 
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"fp -+ 1f+1f+1f-(n) [144]. If 1f1(1600) was an hybrid state, it was expected to be produced 
with a strength near or much larger than 10% of the a2(1320) meson from the theoretical 
models [12,49,91,163]. However 1f1(1600) was not observed with the expected strength. In 
fact its production rate is less than 2% of the a2(1320) meson. If the 1f1(1600) signal from 
the hadron-production experiments is not an artifact, the negative result of the photo­
production experiment suggests (1) either theoretical production rates are overestimated 
significantly or (2) 1f1 (1600) is a meson with a different inner structure instead of a hybrid 
state. 

In fact, the tetraquarkstates can also carry the exotic quantum numbers ]G(JPC) = 

1- (1-+) . It is important to note that the gluon inside the hybrid meson can easily split 
into a pair of qq. Therefore tetraquarks can always have the same quantum numbers 
as the hybrid mesons, including the exotic ones. Discovery of hadron candidates with 
JPc = 1-+ does not ensure that it is an exotic hybrid meson. One has to exclude 
the other possibilities including tetraquarks based on its mass, decay width and decay 
patterns etc. This argument holds for all these claimed candidates of the hybrid meson. 

Tetraquark states in general have a richer internal structure than ordinary qq states. 
For instance, a pair of quarks can be in channels which can not be allowed in the ordinary 
hadrons. The richness of the structure introduces complication in theoretical studies. 
Therefore, one usually assumed one or a few particular configurations which are motivated 
by some intuitions. 

To study these states, we follow the same method used in previous sections which 
is based on complete classification of independent currents. By making suitable linear 
combinations of the independent currents we can perform advanced analysis as compared 
with the analysis of using only one type of current which limits the potential of the OPE, 
and sometimes leads to unphysical results. 

In this chapter, we first classify the flavor structure of four-quark system with quan­
tum numbers J Pc = 1-+. We find that there are five iso-vector states. Then we con­
struct tetraquark interpolating currents by using both diquark-antidiquark construction 
(( qq) (qq)) and quark-antiquark pairs (( qq) (qq)). We verify that they are just different 
bases and can be related to each other. Therefore they lead to the same results. By using 
diquark-antidiquark currents, we perform the QCD sum rule analysis, and calculate their 
masses. Our results suggest that 1f1(1400) may not be explained by just using tetraquark 
structure, and 1f1 (1600) and 1f1 (2015) could be explained by the tetraquark mesons with 
quark contents (qq)(qq) and (qs)(qs) respectively. The diquark and antidiquark inside 
have a mixed flavor $tructure (3 ® 6) EB (6 ® 3). 

This chapter is organized as follows. In Sec. 8.1, we construct the tetraquark currents. 
The tetraquark currents constructed by using both diquark (qq) and antidiquark (qq) are 
shown in Sec 8.1.1. The tetraquark currents constructed by using quark-antiquark (qq) 
pairs are shown in Sec 8.1.2. In Sec. 8.2, we perform a QCD sum rule analysis by using 
these currents, and calculate their OPEs. In Sec. 8.3, the numerical result is obtained for 
their masses. In Sec. 8.4, we use finite energy sum rule to calculate their masses again. 
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We discuss the decay patterns of these 1-+ tetraquark states in Sec. 8.5. In Sec. 8.6, we 
follow the same approach to study the isoscalar vector tetraquark states. Sec. 8.7 is a 
summary. 

8.1 Tetraquark Currents 

In order to construct proper tetraquark currents, let us start with the consideration of the 
charge-conjugation symmetry. The charge-conjugation transformation changes diquarks 
into antidiquarks, while it maintains their flavor structures. If a tetraquark state has a 
definite charge-conjugation parity, either positive or negative, the internal diquark (qq) 
and antidiquark (ijij) must have the same flavor symmetry, which is either symmetric 
flavor structure 6r ® 6r (S) or antisymmetric flavor structure 3r ® 3r (A), and can not 
have mixed flavor symmetry neither 3r ® 6r nor 6r ® 3r (M). However, combinations of 
3r ® 6r and 6r ® 3r can have a definite charge-conjugation parity. Therefore, in order 
to study the tetraquark state of IG JPc = 1-1-+, we need to consider the following 
structures of currents 

qqijij(S) , qsijs(S) 
qsijs(A) 

qqijij(M) ,qsijs(M) 

6r ® 6r (S), 

3r ® 3r (A), 

rv (3r ® 6r) EB (6r ® 3r) (M) , 

where q represents an up or down quark, and s represents a strange quark. The flavor 
structures are shown in Fig. 8.1 in terms of SU(3) weight diagrams. The quark contents 
indicated at vertices follow the ideal mixing scheme for inner vertices where the mixing 
is allowed. In the SU(3) limit, the quark contents are suitable combinations of the ones 
shown in this figures. However, the strange quark has a significantly larger mass than 
up and down quarks (current quark mass), and so, the ideal mixing is expected to work 
well for hadrons except for pseudoscalar mesons. The flavor structure in the ideal mixing 
is also simpler than that in the SU(3) limit. Therefore, we will use the ideal mixing in 
our QeD sum rule studies. 

In the following subsections, we first construct currents by using diquark (qq) and 
antidiquark (ijij) currents as well as quark-antiquark (ijq) pairs, and then we show the 
currents with explicit quark contents. The tensor currents T/J1,V (T/J1,V = -T/VJ1,) can also have 
IG JPc = 1-1-+. By using tensor currents, we obtain the similar results, which will be 
shown in our future work. 

8.1.1 (qq)(qq) Currents 

We attempt to construct the tetraquark currents using diquark (qq) and antidiquark (ijij) 
currents. For each state having the symmetric flavor structure 6r ® 6r (S), there are two 
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(qq)®«(jij)= 6 f ® 6f (S) 

ssuu ssud ssdd 

(qq)®(qq)= 3f ® 3 f (A) 8 f 

udUs" udCs 

usss dsss 

ds(uu-dd) us(uu-dd) 

dsss 

ssus 

X 

udiid 

If 
X 

ssss 

usdd ds(uu+dd) us(uu+dd; dsuu 

Figure 8.1: Weight diagrams for 6r ® 6r(S) (top panel), 3r ® 3r(A) (middle panel), and 
3r®6r(M) (bottom panel). The weight diagram for 6r®3r(M) is the charge-conjugation 
transformation of the bottom one. 
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(qq) (iiii) currents of JPc = 1-+, which are independent 

'ljJL qfaC,5q2b(ii3aIP,'Y5Cii'£, +ii3b1J1-15CiiTa) + qfaC,J1-15q2b(ii3aI5Ciirn + ii3bI5CiiTb$·,l) 

'ljJ~J1- qfaCfq2b(ii3aO"J1-l/ Cii'£, - ii3bO"J1-l/CrfIa) + qfaCO"J1-l/q2b(ii3all/CiiTb - ii3bll/CiiTa) ' 

where the sum over repeated indices (p" V,··· for Dirac spinor indices, and a, b, ... for 
color indices) is taken. C is the charge-conjugation matrix, ql and q2 represent quarks, 
and q3 and q4 represent antiquarks. For the antisymmetry flavor structure 3r ® 3r (A), 
we also find that there are two independent (qq) (iiii) currents, 

'ljJfJ1- qfaC,5q2b(ii3alJ1-15Cii'£, - ii3blJ1-15CiiTa) + qfaC'J1-15q2b(ii3aI5Cii~ - ii3b15CiiRl'f,) 

'ljJ:J1- qfaC,l/q2b(ii3aO"J1-l/ Cii'£, + ii3bO"J1-l/CiiTa) + qfaCO"J1-l/q2b(ii3all/Cii'£, + ii3bll/ CiiTa) ' 

For each state containing diquark and antidiquark having either the flavor structure 
3r ® 6r or 6r ® 3r , there are no currents of quantum numbers J PC = 1-+. However, 
their combinations (3r ® 6r ) EB (6r ® 3r ) can have the quantum numbers JPc = 1-+. We 
first define the currents 'ljJft,L which belong to the flavor representation 3r ® 6r, and the 
currents 'ljJft,R which belong to the flavor representation 6r ® 3r separately. We find the 
following four independent currents: 

'ljJf{} qfaC'J1-q2b(ii3aCii'£, + ii3bCiiTa) , 

'ljJ~L QfaCO"J1-l/15Q2b(ii3all/,5CiiTb + ii3b1l/'5CiiTa) , 

'ljJP:/ QfaCQ2b(ii3alJ1-CiiTb - ii3blJ1-CiiTa) , 

'ljJ~L QiaCIl/,5Q2b(ii3aO"J1-l/15Cii'£, - ii3bO"J1-l/15 CiiTa) ' 

'ljJ~R QfaCQ2b(ii3alJ1-Cii'£, + ii3blJ1-CiiTa) , 

'ljJ~R QfaCf,5Q2b(ii3aO"J1-l/15Cii'£, + ii3bO"J1-l/15CiiTa) ' 

'ljJ~R QfaC'J1-Q2b(ii3aC~ - ii3bCiiTa) , 

'ljJ~R QfacO" J1-l/15Q2b( ii3all/ ,5Cii'£, - ii3bll/ 15CiiTa) . 

They all have quantum numbers JP = 1- but no good charge-conjugation parity. How­
ever, their mixing can have a definite charge-conjugation parity, 

(8.3) 

where the + and - combinations correspond to the charge-conjugation parity positive 
and negative, respectively. In the present work, we only consider the positive one. 
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8.1.2 (qq)(qq) Currents 

In this appendix, we attempt to construct the tetraquark currents using quark-antiquark 
(iiq) pairs. For each state containing diquark and antidiquark having the symmetric flavor 
6f ® 6f , there are four (iiq)(iiq) currents: 

~f/-l (ii3a'Y/-l'Y5qla)(ii4b'Y5q2b) + (ii3a'Y5qla)(ii4b'Y/-l'Y5q2b) 

+(ii3a'Y/-l'Y5q2a)(ii4b1'5qlb) + (ii3a'Y5q2a)(ii4b1'/-l'Y5qlb) , 

~~/-l (ii3a 'Yv qla) (ii4bO" /-lvq2b) + (ii3aO" /-lvqla) (ii4b1'V q2b) 

+( ii3a'Yv q2a)( ii4bO" /-lvqlb) + (ii3aO" /-lvq2a) (ii4b"(v qlb) , 

~f/-l AabAcd{ (ii3a'Y/-l'Y5qlb) (ii4c'Y5q2d) + (ii3a'Y5qlb)( ii4c'Y/-l'Y5q2d) 

+ (ii3a 'Y/-l'Y5q2b) (ii4c'Y5qld) + (ii3a'Y5q2b)( ii4c'Y/-l'Y5qld)} , 

~f/-l AabAcd{ (ii3a'Y
v 
qlb) (ii4cO" /-lvQ2d) + (ii3aO" /-lvQlb) (ii4cl'v Q2d) 

+(ii3a'YVQ2b)(ii4cO"/-lvQld) + (ii3aO"/-lvQ2b)(ii4c'YVQld)}. 

