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Abstract

Linear matrix inequalities (LMIs in short) provide a lot of algebraic conditions rep-
resenting control specifications. This dissertation proposes a unified approach to
output-feedback linear controller synthesis by using wider variety of LMI-conditions
than those ever used before. In contrast to many previous methods to find a partic-
ular solution to some individual LMI-based synthesis problem, we define a class of
LMIs and give a unified solution to all the synthesis problems for any LMI-condition
in the class. The class contains almost all of conventional LMI-conditions for both
continuous- and discrete-time systems, such as several root-clustering conditions, Ho-
norm conditions, H..-norm conditions and positive-real conditions, and so on. More-
over, there are many new multi-objective LMI-conditions belonging to the class.

Though LMIs are convex inequalities if they describe properties of fixed sys-
tems, problems to find a controller that makes the closed-loop system satisfy an
LMI-condition, which problems we call ‘LMI-synthesis problems’ here, are no longer
convex. To solve such nonconvex problems for any LMIs in the class, we give the uni-
fied solution as follows: First, we show a new parametrization of stabilizing output-
feedback controllers. The parameter set is finite-dimensional and convex, and there-
fore appropriate to convex optimization on it. Next, we show a procedure to derive
from any LMI-condition in the class a new LMI on the parameter set. The solvability
of the new LMI is equivalent to that of the original nonconvex LMI-synthesis problem.
Further, all the controllers satisfying the original inequality are parametrized by the
parameters satisfying the new LMI.

We show some advantages of the approach: From the theoretical point of view, all
the LMI-synthesis problems in the class turn out to be a single optimization problem of
different cost functions but of the same kind. This can contribute to further progress of
theory with LMIs. Next, our unified solution completely parameterizes the freedom
of satisfactory controllers through convex subset of the parameter set. Third, the

class contains not only many conventional LMIs but also new multi-objective LMIs,
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which have never been used for synthesis before. The unified solution reduces those
LMI-synthesis problems to convex optimization problems. With those LMIs and the
unified solution to them, more complex specifications such as Hy/H,, /ro0t-clustering
is tractable in computer aided design (CAD) through convex optimization. This new
CAD framework includes existing design methods and very flexible in selecting control
specifications with the new LMI-conditions presented in this dissertation. Lastly, our
solution always gives a full-order controller if the LMI-synthesis problem is solvable
at all.

Next, as an application of the above results, this dissertation considers robust
performance problems for plants with two types of structured uncertainties: norm-
bounded uncertainties and polytopic uncertainties. We formulate robust perfor-
mance problems using LMI-conditions belonging to the class defined above, and
solve those synthesis problems, guaranteeing quadratic stability at the same time.
The parametrization of this dissertation reduces those robust synthesis problems to
optimization problems on the parameter set. From benefit of the unification of LMI-
conditions above, a number of LMIs is applied also to robust synthesis problems. For
both uncertainty types, we give algorithms to derive controllers.

Lastly, we give some LMI-based analysis and synthesis results for descriptor sys-
tems. In particular, elimination of differentiating dynamics is considered as well
as stabilization of exponential modes and fulfillment of some specifications. First,
we show generalized Lyapunov and Riccati inequalities with equivalent LMIs that
give a generalized stability condition and an H.-norm condition, respectively. Next,
we solve two particular synthesis problems using these inequalities: state-feedback

quadratic stabilization and output-feedback H.-control.
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Notation

Z The set of integers.

R The set of real numbers.

R” The set of real vectors with n components.
Rmx" The set of real m X n matrices.

C The set of complex numbers.

Rec The real part of ¢ € C.

Ime The imaginary part of ¢ € C.

trace M The trace of a matrix M.

rank M The rank of a matrix M.

MT The transpose of a matrix M.
M! The inverse of a matrix M.
MT The inverse of the transpose of a matrix M.

(M~T = (MT)~1)
M1 The psudoinverse matrix of M.

Mt Let M € R™ " If m < n, M* represents a matrix that constitutes the
basis of the null space of M. If m > n, M~ represents the transpose of a

matrix that constitutes the basis of the null space of M7,
Omax(M)  The largest singular value of a matrix M.
Amax(M)  The largest eigenvalue of a symmetric matrix M.
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/\min(f\/[)

M>N

M<N

M>N

M<N

Oan

PD(n)
RH,

Gl

1Gl2

The smallest eigenvalue of a symmetric matrix M.

For symmetric matrices M and N, the inequality M > N represents that
M — N is positive definite, i.e., Apm(M — N) > 0.

means N > M.

For symmetric matrices M and N, the inequality M > N represents that
M — N is positive semidefinite, i.e., Apin(M — N) > 0.

means N > M.
The n X n identity matrix. (Sometimes the subscript n is omitted.)

The m X n zero matrix. (Sometimes the subscript m x n is omitted.)
Ar 0
441®@An=dlag{x41,,/4n}= )
0 An

The set of n x n positive definite matrices.
The set of proper stable real rational transfer functions.

For a transfer function G € RH,,

SUP Omax(G(jw)) for continuous-time systems,
|Gl = § 05

SUP Omax(G(e??)) for discrete-time systems.
0<6<2r

For a transfer function G € RH,,

i
IG| [ /0 t1"‘“3‘36@(—J'W)G(]'w)dw] ~ for continuous-time systems,
2=

(KT

27 . .
[ /0 traceG” (¢’ t")G(ej“))dﬁ} for discrete-time systems.

For a function of ¢t € R whose value G(t) belongs to R™*" and G(¢t) =
0,t < 0, we define

IGll2 := [/Ooo traceGT(t)G(t)dt]% ,



G(s; K)

K~K'

ix
For a symbol K representing a state-space realization {4, B,C, D}, we

denote the following transfer function of K by G(s; K):

G(s;K)=C(sI —A)*B+D.

means that two state-space realizations K and K’ have an identical trans-

fer function.
(K ~ K'if and only if G(s; K) = G(s; K').)
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Chapter 1

Introduction

1.1 Overview of the dissertation

As progress of technology in all areas, higher performances are demanded for control
systems. Thus, in control theory, a more realistic and useful theoretical framework for
control system synthesis is necessary to answer more difficult design problems. On the
other hand, recent advancement of computers makes it possible to implement complex
controllers and to design controllers involving heavy calculations. This brings a new
direction to control theory: Solve more realistic but difficult problems via numerical
optimization calculation within admissible time. We can say that this is a straight
extension of controller synthesis through Riccati solutions in LQ and He-control, in
the sense of generalizing Riccati equations to various algebraic expressions.
Numerical approaches can relax difficulty of synthesis problems, and we can carry
them out with recent fast computers. However, straightforward application of existing
numerical algorithms to controller synthesis problems is impossible or returns poor
results, because almost all of performance indices in controller synthesis are usually ill
functions from the numerical optimization viewpoint. To apply a numerical approach

to a controller synthesis problem, the following is necessary:

(1) The control specifications arising in the problem are represented as performance

indices or inequality conditions of some finite-dimensional variable.
(2) There exists a mapping that gives a controller explicitly from the variable in (1).

(3) There exists an algorithm that derives global optimum from the functions or

inequalities in (1) within admissible time (i.e., polynomial-time).
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2 Chapter 1. Introduction

In the item (3), convex optimization is guaranteed to converge to a global optimum,
and there are many polynomial-time algorithms. Great deal of attention has been
paid to approaches to reduce a synthesis problem to a convex optimization problem,
recently. In particular, linear matrix inequalities (LMIs in short) provide a lot of
algebraic conditions representing control specifications inciuding stability conditions,
Hs-norm conditions, H..-norm conditions, and so forth [0S94, BGFB94], and perhaps
have most applications among controller design methods via convex optimization.
Let us see LMI-based approaches to controller synthesis in detail. Many of LMIs
that represent a property of linear systems are inequalities of a positive definite ma-
trix, say P, which gives an Lyapunov function of the system. (Some of LMI-conditions
are given with additional variables.) The most standard form of LMI-conditions is:

A system Tsatisfies a property S < IP > 0,95(P, L) > 0, (1.1)

where ®s is a symmetric-matrix-valued function linear (affine) with respect to P
and determined by X. For a fixed system X, to find a solution P to ®s(P,X) > 0
is a convex optimization problem and the solution, if exists, is always found via
globally convergent algorithms. Further, several efficient polynomial-time algorithms
to solve LMIs have been proposed recently [BG93, NN94, VB94]. On the other
hand, the problem to find a controller satisfying the LMI-condition (1.1) is stated
as follows: find a controller K such that the closed-loop system, say X(K), satisfies
Os(P,E(K)) > 0 for some P > 0. In such problems, which we call LMI-synthesis
problems, matrix inequalities to solve are not affine with respect to (P, K), and
therefore they are never treated via existing convex optimization. Though there are
some approaches to solving such nonconvex inequalities directly [SGL94, GTSPLY4,
GSP94], the computational complexity of them is too large even for recent computers.
| Several methods have been proposed for particular LMI-synthesis problems by
reducing such a nonconvex inequality to a new LMI of a new variable. Any solution
to the new LMI derives a controller satisfying the original inequality condition. There
are several results of this type for output-feedback synthesis, solving H.,-control
problems [Gah92, Gah94, IS94, SMN90], Ha-control problems [Rot93], mixed Hy/ Ho,-
control problems [ICR91]. In these results, though LMI-conditions representing control
specifications have a lot of common features, solutions are just individually given and
relations between any two of solutions are not clear. In other words, these results
proposed different parameters and mappings of the above items (1) and (2). On
the other hand, results of LMI-synthesis problems for state feedback systems [OK89,



GPB91, OMS93b, GPS93a, OMS94, MOS94b] handle much more of LMI-conditions
for design, with a single parameter space and mapping. Lastly, there is another
previous numerical design method that uses the Youla parametrization [YJB76] and
handles functionals of closed-loop transfer functions [BB91]. This approach, called
transfer function approach, can employ any convex functionals of transfer functions,
but the parameter set (RHy,) is infinite-dimensional, and hence finite-dimensional
approximations of RH,, are used for numerical optimization.. This sometimes implies
very high order controllers, difficult to implement even with recent computers.

The purpose of this dissertation is to propose a unified approach to output-
feedback linear controller synthesis by using wider variety of LMI-conditions than
those ever used. In contrast to previous methods to find a particular solution to
some individual LMI-synthesis problem, we will give a unified solution to all the
LMI-synthesis problems belonging to a certain class. We will define the class, say £,
focusing on a structure shared by many LMIs in control theory. The class £ contains
almost all of conventional LMIs for such conditions as several root-clustering condi-
tions, Ho-norm conditions, H..-norm conditions and positive-real conditions, and so
on. Though there are some previous approaches to controller synthesis for a class
of LMIs [Iwa93, Sch95], their classes are included in the class £ as far as full-order
controller synthesis is concerned. Further, we propose new multi-objective synthesis
methods, by showing that the class £ contains new LMI-conditions representing multi-
ple specifications. In mixed Hs/H-control, the class provides an LMI-condition that
does not need those assumptions required in previous approaches to mixed Hs/Hoo-
control [BH89, KR91]. Moreover, the class contains more complex LMI-conditions,
such as Hy/Hu /root-clustering conditions, and only our unified solution derives a

convex optimization method to solve those complex problems.

As mentioned above, though LMI itself is a convex inequality, an LMI-synthesis
problem is not a convex problem. To solve such problems for LMIs in the class £, we
give the unified solution as follows. First, we show a new parametrization of stabilizing
output-feedback controllers. The parameter set is finite-dimensional and convex,
and therefore appropriate to convex optimization on it. Stabilizing controllers and
stabilized closed-loop systems are represented explicitly in terms of parameters, say
p. There have never been parametrizations of output-feedback controllers that have
such a parameter set. Next, we show a procedure to derive, from any LMI belonging

to the class £, an equivalent LMI-condition, say ®*(p) > 0, on the parameter set. All



4 Chapter 1. Introduction

the controllers satisfying the original inequality are parametrized by the parameters
p satisfying ®*(p) > 0. Thus we give the unified solution to LMI-synthesis problems
as a procedure that reduces all the ‘nonconvex’ inequalities of the class £ to ‘convex’
LMIs on the parameter set. Many of the results in this dissertation are derived for
both continuous- and discrete-time systems.

We show some advantages of the approach as follows:

e From the theoretical point of view, all the LMI-synthesis problems in the class
L turn out to be a single optimization problem of different cost functions but
of the same kind; on the parameter set, H..-optimization and Hs-optimization
are of the same family. Further, we treat continuous- and discrete-time systems
simultaneously. These facts can contribute to further progress of theory with
LMIs. In this dissertation, we apply the class of LMIs and the unified solution

to another formulation of robust controller synthesis problems

e Unlike individual solutions to output feedback LMI-synthesis problems that
give only particular solutions, our unified solution completely keeps the original
inequality (1.1), i.e., as mentioned above, the set of the solutions satisfying
®*(p) > 0 parameterizes all the controllers that meet the specification described

by the original LMI-condition.

e The class contains a lot of LMIs. In particular, some of LMIs for multiple
specifications have never been used before and less restrictive than what ever
used. Therefore the class of LMIs and the unified solution to them provides
a theoretical basis for a new CAD framework that includes existing design

methods and very flexible in selecting control specifications.

¢ In contrast to the transfer function approach, our solution always gives a con-
troller at most of full-order if the LMI-synthesis problem is solvable. For the
state-feedback systems, there always exists a static state-feedback solution, if

solvable.

The key difference between our approach and previous approaches [SMN90, KR91,
Gah92, Rot93, Iwa93, 1594, ISG94, Gah94] is that our parametrization completely
transforms the variables (P, K) in the inequality ®(P, X(K’)) > 0 to the new variable
p in the inequality ®*(p) > 0, while previous approaches eliminate some parts of the
freedom of the original variable (P, K) according to particular problems. Our keeping

of the freedom brings vast applications of our approach to various LMIs.



Though we have not mentioned robust stability or robust performances so far,
LMIs of the class £ can describe robust performance specifications and hence we can
handle robust controller synthesis with those LMIs. Furthermore, as we focus on
robustness as an important issue in control theory, we will make a unified approach
to robust performance problems for plants that have uncertainties in their coefficient
matrices of a state space realization. Such uncertainties are called ‘structured’ uncer-
tainties, and robust performance problems with structured uncertainties have been
studied mainly based on so-called quadratic stability [Pet87]. LMIs have been often
used to represent specifications in the area of robust controller synthesis based on

quadratic stability.

In this dissertation, we will consider two types of structured uncertainties: norm-
bounded uncertainties and polytopic uncertainties, and solve LMI-synthesis prob-
lems with satisfaction of quadratic stability in presence of those uncertainties. The
parametrization of this dissertation reduces synthesis problems to optimization prob-
lems on the parameter set. From benefit of the unification of LMI-conditions above, a
number of LMIs are applied to robust synthesis problems. Unfortunately, as almost all
of previous results for output-feedback robust controller synthesis, matrix inequalities
to solve do not completely ‘get convex’ with respect to all the variables. However, for
norm-bounded uncertainties, the complexity does not exceed that of existing meth-
ods [YHF95] for norm-bounded uncertain systems, and we show that algorithms for
those existing methods are applicable to the result of the dissertation that treats more
kinds of LMIs. On the other hand, synthesis problems with polytopic uncertainties
have not paid much attention though polytopes can describe uncertainties of plants
more exactly than norm-bounded representations. We will show a matrix inequality
condition on the parameter set equivalent to the original inequality condition, and

propose an algorithm to solve inequalities on the parameter set.

