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Chapter 1 

Introduction 

1. 1 Outline of the present work 

Austenitic stainless steels are now extensively used because of their excellent mechanical, 

chemical and physical properties. These properties include high corrosion resistance, high 

ductility, high toughness, high workability, excellent weldability and nonmagnetic property [ 1-6]. 

Considering these properties, we are confident that, in near future, they will be used more 

widely under extreme conditions, such as high stress, high magnetic field and low temperature 

and their combinations, as shown in Fig. 1-1. 

Austenitic stainless steels are based on the Fe-Cr-Ni-C system. Nickel stabilizes the 

austenite phase of steel, maintaining fully austenite phase (y-phase) at room temperature[7-11], 

as shown in Fig. 1-2. Chromium improves the corrosion resistance of steel. The austenite 

Low 

Fig. 1-1 Schematic diagram of extreme conditions, such as high stress, high magnetic field and low 

temperature and their combinations. 
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Fig. 1-2 SEM observation result of a fully austenitic phase in solution treated SUS304L austenitic 

stainless steel. 

phase of most stainless steels is, however, metastable, and a martensite phase (E'-phase and a'

phase) could be induced by applying external fields or by cooling after heat-treatment[12-15]. 

In most cases, martensitic transfonnations deteriorate the excellent properties of austenitic 

stainless steel[ 16-19]. For example, it can lead to cracks due to the volume change associated 

with the martensitic transformation. Furthermore, the martensitic transfonnation accompanies 

change in magnetic properties[20-23]: the non-magnetic property of austenite phase changes 

into fenomagnetic one when the a'-phase forms by martensitic transformation. Such a change 

of magnetic property is not preferable for many applications, especially in which magnetic field 

is used. Therefore, it is very important to investigate the stability of austenite phase in order to 

use austenitic stainless steels safely. However, the stability of the austenite phase under 

extreme conditions described above has not been studied systematically yet. In the present 

study, therefore, the stability of austenite phase under these extreme conditions has been 

investigated by using four representative austenitic stainless steels (SUS304, SUS304L, SUS316 

and SUS316L). In the following, the background, purpose and construction of the thesis are 

described. 
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1. 2 Effect of deformation at low temperature 

High stress is one of external fields and influences the phase stability of austenitic stainless 

steels. Until now, the etlects of high stress on martensitic transformation have been studied by 

many researches[17, 24-28]. Generally, the martensitic h'ansformation is known to be induced 

in austenitic stainless steels when the steels are deformed at temperatures below Md. 

The y-phase (fcc) in austenitic stainless steels transforms to a'-martensites (bee) by 

deformation, In addition, E'-martensite (hcp) is also formed as an intermediate phase prior to 

the fonnation of a' -martensite in certain austenitic stainless steels. Such a martensitic 

transformation sequence depends on the chemical composition of stainless steel. (Increasing the 

amount of Cr addition promotes fOnTIation of E' -martensite.) 

Nucleation of defonnation-induced a'-maltensite in austenitic stainless steels is known to 

Fig. 1-3 Nucleation sites of ex' -martensite in austenite stainless steel: intersection of e' -martensites (a), 

isolated E'-martensite (b), E'-martensite-grainboundary (e) and grain boundary triple point (d), 

respectively. (after Das e/ at. [30]) 
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occur at such sites as twins, stacking faults and E'-martensite. Olson and Cohen assumed that 

the nucleation of martensite occurs at intersections of above sites[29], as shown in Fig. 1-3 (a), 

and the rate of martensite formation will therefore be proportional to the rate of shear-band 

intersection formation. In addition, Das et al. reported that the nucleation of the deformation

induced a' -martensite also occurs at isolated shear band, shear band-grain boundary intersection 

and grain boundary triple point, as shown in Fig. 1-3 (b)-(d)[30]. 

Huang et al., Guimaraes and Werneck have found that the grain size of the austenitic 

stainless steel affects the deformation-induced martensitic transformation[31-32]. That is, a 

decrease in the grain size will generate less deformation-induced martensites. The reason for 

such grain size dependence is that the grain boundaries suppress the growth of martensites. 

The strain rate and the loading condition have been also studied as factors which will 

influence the deformation-induced martensitic transformation by Peterson et al., Hecker et al. 

and Murr et al. [33-35]. The strain rate is believed to have two different effects. First, high 

strain rates will restricts the amount of deformation-induced martensite. Secondly, the higher 

strain rate is believed to promote formation of shear-bands, which would promote the strain

induced martensitic transformation due to the formation of more nucleation sites. Patel and 

Cohen have investigated the effect of the applied stress on the martensitic transformation and 

found that biaxial stress produces more martensite than uniaxial stress[36]. 

Although the effect of deformation only is well understand as described above, the 

combined environment of external stress and magnetic field at cryogenic temperature are not 

examined yet for austenitic stainless steels. 

1. 3 Effect of magnetic field on martensitic transformation 

1.3.1 Influence on martensitic transformation temperature 

A magnetic field is also one of external fields, and influences martensitic transformation in 

ferrous alloys and steels, because a large difference in magnetization exists between the 
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To Ttl As 
T~mp~rature, T 

Fig. 1-4 Schematic illustration of Gibbs chemical free energy as a function of temperature in a 

magnetic field. (after Kakeshita et al. [46]) 

austenitic and martensite phase. We schematically show why the transformation temperature 

is influenced by the magnetic field. Figure 1-4 schematically shows temperature dependence 

of the Gibbs chemical free energy of the parent phase (Gp) and the martensite phase (Gm). In 

the figure, To and Ms represent the equilibrium temperature and transformation start temperature, 

respectively. When the magnetic field is applied to the system, the Gibbs chemical free energy 

of the martensite phase decreases mainly due to the addition of the magnetostatic energy (the 

change in Gibbs chemical free energy of the parent phase is neglected here for simplicity). 

Therefore, the eqUilibrium temperature under the magnetic field increases, as shown in Fig. 1-4. 

Also, the temperature Ms under the magnetic field increases to Ms' if it is assumed that the 

martensitic transformation under the magnetic field occurs at the temperature where the change 

between the Gibbs chemical free energies Gp and Gm under the magnetic field is the same as 

that between the Gibbs chemical free energies under no magnetic field at Ms. 

Such effects of magnetic field on martensitic transformation have been studied by many 

researchers, in particular by Sadovsky et al. and by Kakeshita et al. As a result, many 
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interesting phenomena concerning these effects have been discovered[J7-42]. 

1.3.2 Influence on morphology o(martensites 

Kakeshita ef al. also researched that tl1e effect of a magnetic field on the morphology and 

arrangement of mmtensites[43]. Figure 1-5 shows optical micrographs of thermally-induced 

martensites formed by cooling a little below the M, temperature «a), (d) and (g» and those of 

magnetic field-induced mattensites «b), (c), (e), (I), (h) and (i». The transformation 

temperature T, t;T (~ T - A{) and H are shown in each photograph of Fig. 1-5. They reported 

that, the morphologies ofthe martensite formed in some steel does not depend on the formation 

temperature: an Fe-28.7Ni-1.8C alloy (mass %) exhibits thin plate morphology and the other 

two alloys a lenticular one in all cases. They also pointed out that the morphologies of 

maltensites are different even if the martensites are formed at nearly the same temperature, as 

Fa · 28.7N i -1.~C,(A 1 Fe -2~.ONH'(C,(Bl Fe.24.7l'li -1.8C,(Cl 

Fig. 1-5 Optical micrographs of thermally-induced martensites, (al and (d), and magnetic field

induced ones, (b), (c), (e) and (t). Transformation temperature T, t;T and H for the magnetic field

induced martensites are shown in each photograph. (after Kakeshita et al. [44]) 
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seen from the comparison of (c) and (d). This result is contradictory to a proposition that the 

martensite morphology in Fe-Ni-C alloys is decided only by the formation temperature. The 

reason for this difference is not known yet. The same results (the morphology of a magnetic 

field-induced martensite was the same as that of a thermally induced one irrespective of the 

transformation temperature and the strength of the magnetic field) are obtained for Fe-Ni[44] 

and Fe-Mn-C[45] alloys. 

1.3.3 Kinetics ofmartensitic transformation 

Martensitic transformations are classified into two groups from the view point of kinetics: 

athermal and isothermal ones by a difference in time and temperature dependence of the amount 

of martensites. The amount of the athermal martensite has been considered to be a function of 

temperature only. The athermal martensitic transformation has been considered not to take 

place until the temperature is brought down below M s, the martensitic transformation start 

<~,,~ .. ,,_..... rtrE)SSUfE) . _ ....... R. __ 

"'~. 
':";'.-~.-~~~ 

~~¥ .. ., .. ~,; .. -----__ ~_ uniaxialstress 
---~~~i;~tib.fiefd 

Time 

Fig. 1-6 Predicted TTT diagrams of isothermal martensitic transformation under magnetic field and 

hydrostatic pressure by the theory previously constructed, together with that under no external filed. 

(after Kakeshita et al. [47]) 
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temperature, which is always below the thermodynamical equilibrium temperature, To, between 

the parent and martensite phases. On the other hand, the amount of isothermal martensite has 

been thought to be dependent on both temperature and time, where a waiting time or an 

incubation time is needed until the martensite transformation starts while the temperature is kept 

constant. Materials undergoing such an isothermal martensitic transformation are very few in 

number, and an Fe-Ni-Mn alloy is a typical example. However, there is a view that the 

isothermal transformation is general and the athermal one is unique, speculating that the 

incubation time needed for the athermal transformation is undetectably short. Unfortunately, 

this view has not been verified yet, although the verification may give important information on 

the basic problems, such as thermodynamics, nucleation and growth mechanism and the origin 

of martensitic transformation. 

Recently, Kakeshita et al. have found that the originally isothermal kinetics of martensitic 

transformation in Fe-Ni-Mn based alloy changed to an athermal one under pulsed magnetic field, 

and they have also performed a systematic study on the incubation time in Fe-Ni-Mn alloys 

under magnetic field[ 46-4 7]. They have explained their experimental results by introducing a 

phenomenological theory. Their theory is based on the probability related to the nucleation 

barrier. Moreover, it is predicted that the athermal martensitic transformation can be explained 

by the same kinetics as the isothermal martensitic transformation. Details of the theory is 

reported elsewhere [ 48]. 

Based on the theory, they made the following predictions about the behavior of athermal 

and isothermal martensitic transformations, as schematically shown in Fig. 1-6[47]: (i) a static 

magnetic field lowers the nose temperature and shortens the incubation time; (ii) a hydrostatic 

pressure raises the nose temperature and increases the incubation time; (iii) in materials 

classified as exhibiting an athermal transformation, the transformation occurs isothermally by 

holding at a temperature between To and Ms. 

