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Introduction 

Cuttlefishes (the. family Sepiidae) are the large taxonomic group of extant 

cephalopod molluscs. The family Sepiidae is well-established group and characterized 

by the presence· of a cuttlebone. The cuttlebone, which is made of aragonitic calcium 

carbonate, distinguishes the cuttlefishes from the other coleoid cephalopods. The shell 

shares corrimoncharacters between extant and extinct lineages of cephalopods and it is 

a useful structure available for systematics and evolutionary study of decapodiformes. 

The cuttlebones provide traditionally very good materials for cuttlefish systematic study. 

The cuttlebone serves as buoyancy device and limits the habitat depth, so their 

morphology is related to the niche of the cuttlefishes. In the present study, twenty-five 

species of cuttlefishes were collected from the world and their phylogenetic 

relationships were investigated using molecular phylogenetic methods. Four 

well-supported clades were found in the phylogenetic trees based on maximum 

likelihood, maximum parsimony, and Bayesian methods. The results did not support 

phylogenetic reliability of prior classifications mainly based on the cuttlebone shape. A 

new taxonomic character, membranous structures, was found in a section of their 

cuttlebones. A loss of these structures was consistently observed in Doratosepion 

species and distinguishes them from the other cuttlefishes. 

Cuttlefishes belong to the Sepioidea together with sepiolids (bobtail. squids), 

sepidariids, and idiosepiids (pygmy squids). The family Idiosepiidae has both sepiolid

and teuthoid-like characters and this situation causing systematic confusions in 

decapodiformes. There are divergent views on the position of idiosepiids (Voss, 1977; 
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Fioroni, 1981; Clarke and Trueman, 1988; Boletzky, 2003). Recent molecular 

phylogenetic analyses have revealed some relationships among several cephalopod 

groups (see Nishiguchi and Mapes, 2008). Systematics and phylogenetic relationships 

of the major cephalopod groups, however, remain controversial. Idiosepiids have been 

argued as related either"Teuthoidea or Sepioidea (Boletzky, 2005). Using 

comprehensive molecular data sets for decapodiformes (2,871 bp+1,016 aa), the 

phylogenetic position of idiosepiid was studied. The result suggested the basal position 

of idiosepiid among teuthoids, not in sepiolids. 

The cephalopod is one of major groups of the phylum Mollusca, although they 

exhibit many functional innovations, e.g. intelligence with large sized brain, active 

locomotion with high metabolic rates and closed circulatory system. The cephalopod 

vascular wall is also different from the other molluscs in the presence of endothelial 

cells and bears resemblance to the vertebrate vascular wall. These innovations occurred 

in the cephalopod lineage after their branching. Recent molecular analyses have 

discovered conserved developmental genes across a large phylognetic scale, such as 

Hox gene clusters. The evolutionary developmental biology (evo-devo) has brought a 

new focus on the developmental mechanisms, which generate new variations, and the 

discovery of the widespread evolutionary conservation of the genes with prominent 

roles in development. A pygmy-squid, Jdiosepius paradoxus lays transparent eggs that 

are suitable for developmental studies. Thus, 1 paradoxus provide a useful model 

system. I have cloned a receptor of vascular endothelial growth factor (VEGFR), which 
'\ 

is known to be critical inducer of vascular development and regulator of permeability of 
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blood vessels in vertebrates. The Idiosepius VEGFR gene was expressed in developing 

blood vessels of the embryos. This suggests that both vertebrates and cephalopods 

possess similar mechanisms in development of vascular systems. 
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Chapter 1 

Molecular phylogeny among the Sepiidae (Cephalopoda, Mollusca) inferred from 

mitochondrial COl, Cytb and ND5 genes 



ABSTRUCT 

Cuttlefish is a major group of recent cephalopods and characterized by presence of a 

cuttlebone. The traditional taxonomy of the cuttlefishes was mainly based on the 

cuttlebone morphology. Phylogenetic relationships among 25 species of cuttlefishes 

from the world were studied using partial sequences of three mitochondrial genes, 

Cytochrome c oxidase subunit I, Cytochrome b, and NADH dehydrogenase subunit 5. 

The nucleotide sequences of these three genes were analyzed using maximum 

likelihood, maximum parsimony, and Bayesian methods. Four well-supported clades 

were found in the phylogenetic trees. The first clade includes Sepia esculenta, S. 

aculeata, S. lycidas, S. recurvirostra, S. cf. singaporensis, S. pharaonis, S. prashadi, S. 

elegans, and S. gibba. The second clade consists of Metasepia tullbergi and S. 

latimanus. The third clade includes S. officinalis, S. bertheloti and Sepiellajaponica. 

The fourth clade includes the Doratosepion species complex, S. kobiensis, S. peterseni, 

S. tokioensis, S. andreana, S. pardex, S. lorigera, S. sp. S10604, S. aureomaculata, S. 

C,' tenuipes, S. subtenuipes, and S. madokai. Saturation plots suggested that substitution 

saturation occurred at the third codon positions. Separation offour clades was also 

supported by the analyses using the first and second codon positions, and amino acid 

sequences. The molecular phylogenetic trees showed the polyphyly of the genus Sepia. 

This analysis did not support taxonomic reliability of prior classifications based on the 

cuttlebone shapes and the suckers on tentacular clubs. The fourth "Doratosepion" clade 

forms a monophyletic group characterized by the loss of membranous structure in 

cuttlebones. 
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INTRODUCTION 

Cuttlefishes (Sepiidae, Cephalopoda) are a major group of extant cephalopods, 

which are specified by a chambered cuttlebone (Fig. 1). The cuttlebone, which is made 

of aragonitic calcium carbonate, distinguishes the cuttlefishes from the other coleoid 

cephalopods. Several authors reported morphological diversity of cuttlebones and 

discussed function and evolution of these cuttlebones (Bandel & Boletzky, 1979; 

f\ . Khromov, 1998; Ward & Boletzky, 1984). The cuttlebone serves as buoyancy device 
\~ 

and limits the habitat depth (Sherrard, 2000). In fact, the cuttlefishes segregate their 

niche in the habitat depth (Okutani et al., 1987), suggesting that function and 

morphology of cuttlebones are associated with speciation in the cuttlefishes. 

On the basis of morphological characters, the cuttlefishes are divided into three 

genera Sepia, Sepiella, and Metasepia (Voss, 1977; Khromov et al., 1998; Lu, 1998). 

The genus Sepiella is characterized by a posterior gland and pore (Khromov et al., 

1998). Gray (1849) classified the genus Sepia into several sections and named one of 

the sections as Sepiella. Steenstrup (1875) redescribed the Gray's section as a separate 

genus and mentioned the posterior gland and locking apparatus, which differ from the 

other cuttlefishes. The genus Metasepia has a rhomboidal diamond-shaped cuttlebone 

(Khromov et al., 1998). Hoyle (1885) has created a sub-genus Metasepia for Sepia 

pfefferi. The valid status of this genus was supported by the peculiar color pattern and 

locomotory behavior (Roper & Hochberg, 1988). 
I 

In the early classification of the Sepiidae, Orbigny (1845-1847) classified 

twenty-one species of cuttlefishes into three sections according to the arrangement and 
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the relative size of the suckers of the arm and the tentacular club. Gray (1849) classified 

the genus Sepia into sub-division based on the number of series of arm-suckers and of 

tentacular suckers as well as on the characters of the shell. Rochebrune (1884) separated 

the Sepiidae into ten genera, Hemisepion, Diphtherosepion, Rhombosepion, Sepiella, 

, Lophosepion, Spathidosepion, Doratosepion, Ascarosepion, Acanthosepion, and Sepia, 

based on the cuttlebone shapes.-Naef (1921-23) divided them into three genera, Sepiella, 

C) Hemisepius, and Sepia. The genus Sepia was divided into seyen subgenera, Eusepia, 

Parasepia, Acanthosepia, Doratosepia, Platysepia, Lophosepia and Metasepia based 

on the morphological characters of the animal and the shell. Iredale (1926) created three 

families with thirteen genera based only on the shell of the Australian species. Adam & 

Rees (1966) reviewed the history of classification of the Sepiidae and recognized only 

two genera, Sepia and Sepiella. Khromov et al. (1998) recently divided the genus Sepia 

into six species complexes, Sepia serisu stricto, Acanthosepion, Rhombosepion, 

Anomalosepia, Doratosepion and Hemisepius based on the morphological characters of 

the shell and the animal, but mentioned that other kind of data would be important for 

further resolving taxonomic issues. 

Recent molecular phylogenetic analyses have been utilized for several cephalopod 

groups (Oirlini & Graves, 1999; Anderson, 2000; Strugnell et al., 2005). Our previous 

molecular. analysis using 12S and 16S rRNAs as well as COl genes suggestedSepiella 

japonica has a closer relationship with Sepia officinalis rather than the other Sepia 

species, so the genus Sepia was not a monophyletic group (Yoshida et al. 2006). 

Surprisingly Metasepia tullbergi was closely related to Sepia latimanus. These two 
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species differ in the body color, morphology such as the cuttlebone shape, and the 

mature size (Khromov et al., 1998; Bpnnaud et al., 2006). Bonnaud et al. (2006) also 

recognized <Metasepia> and <Sepiella> groups from the analysis using mitochondrial 

12S and 16SrRNAs as well as con genes. These molecular analyses suggested the 

genus Sepia is not monophyletic and the cuttlebone is not a robust phylogenetic m~rker. 

A more comprehensive phylogenetic analysis is required for reconstruction of a true 

phylogenetic system of the Sepiidae with well-defmed monophyletic groups (Khromov 

et al., 1998; Reid, 2000). 

Here we studied phylogenetic relationships of extant sepiid species using additional 

ten species from the various regions of the world and additional two markers in the 

mitochondrial genome. We used 2,200 bp of 31 species of cephalopods in this study. 

We had an unambiguous alignment according to the sequences without deletion. Base 

composition heterogeneity and partition heterogeneity in the data set have no influence 

on the relationships among the cuttlefishes. How~ver, choices of out group species 

influenced the basal relationships among the sepiids. The analyses exhibited 

substantially higher support values among the cuttlefishes and revealed a monophyletic 

group, the Doratosepion, with a reliable taxonomic character; the loss of membranous 

structure in their cuttlebone. 

MATERIAL AND METHODS 

We collected twenty-five species of cuttlefishes from the world (Table 1), and 

sequenced three mitochondrial genes, COl, Cytb and ND5. Tissue samples for DNA 
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~xtractions were obtained from the tips of arms. The samples were fixed in 70% ethanol 

and were stored at -20°C until the DNA extraction. The genomic DNA was extracted 

from the tissue using a DNeasy® Tissue kit (QIAGEN). Most of the specimens used in 

this study were fixed in 10% formaldehyde and deposited in the Museum of Osaka 

University (MOU). 

peR amplifications and sequencings 

The polymerase chain reaction (PCR) was performed in 20[!1 reaction volumes 

containing 200-300[!g extracted genomic DNA, 2[!110xPCR buffer, 1.6[!110mM 

dNTPs, 1 [!l 10[!M primer each, and O.SU Takara Ex Taq polymerase. A partial 

sequence of the mitochondrial cytochrome c oxidase subunit I (COl) gene was 

amplified with primers HC02198 (S' -TAAACTTCAGGGTGACCAAAAAATCA-3 ') 

and LC01490 (S'-GGTCAACAAATCATAAAGATATTGG-3')(Folmer et al., 1994). 

Primers for amplifications of partial gene sequences of Cytochrome b and NADH 

dehydrogenase subunit S were designed in this study. The primers were a~ follows: 

Cytochrome b (Cytb-F1, GTTCATTRCGWAAAAVWCATCCTG / Cytb-R1, 

GGRCTDCYHCCAATYCAWGTTA), and NADH dehydrogenase subunit S (NDS-F1, 

TTRGGDTGRGAYGGDTTAGG / NDS-R1, SWRTGRTAATATTWCCHCCACA). 

The temperature regimen ofPCR was 1 min at 94°C, 2 min at 4S-SSoC, l-1.S min at 

72°C for 30 cycles. 

The amplified fragment was cloned into a pGEM-T Vector (Promega). Plasmid 

DNA from transformant colonies was purified with a QIAprep® Miniprep kit 
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(QIAGEN). Both strands of the plasmid DNA were fully sequenced using T7 primer 

upstream and SP6 primer downstream of an insert site by the dideoxy chain-termination 

method using Applied Biosystems BigDye® Terminators v. 3.1 (Sanger et al., 1997). 

Fluorescence-labeled DNA was analyzed using an ABI Prism 3100 sequencer (Applied 

Biosystems, USA). The accession numbers of sequences used in this study are shown 

in Table 1. 

Phylogenetic analysis of COL Cytb, and ND5, data set 

Determined sequences were concatenated into one data set. There was no in-del 

among the determined sequences. We obtained sequences of mitochondrial genome of 

the other cephalopod species from the database as outgroups. Sequences were aligned 

using ClustalX (Thompson et aI., 1997). There was no in-del between Octopodiformes 

and Decapodiformes. One amino acid deletion in Cytochrome b was observed between 

Nautilus and the other cephalopods. The base frequency of each gene was calculated by 

u the program PAUP* ver. 4.0910 (Swofford, 1993; Table 2). Numbers of constant 

characters and parsimony informative characters of the data set were also calculated 

using the PAUP* (Table 3). Homogeneity of three gene loci was tested by the 

partition-homogeneity test option implemented in PAUP*. The data set was partitioned 

into three genes and then analyzed using heuristic search with 1,000 repetitions. 

Homogeneity between COl and Cytb sequences were tested in a pair-wise fashion. 

Homogeneity between COl and ND5 and between Cytb and ND5 sequences was also 

tested in the same way. Homogeneity among three codon positions was also analyzed. 
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To test substitution saturation of the sequences, numbers of transversion was plotted 

against pairwise ML distances in accordance with Sullivan & Joyce (2005) (Fig. 2). ML 

distances were calculated under GTR+I+G model with the same parameters of 

maximum likelihood searches. 

The nucleotide data set was analyzed by the maximum likelihood (ML) analysis 

using a heuristic search with PAUP*. The best-fit substitution model for the ML 

(~'\ analysis was found using the program Modeltest 3.7 (posada &Crandall, 1998). 

GTR+I+G model was selected by Akaike information criterion (AlC). Model 

parameters were estimated by the Modeltest and fixed prior to each analysis. The ML 

tree was searched using three independent searches, not to be trapped into the local 

optima. Analyses were done starting from Neighbor-joining (NJ) tree by 

Tree-bisection-and-reconnection (TBR) swapping, and starting from maximum 

parsimony (MP) tree by TBR swapping. Another search was done starting from a 

random tree and TBR swapping. Bootstrap support values for the ML trees were tested 

( I 
~/ using bootstrap search option by Nearest-neighbor-interchange (NNl) with 1,000 

repetitions. MP analysis was done using Branch-and-Bound search using PAUP*. 

Bootstrap support values for the MP trees were tested using PAUP* by heuristic 

searches with 1,000 repetition. Bayesian analysis was done using the program MrBayes 

ver. 3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003). 

Metropolis-coupled Markov chain Monte Carlo (MCMCMC) from a random tree was 

run with sampled each 100 cycles. Four chains were run simultaneously; three were 

heated and one was cold. MCMC chains were run 1 to 500,000 generations. Two 
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independent run were conducted until the average standard deviation of split 

frequencies dropped below 0.1. Analyses were run repeatedly to check the consistency 

of results. The 1,250 trees were discarded by "bumin" option that corresponds to 25% 

of the samples (as recommended in the MrBayes 3.1 manual). The best-fit substitution 

model for the Bayesian analysis was found using the program Modelgenerator (Keane 

et al., 2006). GTR+I+G model was selected by Akaike information criterion (AlC). The 

C') model parameters were estimated during the analysis. 

To check an influence of noise due to the data heterogeneity the Bayesian analysis 

was performed with data partition. The data set was partitioned into three individual 

genes and analyzed in the same way to the Bayesian search with no partition. The 

best-fit substitution model for the Bayesian analysis was found using the program 

Modelgenerator. GTR+I+G model was selected by AlC value. The model parameters 

were estimated during the analysis. MCMCMC from a random tree was run with 

sampled each 100 cycles. Four chains were run simultaneously; three were heated and 

one was cold. MCMC chains were run 1 to 500,000 generations. Two independent runs 

were conducted until the average standard deviation of split frequencies dropped below 

0.1. The 1,250 trees were discarded by "burnin" option that corresponds to 25% of the 

samples. The data set was also analyzed with a character partition by three codon 

positions. 

