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INTRODUCTION 

Prior to 1955, it was thought that the sole role of dioxygen in biological systems was 

as an electron acceptor in dioxygen-utilizing oxidase or dehydrogenase reactions (1). In 

1955, two papers reported findings which were in sharp contrast to the classical concept 

of biological oxidation. By the use of 1802 and H2180 in the reaction catalyzed by 

mushroom phenolase, Howard S. Mason and his coworkers demonstrated the 

incorporation of an oxygen atom from molecular oxygen into 3,4-dimethylphenol, 

producing 4,5-dimethylcatechol (2,3) (Fig. i-I). Concurrently, Osamu Hayaishi and his 

collaborators found that pseudomonad pyrocatechase incorporated two atoms of oxygen 

from 1802 (but not from H2180) into catechol and produced cis,cis-muconate (4-6) (Fig. 

i-2). These were finding a novel category of the enzymes that directly incorporate 

oxygen atoms of dioxygen into substrate. Hayaishi designated them as "oxygenases" (7). 

Now, it is established that two types of oxygenases are present in nature: 

monoaxygenases add one oxygen atom, and dioxygenases insert both atoms of 

molecular oxygen. In addition, it is now known that the oxygenases are widely 

distributed in nature throughout the plant, animal, and microorganism kingdoms. The 

oxygenases (5) essentially contain metal or flavin as their reaction center (7). 

IDO was first called "tryptophan pyrrolase" when initially isolated by Kotake and 

Masayama in 1936, and later "tryptophan 2,3-dioxygenase" by Hayaishi (8-10). IDO 

was isolated initially as a D-Trp-cleaving enzyme from small intestine of rabbit in 1963 

by Hayaishi and co-workers (11,12). To date, only tryptophan 2,3-dioxygenase (TDO) 

and indoleamine 2,3-dioxygenase (lDO) have been identified as heme-containing 

dioxygenases (13) (Table. i-I), both of which can catalyze conversion of L-tryptophan 
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(L-Trp) to N-formylkynurenine, by oxidatively cleaving 2,3-bond of the tryptophan 

pyrrole ring upon incorporation of two oxygen atoms of O2 (Fig. i-3) (7,14). The 

enzymatic reaction is the first and rate-limiting step in the major metabolic pathway of 

L-Trp (Fig. i-4). 

Although both dioxygenases are cytosolic (soluble) heme proteins and catalyze the 

same reaction, their physiological role and biochemical properties are distinct (Table 

i-2) (1,7,14). In mammals, IDO is present as a monomeric enzyme, and ubiquitously 

distributed in all tissues except for the liver (9,15). Several possible physiological roles 

for IDO have been suggested. Most significantly, it is associated with the antiviral and 

antiproliferative activities of interferon-y (1,15-18). IDO has been shown to be induced 

in vivo in lungs of mice by lipopolysaccharide (LPS) or virus, by IFN-y (19-21). LPS 

obtained from the cell wall of Gram-negative bacteria, and influenza virus are both 

known to induce IFN-y (22). Alternatively, it has been shown that local synthesis of the 

neurotoxin quinolic acid, one of the L-Trp metabolites of the kynurenine pathway, in the 

central nervous system follows the induction of IDO in macrophage. Thus, IDO is 

implicated to be of neuropathological significance. The discovery that inhibition of IDO 

activity reduces the survival ofMHC-mismatched fetuses in mice (23), and that the risk 

of fatal allograft rejection correlates with the degree of parental tissue incompatibility 

(24), has led to the hypothesis that IDO activity protects fatal allografts from maternal 

T-cell-mediated immunity (25). Various tumor cell types are known to express IDO (26). 

By promoting antitumor immune responses in combination with cytotoxic 

chemotherapy, IDO inhibitors may offer a drug-based strategy to more effectively attack 

systemic cancer (27-30). 
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Table. i-I. Classification of oxygenases based on their reaction. 

Type Monooxygenase Dioxygenase 

Reaction 
RH + 02+ 2e- + 2H+ 

R+02 ..... R(0)2 

-+ ROH + H2O 

Cofactor heme: heme: 

and cytochrome P450 Tryptophan 2,3-dioxygenase 

examples heme oxygenase Indoleamine 2,3-dioxygenase 

non-heme iron: non-heme iron: 

methane monooxygenase catechol 1,2-dioxygenase 

protocatechuate 3,4-dioxygenase 

FAD: 

arginine 2-monooxygenase 

FMN: 

bacterial luciferase 

cupper: 

dopamine ~-monooxygenase 

COO II 

oS~ NII2 

I + 
.0 N 

() COOII 

NII2 

~ 
~ "0 

II II 

L-Trp N-Formylkynurenine 

Fig. i-3. The reaction catalyzed by IDO and TDO. 
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Table. i-2. Similalities and distinctions between IDO and TDO. 

100 TOO 

molecular weight 45,000 122,000 (Pseudomonas) 
191,000 (mammalian liver) 

subunits 1 4 (<14) 

prosthetic group heme b (protoheme IX) heme b (protoheme IX) 

substrates L-Trp, O-Trp L-Trp 
5-hydroxy-L-Trp 5-fluoro-L-Trp 
5-hydroxy-0-Trp 6-fl uoro-L-Trp 
tryptamine 
serotonin 

distributions mammalian ubiquitous mammalian ubiquitous 
(except liver) (mainly liver) 

amphibian fish 
insect bacteria 

inducers i nterferon.ty gl ucocorticoids 
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In contrast, IDO, which shares no sequence homology with IDO, is widely 

distributed across species, ranging from bacteria to mammals, as a homo-tetrameric 

enzyme (1,31,32). In mammals, TDO is mainly present in the liver, but, recently, the 

enzyme was detected in the brain, epidermis, spermatozoa, placenta, and so on (33-36). 

Unlike IDO, which exhibits broad substrate specificity for the indoleamines, the activity 

ofTDO is specific for L-Trp (Table i-2, Fig. i-5) (1,12,37). It has been indicated that 

glucocorticoids administration increases the rate of enzyme synthesis, whereas L-Trp 

administration decreases the rate of degradation of the enzyme (32,38-44). Thus, TDO 

is induced by glucocorticoids and is also regulated by the availability of the 

physiological substrate, L-Trp. 

It has been shown that TDO exists as tetramer and behaves as an allosteric enzyme. 

IDO isolated from Xanthomonas pruni shows sigmoidal kinetics and its activity is 

inhibited by intermediates of the NAD biosynthetic pathway (45). Its cooperativity is 

enhanced by anthranilic acid and is diminished by a-methyl Trp (Fig. i-6). Early studies 

of rat liver TDO also showed that NADPH and 3-hydroxy anthranilate, which are 

downstream metabolites of L-Trp, are negative modulators of TDO activity (Fig. i-6) 

(46,47). These data indicate that TDO might be regulated by feedback control and that 

the enzyme has multiple binding sites for L-Trp and its metabolites. 

In sharp contrast to heme-containing monooxygenases (such as cytochrome P450 

and heme oxygenase) and nonheme dioxygenases (such as catechol 1,2-dioxygenases 

and protocatechuate 3,4-dioxygenase), chemistry for the IDO and TDO reaction remains 

elusive, even thought they were discovered more than 40 years ago. It is mainly due to 

the lack of crystallographic study and observation of the proposed intermediates, as well 

as due to the fact that no similar reaction is observed in the other heme-containing 

oxygenases. 
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Very recently, however, three groups independently obtained the crystal structures of 

IDO and TDO, and advanced our understanding of molecular mechanism of 

heme-containing dioxygenase. Structural analysis of human IDO (hIDO) in complex 

with the ligand inhibitor 4-phenylimidazole (4PI) or cyanide (CN-) combined with 

site-directed mutagenesis studies showed that polar amino acid residues in the active 

site do not play an important role in the enzymematic reaction (48). The crystal 

structures of Ralstonia metallidurans TDO (ralTDO) and Xanthomonas campestris 

TDO (xTDO) has been recently resolved by Ealick et al. (49) and Tong et al. (31), 

independently. It was surprising that the overall fold in the tertiary structure of IDO and 

a monomeric subunit of TDO look very similar, although their amino acid sequences 

share little homology «15%). Structures of xTDO were determined as a ligand-free 

form and ferrous form in a binary complex with the substrate L-Trp, in which the 

carboxylate and ammonium moieties of L-Trp make are recognized by electrostatic and 

H-bonding interactions with some residues of the enzyme and the heme propionate 

group, defining the L-stereospecificity. Although the structure analysis of ralTDO 

revealed important active site residues, it did not provide any information regarding the 

substrate binding, due to lack of the substrate in the crystal structure. 

The crystallographic analysis of recombinant xTDO revealed two different 

L-Trp-binding sites and extensive interaction between the subunits of the tetramer (Fig. 

i-7). Although the TDO structure suggests that it has a cooperative mechanism, there is 

no direct evidence for homotropic cooperative binding of L-Trp to xTDO, as the 

measurement of the dioxygenase activity reveals Michaelis-Menten-type kinetics. 

Moreover, the residues in the L-Trp-binding sites which were observed at the tetramer 

interface of xTDO are not conserved among the species. Thus, the structural mechanism 
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of the regulation by substrate (homotropic allosteric modulation) and by metabolites 

(heterotropic allosteric modulation) is not well understood. 

It has been reported that the affinity of TDO for its ligands, carbon monoxide (CO) 

and cyanide (CN-), is increased in the presence ofL-Trp (50-53). It is estimated that the 

binding of L-Trp to TDO causes increasing the affinity for its ligands by 

substrate-induced conformational change and the alteration in the electronic state of 

heme iron. Substrate binding usually causes a conformational change in the enzyme. 