Lastly, we will consider descriptor systems. The descriptor form represents linear
systems with differentiating elements and static constraints between state variables,
and so on. It is also suitable to describe uncertainties of dynamical systems. In
our approach to robust performance problems above, uncertainties are represented
in the descriptor form. Another point of this dissertation for descriptor systems is
analysis and synthesis of properties of singular descriptor systems based on LMIs. In
particular, elimination of differentiating dynamics is considered as well as stabiliza-

tion of exponential modes and some specifications. Though our goal to apply the
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above unified approach is not attained, we will provide several new useful results for

descriptor systems based on LMIs. First, we will show generalized Lyapunov and

Riccati inequalities with equivalent LMIs that give a generalized stability condition

and an H.,-norm condition, respectively. Utilizing these LMIs, we solve two partic-
ular synthesis problems: state-feedback quadratic stabilization and output-feedback

H_,-control.

1.2 Contribution

In the following list, we summarize the new results of this dissertation.

(i)

(i)

A new parametrization of stabilizing output-feedback controllers is proposed.
(Chapter 2, Section 2.3.) The parameter set is finite-dimensional and convex,
and therefore suitable for convex optimization on it. We use this parametriza-

tion in Chapter 3 and Chapter 4.

A unified solution to a class of synthesis problems is derived through the above
parametrization. (Chapter 3, Sections 3.2,3.3.) This solution gives a unified
formula to existing synthesis problems to find a controller that satisfies a certain
LMI-condition, including H.-control, Hs-control, root-clustering, and so on.
(Chapter 3, Section 3.4.)

New LMI-conditions of multi-objective specifications are applicable through the
above solution to controller design. Though there are several present LMI-
conditions used for multi-objective synthesis, we propose a new multi-objective
synthesis framework that admits less restrictive problem formulations and wider

variety of multiple control specifications. (Chapter 3, Sections 3.2, 3.5.)

Robust performance problems are solved for two types of structured uncertain-
ties. For both types, we apply a larger class of LMI-conditions than those ever
used to describe control specifications, and give algorithms to derive robust

controllers satisfying such an LMI-condition. (Chapter 4.)

New results of analysis and synthesis for descriptor systems are derived based on
LMIs. We propose LMI-conditions for a generalized stability and an H,,-norm
condition. Applying these LMIs, we solve state-feedback quadratic stabilization
and output-feedback He-control problems. (Chapter 5.)



1.3 Organization

The organization of this dissertation is as follows: In Chapter 2, we give a new
parametrization of stabilizing controllers, defining a parameter set and showing an
explicit mapping from a parameter to the corresponding controller. In Section 3.2
of Chapter 3, we formulate the LMI-synthesis problem and define the class of LMIs
that we handle in this chapter. Next, in Section 3.3, we give a unified solution to
the LMI-synthesis problems belonging to the class. Section 3.4 is devoted to list
elements of the class, and several subclasses are defined for the following chapters.
While Section 3.4 shows only conventional LMI-conditions, in Section 3.5 we indicate
new LMI-conditions representing robust multi-objective specifications, and discuss
controller design using such LMI-conditions. In the end of this chapter, we show a
numerical example of a multi-objective controller design using new LMI-conditions.

In Chapter 4, we formulate problems of robust LMI-synthesis with quadratic sta-
bility as a class of robust performance problems. In Section 4.3 and 4.4, we consider
synthesis problems for plants that have norm-bounded and polytopic uncertainties,
respectively. In both sections, the results are given as optimization problems on the
parameter set, and we show an algorithm to solve each optimization problem. Section
4.5 provides a numerical example of quadratic stabilization of a plant with polytopic
uncertainties.

Chapter 5 is concerned with descriptor systems. In Section 5.2, we give some def-
initions used in this chapter, such as a generalized stability. Section 5.3 shows several
new algebraic inequalities that represent properties of descriptor systems. In Section
5.4, we solve some selected synthesis problems: robust stabilization of descriptor sys-
tems and H,-control problems for descriptor systems. We show a numerical example
of He-control for a descriptor system with a differentiating element.

All the proofs are stated in Appendix.






Chapter 2

A new parametrization of

stabilizing controllers

2.1 Introduction

Controller design through convex optimization has been studied since the late 1980’s
and now it is paid a great deal of attention. The key to apply convex optimization to
controller design is to find a parametrization satisfying items (1)~(3) in Section 1.1,
which we repeat shortly: (1) performance indices described by some finite-dimensional
variable, (2) an explicit mapping from the variable in (1) to a controller, and (3) a

polynomial-time optimization algorithm for the indices in (1).

In this chapter, we propose a new parametrization of stabilizing output-feedback
controllers. The parameter set related to controllers is finite-dimensional and convex,
and hence suitable to convex optimization on it. In the following chapter, we show
that any of synthesis problems described via LMIs belonging to a certain class is re-
duced to convex inequality on the parameter set. Unlike all previous parametrizations
[YIB76, SIwad3, KKOS93], we parametrize all freedom of the stabilizing full-order
controllers, or controllers of any higher order, using the finite-dimensional convex pa-
rameter set. Through the parametrization of this chapter, we handle a lot of control
system synthesis problems with LMIs in Chapter 3 and Chapter 4.

9



10 Chapter 2. A new parametrization of stabilizing controllers

2.2 Description of control systems

Let us consider the following linear time-invariant plant:

sz(t) = Azx(t) + Bu(t) + Biwi(t), (2.1a)
y(t) = Cz(t) + Du(t) + Nyw(t), (2.1b)
21(t) = Ciz(t) + Hiu(t) + Dyws (), (2.1c)

where z(t) € R" is the state vector, u(t) € R™ is the control input vector, y(t) € R? is
the measurement vector, w(t) € R™ is the exogenous-input vector and z,(t) € R™
is the controlled-output vector. We represent by (2.1) both continuous-time and
discrete-time systems by defining the variable ¢ and the operator s as

teR, sz(t) =i(t) for continuous-time systems,
teZ, sx(t)=xz(t+1) for discrete-time systems,
respectively. Next, we represent controllers by:
sz.(t)= Aczc(t) + Bey(t), (2.2a)
u(t) = Ceze(t) + Dey(t), (2.2b)

where z.(t) € R*. We denote the above realization of a controller by K = {A,, B,
C., D.}, and by G(s; K) the transfer function of K:

G(s;K) = C,(sI — A.)"'B,+ D..

We define by K(n.) the set of state space realization of the form (2.2) with a n.-th
order state variable. If two realizations, say K and K’, represent the same transfer
function, i.e., if G(s; K) = G(s; K'), we write K ~ K'. If K or K’ is a nonminimal
realization, K ~ K’ can hold even though the orders of the two realizations are
different from each other.

Without loss of generality, we assume that D = 0. If this is not satisfied, define

the following variable from y and u:
Y'(t) = y(t) — Du(t) = Cxz(t) + Nywy(t),
and consider a controller whose input is y/':

sz(t)= ALz.(t) + By (t), (2.3)
u(t) = Cla.(t) + Dy (t), (2.3b)
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From any controller (2.3), we get a controller (2.2) from y to u by

A, =A —B(I+DD)'DC., (2.4a)
B.=B/(I+DD))™, (2.4b)
C.=(I+D.D)'C., (2.4¢)
D.=(I+D.D)'D. (2.4d)

The invertibility of I + DD, (or equivalently I + D.D) is confirmed later when we
give a formula of controllers.
We denote a realization of the closed-loop system that consists of the plant (2.1)
and a controller K = {A,, B, C., D.} as follows:
s2q(t) = Aa(K)za(t) + Baqy(K)wi(t), (2.5a)
21(8) = Caq(E)alt) + Dagy(K)wn(8), (2.5D)

where z.(t) = [z7(t) zT(¢)]7 and

A+ BD.C BC. ’
Aa(K) = [ ] ; (2.6a)
B.C A,
' By + BD.N;

By (K):= , 2.6b
1) (K) [ BN } (2.6b)
Cay(K):=[C1 + H1D.C H.C.], (2.6¢)
D01(1)<K)Z= D1 + HchNl. (26d)

2.3 Parameter set and mapping

In this section, we show a new parametrization of stabilizing output-feedback con-
trollers. First, we define a parameter set to parametrize stabilizing controllers as

follows:

Definition 2.1  Let n, > n and denote by P(n,) the set of variables p, where p =
{Ps, Py, Po, Wia, Wya, Wh, L}, P € PD(n), P, € PD(n), P, € PD(n, —n), Wy,
e R™m, W, € R™»*?, W, € R™*?, L, € R™*™, and P; and P, satisfy
Py I
l I P

> 0.

We also denote
B [ L  Lqs 1%

g
Lo1 Lo W};J ,
where L € R**", Wy € R™*" and W, € R**P. ]

] s Wia={Wy W], Wi = {
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The parameter set P(n,) is an open convex subset of R™, where N, := n(n +1) +
%(np —n)(np —n+1) + (n, + m)(n, +p).
Next, to present parametrizations of controllers for continuous-time and discrete-

time systems simultaneously, we define the following function:

X 0
i for continuous-time systems,
o 0 -Y-YT
(PLyaP(‘Y? Y ) = X yT
} for discrete-time systems.
Y X

Then the LMI ®ry.p( P, PM) > 0 is equivalent to the Lyapunov inequalities:

P >0, PM+MTP <0, for continuous-time systems,

P>0, M'PM — P <0, for discrete-time systems.

In the following proposition, we give the mapping from the parameter set to the set
of stabilizing controllers of order n, > n. We show an explicit formula of a closed-loop

realization in terms of parameters.

Proposition 2.1  Define the following matrix-valued affine functions on P(n,):

(P I, 0
Mp(p):=|I, P, 0|, (2.7a)
0 0 P
"AP; + BW; A+ BW,C BWp
Mu(p) == L PA+W,C Ly |, (2.7b)
L Loy Wy C Ls
" B; + BW,N;
Mpi(p) == | ByBy + W,Ny |, (2.7¢)
WV,
Mey(p) = [CL P+ HiW;  Cy+ HiW,C  HiWis], (2.7d)
Mpi(p) := Dy + Hi Wy Ny, (2.7¢)

(1) For any integer n, > n, the following two statements are equivalent:
(I) There exists a stabilizing controller of order n, for the plant (2.1).

(II) There exists a parameter p € P(n,) satisfying the following LMI:

@Lyap(l\/[p(p),N[A(p)) > 0. (28)
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(2) Let n, > n and define a mapping that maps a parameter p € P(n,) satisfying
(2.8) to a state-space realization as follows:

Kmap(P) = {Ac(p), Bc(p), Cc(p), De(p)} (2.9)
Dc : c
B, 1 A,
I, : 0 0 Wi : I/Vf I/Vfg I, ; —CPfS_l 0
I e e | e A I
=| B -PF71 0 W, ' (L— PAP;)  Li 0o s 0o |,
01 0 Iy || Wer  La Lo || 01 0 P!
S = Py — P7(>0). (2.10)

Then, for any parameter p € P(n,) satisfying (2.8), the controller Knap(p) stabilizes
the plant (2.1). Conversely, for any stabilizing controller K of order n, there exists a
parameter p € P(n,) such that K ~ Knap(p)-

(3) Let p € P(n,) satisfy (2.8) and K = Knap(p) in (2.6). Define the following

matrices from p:

Pf S 0 I, 0 0
P=}5S § 04}, U:= e — Py 0 ,
0 0 P 0 0 I, .
h P Pn (2411)
Py = P Up=PUT=|S 0 0
0 0 P
Then we have
./V[p(p) = U1P1U1T = UgPQUQ, (212&)

Ma(p) Mpi(p) _ U, 0 Aa(K)P 01(1)(K) 0
Mc1(p) Mm(p)] [0 I} {Ccl(l)(K)Pl Day(K ] { }
_ [U.;f 0} {PoAc,(A) Pchz(l)(K)] [Uo 0}.

0 I}|Cany(K) Dany(K) 0 I
(2.12b)
These equalities imply the following realization of the closed-loop system:
1\/[p(p)s:i(t) = 1\/[4( ) (t) + MBl(p)wl(t), (2133;)
Zl(t) = lVfCl )5)( ) + MDl(p)wl(t), (2.13b)

where 7(t) = U lzq(t).
Proof. See Appendix. : O]
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Remark 2.1  The above formula of Ky, in (2.10) itself does not guarantee the
regularity of I + DD, = I + DW,, which condition is necessary for the case D # 0.
However, if det(I+ DW),) = 0, we get a perturbed solution of the form ¢WW, by setting
a scalar ¢ such that ¢~! is not a eigenvalue of —DW,, and that |c — 1] is small enough
for ¢W), to satisfy Pryap(Mp(p), Ma(p)) > 0 instead of W, ]

The parameter set {p € P(n,)|Pryap(Mp(p), Ma(p)) > 0} is convex and finite-
dimensional, and parametrizes all stabilizing controllers of order-less than or equal to
n,. None of the previous parametrizations of output-feedback stabilizing controllers
[YJB76, SIwa93, Iwa93] has a convex and finite-dimensional parameter set.

The equalities (2.12) suggest that LMIs for closed-loop systems are tractable
through the parametrization if they contain the closed-loop realization and P ounly in

the following form:

PA4(K), PByy(K), Cay(K), Day(K)
or

Aa(K)P, Ba(K), Cary(K)P, Day(K).

In the following chapter, we show that this is in fact true; we define a class of LMIs
that have such terms and solve synthesis problems with it. Further, we show that a

lot of control specifications are described through such LMI-conditions.

2.4 Issues related to the parametrization

In this section, we discuss some issues related to the above parametrization.
From the LMI ®y,.,(Mp(p), Ma(p)) > 0, we pick up the following sub-blocks:

@Lyap(Pf,APf + BT/Vf) >0, (214&)
Bryap(Py, PyA + W,C) > 0. (2.14b)

These LMIs show that, for both continuous- and discrete-time systems, WPy lisa
stabilizing feedback gain for the pair (4, B) and Pg‘lwg is an observer gain for the
pair (A4, C). Thus this parametrization is related to the parametrization of stabilizing
state-feedback gains [KR91] and observer gains.

We show more about the relation: Consider the following state-feedback system:

sx(t) = Ax(t) + Bu(t) + Biwi (1), (2.15a)
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y(t) = z(¥), (2.15b)

All the stabilizing state-feedback gains F' is parametrized as follows [KR91]:
F=WP™}, P=PT &,.,(P,AP+ BW) > 0. (2.16)

If F is represented as in (2.16), stabilized closed-loop systems have the following

realization:

Psi(t) = (AP + BW)&(t) + Bywi(t), (2.172)
Zl(t) = (Clp + H1VV)f(t) -+ Dlwl(t), (217b)

where #(t) = P~'x(t). Further, also stable matrices themselves are parametrized
through LMI-conditions [OK93]:

A=7P', P=PT &y,,,(P,Z)>0. (2.18)

Thus stable matrices themselves, stable matrices attained via state-feedback, and
stable matrices attained via output-feedback have the same structure:

Z(p)X Hp), X(p) = XT(p), Pryp(X(0), Z(p)) > 0, (2.19)

where Z(p) and X (p) are appropriate matrix-valued affine functions of p.