Among these currents, only two are independent. We can verify the following relations 

Moreover, they are equivalent to the (QQ)(iiii) currents 

For each state containing diquark and antidiquark having the antisymmetric flavor 
3f ® 3f, there are also four (iiQ)(iiQ) currents which are non-zero: 

~t/-l (ii3a'Y/-l'Y5Qla)(ii4b1'5Q2b) + (ii3a'Y5Qla)(ii4b1'/-l'Y5Q2b) 

-(ii3a'Y/-l'Y5Q2a)(q4b1'5Qlb) - (ii3a'Y5Q2a)(ii4b'Y/-l'Y5Qlb) , 

~:/-l (q3a'Y
v 
Qla)( ii4bO" /-lvQ2b) + (q3aO" /-lvQla)( ii4b'Y

v 
Q2b) 

-(ii3a'YVQ2a)(q4bO"/-lvQlb) - (ii3aO"/-lvQ2a)(ii4b'YVQlb) , 

~:/-l AabAcd{ (ii3a'Y/-l'Y5Qlb)( ii4c'Y5Q2d) + (ii3a'Y5Qlb)( ii4cl'/-l'Y5Q2d) 

-(ii3a'Y/-l'Y5Q2b)(ii4c'Y5Qld) - (ii3a'Y5Q2b)(ii4c'Y/-l'Y5Qld)} , 

~:/-l AabAcd{ (ii3af Qlb) (ii4cO" /-lvQ2d) + (ii3aO" /-lvQlb) (ii4c'Yv Q2d) 

- (ii3a'Yv Q2b)( ii4cO" /-lvQld) - (ii3aO" /-lvQ2b) (ii4c'Yv Qld)} , 
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where once again only two are independent 

They are equivalent to the (qq)(iiii) currents 

For the currents which have a mixed flavor symmetry, we just show the (iiq)(iiq) 

currents which belong to the flavor representation 3f 06f. Those belonging to the flavor 
representation 6f ® 3 f can be obtained similarly. 

~~ (ii3aqla)(ii4b'"'(/-Lq2b) - (ii3a'"'(/-Lqla)(ii4bq2b) 

-(ii3aq2a)(ii4b'"'(/-Lqlb) + (ii3a'"'(/-Lq2a)(ii4bqlb) , 

~~ (ii3a,",(/-L'"'(5qla)( ii4b'"'/5Q2b) - (ii3a'"'(5Qla)( ii4b'"'//-L'"'(5Q2b) 

-(t13a'"'(/-L'"'(5Q2a)(ii4b'"'/5Qlb) + (ii3a'"'(5Q2a)(ii4b'"'//-L'"'(5Qlb) , 

~~ (ii3a'"'(v Qla) (ii4b(J /-LvQ2b) - (ii3a(J/-LvQla)(ii4b'"'(v Q2b) 

- (ii3a'"'(v Q2a) (ii4b(J /-LvQlb) + (ii3a(J /-LvQ2a)( ii4b'"'(v Qlb) , 

~~ (ii3a'"'(v'"'(5Qla)(ii4b(J/-Lv'"'(5Q2b) - (ii3a(J/-Lv'"'(5Qla)(ii4b'"'(v'"'(5Q2b) 

-(ii3a'"'(v'"'(5Q2a)(ii4W/-Lv'"'(5Qlb) + (ii3a(J/-Lv'"'(5Q2a)(ii4bf'"'(5Qlb). 

There are also four currents which have a color 8c 0 8c structure, and they can be written 
as a linear combination of the currents with color structure Ic 0Ic' The relations between 
rp~ L and ~fff are: 

We can obtain similar results for 1/J~R, which we do not show here any more. 
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8.1.3 Iso-Vector Currents 

For the study of the present exotic tetraquark state, we need to construct iso-vector 
(I = 1) currents. There are two isospin triplets belonging to the flavor representation 
6 f ® 6 f' one isospin triplet belonging to the flavor representation 3 f ® 3 f, and two isospin 
triplets belonging to the flavor representation (3f ® 6f ) EB (6f ® 3f) (Fig. 8.1). For each 
state, there are several independent currents. We list them in the following. 

1. For the two isospin triplets belonging to 6f ® 6f (S): 

s - of,S ( --) 7]3J.L = 'f'1J.L qsqs rv 

where 7]fJ.L and 7]~J.L are the two independent currents containing only light flavors, 
and 7]fJ.L and 7]fJ.L are the two independent ones containing one ss quark pair. 

2. For the isospin triplet belonging to 3f ® 3f (A): 

where 7]fJ.L and 7]t-J.L are the two independent currents. 

3. For the two isospin triplets belonging to (3f ® 6f) EB (6f ® 3f) (M): 

7]~ - 1jJ~ (qqijij) rv 

7]~ _ 1jJ~ (qqijij) rv 

M - o/,NI( --) 7]4J.L = 'f'4J.L qqqq rv 

U~C'YJ.Ldb(UaCdf + UbCJrJ 
+U~Cdb(Ua'YJ.LCdf + Ub'YJ.LCCl[;) , 
u~C(J J.Lv'Y5db(Ua'Yv'Y5Cdf + Ub'Yv'Y5CJrJ 
+u~C'Yv'Y5db(Ua(JJ.Lv'Y5Cdf + UWJ.Lv'Y5C;PJ, 
U~Cdb(Ua'YJ.LCdf - Ub"/J.LCJJJ 
+U~C'YJ.Ldb(UaCdf - UbCJJJ, 
u~ C'Yv 'Y5db( ua(J J.Lv'Y5Cdf - Ub(J J.Lv'Y5CJrJ 

+u~C(JJ.Lv'Y5db(Ua'Yv'Y5Cdf - Unv'Y5CJrJ, 
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where 7]~ 34 are the four independent currents containing only light flavors, and 
7]~ 3 4 ar~ 'the four independent ones containing one ss quark pair. , , , 

We use rv to make clear that the quark contents here are not exactly correct. For instance, 
in the current 7]tI-L' th~ state usus does not have isospin one. The correct quark contents 
should be (usus - dsds). However, in the following QCD sum rule analysis, we shall not 
include the mass of up and down quarks and choose the same value for (uu) and (dd). 
Therefore, the QCD sum rule results for 7]~ with quark contents usus and (usus - dsds) 
are the same. 

8.2 SVZ sum rule 

We have performed the OPE calculation up to dimension twelve: 

A 2 fSO [ 1 4 17m; 3 ((g;GG) ms(qq) ms(ss)) 2 

III (M B) = s< 368487[6 S - 153607[6 S + 184327[6 + 1927[4 + 967[4 s 

+ (_ (qq)2 _ (SS)2 _ (qq) (ss) + ms(gsq(}Gq) + ms(gss(}Gs) 
727[2 727[2 187[2 967[4 1927[4 

_ m;(g;GG))s _ (qq)(gsq(}Gq) _ (ss)(gsS(}Gs) _ (qq)(gsS(}Gs) 
46087[6 487[2 487[2 247[2 

(ss) (gsq(}Gq) ms(g;GG) (qq) m;(qq)2 m;(ss)2 - + - + --=-...:.......,..'--
247[2 2567[4 127[2 487[2 

m;(qq) (ss)] -s/M1 ds (_ (gsq(}Gq)2 (gsS(}Gs) 2 

+ 47[2 e + 1927[2 1927[2 

(gsq(}Gq) (gsS(}Gs) 5(g;GG) (qq) (ss) ms(qq)2(ss) 2ms(qq) (SS)2 
- 487[2 - 8647[2 + 3 - 9 

5ms(g;GG) (gsq(}Gq) m;(qq) (gsS(}Gs) m;(ss) (gsq(}Gq)) 
+ 46087[4 + 127[2 + 87[2 

1 ( 16g; (qq)2 (SS)2 (g;GG) (qq) (gsS(}Gs) (g;GG) (ss) (gsq(}Gq) 
+ M2 - 81 + 11527[2 + 11527[2 

B 

ms (qq)2 (gsS(}Gs) ms (SS)2 (gsq(}Gq) 5ms (qq) (ss) (gsq(}Gq) 
9 18 18 
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(8.4) 

(8.5) 

(8.6) 

(8.7) 

(8.8) 
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(8.9) 

180 [ 1 4 17m; 3 (11 (g;GG) ms(ijq) m S (3S)) 2 --S - S + - + S 
4m2 61447f6 25607f6 184327f6 327f4 167f4 

s 

+( _ (ijq)2 + (ijq)(3S) _ (3S)2 _ ms(gsijO"Gq) + ms(gs30"GS) 
127f2 37f2 127f2 167f4 327f4 

109m; (g;GG)) (ijq) (gsijO"Gq) (ijq) (gs30"GS) (3S) (gsijO"Gq) - s- + +~~~---.::.:.... 
184327f6 87f2 47f2 47f2 

_ (3S) (gs30"GS) _ 3ms(g;GG) (ijq) + 5ms(g;GG) (3S) _ m;(ijq)2 
87f2 1287f4 2567f4 27f2 

3m; (ijq) (3S) m;(3s)2] -s1M2 d ( (gsijO"Gq) 2 (gsijO"Gq) (gssa-Gs) 
-----'''-'-''-'~....:.... + e B S + - + -=-=-----=..:.....:c:---....:... 

27f2 87f2 327f2 87f2 

(gssO"Gs) 2 25(g;GG) (ijq)2 5(g;GG) (ijq) (3S) 25 (g;GG) (3S)2 
- 327f2 - 17287f2 + 1447f2 - 17287f2 

5ms(g;GG) (gsijO"Gq) 25ms(g;GG) (gs30"GS) 2 (- )2(- ) 
7687f4 + 46087f4 + ms qq ss 

+ 4ms(ijq) (3S)2 _ m;(ijq) (gs30"GS) _ 3m;(3S) (gsijO"Gq)) 
3 27f2 47f2 

1 ( 32g; (ijq)2 (3S)2 5(g;GG) (ijq) (gsijO"Gq) (g;GG) (ijq) (gs30"GS) 
+ M~ - 27 + 11527f2 - 1927f2 

(g;GG) (3S) (gsijO"Gq) 5(g;GG) (3S) (gssO"Gs) 2ms (ijq) 2 (gs30"GS) 
- 1927f2 + 11527f2 - 3 

5ms (ijq) (3S) (gsijO"Gq) ms (ijq) (3S) (gs30"GS) ms (3S)2 (gsijO"Gq) 
- 3 + 3 + 3 

_ 5m;(g;GG) (3S)2 + m;(gsijO"Gq)2 _ m;(gsijO"Gq) (gs30"GS)) (8.10) 
11527f2 87f2 87f2 · 
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l
s0 [ 1 4 17m; 3 ((g;GG) ms(ijq) m S (8S)) 2 