The conformational change is associated with activation enzyme including the 

prosthetic group. The reaction of oxygenases certainly causes either or both oxygen 

activation by heme iron and substrate activation. To elucidate the substrate recognition 

and catalytic mechanism of TDO, it is necessary to reveal how the conformation of the 

heme and active site residues are affected by substrate binding and how the active-site 

structure is related to the activation of the substrate or dioxygen for the dioxygenase 

reaction. 
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Black circle indicates the active site of xTDO. Red circles indicate the L-Trp-binding 

sites which were observed at the tetramer interface ofxTDO. 
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In this thesis, spectroscopic and crystallographic analyses of recombinant human 

TDO (rhTDO) are described. In chapter I, the analysis of conformational changes in the 

heme of recombinant human TDO (rhTDO) using resonance Raman and optical 

absorption spectroscopies are described. The technique of resonance Raman 

spectroscopy provides structural information, through the vibrational characteristics of 

the heme in active center. The results demonstrate that rhTDO cooperatively binds 

substrate, L-Trp. In addition, the mutation analysis revealed essential residues for the 

cooperative L-Trp binding, which provides insight into the mechanism of homotropic 

allosteric regulation. 

Although most of amino acid residues in the active site of TDO appears to be 

conserved among bacterial and mammal, amino acid sequences of mammalian TDO has 

100 residues larger than bacterial TDO. Therefore, function of residues unique in 

mammalian TDO still remains understood. In addition, roles of the conserved distal His 

residue is still controversial. Although H55 ofxTDO is involved in substrate interaction 

(Fig. i-6), site-directed mutagenesis study showed that H55 of xTDO do not play an 

important role in the enzymatic reaction. Thus, X-ray crystallographic analysis is 

necessary to gain direct insight into the substrate recognition and the catalysis by hTDO. 

In chapter II, the crystallization and preliminary crystallographic analysis of rhTDO are 

described. 
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CHAPTER I 

Cooperative Binding of L-Trp to Human Tryptophan 

2,3-Dioxygenase : Resonance Raman Spectroscopic 

Analysis 
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SUMMARY 

Tryptophan 2,3-dioxygenase (TDO) is a tetrameric enzyme that catalyzes the 

oxidative cleavage of L-tryptophan (L-Trp) to N-formylkynurenine by the addition of 

02 across the 2,3-bond of the indole ring. This reaction is the first and rate-limiting step 

in the kynurenine pathway in mammals. In the present study, we measured the 

conformational changes in the heme pocket of recombinant human TDO (rhTDO) in 

ferric form that are induced by L-Trp binding using both resonance Raman and optical 

absorption spectroscopies. The deconvolution analysis of the heme Raman bands at 

various concentrations of L-Trp revealed that the wild-type enzyme exhibits homotropic 

cooperativity in L-Trp binding, which was confirmed by a change in the optical 

absorption spectra. Mutation analysis showed that the Y 42F mutant abolished the 

cooperative binding, and that the H76A mutant considerably reduced the catalytic 

activity. These data and the inter-subunit contacts reported in the bacterial IDO 

structure suggest that the Y 42 of rhTDO is responsible for the cooperative binding of 

L-Trp by participating in the active site of the adjacent subunit. 
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MATERIALS AND METHODS 

Construction of Expression Plasmid 

Human tryptophan 2,3-dioxygenase (hTDO) eDNA (Image clone 4071714) in the 

pDNR-LIB vector was purchased from American Type Culture Collection. First, we 

constructed, expressed, and purified full-length hTDO. N-terminal sequence analysis of 

the purified full-length hTDO revealed that it was truncated at the N-terminal end, with 

loss of up to 15 amino acid residues. Thus, we constructed rhTDO, and deleted the 15 

residues at the N-terminus. The hTDO eDNA was amplified by PCR using a forward 

primer (5'-GGG CATATG AAAAAACTCCCCGTAGAAGG-3'), which encodes an 

NdeI site (underlined), followed by the coding sequence starting at Met connected to 

K16, and a reverse pnmer (5'-GGGGATCCTTAATCTGATTCATCACTG 

CTGAAGTAGG-3 '), which contains the coding sequence up to the termination codon, 

followed by an BamHI site (underlined). This amplified fragment was directly ligated to 

NdeI/BamHI-digested pET15b with a hexa-histidine tag and a thrombin site fused to the 

N-terminus of hTDO-i1NI5, to produce pET15b hTDO-i1NI5. Two other mutants 

(H76A, Y42F) were prepared using the QuikChange site-directed mutagenesis kit 

(Stratagene) with pET15b hTDO-i1NI5 as a template. Plasmids containing pET15b 

hTDO-i1NI5 and the mutants were used to transform E. coli DH5a cells. All constructs 

were verified by DNA sequencing. 

Expression of Recombinant Human TDO 

E.coli Rosetta (DE3) pLysS cells were transformed using the plasmid construct. 

Single colonies on LB-agar plates containing ampicillin (100 J..lg/ml) and 

chloramphenicol (70 Ilg/ml) were selected, and the cells were grown overnight at 37°C 
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in 2 ml of LB medium containing 1 00 ~g/ml of ampicillin and 70 ~g/ml 

chloramphenicol. The overnight culture (0.5 ml of culture) was used to inoculate 2 L of 

TB medium (yeast extract, 24.0 gIL; polypeptone, 12.0 gIL; glycerol, 0.4% w/v; 

KH2P04, 2.31 gIL; and, K2HP04, 12.5 gIL) supplemented with 100 ~g/ml ampicillin, 70 

~g/ml chloramphenicol, 0.5 mM 8-aminolevulinic acid and 0.2 mM Fe2S04. The 

cultures were grown in TB medium until OD600 = 1.1-1.3, and protein expression was 

induced with 0.5 mM IPTG. The cells were then cultured for ~20 h at 30°C, followed by 

centrifugation at 10,000 x g for 10 min at 4°C. The cell pellets were stored at -80°C until 

they were used for protein purification. 

Purification of Recombinant Human TDO 

Frozen cell pellets were resuspended in 120 mL of lysis buffer (50 mM potassium 

phosphate (PH 8.0), i.e., buffer A) containing EDT A-free complete protease inhibitor 

cocktail tablets (Roche), lysozyme (0.1 mg/mI), and DNaseI (0.01 mg/ml), followed by 

stirring for 1 h. Cells were lysed by sonication, and the cell debris was removed by 

ultracentrifugation at 185,000 x g for 30 min at 4°C. The resulting supernatant was 

loaded onto a Ni-NTA agarose (Qiagen) column that had been equilibrated with lysis 

buffer supplemented with 300 mM NaCI (buffer B). The column was washed with the 

same buffer containing 50 mM imidazole (buffer C), and His-tagged proteins were 

eluted from the column using the same buffer containing 300 mM imidazole (buffer D). 

The His tags were cleaved by direct addition ofbiotinylated thrombin (Novagen) to the 

elutant, which was then dialyzed against buffer B overnight at 4°C. The 

thrombin-treated protein solution was then loaded onto a Ni-NTA column that had been 

equilibrated with buffer B. After an additional wash with buffer A, cleaved rhTDO was 

separated from the uncleaved His-tagged proteins by elution with buffer C. The eluted 
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protein was concentrated and further purified using a Superdex-200 size-exclusion 

column with buffer A containing 200 mM NaCI (buffer E). The fractions that contained 

molecules similar in size to tetrameric hTDO were pooled, and concentrated using 

Amicon Ultra-15 centrifugal filter devices (Millipore) containing a cellulose filter with 

a 50-kDa cutoff. After concentration of the fractions, the solution was filtered with a 

0.22-llm disposable filter. The concentration of the purified recombinant hTDO was 

estimated using the pyridine hemochrome assay (54,55). The heme b extinction 

coefficient used in this study was C557 - C541 = 20.7 mM-1cm-1 (56). The concentrated 

sample was flash-frozen in liquid nitrogen, and stored at -80°C until further use. 

Enzyme Assay 

The activity of ferric hTDO was measured in buffer E at 37°C under normal 

atmospheric conditions. The rate of N-formylkynurenine formation was monitored at 

321 nm (c = 3,750 M-1cm-1) (57). The reaction was initiated by the addition of ferric 

rhTDO, and after the small lag phase, the linear velocity was measured. The enzyme 

concentration was 0.5 IlM in a final volume of 2.0 ml. During the measurements, the 

reaction medium was gently stirred in a cuvette with a l-cm light path. The kinetic data 

were fitted to the Michaelis-Menten equation using IGOR Pro 5.05 software 

(WaveMetrics, Inc.). 

Raman Spectroscopy 

The purified rhTDO, buffer E, and buffer E containing 5 mM L-Trp were each 

dispensed into small glass vials. Each vial was sealed with a rubber stopper and an 

open-top screw cap. All vials were deoxygenated by repeated evacuation and flushing 

with N2 gas. To establish strictly anaerobic conditions, the de-aerated vials were passed 
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into an anaerobic glove box (02 < 5 ppm), where they were kept for at least 12 h at 4°C. 

Samples with an enzyme concentration of 300 /lM (75 /lM of tetramer) and various 

concentrations ofL-Trp were prepared in the glove box using these stock solutions. For 

measurements of the Raman spectra, the sample solutions were put into a cylindrical 

quartz cell with a small magnetic stir bar, and the cell was secured with a rubber 

septum. 

Raman scattering was excited at 413.1 om using a Kr ion laser (Spectra Physics). 

The Raman scattered light passed through a depolarizer and the entrance slit of a 1.0-m 

monochromator equipped with a 1,200 groove/mm ruled grating blazed at 500 nm 

(MC-lOODG, Ritsu Ohyo Kogaku Co., LTD). The detector was a 1,100 x 330 pixel, 

back-illuminated, liquid nitrogen-cooled charge-coupled device detector 

(LN/CCD-II00PB, Roper Scientific). The entrance slit-width of the monochromator 

was set at 250 /lm. The cylindrical cell was spun at 1,200 rpm to minimize local heating. 