Ohara et al. investigated differential geometric structure of stable matrices and
stable state-feedback systems [OK93, OA94], based on a one-to-one parametrization
of stable matrices or stabilizing feedback gains. In those one-to-one parametrizations,
stable matrices attained via stable state-feedback control have the structure of (2.19).
However, a one-to-one parametrization of output-feedback controllers is still an open
problem. Note that one-to-one parametrization of stabilizing state-feedback gains can
be conservative to represent control specifications, however.

Lastly, we discuss lower order controller issues. From recent advancement in im-
plementation technique for control systems such as DSP, using high-order controllers
has become much less difficult. But lower-order controllers are needed even today
and, if performance does not deteriorate significantly with a constraint on the order,
lower-order controller is usually desirable. Though there are several results on lower
controller synthesis problems [Gah92, Gah94, GPS93b, Iwa93, IS94, ISG94], none of
them give a synthesis procedure that always finds an optimal lower-order controller
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if exists. A recent result of Sugie et al. [SugT94] shows the condition under which a
parameter of our parametrization gives a lower-order controller. (Note that this result
needs a little modification of the parameter set [SugT94].) However, they do not give
a computational method to derive a parameter that meets the lower-order condition,

except for a method reducing their parametrization to those results of [Iwa93], etc.

2.5 Concluding remarks

In this chapter, we showed a new parametrization of output-feedback controllers.
The parametrization has a finite-dimensional convex parameter set. In the following
chapter, a lot of LMI-synthesis problems, which are not convex problem, are reduced

to convex optimization problems on this particular parameter set.



Chapter 3

Unified solution to LMI—synthesis

problems

LMIs are useful tools providing algebraic conditions for many control specifications
[0S94, BGFBY4]|. In this chapter, applying the parametrization of the previous chap-
ter, we give a unified solution to LMI-synthesis problems belonging to a certain class,
which we define here focusing on structures that many of LMIs in control theory
shares. The class contains almost all of conventional LMI-conditions that have been
used for controller synthesis, and new LMI-conditions for multiple specifications such
as Hs/H.-control, Hy/H,,/root-clustering, and so on. The unified solution provides
a procedure to find a controller that satisfies any one of the LMI-conditions belonging

to the class.

3.1 Introduction

First, we review previous controller design approaches via convex optimization from
the viewpoint of parameter spaces where optimization calculations are carried out.
For state-feedback synthesis problems, the following parametrization of static
state-feedback gains [KR91] and equivalent parametrizations [GPB91, OMS93b, OMS94]
have been used: for a stabilizable pair (A, B), every stabilizing gain F' is given by

F=WP;', Pr=Pl >0, (AP; + BW;) + (AP; + BW;)T <0. (3.1

In this parametrization, parameter (Py, Wy) belongs to a finite-dimensional convex
set defined by the above LMIs. The mapping WPy ! is surjective to the set of all

17
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stabilizing gains. A lot of performance indices are convex on the parameter set, and
they are applied to robust controller design via convex optimization [OK89, GPBI1,
OMS93b, OMS94, MOS94b].

This parametrization is also applied to some output-feedback problems such as
mixed H,/H-control [KR91], Hs-control [Rot93]. In these applications for output-
feedback synthesis, only limited freedom of full-order controllers is parametrized via
(3.1) and only each of the specifications gets a convex index on the parameter set.
Kadoya et al. [KKOS93] proposed a design method of observer controllers. They
parametrized estimated-state-feedback gain F as in (3.1) and observer gain G in the

following dual form of (3.1):
G =P;'W,, P, =PI >0, (P,A+W,C) + (P,A+W,C)T <0,  (3.2)

where (A, C) is assumed detectable. However, this method does not parameterize
all freedom of full-order controllers, and no convex performance indices have been
derived through this parametrization of observer controllers.

On the other hand, from context of parametrization of covariance controllers
[SIke89], Skelton et al. [SIwa93] derived a parametrization of fixed-order controllers
with a nonconvex parameter set. Iwasaki et al. [Iwa93, 1594, ISG94] modified and
utilized this parametrization to solve H.,-control, Hy-control, mixed Hs/H-control
problems. These results propose a nonconvex algorithm that can derive lower order
controllers, but the algorithm does not enjoy global convergence. To derive full-order
controllers, their algorithm is solved via convex optimization, but then these results
are reduced to previous results of controller synthesis based on LMIs.

The above parametrizations aim to solve synthesis problems to find a controller
that satisfies a certain LMI-condition. On the other hand, Boyd et al. [BB91] pro-
posed a numerical approach using the Youla parametrization [YJB76]. The merit of
this method is that it can employ any convex function of closed-loop transfer func-
tions. However, since parameters of the Youla parametrization belong to RH,, a
linear but infinite-dimensional space, numerical optimization is only carried out on
a finite approximation of RH,,. Further, to get a good approximation, the number
of the free parameter is often very large. This causes high-order controllers, which is
difficult to implement even with recent fast computers [Nob95].

In this chapter, applying the parametrization of the previous chapter, we propose a
unified approach to LMI-synthesis. In contrast to many previous methods in output-
feedback synthesis to find a particular solution to some individual synthesis problem,
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we define a class of LMIs, which will turn out to contain both conventional and new
LMIs, and give a unified solution to all LMI-synthesis problems belonging to the class.
The class contains LMIs for such conditions as several root-clustering conditions,
Hs-norm conditions, H..-norm conditions and positive-real conditions, and so on.
Hence the proposed solution shows that these synthesis problems are equivalent to
optimization problems of a performance index of the same family. Further, the class
always contains a multi-objective LMI-condition that guarantees any combination of
conditions described by LMIs in the class. In particular, some of LMIs for multiple
specifications have never been used before and less restrictive than those ever used.
With all those LMIs in the class and the unified solution to them, we establish a
theoretical basis for a new CAD framework that includes existing design methods
and very flexible in selecting control specifications.

We give the results as follows: Section 3.2 formulates LMI-synthesis problems
and defines the class of LMIs. In Section 3.3, we give a unified solution to the LMI-
synthesis problem, showing a procedure that reduces nonconvex matrix inequalities to
equivalent convex LMIs on the parameter set. Section 3.4 is devoted to indicate that
the class includes many of conventional LMIs, while in Section 3.5 we present some of
new LMI-conditions and discuss robust multi-objective controller design with those
LMIs. In Section 3.6, we give an illustrative numerical example using multi-objective

LMI-condition for controller design.

3.2 Problem formulation

In this section, we give the exact definition of the LMI-synthesis problem and define
a class of LMIs with which we consider synthesis problems.
Let us consider the control system shown in Fig.3.1. The plant has N, exogenous-

input and controlled-output channels and we represent the plant as follows:

sx(t) = Ax(t) + Bu(t) + %s: Biw(t), (3.3a)
i=1
N,

y(t) = Cx(t) + Dult) + > Nawi(t), _ (3.3b)
i=1

2.i(t) = C’il’(t) -+ H,"Lt(t) + Diwi(t), 1=1,2,..., N, (33(})

where z(t) € R" is the state vector, u(t) € R™ is the control input vector, y(t) € R?

is the measurement vector, w;(f) € R™,i = 1,2,..., N, are the exogenous-input
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u | 4

Controller |+

Fig. 3.1 Control system

vectors and z,(t) € RPi,i =1,2,..., N, are the controlled-output vectors. We assume
that D = 0 without loss of generality (for a plant with D # 0, apply (2.4) again). We
describe a controller as in (2.2), and in the closed-loop system we consider exogenous-
input and controlled-output pairs only from w; to 2;; we rule out pairs of w; to z; for

i # j.- We denote a realization of the closed-loop system as follows:

8Ta(t) = Aq(K)za(t) + Baw(K)wi(t), 1 = 1,2,..., N, (3.4a)
2(t) = Cagy(K)za(t) + Dagy(K)wi(t), i =1,2,..., Ny, (3.4b)

where z4(t) = [z7(t) 2T ()T and

A+ BD.C BC. g
ACI<K) = , (3.0&)
B.C A,
B; + BD_N;
By (K):= , 3.5b
T (3.
Ccl(i)(I{)ZZ [Cl + H;D.C HiC’C] ) (35C)
Do (K):= D; + H;D,N.. (3.5d)

We denote by L4(K) = {ACI(K),BCI(,i)(I{), Caiy(K), Daiy(K);i = 1,2,..., N} the
above realization (3.5), and by Gu)(s; K) the closed-loop transfer function from w;
to z;:

Gy (8; K) = Cagn(K)(8I = Aq(K)) ™ Bugiy(K) + Dagy(K). (3.6)

Next, we will define the LMI-synthesis problem. Though we showed control-
system description above, to define the class of LMIs £ without depending on the
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structure of systems, we consider the following system that has the same exogenous-

input and controlled-output pairs as the plant (3.3):

_i‘(t) +Biwi(t), 1=1,2,..., N, (378,)
CiZ(t) + Dawi(t), i = 1,2,..., N, (3.7b)

sZ(
Z,’(

where Z(t) € R™. Let © = {4, B;, Ci, D;;i = 1,2,...,N,} represent the above
realization, and denote by X all such realizations. We represent the transfer function

t)
t)

for the i-th pair by
G (8) = Ci(sI — A)™ B; + Diwy(t).

Consider a symmetric-matrix-valued function ®(P,Z) of variables P € PD(n,)
and ¥ € X. The variable P is to give a Lyapunov function of the form 7 PZ for the
system Y. We consider properties of system ¥ represented in the following manner:

System X satisfies property S
if (and only if) LMI ®(P,X) > 0 holds for some P € PD(n,).

Sometimes a property of X is described with some additional variables, say V, such
as scaling parameters. We denote ®’s for such parametric properties by ®(P,%;V),

and assume that V is independent of P and X.

Example 3.1 The H-norm condition ||G,@)| < v is represented in this form by
defining @ = ®y_ ;) as follows:

-PA-ATPp PB; CF

@Hoo(i)(P,E;7> =P& BzTP Y m, _D? ‘ (38)

[

Let us remind the symbol of the closed-loop system (3.5) above. Substituting
T4(K)into T, we get a matrix inequality condition ®(P, ¥4(K)) > 0. In the above ex-
ample, to minirmize 7 subject to ®g_(s)( P, Za(K); ) is the H,, optimization problem
for the plant (3.3). In the following, we give the exact formulation of LMI-synthesis

problems:

LMI-synthesis problem:
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o Feasibility problem. Given ®(e), find P € PD(n + n.) and a controller K of
some order n. satisfying ®(P, X,(K)) > 0.

o Minimization problem. Let ®(e) be parametric to a scalar vy, and assume that
®(P,Z;71) > ®(P,%2;7) holds for any v; > 73, P € PD(n,) and & € .
Minimize vy subject to ®(P,X,4(K);v) > 0 for some P € PD(n + n.) and a

controller K of some order n,.

If K is given and fixed, solving ®(P,X,(K)) > 0 is a convex optimization prob-
lem if @ is affine with respect to P, and solved through efficient globally convergent
polynomial-time algorithms [BG93, NN94, VB94]. However, in LL\/II-syntheéis prob-
lems the variables to find is all (P, K') and inequalities are never convex, which we
see in the following definition of the class of ®:

Definition 3.1  Denote by £ the set of symmetric-matrix-valued functions ®(P, ¥),
defined for (P,X) € PD(n,) x X with the following property: there exists a positive
integer IV, such that, for any n, > 0, ® has the following partition

Pyi(e) o Diy,(e)
So)=| .
Py,i(0) o Dwy,(e)

and each block ®;,%k,1 =1,2,..., N, has the following form:

e Diagonal blocks: Two types of blocks are admitted into diagonal entries. One

is represented by
& (P, T) := P + S(PA+ ATP), (3.9)

and we call such ®x; a state block. The other, which we call anti-state block, is

constant (and we write it as @ (P,T) = <I>§\1,C) for later convenience.)
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o Off-diagonal blocks (k > 1):

[ (VP + PP+ DATP
if both @, and ®;; are state blocks,
PB;Rp; + CTRE,
if & state and &, anti-state,

Rg-BTP + RC.L'C—','

1 7

(P, Y) =
if ®,. anti-state and ®y state,
1 27 (3
@I(cl) + (I’l(cl)Di@i(cl), _
if both @4, and &, anti-state,

\

where c(k’,)’s are scalar and Rpg;’s, Rci's and <I>§C’,)’s are matrices with appropriate

sizes. Lastly, we assume that the inequality ®(P,¥) > 0 implies P > 0. B

In this definition, the terms that depend on P and/or ¥ appear only in the form of
P, PA, PB;, C; and D; or some linear combinations of them. If ® depends on some
additional variable V', some of the constants in @ in the above definition is replaced
with a function of V, such as ¢?(V), Rg:(V), Rei(V) and @9(V).

From the above definition, finding a solution ( P, K) to an inequality ®(P, % (K)) >
0, @ € L is so-called bilinear (biaffine) matrix inequality (BMI), which is never solved
via convex optimization. Throughout this dissertation, however, we call such an
inequality condition ‘LMI-condition’ because it is not just any BMI-condition but
origineﬂly an LMI-condition that decides whether a fixed system satisfies a certain
property.

The function @, (;) defined above in (3.8) is obviously an element of £. We will
give more examples of £ in Section 3.4 and 3.5. One can see that from Section 3.4
a lot of previous LMI-conditions are included in the formulation of this dissertation,
and Section 3.5 shows new LMI-conditions for multi-objective controller synthesis in
the class L.

In the rest of this section, we show some properties that LMIs of £ commonly have.
First, for any @;,®, € L, the direct sum &, & @5 always belongs to £, which fact is
immediately checked from the definition of the class. This property derives new LMI-
conditions for multiple specifications. In. Section 3.5, we will discuss multiobjective
controller design that uses such LMIs.
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Next, any condition described by an inequality ®(P,X) > 0 is independent of

arbitrariness of state-space realization:

Lemma 3.1 Let T be a matrix with n, rows and define =(T") according to ® € £

as follows:

T if &y is a state block,
=(T) = (3.10b)
I if & is an anti-state block.
Then, if T is square and nonsingular, we have
E(TTY®(P,{A,B;,Ci, Diyi = 1,2,..., N, })E(T)
=®(P,{A,B;,C;,D;,i=1,2,...,N,}), (3.11)
where P = TTPT and
[A' Bz] _[T*l 01[4 Bi][T 0
C; D) Lo I1[|C Dilo I
U

This lemma implies a dual class of LMIs: Define £’ in the same way to that of £
in Definition 3.1 with the following replacements:

For any ®(P,X) € L (resp. ¥ (P,X) € L), there exists ®'(P',X) € L' (resp.
®(P,X) € L) such that

(P He(P,D)Z(P Y = @ (P, Y) (3.12)

holds for P’ = P~!. Therefore ®(P,X) and ®'(P’, ) are equivalent. We mainly use

the class £ in this dissertation.