To assess the influence of noise due to substitution saturation of the third codon 

position, the ML and MP analyses were applied to a data set including the first and 

second codon sites. The data set did not include Octopus and Nautilus due to their 
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severe saturation. The best-fit substitution model was found using the Modeltest. 

TvM+I+G model was estimated by AIC value. The ML and MP searches were carried· 

out in a similar way to that used in the all codon site analysis. The best-fit substitution 

models for each data set were found using the Modeltest. 

Stability of the basal relationships among the sepiids was investigated by replacing 

outgroup taxa. Five data sets with 24 taxon-ingroup including one teuthoid as a 

CO) outgroup were generated: Loligo, Sepiotethis, Watasenia, Todarodes and Rossia were 

used as a outgroup. The ML searches were carried by heuristic searches using the five 

data sets. Analyses were done starting from NJ trees by TBR swapping. Model 

parameters of each data set were estimated by the Modeltest and fixed prior to each 

analysis. Base composition homogeneities about each data set were tested using PAUP*. 

Analyses with the data sets excluding the third codon position were also performed 

similarly. To assess the basal relationships among the cuttlefishes, the likelihood 

difference between the ML tree (the sister relationships between clade III and IV) and 

the tree clustering clade I with clade II was tested statistically. The ML and the 

constraint trees were analysed using the all codon data set including four teuthoid 

outgroups. The constraint tree forming clade I+II was analyzed using constraint option 

implemented in PAUP*. Site-wise likelihood scores of the trees were calculated using 

PAUP*. The approximately unbiased (AU) test (Shimodaira, 2002) in the CONSEL 

program (Shimodaira and Hasegawa, 2001) was employed to test between the ML 

topology and tHe constraint tree topology. Alternative tree topologies among the basal 

nodes, such as trees forming a clade I+III, clade I+IV, clade II+III and clade II+IV, 
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were also tested simultaneously. The P-values of each hypothesis were listed in Table 4. 

Phylogenetic analysis usingamino acid sequences of COL Cytb, and ND5 data set 

F or amino acid sequence data set of three mitochondrial genes, ML analysis was 

performed using Tredinder (Jobb et al., 2004). Best-fit model for ML analysis was 

tested using the program Modelgeneratoi. The best-fit was the program indicating 

mtART+F+I+G model. However, the likelihood score of the best tree under the 

mtART+F+I+G model (L=-5,465.9) was lower than under the mtREV+F+I+G model 

(L=-5,448.7). Model proportion using Treefinder also supported mtREV+F+I+G model 

as the best-fit. For the ML analysis, we used the mtREV+l+G model (Adachi & 

Hasegawa, 1996) for the substitution model and we used the search depth 2. Bootstrap 

support values for the ML trees were tested using bootstrap search option by search 

depth 1 with 1,000 repetitions. MP analysis was performed by Branch-and-Bound 

search using PAUP*. Bootstrap. support values for MP trees were tested using PAUP* 

by heuristic searches with 1,000 repetition. Bayesian analysis was performed by 

MrBayes ver. 3.12. Metropolis-coupled Markov chain Monte Carlo (MCMCMC) from 

a random tree was run with sampled each 100 cycles. Four chains were run 

simultaneously, three were heated and one was cold. MCMC chains were run 1 to 

500,000 generations and 1,250 trees were discarded by "burnin" option. 

Phylogenetic analysis using sequences of COl gene 

Four COl sequences of cuttlefish were obtained from the database. ML and MP 
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analyses were performed using totally thirty-three species of cephalopods. The ML 

analysis was performed using PAUP*. The best-fit model for ML analysis was found 

using the Modeltest. Bootstrap support values for the ML trees were tested using 

bootstrap search option by NNI with 1,000 repetitions. The MP analysis was performed 

using PAUP* by Branch and Bound search. Bootstrap support values forthe MP trees 

were tested using bootstrap search option by Nearest-neighbor-interchange (NNI) with 

('\) 1,000 repetitions. 

RESULTS 

General features of sequences 

Relationships between ML distance and the number of transversion are shown in 

Fig. 2. Saturation plots were obtained for the transversion numbers (Tv) of all codon 

positions, the first and second codon positions, and only the third codon position in the 

three mitochondrial genes. The plateau appeared in curves of the first + second codon 

l- I 

j positions and the third codon position only, suggesting substitution is saturated between 

Nautilus and the other cephalopods (ML distance> 3). The plot of Tv at first and second 

positions between the Sepiidae and the other teuthoid outgroups exhibited a linear 

relation. 

Phylogenetic searches using nucleotide data set 

In each data set, three independent heuristic searches resulted in the same ML 

topology. In the phylogenetic tree using the nucleotide data set, four well-supported 
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clades were found (Fig. 3, L=23,579.2). The fIrst clade (clade I) includes Sepia 

esculenta, S. aculeata, S. lycidas, S. recurvirostra, S. cf. singaporensis, S. pharaonis, S. 

prashadi, S. elegans, and S. gibba. The second clade (clade II) consists of Metasepia 

tullbergi and S. latimanus. The third clade (clade III) includes S. officinalis, S. bertheloti 

and Sepiellajaponica. The fourth clade (clade IV) includes the Doratosepion species 

complex, S. kob"iensis, S. peterseni, S. tokioensis, S. andreana, S. pardex, S. lorigera, S. 

C) sp.SI0604, S. aureomaculata, S. tenuipes, S. subtenuipes, and S. madokai. In the clade 

IV, two subgroups were found. The subgroup A includes S. kobiensis, S. peterseni, S. 

tokioensis, and S. andreana. The subgroup B include S. pardex, S. aureomaculata, S. 

lorigera, and s. sp.SI0614. Subgroup A was supported with high values. The clade III 

and the clade IV are closely related, although the support values were not so high (78% 

by ML and 67% by MP, but 1.0 by Bayesian PP). 

Relationships among the basal clades and effects of partition heterogeneity, base 

C) , 

composition, and substitution saturation 

The partition homogeneity test (P=O.OOl) suggested partition heterogeneity among 

, 
three genes, COl, Cytb, and ND5. Partition heterogeneities were also observed among 

between two genes (P<O.Ol). To assess influence of the data incongruence we analyzed 

the data set partitioned into three genes by the Bayesian analysis. The similar topology 

was obtained in the Bayesian analysis with or without the partition of the genes. 

Relationships among the four clades were conserved in the all trees, although different 

topologies occurred within the fourth Doratosepion clade. Thus the data incongruence 
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did not affect resulting phylogenetic relationships. No heterogeneity was found among 

the three-codon positions (p=O.811). The analysis with partition of three codon sites 

resulted in the same topology as the analysis with no partition. 

The third codon data were discarded in the PAUP* analysis for twenty-nine species, 

because of the substitution saturation at the third codon position. When the data set 

including the first and second codon was used in the analysis, a single topology was 

( obtained in the ML and MP searches (Fig. 4). Four well-supported clades were obtained 

in this tree as in the analysis using data set including three codon sites. However, the 

basal relationships differed from the tree using three codon data sets. The clade I is 

sister to the clade II, and this group is sister to the clade IV. The clade III was basal to 

the whole clades. This relationship was described as (III, (IV, (I, II))) in a Newick 

format. The clade IV was supported with high support value, although the position of S. 

tenuipes, S. subtenuipes, and S. kobinesis were differed from the tree using three codon 

data set. 

The basal relationships differed, depending on the outgroup used in the analysis 

(Table 4). The analyses using all codon data set showed the basal clade relationships, (I, 

(II, (III, IV))) and ((I, II), (III, IV)). The analysis using the first and second codon data 

showed two relationships, (III, (IV, (I, II))) and ((I, II), (III, IV)). Chi-squared 

homogeneity test showed that base composition heterogeneities were observed in the 

nucleotide data sets including Nautilus and Octopus, but not in the nucleotide data sets 

excluding these cephalopods. 

The ML tree using the nucleotide data set with four teuthid outgroups suggested a 
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sister relationship between the clade III and clade IV. A tree constraining clade I+III 

showed a lower likelihood value than the ML tree (Table 5). Statistical test for the ML 

analysis severely rejected the hypothesis of sister relationship between the clade I and 

III (P=O.005). Trees constraining clade I+IV and clade II+IV were also rejected by the 

AU test (P<O.05). The hypotheses constraining clade I+ II and clade II+III were not 

rejected in this analysis. 

Phylogenetic searches using amino acid data set 

The phylogenetic tree using the amino acid data set yielded four well-supported 

clades, I, II, III, and IV (Fig. 5). The analyses showed two clusters, the clade I +II and 

the clade III + IV. These basal relationships were not supported with high values 

(BP<67, PP<O.95). 

Phylogenetic searches using CO] gene only 

In the phylogenetic tree using COl sequences well-supported four clades were 

identified (Fig. 6). The tree using the COl sequences showed rather low support values 

at the basal branches. The topology varied depending on the choice of outgroups. S 

opipara is a sister to M tullbergi. S furcata and S hirunda living around Taiwan were 

deposited within the clade IV. 

DISCUSSION 

Our previous analysis using 16S, 12S rRNA and COl genes showed four clades in 
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the cuttlefish relationships, but different topologies were obtained in analyses ofNJ, MP, 

and ML. This was possibly caused by a large number of gaps in 16S and 12S rRNA 

sequences among the sepiids. Strugnell & Nishiguchi (2007) showed that an alignment 

method influenced the result of phylogenetic analysis, using three mitochondrial and six 

nuclear genes, among the cephalopods. In the present study, four clades were identical 

and well supported by the ML, MP, and Bayesian analyses. Addition of two genes 

(Cytb and NDS) and the data sets of unambiguous alignment ofthe sequences without 

gaps apparently improved the analysis. 

The present analysis included six major lineages of extant cuttlefishes, i.e., the 

genus Sepielia, the genus Metasepia, and the Sepia species complexes containing Sepia' 

sensu stricto, Acanthosepion, Doratosepion, and Rhombosepion. The species within the 

Sepia s. s. and Rhombosepion species complex were obviously paraphyletic in the 

present analysis. The molecular phylogeny suggests the necessity of revision of key 

(; 
,-j morphological characters of the extant cuttlefish classifications. 

The present study revealed that nine sepiid species are clustered in a single clade 

(the clade I) that includes Sepia esculenta, S. aculeata, S. lycidas, S. recurvirostra, S. cf. 

singaporensis, S. pharaonis, S. prashadi, S. elegans, and S. gibba. This clade contains 

five species (Sepia esculenta, S. aculeata, S. lycidas, S. recurvirostra, and S. prashadi) 

that Khromov et al. (1998) treated as the Acanthosepion species complex. Khromov et 

al. (1998) included both S. pharaonis and S. gibba in the Sepia species complex, and S. 

elegans in the Rhombosepion species complex. In S. pharaonis and S. elegans, we 
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found incongruity between the present study and our previous study (Yoshida et al. 

2006). In the previous study, sequence data of these two species were taken from the 

database. The reason of incongruity is unknown at present. 

Khromov et al. (1998) included S. pharaonis in the Sepia species complex. 

However, Lu (1998) considered that s. pharaonis has an affinity for a group including S. 

aculeata, S. lycidas, and S. prashadi, which have a well-developed ventral inner cone in 

(~) common. The present study supports Lu's classification. The cuttlebone ofS. pharaonis 

differs from that of S. aculeata, S. lycidas, and S. prashadi in the presence of broadly 

U-shaped deposit on the inner cone (also called the secondary inner cone): Adam & 

Rees (1966) considered the peculiar form of the inner cone has a limited value in 

phylogenetic anaysis. The molecular phylogeny supported the treatment that S. 

pharaonis is deposited within the Acanthosepion complex. S. gibba lives in high salinity 

waters (the northern part of the Red Sea), and so a distinct high phragmocone might be 

formed under these ionic conditions (Adam & Rees, 1966). This characteristic may be 

species-specific adaptive modification to the habitat. 

The clade II consists of Metasepia tullbergi and S. latimanus. Some distinct 

morphological gaps, such as the body size and cuttlebone morphology, are found 

between these two species. The phylogenetic analysis using only COl suggested these 

two species are related to a small cuttlefish S. opipara living in tropic~l waters. 

Bonnaud et al. (2006) showed the <Metasepia> group consists of small-sized tropical 

species by phylogenetic analyses using the COIl, 16S, and 12S rRNA. In their analyses, 

S. latimanus, S. filibrachia, S. opipara, S. papuensis, and S. plangon were clustered with 

23 



Metasepia. Males of S. latimanus and S. papuensis lack hectocotylized arms (Adam and 

Rees, 1966). Bonnaud et al. (2006) proposed the lack ofhectocotyliztion is a 

characteristic of the <Metasepia> group. In fact, M tullbergi belongs to the tropical 

species. The morphological specialization likely increased after the branching of these 

specIes. 

The clade III includes S. ojjicinalis, S. bertheloti, and Sepiella japonica. The 

(~~: analysis using only COl showed a monophyly of two Sepiella species and the sister 

relationship between Sepiella and S. ojjicinalis. This leads to an apparent polyphyly of 

the Sepia. Bonnaud et al. (2006) proposed that S. ojjicinalis and Sepiella japonica form 

the <Sepiella> group characterized by the presence of a single pair of spermathecae. 

Another common feature between S. ojjicinalis and Sepiella japonica is the spawned 

egg capsule that is stained with ink. S. ojjicinalis is the type species of the Sepia and 

Sepiidae (Linnaeus, 1758). However, S. ojjicinalis has an affinity with Sepiella rather 

than with the other Sepia species in the molecular analysis. Further studies are 
.r---'\ 

apparently needed to revise the systematics of the Sepiidae. 

The clade IV includes the Doratosepion species complex, S. kobiensis, S peterseni, 

S. tokioensis, S. andreana, S. pardex, S. lorigera, S. sp. SI0604, S. aureomaculata, S. . 

tenuipes, S. subtenuipes, S. !urcata, s. hirunda and S. madokai. Our previous report 

indicatyd that S. madokai was included in the Acanthosepion complex (Yoshida et al. 

2006). We erroneously identified S. sp.SI0604 as S. madokai. The Doratosepion was 

made based on distinct cuttlebone characters, such as a lanceolate shape and cup-like 

outer cone (Rochebrune, 1884). S. madokai have neither narrow cuttlebone nor peculiar 
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cup-like outer cone, suggesting the ancestral state of Doratosepion. In fact, 

phylogenetic trees show that S. madokai is separated early in the Doratosepion lineage. 

We found·a new taxonomic character of Doratosepion, that is a loss of membranous 

structure in their cuttlebones (Yoshida et ai, 2006). This character was found also in the 

specimens of S. madokai, S. tokioensis, S. andreana, S. aureomaculata, S. tenuipes, and 

S. subtenuipes (personal observations). Membranous structure is commonly observed in 

(~, the other sepiids. Thus the lQsS of membranous· structure is considered as a 
\ 

synapomorphy for the Doratosepion clade. In the cuttlebones, deep-water species have 

some devices to reduce the size of chamber cross-section, making the septa thinner and 

spaces between pillars smaller. These devices may provide resistance to hydrostatic 

pressure in the deep water (Sherrard, 2000). These features cause the decrease in 

cuttlebone density, and are apparently efficient for the diurnal vertical migration. 

The phylogenetic tree of Doratosepion clade shows small interspecies distances. 

An-explosive, recent radiation possively occurred in the Doratosepion. Khromov (1998) 

i-' 

~/ suggested that diversity of the Doratosepion species was caused by recent radiation 

along the periphery of the distributional range, such as South Africa, South Australia, 

and Japan. The low water temperatures around Japan in the Pleistocene are likely to 

form a thermal barrier against the sepiids. Our phylogeny supports the assumption that 

the recent explosive colonization and speciation occurred in Japanese Doratosepion 

species. In fact, more than half of the Japanese cuttlefishes are Doratosepion species. 

The Doratosepion species exhibit the sexual dimorphism in arms that is probably 

associated with the reproductive behavior. It is well knouwn that sexual selection 
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caused the rapid evolutionary radiation in African cichlid fishes (Turner, 1999). The 

sexual dimorphism is likely to drive speciation in Doratosepion. 

An outgroup choice likely yields different basal relationships. The group most 

closely related to the Sepiidae is in an argument (Strugnell et al., 2005), so that it was 

hard to choose a suitable outgroup. Different basal topologies occurred in the analyses 

using closely related loliginids, L. bleekeri and S. lessoniana, respectively. The present 

( _:: data sets have no base composition heterogeneities and no partition heterogeneities. 

Thus, the discrepancy of the basal relationships is still due to unknown reasons 

including outgroup problem. To improve the accuracy of basal relationships among the 

Sepiidae, we also have to increase the taxon sampling of the cuttlefishes. 