4m2 368647[6 S - 153607[6 S + 184327[6 - 1927[4 + 967[4 S 
s 

+( _ (ijq)2 + (ijq)(8S) _ (8S)2 _ ms(gs8CJGS) + ms(gs8CJGS) 
727[2 187[2 727[2 967[4 1927[4 

m;(g;GG)) (ijq) (gsijCJGq) (ijq) (gs8CJGS) (8S) (gsijCJGq) - s- + +~.:......:::..;:....::.-.----=..:... 
46087[6 487[2 247[2 247[2 

(8S) (gs8CJGS) ms(g;GG) (ijq) m;(ijq)2 m;(ijq) (8S) 
487[2 2567[4 127[2 47[2 

m;(8S)2] -s1M2 d ( (gsijCJGq) 2 (gsijCJGq) (gs8CJGS) 
+ 487[2 e B S + - 1927[2 + 487[2 

(gs8CJGS) 2 5 (g;GG) (ijq) (8S) ms (ijq) 2 (8S) 2ms (ijq) (8S)2 
- 1927[2 + 8647[2 + 3 + 9 

5ms(g;GG)(gsijCJGq) _ m;(8S) (gsijCJGq) _ m;(ijq) (gs8CJGS)) 
46087[4 87[2 127[2 

1 ( 16g; (ijq) 2 (8S)2 (g;GG) (ijq) (gs8CJGS) (g;GG) (8S) (gsijCJGq) 
+ M~ ~ 81 - 11527[2 - 11527[2 

ms (ijq)2 (gs8CJGS) 5ms (ijq) (8S) (gsijCJGq) ms (ijq) (8S) (gs8CJGS) 
- 9 - 18 + 18 

ms (8S)2 (gsijCJGq) m; (gsijCJGq) 2 
_ m; (gsijCJGq) (gs8CJGS)) 

+ 18 + 487[2 487[2 . (8.11) 

l
s0 [ 1 4 17m; 3 ( (g;GG) ms(ijq) m S (8S)) 2 

4m2 122887[6 S - 51207[6 S + 184327[6 - 647[4 + 327[4 S 
s 

+ (_ (ijq)2 + (ijq) (8S) _ (8S) 2. _ ms(gsijCJGq) + ms(gs8CJGS) 
247[2 67[2 247[2 327[4 647[4 

17m;(g;GG)) (ijq) (gsijCJGq) (ijq) (gs8CJGS) (8S) (gsijCJGq) 
S - + + ~'----=---=-------=-:.. 

184327[6 167[2 87[2 87[2 
(8S) (gs8CJGS) + ms(g;GG)(8S) _ m;(ijq)2 _ 3m; (ijq) (8S) 

167[2 2567[4 47[2 47[2 

m; (8S)2] e-slM1 ds (_ (gsijCJGq)2 (gsijCJGq) (gs8CJGS) 
+ 167[2 + 647[2 + 167[2 

(gs8CJGS) 2 5(g;GG) (ijq) 2 5 (g;GG) (8S)2 5ms(g;GG) (gs8CJGS) 
- 647[2 - 17287[2 - 17287[2 + 46087[4 

(
_ )2(-) 2ms(ijq) (8S2) 3m; (8S) (gsijCJGq) m;(ijq) (gs8CJGS)) 

+ms qq ss + 3 - 87[2 - 47[2 

1 ( 16g;(ijq)2(8s)2 (g;GG) (ijq) (gsijCJGq) (g;GG) (8S) (gs8CJGS) 
+ JVI~ - 27 + 11527[2 + 11527[2 

ms (ijq) 2 (gs8CJGS) 5ms (ijq) (8S) (gsijCJGq) ms(ijq) (8S)(gs8CJGS) 
- 3 - 6 + 6 



8.3. NUMERICAL ANALYSIS 137 

ms(ss)2(gsqaGq) m;(g;GG) (SS)2 m;(gsqaGq)2 
+ 6 - 11527f2 + 167f2 

_ m; (gsqaGq) (gssaGs)) 
167f2 . (8.12) 

8.3 Numerical Analysis 

For the currents which belong to the flavor representations 6f 0 6f (S) and 3f ® 3f (A), 
the spectral densities turn out to be negative in the energy region 1 Ge Y rv 2 Ge Y as 
shown in Fig. 8.2. The spectral densities of these currents become positive in the region 
s > 4 Gey2. They may couple to the state 7fl(2015). However, after performing the sum 
rule calculation, we find that the mass obtained from the currents 'TIC and 'TI~ is larger 
than 2.5 GeY, for instance, we show the mass calculated from the current 'TItJL in Fig. 8.4. 
The curves are obtained by setting M~ = 2 Ge y2 (solid line), 3 Ge y2 (short-dashed line) 
and 4 Ge y2 (long-dashed line). The left curves (disconnected from the right part) are 
obtained from a negative Borel transformed correlation function, and have no physical 
meaning. Therefore, our QCD sum rule analysis does not support 7fl(1400), 7fl(1600) 
and 7fl(2015) as tetraquark states with a flavor structure either 6f ® 6f or 3f 03f . 

,......, 
00 

~ 
b 0 
..... ....... 
0.. 

-1 
0 2 3 4 5 

s [GeV2] 

Figure 8.2: Spectral densities for the current 'TItJL , 'TI~JL (solid lines), 'TIrJL , 'TIfJL (short-dashed 
lines), 'TIfJL and 'TIrJL (long-dashed lines). The labels besides the lines indicate the flavor 
symmetry (8 or A) and suffix i of the current 'TI~A (i = 1,2,3,4). 

When using the currents 'TIt!, the spectral densities are positive as shown in Fig. 8.3. 
And so we shall use these currents to perform a QCD sum rule analysis. First we need 
to study the convergence of the OPE. The Borel transformed correlation function of 
the current 'TI~~ is shown in Fig. 8.5, when we take So = 4 Gey2. Besides the first 
term, which is the continuum piece, the D=6 and D=8 terms give large contributions. 
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Figure 8.3: Spectral densities for the current 'TIft,. The spectral densities for the currents 
with the quark contents qqijij are shown in the left hand side, and those with the quark 
contents qsijs are shown in the right hand side. The labels besides the lines indicate the· 
suffix i of the current 'TIt:! (i = 1,···,8). 

The D=6 terms contain (ijq)2 and the D=8 terms contain (qq) (gcijO'Gq), which are the 
important condensates. We find that the convergence is very good in the region of 
2 Gey2 < M~ < 5GeV2. Therefore, in this region, OPEs are reliable. 

The mass is calculated by using Eq. (1.26), and results are obtained as functions of 
Borel mass ME and threshold value so. In Figs. 8.6, 8.7, 8.8 and 8.9, we show the mass 
calculated from currents 'TIt!, 'TI~, 'TI~ and 'TI~, whose quark contents are qqijij. Although 
these four independent currents look much different, we find that they give a similar 
result. From figures at LHS, we find that the dependence on Borel mass is weak. From 
figures at RHS where the mass is shown as functions of so, we find that there is a mass 
minimum for all curves where the stability is the best. It is 1.7 GeY, 1.6 GeY, 1.6 GeY 
and 1. 7 Ge Y for four independent currents, respectively. We find that sometimes the 
threshold values become smaller than the mass obtained in the mass minimum region. 
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Figure 8.4: The mass calculated by using the current 'Tlf
ll

, as functions of So in units of 
GeY. The curves are obtained by setting M~ = 2 Gey2 (solid line), 3 Gey2 (short-dashed 
line) and 4 Ge y2 (long-dashed line). The left curves (disconnected from the right part) 
are obtained from a negative correlation function, and have no physical meaning. 
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2 3 4 5 

Figure 8.5: Various contribution to the correlation function for the current 'Tl~ as functions 
of the Borel mass ME in units of Ge ylO at So = 4 Ge y2. The labels indicate the dimension 
up to which the OPE terms are included. 

This is due to the negative part of the spectral densities. We also met this in the study 
of Y(2175). See Ref [42] for details. 

In Figs. 8.10, 8.11, 8.12 and 8.13, we show the mass calculated from currents 'Tl~, 
'Tl~, 'Tl~ and 'Tl~, whose quark contents are qsfjs. The results are similar as previous four 
currents. But now the mass obtained is about 0.4 GeY larger than the previous ones. 
The minimum occurs at 2.1 GeY, 2.0 GeY, 1.9 GeY and 2.0 GeY, respectively. 

In a short summary, we have performed a QeD sum rule analysis for qqfjfj and qsfjs. 
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Figure 8.6: The mass of the state qqqq calculated by using the current 'T}~, as functions 
of NI~ (Left) and So (Right) in units of GeV. 
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Figure 8.7: The mass of the state qqqq calculated by using the current 'T}~~, as functions 
of M~ (Left) and So (Right) in units of GeV. 

The mass obtained is around 1.6 GeV and 2.0 GeV, respectively. There are four inde­
pendent currents for each case, which give a similar results. Their mixing would lead to a 
similar result, too. Compared with the experimental data, they can be used to interpret 
the states 1fl(1600) and 1fl(2015) of JGJPc = 1-1-+. These analyses are very similar to 
our previous paper [42], where we studied the state Y(2175) by using vector tetraquark 
currents which have quantum numbers JPc = 1-- and quark contents ssss. 

The pole contribution 

(8.13) 

is not large enough for all currents due to the high dimension nature of tetraquark cur­
rents. Another reason is that these currents have a large coupling to the continuum, 
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Figure 8.8: The mass of the state qqi'ji'j calculated by using the current TJ~, as functions 
of M'§ (Left) and So (Right) in units of GeV. 
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Figure 8.9: The mass of the state qqi'ji'j calculated by using the current TJk!., as functions 
of M'§ (Left) and So (Right) in units of Ge V. 

which is difficult to be removed. Therefore, we arrive at a stable mass, but with a small 
pole. To make our analysis more reliable, we go on to use the finite energy sum rule in 
the following section. 

8.4 Finite Energy Sum Rule 

The spectral functions pf1 (s) can be drawn from the Borel transformed correlation func­
tions shown in section 8.2. The Dim = 12 terms which are proportional to 1/(q2)2 do 
not contribute to the function W(n, so) of Eq. (1.27) for n = 0, or they have a very small 
contribution for n = 1, when the theoretical side is computed by the integral over the 
circle of radius So on the complex q2 plain. 
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Figure 8.10: The mass of the state qsqs calculated by using the current TJ~, as functions 
of M~ (Left) and So (Right) in units of GeV. 
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Figure 8.11: The mass of the state qsqs calculated by using the current TJ~, as functions 
of M~ (Left) and So (Right) in units of Ge V. 

The mass is shown as a function of the threshold value So in Fig. 8.14, where n is 
chosen to be 1. We find that there is a mass minimum around which the result is stable 
under the change in so. It is around 1. 6 Ge V for currents TJf4, TJ~I, TJr and TJ~, whose 
quark contents are qqqq, while it is around 2.0 Ge V for currents TJr, TJ~, TJ!f and TJr, 
whose quark contents are qsqs. In a short summary, we arrive at the same results as the 
previous SVZ QeD sum rule. 