3.3 Unified solution to LMI-synthesis problems

In this section, we show a solution to the LMI-synthesis problem. The solution is
a procedure to derive from any ® € £ a new LMI on the parameter set, denote it
by ®*(p) > 0, equivalent to the original inequality ®(P,X) > 0. First, we show the
definition of &*.

Definition 3.2 For ® € £, define a symmetric-matrix-valued function ®*(p) with
the following replacements of the terms in ®:

P — Mp(p),
PA - ./V.[A(p),
PB{ — MBi(P),

C; = Mei(p),
D; — Mpi(p),

where functions Mp(p), Ma(p), etc. are defined by:

[P I, O
Mp(p):=|1, P, 0|, (3.13a)
L0 0 P
[AP; + BW; A+ BW,C BWy
My(p) := L PA+W,C Ly |, (3.13b)
L Ly Wyl Loo
[ B; + BW,N;
Mpi(p) == | PyBi + WyN; |, (3.13¢)
Woa Vi
Mci(p) = [CiP; + HW; Ci+ HW,C HW;s], (3.13d)
Mpi(p) := D; + HiW,N;. (3.13e)

]

Example 3.2  The corresponding function to ®g_ ;) in Example 3.1 by Definition
3.2 is: A
~Mu(p) - Mi(p) Mpp) M&(p)
Oy (Pi7) = Mp(p) ® ME(p) VIn,  —Mp(p)
Mci(p) ~Mpi(p) Iy
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Using ®*, now we show the main result of this chapter:

Theorem 3.1 [MOS95a, MOS96b, MOS95b] Given & € £, define ®* by Definition
3.2.

(1) For any n, > n, the following two statements are equivalent:

(I) For some n, > 0, there exist P € PD(n + n.) and a controller K of order
n. satisfying
3(P,T,(K)) > 0. (3.14)

(II) There exists p € P(n,) such that

&*(p) > 0. (3.15)

(2) For any n, > n, the set of all controllers of order n, satisfying (3.14) for some P

is represented by:

{G.(s; K)|K € K(n,), ®(P,Zu(K)) >0, 3P € PD(n+ny,)}
= {G.(5; Kmap(p))|p € P(n,), 2" (p) > 0, } (3.16)

Proof. See Appendix. | ]

This theorem asserts that, for any LMI of the class £, solving the nonconvex in-
equality ®(P,X(K)) > 0 is equivalent to solving the convex inequality ®*(p) > 0.
This fact reduces the complexity of the original problem, which is a BMI problem,
in general NP-complete and impossible to solve, to polynomial-time globally con-
vergent problem. As shown in the following section, the class £ contains a lot of
LMI-conditions that have been utilized to represent properties of linear systems.
Though conventional results solved synthesis problems described such LMI-conditions
or equivalent algebraic equations or inequalities, our solution gives a formula unifying
those results. Further, since £ contains LMI-conditions that have not been solved
as an LMI-synthesis problem, the solution enables new formulations for controller
design. We will discuss such new design in Section 3.5.

Setting n, = n in Theorem 3.1, we always have a full-order solution to any of the
LMI-synthesis problems formulated above whenever it is solvable. (If there exists a
controller of order n. > n satisfying (3.14), the statement (1) in the theorem derives
parameter p € P(n) satisfying (3.15), which then gives a controller of order n that
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meets (3.14).) Hence we will often treat only the case n, = n below. If & is a
parametric LMI to some variables V', the corresponding ®* is also parametric to V,
and ®* can be nonconvex with respect to (p, V). Then we have to use some special
algorithm even for (3.15), but it is much easier to solve than (3.14).

In the following, we consider state-feedback solutions. Assume that the state
of the plant (3.3) is available, ie., C = I, D =0, N; = 0,¢ = 1,...,N,. The
following corollary claims that, if the state is available, there always exists a static
state-feedback solution to any LMI-synthesis problem that is solvable.

Definition 3.3 For ® € £, define a function ®**/(p) by the following replacements

of the elements in &:

P — Pf,
PA — AP; + BWy,
PBi - Bia

C; — Cin -+ H,'I/Vf,
Di — -Dz

Corollary 3.1 [MOS95b] The following statements (i) and (ii) are equivalent if the
state is available in the plant (3.3):

(i) ®(P,Za(K)) > 0.
(ii) @*/(p) > 0.

If (ii) holds, u(t) = W;P; z(t) is a controller satisfying (i). M

3.4 Elements and subclasses of [

In this section, we first show several properties of linear systems represented by an
LMI belonging to £. Next, we define some subclasses of £, which we employ in the
following chapter. LMIs shown here are widely known and used for controller design.

We will show new LMI conditions later in Section 3.5.
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3.4.1 Root-clustering conditions

Let us consider the following regions in the complex plane (See Fig.3.2):

Ce(Be) :={)\ € C|Re\ < =0}, (3.17a)
Cr(Br) == {\ € C|ReX > =fr}, (3.17b)
Ci(Br) :={)\ e C||Im)| < G}, (3.17¢)
Cole,) = {A € Cl A+ < uh, (3.17d)

where Bg, Br, ¢ are real constants, and (7, i are positive constants. Set @ :=
—ATp — PA, J := ATP — PA and define the following functions:

5(P,; 0z) = P & (Q - 205P), (3.182)
&p(P,%;Br) =P & (26pP — Q), (3.18b)
O [%P / } (3.18¢)
JT 26P

AT
(P, {e, ) = [PA’“‘fcp 4 ‘Z; CP} | (3.184)

Denote by A(A) all the eigenvalues of A. Then we have
A(A) C Cg = ®p(P,%;6r) >0, (3.19)
A(A) C Cp = ®p(P,Z; 8F) > 0, (3.20)
A(A) € Cr = 0/(P,Z; 1) >0, ‘ (3:21)
A(A) C Cp = ®p(P,Z;{c, u}) > 0. (3.22)

These results are proved in [ONS91] for (3.19)~(3.21) and [Yed93] for (3.19),(3.20)
and (3.22). We note that

Q

(P, Bg) = {P

P
ﬂP} >0 (3.23)

gives an equivalent condition to (3.19). We will mention this LMI later in Subsection
3.4.4, and use it in Section 4.5.

3.4.2 Performances of continuous-time systems

¢ H.-norm conditions [BGFB94]
The H,-norm from w; to z; is given by

1G5 lloo = {70 (P, T;7) > 0},
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where ®g_(;y(e) is defined in (3.8).

e Hy-norm conditions [Rot93, BGFBY4]

Assume that D; = 0. The following function ®g,;) satisfies

1Gsill2 = mf{7|<I>H2(1 (P,

where R € PD(m;) and

~PA-ATP c?} [

i pi

BTP R

{7, R}) > 0},

P  PB
} & (v — traceR).

There is an alternative LMI-condition for the Hy-norm, given by

—PA - ATP PB,-} {P CcT

o R ] @ (y — traceR),

where R € PD(p;). Rotea [Rot93] proposed several generalized Ho-conditions,

represented by similar LMIs to the above ones.

¢ Positive-real conditions [BGFB94]

Assume that m; = p;. The transfer function G, is strictly positive-real if and

only if

_PA_ATP PB+CT

Ppr(P,X)=P6& _ _
pr)(P,X) BTP 4 G,

Di-}-D?

3.4.3 Performances for discrete-time systems

e H.-norm condition [SX92]

The H.-norm from w; to 2; is given by |Gyl =

with the following function:

P 0
0 ~I,.
®% (P Tiy)=1 - on
Bfp Df

e Hy-norm [GPS93a)
The following function ®g,(;) satisfies |Gyl
0}, where R € PD(m;) and

P PA CT
®H>() _J {/,R} = ‘iTP P O
C: 0+l

®(y — traceR).

= inf {7]® ) (

inf {7]@%.;)(P,%;7) > 0}
PA PB;
C; D
P 0
0 Iy

P, {y,R}) >

R BfP DT
®|PB; P 0
D 0 Iy,

t
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Instead of 3%, ), the same condition holds for

P PA PB; R C D
% cm(P S {v,R})=|ATP P 0 |®|CT P 0
BIP 0 Al Df o I,

®(y — traceR).

where R € PD(p;).

3.4.4 Subclasses of L

In the rest of this section, we give three subclasses of £: Lg, £y and ECT The
subclasses £, and L¢ are used in the following chapter, while we discuss relations

between our result and previous results for LMIs belonging to Ls.

Definition 3.4

(i) Let Lg be a subset of £ whose elements have the following representation:

®(P, %) =®¢(P,{B;,C;, D;yi=1,2,...,N,})
+® PA®, + oL AT PoT, (3.24)

where ®; and ®, are constant matrices. In (3.24), each PA and ATP appears
once in ® € Lg.
(ii) Let £y be a subset of Lg whose elements are shown by:
(P(Pa E) =@0(P) {C_’iniai = 1a 27 s aNs})
ATP
BTP

+®,[PA PB, --- PBy,|®+ & T (3.25)

AT
By P
where ®; and ®, are constant matrices.

(iii) Let L£c be a subset of £, whose elements satisfy the following constraints in
addition to those of the definition of £:

o Diagonal blocks: If a diagonal block is a state block, either cilk) = 0 or

cﬁ) = 0, i.e., a diagonal block is represented by

®(P,T) = PP, or ¢2(PA + ATP).
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o Off-diagonal blocks (k > 1): If both @4 and &y are state blocks,
Br(P, L) = c P.

(iv) Denote by Lse (resp. Lue,Lce) a set that contains all the elements of Lg

(resp. Ly, L¢) and any direct sum of them, i.e., for example,

d Eﬁg@ '*31\[0,3@1,@2,...,@1\[0 €£57®=®1@@2@"‘®@No-

[

Remark 3.1  From the definition of £, ® € L has only one term of PA+ ATP,
and, if one picks up all the state blocks from @, they are arranged as:

P ... P .. P
P ... PA4+ATP ... P ...|,
P ... P ... P
where we dropped coefficients cg,)(o). ]

In Fig.3.3, we show which subset of £ each LMI in Subsection 3.4.1~3.4.3 belongs
to. The subset L¢ contains no root-clustering LMI-conditions except for ®’;, which
we will use in Section 4.5. |

All the LMI-conditions that have been solved in synthesis problems in the liter-
ature of [KR91, Gah92, Rot93, Iwa93, 1594, Gah94, ISG94| belong to Ls. However,
there have been no previous solutions to the LMIs of Lgg \ Lg, which contains many
new LMI-conditions, especially for multi-objective control. In Section 3.5, we show
some of LMI-conditions belonging to Lsg \ L£s and discuss multi-objective design
using those LMIs. Obviously Lgq is the largest subclass. Note that we have no
examples of LMIs in £\ Lgg now. However, if a performance index is represented
in terms of LMIs belonging to any part of £, Theorem 3.1 solves the LMI-synthesis
problem with it.

On the other hand, for LMIs in the subclass Lg, there exists a simpler condition

equivalent to (3.15). In the rest of this section we show some of such conditions for
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r £ )
@y(5) q’?fg(i)
- Ly ~N
(I)E @F
(I)[ q)D
d d
(i) P
Lc
o P r.()
@, @ pre)
. J
N Y,

Fig. 3.3 Subsets and elements

Lg. This simpler solution is related to previous results based on eliminating variables
[SugT94] in LMIs.

Suppose that & belongs to the subclass £s. From the definition of Lg, each L
and LT appears once in the corresponding ®*. Through some permutation of lows

and columns, it is represented in the following form:

du P+ LT b3
(p)= |dla+L ¢ |,
i ¢33 fa
where we set n, = n, and ¢;;’s depend on p = {Ps, Py, Wy, W,, Wy}, not on L.
(Note that P, is eliminated if n, = n.) Then (3.15) holds if and only if

. 11 13 } . [ P22 Po3 ]
== 0 and @7 := 0,
d [ 13 ¢33 ~ P and B ¢33 P33 ~

and one of the solutions to (3.15) is given by p = {p, L}, where

L = —¢12 + G133 3. (3.26)
Thus LMIs in Lg are reduced to LMIs of only Py, P, and W,

Example 3.3  Consider ®5_;)(e) defined in (3.8). Obviously this belongs to Ls,
and ®%(e) and ®}(e) are as follows:

®Hp;v) = @%1(p;7) ® Mp(p),
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% (p;7)
b —(AP; + BW;) — (AP; + BW;)T  B; + BW,N; (C;P; + HWy)T
= (B; + BW,N;)T AT ~(D; + HW,N;)T
i CiPs + H;W; —(Di + HiWi V) o2
[ —AP; — P;AT B+ BW,LN; (CiPs)T
= | (B; + BWyN,)T ~I —(Di + HW,N;)T
i Ci Py —(D; + HiW,N;) vI
B I,
+1 0 |W¢[l, 0 0]+ |0 |W/[BT 0 HI],
H; 0
®5(p;7) = @;,(p; 1) ® Mp(p),
@;1(17; )
—(P,A+W,C) - (P,A+W,C)T  P,B; +W,N; (C; + H;W,C)T
= (P,B; + W,N;)T AT —(D; + HW,N;)T
i Ci + HW,C ~(D; + HWyN;) AT
[—P,A— ATP, P,B; (C; + H;W,C)T
= (P,B;)* A1 ~(D; + HW,N;)T
| Ci + HWiyC  —(D; + HW,N;) ~I
I, cT
+10 | W,[C N O]+ |NF|\W][I, 0 0].
0 0

Cutting redundant blocks, permuting some rows and columns, and applying ‘variable

elimination’ [SugT94], we get the following equivalent LMI-condition:

P I,

Mp(p) = >0, 3.27
=) . (3272
([B1t T [-AP; - P AT PCT B B1*
{HJ OJ CiPy 71 -D; [Hi] S 0, (3.27b)
~-P,A—ATP, P,B; CT
-[C le‘]-L 0 g g g ¢ [C, Ni]J_ 0 T
BiTPg v "D;’F > 0.
0 I 0 I
C, —Di "/I
(3.27¢)
]

The last LMI-condition (3.27) is used in [Gah92, Gah94] and an equivalent condi-
tion is found in [IS94]. From any solution Py, P, to (3.27), we get Wy, W, satistying
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®%(p;v) @ ©;(p; ) > 0 with W), = 0 through, for example, Theorem 1 in [IS94], and
L satisfying ®_ ;(p;7) > 0 by (3.26). Thus, as far as only an He-norm condition is
concerned, the inequality (3.27) gives a necessary and sufficient condition and we ob-
tain one H,,-suboptimal controller from any solution to (3.27). If we use the freedom
of H.-suboptimal controllers, only the inequality ®%_;(p;y) > 0 provides all the
freedom of full-order H,-suboptimal controllers via a convex subset of the parameter
set.

If each L and LT appears more than once in &*, which situation comes with a
combined LMI for multiple specifications, we do not have the separation above, and

then the freedom of L can act to make such a combined LMI hold.