A holographic notch filter was used to eliminate Rayleigh scattering. The frequency 

calibration of the spectrometer was performed with indene as the standard. The laser 

power was maintained at 300 /l W for all measurements. The acquisition time was 30 

min for all of the spectra obtained. Winspec/32 software (Roper Scientific) was used for 

data acquisition. Spectral analysis was performed using IGOR Pro5.05 (WaveMetrics, 

Inc.). After subtracting the best-fit linear baseline from the data, the Gaussian function 

was used in the fitting procedure for multiple overlapping peaks. Gaussian fitting and 

peak area calculations were carried out using the Igor Pro multi-peak fitting package. 

UV-visible Absorption Spectroscopy 

The protein solutions used for the measurement of absorption spectra were prepared 

by the same protocol as in Raman experiments. The protein and L-Trp solutions were 
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mixed into the quartz cell with a screw cap and the desired concentration in an 

anaerobic glove box. The UV-visible region of absorption spectra was measured with an 

enzyme concentration of 4 ~M in the absence and presence of 5 rnM L-Trp at 20°C 

under a N2 atmosphere. The absorption change in the visible region (530-700 nrn) by 

L-Trp titration was measured with 240 ~M of enzyme by the addition of a small volume 

of 50 rnM L-Trp to the enzyme in the glove box. All experiments of optical absorption 

spectra were performed using a Hitachi U-3000 spectrophotometer equipped with a 

thermoelectric cell holder and an SPR-IO temperature controller. The temperature of the 

spectrometer was controlled at 20°C using a water bath (Lauda thermostat RM6). 
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RESULTS 

N-terminal Truncation of rhTDO 

First, the plasmids encoding full-length rhTDO with a His tag at N- or C-terminus 

were constructed. The C-terminal His-tagged rhTDO could express very small amount. 

The N-terminal His-tagged rhTDO in full-length form was express at higher level but 

difficult to be purified because of severe aggregation and instability. SDS-PAGE of 

purified N-terminal His-tagged full-length rhTDO showed the presence of three distinct 

bands between 37 and 50 kDa (Fig. 1). The N-terminal amino acid sequence of these 

components analyzed by automated Edman degradation revealed that there are four 

species. Three of them appeared to be cleaved by proteases. The cleavage sites are 

between F6 and L7, Y13 and TI4, or FI5 and KI6. On the other hand, the construct of 

rhTDO with deletion of the N-terminalI5 amino residues (rhTDO-~NI5) gave a single 

band on SDS-PAGE. The N-terminal sequence analysis showed the band includes only 

one sequence. The truncated form of the enzyme (rhTDO-~NI5) was comparatively 

stable and used for all biochemical and spectroscopic experiments. 

Design of Mutation 

As shown in Fig. 2, crystallographic analysis of xTDO revealed that the interaction 

ofxTDO with L-Trp involves the H-bond between.H55 and the NI atom ofL-Trp. This 

observation suggests that the role of H55 in the catalytic activity of the enzyme might 

be the abstraction of a proton due to the basic nature of the a~ino acid (31). However, 

the residual activity (15% in keat) of the H55A mutant suggests another possibility for 

the roles of this residue in the catalytic reaction, which is still a matter of debate (58). 
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On the other hand, the residue of the adjacent subunit in the xTDO structure, Y24, 

participates in the formation of the active site and interacts with the 4-vinyl group and 

the indole ring of L-Trp by hydrophobic interaction. The key residues in the catalytic 

site ofxTDO, H55 and Y24, are conserved in hTDO as H76 and Y42, respectively (Fig. 

3). We prepared two mutants of rhTDO (H76A and Y42F) and characterized their 

enzymatic and spectroscopic properties. 
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Fig. 1. SDS-PAGE of full-length and the N-terminal truncated rhTDO. 
The lane on the left-hand side indicated by arrows A-C is purified full-length rhTDO. 

The lane on the right-hand side indicated by arrow D is purified rhTDO-8N15. The 

results ofN-terrninal sequence analysis on A-D bands showed under the SDS-PAGE. 
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Fig. 2. Active site of Xanthomonas campestris TDO. 
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(A) substrate-bound and (B) substrate-free forms are depicted as ball-and-stick models, 

with the carbon atoms shown in cyan and green, respectively. The carbon atoms of the 

substrate, L-Trp, are shown in magenta. Oxygen, nitrogen, and iron atoms are shown in 

red, blue and brown, respectively. The conformation of the 4-vinyl group of the heme 

differs significantly between the substrate-bound and -free forms. The Cb atom interacts 

with Y24 in the L-Trp bound form, but with W236 in the !Tee form. Figures were 

prepared with the PyMOL program (59) using PDB codes 2NW7 and 2NW8. 
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Fig. 3. Partial sequence alignment between the Xanthomonas 
campestris TDO subunit and that of several organisms. 
Sequences displayed are those from: Xanthomonas (Xanthomonas campestris pv. 

campestris), Pseudomonas (Pseudomonas aeruginosa PA7), Dorosophila (Dorosophila 

melanogaster), Xenopus (Xenopus leavis), Homo sapiens (Homo sapiens). The 

completely conserved proximal His residues are marked with an asterisk. Residues in 

the heme pocket ofxTDO, Y24, F51 , H55 and W236 are identical to Y42, F72, H76 and 

W324 of hTDO, respectively. These residues are indicated by the filled circles. The 

figure was produced using ESPript 2.2 (60) and CLUSTAL W (61). 
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Activity of Ferric hTDO 

The enzymatic activities of wild-type rhTDO, and of the Y42F and H76A mutants in 

the ferric state, were measured using various concentrations of the substrate, L-Trp. 

Previous studies have demonstrated that the ferric enzyme has the capability to degrade 

L-Trp (62). The rate of the product formation under open-air conditions (~400 IlM) was 

plotted against the applied L-Trp concentration, as shown in Fig. 4. The plot was fitted 

with the Michaelis-Menten equation, providing the apparent kinetic parameters [Km(app), 

kcat(app)], that is compiled in Table l. 

The enzymatic activity of wild-type rhTDO in the ferric state was measured in 

presence of 5 mM L-Trp, using various concentrations of the oxygen. However, our 

attempt to obtain the kinetic parameters was unsuccessful, because the data exhibits a 

biphasic behavior and cannot be fitted with the Michaelis-Menten equation (Fig. 5). 

Although the simulation of the enzyme model by Martin-Neito et al. has suggested that 

two different forms of enzyme or the enzyme with two cooperative, equivalent sites 

could exhibit biphasic kinetics (63), additional data including pre-steady state kinetics 

would be necessary for elucidating the oxygen binding property. The data of Fig. 5 

show that the activity reaches to the saturation at oxygen concentration of ~60 IlM, 

while the activity data of Fig. 4 was obtained under open air (>400 IlM). Thus, the true 

Km or k cat values for L-Trp binding appear to be comparable with their apparent values. 

The obtained Km(app) of wild type (82.5 IlM) is comparable to the L-Trp concentration 

found in the liver of rats with normal diets (40-90 Ilmol/kg liver) (64). As shown by the 

values of kcat(appyKm(app), the enzymatic activity ofrhTDO was reduced to 3% and 0.1% 

in the Y42F and H76A mutants, respectively. This result suggests that both residues 

make significant contributions to the enzymatic reaction of rhTDO. In the case of the 

Y 42F mutation, the change in Km(app) is mainly responsible for the loss of enzymatic 
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activity, while both Km(app) and kcat(app) are significantly reduced in the H76A mutation. 
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Fig. 4. Rate of product formation versus substrate concentration. 
Initial reaction rate of wild-type rhTDO, and of the H76A and Y42F mutants plotted as 

a function of L-Trp. Each value is the mean of three replicates with error bars 

representing the standard deviation of each sampling point. Kinetic parameters were 

estimated by fitting the data to the standard Michaelis-Menten equation and are shown 

in Table 1. The reaction experiments were performed with an enzyme concentration of 

0.5 j.!M, at 37°C, in 50 mM potassium phosphate buffer, pH 8.0. 
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Table 1: Apparent kinetic parameters for oxidation of L-Trp by ferric 
rhTDO and its mutants. 

rhTDO rhTDO H76A Y42F 

(pH 7.0t (pH 8.0) (pH 8.0) (pH 8.0) 

Km(app) (!J.M) 180 82.5 ± 3.8 488 ± 51 1,290 ± 140 

kcat(app) (S-I) 0.6 6.12 ± 0.02 0.04± 0.00 3.04± 0.04 

kcat( app) / Km( app) 3 X 10-3 7.42 X 10-2 9 X 10-5 2.36 X 10-3 

a Batabyal, D. and Yeh, S. R. published results. 

Experiments were performed with an enzyme concentration of 0.5 !J.M, at 37°C, 

in 50 mM potassium phosphate buffer, pH 8.0. 

It should be noted that these rates were determined under normal atmospheric 

conditions. 
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Fig. 5. Reaction of wild-type ferric rhTDO with O2 in the presence of 
5 mML-Trp. 
(A) The product formation rates are plotted as a function of 02 concentration. (B) 

Eadie-Hofstee plot of the effect of oxygen concentration on rhTDO activity. Each 

plotted value for the wild-type is the mean of triplicate measurements and the error bars 

indicate the standard deviation. 
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Absorption Spectra oj Wild-Type rhTDO 

The absorption maxima in the optical absorption spectra of the wild-type rhTDO in 

ferric form, measured at pH 8.0, are shown in Fig. 6 A. A Soret maximum was observed 

at 405 nm, a/~ bands were observed at 585/504 nm, and a charge transfer band (CTl) 

was observed at 632 nm. These characteristics are consistent with the spectral features 

of heme proteins in the ferric, high-spin state (56). Upon addition of the substrate, L-Trp, 

the spectrum was significantly altered: the Soret maximum was red-shifted from 405 to 

408 nm, new a/~ bands appeared at 574 and 540 nm, and CTI band was reduced, but 

did not completely disappear (Fig. 7 A). The spectral change was attributed to a mixture 

of the low- and high-spin states in heme iron after binding of the L-Trp to rhTDO, 

which is consistent with the results of Raman experiments. 