We analysed three possible rooting positions ((I, II), (III, IV)), (I, (II, (III, IV))), and 

(III, (IV, (I, II))). The analysis using the amino acid data set supports that the rooting 

position ((I, II), (III, IV)) is most plausible. The sister relationship between clade III and 

clade IV was strongly supported by the several analyses and the AU test, but not by the 

morphological characters. In the analyses using 16S, 12S rRNAs and COIl,. 

Doratosepion sp. had a close relationship to <Sepiella> group together with S. rex, S. 

elegans and S. orbigniana (Bonnaud et al., 2006). The position of S. elegans differs 

from our analyses, but their consensus tree indicated the basal relationship, 

«Metasepia>, (Asian <Sepia>, (Doratosepion, <Sepiella»)). 

The possibility of the sister relationship between the clade II and III was not rejected 

by the AU test. However, S. latimanus in the clade II differs from S. officini::tlis in the 

clade III in its stronger posterior spine, the fused protective membrane, and the 
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sucker-bearing surface detached from the stem of the tentacular club (Adam & Rees, 

1966). The problem of rooting position still remains to be clarified. 
, 

The molecular and morphological analyses also still remain to be reconciled, but 

only the "Doratosepion" clade, among the Sepiidae, forms a monophyletic group both 

in molecular and morphological analyses. Therefore, we propose the Doratosepion 

clade, excluding S. madokai, as a distinct genus, Doratosepion Rochebrune, 1884. 
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Figure legends 

Figure 1. A, The cuttlebone of Sepia escuienta, ventral view, B, The cuttlebone of S. 

gibba, ventral view, C, The cuttlebone of S. gibba, lateral view. IC, inner cone; OC, 

outer cone; P, phragmocone; S, spine. 

Figure 2. Saturation plot. Saturation plots were generated for the transversion numbers 

(Tv) of all codon positions of the three mitochondrial genes, the first and second 

codon positions, and the third codon position only. 

Figure 3. Phylogenetic relationships among the cuttlefishes using the nucleotide 

sequences of COl, Cytb and ND5 genes. Maximum likelihood tree derived from 

the analysis of the all codon position of the genes. The best-fit model for the 

mitochondrial protein gene (all codon) data set under AIC framework was defined 

as GTR+I+G model: Base=(0.3126, 0.0778,0.1393), Rmat=(1.3678, 15.0057, 

1.4590,5.5165, 19.8956), Rates=gamma, Shape=0.4772, Pinvar=0.3815. Numbers 

at node indicate the support values: bootstrap values of the maximum likelihood 

analysis/bootstrap values of the maximum parsimony analysis/posterior 

probabilities of the Bayesian analysis. Bootstrap values were estimated with 1,000 
. . . 

replications. Support values under 50% or 0.50 are not shown. Asterisks" indicate 

the support values were 1001100/1.0 respectively. Bar length is indicative of the 

number of substitution per site. 

Figure 4. Maximum likelihood tree derived from the analysis of the first and second 

codon position ofthe genes. The best-fit model for the mitochondrial protein gene 

(all codon) data set under AIC framework was defmed as TVM+I+G model: 
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Base=(0.2310, 0.1529, 0.1951), Nst=6, Rmat=(O.OOOO, 10.3987, 1.7523,2,6218, 

10.3987), Rates=gamma, Shape=0.5529, Pinvar=0.6115. Numbers at node indicate 

the support values: bootstrap values of the maximum likelihood analysislbootstrap 

values of the maximum parsimony analysis/posterior probabilities of the Bayesian 

analysis. Bootstrap values were estimated with 1,000 replications. Support values 

under 50%'or 0.50 are not shown. Asterisks indicate the support values were 

1001100/1.0 respectively. Bar length is indicative of the number of substitution per 

site. In the representative species, the cuttlebones are shown on the right. 

Figure 5~ Maximum likelihood tree derived from the analyses of amino acid sequences 

of COl, Cytb, and ND5 genes. The best-fit model for the mitochondrial protein 

gene data set under AIC framework was defined as MtRev+F+I+G model. 

Numbers at node indicate the support values: bootstrap values of the maximum 

likelihood analysislbootstrap values of the maximum parsimony analysis/posterior 

probabilities of the Bayesian analysis. Bootstrap values were estimated with 1,000 

replications. Asterisks indicate the support values were 10011 0011.0 

respectively. Support values under 50% or 0.50 are not shown. Bar length is 

indicative of the number of substitution per site. 

Figure 6. Maximum likelihood tree derived from the analyses of nucleotide sequences 

of COl gene. The best-fit model for the mitochondrial protein gene (all codon) data 

set under AIC framework was defined as TVM+I+G model: Base=(0.3703, 0.1629, 

0.0565), Rmat=(0.0795, 8.1900,0.5437,2.3607,8.1900), Rates=gamma, 

Shape=0.3910, Pinvar=0.4168. Numbers at node in~icate the support values: 
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bootstrap values of the maximum likelihood analysislbootstrap values of the 

maximum parsimony analysis. Bootstrap values were estimated with 1,000 

replications. Support values under 50% or 0.50 are not shown. Bar length is 

indicative of the number of substitution per site. 
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Table 1. Specimens used in this study 

Species ML
a Sex Locality Collection Accession No.(COIlCytb/ND5) Sepecimen No. 

(cm) date 

Sepia aculeata l3.6 female Taichun, Taiwan Dec. 11. 2006 AB430400 b IAB430415 b IAB430487 b OUM-MO-00060 

Izumisano, Osaka, 

Sepia andre ana 9.1 male Apr. 26. 2007 AB430401 b IAB430416 b IAB430488 b OUM~MO-00089 

Japan 

7"". Sepia 
I \ 

10 male Heta, Sizuoka, Japan Dec. l3. 2007 AB430402 b IAB430417 b IAB430489 b OUM-MO-00103 ' / 

aureomaculata 

Sepia bertheloti 9.8 Spain AB430403 b IAB430416 b IAB430490 b 

Minabe, Wakayama, 

Sepia esculenta 15.3 male Oct. 23. 2003 ABI923351 AB430419 b IAB430491 b 

Japan 

Sepia elegans 7.8 Spain AB430404 b IAB430420/AB430492 

Sepia furcata AY530207 

Sepiagibba The Red Sea, Israel Jul. 5. 2007 AB430405 b IAB430421 b IAB430493 b OUM-MO-00I0l 

Sepia hirunda AY530206 

Sepia kobiensis 3.5 Irino, Kochi, Japan Feb. 14.2002 AB1938l31 AB430422 b IAB430494 b OUM-MO-00051 

Sepia latimanus 21 male Okinawa, Japan Nov. 17.2003 ABI92338/AB430423 b IAB430495 b 

Sep'ia lorigera 20.5 male Owase, Mie, Japan Jun. 14.2004 AB193810/AB430425 b IAB430497 b OUM-MO-00031 

Minabe, Wakayama, 

Sepia lycidas 24.9 male Jan. 30.2002 AB192337/AB430426 b IAB430498 b 

Japan 

Sepia madokai 7.1 female Karo, Tottqri, Japan Jan. 19.2007 AB430407 b IAB430427 b IAB430499 b OUM-MO-00077 
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Sepia officinalis NC_00789S c 

Sepia opipara AFOOO063 

Sakaiminato, Tottori, 

Sepia pardex 19.5 male Nov. 12.2004 AB1938091AB430428 b IAB430S00 b OUM-MO-0002S 

Japan 

Sepia peterseni 9.S male Irino, Kochi, Japan Feb. 14.2002 ABI923391AB430429 b IAB430S01 b OUM-MO-00049 

Sepia pharaonis 27.2 male Taichun, Taiwan Dec. 11. 2006 AB430408 b IAB430430 b IAB430S02 b OUM-MO-000S9 

'\ Sepia prashardi Thailand Oct. 29. 2007 AB430409 b IAB430431 b IAB430S03 b OUM-MO-00I02 
( i 
',,-~/ 

Sepia 

9 female Taichun, Taiwan Dec. 11. 2006 AB430410 b IAB430432 b IAB430S04 b OUM-MO-00073 

recurvirostra 

Sepia tenuipes 9.2 male Heta, Sizuoka, Japan Dec. 13.2007 AB430411 b IAB430433 b IAB430S0S b OUM-MO-00106 

Sepia tokioensis 8.1 male Karo, Tottori, Japan Jan. 19.2007 AB430412 b IAB430434 b IAB430S06 b OUM-MO-00082 

Sepia cf. Semakau island, 

7.3 male Dec. 28. 2006 AB430413 b IAB43043S b IAB430S07 b OUM-MO-0007S 

. d 
singaporensls Singapore 

Sepia sp.SI0604 12.3 female lrino, Kochi, Japan Jun. 29. 2004 AB19381l1AB430436 b IAB430S08 b OUM-MO-OOOSO 

Sepia subtenuipes 8.2 male Heta, Sizuoka, Japan Dec. 13.2007 AB430414 b IAB430437 b IAB430S09 b OUM-MO-00I0S 

Sepiella inermis AYSS7S22 

Izumisano, Osaka, 

Sepiellajaponica S.7 male Feb. 20. 2003 AB1923411AB430438 b IAB430S10 b 

Japan 

Metasepia 

4.7 male Irino, Kochi, Japan Feb. 14.2003 AB192340/AB430440 b IAB430S12 b 

tullbergi 

Loligo b1eekeri AB029616 c 
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Sepioteuthis 

AB240154
C 

lessoniana 

Todarodes 

AB158364 c 

pacificus 

Watasenia 

AB240152 c 

scintillans 

Vozu, Toyama, 

Rossia pacifica 7.1 female May. 5. 2003 AB191289/AB470277 bl AB470278
b 

Japan 

Octopus ocellutus AB240156 c 

Nautilus 

DQ472026 c 

macromphalus 

a, Dorsal mantle length; b, Sequences determined in this study; C, Whole mitochondrial genome 

was deposited in Database; d, Sepia singaporensis was a synonym of Sepia recurvirostra. 

However, this specimen is distinguished from S. recurvirostra with the 10% sequence 

difference. 

39 



Table 2. Amplified length and base frequecies of the genes 

Base frequencies 

Length (bp) Length (AA) A C G T 

COl 657 196 0.2874 0.1805 0.1528 0.3793 

Cytb 975 324 0.2454 0.0994 0.1825 0.4727 

ND5 568 189 0.2872 0.1086 0.1592 0.445 

(~" 

~-' 
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Table 3. Numbers of characters of the aligned data sets 

Total numbers Numbers of Variable Parsimony 

of characters constant characters informative 

characters characters 

All codon 2,200 1,053 1,147 885 

1 st. and 2nd. 

1,466 1,011 455 271 

~', 

(-) 
codon 
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Table 4. Sister relationships using different outgroups 

all outgroups 

(Nau., Oct., Lol., 

teuthoids (Lol., 

Sep., Wata., 

Sep., Wata., Toda.) Toda.) 

Loligo Sepioteuthis Watasenia Todarodes Rossia 

all codon data (I,(ll,(III,IV)) (I,(ll,(III,IV))) ((I,II),(III,IV)) (I,(ll,(III,IV))) (I,(ll,(III,IV))) ((I,ll),(III,IV)) (I,(ll,(III,IV))) 

first and 

second codon (III,(IV,(I,II))) (III,(IV,(I,II))) (I,(II,(III,IV))) (III, (IV, (I,ll))) (I,(ll,(III,IV))) (III,(IV,(I,II))) (I,(II,(III,IV))) 

data 
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Table 5. Test of hypothesis about the basal clades of cuttlefishes 

clade clade clade clade 

Hypothesis I+II I+IlI I+IV II+IlI clade II+IV clade III +IV 

Likelihood score 20,644 20,661 20,656 20,647 20,651 ML (L=20,639) 

AU test 

(p-value) 0.31 0.005 0.024 0.276 0.011 0.822 

C) 
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Figure 1 
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Figure 2 
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Chapter 2 

Jdiosepius is a member of teuthoids: molecular phylogeny using nine genes of nuclear 

and mitochondrial genes 

( > "-j 



Abstract 

We studied the phylogenetic position of Jdiosepius among five higher taxonomic 

groups, sepiids, sepiolids containing myopsids, oegopsids and Sepiadariidae. Twenty 

three species of cephalopods were analyzed using four data sets, nuclear rRNA data set 

(18S+28S), nuclear and mitochondrial rRNA data set (18S+28S+ 16S+ 12S), nuclear 

protein gene data set (Pax-6+Rhodopsin), and mitochondrial protein gene data set 

() (COI+Cytb+ND5). Sister taxon ofidiosepiids was analyzed in each dataset using the 

maximum likelihood, maximum parsimony, and Bayesian methods. Analyses using 

nucleotide sequences of the rRNAs and the mitochondrial protein suggested that 

idiosepiids were related to oegopsids among teuthoids. However, the analysis using the 

nuclear protein data sets did not support this relationship. The likelihood-based tests 

suggested that the idiosepiid is not related to sepiolid. 

Phylogenetic relationships were analyzed using the amino acid sequences of the 

mitochondrial data set and total evidence analysis via concatenation of the likelihood. 

C) The analysis using the mitochondrial protein data set showed that sepiids and sepiolids 

were basal to teuthoids including idiosepiids. The total analysis evaluated by the , 

likelihood values some controversial topologies. The tree for the second highest 

likelihood scores showed the same relationship as the analysis using the nucleotide 

sequences of rRNAs and the amino acid sequences of the mitochondrial protein data set, 

although the first tree indicated that the teuthoid clade including idiosepiids were basal 

to the clade of sepiids+sepiolids. All analyses did not support sister relationships 

between the idiosepiid and the sepiolid. 



Introduction 

Jdiosepius is one of the smallest cephalopods, exhibits both sepiolid and teuthoid 

like characters causing systematic confusions in Decapodiformes. Steenstrup (1881) 

placed Jdiosepius in the Sepia-Loligo family that is the large group of the myopsid 

including Sepioloidea, Sepiadarium, and Spirula. Appellof (1898) elevated Jdiosepius 

to the family, Idiosepiidae. Voss (1977) proposed that the order Sepioidea included 

(~) Idiosepiidae, Sepiolidae, Sepiidae, and Spirulidae. However, Fioroni (1981) included 
'''--- _/ 

Idiosepiidae in the order Sepiolioidea with Sepiolidae and Sepiadariidae. Clarke and 

Trueman (1988) proposed the order Sepiolida containing Sepiolidae and Idiosepiidae, 

Sepiadariidae was deposited in the order Sepiida with Sepiidae. Subsequently, Boletzky 

(2003) elevated Idiosepiidae to the order and proposed five orders in Decabrachia 

(=decapodiformes), namely Spirulida, Sepiida, Sepiolida, Idiosepiida and Teuthoida. ' 

Bonnaud et al. (1997) suggested that Jdiosepius was related to the oegopsids by 

molecular phylogeny using the mitochondrial COllI genes. Carlini and Graves (1999) 

o suggested a close relationship between Jdiosepius and Sepioloidea using the COl genes. 

Carlini et al .. (2000) exhibited a close relationship between Jdiosepius and sepiolids 

using Actin I genes, although they showed a close relationship between Jdiosepius and 

oegopsids using Actin II. Bonnaud et al. (2005) and Takumiya et al. (2005) suggested 

Jdiosepius was related to the oegopsids, not to the sepiolids using some mitochondrial 

genes. Nishiguchi et al. (2004) suggested separation of the idiosepiids from sepiolids 

based on the analysis using mitochondrial 12S, 16S, COl, and nuclear 28S sequences. 

We showed previous relationships based on the morphological and molecular studies in 
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Fig. 1. The phylogenetic position of Idiosepius remained to be determined as Boletzky 

(2005) noted. 

The analysis of a small number of loci suffers from a large sampling error and lack 

ofthe high statistical support. It has caused the different results as the previous 

molecular studies (Rokas et al., 2003). Genes or regions with different evolutionary 

history have to be analyzed independently or using the appropriate evolutionary model. 

Strugnell et al. (2004) suggested a close relationship between Idiosepiusand Sepiolids 

using three nuclear and three mitochondrial genes with data partitionings. Sepiadarium 

was not studied in their analysis, so the relationships among these groups have not been 

cleared. There is some confusion in the phylogenetic relationships among higher 

taxonomic groups within cephalopods. 

We analyzed comprehensive molecular data sets for decapodiformes (2,871 

bp+ 1,016 aa) to study the position of Idiosepiidae among higher taxonomic groups, 

sepiid, myopsid, oegopsid, and sepiolid. We used a total evidence approach by analyses 

(~\ 

~) to resolve the difficult and controversial phylogeny, evaluated the controversial tree 

topologies among decapodiformes using the maximum likelihood method. 
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Materials and Methods 

peR amplifications and sequencings 

We collected thirteen species of coleoid cephalopods in Japanese waters (Table 1), 

and sequenced four nuclear genes and five mitochondrial genes. Additionally, we 

obtained sequences often cephalopod species from the database. These sequences of 

nine genes of 23 coleoid cephalopods species were shown in Appendix 1. 