8.5 Decay Patterns of the 1-+ Tetraquark States 

In the Section 8.1.2, we have verified that (qq) (qq) construction and (qq)(qq) construction 
are equivalent, and from the second one we can obtain some decay information. The four 
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Figure 8.12: The mass of the state qsqs calculated by using the current 'fl~, as functions 
of M~ (Left) and So (Right) in units of Ge V. 
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Figure 8.13: The mass of the state qsqs calculated by using the current 'fl~, as functions 
of M~ (Left) and So (Right) in units of GeV. 

independent (qq)(qq) currents e: lead to the same mass, and therefore, we shall study 
the decay patterns from all these currents. We can obtain the S-wave decay patterns 
straightforwardly: 

1. The current ~~ naively falls apart to one scalar meson and one vector meson: 

~~ : 7rl(1600) -+ 0+ ((}(600), 10(980) ... ) + 1- (p(770), w(782) ... ), (8.14) 

7rl(2000) -+ 0+ ((}(600), /'i:(800) ... ) + 1- (p(770), K*(892) ... ) . 

2. The current ~~ naively falls apart to one axial-vector meson and one pseudoscalar 
meson: 

(8.15) 
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Figure 8.14: The mass calculated using the finite energy sum rule. The mass for the 
currents TJ~, TJ~, TJ~ and TJ~ is shown in the left hand side, and The mass for the 
currents TJ~, TJ'fC, TJ'fC and TJ~ are shown in the right hand side. The labels besides the 
lines indicate the suffix i of the current TJf;i (i = 1" .. ,8). 

7f1(2000) -7 1+ (a1(1260), K 1(1270),"') + 0- (7f(135), K(498)···) . 

3. The current ~~ naively falls apart to one vector meson and one axial-vector meson: 

~~ : 7f1(1600) -7 1- (p(770),w(782) .. ·) + 1+ (a1(1260),b1(1235) .. ·) , (8.16) 

7f1(2000) -7 r (p(770), K*(892) ... ) + 1+ (a1(1260), K1(1270)···) . 

4. The current ~~ naively falls apart to one axial-vector meson and one vector meson: 

~~ : 7f1(1600) -7 1+ (a1(1260),b1(1235)···) + 1- (p(770),w(782)···) , (8.17) 

7f1(2000) -7 1+ (a1(1260),K1(1270)···) + 1- (p(770),K*(892)···) . 

7f1 (2000) contains one ss pair, so its final states should also contain one ss pair, and its 
decay patterns are more complicated than 7f1(1600). We see that the decay modes (8.16) 
and (8.17) are kinematically forbidden (or strongly suppressed) due to energy conser­
vation. The decay modes (8.14) are difficult to be observed in the experiments due to 
the large decay width of scalar mesons (0" and K,). Moreover, the scalar mesons below 1 
GeV are sometimes interpreted as tetraquark states, and if so, these decay modes should 
be suppressed due to the extra qq pair [41]. Therefore, the decay modes (8.15) are pre­
ferred. The 7f1 meson first decays to one axial-vector meson and one pseudoscalar meson. 
Then the axial-vector meson decays into two or more pseudoscalar mesons. However, 
the second step is a P-wave decay. Considering the conservation of G parity, the decay 
mode a1(1260)7f is forbidden. One possible decay pattern is that 7f1(1600) first decays to 
b1(1235)7f, and then decays to W7f7f. 
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We can also check the P-wave decay patterns besides S-wave decay patterns. We find 
that the current ~~ leads to a decay mode of two P-wave pseudoscalar mesons by naively 
relating qrp,r5q and 8p,7r 

7r1(1600) ~ O-(7r,rJ,rJ'···)+O-(7r,rJ,rJ'···) , 
7r1(2000) ~ 0- (7r, rJ, rJ'···) + 0- (7r, rJ, rJ'···) . 

(8.18) 

Considering the conservation of G parity, decay modes 7r7r and rJrJ etc. are forbidden, and 
possible decay modes are 7rrJ and 7rrJ' etc. Summarizing the decay patterns, there are two 
possible decay modes: P-wave many body decay, such as W7r7r, and P-wave two body 
decay, such as 7rrJ and 7rrJ'. This is partly consistent with the experiments which observe 
7r1(1600) and 7r1(2015) in the decay modes 7rrJ', W7r7r and rJ7r7r7r. However, the experiment 
has not observe them in the final state 7rrJ. Certainly it is desired to study these decay 
patterns to obtain more information on the structure of the 7r1S mesons. 

8.6 The fG J Pc = 0+1-+ Tetraquark State 

The tetraquark currents with the quantum numbers JPc = 1-+ have been constructed 
in the previous section. Now we need construct the isoscalar ones. The flavor structures 
are shown in Fig. 8.1 in terms of SU(3) weight diagrams. The ideal mixing scheme is 
used since it is expected to work well for hadrons except for the pseudoscalar mesons. In 
order to have a definite charge-conjugation parity, the diquark and antidiquark inside can 
have the same flavor symmetry, which is either symmetric 6r 0 6r (S) or antisymmetric 
3r 0 3r (A). Another option is the combination of 3r 0 6{ and 6r 0 3r (M), which can 
also have a definite charge-conjugation parity. 

From Fig. 8.1, we find that there are three isospin singlets belonging to the flavor 
representation 6 f 0 6 f' two isospin singlets belonging to the flavor representation 3 f 0 3 f' 
and one isospin singlet belonging to the flavor representation (3f 0 6f ) E9 (6f 0 3f ): 

qqqq(S) ,qsqs(S) ,ssss(S) f'.J 6r 0 6r (S), 
qqqq(A) ,qsqs(A) f'.J 3r 0 3r (A), 
qsqs(M) f'.J (3r 0 6r) E9 (6r 0 3r) (M), 

(8.19) 

where q represents an up or down quark, and s represents a strange quark. For each 
state, there are several independent currents. We list them in the following. 

1. For the three isospin singlets of 6f 0 6f (S): 

f'.J u;Cr5db(Uarp,r5Cd[ + Ubrp,r5CJI;J 
+u;Crp,r5db(Uar5Cd[ + Ub/5 CJI;J , 
f'.J U;CrVdb(UaO"p,vCdT - uWp,vcJI;J 
+u;CO"p,vdb(UarvCd[ - Ub/VCd[,) , 

(8.20) 
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(8.21) 

(8.22) 

where (rIL and (rIL are the two independent currents containing only light flavors; 
(ilL and (tIL are the two independent ones containing one ss pair; (fIL and (ilL are 
the two independent ones containing two ss pairs. 

2. For the two isospin singlets of 3f 0 3f (A): 

rv UrC'Y5db(Ua'YIL'Y5Cd[ - Ub'YIL'Y5C~,) 
+UrC'YIL'Y5 db(Ua'Y5 Cd[ - Ub'Y5Cd~J , 
rv UrC'Yvdb(UaO"ILvCd[ + UbO"ILVC~J 
+urCO"ILvdb(Ua'YvCd[ + ub'YvCd~J, 
rv UrC'Y5Sb(Ua'YIL'Y5Csf - Ub"(IL'Y5 CSr) 
+urC'YIL'Y5Sb(Ua'Y5Csf - Ub"(5 CSr) , 
rv UrCfSb(UaO"ILvCsf + UbO"ILVCSr) 
+urCO"ILVSb(Ua'YvCsf + ub"(vCsr) , 

(8.23) 

(8.24) 

where (~ and (~ are the two independent currents containing only light flavors; 
(~ and (tIL are the two independent ones containing one ss pair. 

3. For the isospin singlet of (3f 0 6f) E9 (6f 03f) (M), 

(8.25) 

where (f;1 are the four independent ones containing one ss pair. The above structure 
has some implications on their decay patterns. 

The expressions of Eqs. (8.20)-(8.25) are not exactly correct, since they do not have a 
definite isospin. For instance, the current (~ should contain (usus + dsds) in order to 
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have J = O. However, in the following QCD sum rule analysis, we find that there is no 
difference between these two cases in the limit that the masses and condensates of the 
up and down quarks are the same. Actually we also ignore a small quark mass effect 
(mu rv md ~ 10 MeY). 

By using these tetraquark currents, we have performed the OPE calculation up to 
dimension 12. Values for various condensates and ms follow the references [71,85,89,99, 
140,148,177,179]. There are altogether 14 currents. It turns out that some of them lead 
to the same results of OPEs as the previous ones in previous sections [43]: 

;-8 8 
':,1,2,3,4ft rv 'TJl,2,3,4ft ' 

;-A A 
':,3,4ft rv 'TJl,2ft ' 

;-M M 
':,1,2,3,4ft rv 'TJ5,6,7,8ft ' 

Therefore, we just need calculate the OPEs of (1,6ft and (~2W The full OPE expressions 
are too lengthy and are omitted here. 

In our previous paper [43] we have found that the OPEs of the currents (i~'S and (6's 
lead to unphysical results where the spectral densities p( s) become negative in the region 
of 2 Gey2 ~ s ~ 4 Gey2. We find this to be the case also for the isoscalar currents. 
Therefore, our QCD sum rule analysis does not support a tetraquark state which has a 
flavor structure either 6f 0 6f or 3f 0 3 f and a mass less than 2 GeY. 

We shall discuss only the currents of the mixed flavor symmetry. For the isoscalar 
case, there is only one set of four independent currents as given in Eqs. (8.25), unlike the 
isovector case which have two sets. The spectral densities calculated by the mixed currents 
(l't are shown in Fig. 8.15, which are positive for a wide range of s. The convergence of 
OPE is very good in the region of 2 Gey2 < M1 < 5Gey2 as in our previous study [43]. 
In general, the pole contribution should be large enough in the SYZ sum rule. However, 
the pole contributions of multiquark states are rather small due to the large continuum 
contribution. Therefore a careful choice of the threshold parameter is important in order 
to subtract the continuum contribution. At this moment we do not have a complete 
solution to this problem, while we can perform a sum rule analysis phenomenologically. 
Besides the SYZ sum rule, we will also use the finite energy sum rule. As we shall discuss 
in the following, the remarkable stability in both the SYZ sum rule and the finite energy 
sum rule indicates the signal of the physical state of the present exotic channel with a 
very similar mass. 

When using the SYZ sum rule, the mass is obtained as functions of Borel mass ME 
and threshold value so. As an example, we show the mass calculated from currents (~ 
in Fig. 8.16. The Borel mass dependence is weak, as shown in the upper figure; the So 

dependence has a minimum where the stability is the best, as shown in the bottom figure. 
The minimum is around 2.0 GeY, which we choose to be our prediction. The other three 
independent currents (f;, (f~ and 'TJ~ lead to similar results, which are around 2.1 GeY, 
1.9 GeY and 2.0 GeY respectively. 
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Figure 8.15: Spectral densities for the currents TJft,. The labels besides the lines indicate 
the suffix i of the currents (l;! (i = 1, ... , 4) . 
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Figure 8.16: The mass of the state qsqs calculated by using the current (~, as functions 
of M'§ (upper) and So (bottom) in units of GeV. 