Similar effects of magnetic field are also expected to occur in austenitic stainless steel 

because a' -martensite in stainless steels is ferromagnetic. However, there is almost no report 

concerning such effects in austenitic stainless steel. 
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1.4 Effect of heat-treatment 

In many application of stainless steels, a welding process is unavoidable and during the 

welding process, the steels induce carbide precipitation (M"C6) along the grain boundaries[49], 

as illustrated in Fig. 1-7. The precipitation of M2)C, is preceded by intermediate phases in the 

sequence of cementite, M,X and M7C3, and finally leading to M23C.[50]. Characteristics of 

M21C6 precipitates are usually investigated by sensitization heat-treatment; the stainless steels 

are heat-treated in the temperature range between 773 and 1073 K. Such a carbide 

precipitation along the grain boundaries forms the chromium depleted zone, which enfeebles the 

formation of passive film and leads to preferential corrosion[5, 51-52]. 

The formation of carbide precipitation of M23C, is also known to induce a: -martensite in 

some austenitic stainless steels[14, 17]. This formation of ferromagnetic a'-martensite is 

attributed to decrease in nickel and chromium concentrations, which are important elements to 

maintain the austenite phase at room temperature, as mentioned above. Such a formation of 

Chromium 
Depleted zone 

Fig. 1-7 Schematic diagram of carbide precipitation fonned along the grain boundaries. 
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a' -martensite alters non-magnetic property in some austenitic stainless steels to ferromagnetic 

one after sensitization heat-treatment. 

1.5 Purpose and Construction 

As mentioned above, austenitic stainless steels will be used under the extreme 

environments, such as cryogenic temperature, high stress, high magnetic field and their 

combined environments because of their excellent properties. Such extreme environments 

( external fields) could influence the phase stability of austenitic stainless steels as described 

above. Therefore, it is important to clarify the effects of the external fields on martensitic 

transformation for using the austenitic stainless steels safely and for obtaining the information 

on the basic problems, such as kinetics and crystallography of martensitic transfonnation in 

austenitic stainless steels. In addition, it is also reported that the sensitization heat-treatment 

influence on the phase stability of austenitic stainless steel by many previous researches[ 14, 17]. 

Therefore, investigation, the effect of the sensitization heat-treatment on the stability of 

austenite phase, is also necessary. However, there have been not so much such studies. 

In the present study, therefore, we will investigate the effects of cryogenic temperature, 

high magnetic field, high stress and their combined conditions on martensitic transformation in 

the solution-treated and sensitized typical austenitic stainless steels (SUS304, SUS304L, 

SUS316 and SUS316L). 

The thesis consists of the following six chapters: 

Chapter 1 The background of the present study was introduced and the purpose and 

significance of the present study were described. 

Chapter 2 The effects of cryogenic temperature, high magnetic field, high stress and 

their combined conditions on martensitic transformation in solution-treated 

and sensitized SUS304, SUS304L, SUS316 and SUS316L stainless steels are 

described. 
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Chapter 3 

Chapter 4 

Chapter 5 

Chapter 6 

Time-temperature-transformation diagram of isothermal martensitic 

transformation in a solution-treated SUS304L stainless steel is described. 

Time-temperature-transformation diagram of isothermal martensitic 

transformation in a sensitized SUS304 stainless steel is described. 

The effect of magnetic field on successive y -7 E' -7 a' martensitic 

transformation in a solution-treated SUS304L stainless steel is described. 

The results obtained in this study are summarized. 
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Chapter 2 

Effects of cryogenic temperature, high stress and high 

magnetic field on phase stability of some austenitic 

stainless steels 

2.1 Introduction 

Austenitic stainless steels are widely used because of their desirable feature such as high 

corrosion resistance, excellent formability, superior weldability, nonmagnetic characteristics and 

high toughness[I-6]. Considering recent developments in high magnetic field technologies, 

we are confident that austenitic stainless steels will be used more widely under a combined 

environment of cryogenic temperature, high stress and high magnetic field in near future. 

However, the austenite phase in stainless steels tends to become unstable under a cryogenic 

temperature, high stress and high magnetic field[7-12]. Thus these effects should be well 

understood in order to use the austenitic stainless steel safely under such combined environment. 

Concerning the instability of the austenite phase, a martensitic y ~ E' ~ a,' transformation has 

been reported to occur in some austenitic stainless steels. The effect of the combined 

environment described above on the martensitic transformation is especially important because 

many of the excellent properties could be deteriorated if the austenite phase transforms to the 

martensite phase[3, 13-16]. There are several investigations concerning the effect of moderate 

magnetic field on deformation. For example, flow-stress of deformation is reported to increase 

under a magnetic field of 14 MAIm at cryogenic temperature in some steels because of an 

enhanced martensitic y ~ a,' transformation[17], while no effect of magnetic field (3 MAIm) on 

martensitic transformation was detected in other report[18]. Change in deformation stress 

under the magnetic field was also reported in some austenitic stainless steels[19-20]. However, 

there are few investigations concerning effects of high magnetic field on the stability of the 

15 



austenite phase. Therefore, in the present study, we will examine the effects of cryogenic 

temperature, high stress and high magnetic field and their combined environment on the phase 

stability of typical austenitic stainless steels ofSUS304, SUS304L, SUS316 and SUS316L. 

2.2 Experimental Procedure 

In the present study, four kinds of austenitic stainless steels, SUS304, SUS304L, SUS316 

and SUS304L, were examined. The chemical compositions of the steels are shown in Table 2-

1. All kinds of steels were cold-rolled into a sheet. Specimens for various experiments were 

cut from the sheets to a suitable size, and then solution-treated at 1323 K for 0.5 h followed by 

quenching into iced water. Some of the specimens were sensitized by heat-treatment at 973 K 

for 10 or 100 h. The oxidized surface layer was eliminated by electropolishing, where an 

electrolyte composed of85 % C2HsOH and 15 % HCl04 in volume was used. 

The phase stability of stainless steels at cryogenic temperature was examined by two 

methods: one was magnetic susceptibility measurement at temperatures between 4.2 and 300 K 

with a constant rate of 1 K/min, and the other was magnetization measurement after isothermal 

holding at 77 K. Effect of high magnetic field on transformation behavior was examined by 

using a pulsed magnet with a maximum magnetic field of 30 MAim. Since it is well known 

that a deformation at cryogenic temperature for the present steels induces martensite phase[5-6, 

21-23], we carried out the tensile test on the present steels at 77 K using an Instron-type tensile 

machine with a constant strain rate of 2.6 x 10-4 s -1. In order to examine the effect of 

combined environment on transformation behavior, we applied a magnetic field at 77 or 4.2 K 

on a specimen which was deformed beforehand at 77 K. The amount of a' martensite formed 

by the above environment was obtained by a magnetization measurement in a low field range at 

room temperature. The microstructure and crystal structure of the specimens were investigated 

by optical microscopy, scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM). Specimens for TEM observation were prepared by electropolishing using 
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an electrolyte consisting of 90 % CH3COOH and 10 % HCI04 in volume. TEM observation 

was made with an accelerating voltage of200 kV. 

Table 2-1 Composition of austenitic stainless steels used (mass %) 

Type C Si Mn P S Ni Cr Mo Fe 

SUS304 0.06 0.67 1.01 0.029 0.009 8.50 18.10 Bal. 

SUS304L 0.023 0.48 1.07 0.005 8.47 18.20 Bal. 

SUS316 0.052 0.67 1.49 0.033 0.005 10.71 16.43 2.12 Bal. 

SUS316L 0.015 0.56 0.86 0.001 12.36 17.21 2.31 Bal. 

2.3 Results 

2.3.1 Effect of cryogenic temperature on transformation behavior 

In order to investigate the martensitic transformation behavior and magnetic properties, we 

have measured temperature dependence of magnetic susceptibility by applying a low magnetic 

field of79.6 kA/m. Figure 2-1 (a) shows temperature dependence of magnetic susceptibility X 

of the SUS304 stainless steel in the solution-treated and sensitized states. The X-T curve of the 

solution-treated SUS304 stainless steel shows a sharp peak at about 40 K due to a paramagnetic 

to antiferromagnetic transition of the 'Y-phase, being in agreement with a previous report by U. 

Gonser et al[24]. There is no hysteresis between heating and cooling processes. On the other 

hand, the X-T curve of the SUS304 stainless steel sensitized for 10 h starts to increase in the 

cooling process near 260 K due to the formation of ferromagnetic a'-phase. It also starts to 

increase near 120 K in the heating process. This behavior means that the martensitic 

transformation of the sensitized SUS304 stainless steel proceeds isothermally. Figure 2-1 (b) 

shows the X-T curves of the solution-treated and sensitized SUS304L stainless steel. These 

results of the both specimens exhibit an increase in susceptibility in the cooling and heating 

processes between about 160 and 80 K due to the isothermal martensitic transformation as in the 
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Fig. 2-1 (a-d) Magnetic susceptibility of solution-treated and sensitized stainless steels. 

Measurement was made in the cooling process and then in the heating process. 

sensitized SUS304 stainless steel. However, the isothermal martensitic transformation was not 

detected in SUS316 and SUS316L stainless steels regardless of heat-treatment, as shown in Fig. 

2-1 (c and d). For all steels examined, the Neel temperatures (TN) slightly increases by 

sensitization treatment possibly due to the decrease in Cr content of the y-phase associated with 

the precipitation of M23C6• We confirmed that an athermal martensitic transformation does not 

occur for all the steels examined regardless of heat-treatment when the specimen is cooled 

rapidly. In order to clarify the isothermal martensitic transformation behavior, we have carried 

out isothermal holding experiment. Figures 2-2 (a) and (b) show the magnetization curves 

obtained at room temperature, TR, for a solution-treated SUS304L stainless steel without and 
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Fig. 2-2 Magnetization curves at R.T. for a solution-treated SUS304L stainless steel; (a) is the 

specimen without isothermal holding at 77 K and (b) is the specimen after isothermal holding at 

77 K for 106 s. 
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Fig. 2-3 Fraction ofthe a'-phase formed by isothermal holding at 77 K in the sensitized SUS304, 

the solution treated and sensitized SUS304L stainless steels. 

with isothermal holding at 77 K for 106 s, respectively. As known from the figure, the 

spontaneous magnetization does not appear in the specimen without isothermal holing, while it 

appears in the specimen with isothermal holding. Similar magnetization measurements were 
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made for the solution-treated SUS304, sensitized SUS304 and SUS304L stainless steels with 

different time of isothermal holding. Then, the relation between isothelmal holding time at 

77 K and the amount of a,' martensite,j~., is shown in Fig. 2-3. The value offa' was calculated 

from the spontaneous magnetization of the specimen at room temperature Mo(TRl, and that of 

the a,' phase Mo"'(TR) asj". ~ Mo(TR) ! Mo"·(TR). Here, the magnetization of y- and E' -phase are 

neglected because they are nonmagnetic[25-28]. The value of Mo"'(TRl is approximated as the 

value at 0 K, Mo"'(O) because the Currie temperature is far above TR, although it is a rough 

approximation. The value of Mo"'(O) for SUS304 and SUS304L stainless steels is estimated to 

be 1.79 flsiatom considering the Slater-Pauling curve and their valence electron 

concentration[29]. We know from Fig. 2-3 that f a' increases with increasing holding time, 

and also increases with increasing sensitization time for both steels. Tn the case of the 

sensiti zed SUS304L stainless steel, f a' is about one order in magnitude larger than that in the 

sensitized SUS304 stainless steel. 