3.5 Robust multiobjective controller synthesis based

on the class L

We showed in Section 3.3 a solution to LMI-synthesis problems for any LMIs of
the class £, and in Section 3.4 we listed several LMI-conditions belonging to L.
Those LMIs have been used in LMI-based synthesis problems such as Hs, H.,-control
problems, and the solution in Section 3.3 gives a unified formula to those previous
solutions. On the other hand, the class £ contains LMIs that give robust multi-
objective performance conditions. Further, some of those LMIs have not been used
in output-feedback controller synthesis before. In this section, we show those new
robust multi-objective conditions in the class £ and compare them with conditions

used in previous synthesis methods.

3.5.1 H,/H-control, Hg/Hoo/root-clus_tering

The original setting of H/H,, problems that we consider is stated as follows: Let
N, =2 in (3.3). Find o controller K that stabilizes the closed-loop system (8.5) and
minimizes ||Ga)lla subject to ||Ge(1ylleo < 1. This problem has been recognized as a
difficult problem to get the exact optimal solution [Nob93].

Boyd et al. proposed an approach to multi-objective synthesis that is now so-called
transfer function approach [BB91]. Using the Youla's parametrization [YJB76], the

closed-loop transfer functions Gg;),7 = 1,2 attained via a stabilizing controller is
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parametrized as follows:
Gagi) = Tl('i) + Ty QT3y, i = 1,2,

where () € RH,, is a Youla parameter, a stable transfer function matrix, and Tj;,’s
are immediately computed from the plant. Since the free parameter ) belongs to
the infinite-dimensional parameter set RH,,, they approximated @ by the following

form:

—CO+Z a>0
i1 5+C¥

where we assume for simplicity @ is scalar. Since both Hs-norm and H,-norm are
convex functions of transfer functions, ||Gue)ll2 and ||Gag|l are convex functions
of @, and hence of ¢;. Thus we get convex performance indices of the parameters
(cosC1y-..,Cnp). The optimization is carried out with algorithms such as the ellip-
soid algorithm [BB91]. However, to get a good approximation, the number of the
parameters npg is often large and this causes high-order controllers.

On the other hand, several other approaches have been also proposed based on
algebraic equations or inequalities. Bernstein et al. [BH89] proposed an approach to
minimize an upper-bound of Hs-norm and reduced the auxiliary problem to solving
a triple of Riccati equations. Khargonekar et al. [KR91] solved the auxiliary problem
via convex optimization. In these results, in addition to the assumptions for the Ho-
norm to be finite, they assume that By = By and N; = N, which is necessary to
use the upper-bound. This upper-bound, say fpg, is represented by an LMI of the
subclass Lg as follows:

fer = iPI’llg{“/

Instead of the above upper-bound, the class £ has the following LMI-condition

[

P Cf

& R } @ (7 — traceR) > 0} : (3.28)

Q. )P 5 1)@ [

that gives an upper-bound of the Hy-norm without the assumptions on B; and N;:

fo=inf{y (P,5;1) ® ay)(P, 55 {R,7}) > 0} (3.29)

If By = By and N; = N, hold, (3.29) is reduced to (3.28).

Thus an LMI-condition in the class £ enables a less restrictive mixed Hs/H,
formulation. Another merit of our approach is the fact that it is easy to add other
specifications: For example, suppose that a controller derived by optimizing fpy or

f1 is too oscillatory. To improve the behavior of closed-loop system within the present
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framework of Hs-control or Hy/H-control, what can be adjusted are only weighting
functions, and finding appropriate weighting functions is not easy. In contrast, the
class £ can provide an LMI-condition that directly assigns a performance condition

for the closed-loop system not to be oscillatory. For example,
frp = inf {7 |(I)H°°(1)(P, ;1) @ @y ( P Z{R, 7)) @ @p(P, Ts {c, u}) > 0} (3.30)

can be useful in such a situation, where ®p gives a root-clustering condition into a
disk (see Subsection 3.4.1). We will give a numerical example of this triple-objective
LMI-condition in the following section.

There are some previous synthesis methods of Ho, or Ha/H,., control with some
root-clustering control. Saeki [Sae92] proposed an H, / root-clustering controller
synthesis method using Riccati equations. We can find alternative LMI-conditions
in the class £ to the specifications considered in the method. On the other hand,
Bambang et al. [BSU93] showed an optimization approach to He/H,/root-clustering
synthesis with various root regions. However, their formulation is nonconvex and the
computational complexity is not clear.

The flexibility of our approach in assigning multiple specifications comes from
the fact that, as mentioned in Section 3.2, for any ®,,®, € L, the direct sum ®; &
®, always belongs to £. We remark that such a direct sum requires each ®; to
have a common solution P, which causes conservatism. However, as shown above,
the class £ contains less restrictive conditions than what has been solved by using
convex optimization algorithms, and enables to consider more direct specifications for

controller design.

3.5.2 Robust controller design with multiple specifications

We have not discussed robustness of any specifications explicitly so far. However,
some of the specifications that we showed above, such as represented by H.-norm

conditions, can describe some robustness. Here we show a simple example.
Example 3.4
¢ Suppose Dy = 0 and that the plant has an uncertainty denoted by:

Wy = AZ?; Umax(A) S 1)
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An upper bound for the Ly gain from w; to z; subject to the quadratic stability
with this uncertainty is given by inf{y|®q(P, Z; {7, a}) > 0}, where:

—PA-ATP PB, CT PB, CT 1
BTP vIm, =DT 0 0
Cq-p. (P, T {y,0}) = Gy -Dy 7L, 0 0
BTP 0 0 ol O

L Cy 0 0 0 atl,]

In this case ®g_p,.. is not affine with respect to a. This condition is proposed
by Xie et al. [XFS92] for robust He.-control.

o Assume the presence of the above uncertainty. If the following inequality:

uP ATp4+cP 0 CT
PA+cP uP PB, 0
So_p(P, X {c, u,at) = - >0
o-p(P, Zi{c, 1, a}) 0 BIP  al, O
o) 0 0 o',
holds for some P and «, all the closed-loop poles sit inside the disk Cp (see
(3.17d)) for any A, gmax(A) <1 (See Section 4.3 for proof). ]

We can find similar LMIs in £. As in the previous subsection, direct sums of LMIs
provide robust multiobjective LMI-conditions. For example, if there exist P, o; and

@5 such that
Qo-m..(P;E, {7, 01}) ® ®o-p(P, Z; {c, p, 22}) > 0

holds, the system X satisfies a robust H-norm condition and a robust root-clustering

condition simultaneously. The equivalent inequality on the parameter set is:

[—Ma(p) — Ma(p)™  Mpi(p)  ME(p) Mpa(p) ME(p)T
M3 (p) Vm, — —Mpi(p)T 0 0
Mei(p) —Mpi(p) Yy 0 0
M3s(p) 0 0 a1l m, 0

i Cs 0 0 0 ar'l, |

wMp(p) MZ(p) + cMp(p) 0 Meo(p)T
Ma(p) + cMp(p) uMp(p) M3ps(p) 0
0 ME,(p) oy 0 >0
Meo(p) 0 0 a;'l,,

This inequality has nonconvexity in «; and «s. In the following chapter, We will
make more systematic approach to robust performance problems and discuss detail

of robust performance problems with L.
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3.6 Numerical example (Multi-objective Controller
Design)

In this section, we show a numerical example to demonstrate controller design using
multi-objective LMI-conditions in the class £. Let us show a two-mass system in
Fig.3.4, where §;, + = 1,2 are the angles of the motor and the load, respectively. The
physical parameters are: J; = Jo = 0.01, dy = ds = 0.001 and K = 50. Assume
that the motor velocity 91 is available with additive sensor noise wa, while w; is the

impulsive exogenous input on the load.

T )

u B; motor spring Joad W70

Fig. 3.4 Two-mass system

We give a state-space model of the two-mass system as follows, with z := [91, 92, 6,—
GQ]T, Zy = 91 and 29 = 991

&/, 0  —K/JL 1/J;
A=| 0 —do/Js K/ |,B=]| 0 |,
1 -1 0 0
0
Bi=|-1/Js|, By =0,
0

C=[1 0 0], D=0, Ny=0, No=1,

010 0
Cl: >Hl: ,D1=O,
0 0 0 1

Co=[1 0 0], Hy=0, Ds=0.

First, we consider minimization of the Ho-norm ||Guqlls with the H norm con-

straint [|Ga2)|le < 2. This problem is formulated using £ as follows:
Minimize v subject to
P,R,K

Q) (P Ba(K); {7, R}) @ Pr2)( P Za(K);2) > 0.
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Applying Theorem 3.1 and eliminating a redundant block, we get the following LMI

to solve on the parameter set:

Minimize < subject to

p,
—M. - MT M M MZ
) 5) M) [ Mr) BB o
M, (p) g2l Mc1(p) R
~MAlp) = MI(p)  Msalp)  MZ(p)
® ML, (p) of  —MZTyp)| >0
N[cg(p) —./\/[Dg(p) 27

Using a tool that we had developed to handle LMIs (named ‘MAKELMI’ [MOS96a)),
we reduced this LMI of p to the standard form of LMI:

Np
B+ > pi®; >0,

i=1

(3.31)

where p;’s are elements of p. The coefficients ®,’s are automatically calculated from
the plant data by the tool. We used a standard LMI solver by Vandenberghe et
al. [VLB94] on MATLAB version 4.0a to solve (3.31). The result of the convex

optimization is:

[ 0.1827
Ps = | —0.0262
| —0.0006

[ 5.8097

P, = 0.8092
| —0.1734

Wy = [0.4464

[ 19.39

Wy = 0.0314
| —4.6312

Wy = —0.2283,
[31.4928
L= |-1.7068
| —1.7053
The derived controller is:

—88.16

A, =] 89.58

20.92

—-0.0262
0.1879

0.0418
0.8092

5.7753
—1.2588

—0.0798

)

—1.1104
—0.0102
—4.9476

—136.02
—0.6561
-39.71

—0.00067
0.0418

0.1908 |
—-0.17341]

—1.2588

5.5404 |
—0.1058],

—1.2338
0.4517
27.2586

36.44
52.53
—11.30

3



~1.1815
B.=| 0.6617 |,

0.3555
C.=[6535 5124 —3.296],
D, = —0.2283.
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We show the impulse responses G(1y and the singular value plot of Gy in Fig.3.5

and Fig.3.6, respectively. The H,, norm condition is satisfied, but the impulse re-

sponses are oscillatory. From the plot of the closed-loop poles in Fig.3.7, the closed-

loop system is found to have poles close to the imaginably axis.

To avoid such oscillatory responses, we add a specification to cluster the closed-

loop poles into the disk whose center is —500 + 0j and radius is 485. Hence real

parts of the closed-loop poles are less than —15, and poles near the imaginary axis

with a large imaginary part are avoided because the region is a disk. We consider the

following optimization problem described by an LMI in L:
Minimize 7 subject to
PRK

Prc) (P, Za(K); {7, R}) ® @u2)( P Za(K); 2)

and the corresponding LMI on the parameter set is:

Minin]l%ize v subject to

D,
—Mu(p) — Mi(p) Mpi(p) Mp(p) Mé& (p) :
T ) & (v — traceR)
- Mp(p) i ~I ./\/1017(19) R :
~M4(p) = Mi(p) Mpa(p)  Mey(p)
@ ME,(p) 21 —M7,(p)
L l?\/;'[cg(p —l\/[jpg(p) 27 i
o 485Mp(p) My (p) + 500Mp(p) -0
| M4(p) + 500Mp(p) 485Mp(p) '
The result of the convex optimization is:
[ 1.2101 —0.5410 0.0435
Pr=|-0.5410 1.5866 0.3642
| 0.0435  0.3642 1.5336
[ 1.4535 0.0781 —-0.6693
P, =| 0.0781 1.0389 —0.0754 1|,
| —0.6693 —0.0754 2.1189
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Wy =[13.81 -9.213 -0.4916],
[ 10.04

W, = | 1.003 |,

L —2.652
Wy, = —0.2283,
[128.9778  5.2147 —27.7253

L =|-528790 3.0122  12.7320
| —32.8268 —0.6459 14.9785

The derived controller is:

[—270.76 —281.3 77.801
A.= 12939 4120 12.05 |,
| 43.83 14.32 —-30.26

[ —7.3602
B.= | 42725 |,

| —1.0328
C.=[17.36 17.55 —2.749],
D, = —0.5632.

We show the impulse responses of Gy and the singular value plot of Gy9) in Fig.3.8
and Fig.3.9, respectively. Fig.3.8 shows much less oscillatory impulse responses, and
the H,, norm condition is confirmed in Fig.3.9. The closed-loop poles are placed at
—107.4, —-52.94+114.37, —46.42, —23.32 £ 75.22i (see Fig.3.10), which belong to the
prescribed disk.

3.7 Concluding remarks

In this chapter, we formulated the LMI-synthesis problem with the class of LMIs, and
provided a unified solution to it. This result includes a large part of existing LMI-
based approaches and unifies them. Further, the class contains new LMI-conditions
for multiple specifications, and along with the unified solution to all LMIs in the class
enable a new multi-objective controller design framework. A numerical example is

presented showing feature of multi-objective design using our approach.
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Chapter 4

Robust performance problems

with structured uncertainties

4.1 Introduction

In Section 3.5, we mentioned just a little about robust performance specifications
described via LMIs in £. However, we did not consider expression of uncertainties
so far. In this chapter, we will formulate robust performance problems for plants
that have uncertainties in coefficient matrices of a state-space realization, that is,
so-called structured uncertainties. Robust controller synthesis problems for plants
with such uncertainties are investigated through quadratic stabilization approaches.
Though robust controller synthesis based on quadratic stability can cause conser-
vatism in designing controllers, this approach has been derived fruitful results for
robust performance problems.

We will consider two types of structured uncertainties. One is norm-bounded
uncertainty, represented the maximum singular value of matrices that describe un-
certainties of plants. Petersen [Pet87] solved the quadratic stabilization problem
with norm-bounded uncertainties reducing the quadratic stability condition to a Ric-
cati equation condition. Quadratic stabilization with an H.-norm condition was
solved by Xie et al. [XFS92). Asai et al. [AH92, AH95] and Yamamoto et al.
[YK93, YK94, YK96] proposed more general representations of norm-bounded un-
certainties. Those problems are reduced to constant scaling H,., problems, which are
represented in terms of LMIs but not convex problem with respect to the scaling
parameters for output-feedback synthesis [YFH94].

47
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The other type of uncertainty that we will treat here is polytopic uncertainty,
which is represented by matrix polytopes in a state space realization. There are a
number of results in robust state-feedback controller design via convex optimization
with this type of uncertainty [OK89, GPB91, OMS93b, GPS93a, OMS94, MOS94b],
while there have been no convex formulations of output-feedback problems: Kadoya et
al. [KKOS93] and Geromel et al. [GPS93b, PGS93] proposed output-feedback robust
controller design algorithms for polytopic uncertain systems, but global convergence
of their algorithms is not guaranteed. Though it is difficult to handle polytopic
uncertainty, it has advantage in representing parametric uncertainties exactly.