When using the finite energy sum rule, the mass is obtained as a function of the 
threshold value So, which is shown in Fig. 8.17. There is also a mass minimum around 
2.1 GeV, 1.9 GeV, 1.9 GeV and 2.0 GeV for currents (~, (~, (t:t and (~ respectively. 
In a short summary, we have performed a QeD sum rule analysis for qsqs. The mass 
obtained is around 2.0 GeV. We label this state 0"1(2000). 

Now let us discuss its decay properties as expected from a naive fall-apart process. 
This has a direct relevance to the experimental observations. As shown in Eqs. (8.25) 
the currents contain one ss pair. Therefore, we expect that the final states should also 
contain one ss pair. In order to spell out the possible spin of decaying particles and their 
orbital angular momentum, we need perform a Fierz rearrangement to change (qq)(qq) 
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Figure 8.17: The mass calculated using the finite energy sum rule. The mass for the 
currents (~, (~, (Z and (~ are shown. The labels besides the lines indicate the suffix i 
of the current (l: (i = 1,· . ·,4). 

currents to (qq)(qq) ones. For illustration, we use one of the four independent (qq)(qq) 
currents [43]: 

~;~ = (Sa"(Ji."(5Sa) (Ub"(5Ub) - (Sa"(5Sa) (UnJi."(5Ub) 
+ .... (8.26) 

All terms of this current have the structure (qa ,,(Ji."(5qa)( qb"/5qb). Therefore, the expected 
decay patterns are: (1) 1+ and 0- particles with relative angular momentum L = 0, and 
(2) 0- and 0- particles with L = 1. 

For the S-wave decay, we expect the following two-body decay patterns 

(}l(IG JPc = o+r+) ---t a1(1260)1], a11]',··· , 

b1(1235)1], b11]' .... (8.27) 

If we consider; however, the G parity conservation, the fist line is forbidden and the 
second line is the only one allowed. These modes can be observed in the final states W7r1] 
and W7r1]'. 

For the P-wave decay, we expect (with the G parity conservation): 

(8.28) 

We can also estimate the (partial) decay width through the comparison with the 
observed 7r1(2015) [126], which has f tot rv 230 MeV. Assuming that the decay of 7r1(2015) 
solely goes through S-wave bl 7r and that of (}1(2000) through b11], we expect f O"l-->bll1 rv 160 
MeV, as they are proportional to the S-wave phase space. For the P-wave decay there 
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is an information 7rl(2015) ----7 T/7r, which corresponds to 0"1(2000) ----7 T/T} (Because both 
7rl(1600) and 7rl(2015) have been observed in the final states 7rT}' other than 7rT}, we choose 
T}T}' to be the final states of 0"1(2000) other than KK and T}T}). Assuming once again that 
this is the unique decay mode, we expect that the decay width is approximately 130 MeV. 
If the decay occurs 50% through bl 7r (bIT}) and 50% through T}'7r (T}'T}) , we expect that 
r al rv 150 MeV. 

In summary, we have performed the QeD sum rule analysis of the exotic tetraquark 
states with JG JPc = 0+1-+. We test all possible flavor structures in the diquark­
antidiquark (qq)(ijij) construction, 6 ® 6, 3 Q9 3 and (3 ® 6) EEl (6 ® 3). We find that 
the former two cases can not result in a meaningful sum rule since the spectral func­
tions become negative. On the other hand, the mixed currents of the flavor structure 
(3 ® 6) EEl (6 ® 3) allows a positive and convergent OPE with which we can perform a 
QeD sum rule analysis. There is only one choice with the quark content qsijs, which 
have four independent currents. We have then performed both the SVZ sum rule and the 
finite energy sum rule. The resulting mass is around 2.0 Ge V. The possible decay modes 
are 8-wave b1(1235)T} and b1(1235)T}', and P-wave KK, T}T}, T}T}' and T}'T}', etc. The decay 
width is around 150 MeV through a rough estimation. 

8.7 Conclusion 

In this chapter we have performed the QeD sum rule analysis of the exotic tetraquark 
states with JG JPc = 1-1-+. The tetraquark currents have rich internal structure. There 
are several independent currents for a given set of quantum numbers. We have classified 
the complete set of independent currents and constructed the currents in the form of 
either (qq)(ijij) or (ijq) (ijq). As expected, they are shown to be equivalent by having the 
complete set of independent currents. Physically, this seems to make it difficult to draw 
interpretation of the internal structure such as diquark (qq) dominated or meson (ijij) 
dominated ones. Using the complete set of the currents, one can perform an optimal 
analysis of the QeD sum rule. 

Somewhat complicated feature arises from the flavor structure. We have tested all 
possibilities for the isovector J = 1 states. In the 8U(3) limit, there are three cases of, 
in the diquark (qq)(ijij) construction, 6 ® 6, :3 ® 3 and (3 ® 6) EEl (603). We find that 
the former two cases can not result in meaningful sum rule since the spectral functions 
become negative. On the other hand, the mixed case (3 ® 6) EEl (6 ® 3) allows positive 
OPE with which we can perform the QeD sum rule analysis. Actual currents have been 
constructed in the limit of the ideal mixing where the currents are classified by the number 
of the strange quarks. Hence the quark contents are either qqijij or qsijs. 

We have then performed the SVZ and finite energy sum rules. The resulting masses 
are around 1.6 GeV for qqijij, and around 2.0 GeV for qsijs. The four independent 
currents lead to the same mass and couple to a single state as shown above. Hence 
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one of our main conclusions is that the higher energy states 7fl(1600) and 7fl(2015) are 
well compatible with the tetraquark picture in the present QCD sum rule analysis. On 
the other hand, any combination of the independent currents does not seem to couple 
sufficiently to the lower mass state 7fl(1400), which was, however, described as a hybrid 
state by K. C. Yang in Ref. [178J. He obtained a low mass around 1.26 GeV by using the 
renormalization-improved QCD sum rules. The 7fl(1400) state seems somewhat special, 
as the experiments show the similarity between 7fl(1600) and 7fl(20l5) as well as the 
difference between 7fl (1400) and the above two states, which we have discussed in the 
introduction. 

We have also studied their decay patterns and found that these states can be searched 
for in the decay mode of the axial-vector and pseudoscalar meson pair such as b1 (1235)7f, 
which is sometimes considered as the characteristic decay mode of the hybrid mesons. 
The P-wave modes 7fTJ,7fTJ' are also quite important. 

It is also interesting to study the partners of 7flS. Especially, we can study the one 
with quark contents udss, which is at the top of the flavor representation 1-0 (see Fig. 8.1). 
It has a mass around 2.0 GeV, and the decay modes are K+(su)KO(sd) (P-wave) and 
KKK (P-wave) etc. BESIII will start taking data very soon. The search/identification of 
exotic mesons is one of its important physical goals. Hopefully the dedicated experimental 
programs on the exotic mesons at BESIII and JLAB in the coming years will shed light 
on their existence, and then their internal structure. More work on theoretical side is 
also needed. We will go on to study other tetraquark candidates. 
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Chapter 9 

Bottom Baryons 

Recently CDF Collaboration observed four bottom baryons I;~ and I;;± [1,72]. DO 
Collaboration announced the observation of 3 b [3], which was confirmed by CDF collab­
oration later [2,124]. Very recently, Babar Collaboration reported the observation of D~ 
with the mass splitting mo~ - mOe = 70.8 ± 1.0 ± 1.1 MeV [20]. We collect the masses of 
these recently observed bottom baryons in Table 9.1. 

The heavy hadron containing a single heavy quark is particularly interesting. The 
light degrees of freedom (quarks and gluons) circle around the nearly static heavy quark. 
Such a system behaves as the QCD analogue of the familiar hydrogen bounded by elec­
tromagnetic interaction. The heavy quark expansion provides a systematic tool for heavy 
hadrons. When the heavy quark mass mQ ~ 00, the angular momentum of the light 
degree of freedom is a good quantum number. Therefore heavy hadrons form doublets. 
For example, Db and Db will be degenerate in the heavy quark limit. Their mass split­
ting is caused by the chromo-magnetic interaction at the order O(l/mQ), which can be 
taken into account systematically in the framework of heavy quark effective field theory 
(HQET). 

In the past two decades, various phenomenological models have been used to study 
heavy baryon masses [24,36,62,100,132,156]. Capstick and Isgur studied the heavy 
baryon system in a relativized quark potential model [36]. Roncaglia et al. predicted 
the masses of baryons containing one or two heavy quarks using the Feynman-Hellmann 
theorem and semiempirical mass formulas [156]. Jenkins studied heavy baryon masses 
using a combined expansion of l/mQ and 1/ Nc [100]. Mathur et al. predicted the masses 
of charmed and bottom baryons from lattice QCD [132]. Ebert et al. calculated the 
masses of heavy baryons with the light-diquark approximation [62]. Using the relativistic 
Faddeev approach, Gerasyuta and Ivanov calculated the masses of the S-wave charmed 
baryons [69]. Later, Gerasyuta and Matskevich studied the charmed (70,1-) baryon 
multiplet using the same approach [70]. Stimulated by recent experimental progress, 
there have been several theoretical papers on the masses of I;b, I;b and 3 b using the 
hyperfine interaction in the quark model [106,107,110-112,157]. Recently the strong 
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Table 9.1: The masses of bottom baryons recently observed by CDF and DO collabora­
tions. 

mass (MeV) Experiment 

~b 5808_2:3 (stat.) ± 1.7(syst.) 
~-

b 5816~i:g(stat.) ± 1.7(syst.) 

~*+ 5829~U(stat.) ± 1.7(syst.) 
CDF [1,72] 

b 
~*-

b 5837~U(stat.) ± 1.7(syst.) 
5774 ± l1(stat.) ± 15(syst.) DO [3] 

::::::'b 5793 ± 2.5(stat.) ± 1.7(syst.) CDF [2,124] 

decays of heavy baryons were investigated systematically using 3 Po model in Ref. [40]. 
QCD sum rule (QSR) has been applied to study heavy baryon masses previously [24-

26,53,54,60,73,84,141,161,166,167,170,185]. The mass sum rules of Ac,b and ~c,b 
were obtained in full QCD in Refs. [24,25,141]. The mass sum rules of ~Q and AQ in 
the leading order of the heavy quark effective theory (HQET) have been discussed in 
Refs. [26,73,161]. Dai et al. calculated the 1/mQ correction to the mass sum rules of AQ 

and ~~) in HQET [53,54]. Later the mass sum rules of AQ and ~~) were reanalyzed in 
Ref. [166]. The mass sum rules of orbitally excited heavy baryons in the leading order 
of HQET were discussed in Refs. [84,185] while the 1/mQ correction was considered in 
Ref. [167]. Recently Wang studied the mass sum rule of D~b [171] while Duraes and 
Nielsen studied the mass sum rule of 3 c,b using full QCD Lagr'angian [60]. 