The sigmoidal kinetics of L-Trp binding observed in Raman spectral change is 

supported by the absorption spectral change, as shown in Fig. 7 B. The Hill coefficients 

estimated from the intensity of 632 and 574 nm are 3.3 and 3.2, respectively. These 

values are slightly larger than those estimated from Raman spectra, mostly because the 

data point was extended to a higher concentration of L-Trp in the measurement of the 

absorption spectra. 
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Fig. 6. Absorption spectra of rhTDO and its mutants. 
(A) Spectra of wild-type rhTDO, (B) H76A mutant and (C) Y42 mutant in the absence 

(solid line) and presence (dotted line) of 5 mM L-Trp. Solutions were prepared with 4 

IlM enzyme in 50 mM potassium phosphate (PH 8.0) under anaerobic conditions. The 

inset is the expanded view of the visible bands. 
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Fig. 7. Change of absorption spectra by the addition of L-Trp. 
(A) The visible region of absorption spectra of wild-type enzyme upon successive 

additions ofL-Trp. (B) The intensity of the CTI band at 632 nm (filled circle) a. band at 

574 nm (circle) in (A) are plotted as a function ofL-Trp concentration, and fitted to the 

Hill equation (solid and dashed line, respectively). (C) The visible region of the 

absorption spectra of the Y 42F mutant upon successive additions of L-Trp. (D) The 

intensity of the CTI band at 632 nm in (C) are plotted and fitted to the Hill equation 

(solid line). 
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Absorption Spectra of the H76AMutant 

In the absorption spectrum of the ferric H76A mutant, the Soret band was coincident 

with the position of the Soret band in the wild-type enzyme, while the CTI band was 

shifted from 632 nm to 622 nm in the mutant (Fig. 6 B). The resultant spectral features 

are characteristic of the mixture of high- and low-spin heme irons. It is worth noting 

that the spectral change in rhTDO induced by the H76A mutation appears similar to the 

change in the myoglobin (Mb) spectrum induced by the V68D mutation (65). The effect 

of the Mb mutation has been explained by changes in the electrostatic interaction of the 

heme distal pocket with residue 68. Binding of L-Trp to the ferric H76A mutant leads to 

a red-shift in the Soret band (from 405 to 407 nm), and a blue-shift in the high-spin B 

band (from 506 to 503 nrn), indicating that L-Trp binding to the active site of the H76A 

mutant affects both the 1t-1t* transitions and porphyrin skeletal vibrations. The intensity 

changes of these bands were too small to conduct a quantitative analysis. 

Absorption Spectra of the Y42F Mutant 

The absorption spectrum of the Y 42F mutant shows the Soret band at 407 nm, alB 

bands at 584/502 nm, and the CTI band at 632 nm (Fig. 6 C), This spectrum pattern is 

similar to that of a wild-type in the absence of L-Trp. The red-shift of the Soret band by 

2 nm upon the mutation of Y 42F implies that the 1t-1t* transitions of the porphyrin ring 

are affected by the removal of the OH group. The L-Trp binding to the Y 42F mutant 

alters only the intensity of the absorption bands. The plot of the intensity of the CTI 

band of the Y 42F mutant exhibits simple saturation kinetics (Fig. 7 C and D), which is 

in sharp contrast to the sigmoidal behavior of a wild-type enzyme (Fig. 7 B). 
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Raman Spectra of the Wild-type Enzyme 

Fig. 8 shows the resonance Raman spectra of ferric rhTDO in the presence of o~ 1 

mM of L-Trp. The assignments of the bands, which are described in the spectra, were 

based on those of ferric Mb (66) and rhTDO, as previously reported (62) . In the high 

frequency region of the substrate-free enzyme [Fig. 8 A(a)], the positions of the V4 

(1,372 cm-I
), V3 (1,482 cm-I

) and V2 (1,560 cm-I
) bands are essentially identical to those 

of the corresponding bands of he mop rote ins in the six-coordinate high-spin state. 

Raman spectral changes were observed upon the addition of L-Trp. In the 

high-frequency region (Fig. 8 A), the V4 band shifted slightly from 1,372 to 1,374 cm-I
, 

and the V3 band appeared at ~1,505 cm-I
, suggesting an appearance of the heme iron in 

the six-coordinate, low-spin state. The reduction of the V2 peak intensity at 1,560 cm-I is 

indicative of a six-coordinate, high-spinllow-spin mixture (67). In the low-frequency 

region (Fig. 8 B), the intensity of the Y6 (pyrrole tilting mode) band at 338 cm-I was 

reduced, while that of the Vg vibration (in-plane skeletal mode) at 350 cm-I increased 

with the L-Trp concentration. The intensity of the heme propionate bending mode, 

6(CIlCeCb)6,7 at 378 cm- I and 391 cm- I
, decreased. The intensity of the heme 4-vinyl 

bending mode, 6(C13CaCb)4, at 416 cm- I
, decreased, although the 2-vinyl bending mode, 

6(CI3CaCb)2, at 430 cm-I, did not change. The decrease in the intensity of the vinyl 

stretching mode, Vee, at 1,625 cm-I
, also supports a conformational change in the vinyl 

group. Because the vinyl stretching vibration, Vee, and the in-plane skeletal mode, VIO, 

can overlap at 1,625 cm- I
, we measured the polarized resonance Raman spectra of ferric 

rhTDO (Fig. 9) to determine the depolarization ratio of the Raman band. From the 

spectra, the polarization ratio of the band at 1,625 cm-I was calculated to be 0.25 and 

0.24 in both the absence and presence of L-Trp, respectively. Because the polarization 

ratio is expected to be 0 and ~0.75 for the Vee and vlOmodes, respectively, the results 
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show that the Vee band is the major contributor to the intensity change at 1,625 cm-I
. 

We analyzed the Raman bands in the 250-450 cm- I region by fitting the data with 

Gaussian curves. As illustrated in Fig. 10, the deconvolution allowed us to identify nine 

well-resolved peaks and to detect changes in the intensity of the y 6, Vg, 8(Cj3CeCb) at 

378 cm-I and 8(Cj3CaCb)4 bands. In this analysis, we used the peak area as an indicator of 

peak intensity. Because the V7 mode at 678 cm-I is not significantly affected by either 

the spin or oxidation states, its intensity was used as a reference to scale the intensity of 

other modes in each spectrum. The relative intensity of each band was plotted as a 

function of the L-Trp concentration, as shown in Fig. 11. The plots clearly show the 

sigmoidal shape for the wild-type rhTDO. Because these conformational changes in the 

heme reflect the binding of L-Trp to the catalytic sites, the sigmoidal curves imply that 

the heme conformational change exhibits an allosteric response. The sigmoidicity 

parameter (Hill coefficient) were estimated as 2.4, 2.7, 2.5 and 2.3 for the Y6, VB, 

8(Cj3CeCb) at 378 cm- I and 8(Cj3CaCb)4 modes, respectively. 
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Fig. 8. Resonance Raman spectra of wild-type rhTDO for various 
L-Trp concentrations. 
(A) High-frequency and (8) low-frequency regions are shown. The measurement 

conditions were as follows: (a) ferric rhTDO without L-Trp, (b) ferric rhTDO + 50 !-1M 

L-Trp, (c) ferric rhTDO + 100 ~lM L-Trp, (d) ferric rhTDO + 200 !-1M L-Trp, (e) ferric 

rhTDO + 300 !-1M L-Trp, (I) ferric rhTDO + 400 !-1M L-Trp, (g) ferric rhTDO + 600 !-1M 

L-Trp, (h) ferric rhTDO + 800 !-1M L-Trp, (i) ferric rhTDO + I mM L-Trp. 
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Fig. 9. Polarized resonance Raman spectra of ferric rhTDO. 
(a) perpendicular polarization (.i), ferric rhTDO with ImM L-Trp, (b) .1, ferric rhTDO 

without L-Trp, (c) parallel (II) polarization, ferric rhTDO with I mM L-Trp, (d) II, ferric 

rhTDO without L-Trp_ In the spectra of (a) and (b), only the VIO vibration mode 

contributes to the peak at 1,625 cm- I
_ In the spectra of (c) and (d), the Vee vibration 

mode contributes to the peak at 1,625 em- I
_ 
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Fig. 10. Deconvolution analysis of Raman bands in the low-frequency 
region. (A) ferric rhTDO (top) ferric rhTDO + 400 f-lM L-Trp (middle), ferric rhTDO 

+ I mM L-Trp (bottom), (8) ferric H76A mutant (top) and ferric H76A mutant + 2 mM 

L-Trp (bottom), (C) ferric Y42F mutant (top) and ferric Y42F mutant + 2 mM L-Trp 

(bottom). The black line with the filled rectangle represents the experimental data. The 

blue line superimposed on the experimental data represents the calculated data. The nine 

peaks shown in red are the result of the deconvolution analysis. The dots at the bottom 

of each spectrum are the residuals from the peak-fitting calculation. 
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Raman Spectra of the H76A Mutant 

In the high-frequency region of the ferric substrate-free form of the H76A mutant 

(Fig. 12), the V3 band appeared at 1,481 and ~1,507 cm-I
, which implies that it adopts a 

six-coordinate and the high-spinllow-spin mixture, in contrast to the high-spin state of 

the substrate-free wild-type enzyme. The V4 band was slightly down-shifted from 1,373 

to 1,372 cm- I by the mutation. As in the wild-type enzyme, the deconvolution analysis 

of the 250-450 cm-I region showed nine peaks (Fig. 10 B). Because the spin state of 

ferric H76A in the substrate-free form is different from that of the wild-type, the 

positions and the intensities of these Raman bands are different. Furthermore, H76A 

does not show an apparent spin transition upon L-Trp binding, and the mutation 

considerably reduces the affinity for L-Trp, as supported by a 6-fold increase in the 

Km(app) value. Therefore, the intensities ofvg, <>(CJ3CcCb)6,7 and <>(CJ3CaCb)4 do not change 

significantly upon the addition (0-2 mM) ofL-Trp (Fig. 11 B-D). A small increase in the 

intensity of both y 6 vibration at 334 cm-I and <>(CJ3CaCb)2 vibration at 427 cm-I was 

detected only when 2 mM L-Trp was used (Fig. 11 A, E). The intensity changes of these 

Raman bands do not indicate sigmoidal kinetics. 