In order to know isothennal transfonnation sequence in the present steels, we have made 

SEM and TEM observations. Figure 2-4 shows a SEM observation result of a solution-treated 

Fig. 2-4 A SEM image of a solution-treated SUS304L stainless steel after isothermal holding at 

77 K for 106 s. The mark 'A' indicates a plate of E'·martensite and the mark '8' indicates a 

wedge-shaped plate of ai-martensite inside the E' -martensite. 
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Fig. 2-5 An optical micrograph of a sensitized SUS304 stainless steel after isothermal holding at 77 K 

for lOG s. 

• 

• 
" (Ill), f/(O tI)", [10 I], 11[11l]", 

Fig. 2-6 A transmission electron micrograph showing a' martensite formed in a sensitized (100 h) 

SUS304 stainless steel (a), the diffraction pattern taken from encircled area (b) and its schematic 

illustration ( c). The diffraction pattern includes reflections form y-phase (P), matrix of a' martensite 

(Mm) and its twin (MI). The y-phase and a'-martensite satisfy the K-S relation. 

• 

SUS304L stainless steel after isothermal holding at 77 K for 10' s. In the figure, a band is seen 

in the matrix of the y-phase as indicated by 'A', In addition, we notice some wedge-shaped 

plates inside the band as indicated by 'B'. Considering previous report[30], we know that the 

banded plate indicated by 'A' is due to the formation of E'-martensite and the wedge-shaped 
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plates correspond to the a' -martensite. Similar results have been obtained in a sensitized 

SUS304 and SUS304L stainless steels after isothermal holding. Then, we speculate that the 

isothermal martensitic transformation sequence of the solution-treated SUS304L, sensitized 

SUS304 and SUS304L stainless steels is y ~ E' ~ a'. In the sensitized SUS304 and SUS304L 

stainless steels, however, we found that direct y ~ a' transformation occurs during isothermal 

holding at 77 K. A typical microstructure is shown in Fig. 2-5. The wedge-shaped plates of 

the a'-phase are formed in the y-phase. Also, we have observed the direct y ~ a' 

transformation by TEM. Figure 2-6 (a) shows a TEM micrograph of the a' martensite formed 

in the matrix (y-phase) ofa sensitized SUS304 stainless steel. From the diffraction pattern (b) 

and its schematic illustration (c), we know that the orientation relationship between a' and y 

satisfies the Kurdjumov-Sachs relation[31], which is characteristic to the direct y ~ a' 

transformation observed in many steels. 

2.3.2 Effect of magnetic field on transformation behavior 

We have investigated the effect of high magnetic field on martensitic transformation for the 

all steels. In order to examine the effect of high magnetic field on the transformation of single 

y-phase state, we applied pulsed high magnetic field of up to 30 MAim at 4.2 K «TN) and at 

77 K (>TN) of single y-phase state, and found that no magnetic field-induced transformation 

occurs for all steels at these temperatures. 

Next, in order to examine the effect of high magnetic field on the E' ~ a' transformation, 

we have applied a pulsed high magnetic field at room temperature to a solution-treated 

SUS304L in a mixed state of y-, E' - and a' -phases, state of which was formed beforehand by 

isothermal holding at 77 K for 106 s. Figure 2-7 shows magnetization curve obtained at R. T. in 

a low field range of the solution-treated SUS304L before (a) and after (b) a high magnetic field 

application (30 MAIm at 77 K). Obviously, the spontaneous magnetization is increased by the 

high field application, meaning that the a'-phase is further induced from the E'-phase by 

magnetic field. The change in the fraction of a' -phase by the high filed application is about 

0.3 %. Similar result was obtained for the sensitized SUS304 and SUS304L stainless steels. 
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Fig. 2-7 Magnetization curves at room temperature of a solution-treated SUS304L stainless steel 

(a) before and (b) after a high magnetic field application (30 MAim at 77 K). Prior to the high 

field application, the specimen has experienced isothermal holding at 77 K for 106 s. 

The different influence of magnetic field on y --? E' --? a' and E' --? a' transformations will be 

discussed later. 

2.3.3 Effect of de/ormation under a uniaxial stress on transformation behavior 

We have carried out tensile tests on the present steels with the solution-treated and 

sensitized states, and evaluated the amount of deformation-induced martensite. The 

magnetization curves obtained at 77 K for a solution-treated SUS304L stainless steel deformed 

at 77 K by 5 % and 30 % (nominal strain) are shown in Fig. 2-8 (a) and (b), respectively. The 

spontaneous magnetization of these curves is due to deformation-induced a'-phase. Similar 

results were obtained in all the steels. We can evaluate the fraction of a'-martensite by the 

same method mentioned in section 2.3.1. In here, the values of Moa'(O) for SUS316 and 

SUS316L stainless steels are estimated to be 1.70 and 1.90 flB/atom, respectively, considering 

the Slater-Pauling curve and their valence electron concentration[29]. The results are shown 
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Fig. 2-8 Magnetization curves at 77 K for a solution-treated SUS304L stainless steel deformed at 

77 K by 5% (a) and 30% (b). 
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Fig. 2-9 Volume fraction of strain-induced a' -martensite at 77 K in the solution-treated and sensitized 

SUS304, SUS304L, SUS316 and SUS316L stainless steels. Lines are guide for eyes. 

in Fig. 2-9 for all the solution-treated and sensitized stainless steels. The amount of a'-

martensite increases with increasing strain, but it does not depend on the effect of sensitization. 

In order to investigate the transformation sequence of deformation-induced martensite, we have 
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Fig. 2-10 SEM (a) and TEM (b) observation of a solution-treated SUS304L stainless steel deformed 

by 1%at77K. 

made SEM and TEM observations. Figure 2-10 shows SEM (a) and TEM (b) observation 

results obtained at R.T. in solution-treated SUS304L stainless steel deformed at 77 K by 1 %. 

In figure (a), we notice banded plates which corresponds to the E' -phase formed in the [-phase. 

Figure 2-1 0 (b) shows the bright field image of an E' -plate. We notice some particles in the E'

plate. From the electron diffraction pattern corresponding to the encircled area, this particle is 

confirmed to be the a'-phase. The same microstructure was observed in all the solution

treated and sensitized stainless steels. From these results, deformation-induced transformation 

seq uence is confirmed to be [ --> E' --> a' for all the steels. It should be noted that the thickness 

of deformation-induced E' plate is very thin compared with that of isothermally induced E' 

shown in Fig. 2-4. 

2.3.4 Effect of combined environment on tram/ormation behavior 

In order to examine the martensite transformation behavior under a combined environment 

of high magnetic field and defollllation, we have applied a high magnetic field at 77 or 4.2 K on 

the present steels which were beforehand deformed at 77 K, and examined the change of the 

amount of a'-martensite. Figure 2-11 (a) is an example showing the effect of high magnetic 

field of 27.8 MAIm at 77 K for a solution-treated SUS304L stain less steel deformed beforehand 
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Fig. 2-11 Magnetization curve at 77 K of a solution-treated SUS304L stainless steel under a pulsed 

high magnetic field (a), and magnetization curve at room temperature in a low field region before and 

after the high field application (b). Prior to high field application, the specimen was worked by 5% 

at 77K. 

by 5 % at 77 K. As known from (a), there is neither abrupt increase in magnetization nor 

hysteresis in the curve. This result means that the a'-martensite is not formed by the high field 

application in the specimen. This fact can be also confirmed by magnetization curves at room 

temperature in a low field region measured before and after the high field application (Fig. 2-11 

(b». The two magnetization curves completely coincide, meaning no increase in the fraction 

of the a'-phase. Similar results are obtained for all the solution-treated and sensitized steels 

which were deformed beforehand 10,15 and 30 % at 77 K and/or 4.2 K. 

2.4 Discussion 

The present results for the phase stability of solution-treated and sensitized SUS304, 

SUS304L, SUS316 and SUS316L stainless steels under external fields (cryogenic temperature, 

high magnetic field, deformation and combination ofthem) are summarized in Table 2-2. 
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Table 2-2. Martensitic transformation sequence in austenitic stainless steels induced by isothermal 

holding at 77 K (IH), by an application of a high magnetic field without isothermal holding (HMF), by an 

application of a high magnetic field at 77 K after isothermal holding (IH ~ HMF), by deformation at 77 

K (DF), and by an application of a high magnetic field after deformation (IH ~ HMF). 

Type IH HMF IH~HMF DF DF~HMF 

SUS304 (T) NI NI NI y~c'~a' NI 

SUS304 (S) 
y~c'~a' 

NI 
y~a' 

c'~a' y~c'~a' NI 

SUS304L (T) y~c'~a' NI c'~a' y~c'~a' NI 

SUS304L (S) 
y~c'~a' 

NI c'~a' y~c'~a' NI 
y~a' 

SUS316 (T) NI NI NI y~c'~a' NI 

SUS316 (S) NI NI NI y~c'~a' NI 

SUS316L (T) NI NI NI y~c'~a' NI 

SUS316L (S) NI NI NI y~c'~a' NI 

From the summary, we know the following: 

(i) The a' -martensite is not induced by the application of the magnetic field from a 

solution-treated y-phase. 

(ii) Although the a'-martensite is induced by magnetic field in the g'-martensite 

formed beforehand by isothermal transformation, it is not induced by magnetic 

field in the g'-martensite formed beforehand by deformation. 
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We first discuss the reason of (i). Since both y- and E'-phase are nomnagnetic, the change in 

free energy by magnetic field is small for both the phases, and consequently the y ~ E' 

transformation will not be induced by application of magnetic field. As a result, the y ~ E' ~ 

a' transformation is not induced by the application of magnetic field. For further discussion, 

magnetic properties of E'-martensite are needed. 