Tissue samples for DNA extractions were obtained from the arm or the mantle. The 

samples were fixed in 70% ethanol and were stored at -20°C until the DNA extractions. 

The genomic DNA was extracted from the tissue using DNeasy® Tissue kit (QIAGEN). 

Thepolymerase chain reaction (PCR) was performed in 20~1 containing 200-300~g 

extracted genomic DNA, 2~110xPCR buffer, 1.6~110mM dNTPs, 1~110~M primer 

each, and O.SU Takara Ex Taq polymerase. The primers were used to amplify of each 

gene (Table 2). The complete 18S rRNA was amplified and sequenced in three 

overlapping fragments using these primer sets, 18S1F/4R, 18S3bflbi, and 18Sa2.0/9R. 

The partial gene sequences (of which primers for amplification) are as follows: 28S 

rRNA (28Sa/b), Pax-6 (PaxFlIRl), Rhodopsin (RhodFlIRIN or RhodF21R3), 

Cytochrome b (CytbFI/Rl), and NADH dehydrogenase subunit S (NDSFlIRl). The 

temperature regimen ofPCR was Imin at 94°C, 2min at 4S-SSoC, l-l.Smin at 72°C for 

30 cycles. 

The amplified fragment was cloned into pGEM-T Vector (Promega). Plasmid DNA 

from transformant colonies was purified with QIAprep® Miniprep kit (QIAGEN). Both 

strands of the plasmid DNA were fully sequenced using T7 primer upstream and SP6 
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primer downstream of an insert site by the dideoxy chain-termination method using 

Applied Biosystems BigDye® Terminators v .. 3.1 (Sanger et al., 1997). Additional 

primer 5'-GCATTCCCGGCCCTTTCGGCC-3' was used,to sequence 18S rRNAof 

Sepiadarium kochii (modified from 18S5bfby Lindgren et al., 2004). The 

fluorescent-labeled DNA was analyzed using ABI Prism 3100 sequencer. The 

sequences were deposited in the DNA Database of Japan (DDBJ) database. The 

accession numbers of sequences used in this study are shown in Appendix 1. 

Phylogenetic analysis using nucleotide sequences 

Sequences were aligned using ClustalX ver. 1.83 (Thompson et al., 1997) and 

adjusted manually. Indels and non-homologous regions were excluded from the analysis. 

The length of sequence used in the analyses was shown in Table 2. 

We analyzed four gene sets for nucleotide sequences, nuclear rRNA (18S+28S 

rRNA), all rRNA (18S+28S+ 16S+ 12S rRNA), nuclear protein genes 

C) (Pax-6+Rhodopsin), and mitochondrial protein genes (COI+Cytb+ND5). Thenuclear 

protein gene data set and the mitochondrial protein gene data set were analyzed using all 

codon positions, or the first and the second. codon positions. The analyzed lengths of 

sequences in each data set were shown in Table 3. 

The base frequency of each gene was calculated by the program PAUP* ver. 4.0bl0 

(Swofford, 2003). Homogeneity of the dataset was tested by the partition-homogeneity 

test option implemented in PAUP* with 1,000 random repetitions. The nucleotide data 

set was analyzed by the maximum likelihood (ML) analysis using heuristic search with 
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PA UP* . The best-fit substitution model for the ML analysis was found using the 

program Modeltest 3.7 (Posada and Crandall, 1998). The substitution models were 

selected by Akaike information criterion (AIC) or hierarchical likelihood ratio test 

(hLRT) in Modeltest. Identical topology was found using the substitution model 

selected by AIC and by hLRT excepting the nuclear protein data set. The base 

frequencies of the model were estimated in each data set. The ML tree was searched 

using three independent searches, not to be trapped into the local optima. Analyses were 

done starting from Neighbor-joining (NJ) tree by Tree-bisection-and-reconnection 

(TBR) swapping, and starting from maximum parsimony (MP) tree by TBR swapping. 

Another search was done starting from a random tree and TBR swapping with 1,000 

times repetition. In each data set, these three searches resulted in the same ML topology. 

Bootstrap support values for ML trees were tested using bootstrap search option by 

Nearest-neighbor-interchange (NNI) with 1000 repetition. Maximum parsimony (MP) 

analysis was done using Branch-and-Bound search using PAUP*. Bootstrap support 

values for MP trees were tested using PAUP* by NNI searches with 1,000 repetition. 

Bayesian analysis was done using the program MrBayes ver. 3.1.2 (Huelsenbeck and 

Ronquist, 2001; Ronquist and Huelsenbeck, 2003). Metropolis-coupled Markov chain 

Monte Carlo from a random tree was run with sampled each 100 cycles. Four chains 

were run simultaneously, three were heated and one was cold. The best-fit substitution 

models for Bayesian analyses were found using the program Mrmodeltest v2. (Nylander, 
. . 

2004). Model parameter values were estimated in each analysis. The sister taxon of 

idiosepiids using the maximum parsimony and the Bayesian methods was listed in 
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Table 4. 

To assess idiosepiid+sepiolid clade, the likelihood difference between the ML tree 

and tree forming idiosepiid+sepiolid clade were tested on statistically. Constraint trees 

making Jdiosepius form a cluster with sepiolids were analyzed using constraint option 

implemented in PAUP*. The likelihood scores of the constraint tree were compared 

with those of the ML trees by Kishino-Hasegawa test (KH test, Kishino and Hasegawa, 

(-~' 1989) and Shimodaira-Hasegawa test (SH test, Shimodaira and Hasegawa, 1999) . 

implemented in PAUP*. 

Phylogenetic analysis using amino acid sequences 

F or amino acid sequence data set of three mitochondrial genes, ML analysis was 

performed using protml in the program molphy 2.3b3 (Adachi et al., 1996a). For the 

ML analysis, we used the mtREV-fmodel (Adachi and Hasegawa, 1996b) for their 

substitution model. Bootstrap support values for ML tree were tested by RELL 

(resumpling of the estimated log-likelihood) method with 10,000 replications. MP 

analysis was performed by Branch-and-Bound search using PAUP*. Bayesian analysis 

was done by MrBayes ver. 3.12. Best-fit model for Bayesian analysis was found using 
, . 

the program modelgenerator (Keane, 2006). 

Total evidence analysis on likelihood analysis 

We analyzed the three data set ofthe nuclear rRNA sequences, the nuclear protein 

sequences, and the mitochondrial protein sequences using molphy. We obtained the ML 
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trees from each data set. The likelihood scores were concatenated using totalml in 

molphy. Analyses were performed on 9 OTUs. The sequences of I paradoxus, Loligo 

bleekeri, Ommastrephes bartramii, Sepia officinalis, Sepiadarium kochii, and 

Sepioteuthislessoniana were analyzed on an OTU. The rRNA sequences of 

Graneledone recosa and the protein sequences of Octopus vulgaris were concatenated 

to be used as an outgroup. Similarly, the rRNA sequences of Sthenoteuthis oaulaniensis 

and the protein sequences of Todarodes pacific us, the sequences of rRNAs of Sepiola 

affinis and the protein sequences of Euprymna morsei were concatenated. 

Total evidence analyses of the nuclear rRNA sequence data set (18S+28S rRNA) 

and the mitochondrial rRNA data set (16S+12S) were performed with HKY 85 model 

(Hasegawa et al. 1985) using nucml (p-option, default setting). Amino acid sequences 

of the nuclear protein data set were analyzed with JTT-fmodel (Jones et al., 1992) 

using protml. The mitochondrial data set was analyzed with mtREV-fmodel using 

protml. The NJ tree was analyzed using nucml (or protml, d-option) and njdist. The ML 

l) analysis was performed by staring from a NJ tree using nucml (or protml, R-option). 

Thetopologies of the NJ and ML tree were obtained for each data set. Eight topologies 

of the NJ and ML trees were obtained by the four data sets. The log-likelihoods of eight 

topologies were calculated usingnucml and protml (I-option, t-option). In the eight tree 

topologies log-likelihood values for each data set were calculated using nucml (or 

protml, I-option, and u-option). The resulting log-likelihood values were concatenated 

using totalml in molphy. RELL bootstrap values for each topology were estimated using 

nucml (or protml) and totalml with 10,000 replications (Table 6). 
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Results 

Alignment and data partition of nucleotide sequences 

Sequences of 18S rRNA consisted of highly variable and conserved regions. The 

18S rRNAs of cephalopods with secondary structure of Calicophoron calicophorum 

(Accession number: L06566, Platyhelminthes) and these of Daphnia pulex (AFOI4011, 

C) Arthropoda) deposited in the European Ribosomal RNA database (http://rrna.uia.ac.be), 

It is doust that their variable regions are consistent with stems EI0_l, E23_1-7, 43, and 

49. These highly variable regions appeared not to be aligned, hence they were excluded 

in the analyses. There were differences between octopods and decapodiformes at the 

stem 6-9, E23_12, E23_14, 24, 28 and 44. These variable regions contained apparently 

indels, but the in-del patterns were not correlated to the taxonomic groups. 

Nucleotide frequencies of genes were equal among cephalopod species examined. 

X2 tests of each genes using PAUP* showed coincidence among species (P>0.9, data 

not shown). However, base frequencies were quite different between the nuclear and the 

mitochondrial genes (Table 1). Sequences of 18S and 28S rRNA were G-rich (0.31 or 

0.35). Sequences of 16S and 12S rRNA were A-rich. Sequences of COl and.Cytb and 

ND5 were T-rich. Regions with different evolutionary history have to be analyzed 

independently or using the appropriate evolutionary model. Therefore, we analyzed 

nucleotide sequences with four data sets, nuclear rRNA (18S+28S rRNA), all rRNA 

(18S+28S+ 16S+ 12S rRNA), nuclear protein genes (Pax-6+Rhodopsin), and 

mitochondrial protein genes (COI+Cytb+ND5). Substitution saturations were evident 
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C) 

within the mitochondrial genes among cephalopods (Guzik et al., 2005; Strugnell et al., 

2005). Strugnell et al., 2005 found saturations within Rhodopsin and Pax-6 genes. 

Substitution saturations affected phylogenetic analyses via multiple changes per site, so 

the nuclear and mitochondrial protein data sets were analyzed with the third codon 

position or without the third codon. Each data set was analyzed by maximum likelihood 

(ML), maximum parsimony (MP), and Bayesian analysis. Data partitioning among 

genes or codons in each data set was evaluated by partition homogeneity tests using 

PAUP*. 

Phylogeny based on nucleotide data 

Phylogenetic relationships were analyzed using the maximum likelihood method for. 

the four data sets of nucleotide sequences. Sister taxon of idiosepiids was analyzed 

using the maximum parsimony and the Bayesian methods as listed in Table 4. The 

bootstrap support values using the MP and the posterior probabilities using the Bayesian 

method were also analyzed. Best-fit model for nuclear rRNA (18S+28S rRNA) data set 

was estimated as GTR+I+G model under Ale. The ML tree for the nuclear rRNA data 

. set is shown in Fig. 2a (L=5,554.70). The Bayesian tree was analyzed with 500,000 

generations, arid with burnin=I,250 (L=5,560.57). Partition homogeneity test for the 

nuclear rRNA data set showed no significant heterogeneity between I8S and 28S rRNA 

genes (P=0.08). ML analysis was performed with the partition into two sites, I8S rRNA 

and 28S rRNA to assess an influence of the heterogeneity. The ML tree calculated with 

GTR+site-specific rate (SS) model for each partition (I8S rRNA and 28S rRNA) 
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l) 

showed the same topology as the ML tree with TrN+I+G model (L=5,536.17). In these 

trees, Sthenoteuthis oaulaniensis and Ommastrephes bartramii form an oegopsids clade 

with high bootstrap (BP) support in ML and MP, and posterior probability (PP) in the 

Two Jdiosepius species and two outgroup octopod species were also comprised the 

clades with strong supports. Oegopsids and myopsids exhibit monophyletic clade each .. 

Idiosepiids was the sister taxa to the teuthoids (myopsid+oegopsid). Relationships 

among oegopsids, myopsids and idiosepiids were supported with high posterior 

probability (PP=0.98), but with low bootstrap values by ML and MP analyses (30-40%). 

Sepiadarium kochii formed a clade with Sepia officinalis. The other sepiolids were. 

included in a monophyletic clade. Sepiolids and sepiids were single clade, apart from 

the teuthoid+idiosepiid clade. 

The ML tree for nuclear rRN A data set is shown in Fig. 2b (L=8969 .11). The 

Bayesian analysis (L=8975.97,.500,000 generations, and burnin=1250) showed a 

multifurcating tree, in which relationships among teuthoids, idiosepiids+sepiids, and 

sepiolids were not cleared. Partition homogeneity test for all rRNA data set indicated 

significant heterogeneity among the rRNA genes (P=O.OOl). ML tree with GTR+SS 

model to genes (18S, 28S, 16S, and 12S rRNA) was indicated to the topology with the 

tree by nuclear rRNA genes (Fig. 2a), with a lower score than ML tree (L=9099.03). 

Analysis using the nuclear rRNA data set supported myopsid clade, oegopsid clade and 

teuthoid clade. However, the other clades were supported by high PP, but not by BP. 

Sepiolids formed a monophyly clade in the,ML analysis. 

The nuclear protein gene data set was analyzed using all codon or except the third 
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codon. In this data set the different tree topologies were obtained from the ML and MP 

analyses, using the third codon or not. The ML tree using the first and second codon 

positions of the nuclear protein data set is shown in Fig. 3a (L=2209.27). Partition 

. homogeneity test for the nuclear protein data set show no heterogeneity between the 

first and the second codon positions (P=0.649). The ML tree for nuclear protein data set 

(all codon included) is shown in Fig. 3b (L=5,299.85). The Bayesian tree was analyzed' 

(" with 500,000 generations and burnin=1,250 (L=5,304.29). Partition homogeneity test 
' .. 

for the nuclear protein data set showed significant heterogeneity between Pax-6 and 

Rhodopsin genes (P=0.014). In the ML tree with GTR+SS to genes (Pax-6 and 

Rhodopsin) model showed another topology (L=5,561.25), idiosepiids were positioned 

in the next to outgroup as well as the ML trees analysis using the first and the second 

codon data set. Partition homogeneity test indicated no significant incongruence among 

codon positions (P=0.062). 

Mitochondrial protein gene data set was also analyzed using all codon or the first 

and the second codon. The ML tree of the mitochondrial protein gene data set is shown 

. in- Fig. 4a (L=5756.50). Partition homogeneity test for the mitochondrial protein gene 

data set exhibited no significant heterogeneity between the first and the second codon 

positions (P=O. 71). In this tree 1. paradoxus was included in oegopsids, and oegopsids 

were paraphyletic. Ommastrephes formed a clade with Watasenia scintilluns. The ML 

tree using all codon position of the mitochondrial protein gene data set is shown in Fig. 

4b (L=14709.86). Analyses on the all codon position showed that 0. bartramii form a 

clade with T. pacificus. Jdiosepius was included in oegopsids,. and sepiolids form a 
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clade with myopsids. The Bayesian analysis showed a multifurcating tree (L=14,724.52, 

3,000,000 generations, and burnin=7500). Partition homogeneity test for the 

mitochondrial protein gene data set showed significant incongruence among genes 

(P=0.005). Mitochondrial gene data set with GTR+SS model to genes (COl, Cytb, and 

ND5) recovered the agreement with the topology of mitochondrial data set (first+second 

codon) with differences in the taxonomic groups. In the ML trees with GTR+SS model, 

the oegopsids form a clade, and T. pacificus appeared, followed by 0. bartramii. 

Partition homogeneity test for the mitochondrial protein gene data set didn't show 

significant heterogeneity among codon positions (P=0.41). 

Likelihood ratio test among the topologies 

We compared the log-likelihood of topologies to test a hypothesis that idiosepiids is 

related to sepiolids. The constraint tree making idiosepiids form a clade with 

Sepiadarium conducted using PAUP*. The ML trees of the nuclear rRNA data set, the 

C) nuclear protein data set (first+second codon) and the mitochondrial protein data set 

(first+second codon) were analyzed under this constraint tree. Analyses were performed 

with another constraint in each of the data set; idiosepiids and Sepiadarium, and 

sepiolids form sister clade. The log-likelihood of each ML tree was calculated (Table 5). 