Raman Spectra of the Y42F Mutant 

In the high-frequency region of Raman spectra for the ferric substrate-free form of 

Y42F (Fig. 12), the intensity of the V2 band at ~1,557 cm-I
, relative to that of 1,576 cm-I

, 

is similar to that of wild-type, which implies that the Y 42F mutant predominantly 

adopts the six-coordinate, high-spin state. After addition of L-Trp, the V4 band was 

slightly down-shifted from 1,372 to 1,371 cm-I
, unlike the pattern observed for the 

wild-type and H76A mutant enzymes. Despite the greater enzyme activity of the Y 42F 

mutant relative to the H76A mutant, addition ofL-Trp at concentrations up to 2 mM did 
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not affect most bands in the 250-450 em-! region, except for a slight reduction in the Y6 

peak, as shown in Fig. 10 C and 11 A-E. The binding ofL-Trp has a very small effect on 

the spin-state of the heme iron. These results are consistent with the 16-fold increase in 

the Km(app) value (Table I). 
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Fig. 12. High-frequency resonance Raman spectra of rhTDO mutants. 
(a) ferric H76A mutant, (b) ferric H76A mutant + 2 mM L-Trp, (c) ferric Y42F mutant, 

(d) ferric Y42F mutant + 2 mM L-Trp. 
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DISCUSSION 

L-Tryptophan Binding to rhTDO 

The analysis of substrate binding to ferric rhTDO usmg resonance Raman 

spectroscopy has been reported by Batabyal and Yeh (62), who compared the spectra of 

the substrate (L-Trp)-free and -bound enzymes. These results were essentially 

reproduced in the present study, as shown in Fig. 8. In the present study, we carefully 

examined the spectral changes of the ferric enzyme during the titration of the substrate, 

L-Trp. We quantified changes in the peak intensities using deconvolution analysis, 

which resolved the Y6 (338 cm-I
), Vs (350 cm-I

), o(C[3CcCb)6,7 (378, 391 cm-I
) and 

o(C[3CaCb)4 (416 cm- I
) bands in all spectra. 

The intensities of the out-of-plane ¥6 mode and the in-plane skeletal Vs mode are 

sensitive to the distortion of the heme plane. Because the Fe atoms are out of the heme 

plane in the high-spin state, but are in-plane for the low-spin state atoms (66), the 

change of the ¥6 and Vs intensities of wild-type rhTDO reflects the mixing the low- to 

high-spin states upon the L-Trp binding. This result is consistent with the optical 

spectral data described above. The mixed-spin state indicates that binding of L-Trp to 

ferric hTDO might facilitate deprotonation of the water that is bound to the sixth 

coordination position of the heme iron. 

Because the heme propionate bending modes, o(C[3CcCb)6,7, are sensitive to their 

environment, the change in their intensity with the elevation of the L-Trp concentration 

indicates altered H-bonding interactions of the heme propionates upon the L-Trp 

binding. In addition, the heme 4-vinyl bending mode, o(C[3CaCb)4, which was 

well-resolved from the 2-vinyl bending mode, o(C[3CaCb)2, in our analysis, decreased in 
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its intensity upon the L-Trp binding, suggesting a reduction in n-conjugation of the 

vinyl group with the porphyrin n-system (68). A similar change was not observed in the 

2-vinyl bending mode of heme. This resu~t suggests that L-Trp binding induces a 

conformational change only in the 4-vinyl group of the heme. 

The conformational changes in the heme of rhTDO induced by the L-Trp binding 

can be explained on the basis of the crystal structures of bacterial TDO (xTDO), which 

is homologous to the human enzyme. One of the most striking differences between the 

substrate-free and L-Trp-bound xTDO was observed at both the 4-vinyl and 

7-propionate groups of heme (Fig. 2). In the substrate-free form, the 4-vinyl group is in 

the in-plane configuration relative to the porphyrin plane, while it adopts the 

out-of-plane orientation in the substrate-bound form of xTDO. In addition, the bound 

L-Trp interacts with the 7-propionate group of the heme via its amino group. 

With respect to protein interactions, Y24 of xTDO is involved in hydrophobic 

interactions with the substrate. In addition, the Y24 hydroxyl group has an OR-n 

interaction with the 4-vinyl group of the porphyrin (Fig. 2), while the OR group of Y24 

is displaced toward the Cb atom of the heme 4-vinyl group by 0.7 A in the L-Trp-bound 

form. A similar interaction can be expected in rhTDO. The interaction between the 

conserved Y 42 of hTDO and the 4-vinyl group of the heme might be altered by L-Trp 

binding, causing the heme 4-vinyl group to rotate, thereby altering the intensity of 

8(C/3CaCb)4 in the Raman spectra. The importance of this interaction for substrate 

recognition and the heme environment was confirmed by the Y 42F mutation that shows 

considerably lower affinity 'for L-Trp and only small changes in the optical spectra and 

Raman band upon addition ofL-Trp. 
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Allosteric Interaction 

A novel finding of the present study using spectroscopic methods is that L-Trp 

binding to rhTDO is sigmoidal, suggesting homotropic allosteric interaction between 

the subunits of the tetrameric enzymes. By contrast, the enzymatic activity in various 

L-Trp concentration exhibits simple saturation with Michaelis-Menten kinetics, because 

further steps (i. e. the iron reduction and oxygen binding) are required for the reaction. 

The anaerobic condition in the titration experiments prevents activation of the enzyme. 

Activation or later step would limit the overall reaction rate. 

Reportedly, NADPH is an allosteric inhibitor of rat liver TDO, which implies the 

existence of feedback control, as TDO catalyzes the first step in the kynurenine pathway, 

leading to the formation of NAD (46). The compounds, 3-hydroxy anthranilate and 

a-methyl Trp, which are not substrates for TDO, are also known as heterotropic 

allosteric modulators (47). On the other hand, the study of homo tropic allosteric control 

in mammalian TDO has been limited to the early work of Schutz et al., which showed 

that cooperative kinetics (Hill coefficient of 1.6) of rat liver TDO were observed only at 

pH 6.2 and were dependent on both the concentration of L-Trp and the presence of 

a-methyl Trp (47). These data indicate that mammalian TDO possesses two binding 

sites-a catalytic site and a regulatory site (7). Since previous kinetic studies of rat liver 

TDO and bacterial TDO were based on the rate of product formation in a steady state, it 

is unknown which step is cooperative and which is rate limiting. On the other hand, the 

present study demonstrates that the first step of the reaction, L-Trp binding, is a 

cooperative manner. Although the physiological significance of our results remains to 

be elucidated, the reaction steps of hTDO in the liver has the potential for regulation by 

allosteric interaction involving both homotropic and heterotropic mechanisms. 

There are two main pathways of Trp metabolism, kynurenine and serotonin pathway. 
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Internal L-Trp, being an essential ammo acid for protein synthesis (4%), is also a 

precursor of serotonin (I %), but as much as 95% is metabolized via the kynurenine 

pathway (69,70). Serotonin, one of a group of neurotransmitters known as monoamines, 

is hypothesized to help regulate other neurotransmitter, norepinephrine (noradrenaline) 

(71). Low serotonin levels are believed to be the cause of many cases of mild to severe 

depression which can lead to symptoms such as anxiety, apathy, fear, feelings of 

worthlessness, insomnia and fatigue. On the other hand, the excess serotonin activity at 

central nervous system and peripheral serotonin receptors also produces various specific 

symptoms. Signs of excess serotonin range from tremor and diarrhea in mild cases to 

delirium, neuromuscular rigidity, and hyperthermia in life-threatening cases (72). Thus, 

it is important to maintain normal level of serotonin in the body. Conceivably, the 

cooperativity of TOO might be involved in the mechanism of regulating the flow in two 

metabolic pathways, depending on the internal concentration of L-Trp, because TOO 

catalyzes the first and rate-limiting step in kynurenine pathway. 

Although the tertiary structure of hTOO remains to be determined, the 

crystallographic analysis of xTDO might help to reveal the mechanism of cooperativity. 

The crystal structure of xTDO complexed with L-Trp reveals that two monomers are 

tightly packed into the asymmetric unit (31). The physiological tetramer results trom 

association with the neighboring dimer, which is related by crystallographic two-fold 

symmetry. The interface between the monomers within the internal dimer is formed by 

the anti-parallel association of the a2 helices (Fig. 13). The helix a3 of xTOO 

contributes residues F51 and H55 to the formation of the substrate-binding pocket in the 

distal region of the heme molecule. Interestingly, both the al and a2 helices of xTOO 

are distal to the core of the polypeptide chain and associate with adjacent subunits in the 

dimer. In particular, a I provides Y24 for creation of the substrate-binding pocket in 
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another chain. Because the amino acid sequence in the region of helices 0.1, 0.2, and 0.3 

in TDO is highly conserved among all species (Fig. 3), it can be assumed that TDOs 

share a common inter-subunit interaction that allows formation of the tetramer. However, 

whether binding of L-Trp to the catalytic site can regulate the affinity of another 

catalytic site remains to be determined. We prepared the Y 42F mutant of rhTDO to 

confirm the role of the conserved Tyr residue that forms the catalytic site of the adjacent 

subunit. As we expected, the Y 42F mutant exhibits considerably lower affinity and 

catalytic activity than the wild-type enzyme. Furthermore, the Y 42F mutant abolished 

the cooperative binding of L-Trp. These data suggest that Y 42 is involved in substrate 

binding in the catalytic site and is responsible for the transmission of the structural 

change of one active site to an adjacent subunit. 