Next we discuss the reason of (ii). Since the a'-martensite is ferromagnetic and E'

martensite is nomnagnetic, the free energy of the a'-martensite decreases compared with the E'

martensite by the application of magnetic field. Then the a'-martensite can be induced by 

magnetic field, and actually it is induced in the E'-martensite formed by isothermal holding of 

the solution-treated SUS304L, sensitized SUS304 and SUS304L stainless steels as described in 

Fig. 2-7. On the other hand, the a'-martensite was not induced from the E'-martensite formed 

by deformation in the same steel. The difference can not be explained by only the magnetic 

energy. The thickness of the E'-plate should be considered to understand the difference. As 

described previously, the E'-plate induced by deformation is very thin compared with that 

induced by isothermal holding. The formation of the a'-martensite from the thin E'-plate will 

be suppressed due to the grain size effect, which is the effect that martensitic transformation 

temperature decrease with decreasing grain size in many steels[32-36]. Presumably, higher 

magnetic field is required to induce the a'-martensite in the thin E'-plate formed by deformation. 

2.5 Conclusions 

We have investigated effects of cryogenic temperature, high stress and high magnetic field 

on martensitic transformation in SUS304, SUS304L, SUS316 and SUS316L austenitic stainless 

steels, and the following results are obtained. 

(1) No athermal martensitic transformation occurs in all the solution-treated and sensitized 

stainless steels. On the contrary, isothermal transformation occurs in the sensitized 
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SUS304 ((y ~ E' ~ a' and y ~ a') between about 150 and 250 K. It also occurs in 

the solution-treated (y ~ E' ~ a') and sensitized SUS304L (y ~ E' ~ a' and y ~ a') 

between about 70 and 170 K. 

(2) The y-phase exhibits an antiferromagnetic transition at about 40 K in all the stainless 

steels. 

(3) Deformation-induced y ~ E' ~ a' martensitic transformation occurs at 77 K in all the 

solution-treated and sensitized steels. 

(4) Magnetic field-induced martensite transformation does not occur in the y-phase even 

when the pulsed magnetic field of up to 30 MAim is applied in the wide temperature 

range between 4.2 and 290 K. 

(5) Magnetic field-induced martensitic transformation (E' ~ a') occurs in the solution

treated SUS304L, sensitized SUS304 and SUS304L which contains isothermally 

transformed E' -martensite. However it does not occur when E' -martensite is formed 

by deformation. 
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Chapter 3 

Time-temperature-transformation diagram of isothermal 

martensitic transformation in solution-treated SUS304L 

stainless steel 

3.1 Introduction 

Martensitic transformations are well known to be classified into two groups with respect to 

kinetics[I-3], as mentioned in section 1.3.3. One is athermal transformation and the other is 

isothermal transformation. The former transformation has a definite martensitic 

transformation start temperature, M., and occurs instantaneously when the temperature reaches 

the M. in the cooling process. One the other hand, the latter does not have a definite Ms but 

occurs after some finite incubation time during isothermal holding at a constant temperature, 

and the amount of martensite phase increases with increasing the isothermal holding time. 

Although such two kinds of transformations kinetics are now basically explained by a universal 

phenomenological theory[4-5], the number of alloys exhibiting an obvious isothermal 

transformation is small. For this reason, most of the isothermal transformations studied so far 

are the y ~ a' ones observed in Fe-Ni-Cr and Fe-Ni-Mn alloys[6-12]. The isothermal 

transformation in these alloys is characterized by a C-curve in time-temperature-transformation 

(TTY) diagram. 

In chapter 2, however, we found a new type of isothermal martensitic transformation in a 

solution-treated SUS304L stainless steel. In this steel, the successive y ~ 1>' ~ a' martensitic 

transformation proceeded by isothermal holding at 77 K. As far as the authors are aware, this 

was the first finding of isothermal successive y ~ 1>' ~ a' martensitic transformation. 

However, we examined the isothermal transformation only at 77 K, and the ITT diagram of 

isothermal martensitic transformation has not been constructed yet. 
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In this chapter, therefore, we examine the isothermal transformation of the solution-treated 

SUS304L stainless steel in the temperature range between 70 and 170 K, and construct the TTT 

diagram of the successive y ~ E' ~ a' martensitic transformation. 

3.2 Experimental Procedure 

The chemical composition of SUS304L stainless steel used in this chapter is the same as 

that shown in Table 2-1. Details of alloy production and specimen preparation were the same 

as described in chapter 2. Specimens of 3 x 3 x 1 mm in size were cut out, and were solution

treated at 1323 K for 0.5 h in vacuum followed by quenching into iced water. 

Isothermal holding experiments of the specimens were carried out in the temperature range 

between 70 and 170 K for various times. The volume fraction of the a'-martensite,!a" formed 

by the isothermal holding was evaluated by a magnetization measurement at 300 K (= TR). 

Details of this measurement were described in chapter 2. 

The variation of morphologies was observed by In-situ optical microscopy (OM) during 

the isothermal holding experiment. Temperature of the specimen was regulated by controlling 

the evaporation of liquid N2• After isothermal holding experiment, the microstructure was 

investigated by in-situ transmission electron microscopy (TEM). Specimens for TEM 

observation were prepared by electropolishing using an electrolyte consisting of 85 % 

CH3COOH and 15 % HCl04 in volume. TEM observation was made with an accelerating 

voltage of200 kV. 

3.3 Results and Discussion 

3.3.1 ITT diagram for the successive r ~ £' ~ a'martensitic transformation 

First of all, martensitic transformation behavior and magnetic properties of the present 
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Fig. 3-1 Magnetic susceptibility curve ofthe solution-treated SUS304L stainless steel measured in the 

cooling and heating processes. 

SUS304L stainless steel has been checked by magnetic susceptibility measurement. Figure 3-1 

shows temperature dependence of magnetic susceptibility, X, of the solution-treated SUS304L 

stainless steeL In the cooling process, the magnetic susceptibility increases in the temperature 

range between 70 and 170 K. A characteristic feature is that it also increases in the heating 
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Fig. 3-2 Relation between magnetization of the specimen and holding time at 103 K in the solution

treated SUS304L stainless steel. The inset is the magnification of the dotted area. 
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process in the same temperature range. Such increase in magnetic susceptibility is due to the 

formation of ferromagnetic a'-phase, meaning that isothermal y ~ 10 ' ~ a ' martensitic 

transformation occurs in the present specimen, being in good agreement with the result 

described in chapter 2 fig. 2-1 (b). The isothermal kinetics of the successive martensitic 

transformation is due to the y ~ 10 ' martensitic transformation, which will be described later. 

Incidentally, the Neel temperature (indicated by TN) of the residual y-phase also agrees with 

previous specimen studied in chapter 2. 

Next, the time evolution of a'-martensite during isothermal holding at 103 K has been 

examined by magnetization measurement under a low magnetic field of 80 kA/m, and the result 

is shown in Fig. 3-2. The magnetization increases linearly with increasing holding time at the 

initial stage, and then the increasing-ratio decreases in the long time range of holding. A 

characteristic feature is that if we magnify the curve (inset of Fig. 3-2), we notice a 
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Fig. 3-3 Magnetization curves at 300 K of the solution-treated SUS304L stainless steel after 

isothermal holding measurement at 103 K for (a) 50 s, (b) 170 s, (c) 520 s, (d) 1660 s, (e) 5200 s and 

(f) 10400 s, respectively. 
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discontinuous or a step-like increase in magnetization during the isothermal holding process. 

This result means that increase in the fraction of a'-martensite occurs instantaneously and step 

by step. 

Isothermal holding experiment for obtaining the TTT curve has been carried out in the 

absent of magnetic field at several temperatures in the temperature range between 70 and 170 K. 

Figure 3-3 shows magnetization curves at TR = 300 K after isothermal holding at 103 K for 50 s 

(a), 170 s (b), 520 s (c), 1660 s (d), 5200 s (e) and 10400 s (t). We can evaluate the 

spontaneous magnetization from these curves. As an example, the spontaneous magnetization 

obtained from curve (t) is indicated with an arrow in Fig. 3-3. Obviously, the spontaneous 

magnetization increases with increasing the isothennal holding time. 

The volume fraction of a'-martensite (fa.) can be evaluated from the spontaneous 

magnetization as described in experimental procedure, and the volume fraction thus obtained is 

plotted with solid circles as a function of holding time in Fig. 3-4. The same experiments have 
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been made at 116, 110, 105, 100,95 and 87 K, and the results at 100 and 110 K are also shown 

in Fig. 3-4. We know from the result that the fa' obviously depends on holding temperature as 

well as holding time. Incidentally, as known from Fig. 3-4, the magnetization increases 

linearly with increasing holding time. Such a linear increase of fa' is due to small amount of 

a: -martensite fonned in initial stage of isothennal holding. 

From the linear relation shown in Fig. 3-4, the time required for the formation of 0.5 vol. % 

of a'-martensite is obtained. It is 7.1 ks at 100 K, 6.1 ks at 103 K and 12.6 ks at 110 K as 

shown by arrows. Using these times, we have constructed the TIT diagram of 0.5 vol. % of 

a'-martensite as shown in Fig. 3-5. The results at 116, 105,95 and 87 K obtained by the same 

method are also plotted in Fig. 3-5. It should be noted in this result that TTT diagram clearly 

fonns a typical C-curve, and nose temperature (indicated by an arrow) is about 103 K. 
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Fig. 3-5 TTT diagram of the isothermal martensitic transformation in the solution-treated SUS304L 

stainless steel, and dashed line is guide for eyes. 
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3.3.2 Morphologies of marten sites formed during isothermal holding 

In order to know how the isothermal y --> E' --> a' martensitic transformation proceeds, we 

have made in-situ optical microscope observation. Figure 3-6 shows a series of optical 

micrographs showing isothermal y - > c' - > a' martensitic transformation at 103 K. After 

isothermal holding of 3 x 10' s, banded plates ofthe E'-maltensite appeared in the matrix ofthe 

y-phase as indicated by 'A' in Fig. 3-6 (a). The number of c'-plates gradually increases with 

increasing holding time as seen in (b) and (c). In addition, the constant of the "(-phase 

enclosed by banded c'-plates (indicated by a dashed rectangle in Fig 3-6 (b)) also increases with 

increasing the holding time. Such a change in contrast will be due to the gradual growth of 

banded E'-martensites. That is, the y --> E' martensitic transformation proceeds isothermally. 

On the other hand, Fig. 3-6 (d) shows that wedge-shaped plates, which are characteristics of a' 

martensite[13-14], instantaneously forms in the banded E' -plates as indicated by '8'. The a'

martensite thus fonned does not grow by increasing the isothermal holding time. This result 

Fig, 3-6 A series of in-situ optical micrographs of the solution-treated SUS304L stainless steel 

showing successive 'Y -» E' -+ a' martensitic transformation at 103 K. 
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suggests that the E' -----* a' martcnsitic transformation is athermal one. 