In order to extract the chromo-magnetic splitting between the bottom baryon doublets 
reliably, we derive the mass sum rules up to the order of 1/mQ in the heavy quark effective 
field theory in this work. We perform a systematic study of the masses of 3 b, 3~, 3 b, 
~h and Db through the inclusion of the strange quark mass correction. The resulting 
chromo-magnetic mass splitting agrees well with the available experimental data. As a 
cross-check, we reproduce the mass sum rules of Ab , ~b and ~b which have been derived 
in literature previously. As a byproduct, we extend the same formalism to the case of 
charmed baryons while keeping in mind that the heavy quark expansion does not work 
well for the charmed hadrons. 

9.1 QeD sum rules for heavy baryons 

We first introduce our notations for the heavy baryons. Inside a heavy baryon there are 
one heavy quark and two light quarks (u, d or s). It belongs to either the symmetric 6F 
or antisymmetric 3F flavor representation (see Fig. 9.1). For the S-wave heavy baryons, 
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the total flavor-spin wave function of the two light quarks must be symmetric since their 
color wave function is antisymmetric. Hence the spin of the two light quarks is either 
S = 1 for 6F or S = 0 for 3F . The angular momentum and parity of the S-wave heavy 
baryons are jP = ~ + or ~+ for 6F and jP = ~ + for 3F . The names of S-wave heavy 

baryons are listed in Fig. 9.1, where we use * to denote ~+ baryons and the I to denote 

the jP = ~ + baryons in the 6F representation. In this work, we use B to denote the 

heavy baryons with ~ + in 3F and B' and B* to denote those states with ~ + and ~ + in 
6F. 

IfP Q 
I;\*P+i 

Q 
}i*p+2 

Q 
A 0.+1 

Q 

D 
0;:;0. o;:;oa+1 
~Q ~Q 

Q,t*P 
Q 

6F 3F 

Figure 9.1: The SU(3) flavor multiplets of heavy baryons. Here a, a + 1, a + 2 denote 
the charges of heavy baryons. 

We will study heavy baryon masses in HQET using QCD sum rule approach. HQET 
plays an important role in the investigation of the heavy hadron properties [143]. In the 
limit of mQ -----+ 00, the heavy quark field Q(x) in full QCD can be decomposed into its 
small and large components 

(9.1) 

where vf.l is the velocity of the heavy baryon. Accordingly the heavy quark field hv(x) 
reads 

The Lagrangian in HQET reads 

eimQv.x 1; P Q(x), 

I-'/' eimQv.x __ f/ Q(x) 
2 . 

- 1 - 2 9 -
.LHQET = hviV · Dhv + -2-hv(iDl..) hv - Cmag-4-hvO'f.lvGf.lVhv. 

mQ mQ 

(9.2) 

(9.3) 

(9.4) 
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The second and third term in the above Lagrangian corresponds to the kinetic and 
chromo-magnetic corrections at the order of l/mQ. Here Di = DJ-L - vf-tv· D and Df-t = 
()J-L+igAf-t. Cmag(f-L) is renormalization coefficient Cmag(f-L) = (as (mQ)/a s (f-L))3/,60[1+ l~~s], 
where (30 = 11 - 2nj/3 and nj is the number of quark flavors [143]. 

In order to derive the mass sum rules of B, B' and B*, we use the following interpo­
lating currents for the heavy baryons with JP = ~ + in 6F , 

Eabe[ q~T (x) OYJ-Lq~( x) hf'Y5h~ (x), 
-Eabeli~ (x h5'Yf[~ (x hf-tCtftT (x)]. 

For the heavy baryons with JP = ~+ in 6F, 

J~*(x) 

J~*(x) 

Eabe[qf(x)c'Yvq~(x)] X ( - gfV + ~'Yt'Yr)h~(x), 

Eabeli~(x) ( - gfV + ~'Yr'Yf) x [~(XhvCtftT(X)]. 

For the heavy baryons with JP = ~ + in 3F 

Eabe[qrT (x) C'Y5q~ (x) ]h~ (x), 
-Eabeli~(x) [~(x h5CtftT (x )]. 

(9.5) 
(9.6) 

(9.7) 

(9.8) 

(9.9) 

(9.10) 

Here a, band c are color indices, qi(X) denotes up, down and strange quark fields. T is the 
transpose matrix and C is the charge conjugate matrix. gfV = gf-tV - vf-tVV, 'Yf = 'Yf-t - pvf-t. 

The overlapping amplitudes of the interpolating currents with B, B' and B* are 
defined as 

(OIJBIB) 
(OIJBIIB') 

(OIJ~* IB*) 

fBI UB' , 

1 f f-t J3 B*UB*, 

(9.11) 

(9.12) 

(9.13) 

where u~* is the Rarita-Schwinger spinor in HQET. fBI = fB* due to heavy quark 
symmetry. 

The binding energy Ai is defined as the mass difference between the heavy baryon and 
heavy quark when mQ --+ 00. In order to extract Ai, we consider the following correlation 
function 

(9.14) 

with w = V· q. 
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The dispersion relation for II (w) is 

II(w) = J ' p(w') . dw', 
w - w - 'lE 

(9.15) 

where p( w) denotes the spectral density in the limit of mQ ----? 00. At the phenomenological 
level, 

f~ 
II(w) = A- ~ w + continuum. 

2 

(9.16) 

Making the Borel transformation with variable w, we obtain 

(9.17) 

where T is the Borel mass obtained by using Borel transformation. We have invoked the 
quark-hadron duality assumption and approximated the continuum above Wo with the 
perturbative contribution at the quark-gluon level. The mass sum rules of B, B' and B* 
are 

f~e-AB/T = 

l
WB 5 (2 + 2 ) 3 

[
~ _ m q1 m q2 - m q1 m q2 w 

o 207[4 47[4 

+ (g2GG)W + m q2 (rj2q2) + m q1 (C!1ql) w 
1287[4 47[2 

_ 2mq2 (C!1ql) + 2mql (rj2q2)] -w/Td 
47[2 e w 

m q1 (gcrj2a-Gq2) + m q2 (gci[WGql) 
327[2 

+ m q1 (gci[WGql) + m q2 (gciJ2(JGq2) + (i[lql) (i[2q2) 
12·327[2 6 

+ (i[lql) (gci[2(JGq2) + (i[2q2) (gci[WGql) 
96T2 ' 

(9.18) 
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(r]lql) (r]2q2) 3mq1 (gcr]2 cyGq2) + 3mq2 (gcr]WGql) 
+ 2 - 327r2 

5mq1 (gcqlcyGql) + 5mq2 (gcChcyGq2) 
+ 1287r2 

+ (Chq2) (gcr]l cyGql) + (r]lql) (gcr]2 cyGq2) 
32T2 . (9.19) 

The mass sum rule of B* is same as that of B' at the leading order of HQET. In the 
above equations, ((Jiqi) is the quark condensates, (g2GG) is the gluon condensate and 
(g(JicyGqi) is the quark-gluon mixed condensate. The above sum rules have been derived 
in the massless light quark limit in Refs. [26,53,54,73,161]. Up and down quark mass 
correction is tiny for heavy baryons Ab , ~b and ~~. In this work we have included the 
finite quark mass correction which is important for heavy baryons 3 b, 3~, 3~, Db and D~. 

The binding energy Ai can be extracted using the following formula 

J..... = T2. dIRi 

t ~ dT' 
(9.20) 

where IRi denotes the right-hand part in the above sum rules. 

9.2 The 1/ mQ correction 

In order to calculate the l/mQ correction, we insert the heavy baryon eigen-state of the 
Hamiltonian up to the order O(l/mQ) into the correlation function 

Its pole contribution is 

II(w) 
(f + 81)2 

(A+8m)-w 

12 j28m 2181 ---- - + ----, 
A-w (A-w)2 A-w 

where both 8m and 81 are O(l/mQ). 
We consider the three-point correlation function 

1; P 8oII(w, w') 

= i 2 J d4zd4yeip.zeipl·Y(0IT[Ji(Z)O(X)J(y)] 10), 

(9.21) 

(9.22) 

(9.23) 
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where operators 0 = lC and S correspond to the kinetic energy and chromo-magnetic 
interaction in Eq. (9.4). The double dispersion relation for 50 II(w, w') reads 

(9.24) 

At the hadronic level, 

S;lCII(') P lCi 
u w, w = (A _ w) (A _ w') + ... , (9.25) 

S;SII(') PSi 
u w,w =(A-w)(A-w')+··· (9.26) 

with 

(9.27) 

(9.28) 

After setting w = w' in Eqs. (9.25) and (9.26) and comparing them with Eq. (9.22), we 
can extract 5m 

(9.29) 

Here the renormalization coefficient Cmag for bottom baryons is Cmag ~ 0.8 [185J. 
We calculate the diagrams listed in Fig. 9.2 to derive 50 II(w, w'). After invoking 

double Borel transformation to Eq. 9.24, we obtain the spectral density pO(s, s'). Then 
we redefine the integration variable 

s + s' 
s+ = -2-' 

s -s' 
s ---- - 2 . 

Now the integral in Eq. (9.24) is changed as 

100 100 100 1+8

+ ds ds' ... = 2 ds+ ds_ .... 
o 0 0 -8+ 

(9.30) 

(9.31) 

(9.32) 

In the subtraction of the continuum contribution, quark hadron duality is assumed for 
the integration variable s+ [30, 142J. 
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eeee 
6908 
e0~e 
e6e~ 

Figure 9.2: The diagrams for the 1/mQ corrections. Here the current quark mass cor­
rection is denoted by the cross. The first eleven diagrams correspond to the kinetic 
corrections and the last five diagrams are chromo-magnetic corrections. White squares 
denote the operators of 1/mQ. 

For B(r) in 3F , the 1/mQ correction comes from the kinetic term only. 

J(B = 
eAB/T { {WB [54w7 9w5 

- mQf~ Jo 7!'ir4 - 5!7[4 (m~l + m~2 - m q1 m q2 ) 

3(g2GG)W3 3w3 
( 

+ 128. 3!7[4 + 4. 3!7[2 m q1 ((l1ql) + m q2 ((12q2) 

-2mq2 ((l1ql) - 2mql (i12q2)) 

- 1:;7[2 ( m q1 (gcifWGql) + m q2 (gcif20"Gq2) ) 

+ 3~~2 ( m q1 (gcif20"Gq2) + m q2 (gcifWGql)) ] e-w
/
T 

dw 

- 3
1
2 [(iflql) (gcif20"Gq2) + (if2q2) (gciflO"Gql)] }, (9.33) 

(9.34) 

Here SB = 0 is consistent with the simple expectation in the constituent quark model 
that the chromo-magnetic interaction (SQ· jz) = 0 since jz = 0 for B(~ +) in 3F. 
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For B'(~ +) in 6F , the 1/mQ corrections are 

ICBI = 

eABI /
T 

{ {WBI [18. llw7 9w5 
2 2 

- mQf~1 Jo 7!?r4 - 517r4 (4mql + 4mq2 

(g2GG)W3 3w3 ( _ 
-3mql mqJ - 128. 3!7[4 + 4. 3!7[2 5mq1 (qlql) 

+5mq2 (i[2q2) - 6mq2 (i[lql) - 6mq1 (i[zq2)) 

+ 122~7[2 ( m q1 (gei[WGql) + m q2 (gei[2 rYGq2) ) ] e-w
/
T 

dw 

- 33
2 

[(i[lql) (gei[zrYGq2) + (i[2q2) (gci[WGql)] }. (9.35) 

5BI= 

eABI/T { {WBI [29~w7 + (lGG)w3 

mQf~1 Jo 1057[6 16 . 3!7[4 

- 3;7[2 ( m q1 (gei[WGql) + m q2 (gci[zrYGq2) 

-2mq2 (gei[lrYGql) - 2mql (gei[2rYGq2)) ] e-w
/
T dw 

- 4
1
8 [(i[lql) (gei[2 rYGq2) + (i[2q2) (gei[WGQ1)] }. (9.36) 

Through explicit calculation, we obtain 

5B - = -5B 112 , 
3 

mB- - mBI = -SBI, 
2 

which are consistent with the heavy quark symmetry. 