47 



chain B 

heme 

Fig. 13. Interaction of N-terminal helices with adjacent subunit in the 
tetrameric structure of xTDO. 
The structures of the A and B chains are indicated in green and cyan, respectively. The 

substrate L-Trp is shown in magenta. Y24 of the A chain interacts with the heme in the 

B chain. Conversely, Y24 in chain B interacts with heme in chain A. 

48 



The Reaction Mechanism of Ferric hTDO 

As described above, H55 ofxTDO and H76 ofhTDO play crucial roles in substrate 

binding, but the role of these residues in catalysis remains to be controversial. Tong and 

co-workers have suggested that H55 in xTDO is not essential for catalysis, based on 

results of their biochemical analysis. They found that the kcat(app) of TDO is insensitive 

to pH over the range examined (PH 6 to 8), and the H55A mutant retained 15% of 

wild-type activity (31,58). On the other hand, Dick and co-workers showed that 

mutation of this conserved His in recombinant rat TDO significantly reduced the 

enzymatic activity (73). In the present study, we describe the effect of the H76A 

mutation on the kinetics of hTDO and discuss in detail the importance of the heme 

environment. The optical absorption spectra and the high-frequency region of the 

Raman spectra show that the H76A mutant exhibits an increase in the six-coordinate, 

low-spin state in the ferric form, whereas the ferric wild-type enzyme mostly exists in 

the six-coordinate, high-spin state. Thus, H76 is involved, either directly or indirectly, in 

the regulation of the spin state. Additionally, H76 affects the electrostatic field of the 

heme pocket, as evidenced by the distinctly different CT 1 band of the H76A mutant 

compared with that of the wild-type enzyme. 

Although the H76A mutant has only 0.1 % of wild-type activity, its Km(app) value is 

less than that of the Y42F mutant, which has greater activity than H76A. The shift in the 

optical absorption spectrum and the V4 Raman band ofH76A after the addition ofL-Trp 

also indicates that the L-Trp binding ability is not fully lost in the H76 mutant. Based on 

the comparison with bacterial TDO structures, it is likely that H76 of hTDO interacts 

with the hydrogen of the N1 atom of L-Trp in the catalytic site. Although the present 

study did not provide direct evidence that H76 acts as a catalytic base for abstraction of 

a proton from L-Trp, we conclude that H76 ofhTDO is important for substrate binding 
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in the heme pocket as well as for the catalytic reaction. 

The rhTDO has a novel characteristic, in which no reducing agent is required for 

ferric iron to be reduced to its ferrous form when both substrate and molecular oxygen 

are present. It is also shown that the ferric rhTDO is capable of CO binding without 

reductant when L-Trp is present (Fig. 14). These observations suggest a ligand-mediated 

mechanism that enables electron transfer from electron-rich indole to heme iron. Such a 

reaction might involve the H76 and bring about a catalytically required conformational 

transition of the enzyme. 

Considering our observed data, one possible scenario for the formation of 

3-indolenylperoxy intermediate is depicted in Scheme 1. In this mechanism, it is 

assumed that His 76 acts as a proton donor/acceptor through the hydrogen bond to Nl 

atom of L-Trp (Scheme 1 i). The base-catalyzed deprotonation of the indole NH group 

would generate L-Trp anion (Scheme 1 ii). The spin transition from high spin to low 

spin state with increase of the redox potential, which has been reported in rhTDO (74) 

as well as xTDO (31), would have the advantage to accept an electron from L-Trp. The 

electron transfer event would be coupled to the deprotonation of L-Trp to form neutral 

radical. After the formation of L-Trp neutral radical and heme reduction (Scheme 1 iii), 

02 then coordinates to the ferrous heme (Scheme 1 iv) and generate the 

3-indolenylperoxy intermediate (Scheme 1 v). For conversion of the heme iron-bound 

3-indolenylperoxy intermediate to N-formylkynurenine, two mechanisms (dioxetane 

intermediate or Criegee-type rearrangement pathway) are proposed (31,62). 

In regard to the electron transfer and the formation of Trp neutral radical, similar 

mechanism has been proposed for the reaction of the autocatalytical hydroxylation by 

lignin peroxidase (75). The reaction involves the electron transfer pathway between Trp 

residue and nearby heme to form neutral Trp radical that is followed by the insertion of 
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oxygen into the C3 position. In another case, the calculation based on the structure of 

versatile peroxidase also indicates the formation of Trp neutral radical as a transition 

state (76). In the case ofhTDO, the abstraction of proton from N1 by His76 would be a 

trigger for the electron transfer from L-Trp to the heme group. However, due to very 

low acidity of indole NH bond (pKa = 16 in aqueous solution) (77), the reaction 

initiated by the abstraction of proton is not considered to be feasible event in normal 

environment. The effects of proteins, namely, electrostatic and steric interactions 

between the substrate and active site residues will be the interesting topic of our future 

crystallographic study. 
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Scheme 1. The proposed reaction for the oxidation of tryptophan by 
ferric hTDO. A part surrounded by a red border indicates the mechanism reflected in 

the results of resonance Raman spectroscopic study and mutants analysis on rhTDO. A 

part surrounded by a blue border indicates the predictable way to produce the oxy-form. 

A part surrounded by a black border indicates the reactions between L-Trp neutral 

radical and an oxygen molecule bound to ferrous heme based on the two mechanisms 

postulated before (dioxetane and Criegee rearrangements). 

(i) The deprotonation of the N-I indole proton. (ii) The electron transfer from L-Trp 

anion to heme iron. (iii) The formation of L-Trp neutral radical. (iv) O2 coordination to 

the ferrous heme. (v) The generation of the 3-indolenylperoxy intermediate. 

The electron transfer and ferrous heme are shown in red. L-Trp neutral radical and 

oxygen atoms are shown in purple and blue, respectively. 
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Fig. 14. Change in the absorption spectra of ferric rhTDO with L-Trp 
under CO atmosphere at 25°C. 
Arrows indicate the direction of change in absorbance upon successive additions of CO. 

The spectra were taken at the beginning of the reaction and then after each 1 min for 12 

min. Buffer conditions: 50 mM potassium phosphate pHS.O, 200 mM NaCI. 
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CHAPTER II 

Crystallization of Human Tryptophan 2,3-Dioxygenase 
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SUMMARY 

Tryptophan 2,3-dioxygenase (TDO) is a heme-containing dioxygenase and catalyzes 

the oxidative cleavage of the pyrrole ring of indoleamines by the insertion of molecular 

oxygen. This reaction is the first and the rate-limiting step in the kynurenine pathway, 

the major Trp catabolic pathway in mammals. The recombinant human TDO (rhTDO) 

was crystallized by the vapour diffusion technique. Because the diffraction pattern of 

the initially obtained crystals was not suitable for structure analysis, the enzyme was 

engineered by optimizing the length of truncation in N-terminal amino acid sequence, 

and type of affinity tag (eg. hexahistidine, maltose-binding protein, or 

glutathione-S-transferase tag) to increase the stability and chance of crystallization. The 

solubility of rhTDO was enhanced when N-terminal 35 residues were truncated and 

hexahistidine tag was added in its N-terminal. The best crystal was obtained using this 

construct and the reservoir solution contains 10% (w/v) PEG 6,000, 100 mM 

Tri-potassium citrate and 20 mM HEPES pH 7.0. The addition of 4-phenylimidazole as 

a heme ligand was also essential for the crystallization. The crystals diffract to 8 A 

resolution using synchrotron radiation and belong to space group P21 with unit cell 

parameters of a = 93.1 A, b = 134.3 A, c = 125.9 A and b = 91.6°. Matthews coefficient 

(Vm) calculation suggests two tetramers are present in the asymmetric unit with solvent 

content of 44% (Vm = 2.2). 
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MATERIALS AND METHODS 

Construction of Expression Plasmids 

N-terminal Deletion Mutants ofrhTDO 

The secondary structure of hTDO was predicted with PSIPRED (Fig. 1). PSIPRED 

is a program developed by David Jones, which predicts protein secondary structure 

using the position specific scoring matrices generated by PSI-BLAST. The N-terminal 

sequence up to 141 of hTDO was predicted as a coiled-coli structure. Consequently, 

three types of truncated mutants, hTDO-~N40, hTDO-~N35 and hTDO-~N15 were 

designed to get more stable protein. For the plasmid for hTDO-~N40, the cDNA 

encoding full-length hTDO was amplified by PCR using a forward primer 

hTDO-~N40-Ndel (Table 1 A) which contains the Ndel site followed by the coding 

sequence ofhTDO starting at 141, and a reverse primer, hTDO-BamHI (Table 1 B). For 

hTDO-~N35, the forward primer hTDO-~N35-Ndel (Table 1 C) which contains the 

Ndel site and coding sequence of hTDO starting at S36, and the same reverse primer 

were used. The PCR product was digested by restriction enzymes and ligated into 

pET-I5b vector at Ndel and BamHI sites. The preparation ofhTDO-~NI5 plasmid was 

described in chapter I. 
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MBP-tagged hTDO-M15 and MBP-tagged hTDO-M35 

The plasmid for expression of MBP and hTDO-~N15 fusion protein, the hTDO 

cDNA was amplified by PCR using a forward primer hTDO-~N15-KpnI (Table 1 D), 

which contains the KpnI site followed by coding sequence ofhTDO starting at K16, and 

a reverse primer, hTDO-BamHI (Table 1 B). The PCR product was ligated into the 

KpnVBamHI sites of the MBP-expression vector pMAL-c2E (New England Biolabs). 