It is likely form the optical microscope observation that the successive y --> E' --> a' 

martensitic transformation proceeds by an isothermal y --> E' martensitic transformation 

followed by an athennal E' --> a' martensitic transformation, If this interpretation is 

appropriate, the C-cLllve natme of the TTT diagram in Fig, 3-5 is essentially due to the kinetics 

of y --> E' martensitic transformalion although the curve is experimentally obtained from the 

volume fraction of the a'-martensite. 

To understand the martensitic transformation mechanism in the solution-treated SUS304L 

stainless steel, the microstructure of E' - and a' -phase formed by isothermal holding was 

examined by using in-situ TEM, Figure 3-7 shows a bright filed image after isothermal 

holding at 103 K for 2 h_ In this result, we can see the morphologies ofE'- and ct'-martensite 

indicated by "A" and "B" respectively, We notice from this observation that the E'-martensites 

were composed of layered slip bands and some of the vertical slip bands, and there exist 

intersections of two kinds of slip bands as indicated typically by an arrow, This 

Fig. 3-7 In-situ TEM observation result of the solution-treated SUS304L stainless steel after 

isothermal holding at 103 K for 2 h, 
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microstructural morphology formed by isothermal holding is similar to that of tensile deformed 

specimens of some austenitic stainless steels in the previous studies[15-22]. In the case of the 

deformation induced martensitic transformation, it was commonly known that embryo of the a'

martensite is created at the intersection of two slip bands. That is, the a' -martensitic 

transformation occurs at the intersection of slip bands when the slip bands are composed of 

either s' -martensite or a dense collection oflayered staking faults. From this result, we suggest 

that the s' ~ a' martensitic transformation may occur at the intersection of the banded s'

martensite during the isothermal holding. 

3.4 Conclusions 

We have investigated ITT diagram of isothermal martensitic transformation in a solution

treated SUS304L stainless steel and the following results have been obtained. 

(1) Successive y ~ s' ~ a' martensitic transformation probably proceeds by so-called 

isothermal y ~ s' martensitic transformation followed by so-called athermal s' ~ a' 

martensitic transformation. 

(2) ITT diagram of the successive y ~ s' ~ a' martensitic transformation shows a C

curve with a nose temperature located at about 103 K due to the isothermal nature of 

the y ~ s' martensitic transformation. 
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Chapter 4 

Time-temperature-transformation diagram of isothermal 

martensitic transformation in sensitized SUS304 stainless 

steel 

4.1 Introduction 

The austenitic stainless steels are characterized by good corrosion resistance, excellent 

mechanical properties, superior weldability and nonmagnetic characteristics[I-6], as mentioned 

in chapter 1. In particular, SUS304 stainless steel is extensively used in equipments for 

cryogenic applications such as tanks, piping system and other equipments for handling 

condensed gases. As mentioned in chapter 2, the austenitic stainless steels are unstable under 

some external fields, such as high stress and cryogenic temperature. Therefore, it is very 

important to clarifY the stability of the austenite phase under such environments because many 

of the excellent properties could be deteriorated if the austenite phase transforms into martensite 

phases[7-10]. For example, the non-magnetic property of the austenite phase is lost when a'

martensite is formed[ 11-14], as described in chapter 2. 

Generally, welding process is essential to use the austenitic stainless steel in various 

industries, and it is widely known that welded austenitic stainless steels can develop a sensitized 

zone which consists of carbide precipitation (M23C6) at grain boundaries and chromium 

depletion in the vicinity of grain boundaries[15-18]. In chapter 2, we found that the sensitized 

SUS304 stainless steel exhibits an isothermal martensitic transformation at cryogenic 

temperature. However, its time-temperature-transformation (TTT) diagram, which is one of 

the most important information for isothermal martensitic transformations, has not been 

constructed yet. 

In this chapter, therefore, we have constructed the TTT diagram of the isothermal 
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martensitic transformation in a sensitized SUS304 stainless steel. 

4.2 Experimental Procedure 

The chemical composition of 8U8304 stainless steel used in this chapter is tl,e same as that 

shown in Table 2-1. The steel was cold-rolled into a sheet. From the sheet, specimens of 3 x 

3 x I mm in size were cut out, and were solution-treated at 1323 K for 0.5 h in vacuum followed 

by quenching into iced water. Most of the specimens were sensitized by heat-treatment at 973 

K for 100 h. Then the oxidized surface layer of all the specimens was eliminated by 

electropolishing, where an electrolyte composed of 85 % C,H,OH and 15 % HCI04 in volume 

was used. 

The microstructure of an as-sensitized specimen was observed by field emission scanning 

electron microscopy (FESEM). The etchant used for FESEM observation was 95 % H20 , and 

5 % HF in volume. As shown in Fig. 4-1, some particles ofM23C6, confirmed by EDS analysis, 

fig. 4-1 fESEM observation result ofa as-sensitized SUS304 stainless steel. 
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were observed along the grain boundaries. From this observation result, we know that the 

concentration of chromium between the inner region of grains and near grain boundaries is 

partially changed by the formation of M23C6 carbide. Such a change in chemical composition 

will affect in the martensitic transformation behavior between the inner region of grain and near 

grain boundaries. 

Phase stability at cryogenic temperature was examined by the magnetic susceptibility 

measurement with a constant cooling and heating rate of 1 Klmin in the temperature range 

between 4.2 and 300 K. Isothermal holding experiment was carried out under no magnetic 

field in the temperature range between 60 and 260 K for various holding times. The volume 

fraction of the a'-martensite, fa" formed by the isothermal holding was evaluated by a 

magnetization measurement at 300 K (= TR). Details of this method were described in 

chapter 2. 

Change in morphology during the isothermal holding experiment was observed by in-situ 

optical microscopy (OM). Morphology of the martensite phase formed by isothermal holding 

experiment was investigated by transmission electron microscopy (TEM). Specimens for 

TEM observation were prepared by electropolishing using an electrolyte consisting of 85 % 

CH3COOH and 15 % HCl04 in volume. TEM observation was made with an accelerating 

voltage of200 kV. 

4.3 Results and Discussion 

4.3.1 Construction ofTTT diagram 

In order to investigate the martensitic transformation and magnetic properties of the present 

SUS304 stainless steel, we have carried out magnetic susceptibility measurement in the 

temperature range between 4.2 and 300 K by applying a low magnetic filed of 79.6 kA/m. 

Figure 4-2 shows temperature dependence of magnetic susceptibility, X, of the solution-treated 

and the sensitized SUS304 stainless steel. The X-T curve of the solution-treated SUS304 
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Fig. 4-2 Magnetic susceptibility curves of solution-treated and sensitized SUS304 stainless steel. 

Measurements were made in the cooling process and then in the heating process. 

stainless steel shows a peak at about 40 K due to a paramagnetic to anti-ferromagnetic transition 

of the y-phase and there is no hysteresis between heating and cooling processes, being in 

agreement with the result described in chapter 2. On the other hand, the X-T curve of the 

sensitized SUS304 starts to increase at about 260 K in the cooling process as indicated with "A". 

Such increase of X means that the ferromagnetic a'-martensite was formed during the cooling 

process. In the heating process, the X-T curve starts to increase at about 60 K, meaning that 

the a'-martensite was also formed in the heating process. This result implies that the 

martensitic transformation of the sensitized SUS304 proceeds isothermally in the temperature 

range between 60 and 260 K. Furthermore, we notice that the X-T curve increase in two step 

in the cooling process as indicated by "A" and "B", respectively. This result suggests that 

there exist two kinds of isothermal martensitic transformations in the sensitized SUS304 

stainless steel. 

In order to construct the TTT diagram, we have made isothermal holding experiment in the 
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absent of magnetic field at several temperatures in the temperature range between 60 and 260 K, 

followed by magnetization measurement at room temperature. Figure 4-3 shows typical 

magnetization curves (M-H curves) after isothermal holding experiments of at 200 K. We 

know from Fig. 4-3 that the magnetization increases with increasing isothermal holding time, 

meaning that the amount of the ferromagnetic a'-martensite increases by isothermal holding at 

200 K. We can evaluate the volume fraction of the a'-martensite by using the value of the 

spontaneous magnetization, where the value of the spontaneous magnetization is estimated as 

indicated with an arrow in Fig. 4-3 (g). We notice in Fig. 4-3 (a) that the spontaneous 

magnetization exists even after isothermal holding for 0 s. This result is probably attributed to 

the spontaneous magnetization of the carbide M23C6 formed by the sensitization treatment[19]. 

From the values of spontaneous magnetization, the volume fraction of a' -martensite, fa:, can be 

spontaneous magnetization at room temperature of the specimen after isothermal holding, 
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Fig. 4-5 TTT diagram of the isothermal martensitic transformation in the sensitized SUS304, and 
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Mocarbide(TR) is that of the as-sensitized specimen, and M/(TR) is that of the a'-martensite. 

Here, the value of Moa'(TR) can be approximated as the value at 0 K, Moa'(O K), because the 

Curie temperature is far above room temperature. Also, Moa'(O K) is estimated to be 1.79 

/lB/atom considering the Slater-Pauling curve and their valence electron concentration[20]. 

The volume fraction thus obtained at 200 K is plotted as a function of holding time in Fig. 4-4, 

together with the results obtained at 140 and 100 K. We know from the result that the fa' 

obviously depends on isothermal holding temperature as well as isothermal holding time. 

From the curve in Fig. 4-4, we have constructed the TTT diagram of 0.5 vol. % of a' -martensite. 

The time required for the formation of 0.5 vol. % of a' -martensite is evaluated to be 860, 2320 

and 770 s for isothermal holding temperature at 200, 140 and 100 K, respectively. The same 

experiments have been made in the temperature range between 260 and 60 K, and we have 

obtained the time required for the formation of 0.5 vol. % of the a' -martensite at these 

temperatures. Using these times obtained from the evaluation, we have constructed the TTT 

diagram of a'-martensite as shown in Fig. 4-5. It should be noted that the TTT diagram shows 

double C-curve with two noses located at about 100 and 200 K as indicated by arrows. This 

result is completely different from the TTT diagram of the solution-treated SUS304L stainless 

steel, in which only one nose appears, as shown in chapter 3. 