9.3 Results and discussion 

(9.37) 

(9.38) 

(9.39) 

In our numerical analysis, we use the previous values (5.10) as well as [68,71,89,99,148, 
177,179]: 

me = 1.25 ± 0.09 GeV, mb = 4.8 GeV. 

(Xs(mc) = 0.328, (Xs(mb) = 0.189. 



162 CHAPTER 9. BOTTOM BARYONS 

The values of the u, d, s and charm quark masses correspond to the M S scheme at a 
scale f-l ~ 2 Ge V and f-l = me respectively [179]. The b quark mass is obtained from the 
Upsilon 1S mass [81,82,179]. 

Since the energy gap between the S-wave heavy baryons and their radial/orbital exci­
tations is around 500 MeV, the continuum contribution can be subtracted quite cleanly. 
We require that the high-order power corrections be less than 30% of the perturbative 
term to ensure the convergence of the operator product expansion. This condition yields 
the minimum value for the working region of the Borel parameter. In this work, we 
choose the working region as 0.4 < T < 0.6 GeV. 

In Fig. 9.3-9.5, we give the dependence of A, lCi , Si and mass splitting mB* - mB' on 
b b 

T and We for ~b, S~, nb. The variation of a sum rule with both T and Wi contributes to 
the errors of the extracted value, together with the truncation of the operator product 
expansion and the uncertainty of vacuum condensate values. We collect the extracted A, 
lCi , Si and mass splitting mB6 - mB~ in Table 9.2. 

The masses of bottom baryons from the present work are presented in Table 9.3. It's 
well known that the heavy quark expansion does not work very well for the charmed 
baryons since the charm quark is not heavy enough to ensure the good convergence of 
l/mQ expansion. For example, the chromo-magnetic splitting between n~ and ne from 
our work is around 133 MeV, which is much larger than the experimental value 67.4 
MeV. However, we still choose to present the masses of S-wave charmed baryons also in 
Table 9.3 simply for the sake of comparison with experimental data. 

Table 9.2: The central values in this table are extracted at T = 0.5 GeV, Wi = 1.3 GeV 
for ~~*), Wi = 1.4 GeV for S~(*), Wi = 1.55 GeV for n~*), Wi = 1.1 GeV for Ab and Wi = 1.25 
GeV for Sb (in MeV). 

~b ~I n° Ab Sb ~b b 

A 950~~~ 1042+Ib 
-74 1169 ± 74 773~~~ 908+I~ 

-67 

5m 59+4 -2 60+6 -4 67+7 -3 65+2 
-1 72±1 

mass splitting m"Eb - m"Eb mo* - mOl mo.b - mo.b -b -b 
this work 26±1 26 ± 1 28+8 

-2 
experiment [1,72] 21 

In our calculation, we adopt the phenomenological spectral function by the classical 
and simple ansatz of a single resonance pole plus the perturbative continuum. The 
systematic uncertainty of hadron parameters obtained with such an approximation was 
discussed recently in Ref. [127]. We have not considered the next-to-Ieading order as 
corrections, which may also result in large contribution and uncertainty as indicated by 
the study of the as corrections in the light-quark baryon system in Ref. [149]. 
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Table 9.3: Masses of the heavy baryons from the present work and other approaches and 
the comparison with experimental data (in MeV). 

Baryon I(JP) lOurs Ref [36] Ref [156] Ref [100] Ref [132] Ref [62] Ref [166 17l] I EXP [3 20 72 124 179] 

r:c 1(! ) 2411:':~f 2440 2453 2452 2439 2470 2454.02(0.18) 

=' !(!+) 2508+97 2580 2580.8 2599 2578 2575.7(3.1) ~c -91 
ric O(!+) 2657+102 2710 2678 2698 2697.5(2.6) -99 
r:~ 1(~+) 2534:J:~T 2495 2520 2538 2518 2590 2518.4(0.6) 

=* !(~+) 2634:J:~~2 2650 2680 2654 2646.6(1.4) ~c 

rI~ O(~+) 279 O:J: ig; 2770 2760.5 2752 2768 2790 ~ 2768 

Ac O(!+) 2271+67 
-49 2265 2285 2290 2297 2286.46(0.14) 

Cc !(!+) 2432+~~ 2468 2473 2481 2467.9(0.4) 

r:b 1(! ) 5809:':~~ 5795 5820 5824.2 5847 5805 5790 5808 

=' !(!+) 5903:J:~~ 5950 5950.9 5936 5937 ~b 

rib O(!+) 6036 ± 81 6060 6068.7 6040 6065 

r:* 1(~+) 5835:J:~~ 5805 5850 5840.0 5871 5834 5820 5829 b 

Bb !(~+) 5929+83 
-79 5980 5966.1 5959 5963 

rI* b O(~+) 6063:J:g 6090 6083.2 6060 6088 6000 

Ab O(!+) 5637+68 
-56 5585 5620 5672 5622 5624(9) 

Bb !(!+) 5780+73 
-68 5810 5805.7 5788 5812 5774,5793 

9.4 Conclusion 

In short summary, inspired by recent experimental observation of charmed and bottom 
baryons [1-3,20,72,124]' we have investigated the masses of heavy baryons systematically 
using the QCD sum rule approach in HQET. The chromo-magnetic splitting of the bottom 
baryon doublet from the present work agrees well with the recent experimental data. 
Recently 3~*) was observed by CDF collaboration [1,72]. Our results are also consistent 
with their experimental value. Our prediction of the masses of 3~, 31;, nb and nl; can be 
tested through the future discC?very of these interesting states at Tevatron at Fermi Lab. 
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Figure 9.3: The dependences of AEb , lCEb , SEb, and the mass splitting mE~ - mEb on 
T. Here the dotted, solid and dashed line corresponds to the threshold value WEb 

1.2,1.3,1.4 GeV respectively. 
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Chapter 10 

Summary and Outlook 

Using the method of QeD sum rule, we have systematically studied many exotic hadrons: 

1. light scalar mesons: 0"(600), /1;(800), ao(980) and 10(980). They have quantum 
numbers JPc = 0++. In the conventional quark model, it is difficult to explain 
many of their properties by using the ijq structure. By using the QeD sum rule, 
we find it is more convenient to interpret them as tetraquark states, while the ijq 
scalar meson have a mass around 1.2 GeV, which is considerably heavier. 

2. Y(2175). It has quantum numbers J Pc = 1--, and was observed near the threshold 
in the process e+e- -----+ ¢10(980) via initial-state radiation. By using the QeD sum 
rule, we find it can be interpreted as a ssss tetraquark state. 

3. 7rl(1400), 7rl(1600) and 7rl(2000). They have quantum numbers JGJPc = 1-1-+, 
which ijq mesons can not access. By using QeD sum rule, we find that 7rl(1600) 
and 7rl (2000) can be interpreted as tetraquark states with quark contents qqijij and 
qsijs, respectively. While 7rl(1400) may be interpreted as a hybrid state. 

To study these hadrons, first we do a systematical study on the independent cur­
rents, which may couple to these states. This is the first part of our thesis, containing 
the classification of baryon currents and tetraquark currents. We find this step is very 
important because there are always more than one currents for each exotic hadrons, and 
it is important to choose the right one in order to perform a reliable QeD sum rule. 
Then, in the second part of our thesis, we do this by using all independent currents, and 
also by using their linear combinations out to two. For the case of light scalar mesons, 
this largely improves our discussions. While for the cases of Y(2175) and 7rlS, all the 
independent currents lead to the similar results. So does their mixing. We find that this 
may be due to the similar chiral properties of these different single currents. At last, we 
do a systematical study on bottom baryons. 
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During our studies, we find that there are still many things not clear, and our QeD 
sum rule analysis needs some improvements. We would like to note on the following 
points: 

1. There is a large contribution from the continuum for some exotic hadrons. For 
example, for the case of 0'(600), it has a mass larger than the two-pion threshold, 
and the two-pion contribution should be very large. This is also a difficult question 
for many other theories when used to study exotic hadrons. 

2. The pole contribution is not large enough sometimes. When we study the exotic 
hadrons, we always meet this problem. This is also related with the first point: the 
large continuum contribution makes the pole rather small. 

3. The relation between currents and states are not so clear. There may be more 
than one currents coupling to the same state, and one current may also couple to 
many different states. The current contains quark and gluon fields which are the 
basic objects of QeD. However, at the low energy region, the degrees of freedom 
of QeD· are hadron states other than quarks and gluons. For exotic hadrons it is 
difficult to relate these states with the underlying quarks and gluons. Therefore, 
unclear relation between currents and states is reasonable, while at the same time 
very interesting. 

4. In our studies, the mixed angle is determined by using a try and error process. We 
just find that the certain mixed angle leads to a good result. However, there may 
be some intrinsic limitations on this mixed angle, which is a interesting subject. 

5. The internal structure of exotic hadrons is interesting. In our QeD sum rule analy­
sis, we find that the diquark-antidiquark ((qq)(qq)) construction and meson-meson 
((qq)(qq)) construction are equivalent by using the Fierz transformation. However, 
they can be different, and be studied by using other theories. 

To end this thesis, we would like to note that we still have many things to study about 
exotic hadrons. It is important and interesting to study these exotic objects in order to 
know the non-perturbative nature of QeD for hadron physics. 



Appendix A 

Calculation of OPE Using 
Mathematica 

A.I Calculation of OPE Using Mathematica 

In this appendix, we introduce the calculation of operator product expansion (OPE) using 
Mathematica. First we need to install M athematica and a Mathematica package named 
FeynCalc. It can be downloaded at http://www.feyncalc.org. 