The purpose of this chapter is to solve robust performance problems described via
LMIs of the class £ by applying the parametrization of Chapter 2. The results here
extend previous results in the area of robust performance synthesis with quadratic
stability via output-feedback to wider variety of LMIs representing various specifica-
tions. In norm-bounded uncertainty case, we reduce synthesis problems to solving an
inequality on the parameter set with scaling parameters. We show that the algorithm
proposed by Yamada et al. [YHF95] for the constant scaling H.-control problem is
applicable to synthesis with a larger class of LMI-conditions. On the other hand, a
new alternation algorithm is proposed for robust synthesis with polytopic uncertain
plants.

Section 4.2 gives the problem formulation of robust performance problems with
structured uncertainties. Norm-bounded uncertainties and polytopic uncertainties

are treated in Section 4.3 and 4.4, respectively.

4.2 LMI-synthesis with quadratic stability

First, we give the definition of quadratic stability.

Definition 4.1 [Pet87] Let M be a compact subset of R**™ and M(t) € M be a

function of time ¢. Consider the following linear time-variant system:
sz(t) = M(t)z(t), M(t) e M. (4.1)

For continuous-time systems, we say that the system (4.1) is quadratically stable if
there exists a matrix P € PD(n) and a scalar o > 0 that satisfy
T (MTP + PM)z < —al|z)|?, for continuous-time systems,

(4.2)
tT(MTPM — P)z < —al|z||?, for discrete-time systems,
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for VM € M. U

If (4.2) holds, z¥ Pz is a Lyapunov function of the system (4.1), and then (4.1) is
asymptotically stable for any function M(t) whose value belongs in M for any ¢. Note
that (4.2) is equivalent to

@ryap(P, MP) >0, VM € M. (4.3)

Let us denote by Y4(K,A) a control system that consists of a controller K and
an uncertain plant whose uncertainties are represented A. Suppose that A belongs
to a certain compact set . We formulate a robust controller synthesis problem,
say QS-LMI-synthesis problem, based on the quadratic stability and LMIs & € £ as
follows:

QS-LMI-synthesis problem:

o Feasibility problem. Given ®(e), find P € PD(n + n.) and a controller K of
some order n. satisfying ®(P,Eq(K,A)) >0forall A e Y.

o Minimization problem. Let ®(e) be parametric to a scalar v and assume that
®(P,%;m1) > ®(P,%;7) holds for any v; > 72, P € PD(n,) and & € X.
Minimize 7 subject to ®(P, Xy(K,A);y) > 0 for some P € PD(n + n.) and a
controller K of some order n. and all A € Y.

LMI-conditions used in control theory usually imply internal stability, i.e., ®(e) > 0
induces ®1y.p(9) > 0. Hence, the condition ®(P,T,(K,A)) > 0, VA € U guarantees
the quadratic stability of (K, A).

For any LMI-condition ®(P, ¥) > 0 shown in the previous chapter, the inequality
condition ®(P, (K, A)) > 0, 3P > 0, VA € U at least guarantees that the closed-
loop system X(K, A) satisfies the specification represented by ® for all fized A € U
as well as the quadratic stability. On the other hand, @y 1)(P, Z(K,A);v) > 0
guarantees that, for any A(¢) that varies in U, ||z;1]|2 (Ze-norm of z(t)) is less than v
for any wi(t) with |lun]|2 < 1. This fact is proved in [XFS92], and the discrete-time

version of this L, gain condition is found in [SFX93].
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4.3 Robust performance problems with norm-

bounded uncertainties

Consider the following linear time-invariant system that has uncertainties, denoted

by A, in its coefficient matrices:

E(A)sz(t) = A(A)z(t) + B(A)u(t) + i Bi(A)w;i(t), (4.4a)
i=1 .

vi(t) = Cxz(t) + Du(t) + %s: Nw,-(i), (4.4b)

zi(t) = Ciz(t) + Hiu(t) —i—l_Diw,-(t), i=1,2,...,N;, (4.4c)

where z(t) € R™ is the state vector, u(t) € R™ is the control input vector, y(t) € RP
is the measurement vector, w;(t) € R™ i = 1,2,..., N, are the exogenous-input
vectors and z;(t) € RPi,i =1,2,..., N,, are the controlled-output vectors. The size
of E(A) is n x n, and the other matrices have appropriate sizes. We consider the

following uncertainties of the coeflicient matrices:

[E(A) A(A) B(A) Bi(d) -+ Bw(A)]
=[E A B By -+ By,]
+BxA(I - E[A)_l [C~’d C~’x C~1u CN’(l) T é(Ns)] ) (45)

and let A to the following set:

Unp = {A € R¥"%|g . (A) < 1} (4.6)

We assume that E(A) is regular for all A € Upy.

This form of norm-bounded uncertainties is more useful than that of the first paper
of quadratic stabilization [Pet87] in two points. First, uncertainties are described in
descriptor form [AH92, AH95|, which is suitable to represent uncertainties of physical
systems, such as:

ME + Dé + K¢ = Bu
with uncertainties in the coefficients M, D, K and B. This differential equation is
M 0][¢ -D —-K7 J¢ B
[0 I} [é]z[ I o } M“LM“'
The other point is the form A(J— HA), which Yamamoto et al. [YK93, YK94, YK96]
first proposed. This form can offer more exact approximation of complex parametric

rewritten by
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uncertainties in coefficient matrices than the simple form of A. There can be other
ways to describe norm-bounded uncertain systems, some of which represent uncer-
tainties of more parts of the plant. However, we consider uncertainties (4.5) to keep
simplicity; our main purpose of this section is to apply existing methods of quadratic
stabilization (with H.-control) to LMIs that have never used for robust controller
synthesis with norm-bounded uncertainties. Lastly, as in the previous chapter, we
assume D = 0 without loss of generality.

The following lemma gives a simpler representation of the same uncertainties
defined in (4.5) and (4.6).

Lemma 4.1  Assume that omax(H) < 1 and ome(Zg) < 1, where
Ty :=H - C,E™'B,.
Define the following set:
E:={(ETYA)A(A), ETHA)B(A), ETYA)B;(A),i = 1,2,...,N,)|A € Uy}
Then
£ ={(A"+B;A*C;, B*+ BiACy, B + BiA™Cly, i = 1,2, N |A™ € Unp} (4.7)

holds, where

J. = (I-2=L=p)%,

J. = (I- -HHH)—%

2, = C,-Cy4E14,

=, = C,~Cy4E'B,

Eh = C~'(i) — C,E1B;,

A = ETY A+ BixjrggchZ‘L (4.8)
B~ = E"YB+B,JELJ.E,),
By = EYB+B,J,ELI.Ey),
B = E7'B,J,

Cr = J.Z.,

Cx = JZ=,,

é(*z) = JCE(i)‘
Proof. See Appendix.
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This lemma reduces the uncertain plant (4.4) to a special case of itself with
E(A)=1TIand H =0:

su(t) = A(B)a(1) + BIAY(E) + 3 BAw(r) (4.92)

yi(£) = Cx(t) + Du(t) + % Nawi(2), (4.9b)
=1

zi(t) = Ciz(t) + Hiu(t) + Dyw;(t), i =1,2,..., N,. (4.9¢)

where we have replaced A*, B*, Bf with A, B, B;, respectively. Also in the following
we drop stars. The uncertainties of the new coefficient matrices are represented by:

[A(A) B(A) Bi(A) -+ Bw,(A)]
=[A B B - By|+BA[C. Co G - Cu,l, (4.10)
A € Uy,

We consider exogenous-input and controlled-output pairs only from w; to z; in closed-

loop systems with a controller (2.2), and give a realization of closed-loop systems as
follows:

S.’I}d(t) = (ACI(K) + BCIAPO(.K)).TCI(t) + (Bcl(i)(I{) + BCIAFi(I{))wi(t), (4.11&)

zi(t) = Cawy(K)za(t) + Dagy(K)wi(t), (4.11Db)

i=1,2,...,N,, where z4(t) = [z7(¢) 2T(#)]T and

5 B,

Bcl = [ 0 ] y (4123,)
To(K):=[C,+C,D.C C,C.], (4.12b)
Ty(K):= [Cu + CuD.LC CuN;]. (4.12¢)

We denote (4.11) by Z,,(K, A).
First, we consider ® € L£,,. From the structure of LMIs in £y, any ® € £, has
the following representation of ®(P, X,;( K, A)):

(P, Zy( K, A)) = &(P, Za(K))
+3PB4A [To(K) Ty(K) - Ty, (K)] &,
I'T(K)

IT(K)

+&7 ATBIaT, (4.13)

i (K)
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where Z,(K) refers to the realization (3.5). Thus the Petersen’s lemma [Pet87],
shown below, is applicable to the inequality ®(P, Z,4(K,A)) > 0:

Lemma 4.2 [Pet87] Let Q € PD(N), B € R¥*% and ¢ € R%*¥. Then Q +
BAC + CTATBT > 0 holds for all A € Uy, if and only if @ +eBBT +1CTC > 0 for
some ¢ > 0.

Proof.  See [Pet87]. ]

In the following, we reduce the LMI-conditions for plants with norm-bounded
uncertainties to an LMI of p that does not have A with it. First, we show the result

for the class Lg

Lemma 4.3 Let n, > n and define the following functions:

By
Mg, (p):=| PB, |, (4.14a)
O(ny—n)xd,
Mr(p) :=[Mro(p) Mri(p) -+ Moy, (p)], (4.14Db)
Mro(p) := [CoPr+ CuWy Co CuWp], (4.14c)

1\/[11,-(]3) = [é(i)Pf + é’uVVf C’(i) équQ] ,1=1,2,..., N,. (414d)
Suppose that & € L.

(1) There exist P € PD(n + n.) and a controller K of some order n, satisfying
O(P,T.(K,A)) > 0. (4.15)

for all A € Uy, if and only if there exist p € P(n,) and ¢ € R such that

*(p)  ®1Mp(p) B3 M{(p)
o (p;q) = | ML (p)oT  ql, 0 > 0. (4.16)
Mr(p)®, 0 g,

(2) If p is a solution to (4.16), a controller satisfying (4.15) is given by Kumap(p).
Proof. See Appendix. ]
The above lemma is easily applied to the class Lyq:

Theorem 4.1 [MOS96¢c| Let & € Lyq. Then, from the definition, ® = &, @ &, &
- @ @y, for 3®; € L. Suppose that Ny > 1.
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(1) There exist P € PD(n + n.) and a controller K of some order n. satisfying
Q(P, T p(K,A)) >0 (4.17)
for all A € Uy, if there exist p € P(n,) and ¢;,7 = 1,2,..., Ny such that
J

"e(p;g;) > 0,5 =1,2,,..., N, - (418)

where
®i(p)  ®1Mz,(p) 27M{(p)
@;nb(p;qj) = | ML (p)®] g51a, 0 > 0. (4.19)

Mr(p)®2 0 g I,

(2) If p is a solution to (4.16), a controller satisfying (4.15) is given by Kmna.p(P).

Example 4.1  Let us consider the following QS-LMI-synthesis problem:

Mi}gl}zrr}(izefy subject to
P u,c1)(P, Znp( K, A); {7, R}) ® @p(P, Zns(K, A); {c, u}) > 0,
for all A € Uy,

Theorem 4.1 provides an optimization problem whose optimum is an upper-bound of

the optimum of the above problem:

Minimize 7 subject to

D, R7 q1, 492
—Mu(p) — Mi(p) Mp(p) Mg, (p) M{(p)
A/‘[gl (p) /\/Imi 0 0
ML (p) 0 alg, 0
My 0 0 g 'y,
"M ME
o p(p) M (p) & (7 — traceR)
L ﬂ/f[cq (p) R
pMp(p) M3 (p) + cMp(p) 0 ME(p)
o My(p) + cMp(p) pMp(p) Mg.(p) 0 1,
0 MZT (p) N 0 '
Mrp(p) 0 0 ¢,
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The derived inequality (4.16) (or (4.19)) is not convex with respect to (p,q) (or
(p,(q1,42,---,4n,)))- Yamada et al. [YHF95] proposed an algorithm for an inequality
of this type arising in a constantly scaled H-control problem, which belongs to Lgs.
Below we show a basic idea to solve (4.19) for any LMI in Lyre by modifying and
applying Yamada’s algorithm.

First, it is easily checked that (4.19) is equivalent to

®1(p) Mz, (p)® @IMT(p)

& (p; {gj,r}) = | ME, (0] ¢la, 0 >0, (4.202)
lV.[[‘(]?)q)Q 0 Tj-[dc
g; > 0,75 > 0,¢r; < 1. (4.20b)

Thus the inequality condition for p in (4.18) is separated into the convex part:
i’;"b(P; {g;,m;}) > 0,7 =1,2,..., Ny and nonconvex part: ¢;7; < 1,7 =1,2,..., Ny.
Next, the set

B = {(QI7T17"' 7QN0;TN0)IQJ' > OyTj > O,QJT] < l}

is represented by
1 .
B= U {(a,r1,---,qm,Tw)lg; > 0,75 > 0, Ajr5 + T4 < Lj=1,...,No},
0<Aj; <00 Aj .
which is an infinite union of convex sets. Consider the following finite approximation
of the set B:
B= | B,

1<ESNy,

R 1 )
Bk’ = {(QI?T].?' "aQN0>TN0)|Qj > O7Tj > OaA](k)T] + \ (k)QJ < 17.7 - 17' . 'a[VO})
/j N

for appropriate Ajxy > 0. The set B provides an approximated problem:

Find p such that

2 *n 1 .
(I)j b(p; {q]',Tj}) > 0,/\j(k)7'j -+ T—(:)q]' < 1,] = 1, e ,IVO,
v

for some %,

which is solved at most through N, times of convex optimizations.

In [YHF95], a method to generate ;) and worst case computational complexity
are shown for the constantly scaled H,-control problem. Though a generation tech-
nique of ;) for LMIs in £,sq and computational complexity are still open; a similar

result is expected.
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4.4 Robust performance problems with polytopic

uncertainties

In this section, we consider a different type of structured uncertainties. Consider the

following plant:

E(n)sz(t) = A(8)x(t) + B(A)u(t) + %j B;(8)w;(t), (4.21a)
y(t>) = C(8)z(t) + Du(t) + % N;(0)w;(t), (4.21b)

Zt(t) = 01(9)’1,‘(?5) + Hl(H)u(t) + Di(Q)wi(t), 1= ]., 2, A ,IVS, (4.210)

where variables x,u,y, w;, z; are the same as in (4.4). The coeflicient matrices are

defined as follows:

ng
E(n) =Y mEqw, E(n) e R™™,
o]

n4
AB) =S B Awm,

k=1

na
B(6) = >_ 6: B,
k=1
n4
C(0) = _ 0Clsys
k=1
nA
B,(@) = Z HkBi(k), 1=1, 2,_. ooy NG,
k=1
nA
IVi(Q) = Z ¢9kNi(k), 1=1,2,..., N,
k=1
n4
Ci(6) = Z 0:Cixy, 1 =1,2,..., N;,

k=1 :

n4
Hi(0)=> 0Hyp,i=1,2,..., N,
k=1 : :

nA .
Di(8) =3 6Dy, i = 1,2,..., N,
k=1

where
n = (771,772,. .. 777711-:) € QnE, (422&)
g = (91,02,... 7971,;) € QTLA, _ (422b)
ng
Q™ = {(v1,v2, ..., Upy )| Z'Uj =1,v;,>0,j=1,2,...,n0}. (4.22¢)

J=l1
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Let 7o € Q"% and 6, € Q™4 correspond to the nominal plant of (4.21) and denote the

nominal coefficients by £ = E(ny), A = A(6y), B = B(6p) and so forth. We assume

that D = 0 and that E(n) is nonsingular for all n € Q2. We call Ey, Awy, By, etc.

vertex matrices.