4.3.2. Morphologies of marten sites formed during isothermal holding 

In order to know the reason why two noses appear in the TTT diagram, we have made in

situ optical microscope observation during the isothermal holding at the nose temperatures, 100 

and 200 K, of the double C-curve. Figures 4-6 and 4-7 show a series of optical micrographs 

during the isothermal holding at 200 K related to the upper part of the double C-curve. After 

isothermal holding for 300 s, we can see that wedge-shaped plates, indicated by "A", forms 

directly in the matrix (y-phase) in the vicinity of grain boundaries as shown in Fig 4-6 (b). 

These plates are a' -martensite because the wedge-shaped morphology is characteristic to the a'

martensite[21]. We notice that the number of a'-plates increases near the grain boundaries 

gradually with increasing the isothermal holding time. In addition, the size of a' -martensite 
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Fig, 4-6 A series of in-situ optical micrographs of the sensitized SUS304 stainless steel during 

isothennal holding at 200 K. 

gradually increases with increasing the isothermal holding time. The gradual grov.1h is clearly 

seen in Fig. 4-7, which is taken from a different region. In the figure, the a'-plate indicated by 

an arrow obviously grows with increasing holding time. Such a gradual growth ofthe a' -plate 

t = 1 min t= 4 min t= 8 min t= 12 min 

Fig. 4-7 A series of in-situ optical micrographs of the sensitized SUS304 stainless steel during 

isothermal holding at 200 K. Holding times, t, at 200 K are inscribed beneath each photograph. 
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Fig. 4~8 A series of in~situ optical micrographs of the sensitized SUS304 stainless stcel during 

isothermal holding at 100 K. 

resembles that reported in Fe-Ni-Mn and Fe-Ni-Cr alloys[22-25]. From the above results, we 

suggest that the upper part of the double C-curve should be related to the direct '( --> a ' 

martensitic transfonnation induced isothermally in the vicinity of grain boundary during the 

isothennal holding experiment. 

On the other hand, Fig. 4-8 shows a series of optical micrographs taken during the 

isothermal holding experiment at 100 K, the nose temperature of the lower part of the double C

curve. After isothermal holding for 10 min, a banded plate (characteristic to the E'-martensite) 

appears gradually near the center of grains indicated by a dashed rectangle in Fig. 4-8 (c). 

Similar microstructure has been observed in the solution treated S US304L after isothermal 

holding in chapter 3. This result suggests that the y --> E' martensitic transformation proceeds 

isothermally. Figure 4-8 (d) shows the microstructure taken at the time of 5 sec after observing 

Fig. 4-8 (c). We notice wedge-shaped plates (a'-martensite) instantaneously formed in the 
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banded E'-martensite. That is, the 0' -> a' martensitic transformation proceeds athermally. In 

this way, we confirm that the lower part of double C-curve is related to the successive y -> E' -> 

a' martensitic transformation induced near the center of grains during the isothermal holding 

experiment. Incidentally, we can also observe the a' martensites formed directly in the vicinity 

of the grain boundaries after isothermal holding for 5 min in Fig. 4-8 (b), as indicated by "A". 

This morphology is similar to the result obtained at 200 K. However, the amount of a' 

maltensites formed directly hom grain boundary does not increase on further increasing the 

isothermal holding time at 100 K. Therefore, it is likely that such direct a' marten sites shown 

in Fig. 4-8 (b) had been fanned at about 200 K during the cooling process. 

To understand the martensitic transformation sequence in the sensitized SUS304 stainless 

Fig. 4-9 TEM observation results of the sensitized SUS304 stainless steel. (al is bright field image of 

the as-sensitized specimen obtained from the vicinity ofgraill-boundary, (b) is bright field images of 

the sensitized specimen beforehand isothennal hold at 200 K obtained from the vicinity of grain

boundary, and (c) is bright field image of the sensitized specimen beforehand isothermal holding at 

100 K obtained from the center of grain-boundary, respectively. (d), (e) and (f) are electron 

diffraction patterns corresponding to (a), (b) and (c), respectively. 
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steel further, the microstructure formed by isothermal holding experiment is examined by using 

TEM. Figure 4-9 (a) shows a bright field image obtained from the as-sensitized specimen. 

We can see a grain boundary and some precipitates along the grain boundary. The electron 

diffraction pattern of these precipitates (Fig. 4-9 (d)) can be indexed with the carbide M23C6, 

which is formed by sensitization. This result strongly suggests that the chemical composition 

of the matrix near the grain boundaries should be different from that of the center of grains. 

Figure 4-9 (b) shows a bright field image after isothermal holding at 200 K. The carbide 

precipitates are also observed along the grain boundary. In addition, we notice that a'

martensite is formed near the grain boundary, which is known from the electron diffraction 

pattern corresponding to the encircled area (Fig. 4-9 (e)). This result also confirms that the 

martensitic transformation sequence on the upper nose of double C-curve is direct y ~ a' 

martensitic transformation. Figure 4-9 (c) shows the bright field image of the specimen after 

isothermal holding at 100 K. The image was obtained from the inner region of a grain. We 

can see that some banded plates of the E'-phase are formed from y-phase, and a'-phase is 

induced inside the banded E' plates. Such a coexistence with y-, E'- and a'-phase suggests that 

the martensitic transformation sequence corresponding to the lower nose of the double C-curve 

is successive y ~ E' ~ a' martensitic transformation. 

4.4 Conclusions 

We have investigated TTT diagram of isothermal martensitic transformation in a sensitized 

SUS304 stainless steel and the following results have been obtained. 

(1) Sensitized SUS304 stainless steel exhibits an isothermal martensitic transformation 

when the specimen is held in the temperature range between 60 and 260 K. 

(2) TTT diagram of the martensitic transformation shows a double-C curve with two noses 
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located at about 100 and 200 K due to two different transformation sequences: the 

upper and lower parts of the double C-curve are ascribed to the direct y ~ a' 

martensitic transformation in the vicinity of grain boundaries and the successive y ~ 

E '~ a' martensitic transformation near the center of grains, respectively. 
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Chapter 5 

Effect of magnetic field on the C-curve of successive 

y ~ e' ~ a' martensitic transformation in solution-treated 

SUS304L stainless steel 

5.1 Introduction 

In chapter 2 and 3, we found successive y ~ E' ~ a' martensitic transformation in 

solution-treated SUS304L stainless steel during the isothermal holding in the temperature range 

between 70 K and 170 K, and then we constructed TTT diagram of successive y ~ E' ~ a' 

martensitic transformation, in which TTT diagram shows a C-curve with a nose temperature 

located at about 103 K. Optical microscope observation suggests that the E' ~ a' 

transformation proceeds athermally while the y ~ E' transformation proceeds isothermally. 

However, the kinetics of successive y ~ E' ~ a' martensitic transformation is not clear yet. 

Kakeshita et al. proposed that kinetics of martensitic transformation can be understood by 

measuring the effect of magnetic field on the transformation[1-2], as mentioned section 1.3.3. 

In this chapter, therefore, we investigate the effect of magnetic field on successive y ~ E' 

~ a' martensitic transformation in solution-treated SUS304L in order to obtain information 

about kinetics of the martensitic transformation. Furthermore, we calculate the effect of 

magnetic field on martensitic transformation by using a phenomenological theory mentioned in 

the appendix of this chapter. Finally, we compare the calculated relations with the 

experimentally measured ones 

57 



5.2 Experimental Procedure 

The chemical composition of SUS304L stainless steel used in this chapter is the same as 

that shown in Table 2-1. Specimens of 3 x 3 x 1 mm in size were cut out from a cold-rolled 

sheet, and were solution-treated at 1323 K for 0.5 h in vacuum followed by quenching into iced 

water. Then the oxidized surface layer was eliminated by electropolishing in an electrolyte 

composed of85 % C2HsOH and 15 % HCI04 in volume. 

Isothermal holding experiments of the specimens were carried out under the static 

magnetic field of 0.8, 4.0 and 5.6 MAim in the temperature range between 170 and 70 K for 

various times. The volume fraction of the a'-martensite,ja" formed by the isothermal holding 

was evaluated by a magnetization measurement at 300 K (= TR). After isothermal holding 

experiment, the microstructure was investigated by optical microscopy. Details of 

experimental procedure were described in chapter 2. 

5.3 Results 

5.3.1 Effect of magnetic field on C-curve 

In order to investigate the variation of C-curve under magnetic field, we have made 

isothermal holding experiment under magnetic fields of 0.8, 4.0 and 5.6 MAim in the 

temperature range between 170 and 70 K, followed by magnetization measurement at room 

temperature. Figure 5-1 shows typical magnetization curves after isothermal holding 

experiments at 103 K under the magnetic field of 0.8 MAIm. We know from Fig. 5-1 that the 

magnetization increases with increasing isothermal holding time, meaning that the amount of 

the ferromagnetic ai-martensite increases by isothermal holding at 103 K. Such increase of 

magnetization by increasing isothermal holding time was also observed under magnetic fields of 

4.0 and 5.6 MAim. We can evaluate the volume fraction of the ai-martensite by using the 

value of the spontaneous magnetization, as described in chapter 3. The relation between 
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Fig. 5-1 Magnetization curves obtained at 300 K for the solution-treated SUS304L stainless steel after 

isothermal holding at 103 K for 70 s (a), 210 s (b), 760 s (c), 1680 s (d) and 4860 s (e), respectively, 

under magnetic field of 0.8 MAim. 
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Fig. 5-2 Relation between isothermal holding time and volume fraction of a'-martensite in the 

solution-treated SUS304L after isothermal holding at 103 K under various magnetic fields of 0, 0.8, 

4.0, and 5.6 MAim. Lines are guide for eyes. 
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isothermal holding time and volume fraction of the a'-martensite after isothermal holding at 103 

K thus obtained are shown with open circles (0.8 MAim), solid squares (4.0 MAim) and open 

squares (5.6 MAim) in Fig. 5-2. In the figure, the relation under no magnetic field is also 

shown with solid circles (0 MAim). We know from the result that the fa' obviously depends on 

the strength of magnetic field as well as isothermal holding time. From the lines in Fig. 5-2, 

we have constructed the C-curve of 0.5 vol. % of a'-martensite. The time required for the 

formation of 0.5 vol. % ofa'-martensite at 103 K is evaluated to be 6080, 3500, 3000 and 2800 

s for strength of magnetic field of 0, 0.8, 4.0 and 5.6 MAim, respectively. The same 

experiments have been made in the temperature range between 170 and 70 K under various 

magnetic fields, and we have obtained the time required for the formation of 0.5 vol. % of a'-

martensite. Using these times, we have confirmed the variation of C-curves. Fig. 5-3 shows 

variation of C-curves related to the a'-martensite formed by 0.5 % in solution-treated SUS304L 

stainless steel under the magnetic field of 0 MAIm (solid circles), 0.8 MAim (open circles), 4.0 

115 

~ 
110 

......... 
I-

105 
Q) 
L-
::::::I 100 +"" 
CO 
L-
Q) 
a. 

95 E 
Q) 

I-
90 

--e-- H = a MAIm 
--0-- H = 0.8 MAIm 
--.-- H = 4.0 MAIm _-D _-. _-0 _e 
--0-- H= 5 6 MAIm ----------------::------- ------

. _.' -_----il- --::: -0 - - - - - ___ - ---

D.------6:--- .--
/ / / 

'Q 

a' formed by 0.5% 

468 

Holding time, t I ks 
10 12 

Fig. 5-3 Variation of C-curves related to a'-martensite formed by 0.5 % in the solution-treated 

SUS304L stainless steel under magnetic fields. Dashed lines are guide for eyes. 
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MAim (solid squares) and 5.6 MAim (open squares) in solution-treated SUS304L sta inless steel. 