Take the current H as an example 

(A.l) 

What we want to calculate is the correlation functions 

II(q2) == i J d4xeiqX (0IT7](x)7]t(0) 10) . (A.2) 

Substituting Eq. (A.l) into Eq. (A.2), and contracting quark fields 

(OIT7](x)7]t(O) 10) = Tr[iS~/a( -Xh5is~a' (Xh5l x Tr[iS~/b( -Xh5iS~b' (Xh5l 
-Tr[is~/a( -Xh5is~a' (Xh5iS~/b( -Xh5iS~b' (Xh5l , (A.3) 

where 

(OIT[qa( x )c/(O) 1 I 0) 

(A A) 

Then we need to substitute the quark propagator Eq. (AA) into Eq. (A.3). We divide it 
into three parts: 

169 
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1. oab part. Gluon part is emitted, and we only consider color matrix oab. The lowest 
term is the continuum term. 

2. Two Aab part. We only consider gluon part in the two quark propagators. We only 
need to consider color matrix A. The lowest condensate is (g2G2). 

3. One Aab part. We consider gluon part in one quark propagator, and non-gluon part 
in the other quark propagator. The lowest condensates are (gqO'Gq) and (g80'GS). 

A.I.1 Jab Part 

In quark propagator, a lot of terms have color structure oab. These parts can be computed 
together and lead to the continuum contribution and condensates 

(A.5) 

We need some definitions: 

ioab oab Oab X 2 

27f2X4 X - 12(qq) + 192 (gcqO'Gq) , 

iSS+(a, b) 
ioab oab oabx2 oabm ioabm 

27f2X4 X - 12(8s) + 192 (gc80'Gs) - 47f2X~ + 48 8 (8S)X, 

iCSC+(a, b) 
ioab oab oabx2 

27f2X4 X + 12(qq) - 192 (gcqO'Gq) , 
ioab oab oabx2 oabm ioabm 

27f2X4X+ 12 (8S) - 192 (gc80'Gs) + 47f2X~ + 48
8

(8S)X. 

Here is+(a, b) represents iS~~ix), iSS+(a, b) represents iS~b(x), and iCSSC+(a, b) repre­
sents 

(A.6) 

where C is the charge-conjugation operator. We can also define is-(a, b) to represent 
iS~bd( -x). 

'oab part can be written explicitly in Mathematica, 

Quark Part = 
Tr[iSS-(a2, a1}-y5iS+(a1, a2}-Y5] x Tr[iSS-(b2, b1}-Y5iS+(b1, b2}-Y5] (A.7) 

-Tr[iSS-(b2, a1}-y5iS+(a1, a2}-Y5iSS-(a2, b1}-y5iS+(b1, b2}-y5]. 

Use Mathematica to compute it, and sum color indices, 

3 333 

LLLL%· (A.8) 
al=l a2=1 bl=l b2=1 
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After using functions "DiracSimplify" and "Expand", finally we obtain the results of oab 

part. There are a lot of terms, and we only choose necessary ones that have a lower 
dimension. 

A.1.2 Two A Part 

When writing propagators in the previous subsection, the gluon part is 

(A.9) 

For computing two). part, the definition of ). matrices is needed, and also some more 
definitions: 

Here we have taken gcG~vEJlva(3Xa out. 
Then We write (OIT7](x)7]t(O) 10) with two). explicitly in Mathematica. Because every 

two propagators together can contribute a two-gluon condensate (g2G2), every term in 
the previous subsection is separated into six terms. 

is 

Gluon Part = 
Tr[iSSG-(a2, aI, ,8l)')'5iSG+(al, a2, ,82)')'5] x Tr[iSS-(b2, bl)')'5iS+(bl, b2)')'5] 

+Tr[iSSG-(a2, aI, ,8l)')'5iS+(al, a2)')'5] x Tr[iSSG-(b2, bl, ,82)')'5iS+(bl, b2)')'5] 

Tr[iSSG-(a2, aI, ,8l)')'5iS+(al, a2, ,82)')'5] x Tr[iSS-(b2, bl)')'5iSG+(bl, b2)')'5] 

Tr[iSS-(a2, aI, ,8 1)')'5 is G+ (aI, a2, ,82)')'5] x Tr[iSSG-(b2, bl)')'5iS+(bl, b2)')'5] 

Tr[iSS-(a2, aI, ,8l)')'5iSG+(al, a2, ,82)')'5] x Tr[iSS-(b2, bl)')'5iSG+(bl, b2)')'5] 

Tr[iSS- (a2, aI, ,8l)')'5iS+(al, a2, ,82)')'5] X Tr[iSSG-(b2, bl)')'5iSG+(bl, b2)')'5]. 

We should add the parts which we have taken away (together two gcG~vEJlva(3Xa). It 

(A.lO) 

Here we have already used the condition n = m (onm) when writing the Gluon Part. 
Use Mathematica to compute (A.lO) x (A.lO), then use the function "Contract" to 

reduce redundant indices, do summing in color space, use the functions "DiracSimplify" 
and "Expand" to simplify them, finally we get the results of step 2. . 
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A.1.3 One A Part 

One gluon and a quark-antiquark pair can form a mixed condensate: 

( - G ) - (- >"~bGnJ.LV) gcq(J q - gcqa(J J.LV 2 qb· (A.ll) 

In this part we need to change one quark propagator into qaif. For the other propa­
gator, we will choose the gluon part 32

i
7r2 A~b gcG~v a\ ((JJ.LV X + x(JJ.LV). More definitions are 

needed. Pay attention that the definition in step 3 is inconsistent with step 2, so we need 
to compute them separately, 

In these definitions, we have substituted the gcG~v part of iSG+(a, b) (which contributes 
a gluon) into iSQG+(a, b) (which contributes a ijq or ss pair). 

We write the (OIT7](x)7]t(O)IO) of one>.. part explicitly in Mathematica. Every term 
in the previous subsection is separated into two parts again (so twenty four terms in all): 

Quark-Gluon Part = 
Tr[iSSQG-(a2, alh5iSG+(al, a2hs] x Tr[iSS-(b2, blhsiS+(bl, b2hs] 

+Tr[iSSG-(a2, alhsiSQG+(al, a2hs] x Tr[iSS-(b2, blhsiS+(bl, b2hs] 
+ .... 

Use Mathematica to compute (A.12), use the function "Contract" to reduce redundant 
indices, do summing in color space, use the functions "DiracSimplify" and "Expand" to 
simplify them, finally we get the results of step 3. 

A.2 Fourier Transformation and Borel Transforma­
tion 

After step 1, 2 and 3, we can sum 3 parts together, and get the final (OIT7](x)7]+(O)IO). 
To do the Fourier Transformation, we use the formulae: 

(A.12) 

This can also be done by Mathematica easily. 
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Important Borel transforms include: 

(A.13) 
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Appendix B 

Fierz Transformation 

In this appendix, we list the Fierz transformations used in our calculation. Here we would 
like to show only the change in the structure of Lorentz indices of direct products of two 
Dirac matrices under the Fierz rearrangement. Therefore, in the following equations, 
we do not include the minus sign which arises from the exchange of quark fields. The 
formulae go for the three cases corresponding to the Dirac, Rarita-Schwinger and tensor 
fields when applied to three-quark fields. 

1. Products of two Dirac matrices without Lorentz indices: 

1 ® 1'5 1 1 1 1 1 
4 -4 8 4 4 

1'J.L ® 1'J.L1'5 -1 _1 0 1 1 2 -"2 
(J' J.LV 0 (J'J.LV 1'5 3 0 1 0 3 2 

1'J.L1'5 01'J.L 1 1 0 1 -1 -"2 -"2 
1'501 1 1 1 1 1 

ab,ed 4 4 8 -4 4 

2. Products of two Dirac matrices with one Lorentz index: 

1 ® 1'J.L 
1'J.L ® 1 

1'501'J.L1'5 
1'J.L1'5 01'5 
1'v 0 (J' J.LV 
(J' J.LV ® 1'v 
1'v 1'5 0 (J' J.Lv1'5 
(J' J.Lv1'5 0 1'v 1'5 ab,ed 
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101'5 
1'J.L ® 1'J.L1'5 
(J' J.LV ® (J'J.LV 1'5 (B.1) 
1'J.L1'5 01'J.L 
1'501 ad, be 

(B.2) 
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3. 

APPENDIX B. FIERZ TRANSFORMATION 

1 1 1 1 i i i i 10 'Yf.l 4 4 4 -4 -4 4 4 4 
1 1 1 1 i i i i 'Yf.l01 I 4 -4 I 4" -4 4 4" 

1 1 t i i t 
'Y5 0 'Yf.l'Y5 4 4 I f 4 4 -4 4 

1 1 1 t i i 
'Yf.l'Y5 0 'Y5 

3i 4 4 4 3i 4 4 4 4 4 
3i 3i 1 1 1 1 'Yv 0 CTf.lv "4 -"4 -1 -"4 -4 -4 -4 4 

3i 3i 3i 1 1 1 1 
CTf.lv 0 'Yv -"4 

~M 
-"4 -"4 -4 -4 4 -4 

3i M 3i 1 1 _1 1 
'Yv'Y5 0 CT f.lV 'Y5 -1 _Ii 4 3i 

-"4 -4 4 f -f 3i 1 1 
CT f.lv'Y5 0 'Yv'Y5 -"4 4 -"4 "4 4 4 -4 4 ad,be 

Products of two Dirac matrices with two anti-symmetric Lorentz indices: 

10 CTf.lv'Y5 

'Y5 0 CT f.lV 

CT f.lV 0 'Y5 
CT f.lv'Y5 0 1 
Ef.lvpaCT pi 0 CT al 

'Y f.l 0 'Yv'Y5 - (p, <-+ v) 
'Y f.l'Y5 0 'Yv - (p, <-+ v) 
Ef.lvpa'Yp 0 'Ya 
Ef.lvpa'Y p'Y5 0 'Ya'Y5 
1 1 1 1 
f I f f 
f f f f 
4 4 4 4 
1 1 1 1 
4 4 4 4 
1 1 -1 -1 

i i i i 
-2" 2 2 -2" 
i i _i i 
2" I 2 2 
1 1 1 
2" -2" 2" -2" 

1 1 1 1 
-2" 2" -2" 2" 

ab,ed 

1 i _i 
f 4 4 

i 
4 4" 1 t -4 4 

1 i i -4 4 -4 
0 0 0 
0 0 0 
0 0 0 
0 
0 

1 
4 

1 

1 
4 

4 
1 

-4 
0 
i 
2 
1 
2 
0 
0 

1 
-4 
1 
4 

1 
-4 
1 
4 
0 
i 
2" 
t 

2" 
0 
0 

1 0 CT f.lv'Y5 

'Y5 0 CT f.lV 

CT f.lV 0 'Y5 
CT f.lv'Y5 0 1 
Ef.lvpaCT pi 0 CT al 

'Yf.l 0 'Yv'Y5 - (p, <-+ v) 
'Yf.l'Y5 0 'Yv - (p, <-+ v) 
Ef.lvpa'Yp 0 'Ya 
Ef.lvpa'Yp'Y5 0 'Ya'Y5 

(B.3) 

ad, be 
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