The difference oflog-likelihood was tested by KH and SH tests using PAUP*. The ML 

trees with Idiosepiids+Sepiadarium clade by the three data sets were rejected by SH test 

(P<0.05), although the constraint trees of the nuclear rRNA data set and the 

mitochondrial protein data set were not rejected by KH test. The ML trees with 
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idiosepiid +sepiolids clade by the three data sets were rejected by all tests (P<0.05). 

Phylogeny based on amino acid data 

Aligned sequences of the mitochondrial protein genes were translated into amino 

acids and concatenated. The mitochondrial amino acid data set was analyzed using 

mtREV-fmodel. The ML tree (L=4287.30) was shown in Fig. 5. The analysis using 

JTT-fmodel showed the same topology as the ML tree using mtREV-fmodel. Result of 

the MP analysis showed multifucating tree, suggesting that several relationships among 

sepiolids, Idiosepius+oegopsids, myopsids, and sepiids colud" not be resolved in the MP 

consensus tree. The Bayesian tree analyzed using JTT +I+G model differed from the ML 

tree in the topology (L=5159.73, 2,000,000 generations, and burnin=5,000). Oegopsids 

were basal to the other decapodiformes, and sepiolids formed a clade including 

myopsids, although the PP values were not high at basal nodes (PP<0.6). 

Concatenation of likelihood and topology evaluation 

Concatenated sequences were used for analuzes in Sepiolla ajjinis+Euprymna 

morsei, and two Ommastrephidae, Sthenoteuthis oaulaniensis+Todarodes pacificus. 

Takezaki et al. (2003) reported that interspecific differences were too small to influence 

the relationships among classes, i.e: amphioxus, hagfish, and lamprey lineages. These 

species in the same family can be concatenated and used for analysis among higher 

taxonomic groups. 

Four data sets were analyzed independently and eight tree topologies were obtained 
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(Table 4). We calculated the log-likelihoods along the eight NJ and ML topologies 

using.nucmland protml (I-option, t-option). The log-likelihood values were sum up 

using totalml (Table 6). Analyses of the nuclear protein data set showed this data set 

supported the various tree topologies and differences of the log-likelihoods of each 

topology was not significant. The ML topology of nuclear rRNA dataset (-In 

L=10802.0, see Fig. 6a) was supported with the highest log-likelihood and RELL BP. 

The second highest log-likelihood was achieved by the ML topology ofthe 

mitochondrial protein data set (-lnL=10818.7, Fig. 6b). The log-likelihood difference 

between the first and the second trees was under the standard error (±22.0). The second 

tree was supported by the RELL method with 25% of 10,000 replications. The other 

topologies were irreproducible by the RELL method «0.028). 
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Discussion 

We obtained a single topology from the analyses ofthe nuclear rRNA data set 

despite the models or the programs. Cephalopods contain some different 18S rRNA 

clones in their genomes, thus these sequences are not informative for phylogeny 

(Bonnaud et al., 2002). Analyses ofthe nuclear rRNA data set showed similar results to 

those of the mitochondrial data. This relationship is also supported by the previous 

study on 28S rRNA (Bonnaud et al., 2002). 

The evolutionary model contained base frequencies estimated in the ML and the 

Bayesian analyses, hence incongruence in these frequencies among species may affect 

the analysis. Passamaneck et al. (2004) reported cephalopods have G-rich sequences of 

18S rRNA genes, except Nautilus and Histoteuthis. The base frequency incongruence 

differs among these cephalopods, thus Histoteuthis (oegopsids) excluded from the other 

coleoids. In this analysis we did not [md incongruence in 18S rRNA sequences. The 

number oftaxon sampling also influenced the topology. We found different 

relationships between analysis using fourteen species and eight data sets by the nuclear 

rRNA dataset. The nuclear rRNA sequences of large numbers of taxon samplings and 

appropriate alignment will be required to study the higher relationships in the 

cephalopod phylogeny. 

Our analyses showed an identical topology in the relationship based on analyses of 

the nucleotide sequences and the amino acid sequences of the mitochondrial protein 

data set. Analyses using the nuclear rRNA data set also indicated the identical 
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relationships. The second tree on the total evidence analysis also supported this 

relationship. This relationship was shown in other molecular phylogenetic analyses 

(Bonnaud et al., 19?7; Takumiya et al., 2005). Phylogeny using amino acid sequences 

in mitochondrial genomes was consistent with the previous studies based on the 

rearrangement of mitochondrial genes and amino acid sequences of all mitochondrial 

genes (Yokobori et al., 2004; Akasaki et al., 2006). These analyses suggested that 

sepiid is basal to myopsids and oegopsids when the octopus was selected as an outgroup. 

It is supported by the analyses using the nuclear rRNA, all rRNA, and the mitochondrial 

protein genes data sets. 

Mitochondrial genes are appropriate markers for relationships within the families in 

cephalopods (Anderson, 2000; Lindgren et aI., 2005; Yoshida et al., 2006). Using 

several mitochondrial genes may cause more frequently the large sampling errors in 

analyses among higher taxonomic groups than in the family of cephalopods. Carlini and 

Graves (1999) suggested that the third codon positions were highly variable and 

informative for phylogenetic analyses on recently diverged taxa. In the mitochondrial 

protein data analyses, the phylogeny using the first and the second codon positions 

showed the same topology with analysis using amino acid sequences. The ML searches 

using GTR+SS models showed the same relationships as the analyses using the first and 

the second positions but not all codon positions. This result would suggest the third 

codon positions leaded to noises on the molecular analysis, and removal ofthe third 

codon may improve the resolution of phylogenetic analysis. Analyses using all codon 

positions supported another relationships among higher taxonomic groups. These results 
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suggest that careful study required for analyses using sequences of mitochondrial genes. 

Amino acid sequences of Rhodopsin may not be informative for analyses on the 

taxonomic groups due to an adaptation to environment. 

In our analysis the relationships among oegopsids or among myopsids were 

supported with high statistical values. Some relationships among higher taxonomic 

groups were supported with high PP, although the bootstrap values were relatively low. 

Erixon et al. (2003) performed a simulation analysis, suggested that the Bayesian 

posterior probability (PP) values make erroneous conclusions more frequently than 

nonparametric bootstrapping. The relationships supported only with high PP may not be 

necessarily reliable. The total evidence analysis provided the two similar trees in 

topology. Trees among the higher taxonomic groups of cephalopods exhibited deep 

branches (Strugnell et at., 2006), so it is required for more information and analyses. 

This analysis did not show the close relationship between idiosepiids and sepiolids. 

The likelihood-based tests rejected the close relationships. Therefore, Idiosepius is not 

.included in sepiolid as Bonnaud et at. (2005) studied. Steenstrup (1881) represented 

close relationship between Idiosepius and Sepiadarium based on the common feature, 

regression of gladius and medilateral rounded fins. Fioroni (1981) reported that the 

medilateral rounded fins were an apomorphy of the Sepiolidae and Ididsepius. Although, 

Berthold and Hamburg (1987) reported the rounded fins were also occurred in 

Sepiadarium and Loliginidae (Piclifordiateuthis). Piclifordiateuthis squids posses 

sepiolid-like fins, 'well-developed gladius, left functional oviduct, and hectocotylized 
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left ventral arm (Voss, 1953). They were characteristic of Loliginidae (myopsids), so 

the rounded fins were not apomorphy. Jdiosepius had fully developed gladius (Boletzky, 

1995; Hylleberg and Nateewathana, 1991a, b), but sepiolids indicate regression or lack 

of the gladius. This suggested that Jdiosepius was not derived from sepiolids (Boletzky, 

1995). Lack of cornea is an apomorphy of oegopsids, and presence of cornea suggests. 

idiosepiids are not related to oegopsids. In our analysis idiosepiids were deposited 

C~~) within oegopsids or between oegopsids and myopsids. Jdiosepius has no apomorphy in 

myopsid squids, such as bilobed digestive gland (Bonnaud et at., 2005). Idiosepiid is 

possibly derived from myopsid-like ancestor. The first tree of the total evidence analysis 

suggested the most basal position of idiosepiids among decapodiformes. This position 

was supported the previous study using three nuclear protein genes (Strugnell et aI., 

2006). Anyway, the basal position of Jdiosepius among teuthoids was suggested. To 

study the development and morphology of Jdiosepius will give insight into the teuthoid 

evolution. Their fully described developmental stages (Yamamoto, 1988) and utility of 

C: eggs also make them suitable material for cephalopod developmental studies 

(Yamamoto et at., 2003). 

Also standing on the molecular phylogeny, we can conclude the exceptional 

position of sepiolids within decapodiformes, as Fioroni (1881) suggested by the 

morphological aspects. Our phylogeny showed sepiolids (containing Sepiadariidae) are 

basal to teuthoids with sepiids. Monophyly of sepiolids was not supported in any trees. 

The first total evidence tree didn't show monophyly between Sepiolidae and 

Sepiadarium. However the second tree and amino acid analysis supported monophyly 
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of sepiolids. The relationship between sepiolids and sepiids was not supported with high 

statistical values. Clarke (1988) proposed separation of sepiolids from the Sepioidea 

(sepiids) based on some common features in sepiids and sepiolids, such as fins, 

secondary eyelids, lateral funnel adductors and ventral septa, which may adapt for the 

benthic life. Jdiosepius also has the ventral septum (Steenstrup, 1881) due to the bottom 

life. Thus it is not informative for their phylogenetic analyses. The change of life history 

(-\ (benthic or pelagic) and lack of fossil records caused confusion in phylogenetic 
'--- -

relationships among cephalopods. 
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Figure legend 

Fig. 1 Phylogenetic relationships among .decapodiformes according to various authers. a, 

According to Fioroni (1981); b, According to Bertheld and Engeser(1987); c, 

According to Clarke (1988); d, According to the molecular phylogeny using COIn 

genes (Bonnaud et a!., 1997); e, According to (Takumiya et al., 2005); f, According 

to (Strugnell et al., 2005). AA, amino acid sequences; I, idiosepiids; M, myopsids; 

NS, nucleotide sequecnces; 0, oegopsids; Sd, sepiadariids; Se, sepiids; So, 

Sepiolids. 

Fig. 2 Phylogenetic trees derived from the analyses ofrRNA genes. a, Maximum 

likelihood tree derived from the analysis of nuclear rRNAs (18S+28S) data set. The 

parameters in the model were defined as: rate matrix, R(a) [A-C] = 3.5860, R(b) 

[A-G] = 6.0172, R(c) [A-T] = 2.7949, R(d) [C-G] = 1.2249, R(e).[C-T] = 9.2851, 

R(f) [G-T] = 1.0000, gamma distribution shape parameter (Gammashape)=0.8638, 

and proportion of invariable sites (Pinvar)=0.4598. b, Maximum likelihood tree 

derived from the analysis of all rRNAs (18S+28S+16S+12S) data set. Best-fit 

model for all rRNA (18S+28S+16S+12S rRNA) data set under AIC framework was 

estimated for GTR+I+G model: Rmat=(0.4476, 4.1526,3.3908,0.2876,3.3515), 

Gammashape=0.8062, Pinvar=0:6058. Numbers at node indicate the support values: 

bootstrap values of the maximum likelihood analysislbootstrap values of the 

maximum parsimony analysis/posterior probabilities of the Bayesian analysis. 

Bootstrap values were estimated with 1,000 replications. Support values under 50% 

or 0.50 are not shown. Bars represent number of substitution per site. Bars in right 
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colun:m indicate their taxonomic grouping. 

Fig. 3 Phylogenetic trees derived from the analyses of nuclear protein genes. a, 

Maximum likelihood tree derived from the analysis of first and second codon 

position of nuclear protein data set (Pax-6+Rhodopsin). The best-fit model for 

nuclear protein data set (frrst+second codon) was defined as SYM+I+G model 

under AlC framework: Rmat=(2.7733, 3.7198, 1.4509, 1.0686,2.0712), 

Garnmashape=0.5374,Pinvar=0.5737. b, Maximum likelihood tree derived from 

the analysis of all codon position of nuclear protein data set (Pax-6+Rhodopsin). 

The best-fit model for the nuclear protein data set (all codon) under AlC framework 

was defined as SYM+I+G model: Rmat=(3.5860, 6.0172, 2.7949, 1.2249,9.2851), 

Gammashape=0.9268, Pinvar=0.4344. Numbers at node indicate the support values: 

bootstrap values of the maximum likelihood analysislbootstrap values of the 

maximum parsimony analysis/posterior probabilities of the Bayesian analysis. 

Bootstrap values were estimated with 1,000 replications. Support values under 50% 

or 0.50 are not shown. Bars represent number of substitution per site. Bars in right 

column indicate their taxonomic grouping. 

Fig. 4 Phylogenetic trees derived from the analyses of mitochondrial protein genes. a, 

Maximum likelihood tree derived from the analysis of the first and second codon 

position of the mitochondrial protein gene data set (COI+Cytb+ND5). Best-fit 

model for mitochondrial protein gene (lst+2nd codon) data set under AlC 

framework was defined as SYM+l+G model: Rmat=(3.5860, 6.0172, 2.7949, 

1.2249, 9.2851), Gammashape=O .9268, Pinvar=O .4344. b, Maximum likelihood tree 
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derived from the analysis of all codon position of mitochondrial protein gene data 

set (COI+Cytb+ND5). The best-fit model for the mitochondrial protein gene (all 

codon) data set under Ale framework was defined as TVM+I+G model: 

Rmat=(0.0965, 16.1831, 1.2986,3.6813,16.1831), Gammshape=0.2346, 

Pinvar=0.2358. Numbers at node indicate the support values: bootstrap values ofthe 

maximum likelihood analysis/bootstrap values of the maximum parsimony 

analysis/posterior probabilities of the Bayesian analysis. Bootstrap values were 

estimated with 1,000 replications. Support values under 50% or 0.50 are notshown. 

Bars represent number of substitution per site. Bars in right column indicate their 

taxonomic grouping. 

Fig. 5 Maximum likelihood tree derived from the analyses of amino acid sequences of 

mitochondrial protein genes (COI+Cytb+ND5). Numbers at node indicate the 

support values: bootstrap values of the maximum likelihood analysis/bootstrap 

values ofthe maximum parsimony analysis/posterior probabilities of the Bayesian 

analysis. Bootstrap values were estimated with 1,000 replications. Support values 

under 50% or 0.50 are not shown. Bars represent number of changes per site. Bars 

in right column indicate their taxonomic grouping. 

Fig. 6 Maximum likelihood trees derived from the restricted taxa. a, Maximum 

likelihood tree derived from the analysis by nucleotide sequences of the nuclear 

rRNA data set. This topology was supported with the highest likelihood 

concatenated. b, Maximum likelihood tree derived from the analysis by amino acid 

sequences of the mitochondrial protein data set. This topology was supported with 
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the second highest likelihood. Numbers on each node indicate RELL bootstrap 

values (10,000 replications). Bars represent nurriber of changes per site. 
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Table 1 List of cephalopods used in this study 

Species Mantle length (cm) Sex Locality Colletion 

date 

Idiosepiids Jdiosepius paradoxus 1 Ushimado, 12.May.03 

Okayama 

Sepiids Sepia esculenta 6.4 male Minabe, Wakayama 30.Jan.02 

Sepia ojjicinalis 25.7 male * 9.Sep.04 

Sepiolids Sepiadarium kochii 2.2 female Tosa, Kochl 10.Mar.03 

Euprymna morsei 4.5 male Izumisano, Osaka 8.Feb.03 

Rossia pacifica 7.1 female Uozu, Toyama 6.Mar.03 

Myopsids Loligo bleekeri 14.5 female Uozu, Toyama 5.Mar.03 

Sepioteuthis lessoniana 17.5 female Minabe, Wakayama 29.Jun.03 

Oegopsids Berryteuthis magister 17 male Irino, Kochi 6~Mar.03 

Ommastrephes bartramii 31 female Irino, Kochi 14.Feb.03 

Todarodes pacificus 20 female Aomori, Aomori 26.Sep.03 

Watasenia scintiluns 4.3 male Uozu, Toyama 5.Mar.03 

*, This specimen was imported from Morroco and collected at a fishery market in Osaka. 