It should be noted in Fig. 5-3 that the nose temperatures of C-curves are located at about 103 K 

under all magnetic fields, and C-curves shift to the side for a short time with increasing the 

stre ngth of magnetic field. This result is different from that of Fe-Ni-Cr and Fe-Ni-Mn alloys 

exhibiting isothermal I --> a' martensitic transformation, whose incubation time shortens and 

nose temperature decreases with increasing the strength of magnetic field [3-6]. There is 

another difference in thc magnetic field dependcnce of C-curve. That is, the sh ift in C-clll've is 

small for high magnetic field region in the present SUS304L steel, while not in Fe-Ni-Cr and 

Fe-Ni-Mn alloys. This difference should be ascribed to the difference in kinetics ofmmiensitic 

transformation between them, which will be discussed later. 

Incidentally, we notice that the shape of the C-curve changes by the application of 

magnetic field. That is, the decrease in holding time below the nose temperature is larger than 

that above the nose temperamre. This difference is possibly attributed to the temperature 

dependence of the spontaneous magnetization of a' -martensite. 

5.3.2 A1orphologies ofrnartensilesJormed during isothermal holding 

Figure 5-4 shows optical micrographs of thermally-induced martensites by isothermal 

T= 103 K, t= 10 min, H=O MAim T= 103 K, t = 5 min, H = 5.6 MAIm 

Fig. 5-4 Optical micrographs of marten sites formed by isothermal holding at 103 K for 10 min under 

zero magnetic field (a), and for 5 min under magnetic field of5.6 MAim. Observations were made at 

room temperature after isothermal holding experiments. 
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holding at 103 K. (a) is obtained in the absence of magnetic field (H = 0 MAIm) and (b) is 

obtained under applied magnetic field of H = 5.6 MAim, where the isothermal holding 

experiments are carried out for different period in order to form the same amount of a'

martensite. It should be noted from the result that the amount of a' -martensites is almost the 

same in both specimens, while the amount of E' -martensites decreases with increasing the 

strength of applied magnetic field. This means that the a' -martensites form more easily from 

the E' -martensite with increasing strength of the magnetic field. Incidentally, the morphology 

of thermally-induced a' -martensites does not depend on the strength of applied magnetic field. 

The effect of magnetic field on morphology of martensites formed during isothermal holding 

will be also discussed later. 

5.4 Discussion 

Based on the results obtained in the results of this chapter and chapter 3, we discuss the 

kinetics of successive y ----+ E' ----+ a' martensitic transformation in solution-treated SUS304L 

stainless steel. 

Before discussing effect of magnetic field, we discuss the transformation behavior under no 

magnetic field. In chapter 3, we suggested from the morphology changes under no magnetic 

field that the successive y ----+ E' ----+ a' martensitic transformation is divided into isothermal y ----+ 

E' martensitic transformation and athermal E' ----+ a' martensitic transformation. Morphology of 

each phase on ITT diagram under no magnetic fields is estimated from the observation and is 

schematically shown in Fig. 5-5. In this figure, we assumed that the sizes of E' - and a'

martensites are the same on the C-curve. We suggest in this figure that a' -martensite 

instantaneously forms from E' -martensites when a banded E' -martensite becomes a certain size, 

and the amount of a' -martensite increases with increasing the amount of such E' -martensites at 

the same temperature (T = Tl). 

If we assume that the amount of E' -martensite is the same on the TIT diagram as discussed 
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Fig. 5-5 Schematic illustration showing the morphology of martensite on TTT diagrams under no 

magnetic field. 

above, we know the chemical free energy difference between e'- and y-phases of SUS304L 

stainless steel by using the phenomenological theory proposed by Kakeshita et al. According 

to the phenomenological theory (Appendix), the transition probability Pe of the y ---* E' 

martensitic transformation can be expressed as 

(5-1) 

where l1y ~ g' is the potential barrier (activation energy) for the y ---* E' transformation. The 

value of l1y ~ g' is related to the free energy difference between y- and E' -phases 11(Jf ~ g' (1), as 

described in the Appendix. The experimentally obtained C-curve under no magnetic field is 

well fitted by using the following 11(Jf~g'(1) 

11(Jf~ g' (1) = 100 - [0.12 x exp ((T - 5) I 11.937)] J/mol (5-2) 

63 



120.---------------------------------------------, 

~ 
110 -l-

• Experimental result 

-- Calculated result _~ -----------------------. .~ ... .-~~ ... --
(J) 
s.... 
::J 100 +-' 
CO s.... 
(J) 
a. 
E 
(J) 90 
I-

Formation of 0.5 vol.% of (1' martensite 
80~--~--~--~~--~~~~~~~~~~~~~~ 

5 10 15 20 25 30 

Holding time, t / ks 

Fig. 5-6 TTT diagram of the isothermal martensitic transformation in the solution-treated SUS304L 

stainless steel under no magnetic field, and dotted line is the calculated relations. 

This value of f1(Jf ~ E'(1) evaluated from above relation is the same order with experimental 

result reported so far for fcc ~ bcc transformation[7-8]. The calculated TTT diagram obtained 

using eq. (5-1) and f1(Jf~E'(1) of eq. (5-2) is shown by a dotted curve in Fig 5-6. It reproduces 

experimental result, meaning that above assumption (the amount of e'-martensite is same on 

TTT diagram) is appropriate. 

Now we are ready to discuss the effect of magnetic field on the C-curve for successive y ~ 

e' ~ a': transformation. 

In Fig. 5-3, we observed that the nose temperature does not depend on the strength of 

magnetic field. We first discuss the reason. As mentioned above, only the y ~ e' martensitic 

transformation proceeds isothermally in solution-treated SUS304L stainless steel, and the e' ~ 

a.' transformation proceeds .athermally. Therefore, the nose temperature of C-curve should be 

related to isothermal y ~ e' martensitic transformation only. From eq. (5-1), it is clear that the 

transition probability, Pe, of the y ~ e' martensitic transformation depend on f1y ~ E', the 

activation energy for the y ~ e' transformation. In the y ~ e' martensitic transformation, 
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Fig. 5-7 Schematic diagram of relation between potential barrier (y ~ E') and temperature. 

however, l1y -'> E' does not change by the application of magnetic field because y-phase and E'-

martensite of solution-treated SUS304L have non-magnetic properties in the temperature range 

exhibiting isothermal martensitic transformation. Therefore, the y ~ E' martensitic 

transformation could not be influenced by the application of magnetic field, and the nose 

temperature ofC-curve also does not change as shown in Fig 5-7. 

Next, we discuss the reason why the C-curve, corresponding to the formation of 0.5% a'-

martensite, shifts by the application of magnetic field in the present SUS304L steel. As 

described above and in chapter 3, the isothermal nature should be due to the y ~ E' 

transformation, and the E' ~ a' transformation will occur instantaneously when E' -plate grows 

to a critical size. We also found in chapter 2 that the magnetic field induced E' ~ a' 

transformation occurs in a wide E' -martensite plate formed by isothermal holding, while not in a 

thin E'-martensite plate formed by deformation. Moreover, we observed in Fig. 5-4 that the 

amount of E'-martensite is small when a'-martensite is formed under magnetic field compared 

with that formed without applying magnetic field. Form these results, we are confident that 

a'-martensite can be formed from smaller E'-martensite when magnetic field is applied. 

Incidentally, E'-martensite grows with increasing time for its isothermal nature. In this way, 
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Fig. 5-8 Schematic diagrams for variation of &' ~ a' martensitic transformation under no magnetic 

field (a), and under magnetic field (b). 

the time required for the formation of a'-martensite should shorten by the application of 

magnetic field. 

Then the problem is to clarify the reason why the a'-martensite can be formed form 

smaller e' -martensite by the application of magnetic field. We discuss this behavior by 

considering driving force of the e' ~ a' transformation. Since the e' ~ a' transformation 
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depends on the size of E' -martensite, which grows with increasing time, we may assume that the 

driving force, 0, for the E' ---+ a: transformation decreases with increasing the size of E'-

martensite, i.e., with increasing holding time. Figure 5-8 (a) shows the holding time 

dependence of chemical free energy difference ~G:~;"~~al and 0 (size). The driving force 0 

(size) will decrease with increasing holding time because of the decrease in elastic energy per 

volume, and it becomes ~G:~;"~~al at holding time f2, at which the a'-martensite forms in the 

E'-martensite. If a magnetic filed of HI is applied, magnetic energy difference ~G:'';~~iC 

arises between E'- and a'-phase, and it fills a part of driving force as shown in Figure 5-8 (b) in 

addition to ~G:~;"~;al. Then the transformation occurs at a shorter holding time fl. This means 

that a'-martensite can be induced from a smaller size of thermally-induced E'-martensite under a 

magnetic field. The effect of such holding time and magnetic field on the morphology change 

is schematically shown in Fig. 5-9. This schematic illustration is in good agreement with 

experimental result shown in Fig. 5-3. 