The sequences encoding Pro which is a part of the KpnI site was mutated into Ser using 

QuikChange site-directed mutagenesis kit (Stratagene) with pMAL-c2E hTDO-~N15 as 

a template. Similarly, pMAL-c2E hTDO-~N35 was also constructed: the hTDO cDNA 

was amplified by PCR using a forward primer hTDO-~N35-KpnI (Table 1 E) which 

contains KpnI site followed by the coding sequence starting at Met connected to S36, 

and the same reverse primer as using for construction of pMAL-c2E hTDO-~N15 

(Table 1 B). 

pMAL-c2E hTDO-~N15 plasmid was further modified because the presence of the 

flexible linker in the expressed protein may prevent stable association of the fusion 

partners (78). The modifications of amino acids in the MBP fusion protein contain the 

substitution of the 25-amino acid linker with only three alanine residues, and the 

mutation of charged residues near the C-terminus of MBP to alanines. A gene fragment 

encoding a mutated version of MBP was generated by PCR using the primer pair of 

MBP-BglII (Table 1 F) and MBP-Pvull (Table 1 G), and pMAL-c2E as the template. 

The MBP-Pvull primer is designed to introduce additional substitutions of E359A, 

K362A and D363A in MBP, and to mutate SSS sequence at linker region (Sad site) into 

AAA sequence (Pvull site) to favor helix extension. The DNA fragment for 

hTDO-~NI5 was amplified using the primer pair hTDO-~N15-PvuII (Table 1 H) and 

the reverse primer hTDO-BamHI (Table 1 B). The two PCR products were then ligated 
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simultaneously into the BglII-BamHI sites ofpMAL-c2E. 

GST-tagged hTDO-11N15 and GST-tagged hTDO-11N35 

The plasmids for GST fusion protein were created using pFN2A Flexi vector 

(Promega). To construct GST-tagged hTDO-~N15, the hTDO cDNA was amplified by 

peR using a forward primer, hTDO-~N15-SgfII (Table 1 I), which contains SgfII site 

followed by the coding sequence of hTDO starting at K16, and a reverse primer, 

hTDO-PmeI (Table 1 J). The peR product was digested by restriction enzymes and 

ligated into pFN2A at the SgfI and PmeI sites, which creates pFN2A hTDO-~N15 

encoding the fusion construct with GST at the N-terminus of the hTDO-~N15 and a 

TEV protease recognition sequence to allow cleavage and removal of GST. Similarly, 

pFN2A hTDO-~N35 was also constructed as follows: The hTDO cDNA was amplified 

by peR using a forward primer, hTDO-~N35-SgfI (Table 1 K), which contains SgfI site 

followed by hTDO sequence starting at S36, and same reverse primer as used for the 

construction of pFN2A hTDO-~N15. The peR product was digested by restriction 

enzymes and ligated into pFN2A at the SgfI and PmeI sites to generate the pFN2A 

hTDO-~N35. Furthermore, the coding region of the GST fused to truncated mutant of 

hTDO in the pFN2A hTDO-~N15 was amplified by peR using forward primer, 

GST-NdeI (Table 1 L) and the above reverse primer (Table 1 B). This amplified 

fragment was directly ligated to NdeIlBamHI-digested pET15b with a hexa-histidine tag 

and a thrombin site fused to the N-terminus of GST, to produce pET15b 

GST_hTDO-~N15. The plasmid ofpET15b GST_hTDO-~N35 was similarly prepared. 
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Conf: 999998999610025788877777784645776675689759999807989856675555 
Pred: CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCHHHHHHHHHHHHCCCCCCC 
hTDO: MSGCPFLGNNFGYTFKKLPVEGSEEDKSQTGVNRASKGGLIYGNYLHLEKVLNAQELQSE 

10 20 30 40 50 60 

Conf: Confidence (0=1 OW, 9=high) 
Pred: Predicted secondary structure (H=hel ix, E=strand, C=coi I) 

Fig 1. PSIPRED prediction result of hTDO N-terminal sequence. 

Table 1. Primer sequences used for amplification. 

primer Sequence (5' to 3') 

(A) hTDO-11 N40-NdeI GGGCATATGATCTATGGGAACTACCTGCATTTGG 

(B) hTDO-BamHI GGGGATCCTTAATCTGATTCATCACTGCTGAAG TAGG 

(C) hTDO-11 N35-NdeI GGGCATATGAGCAAAGGAGGTCRRATCTATGG 

(D) hTDO-11 N15-KpnI GGGGTACCGATGAAAAAACTCCC 

(E) hTDO-11 N35-KpnI GGGGTACCGATGAGCAAAGGAGGTCTTATCTATGG 

(F) MBP-BglII CTGATTTATAACAAAGATCTGCTGCCG 

(G) MBP-Pvull GTTGTTTACGCAGCTGCATTAGTCTGCGCGGCTGCCA 

GGGCTGCATCGACAGTC 

(H) hTDO-11 N15-Pvull GGGATTGCAGCTGCGATGAGTAAAAAACTCCC 

(I) hTDO-11 N15-SgjI AGGAGCGATCGCCATGAAAAAACTCCCCGTAGAAGG 

(J) hTDO-PmeI GGTTGTTTAAACTTAATCTGATTCATCACTGCTG 

(K) hTDO-11 N35-SgjI AACTGCGATCGCCATGAGCAAAGGAGGTCTTATC 

(L) GST-NdeI GGGCATATGTCCCCTATACTAGG 

aRestriction sites are underlined. 

bMutated sequences of MBP are bold italic. 
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Expression and Purification of Truncated Mutants of hTDO 

The truncated mutants (hTDO-8N40, hTDO-~N35 and hTDO-~N15) are expressed 

in E. coli and purified using the same protocol for hTDO-~N15 as described in chapter I. 

Expressed protein was purified in several ways adapted to each construct. However, in 

the crystallization in 4PI form, the buffer containing 5 mM 4PI was used from fracture 

of cell pellets in the stage of purification. All His-tagged hTDO expressed using the 

constructs on the basis of the pET 15b vector purified as described in chapter I. 

Purification of MBP-tagged hTDO 

Frozen cell pellets were resuspended in 120 mL of lysis buffer (20 mM Tris-HCI 

(pH 8.0), i.e., buffer A) containing EDTA-free complete protease inhibitor cocktail 

tablets (Roche), lysozyme (0.1 mg/ml), and DNaseI (0.01 mg/ml), followed by stirring 

for 1 h. Cells were lysed by sonication, and the cell debris was removed by 

ultracentrifugation at 185,000 x g for 30 min at 4°C. The resulting supernatant was 

loaded onto an Amylose Resin (New England Biolabs) column that had been 

equilibrated with lysis buffer supplemented with 200 mM NaCI (buffer B). The column 

was washed with the same buffer, and MBP-tagged protein was eluted from the column 

using the same buffer containing 10 mM maltose (buffer C). The collected proteins 

were then dialyzed against buffer B overnight at 4°C. The dialyzed proteins were 

concentrated and further purified using a Superdex-200 size-exclusion column with 

buffer B. The fractions that contained molecules similar in size to tetrameric 

MBP-tagged hTDO were pooled, and concentrated using Amicon Ultra-15 centrifugal 

filter devices (Millipore) containing a cellulose filter with a 50-kDa cutoff. After 

concentration of the fractions, the solution was filtered with a 0.22-f.lm disposable filter. 
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Purification of GST-tagged hTDO 

Frozen cell pellets were resuspended in 120 mL of lysis buffer (4.3 mM Na2HP04, 

1.47 mM KH2P04, i.e., buffer D) containing EDT A-free complete protease inhibitor 

cocktail tablets (Roche), lysozyme (0.1 mg/ml), and DNaseI (0.01 mg/ml), followed by 

stirring for 1 h. Cells were lysed by sonication, and the cell debris was removed by 

ultracentrifugation at 185,000 x g for 30 min at 4°C. The resulting supernatant was 

loaded onto a GST·Bind resin (Novagen) column that had been equilibrated with lysis 

buffer supplemented with 137 mM NaCI and 2.7 mM KCI [buffer E (PH 7.3)]. The 

column was washed with the same buffer, and GST-tagged proteins were eluted from 

the column using the elution buffer (50 mM Tris-HCI (PH 8.0) containing 10 mM 

reduced glutathione, i.e., buffer F). The eluted proteins were then dialyzed against 

buffer F containing 200 mM NaCI without reduced glutathione (buffer G) overnight at 

4°C. The dialyzed protein was concentrated and further purified using a Superdex-200 

size-exclusion column with buffer G. The fractions that contained molecules similar in 

size to tetrameric GST-tagged hTDO were pooled, and concentrated using Amicon 

Ultra-IS centrifugal filter devices (Millipore) containing a cellulose filter with a 50-kDa 

cutoff. After concentration of the fractions, the solution was filtered with a 0.22-llm 

disposable filter. 
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Crystallization of Recombinant Human TDO 

Initial Crystallization Screening 

For the initial screening of crystallization conditions, commercially available kits 

listed in Table 2 (except for No.6) were used. Crystallization trials of rhTDOs were 

performed using sitting-drop vapour-diffusion method (79) at 20°C, with 2 III drops 

containing 1 III 20 mg/ml protein and 1 III reservoir solution. 

Improvement of Crystals 

The initial conditions that hit crystal were optimized by varying the precipitants, the 

additives (No. 6 in Table 2), pH values, temperature and the protein concentration. 

These optimizations were carried out using hanging-drop vapour-diffusion method (79). 

The droplet was made by mixing 1.5~2 III protein solution and 1.5~2 III reservoir 

solution. Each hanging drop was equilibrated against a 500 III reservoir solution. 

Additionally, microseeding method (80) and an oil layer consisting of 50% (v/v) 

paraffin and 50% (v/v) silicon deposited over the surface of the reservoir solutions were 

used in order to avoid the crystals growing together and reduce the vapour-diffusion rate 

(81). The seed preparations were made using the 'Seed Bead' kit from Hampton 

Research. Crystals were placed in 50 III of their respective reservoir solution and 

mechanically homogenized on a standard laboratory vortex for 3 min at full speed. 