Table 2. Genes analyzed in this study 

Length (bp) Length (AA) 
Base frequencies 

Primers References 
A C G T 

18S1F, TACCTGGTTGATCCTGCCAGTAG 

18S4R, GAATTACCGCGGATGATGG Giribet et al. 1996 

18S3bf, GGGTCCGCCCTATCAACTG Lindgren et al.2004 
18S rRNA 1912 0.21 0.2773 0.3122 0.2005 

18Sbi, GAGTCTCGTTCGTT ATCGGA Whiting et al.1997 

18Sa2.0, ATGGTTGCAAAGCTGAAAC 

18S9R, GATCCTTCCGCAGGTTCACCT AC , 

28Sa, GACCCGTCTTGAAACACGGA 
28SrRNA 227 0.2463 0.2684 0.354 0.1313 Whiting et al. 1997 

28Sb, TCGGAAGGAACCAGCTAC 

Pax-6 273 0.248 0.2569 0.2886 0.2064 Pax-6Fl, AWKGKCAYAGWGTAAATCAGC 

(Ex 3rd codon) 
90 in this study 

182 0.2575 0.2308 0.2967 0.2151 Pax-6Rl, ARGVTACACTTGGTATATTATCC 

Rhodopsin RhodFl, CAWSACCATGDCWATGGTCTCC 
653 0.2416 0.2574 0.224 0.2771 

217 
RhodRIN, ,GGTGCTCCTTGGGGWGGTG 

in this study 
(Ex 3rd codon) RhodF2, TACAAYGTMATYGGDAGACC 

434 0.277 0.205 0.2276 0.2904 
RhodR3, CATCATDGCCATCATYTC 

16Sar, CGCCTGTTTRHCAAAAACAT 
16S rRNA 414 0.3225 0.1121 0.2085 0.3569 Bonnaud et al. 1994 

16Sbr, CCGGTYTGAACTCAGATCA YGT 

12Sd, YAAACYRGGATTAGATACC 
12S rRNA 318 0.333 0.0904 0.1647 0.4118 Bonnaud et al. 1994 

12Se, GAGRGYGACGGGCGRTGTGT 
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() 
"--_/ 

COl 591 0.2742 0.2016 0.1705 0.3537 HC01490, GGTCAACTCATAAAGATATTGG 
196 Folmer et al. 1994 

(Ex 3rd codon) 394 0.2091 0.231 0.2214 0.3385 LC02198, TAAACTTCAGGGTGACCAAAACA 

Cytb 975 0.2436 0.1109 0.1898 0.4556 CytbFl, GTTCATTRCGWAAAAVWCATCCTG 

(Ex 3rd codon) 
324 in this study 

650 0.2243 0.1414 0.2205 0.4138 CytbRl, GGRCTDCYHCCAATYCA WGTT A 

ND5 568 0.2744 0.1163 0.172 0.4373 ND5Fl, TTRGGDTGRGA YGGDTT AGG 

(Ex 3rd codon) 
189 in this study 

378 0.2503 0.1539 0.1882 0.4076 ND5Rl, SWRTGRTAATATTWCCHCCACA 

85 



Table 3. The numbers of sequences in the aligned data 

sets 

Data sets Total numbers of Numbers of constant Variable Parsimony informative 

characters characters characters characters 

Nuclear rRNA 2,117 1,764 375 214 

. All rRNA 2,871 2,309 569 370 

Nuclaer protein (all codons) 925 560 365 258 

1 st+ 2nd codon 616 487 129 70 

. Mitochondrial protein (all 2,134 1,128 1,006 732 

codons) 

1 st+ 2nd codon 1,422 1,065 357 209 
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Table 4 The sister taxon of idiosepiids by the analyses in each data set 

ML MP Bayes 

nuclear RNA teuthoids teuthoids teuthoids 

all rRNA teuthoids teuthoids sepiids 

the other the other 
nuclear protein (1 +2 codon) 

decapodidormes decapodidormes 

the other 
nuclear protein (all 'codon) myopsids+sepiids 

decapodidormes 
myopsids+sepiids 

mitochondrial protein (1 +2) oegopsids oegopsids 

( 
,- mitochondrial protein (all 
, codon) oegopsids oegopsids multifurcating 



Table 5 Comparisons of log-likelihood with constraint trees and likelihood ratio tests 

using PAUP* 

18S+28S 

-In L Aln P..,value P-value 

L KH SH 

No constraint <5554.70> 

((Lpar,Lpyg,S.koc )) 5572.35 17.65 0.06 0.034* 

(((Lpar,Lpyg;S.koc),H.haw,S.leu,S.aff)) 5576.15 21.45 0.017* 0.013* 

I Pax+Rhod (1st+2nd codon) 

-In L Aln KH SH 

L 

No constraint <2200.60> 

((Lpar,Lnot,S.koc )) 2222.17 21.58 0.016* 0.011 * 

(( (1. par ,Lnot, S.koc ),R. pac,E.mor)) 2228.56 27.97 0.008** 0.004** 

I COI+Cytb+ND5 (lst+2nd codon) 

-In L Aln KH SH 

L 

No constraint <5756.50> 

((Lpara,S.koch)) 5785.24 28.74 0.052 0.024* 

" 
(((Lpara,S.koch),R.pacifica,E.morsei)) 5787.61 31.11 0.043* 0.021 * 

( 

\ 
The log-likelihoods, In L, of the ML trees are given in angle brackets and the differences, '--' 

Aln L, of the constraint trees from that of the ML tree are shown. The constraint trees were 

analyzed under constraints making Idiosepius form a clade with Sepiadarium, or with 

sepiolids. The likelihood differences evaluated by KH test and SH test using P AUP*. The 

P-values are listed and the values under 0.05 are shown with astalisk (*>0.05, **>0.01). 
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Table 6 Comparisons oflog-likelihood of tree topologies 

18S+28S Pax+RhodA COI+Cytb+ND5A Total 

-~ln RELL -~ln BP -~ln BP -~lnL±SE BP 

L±SE BP L±SE L±SE 

COI+Cytb+ND5A NJ 16.2±16.0 0.0164 27.3±15.2 0.0035 10.5±10.0 0.1171 27.5±24.3 0.0276 

COI+Cytb+ND5A ML 16.1±16.0 0.1287 27.0±15.0 0.0018 <4287.3> 0.7573 16.7±22.0 0.258 

Pax+RhodA NJ 18.9±12.1 0.0317 1.2±7.2 0.3344 57.8±23.4 0 51.3±27.4 0.0035 

Pax+RhodA ML 18.9±12.1 0.0048 <1757.0> 0.3267 53.1±24.6 0.0009 45.5±27.4 0.0145 

18S+28S NJ 5.0±4.8 0.1215 7.1±13.6 0.0972 34.3±19.6 0.0044 19.9±24.4 0.0142 

18S+28S ML <4731.1> 0.692 3.9±12.4 0.2362 22.6±20.1 0.1067 <10802.0> 0.6821 

16S+12S NJ 42.7±19.9 0.0031 37.1±12.7 0 60.8±28.6 0.0096 114.1±37.1 0 

16S+12S ML 44.7±19.2 0.0018 45.1±16.9 0.0002 58.0±26.9 0.004 121.3±37.2 0.0001 

The log-likelihood, In L, ofML trees are given in angle brackets, and the differences, ~ln L, of alternative trees 

from that ofML trees are shown with their SEs (following ±). The log-likelihood, In L, ofML trees are given 

in angle brackets, and the differences, DIn L, of alternative trees from that of ML trees are shown with their 

SEs (following ±). RELL Bootstrap values (BP) are estimated by Resumpling of the Estimated 

Log-Likelihood Bootstrap values (BP) are estimated by the RELL method (Kishino et at., 1990) using 

molphy 2.3b3. 
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Chapter 3 

Structure and expression of vascular endothelial growth factor receptor of the 

cephalopod, Jdiosepius paradox us 
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Abstract 

The cephalopod molluscs have a closed blood-vascular system. Their vascular wall 

is quite different from th.e other molluscs in the presence of endothelial cells and is 

rather similar to the vertebrate vascular wall. However, the cephalopod circulatory 

system appears'to derive from an open blood-vascular system of their ancestor. 

Vascular endothelial growth factors (VEGFs) are the major inducers of vascular 

development and regulato.r of permeability of blood vessels in vertebrates. Their effects 

are mediated by tyrosine kinase receptors of the VEGF receptor (VEGFR) family. We 

cloned a VEGFR-like tyrosine kinase receptor from the pygmy-squid Jdiosepius 

paradoxus, using a RACE method. Vertebrate VEGFRs have seven immunoglobulin 

(Ig) domains in the extracellular region and a split-type tyrosine kinase domain in the 

intracellular region. The protein blast suggests the intracellular tyrosine kinase domain 

of the Jdiosepius VEGFR has a homology to Branchiostoma VEGFR (E=le-62) and 

Gallus VEGFR3IFLT4 (E=5e-59). Phylogenetic analyses using amino acid sequence of 

l) the kinase region showed sister relationships between the Jdiosepius and Drosophila 

VEGFR genes, but in Jdiosepius six Ig domains existed in their extracellular region. 

The VEGFR gene was expressed in lateral regions of the vena cava in Jdiosepius 

embryos. Subsequently, VEGFR was expressed in retina and peripheral blood. vessels in 

the arms and brain. This suggests that vertebrates and cephalopods share similar 

developmental pattern of vascular systems. The VEGF pathway might be involved in 

the secondary innovation of a closed circulatory system lined with endothelium. 
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Introduction 

Extant cephalopods (nautiluses, octopuses, squids, and cuttlefishes) exhibit 

numerous morphological peculiarities among molluscs, not only in their nervous system, 

but also their closed circulatory system. The presence of highly derived circulatory 

system is essential to maintain organs with high metabolic rate, such as a brain and 

muscles. Their peculiarities appear to derive from a molluscan ancestor, which had the 

simple nervous system and the open vascular system. Because of the large differences 

between the cephalopod and the other molluscs, comparative studies in their 

development could contribute to understand the molluscan evolution and how the 

complex body plan as in the cephalopods was formed. 

Vascular systems of invertebrates are different from those of vertebrates in the 

absence of a true endothelium, an adluminal continuous layer of epithelial cells 

interconnected by special junctional complexes. Large vessels of invertebrates are 

constituted of spaces located between the basement membranes of endodermal and 

coelomic epithelia, or between two coelomic epithelia. Cells adhered to the luminal 

surface of these basement membranes are occasionally present and, in some cases, 

abundant (reviewed in Casley-Smith 1980; Ruppert and Carle 1983). However, single 

vessels in the cephalopod are built in a vertebrate fashion, with an endothelial lining on 

the luminal side of a basal lamina (Budelmann et al. 1997). The basal lamina was 

surrounded by pericytes, which contain smooth muscle fibers. In the large aorta the 

muscle fiber cells are arranged in 5 to 7 layers of circular and longitudinal smooth 

muscle. The wall of blood vessels in the cephalopods is quite similar to the vertebrates, 
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but have no typical cellular junction among the endothelial cells. The peculiar blood 

vessels in the cephalopod are in all probably secondarily developed as in holothuroid 

among echinoderms and in vertebrates among chordates (Ruppert and Carle 1983). The 

occurrence of endothelia is assumed to be correlated functionally with blood vascular 

systems acting at high mechanical pressures as are described both for cephalopod and 

vertebrate systems (Wells 1978; Prosser 1973). 

Vascular endothelial growth factors (VEGFs) are the major inducers of vascular 

development and regulator of permeability of blood vessels in vertebrates (Carmeliet et I 

aI., 1996; Ferrara et aI., 1996; Ferrara and Davis-Smyth, 1997). The VEGF is related to 

a platelet derived growth factor (PDGF) family, which has important functions during 

development of the kidney, lung, blood vessels, and central nervous system (Heldin and 

Westermark, 1999). The effects ofVEGF are mediated by tyrosine kinase receptors of 

the VEGF receptor (VEGFR) family (Neufeld etaI., 1999). The VEGFRs are located on 

endothelial cells differentiating from mesodermal precursors in the vertebrate. In the 

embryo of Drosophila, an invertebrate organism without endothelial cells or blood 

vessels, a single VEGFR gene (Pvr) is expressed in developing and matured hemocytes 

(Cho et aI., 2002; Heino et aI., 2001). The three ligands, Pvf1-3, are expressed 

ubiquitously in a whole embryo and are concerned simultaneously with the blood cell 

development (Cho et aI., 2002). The Pvf pathway also mediates border cell guidance 

during oogenesis (Ducheck et aI., 2001). VEGFR-like tyrosine kinase is also known in a 

cnidarian, Podocoryne carnea (Seipel et aI., 2004). The VEGFR-like receptor and the 

ligand are expressed in their gastrovascular system. Thus, the VEGF signalling pathway 
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probably has originated in the common ancestor ofthe Cnidaria and Bilateria. Recent 

studies have revealed that the VEGF signaling pathways are also present in various 

metazoan animals such as annelids, ascidians, and echinoderms (Duloquin et aI., 2007; 

Eguileor et aI. 2001; Gasparini et aI., 2007). Tettamanti et al. (2003) reported that the 

botrytis tissue of the leech, Hirudo medicinalis, is responsible to human VEGF protein 

and then reorganize itself in hollow channels lined by endothelial-like cells in order to 

lJ allow defensive hemocytes to reach the place of an eventual infection. Thus, VEGF 

signaling might playa role in epithelial-mesenchymal transition and become involved in 

inducing endothelium-like tissue in some metazoan lineages (Mufioz-Chapuli et al. 

2005). 

In the present study, a VEGFR-like tyrosine kinase rec~ptor was.cloned from a 

pygmy-squid, Jdiosepius paradoxus Ortmann, 1888. The receptor of vascular 

endothelial growth factor was shown to be expressed in developing blood vessels of 

Jdiosepius embryos. 

Materials and Methods 

0.-
Animals 

Adult individuals of Jdiosepius paradoxus were collected in Zostrea beds around the 

Ushimado Marine Laboratory, Okayama University. The squids were kept in a compact 

fish tank according to Yamamoto (1988). Spawned eggs were transferred to a petri dish 

and kept at 18°C. Embryonic stages were determined by using the normal table (see 

Yamamoto, 1988). A chorion was removed with forceps from embryos from Stage-22 
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to Stage-27. Prior to stage-21 the chorion was softened and removed according to 

Yamamoto et al. (2003), because the embryo has a narrow perivitelline space. The 

embryo of Stage-27 and the subsequent stages were anesthetized in seawater containing 

1 % ethanol and they were fixed overnight at 4°C in the phosphate buffered saline (PBS) 

containing 4% paraformaldehyde and 0.1 % Tween 20. Embryos for in situ hybridization 

were progressively dehydrated with gradual series of methanol/PBS+ 1 % Tween20 

C) (2SI7S, SO/SO, 7S/2S, 100/0). The dehydrated embryos were stored at -20°C until further 

use. 

Molecular cloning of cDNAs 

A short fragment with homology to the class V receptor tyrosine kinase domains 

was isolated from Jdiosepius cDNA using nested degenerate PCR. Primers for the 

degenerate PCR were designed according to Seipel et al. (2004): VEGFR-FI 

(S' -vgigayytigcngcnmgiaa-3 '), VEGFR-FII (S' -aarathksigayttyggnytigc-3 '), VEGFR-RI 

I " "---j (S'-ccanariaviayiccrtangacca-3'). A IISbp fragment was used to design homologous 

primers for S' and 3' RACE. 

S'- and 3'-regions ofthe VEGFR was obtained using a BD SMART RACE cDNA 

amplification kit (Clontech). Ready-to-use first strand cDNA was synthesized by a 

manufacture protocol. The cDNA was synthesized from total RNA extracted from a 

number of hatchling specimens of I paradoxus using an RNeasy mini RNA extraction 

kit (QIAGEN). The primers used to amplify the VEGFR cDNA extremities were 

VEGFR-GSPI (S'-cgcttttcgttgtgtagattctgtgtg-3') and VEGFR-GSP2 
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(5' -ctgttacaagtctgcggaatatcat-3 '). 

The product of the 5'-RACE reaction was approximately 4kbp and gel-purified 

using a Freeze extraction column (BIO-RAD Laboratories) and was cloned into a vector 

using a TOPO cloning kit (Invitrogen). The 1,294bp product of the 3'-RACE reaction 

was also purified using Freeze extraction column and cloned into a plasmid using a 

pGEM T-vector system (Promega). Plasmid DNA from transformant colonies was 

purified with a GenElute™ Plasmid Miniprep kit (Sigma-Aldrich). Both strands of the 

plasmid DNA were fully sequenced downstream of an insert site by the dideoxy 

chain-termination method using Applied Biosystems BigDye® Terminators v. 3.1 

(Sanger et at., 1997). Primers for the determination of the plasmids were as follows; 

M13 Forward primer (5'-gtaaaacgacggccagt-3'), 5'-VEGFR SeqPr1 

(5' -caatgcacagtgactgatcc-3'), 5' -VEGFR SeqPr2 (5' -tccattgtgtcgacaaagtt-3'), 

5'-VEGFR SeqPr3 (5'-tgctgtacatcttgcagaaa-3'), 5'-VEGFR SeqPr4 

(5' -ccggctattgaacttccaac-3'), 5' -VEGFR SeqPr5 (5' -ttgtaacgtgacatgcaacc-3'), 

5'-VEGFR SeqPr6 (5'-ggggacttatcgttgtcttg-3'), 5'-VEGFR SeqPr7 

(caaagcagggagagagcgag), M13 Reverse primer (5'-caggaaacagctatgac-3'), 3'-VEGFR 

SeqPrl (5' -atctccaggaatacatgaac-3 '), 3' -VEGFR SeqPr2 (5' -cagaatcctgagtcatgtaa-3' , 

3'-VEGFR SeqPr3 (5'-ggacaaaatacccttaggaa-3'), and 3'-VEGFR SeqPr4 

(5' .,.tgtcactgtcctcttgatgg-3 '). 