Finally, we will roughly estimate how the driving force 0 (size) changes with increasing 

holding time at nose temperature (103 K). First, we assume that 0 (size) at 103K after holding 

for period f2 under no magnetic field is 2183 J/mol. This value is determined from ~G:~;':;al 
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Fig. 5-9 Schematic illustration showing the morphology of martensite on C-curves under various 

magnetic fields. 
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of Fe-Ni alloy reported by Kaufman" et al. [9], because we have no experimental data for the 

present SUS304L stainless steel. The value of 0 (size) should be the sum of L1G:~;"~;al and 

L1G:'~~iC at the initiation time for the E' ~ Ct.: transformation. Thus the following relation 

should be satisfied on the C-curve, on which the E' ~ a,' transformation initiates. 

o (size) 
61~a' e'-::;a' 

L1Gchemical + L1G magnetic (5-3) 

The value of L1G:'~~iC can be easily calculated by using 

E'-+a' 
L1G magnetic M (magnetization) x H (magnetic field) (5-4) 

where the M is the value of MofJ.'(O) of SUS304L stainless steel, and it is estimated to be 

1.79 J..LB/atom considering the Slater-Pauling curve and their valence electron concentration[lO], 

as mentioned in chapter 2. H is the strength of magnetic fields applied during the isothermal 
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Fig. 5-10 Relation between 8 (size) and holding time at 103 K in solution-treated SUS304L stainless 

steel. 
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holding. Then from the magnetic field dependence of the C-curve, we can obtain time 

dependence of 8 (size), which is shown in Figure 5-10. In the figure, the horizontal axis is 

time instead of size of the 8'-martensite because we do not know exactly the size. However, 

considering that size of 8'-martensite is a function of time and temperature, such plot should 

give effective information about how the driving force 8 depends on holding time. We know 

from Figure 5-10 that, 8 (size) decreases sharply in a short isothermal holding time, and then 

decreases gradually. This result suggests that, the driving force is very high in thin plate of 8'

martensite, being in good agreement with the results of chapter 2 that magnetic field-induce 8' 

-+ a' transformation does not occur form thin plate of 8' -martensite formed by deformation 

induced martensite. 

5.5 Conclusions 

We have investigated the effect of magnetic field on C-curve of the successive y -+ 8' -+ a' 

martensitic transformation in a solution-treated SUS304L stainless steel and the following 

results have been obtained. 

(1) Nose temperatures of C-curves do not depend on magnetic field strength, it is located 

at about 103 K for all the magnetic fields examined. This is due to the fact that the 

y -+ 8' martensitic transformation, having no concern with magnetic field, proceeds 

isothermally while the 8' -+ a' martensitic transformation, influenced by magnetic 

field, proceeds athermally. 

(2) C-curves shift to the side for a short time with increasing the strength of magnetic field 

because the magnetic energy difference between the 8'- and a'-phases provides a part 

of driving force, which is necessary for field-induces 8' -+ a' martensitic 

transformation. 
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Chapter 6 

Summary 

In the present study, the effects of cryogenic temperature, high magnetic field, high stress 

and their combined environments on solution-treated and sensitized austenitic stainless steels 

(SUS304, SUS304L, SUS316 and SUS316L) have been investigated as a fundamental research 

to clarify the stability of austenite phase. As a result, the following conclusions have been 

derived. 

In chapter 1, we have introduced the background of present study, followed by the purpose 

and significance of present study. 

In chapter 2, we have examined effects of cryogenic temperature, high stress, high 

magnetic field and their combined condition on martensitic transformation in SUS304, 

SUS304L, SUS316 and SUS316L austenitic stainless steels. No athermal martensitic 

transformation occurs in all the solution-treated and sensitized stainless steels, however, 

isothermal transformation occurs in the sensitized SUS304 (y -+ E' -+ a' and y -+ a') between 

about 150 K and 250 K. It also occurs in the solution-treated (y -+ E' -+ a') and sensitized 

SUS304L (y -+ E' -+ a' and y -+ a') between about 70 and 170 K. Incidentally, the y-phase in 

all the steels exhibits an antiferromagnetic transition at about 40 K. Magnetic field-induced 

martensite transformation does not occur in the y-phase even when the pulsed magnetic field of 

up to 30 MAIm is applied in the temperature range between 4.2 and 290 K in all the solution

treated and sensitized stainless steels. On the other hand, deformation-induced y -+ E' -+ a' 

martensite transformation occurs at 77 K for all the solution-treated and sensitized stainless 

steels. It is noted for the solution-treated SUS304L, sensitized SUS304 and SUS304L stainless 

steels that magnetic field-induced martensitic transformation (E' -+ a') occurs in isothermally 
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transformed f:'-martensites, but not in deformation-induced f:'-martensites. 

In chapter 3, we have constructed time-temperature-transformation (TTT) diagram of 

isothermal martensitic transformation in a solution-treated SUS304L stainless steel, and we 

found that the TTT diagram shows a C-curve with a nose temperature located at about l03 K. 

The successive y ~ f:' ~ a: martensitic transformation proceeds by isothermal y ~ f:' 

martensitic transformation followed by athermal f:' ~ a' martensitic transformation. 

In chapter 4, we have constructed TTT diagram of isothermal martensitic transformation in 

a sensitized SUS304 stainless steel, and we found that the sensitized specimen exhibits an 

isothermal martensitic transformation when the specimen is held in the temperature range 

between 60 and 260 K. The TTT diagram corresponding to the formation of 0.5 vol. % of a'

martensite shows a double-C curve with two noses located at about lOO and 200 K. An in-situ 

optical microscope observation has revealed that the double C-curve is due to two different 

transformation sequences. That is, the upper part of the C-curve is attributed to the direct y ~ 

a' martensitic transformation and the lower part of the C-curve is due to the successive y ~ f:' 

~ a' martensitic transformation. The direct y ~ a' transformation occurs in the vicinity of 

grain boundaries, while the successive y ~ f:' ~ a' transformation occurs near the center of 

each grain. The reason for appearing two types of isothermal transformation sequence in the 

sensitized SUS304 stainless steel is due to the difference in concentration by sensitization heat

treatment. 

In chapter 5, we have investigated the effect of magnetic field on C-curve of successive y 

~ f:' ~ a' martensitic transformation in a solution-treated SUS304L staill1ess steel in order to 

clarify kinetics of the successive martensitic transformation, and we found that nose 

temperatures of C-curves do not depend on magnetic field strength (0.8, 4.0 and 5.6 MAIm), it 

is located at about l03 K for all the magnetic fields examined. This is due to the fact that y ~ 

f:' martensitic transformation, having no concern with magnetic field, proceeds isothermally 
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while s' ~ a' martensitic transformation, influenced by magnetic field, proceeds athermally. 

C-curves shift to the side for a short time with increasing the strength of magnetic field because 

the magnetic energy difference between the s'- and a'-phases provides a part of driving force, 

which is necessary for the s' ~ a' martensitic transformation. 

The knowledge of martensitic transformation behavior obtained in the present study will be 

variable for using austenitic stainless steels under extreme environments. 
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Appendix 

Kinetics of martensitic transformation 

Martensitic transfonnations are usually classified into two groups from the kinetics of the 

transformation: athermal and isothermal ones. Concerning the kinetics of martensitic 

transfonnation, Kakeshita et at. have found that the originally isothermal kinetics of martensitic 

transfonnation in Fe-Ni-Mn based alloy changed to an athermal one under pulsed magnetic field 

higher than a critical one, which corresponds to the minimum strength of magnetic field to 

induce martensitic transformation at a given temperature, and they have also perfonned a 

systematic study on the incubation time in Fe-Ni-Mn alloys under magnetic field. They have 

explained their experimental results by introducing a new phenomenological theory. This 

theory is based on the probability related to the nucleation barrier. Moreover, it is predicted 

that the athennal martensitic transfonnation can be explained in the same kinetics as the 

isothennal martensitic transformation. Details of this theory are described below. 

The new phenomenological theory gives a unified explanation for both the isothennal and 

athennal kinetics of martensitic transformation in such a way that the fonner transfonnation 

gives a C-curve but the latter transfonnation does not in their TTT diagram. The central idea 

Parent Phase 

Fig. A-I. Schematic plot of the Gibbs chemical free energy as a function of the order parameter. (after 

Kakeshita et al. [1]) 
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of this phenomenological theory is that martensitic transformation is assumed to occur by a 

thermally activated process, or a probability process, which will be described schematically 

using Fig. A-I. This figure shows the free energy as a function of order parameter (strain is 

usually taken as the order parameter ofthe martensitic transfonnation) for a system exhibiting a 

first order phase transition. It should be noted that the martensitic transformation does not 

occur at the equilibrium temperature, To, but at Ms which is below To and a potential barrier 

(indicated by /J,.(1) at a temperature, 1) exists between the parent and the martensitic states. 

The existence of such a barrier is well known for a first-order phase transition and in this case 

the barrier may be related to the interfacial energy and the strain energy needed to start the 

transformation. They assume that the martensitic transformation macroscopically occurs when 

some particles (atoms, electrons) climb the potential barrier by thermal activation processes. 

This process naturally gives the time-dependent nature of the martensitic transformation in the 

following way; when the transition probability of particles over the potential barrier is high, a 

martensitic transformation occurs with a short incubation time. Therefore, the incubation time 

will be evaluated by the inverse of the transition probability. Based on the assumptions 

mentioned above, the meaning of the Ms temperature and the difference in the process between 

the athermal and isothermal martensitic transformations can be explained. That is, the 

transition probability of particles over the potential barrier is extremely high at the Ms 

temperature compared with any temperature higher than Ms. This is the meaning of the Ms 

temperature at which the martensitic transformation occurs instantaneously. The difference in 

process between athermal and isothermal transformations is whether a specific temperature 

exists where the transition probability becomes extremely high; such a temperature (Ms) exists 

for an athermal martensitic transformation and not for an isothermal martensitic transformation. 

Considering the above factors, they constructed a phenomenological theory, making the 

following three assumptions: (1) particles (atoms, electrons) must acquire a certain critical 

energy (a potential barrier mentioned above), /J,., before they can change the state from austenite 

to martensite. The potential barrier is expressed as /J,.(1) = /J,.G(Ms) - /J,.G(1), where /J,.G(Ms) and 

/J,.G(1) represent the difference in Gibbs chemical free energies between the parent and 
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martensitic state at Ms and T, respectively; (2) the transition probability (Pe) from the austenitic 

state to the martensitic state is proportional to the Boltzmann factor and is expressed as 

Pe = po· exp (-A / kBy) (A-I) 

where kB is the Boltzmann constant and Po is a constant related to the cooperative movement of 

atoms which is a characteristic feature of martensitic transformations; (3) in the case of A t- 0, 

martensitic transformation does not start even if one particle is excited, but it does so when 

some critical number of particles, n°, among the excited particles, m, form a cluster in the 

austenite. Based on these assumptions, the probability (P) of the occurrence of martensitic 

transformation has been derived as, 

N m 

P= L L f(N,M,n,n*)(Pe)m (1- Pe)N-m 
m(:?:n:?:n*) n(n:?:n*) (A-2) 

where Nand n* represent the total number of particles and a minimum number of particles 

in the cluster which is required to start a martensitic transformation, respectively, and m and n 

the number of excited particles and j(N, m, n, n*) the possible number of clusters consisting of n 

particles within m excited particles. If they assume that the well-known ergodic hypothesis 

holds in the present analysis, then the incubation time for a martensitic transformation to start 

can be evaluated by the inverse of P, ri. More details of the theory have been reported 

elsewhere[1-2]. 
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