Next, we show a realization of the closed-loop system with the controller (2.2)
with assuming D, = 0 and n, = n for simplicity:

sxq(t) = Aa(K,n,0)2a(t) + Baw (K, n,0)wi(t), 1 =1,2,...,N,, (4.23a)

2(t) = Cawy (K, 0)za(t) + Dawy(K, )wi(t), ¢ = 1,2,..., N, (4.23b)

where z4(t) = [z7(¢) zF(¢)]T and

. _ [EHmA() E~Hn)B()C.
Ag(K,n,0) = { B.C(8) A } , (4.24a)
E-! (0
Ba (k0= | B(’\?fe)( | (4.241)
Caw(K,0) :=[Ci(8) Hi{(H)C.], (4.24c)
Dcl(i)([<7 9) = DZ(H) (4.24(21)

Denote the closed-loop system (4.23) by E,(K,8,7). We also prepare notation for
vertexes of the uncertainties:

szy(t) = Au(K; [_], k‘])l’cl(t) + Bcl(i)(K; [], k])wz(t), 1=1,2,..., N, (4.258,)

Z,-(t) = Ccl(i)(f{; [k‘])])cl(t) + Dcz(i)(K; [k])wi(t), 1= 1, 2, e ,Ns, (4.25]3)

where
EZtAg EZYByC.
Aa(K; 17, k]) :={ G 7E 6P } (4.268)
B.Cw A
E_-]'Bl' k)
By (I [4, k)= | 9% } 4.26b
ol k= | (4.260)
Cam (K [k]) = [Ciry HinCe], (4.26¢)
Doy (K; [K]) == Dig- (4.26d)

Denote (4.25) by S,(K;[j, k]).

Definition 4.2 For¢=1,2,...,N,, 7 =1,2,...,ngand k = 1,2,...,n4, define

the following matrix-valued functions:

EG(AwyPr + BiyWy) | By Aw
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E=1Biq
Mpi(p;[J, k]) = [ G } (4.27b)
P, B,(k) + I/‘/glV(k)
Mci(p; [k]) = [ Ciy Pr + HinWs  Ciwy ], (4.27¢)
Mpi(p; [k]) == Di, (4.27d)

where -1 ) 1 1
IR T

Cuy — C 0
If E(n) is constant, we can redefine E(n) = I, and then replace ‘[7, k]’ by ‘[k]’ in the

above notation.
The following theorem gives a necessary and sufficient condition described on the

parameter set to QS-LMI-synthesis problems for uncertain control system X,(K,7,8).

Definition 4.3 For® ¢ L, define a symmetric-matrix-valued function ®**(p; [f, k)

with the following replacements in the definition of ®:
P — Mp(p),
PA — Ma(p; 5, k),
PB; — Mpi(p; 5, k)),
K],
[£]-

(
'i — A/-[Cl(pa
D; - Mpi(p;

O
Theorem 4.2 [MOS94c]|
(1) Suppose that F(n) = I and ® € L£. Then there exist P € PD(2n) and a

controller K of order n that have a realization of order n satisfying
®(P,T,(K,0)) > 0 (4.28)
for all § € Q™4 if and only if there exists p € P(n) such that
O P(p;[k]) >0, k=1,2,...,n4. (4.29)
(2) Suppose that E(n) is not constant and ® € Lcg. Then there exist P € PD(2n)
and a controller K that have a realization of order n satisfying
®(P,T,(K,1,0)) >0 (4.30)
for all (n,8) € Q"= x Q™4 if and only if there exists p € P(n) such that

P(p;j,k]) >0, =1,2,...,ng,k=1,2,...,n4. (4.31)



A controller that satisfies (4.28) (resp. (4.30)) is given by Kmap(p) from a parameter
that solves (4.29) (resp. (4.31)). _ ]

In contrast to norm-bounded uncertainties, we have a necessary and sufficient con-
dition on the parameter set. The derived inequality on the parameter set still keeps
nonconvexity. Later we show an algorithm to solve such nonconvex BMI and discuss
some related issues.

In the following, we consider state-feedback solutions. Assume that the state of
the plant (3.3) is available, i.e., C(A) =1, D =0, N;(§) =0,i =1,...,N,. The
following corollary asserts that, if the state is available, there always exists a static
state-feedback solution to any QS-LMI-synthesis problem solvable at all.

Definition 4.4 For & € £, define a function ®**~*/(p;[j,%]) by the following
replacements of the elements in $:

P — Py,
PA — Egy(AwPr + BayWy),
PB; = Eg By,

Ci = CiwyPs + HyyWr,
Di - D,(k-)

Corollary 4.1 If E(n) = I, suppose & € £, and otherwise suppose ® € Log.
Then the following statements (i) and (ii) are equivalent if the state is available in
the plant (3.3):

(i) ®(P,Zq(K,6,m)) >0foralln e QF and all § € Q...
(11) @*p“sf(p; [_],k]) > 0, ] = 1,2,...,TLE,]€ = 1,2,...,nA.

If (ii) holds, u(t) = WP; z(t) is a controller satisfying (i).
Proof. Similar to the proof of Corollary 3.1. ]

In contrast to output-feedback case, the results of state-feedback synthesis get a
convex formulation. As the state-feedback solution in Section 3.3, the existence of
a static state-feedback solution is shown for any QS-LMI-synthesis problem solvable
at all. The derived LMI-conditions coincide with those in [OK89, GPB91, OMS93b,
GPS93a, OMS94, MOS94b).
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In the rest of this section, we show an alternation algorithm to solve (4.29) or
(4.31). First, we consider to get an initial parameter. The derived inequality (4.29)
or (4.31) is not convex, containing the bilinear term:

Py
L+[P, Wyl Zj [Wf] :
On the other hand, the state-feedback block and observer block defined below is affine

with respect to p:

Definition 4.5  For & in Definition 4.3, define ®*?~f and &9 by

e W) =2 (L oDerm b (| 7)), e

e, Wil =20 Lyerliz ([, ]). s
0

Note that the definition of /" i the same as that of ®*»~f. Both of the inequali-
ties @*P/=M(Pr Wy) > 0 and &*P9—"( P, W,) > 0 are necessary for P(p) > 0, and
these two are convex inequalities with respect to (Py, Wy) and (P, W), respectively.

Next, we define functions of p for alternation of convex optimizations.

Definition 4.6  For ®*? in Definition 4.3, define ®*?¥ and ®*?¢ by

ST IR PO ELCTRET{ e ECESS

(7 3 omesne((72])
[]

Setting Py := P}, Py == P;!, Ly := LP;', Ly := P, 'L, F := WyP;' and G :=

P;1W,, we get the following representation of ®~F and @*=C:

7% (p; [5,k]) :

Il

( 'P ~
p o |5 ,
LBy By
3 P )
E(J)[_l“‘) B] w.l! By AmFy
I |

.P.‘I_I - |- === - et - T = = = - = - -
7 R yop:ven il
[ G]ijIv;]+Lg:[I G]{ ® (’“)]Pg

*pF |
For &P . - g 7 Cay
PB; — @70 ]
_B,'(k‘) + G.’Vi(k)
i = [CinPr+ HwyWr Cypyp, 1,
Di — Di(k)-
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( P, P
P Pf Pf]7
Fl n. .
_ PrEgy [Awy Bwl| o | PrEq) Awy
PA = mmmees R I N B O S I
| For @*pG: [Pg N[Q]ij P +Lf , [Pg l\/[g] C'(k)
) " PETIBy '
PB 150 B, ]
_PgBi(k) -+ I/Vgl\/i(k)
Ci — [Ciwy+ HinF Cinl,
D.i — Di(k)-

From the above relations, we see that ®®F and &% are affine with respect to
(Ps, P,, Wy, L,) and (P, Py, W,, Ly), respectively.

Lastly, we give the following functions:

Definition 4.7

sy Fl) =2 (1 opeeeE(| o)), G
o P9-rsi(p Gi[5,k]) = Z([0 I,]) @PF(e)Z ({ I(iD . (4.34b)
0

Using these functions and new variables, we give an algorithm to solve (4.31).

Algorithm 1 [MOS94c]
Step 1 Find Py, P,, Wy, W, satisfying
I~ P Wi [5,k]) > 0, ®PI""H( P, W[4, k]) > 0.

If there are no solutions, the inequality (4.31) is not solvable. Next, fix Py, P,,

Wy, W, and minimize the following function

¢o(L) := max{—Amin(®"(L; 7, k])) }-

ik
Whenever ¢y < 0, Knap(p) gives a satisfactory controller. If the minimum is

not negative, go to Step 2or Step 3.

Step 2 Set P, := Py, Ly := P, L, G := P;'W, and fix G. Minimize:

PRES HJI.%X{_’\min((I)*pF(Pfa Pg’ Wy, ig; 17 k]))}
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subject to ®*P/~(P; W) > 0 and ®P9~"4( P, G) > 0. From the minimizing
arguments, set Py := 15171, L= EfPf, My := FP;. Whenever ¢, < 0, Knap(p)
gives a satisfactory controller. If the value of ¢, did not decrease enough, stop

the algorithm. Otherwise go to Step 3.
Step 3 Set Py := P!, Ly := LP;', F := WyP;', and fix F. Minimize:
65 = max{~Amin( @7 (s, Py, Wy, Ly [ 1))

subject to &*/(P;, F) > 0 and &**9~"4(P, W,) > 0. From the minimizing
~arguments, set P, := P;!, L := P,L,, and W, := P,G. Whenever ¢, < 0,
Kmap(p) gives a satisfactory controller. If the value of ¢, did not decrease

enough, stop the algorithm. Otherwise go to Step 2.

This algorithm unfortunately has no proof of convergence to a global optimum. In
the following section, we show a numerical eﬁample, where this algorithm solves a
quadratic stabilization problem for a polytopic uncertain system. There is another
algorithm that can solve quadratic stabilization problems with polytopic uncertain-
ties, proposed by Asai et al. [AH94]. Their algorithm alternates approximation of
polytopic uncertainties via norm-bounded uncertainties and H.,-controller synthesis.
However, their method has no proof of global convergence, and gets conservatism from
approximating uncertainties. On the other hand, our direct method uses necessary
and sufficient conditions to original inequalities.

In Algorithm 1, the sequence from Step 1 to Step 3 is similar to linear transfer
recovery (LTR) design methods. Ohara et al. [OK89] showed the existence of an
observer that recovers the quadratic stability and a robust root-clustering condition
attained by a state-feedback gain for plants with polytopic uncertainties under cer-
tain assumptions including a minimum-phase condition. We expect a guarantee of
convergence for plants with certain assumptions, but it is still open.

There are direct BMI approaches [SGL94, GTSPL94, GSP94] to controller syn-
thesis, which aim to solve the original inequality ®(P,Z(K)) > 0 or, if polytopic
uncertainty is concerned, ®(P, X,(K;[j, k])) > 0. These approaches use optimization
methods such as the branch and bound method to find a global optimum of a noncon-
vex problem. In those algorithms, a certain LMI is solved in each iteration to get an
upper or lower bound needed in branch and bound algorithms. Global convergence

is confirmed in those algorithms, and they are applicable to our problems. However,
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the computational complexity and amount of memory needed are still large ever for

recent computers.

4.5 Numerical Example (Quadratic stabilization

of a polytopic uncertain system)

In this section, we show a numerical using the algorithm proposed in Section 4.4.

Consider the following plant with uncertain parameters.

001 0 O -0.1 0 =b 100
0 a O0jz= 0 —0.001 b jlz+| 0 |u
0 0 1 1 -1 0 0
1 00
V= {0 0 1}3"’

a = 0.0087; + 0.01(1 — ny),
b = 508, + 60(1 — ),
0<m<£1,0L6, <1

The eigenvalues of the plant sit around {—0.11, —0.05 £ 100:} over the uncertainty.
The open-loop poles at the vertexes are shown in Fig.4.1.

Let us find a controller with which all the closed-loop poles have real parts less
than —2 and the closed-loop system is quadratically stable. For this specification, we
consider the following LMI-condition:

Q,E(P? Z’p(Ka 771701):2) > 0> V(’Tl, (9) € Q"E x QnA,

where @7 belongs to Lo(C Leog) and hence the statement (2) of Theorem 4.2 is
applicable.

To carry out Algorithm 1 that alternates solving LMIs, we used MATLAB version
4.0a, SP [VLB94] and MAKELMI [MOS96a]. The derived parameters are:

382.2 166.8 22.19
Pr=1166.8 165.0 15.07},

22.19 15.07 9.983
W;=[0.1164 0.2999 ~—2.468] x 103,
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[ 0.0416 0.0175 —0.0030
P,=| 00175 0.0308 —0.0231],

| —0.0030 -0.0231 0.2628
[ 0.0409 —-173.75

W, = 0.3286 39.74 |,

| —2.9568 —10.94
[—0.5744 —0.3022 —1.4052
L = 04104 0.3000 —0.3702| x 10%,

| —1.1000 —0.4993 —0.1008

and we get the controller as follows:

[—354.4 2538 3154
A.=|-360.5 99.0 4352 |,
L 1929 -250.7 196.2

F 11 6317
B.=|-30 -5134],
| 11.0 —3389

C.=[5340 —-25.60 —586.9].

The closed-loop poles at vertexes, shown in Fig.4.2, have real parts less than —2,
which meets the specification. In the following table, we show the feature of convex

optimization for this example:

Values of ¢5,¢, | FLOPs 1
Step 1 — 120635

Step2 | 150 — =227 365762
T the number of the floating point operations.

The algorithm found a solution with 2 steps, and it worked out well.

4.6 Concluding remarks

In this chapter, we considered robust performance problems, named QS-LMI-synthesis
problems, for two types of uncertainties. In both types, we applied the result of the
previous chapter and proposed equivalent or guaranteeing matrix inequality condi-

tions on the parameter set. We showed algorithms to solve those inequalities.
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Chapter 5

Descriptor Systems

5.1 Introduction

The descriptor form (E%Z = Az + --+) is a natural representation of linear dynam-
ical systems and makes it possible to analyze a larger class of systems than state
space equations (¢ = Az + ---) do [Lew86, Shi95]. In particular, the descriptor
form explicitly represents static constraints on physical variables and impulsive ele-
ments. A considerable number of notions and results in the control theory based on
the state space representation have been generalized for descriptor systems, such as
controllability and observability [Cob84b], pole-assignment, [Cob84a], LQ-problems
[Cob83, Lewd6, BL87, KM92] and Lyapunov equations [Lew86, TMK95].