Another short fragment was isolated using nested degenerate PCR with the primers 

VEGFR-FI, VEGFR-FII, and VEGFR-Rl. The fragment showed a homology to FGFR 
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and was used to design homologous primers for RACE. The primers used to amplify the 

FGFR cDNA extremities were FGFR-GSPI (5'-cacatcacttttagttgttgtatattttt-3') and 

FGFR-GSP2 (5'-atattgattactataagaagacaacag-3'). The product of the 5' and 3'-RACE 

reactions were gel-purified using Freeze extraction columns and was cloned into vectors 

using pGEM T-vector. Both strands of the plasmid DNA were fully sequenced using 

following primers; 5'-FGFR SeqPr 1 (actgaccgtttcagtcatgg), 5' -FGFR SeqPr2 

(taacattttcacaccacgg), 5'-FGFR SeqPr3 (aatcaggagagccatttgttc), and 5'-FGFR SeqPr4 

(ggtapaacatcttttatggtt) . 

To obtain a homolog of Stem Cell Leukemia (SCL)/Tal-l gene, a short fragment 

with the homology to a basic helix loop helix domain was isolated from Jdiosepius 

cDNA using nested degenerate PCR. Primers for the degenerate PCR were SCL-Fl 

(acnaaywsnmgtgarmgttgg), SCL-Rl (yttyttrtcnggiggrtg), and SCL-R3 (tttswnryhyttrtc). 

The primers used to amplify the SCL cDNA extremities were as follows: SCL-GSPI 

(ttggtacctaaccgcctcaattccgc), SCL-GSP2 (ggcgtcagcaaaacgtgaacggggc). The product of 

the 5' and 3'-RACE reactions were gel-purified using Freeze extraction columns and 

cloned into vectors using pGEM T":vector. Both strands ofthe plasmid DNA were fully 

sequenced. 

A short fragment with the homology to cytoplasmic Actin gene was isolated from 

Jdiosepius cDNA using nested degenerate PCR. Primers for the degenerate PCR were 

Actin.; FIll (5' -ytigayttygarcargaratg -3') and Actin-RII (5' -mgigtdatytcyttytgcat-3'). A 
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255bp fragment showed a homology to molluscan Actin II and was used to design 

. homologous primers for RACE; Actin II-GSPI (5'-ttccattccaaggaaagagggttgga-3') and 

Actin II-GSP2 (5'-ctgccgcttcttcaagctctttgga-3'). The 917bp product of the 5'-RACE and 

759bp product ofthe 3'-RACE reactions were gel-purified using Freeze extraction 

columns and was cloned into vectors using pGEM T-vector. Both strands of the plasmid 

DNA were fully sequenced. '. 

MQlecular cloning from database 

VEGF-like growth factor was obtained from the database using tblastn web-search. 

When Drosophila Pvf gene was used as a query, DB912248 was obtained from the 

tblastn search. The'DB912248 gene transcript is similar to the AGAP009549-PA of 

Anopheles gambiae (E=6e-lO) and Pvf3, CG34378-PD of Drosophila melanogaster 

(E=4e-06). The primers used to amplify the VEGF cDNA extremities were 

VEGF-GSPI (atacctccgtcggctcttgctgaaa) and VEGF-GSP2 

i 

~.J ( caggatgcaagaaagaatgcccaagtc). 

Ets-like transcriptional factor was obtained from the database using tblastn . 

web-search. When Drosophila Ets-l gene was used as a query, DB913089 was obtained 

from the tblastn search. The DB913089 gene transcript is similar to the v-ets 

erythroblastosis virus E26 oncogene (blastx, E=8e-67). The EST deposit was used to 

design homologous primers for RACE. The primers used to amplify the Ets-l cDNA . 

extremities were Etsl-GSPI (ttggatagatgtttccgttcggcg) and Etsl-GSP2 

(aagttgtatcacctgggagggccg) . 
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Phylogenetic analysis 

Multiple sequence alignments and phylogenetic analyses based on the 

neighbor-joining (NJ) method were performed using Clustal X (Thompson et aI., 1997). 

Sequences were aligned with d~fault parameters. Positions with gaps were excluded 

from the phylogenetic analyses. Accession numbers for protein sequences used in the 

analyses are as follows: FGFR1-Hs, Pl1362; FGFR2-Hs, P21802; FGFR3-Hs, P22607; 

FGFR4-Hs, P22455; FGFRL-Hv, AY193769; Flt3-Hs, P36888; Fms-Hs, P07333; 

Kit-Hs, P10721; PDGFR -Hs, P16234; PDGFR -Hs, P09619; PTK7-Hs, Q13308; 

Pvr-Dm, AY079187; U24116-Hv, U24116; VEGFR1- Hs, P17948; VEGFR2- Hs, 

P35968; VEGFR3-Hs, and P35916. 

In situ hybridization 

A 677bp fragment at 3' end of VEGFR was amplified with primers VEGFR-GSP2 

and 3'-VEGFR SeqPr4. A 534bp fragment of 5' fragment ofVEGFR was also 

amplified with primers 5' -VEGFR SeqPr5 and SeqPr7. The PCR products were 

sub cloned into the pGEM T-vector and used as a template to generate digoxigenin 

(DIG)-labeled antisense probe by in vitro transcription with a DIG-RNA labeling kit 

(Roche) using SP6 RNA polymerase (Roche). The sense control probe was reversely 

transcribed using T7 RNA polymerase (Roche). 

The 5' fragment of Actin II waS used to amplify RNA probe. A fragment at 3' end 

of 412bp was amplified with primers FGFR-GSP2 and 3-FGFR-IntPr 
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(ctttgagacatggaggaatactggc). A 51 Obp fragment at 5' end of the FGFR gene was 

amplified with primers FGFR-GSPI and 5-FGFR-IntPr (ctgtgaaaatgttaaaagaggatgc). 

For probe syntheses a 401bp fragment at 3' end ofSCL was amplified with primers 

SCL-GSP2 and 3-SCL-IntPr (tatgcctgggttaaccggc). A fragment at 5' end of the VEGF 

gene was amplified with primers VEGF-GSPI and VEGF 5-VEGF-IntPr 

(cccatcatgcaccgtgttac). A fragment of the Ets gene was amplified with primers with 

(;i Ets-GSPI and GSP2. 

In situ hybridization was carried out using following procedures. Embryos were 

progressively rehydrated in methanol/PBS+ 1 % Tween20. Then they were incubated in 

PBS containing 6% hydrogen peroxide and 1 % Tween20 for Ihr at room temperature 

(RT). After two washes for 5min in PBST, they were incubated in a detergent mix 

solution (1 % NP-40, 1% SDS, 0.05g/ml deoxycholate, ImM EDTA, and 0.15M NaCI in 

50mM Tris, pHS.O). This step was skipped in the stage-27 and the subsequent stage 

embryos. The embryos were treated with 10/-tg/ml proteinase K in PBST, post-fixed at 

RT for 20 min in PBST containing 4 % paraformaldehyde, and transferred into a 

hybridization buffer (50 % formamide, 5 x SSC, 1 % SDS, 50 /-tg/ml yeast tRNA and 50 

/-tg/ml Heparin), followed by two washes in PBST. The embryos in the hybridization 

buffer were stored at -20 cC. 

Embryos were pre-heated at 70-72 cC. After a total of 1 /-tg RNA probe was added, 

hybridizations were performed overnight at 70-72 cC. The probes were washed out 

twice at 70-72 cc in SolutionX (50 % formamide, 2 x SSC and 1 % SDS) for 30min. A 
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half volume of the SolutionX was removed and replaced to TBST (137 mM NaCl, 50 

mM TrisHCI, pH 7.4, and 1 % Tween20). Embryos were blocked in TBST containing 

10% lamb serum for 2hr at RT. Antibody incubation was performed overnight at 4 °C in 

TBST containing 1 % lamb serum and 1 :5000 dilution of anti-digoxigenin antibody. 

Detection was performed by immunochemical staining with anti-DIG Fab-AP (Roche) 

using nitroblue tetrazoliuml5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP, Roche) 

(~' as a substrate. Before the color detection, embryos were washed three times in TBST 

containing 2mM levamisol for 10 min, five times in TBST for Ihr and let stand 

overnight at RT in TBS T. Then the embryos were washed three times with freshly 

prepared NTMT buffer (100 mM NaCI, 100 mM Tris, pH 9.5; 50 mM MgCI2, and 

0.1 % Tween20). The color reaction was performed in NTMT containing 20[A-l/ml 

NBT/BCIP solution for 1-2hr. The stained embryos were let stand overnight in TBST to 

clear. 

For photography, embryos were progressively dehydrated in glycerol/TBST series 

(30/70,50/50, 70/30). Specimens were obserbed with an Olympus BX61 microscope. 

Micro injection 

To visualize vasculatures of embryos, rhodamine-conjugated Retrobeads 

(Lumafluor) was diluted half with PBS and injected into their optic sinus. The injected 

embryos were let stand for Ihr and then were fixed in 4% paraformaldehyde in PBS. 

After progressive dehydration in glycerol/TBST series, the embryos were observed with 

an Olympus BX61 microscope. 
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Results 

Identification ofldiosepius VEGFR gene 

The VEGFR cDNA is 5,093 bp with a start codon at position 660 followed by an 

open reading frame of3,892 bp, ending at position 4,552. The gene product has 1,299 

amino acids (Fig. la). The signal sequence is followed by six immunoglobulin (Ig)-like 

domains, a transmembrane region, and a split type tyrosine kinase domain. The catalytic 

domain contains tyrosine protein kinase specific active-site and ATP-binding signatures 

with aspartic and lysine residues that are important for the catalytic activity and ATP 

binding. The signature sequence GxHxivNLLGACT, typical for split-type kinase 

domain of receptor tyrosine kinase classes III to V (Grassot et aI., 2003), was slightly 

modified to GqHlnivNLLGAVT in the Idiosepius VEGFR, as well as in the Drosophila 

Pvr gene. The protein blast suggests the intracellular tyrosine kinase domain of the 

Idiosepius VEGFR has a homology to Branchiostoma VEGFR (E=le-62) and Gallus 

C) VEGFR3IFLT4 (E=5e-59). 

The Idiosepius VEGFR was most closely related to the Drosophila Pvr (Fig. 1 b), 

however, the extra-cellular region of the Idiosepius VEGFR contains only six 

Ig-domains. The class V recept?rs of tyrosine kinase, such as the vertebrate VEGFR and 

Drosophila Pvr genes, are characterized by seven immunoglobulin (Ig)-like domains. 

Class IV receptors, such as the vertebrate PDGFR, includes five Ig domains. FGFRs are 

class III receptors characterized by three Ig domains. Drosophila has no class IV 

receptor, so that the Pvr gene is regarded as a homolog of both VEGFR and PDGFR 
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genes. The phylogenetic tree suggests the Idiosepius VEGFR is also a homolog of the 

VEGFRlPDGFR of vertebrates. 

Expression o/the VEGFR gene and vascular formation in Idiosepius embryo 

In situ hybridizations were performed with the VEGFR cDNA (antisense) probe, 

ActinII probe (cytoplasmic Actin, for positive controls), and VEGFR sense probe (for 

negative controls). Transcripts of ActinII were detected in a whole embryo. 

Non-specific signals were often seen in a shell sac using a VEGFR sense probe. 

The embryonic development ofthe cephalopods is quit different from the other 

molluscs and characterized by a large amount of yolk, meroblastic blastoderm, possible 

epibolic gastrulation, and direct development without typical molluscan larval stages. 

At the beginning of the embryonic develop~ent, a blastodisc is formed on animal pole 

of an ellipsoidal egg (Fig. 2a, b). The blastodisc expands over the surface of yolks (Fig. 

2c). When the 2/3 of the egg surface is cellulated, various organ ptimordials, such as the 

eyes, statocysts, shell gland, and mouth, appear in the form of ectodermal placode (Fig. 

2c). No transcript of the Idiosepius VEGFR was detected at the epibolic stages (data not 

shown). Embryonic body begins to stand up from the egg surface at stage 21. Most 

stage-21 embryos start to rotate clock-wise in the chorion. The transcripts first appeared 

at stage-21 embryos (Fig. 3a). In this stage embryo, primary vena cava was observed in 

the visceral mass using fluorescent beads. The vena cava located in the ventral midline 

branches into future branchial hearts at the both sides (Fig. 4a). Before systemic and 

branchial hearts begin to beat, embryonic circulation is driven by peristaltic pulsation of 
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the outer yolk sac envelope. The VEGFR transcripts appeared in two spots beside the 

vena cava (Fig. 4a'). 

By the late organogenesis stage (from stage-24 to -25), a mantle completely covers 

the gill (Fig. 1 e). The rotational movement gradually stops but the yolk sac pulsation 

becomes stronger. Significant VEGFR-specific signal was observed in developing 

\ . 

structures in the arms and the brain in the embryos at stage-25 (Fig. 3b). The 

expressions were also found in retinas of the embryos. Microangiography showed vena 

cava, brachial sinus, ophthalmic sinus, and a pair of branchial hearts at the stage-25 

embryos. However, no blood vessel was observed in their brain and the arms (Fig. 4b). 

At stage-27 embryos, blood vessel network appears to surround the arm and flow into 

the branchial sinus (Fig. 4c). An arm vein is located aboral to arm artery. The VEGFR 

was still expressed throughout the retina at the stage-27 embryos. However, no 

transcript was detected in the other organs (Fig. 3c). 

. Ets-l transcript was detected in a part of anterior sub-esophageal mass (ASM) of the 

brain (Fig. 5a). The region probably corresponds in position to an inferior buccal lobe 

(ibL). The ibL appears as a pair of small masses on the ventro-Iateral surface of the 

buccal mass at stage 22. The Ets-l transcripts were seen in a surface of optic lobe and a 

funnel organ, and also observed continuously in the ibL at the later stages (data not 

shown). FOFR transcript was detected in the arm base regions between arm I and arm II, 

the buccal mass, and the suckers. (Fig. 5b). No SCL specific signal was detected in the 

embryos (Fig. 5c). 
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Discussions 

The Jdiosepius VEGFR contains overall characteristics of the class V receptor 

tyrosine kinase. The class V receptors were characterized by the presence of seven 

Ig-domains in the extracellular region; however, the Jdiosepius VEGFR transcripts have 

only six Ig-domains. Vertebrate VEGFs are closely related to PDGFs and compose a 

PDGFNEGF family (Franchini et aI., 2006). Invertebrate VEGF genes are also related 

(--'\ to the PDGFNEGF protein family (Tarsitano et ai. 2006; Duloquin et al. 2007; Harris 
...... _____ J 

et ai. 2007). The Drosophila Pvr gene, a homolog of the VEGFRlPDGFR gene, 

contains seven Ig-like domains (Cho et aI., 2002). The amino acid numbers of the . 

Jdiosepius VEGFR (l,299aa) is similar to that of the human KDRNEGFR-2 (l,356aa). 

Compared to the human VEGFR gene, the Jdiosepius VEGFR lacks the 4th Ig-domain. 

The 2nd and 3rd Ig-domains of the human VEGFRs act as a binding domain to the 

ligand (Yamazaki and Morita, 2006). The lack of 4th Ig-domain might have no effect on 

ligand recognition. The molluscan or cephalopod linage has possibly lost one of the 

Ci seven Ig domains. 

Function ofVEGF pathway in cephalopod vascular formation 

The VEGF signaling pathways in the vertebrate vascular endothelial cells are know 

to be involved in vasculogenesis and angiogenesis. Angiogenesis is a process of blood 

vessel formation from pre-existing tissues (Risau 1997). Expressions of the Jdiosepius 

VEGFR were observed apparently in the blood vessels of the brain and the arms in the 

stage-25 embryos. This result suggests the VEGFR was associated with the angiogenic 
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processes of the peripheral blood vessels, such as the arm vessels and the brain arteries. 