Dilutions of the seed stocks (between 1 x 10° and 1 x 10.4) were also made with the 

respective reservoir solutions. To obtain the crystals in ferrous state, the protein was 

reduced by the addition of sodium dithionite, and all steps were performed at 18°C in a 

glove box with the O2 concentration maintained < 5 ppm. 
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Table 2. Crystal screening kits used in this study. 

No. Product name Screen size Manufacturer 

1 Crystal Screen 50 Hampton Research 

2 Crystal Screen 2 48 Hampton Research 

3 Crystal Screen Lite 48 Hampton Research 

4 PEG/Ion Screen 48 Hampton Research 

5 MembFac 48 Hampton Research 

6 Additive Screen I~III 24X3 Hampton Research 

7 Wizard I • II 48X2 Emerald Biostructures 

8 Cryol·II 48X2 Emerald Biostructures 

9 JB Screen classic 1 ~ 10 24X 10 Jena Bioscience 

10 MemStart 48 Molecular Dimensions 

11 MemSys 48 Molecular Dimensions 

12 JCSG Core Suite I~IV 96X4 Qiagen 

X-ray Diffraction Experiments 

The crystals were soaked in reservoir solution in a stepwise fashion finally 

containing 25% ethylene glycol. Crystals were picked up with nylon-fibre loops and 

flash-cooled in a nitrogen-gas stream. When the crystals were obtained in anaerobic 

condition, the crystals were soaked in cryoprotectant and flash-cooled inside the glove 

box in liquid nitrogen. 

The quality of the crystals was checked by X -ray diffraction experiments on 

BL44B2 at SPring-8 (Harima, Japan). The X-ray diffraction data set was collected on 

BL41XU at SPring-8. The diffraction data were indexed, integrated and scaled with the 

HKL-2000 program package (82). 
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RESULTS AND DISCUSSION 

Since N-terminal sequence analysis of the purified full-length rhTDO revealed the 

N-terminal proteolytic truncation sites as described in chapter I, the series of truncated 

mutants were designed for crystallization. Table 3 shows total 10 different constructs of 

rhTDO that were expressed in E. coli and purified. The purified protein was used for the 

initial screening of crystallization condition. Various commercially available screening 

kits (Table 2) were used for reservoir solution in the vapour-diffusion method (79). The 

protein solutions in the presence of ligand for heme (4PI or CN-) or substrate (L-Trp) 

were also used for screening. As described below, three types of N-terminal truncated 

mutants of rhTDO showed initial crystal hits, while MBP- or GST-fusion constructs of 

rhTDO yielded no crystal at all. 

rhTDO-~NI5 was expressed as a His-tag fusion protein and the His-tag removed by 

thrombin in the purification. Screening for rhTDO-~15 in the presence of 4PI yielded 

the thin plate-like crystal covered with small clusters (Fig. 2 A) in the solution No. 17 of 

MembFac (100 mM sodium chloride, 100 mM sodium citrate tribasic dehydrate pH 5.6, 

12% (w/v) polyethylene glycol (PEG) 4,000 produced at 20°C. Since this crystal did not 

diffract X-ray, the reservoir condition was optimized to 100 mM tri-pottasium citrate, 

100 mM MES pH 6.3, 10% (w/v) PEG 4,000 supplemented with one-tenth of the 

volume of 15% (w/v) 1,2,3-Heptanetriol (Additive Screen 1, No.19) at 20°C (Fig. 2 B). 

The diffraction of this crystal was very weak and its highest resolution was limited to ~ 7 

A (Fig. 3 A). Micro-seeding technique enabled rhTDO-~NI5 to be crystallized under 

another reservoir condition of 100 mM tri-sodium citrate, 100 mM potassium phosphate 

pH 7.0,12% (w/v) PEG 8,000 at 20°C (Fig. 2 C). The problem of stacking of multiple 
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crystals during crystal growth was partly resolved but the crystal was still very thin 

plate. X-ray diffraction of this crystal was highly anisotropic (Fig. 3 B). The attempt to 

slow down the crystal growth by covering the surface of the reservoir solution by the oil 

layer had little effect on the thickness of the crystal, and the lowering temperature below 

10°C resulted in protein precipitation. 

In the preparation of rhTDO-.1.N40, the His-tag at N-terminus was retained because 

it could not be cleaved by thrombin. The enzyme maintains the activity and tetrameric 

assembly. The plate-like single crystals of His-tagged rhTDO-.1.N40 were obtained in 

reservoir condition of 100 mM tri-potassium citrate, 20 mM HEPES pH 7.0 and 10% 

(w/v) PEG 8,000 at 20°C (Fig. 2 D). The reflection was still weak, and the diffraction 

was limited to ~8 A resolution (Fig. 3 C). 

rhTDO-.1.N35 was also expressed as a His-tag fusion protein and the His-tag was 

removed by thrombin cleavage. The plate-like single crystal of rhTDO-.1.N35 with 4PI 

was obtained in reservoir condition of 100 mM tri-potassium citrate, 20 mM HEPES pH 

7.0 and 10% (w/v) PEG 6,000 at 20°C (Fig. 2 E). The crystal grew to maximum 

dimensions of 100 J..Lm x 150 J..Lm x ~20 J..Lm in a week and diffracted to 8 A resolution 

(Fig. 3 D). X-ray diffraction data were collected on BL41XU at SPring-8. The crystals 

belong to monoclinic system with unit-cell parameters a = 93.1 A, b = 134.3 A, c = 

125.9 A and ~ = 91.6° (Table 4). The systematic absence on 0 k 0 axis of reciprocal 

lattice indicates a space group P21• Matthews coefficient (Vm) calculation suggests two 

tetramers are present in the asymmetric unit with solvent content of 44% (Vm = 2.2). 

The low resolution of X-ray diffraction data prevented from determining the tertiary 

structure of hTDO. One of the main problems in the crystallization of hTDO is the 

liquid-liquid phase separation. Commonly used crystallizing agents (e.g. salt, PEG) and 

physicochemical parameters (e.g. temperature, pressure, pH) can lead to several 

undesirable metastable phase separations: liquid-liquid phase separation, aggregation 
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and gelation are the most common type. Metastable states can affect protein 

crystallization but their positive and negative effects are only partially understood. 

Another problem is anisotropic diffraction, in which packing in two directions is 

well-ordered, but stacking of layers in the third dimension is less regular. Loose packing 

of molecules might result in low-resolution and poor-quality diffraction. Although the 

truncation of35 residues in N-terminal ofrhTDO improved the enzyme stability and led 

to the crystallization, further mutagenesis of surface residues to form better packing 

interactions would be needed for improvement of crystalline quality. In addition, 

presence of heterotropic allosteric modulators of hTDO (e.g. NAD) or factors to 

eliminate conformational heterogeneity might be effective for crystal quality. 
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Table 3. Produced fusion proteins and the results of crystallization. 

Fusion Affinity tag Linker or Removal Crystallization 

protein cleavage site of tag 

6xHisi 6xHis thrombin site 0 0 

hTDO-~N15 

6xHisi 6xHis thrombin site 0 0 

hTDO-~N35 

6xHisi 6xHis thrombin site x 0 

hTDO-~N4O 

MBPI MBP S3N lOLGIEGRISEFGS x x 

hTDO-~N15 (TVDEALKDAQTN) 

MBPI MBP S3N loLGIEGRISEFGS x x 

hTDO-~N35 (TVDEALKDAQTN) 

mutated MBP AAA x x 

MBPI (TVDAALAAAQTN) 

hTDO-~N15 

GSTI GST TEV protease site x x 

hTDO-~N15 

GSTI GST TEV protease site x x 

hTDO-~N35 

6xHis/GSTI 6xHis, GST thrombin site for only x 

hTDO-~N15 6xHis, TEV protease 6xHis 

site for GST 

6xHis/GSTI 6xHis, GST thrombin site for only x 

hTDO-~N35 6xHis, TEV protease 6xHis 

site for GST 

a The parenthetical sequences indicates the C-terminal helix of MBP. The mutations of 

MBP are highlighted in bold italic. 
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c 

Fig 2. rhTDO crystals. 

The scale bars indicate 0.2 mm. 

(A) Initial crystals ofrhTOO-L1NI5 crystals. (8) Optimized rhTOO-L1NI5 crystals using 

Additive Screen. (C) rhTOO-L1N 15 crystals produced by microseeding method. (0) 

rhTOO-L1N40 crystals. (E) rhTOO-L1N35 crystals. 
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Fig 3. Representative 0.50 oscillation images. 
(A) The oscillation image on an optimized rhTDO-l'iN15 crystal using Additive Screen. 

(8) The oscillation image on a rhTDO-l'iNI5 crystal produced by microseeding method. 

(C) The oscillation image on a rhTDO-l'iN40 crystal. (D) The oscillation image on a 

rhTDO-l1N35 crystal. 
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Table 4. Data-collection statistics for a rhTDO-AN35 crystal. 

X-ray source 

Wavelength (A) 

Space group 

Unit-cell parameters 

a I b I c (A) 

a./~/ye) 

Data range (A) 

Reflections 

Observations used scaling 

Unique reflections· 

Rmerge t 
Iia (1) 

Completeness (%) 

Redundancy 

4PI/orm 

SPring-8 BL41XU 

1.00 

P2. 

93.1 I 134.3 I 125.9 

90 I 91.6 I 90 

50.0-8.00 (8.28-8.00) 

12,443 

3,373 (319) 

0.135 (0.426) 

10 (2.5) 

99.8 (99.7) 

3.7 (3.7) 

Values in parentheses are for highest resolution shell. 

t Rmerge = Lhkl Li jJ(hkl)i - <J(hkl»j I Lhkl Li J(hkl)i . 
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