However, the micro angiography showed no signal in the corresponding regions in the 

stage-25 embryos. Subsequently, blood vessel network was observed around their arms 

ofstage-27 embryos. Microangiography probably labeled only the lumens of fully 

formed and functional vessels, so that this method may not be useful for visualizing 

active behaviors of vascular cells or their progenitors, such as sprouting and migration 

of endothelial cells (Cha and Weinstein, 2007). This temporal discrepancy suggests that 

the VEGF signaling is correlated with early tubular formation in the Jdiosepius embryo. 

In vertebrates sprouts possess a tip region where the endothelial cells are organized as a 

compact string without a lumen (Patan, 2000). Subsequently, the sprouts mature into 

new vessels with lumen, and a continuous basement membrane is formed (Davis and 

Senger, 2005). Vascular lumenization of intersegmental arteries in zebrafish is derived 

from intracellular and intercellular fusion of vacuoles within an endothelial cord (Kamei 

et aI., 2006). Nemerteans have a closed endothelium-lined vascular system; their 

presumed vessels are formed from solid cords of mesodermal cells through a process 

identical to the schizocoelic formation of the coelom in protostomes (Turbeville 1991). 

The expression patterns of the VEGFR indicate that the peripheral blood vessels in 

Jdiosepius first appear as an endothelial cord, then penetrate into the tissue, and finally 

lumenize. The cephalopod VEGFR may contribute to their angiogenic processes before 

lumenization. 

In the vertebrates vasculogenesis gives rise to the heart and the primitive single 
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large artery and vein, which are generated by the differentiation from the lateral 

mesoderm (Risau and Flamme, 1995; Patan, 2000). In cephalopods the circulatory 

system appears as a narrow hemal space between the yolk syncytium and the envelope 

(Boletzky, 1975). The embryonic sinuses smoothly shift from narrow spaces to tubules, 

the first of which are the primitive paired venae cavae. Microangiography showed that 

blood flows through the primitive vena cava to a visceral mass in the Jdiosepius embryo. 

The embryonic circulation is driven by the peristaltic pulsation of the outer yolk sac. 

Ultrastructural studies showed that the octopus vascular system appears initially as 

lacunar (schizocoelic) spaces, and subsequently is surrounded by a basal lamina and 

endothelium (Boletzky, 1975; Boletzky, 1987). The Jdiosepius VEGFR was expressed 

in both sides' of the primitive vena cava of stage-21 embryos. Fioroni (1978) reported 

that "coelom-mesoblast complex" is located beside primitive vena cava in Octopus 

embryos. The progenitor of endothelial cells might originate out of ventral side of the 

body and move into the primary tube of the vein. In several invertebrate groups, such as 

annelids, molluscs, echinoderms, and cephalochordates, a type of hemocyte, called as 

amoebocyte, has been shown to adhere to the basement membrane (Fermindez et al. 

1992; Smiley 1994; Ruppert 1997). In cephalopods as well as in holothurians the 

adhered amoebocytes are so abundant that they show the appearance of endothelium 

(Smiley, 1994; Budelmann et aI., 1997). Ruppert and Carle (1983) have claimed that 

these animal groups actually bear an endothelium-lined vascular system. On the other 

hand, Mufioz-Chapuli et al. (2005) assumed that a true endothelium must be 

characterized by the presence of intercellular junctions, and the adherent amoebocytes 
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are free cells that migrate throughout the inner surface of the vessels. The expression of 

the VEGFR in the cephalopod indicates that the cephalopod endothelium is derived 

from a hemocyte progenitor, although the peripheral blood vessels are formed as solid 

cords, and later lumenized in their angiogenic process. 

A pair of branchial heart is a specific organ of cephalopods, it pumps blood into 

(-'I gills (Budelmann et aL, 1997). These organs are developed ontogenetically and 
\,~-. ) 

phylogenetically from veins (Fiedler and Schipp, 1987). In mid-stage (stage XII) of 

Octopus embryonic development, branchial hearts appear as lumens on both sides 

within the mesodermic masses underlying the gill buds (Boletzky 1987). The 

rudimentary branchial hearts begin to pulsate soon after formed a lumen and before a 

systemic heart actively beats. The expressions of the VEGFR support the assertion that 

the branchial hearts have the same origin as the blood vessels. 

l ! 
j Most invertebrates have no endothelium in vascular walls, so the cephalopod 

represents an exceptional instance of invertebrates having a vertebrate type blood vesseL 

The blood vessels of the cephalopods, regardless of the caliber and the type, have 

fundamentally three layers, the pericyte, basal lamina, and endothelium (Budelmann et 

aL, 1997). The wall structure is similar to that in the vertebrates, although the 

endothelium is often incomplete and has no typical cellular junctions (Schipp, 1987). 

Tubular sprouting is the most important angiogenic mechanism in the vertebrates, and 

involves to the development and growth of new vessels starting from evagination of the 
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endothelial wall. In the cephalopod aortic formation occurs after the embryonic body 

stands up on the yolk. Aorta cephalica develops from a systemic heart at late embryonic 

stage and runs down dorsal side of the body. Brain and arm arteries branch from the 

aorta cephalica by the angiogenesis-like process. The VEGF is a critical inducer of 

proliferation, migration, sprouting, and tube formation in tissues during the 

angiogenesis (Tammela et aI., 2005). In metazoans, the branching of tubular structures 

occurs in various organs of different embryonic origin, such as, the ectodermally 

derived Drosophila tracheas (Ghabrial et al. 2003), endodermally derived tubules of 

jellyfish (Seipel et al. 2004), ectodermally derived vessels of colonial ascidian B. 

schlosseri (Gasparini et al. 2007), and mesodermally derived vertebrate vessels (Risau 

1997). Although the Drosophila tracheas are formed using a FGF pathway, the VEGF 

si~al accompanies these sprouting structure. On the other hand, the VEGF signal 

pathway takes part in the formation of solid nerves (Weinstein 2005) and in 

development of non-branching tubular structures, such as of vertebrate myocardium and 

Drosophila salivary glands (Tomanek et al. 2006; Harris et al. 2007). Thus, an identical 

germ layer origin is not required for formation of the tubular or solid structures using 

the VEGF pathway. Seipel et al. (2004) hypothesized that the tube formation in 

cnidarians probably reflects the ancestral function of the VEGF-signaling pathway. The 

VEGF pathway might have co-opted during metazoan evolution in several 

morphogenetic/differentiative processes. The presence ofVEGFRin the cephalopod 

vascular formation is likely associated with secondary derivation of cephalopod 

vasculature froni a molluscan ancestor, although the VEGF expression is notreported in 
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the other molluscs. Some transcription factors are known to be upstream and enhancer 

of the vertebrate Flk-1 (Kappel, et aI., 1999). Ets-1 or SCL are critical for the 

endothelium-specific expression of Flk-1 (Kappel et aI., 2000). Their homologs were 

not expressed in the Jdiosepius embryos, but the SoxE expressions were observed in the 

blood vessels of Octopus embryo (Shigeno, personal communication). This result 

suggests that the cephalopod VEGF pathway is regulated by some regulatory genes, 

C''; which are different from those of vertebrates. Secondary derivations of the cephalopod 

endothelium are possibly supported by the presence upstream regulatory genes of 

VEGF pathway. 

Possible function of the cephalopod VEGF pathway in retinal development 

The retina is one ofthe organs abundant with blood vessels. The VEGF is related to 

the neovascular diseases including diabetic retinopathy (Adamis et aI., 1994; Aiello et 

al., 1995;Amin et al., 1997). In these diseases Flk-1NEGFR-2 is expressed in 

() microvascular endothelial cells and Flt-1NEGFR-1 is expressed in both endothelial 

cells and pericyte (Nomura et al., 1995; Takagi et al., 1996). The cephalopod eye is 

highly dev~loped and similar to the vertebrate eye, as well as the circulatory system. 

However, the retina appears as an ectodermic placode in the cephalopod embryos, not 

as in the vertebrate embryos. Many blood vessels were observed within the Jdiosepius 

retinae, as Budelmann et al. (1997) reported in the other cephalopod retina. However, 

the VEGFRexpression was observed in the whole retina of the Jdiosepius embryos, not 

only in the endothelium. The expression may be correlated to retinal development in the 
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cephalopod. The Pax-6 has some conserved roles in development of brains and eyes of 

metazoan animals, and also in development of retina of a squid, Euprymna sea/opes 

(Hartmann et aI., 2003). The Pax-6 in Euprymna expressed in the eye primordia prior to 

closure of eye vesicles. The Idiosepius VEGFR begins to express in the retina after 

closure of eye vesicles. Thus, the VEGFR may not contribute to early development of 

neural retina. 

In the vertebrates VEGF-positive endothelial cells and PDGF-positive glial cells 

coordinately regulate retinal development. PDGF-A is expressed by ganglion cells in 

developing retina (Fruttiger et aI., 1996,2000) and has a role in the recruitment of 

PDGFRu-positive astrocytes to the retina. The astrocytes populate the retinal surface 

during late embryonic stage inthe vertebrates (Huxlin et aI., 1992). They form a 

network across the retinal surface that subsequently works as a scaffold for angiogenic 

sprouting. The PDGFR~ is involved in the developmental processes in the pigmented 

and neural retina, the lens, corneal epithelium, and the mesenchyme (Bozani6 et aI., 

2006; Li et aI. 2007; Nagineni et aI. 2005). Additionally, its appearance in the human 

eye microvasculature might indicate its role in the development of the eye blood vessels 

(Mudhar et aI. 1993). The class III tyrosine kinase receptor, such asPDGFR, have never 

been reported in the invertebrates. The cephalopod VEGFR may contribute to glial 

development in the similar fashion to the vertebrate PDGFRs. 
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Figure legends 

Fig. 1 a, Amino acid sequence of the Idiosepius VEGFR. b, The phylogenetic 

relationship of receptor tyrosine kinase domains. The split kinase domain receptors 

have three (class III), five (class IV), and seven (class V) Ig-like domains. PTK7 is a 

regular tyrosine kinase receptor with seven Ig-like domains and used as an outgroup. 

The Idiosepius VEGFR is most closely related to Drosophila Pvr gene, although the 

gene has only six immunoglobulin domains. Numbers at the nodes indicate the 

bootstrap support values (calculated by I,OOO repetition). Bar length indicates the 

number of substitution per site. 

Fig. 2 Normal embryonic development of Idiosepeius paradoxus. a, First cleavage 

plane (arrow) corresponds to the median plane of the Stage-2 embryo. b, 

Mesoendoderm formed by invagination of marginal cells of blastodisc (bd) at 

Stage-IO. c, About half of the egg surface is cellulated at Stage-I 6. Subsequently, 

primordia of mantle, eyes, shell gland, mouth, and arms begin to be formed on the 

blastodisc (bd) as placodes. d, Embryobic body begins to stand up from the yolk sac . 

. (yo) at Stage-I 6. e, The yolk sac (yo) is completely separated from the embryonic 

body at Stage-24. f, Hatchling (Stage-30). Young squid hatches after their yolk 

mass is lost. Embryonic stages were determined using the normal table of 

Yamamoto (1988). 

Fig. 3 Expression of VEGFR gene in Idiosepius embryos. a-c, In situ hybridization with 

probes for vascular endothelial growth factor receptor (VEGFR). d, Control 

experiment with sense probes for VEGFR. Non-specific signal is detected at the 
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shell sac (sh). e, Positive control with probes for ActinIl. a, Stage-21. b, Stage-24. c, 

Stage-27. d, Stage;.24. e, Stage-24. b', Enlarged view of an arm vein in Stage-24. 

b" Expression in a pair of branchial hearts of mantle-removed specimen in 

Stage-24. (a) Expression of the VEGFR emerged in the visceral mass of the embryo. 

The VEGFR positive cells are located lateral side of primary vena cava (vc) and 

grow down into the mantle and head. (b) The VEGFR gene is strongly expressed by 

developing vessels (arrowheads) in their all arms and part of brain, and optic lobe 

(01). The expression was also observed in the retina (1.") and the pair of branchial 

hearts (bh). (c) The VEGFR remains to be expressed in the retinal cells. Yolk sacs 

(yo) are removed in b, c, e. All embryos are viewed from ventral with posterior to 

the upper side, except (b), which is seen from dorsal. Scale bars = 100""m. 

Fig. 4 Embryoni~ circulatory system of Jdiosepius embryos visualize~ by 

microinjection of rhodamine-conjugated beads. a, Stage-21. b, Stage-24. c, 

Stage-27. a', Expression of the VEGFR in the Stage-21 embryo. a", merged image 

of a and a'. b', Cells ofthe body are stained with DAPI. (a) The VEGR positive 

cells are located laterally to primary vena cava (vc). (b) Optic sinuses surrounding 

the optic lobe (01), brachial sinus (bs), pair of branchial hearts (bh), and vena cava 

(vc) are visualized by fluorescent beads injection, but no vessel appeared in the 

arms and brain at Stage-24. (c) Peripheral blood vessels are observed within the 

arms (arrowhead) and mantle (arrows). Yolk sac (yo) was removed in (b). All 

embryos are viewed from ventral side with posterior to the upper side. Bars = 
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Fig. 5 Expression of Ets-like, FGFR, and SCL genes by in situ hybridization of the 

Jdiosepius genes. a-c, Stage-24. (a) Expression of Ets-like gene was observed in a 

part of the opitic lobes (01) and in their anterior subesophageal mass (asm). (b) The 

FGFR was expressed in the arm bases (arrowheads) between arm I (al) and arm II 

(all), the buccal mass (bm),and the suckers. Non-specific signal is detected at the 

shell sac (sh). (c) No SCL expression was observed. Ventral view in all pictures. 

Yolk sac (yo) is removed in (b). Bars = lOOf-tm. 

130 



a Signal peptide Immunoglubulin domain 1 
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Conclusion 

Molecular phylogenetic analysis of cuttlefishes using three mitochondrial genes 

revealed that they are divig.ed into four well-supported clades. This analysis did not 

support phylogenetic reliability of prior classifications based on the cuttlebone shapes 

and the suckers on tentacular clubs. The molecular and morphological analyses still 

remain to be reconciled, but the "Doratosepion" clade, among the Sepiidae, forms a 

C-\ monophyletic group both in molecular and morphological analyses. I found a new 

taxonomic character of Doratosepion, that is a loss of membranous structure in their 

cuttlebones. Membranous structure is commonly observed in the other sepiids. Thus the 

loss of membranous structure is considered as a synapomorphy for the Doratosepion 

clade. Therefore, I propose the Doratosepion clade, excluding S. madokai, as a distinct 

and valid genus, Doratosepion Rochebrune, 1884. 

- Molecular phylogenetic analysis of decapodiformes including Jdiosepius paradoxus 

suggested that idiosepiids are related to oegopsids or myopsids, but not to sepiolids. 

Jdiosepius and Sepiadarium share common features, such as regression of gladius and 

the presence of mediolateral-rounded fins. These similarities are apparently due to 

morphological convergence. 

The cephalopods have a closed blood-vascular system lined by endothelial cells. 

However, the circulatory system appears to derive from an open blood-vascular system 

of their ancestors. I showed the receptor of vascular endothelial growth factor (VEGFR) 

is expressed in developing blood vessels of Jdiosepius embryos. This result suggests the 

cephalopod VEGFR is associated with the angiogenic processes similar to the 
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vertebrates. In this innovation of the vascular system, recruitment of pre-existing 

regulatory genes or even regulatory networks could contribute to generate new 

structures, that is, the endothelium. Because of large differences between the 

cephalopod and the other molluscs, comparative studies in their development would . 

reveal the molluscan evolution and how the complex body plan as in the cephalopods 

was formed. 

Why did the endothelium occur in the cephalopod? The buoyancy device is 

probably a crucial factor for this question. The Nautilus circulatory system seems to be 

relatively open with an extended peripheral sinus (Schipp, 1987). The buoyancy is -

regulated by hydrostatic adaptations accomplished by the caramel liquid, which is 

added or removed from the shell chambers. This alteration is performed by osmotic 

pressure of blood in their siphuncle. Transport of the caramel liquid in sepiid shell can 

be explained by a change ofthe liquid's osmotic pressure (Denton and Gilpin-Brown, 

1959). This is insufficient to explain chamber emptying in the chambered Nautilus. At 

l) 240 m depth, the hydrostatic pressure forcing shell chambers exceeds the maximum 

osmotic emptying pressure. Nautilus is frequently found below 240 m depth, where 

simple osmotic emptying cannot function. The counter-current system enhances 

siphuncular blood concentration, which could 'draw' water from chambers below 240 m, 

and account for transport against both osmotic and hydrostatic gradients (Greenwald et 

aI., 1980). Ancestral cephalopods might first have blood vessels with counter-current 

systems. After a loss of solid buoyancy device, extant coleoid cephalopods possibly 

improved secondary athletic performance using the developed vascular systems with 
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endothelium. 
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