In this chapter, we give several new results on analysis and synthesis for descriptor
systems based on LMIs. Section 5.2 shows some examples of descriptor systems and
gives definitions concerned with behaviors of descriptor systems. In Section 5.3,
we propose algebraic inequality conditions for a stability generalized to descriptor
systems and H.-norm conditions. Though there are some algebraic conditions for
the generalized stability [Lew86, TMK94], our LMI-conditions need no assumptions,
such as regularity, that those previous conditions required. Using those algebraic
conditions, we give two results of controller synthesis for descriptor systems: state-
feedback quadratic stabilization and output-feedback H..-control problem. In both
results, we reduce the synthesis problems to LMIs of certain parameters.

67
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5.2 Properties of descriptor systems

Let us consider a linear time-invariant descriptor system represented as follows:

Esz(t) = Az(t) + Bu(t), (5.1a)
y(t) = Cz(t) + Du(t), (5.1b)

where z(¢) € R™ is the descriptor variable vector, u(t) € R™ is the input vector,
and y(t) € R? is the output vector. We assume that £ € R**", i.e., E is square. If
E is nonsingular, the equation (5.1a) is rewritten to the form: sz(t) = E~1Az(t) +
E~1Bu(t). In contrast, the nonsingularity is not assumed here, and this makes it
possible for descriptor systems to describe a larger class of dynamical systems than

state-space systems.
Example 5.1 [Shi95]

e Let z(¢) € R? and consider the following descriptor system:

{é 8].%(15):{_01 Hx(t)—{—[;)]u(t), (528)
y(t)=[0 1]z(t). (5.2b)

These equations are reduced to y(t) = su(t), which represents a differentiator
for continuous-time case (su(t) = du(t)/dt) and a forward time-shift operator

for discrete-time case (su(t) = u(t + 1)), respectively.

¢ Consider a dynamical system sz(t) = Az(t) + Bu(t) under a static constraint
0 = Cz(t) + Du(t). These two equations are assembled as:

e P e

If D = -1 and C is a feedback gain, this equation represents a static state-

. - (5.3)

feedback control system with control input u(t) = Cxz(t).

e The inverse of a state-space system is not always represented via state-space
equation. In contrast, the inverse of every descriptor system is represented by

a descriptor form; the inverse of (5.1) is:

et P A P
w(t) =10 I] EEZH (5.4b)
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As shown in the above examples, descriptor systems can represent dynamics that
state-space systems can not describe, such as differentiating elements and static con-
straints between the descriptor variable. However, we have to take care of the solv-
ability of the differential equation (5.1a); in the following, we show some notions
concerned with properties arising in singular (rankE < n) descriptor systems.

Definition 5.1
(I) [Lew86] A pencil sE — A (or a pair (E, A)) is regular if det(sE — A) is not

identically zero for s € C.

(II) [TMK94] For regular pencil sE — A, a complex number s that satisfies rank(sE —
A) < n is said to be the finite modes of (E, A). Suppose that Ev; = 0. Then
the infinite eigenvalues associated with the generalized principal vectors v sat-

isfying Fu, = Avg1, k = 2,3, ... are impulsive modes of (£, A).

(IIT) A pair (E, A) is admissible if it is regular and has neither impulsive modes nor

unstable finite modes. U

If (E, A) is regular, the differential equation (5.1a) has a unique solution. In the third
definition, we defined the property ‘admissibility’ as a generalization of stability for
state-space systems. In control system synthesis with descriptor plants, the admissi-
bility plays a role of the stability for state-space systems, as the minimum demand
for control systems.

Lastly, if s£ ~ A is regular, the transfer function:

G(s)=C(sE~A)'B+D (5.5)

is defined and we can consider input-output properties through G(s).

5.3 LMI-conditions for descriptor systems

In this section, we present algebraic inequalities that characterize some properties

of descriptor systems. From now on, we consider only continuous-time systems (Let
_d

$ =)

Since the equations (5.L) is always rewritten as:
I R s 1 o R P U S

Wy =(C 1 [Cm
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we can assume that D = 0 without loss of generality: the augmentation(5.6) does
not change the finite modes and impulsive modes of the original descriptor system
[VLKS1].

5.3.1 Admissibility

Several algebraic conditions have been proposed for admissibility of descriptor sys-

tems.

Lemma 5.1 [Lew86] Let (E,A) be regular and (E, A, C) be observable [Lew86].
Then (E, A) is admissible if and only if there exists a positive definite solution P

to
ATPE+ ETPA+ ETCTCE =0 (5.7)

and, if P, and P, are two such solutions, then ETP,E = ETR,E. ]
Lemma 5.2 [TMK94] Suppose that the pencil sE — A is regular and that (F, A, C)
is impulse observable and finite dynamics detectable [TMK94]. Then (E, A) is ad-
missible if and only if there exists a solution X to GLE:

FTXx =X"E >0,

ATX+XTA+CTC =0.

]

In these lemmas, the pair (E, A) is assumed to be regular. However, since the reg-
ularity of the plant can be destroyed by feedback input, an algebraic condition that
guarantees the regularity as well is important especially to develop controller synthe-
sis theory using the descriptor form. Modifying the GLE condition in Lemma 5.2,
we propose a matrix inequality condition equivalent to the admissibility of (£, A)

without assuming that (£, A) is regular.

Theorem 5.1 [MOS94d, MKOS96] A pair (E, A) is admissible if and only if there
exists X € R™*" such that

ETX = XTE >0, (5.82)
ATX +XT4 <. (5.8b)

Proof. See Appendix.

If (5.8) holds, A and X are nonsingular.
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5.3.2 H_-norm condition with admissibility

The following theorem gives a generalized algebraic Riccati inequality (GARI) condi-
tion necessary and sufficient that sE — A is admissible and that ||G|| < v for given
v > 0.

Theorem 5.2 [MKOS96] The pair (E, A) is admissible and ||G||o < 7 if and only
if (I) there exists X € R™*" such that

ETX =XTE >0, (5.92)
ATX + XTA+CTC + %XTBBTX <0, (5.9b)

or (II) there exists ¥ € R"*” such that

YET = EYT >0, (5.10a)
YAT + AYT + BBT + %YCTCYT < 0. (5.10b)
Proof. See Appendix. ]

We easily get equivalent LMIs to (5.9) and (5.10):

Corollary 5.1  The pair (E, A) is admissible and ||G||« < 7 if and only if (I) there
exists ¥ € R™ ™ such that

ETY =YTE >0, (5.11a)
—ATY —YT4 YTB (T
BTY v, 0 | >0, (5.11b)
C 0 v1p

or (II) there exists X € R™*" such that

XET =EXT >0, (5.12a)
~XAT - AXT B XCT
BT v, 0 |>0. (5.12b)
CXT 0 Al
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5.4 Some selected LMI-synthesis problems for de-

scriptor systems

In this section, we propose LMI-based synthesis methods for descriptor systems using
algebraic inequalities shown in the previous section. In Subsection 5.4.1, we show a
state-feedback quadratic stabilization, while Subsection 5.4.2 proposes Hoo-controller
design for descriptor systems. In Section 5.5, we will give a numerical example of
descriptor H.,-control for plants that have a differentiating element and integrating

element.

5.4.1 Robust stabilization of descriptor systems

This section investigates stabilization and robust stabilization problems of descriptor
systems. We assume here that the descriptor variable is available; we set C = I and
D =01in (5.1). Consider static state-feedback u(t) = Fz(¢). The closed-loop system
is:

Ei(t) = (A+ BF)z(t). | (5.13)
The following proposition gives an LMI-condition to get a controller that makes (5.13)

admissible.

Proposition 5.1 [MOS94d] Let K be any regular matrix satisfying EKT = KET >
0 and fix it. Then there exists F' that makes (£, A + BF) admissible if and only if
there exist Y and M satisfying

(AYT + BM) + (AYT + BM)T < 0, (5.14a)
EYT =YET >0. (5.14b)

Then there exists § > 0 such that Y = Y + 6K is a regular matrix and F = MY T
makes (E, A+ BF) admissible.
Proof.  See Appendix. ]

Remark 5.1 (1) If Y is regular, § = 0 (i.e., F = MY 7T) gives a gain with which
(M, A+ BF) is admissible. (2) One of such K used in Proposition 5.1 is derived from
a singular value decomposition E = UgX gV by setting K = UgVZ.

Next, let us consider quadratic stabilization of uncertain descriptor systems given
as follows:
E(n)a(t) = A(0)z(t) + B(O)u(t), (5.15)
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where we assume that E(n) is square and, in contrast to in Chapter 4, E(n) is singular.
Let the coefficients £(n), A(f) and B(f) represent parametric uncertainties of plants,
and we assume that the plant keeps its structure over the possible uncertainties, such
as the number of exponential modes. We give the notation of E(n), A(9) and B(6)

for such uncertainties as follows:

ng
E(n)=GmH, G(n)=>_nGy, (5.16a)
7j=1
A nA
A(B) =3 6hAwy, B(9) = 0B, (5.16b)
k=1 k=1
NENE §enna ' (5.16¢)

We assume that G(n) is regular for any n € Q"2 which implies KerE(n) = KerH.

Theorem 5.3 [M0S94d] Let K be any regular matrix satisfying HKT = KHT >0
and fix it. Suppose that there exist Y and M satisfying the following LMI for j =

1L,2,...,ng, k=1,2,...,n4:

(A(k)YT + B(k)l\Z[)Ga) + G(j)(A(k)YT + B(k)jW)T < 0, (5.173,)
HYT =YHT > 0. (5.17b)

Then there exists 6 > 0such that ¥ = Y +6K is a regular matrix and that F = MY -7
makes (5.15) admissible for all (n,6) € Q"F x Q"4. Further, the dynamic part of the
closed-loop system is quadratically stable. v

Proof. See Appendix. []

To make the closed-loop exponential modes less than —f (8 > 0), apply Propo-
sition 5.1 and Theorem 5.3 with replacing A with A + SE and Ay with Agy + 6H,

respectively.

5.4.2 Descriptor H,-control problem via LMIs

There are several results on H-control for descriptor systems. Morihira et al.
[MTK93] and Takaba et al. [TMK94] generalized the J-spectral factorization [GGLDI0]
to solve the descriptor H.-control problem, while Wen et al. [WY93] applied the
generalized eigenvalue problem [GLDKS91]. These results give H.-norm conditions
for descriptor systems in terms of generalized algebraic Riccati equations and, as in
state space H,, problems based on Riccati equations, require the assumption that
descriptor plants have no jw-axis zeros and satisfy some rank conditions.
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In this section, we solve the H.-control problem for descriptor systems using alge-
braic inequalities shown in Theorem 5.2 and Corollary 5.1. The H-norm condition of
closed-loop systems is reduced to an equivalent LMI-condition of two positive definite
matrices, and we give a procedure to get an H-suboptimal controller from a solution
to the LMI. Though previous descriptor H,.-synthesis methods [TMK94, WY93] as-
sume several conditions on descriptor plants, our solution to be shown here does not
need any prescribed restrictions on plants. Further, we show that, if the descriptor
H_, problem is solvable, there always exists an H.-suboptimal controller whose order
is at most the number of the finite modes of the plant.

Let us consider the following descriptor system:

Ei(t) = Az + Bu + Bywi(t), (5.18a)
y(t) = Cx(t) + Du(t) + Nywn (1), (5.18b)
21(t) = Crz(t) + Hiu(t) + Dyun(2), (5.18¢)

where z € R™ is the descriptor variable, u € R™ is the control input, y € R? is the
measured output w; € R™ is the exogenous input, and z; € R is the controlled
output. The rank of the matrix E € R**" is 7(< n). Without loss of generality, we
assume D = 0, N; = 0, H; = 0 and D; = 0. If this is not satisfied, we can rewrite the
descriptor system as in the way of (5.6). Though such an augmentation of a descriptor
system brings additional components in the descriptor variable, it does not increase
the computational complexity of the LMI-based synthesis method shown later.

We represent a dynamic output-feedback controller as follows:
Ee(t) = A&(t) + By(t), u(t) = CE(t), (5.19)

where £(t) € R™ and E € Rre*m¢. Note that any proper controller, which can have a
feed-through term, are represented in the form of (5.19) with an appropriate integer
ne. Later we will discuss the regularity and infinite modes of the controller (5.19).

The closed-loop system is:
Eclfl'icl(t) = AcliL‘cz(t) -+ Bclwl(t), Zl(t) = CCIQICI(t), (5.20)

where z(t) = [27(t) €7(¢)]" and
| [E o] [ A BC’}
Ey = A Ag = In )
0 F A
By
Bcl = [ ], Ccl 12[01 0]
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To give solutions, first we follow the result of [SMN90] and generalize it to descrip-
tor systems, representing H..-norm conditions via Riccati inequalities (5.9),(5.10).
From Theorem 5.2, the admissibility of the closed-loop system and the H-norm con-
dition ||Ca(sEq—Aa) ' Balleo < 7 is equivalent to the existence of X, € R(n+ne)x(ntne)

such that

ElXy=XTE, >0, . (5.22a)
g‘y(Xcl; ‘401, BcI; Ccl) < 0, (522b)

where

G,(X;A,B,C)=ATX +XTA+CTC + %.XTBBTX.

Below we show an algebraic condition of the “state-feedback” and “observer” form,

which is a generalization of the result of [SMN90]:
Lemma 5.3 [MKOS96]
(1) The following statements (I) and (II) are equivalent:

(I) Given y > 0, there exists a controller of the form (5.19) such that the closed-
loop system (5.20) is admissible and that ||Cu(sEa — Aud) 7t Balle < 7.

(II) (a) There exist ' € R™*" and X € R"*" such that

ETX =XTE >0, (5.23a)
G.(X;A+ BF,B;,C;) < 0. (5.23b)

(b) There exist G € R™? and Y € R™*" such that

EYT =YET >0, (5.24a)
G, (YT (A+Ge)T,cT BTy <0 (5.24b)

(c) The matrices X and Y satisfy
ET(y*y T -X) >0, (5.25)

where YT := (YT)~1. (Note that X and Y are nonsingular if (a) and (b)
hold, respectively.)
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(2) If (II) holds, we can assume that A := 4?*Y~T — X is nonsingular. (If this
is not true, for appropriate £ € (0,1), kX instead of X satisfies (b) and the
nonsingularity of A.) A controller that satisfies (I) is given by

E=F, (5.26a)

C =F, (5.26b)

B =—-A"Ty-1g, (5.26¢)
A=A+BC-BC+4BBX-ATC"B"X

+A7TG (X; A+ BF, By, Cy). (5.26d)

Proof. See Appendix. []

Remark 5.2 Though Lemma 5.3 gives an H-controller of the descriptor form,
we can always derive a proper controller in the following way. Suppose that the
statement (IT) in Lemma 5.3 holds and set {£, A, B, C} as in (5.26). From a singular
value decomposition of E, we represent £ and A by

z‘}n x‘}m} VI
Agr As

Y 0
0 0

~

E=Ug

~

Ve, A=UE[

where & > 0. If A,, is nonsingular, the controller is regular and has no impulsive

modes. If Ay is singular, redefine A by

A::UE[AH Lo ]Vg’,
Agy Ag+ kI

where « is a scalar such that Ass + I is nonsingular and that the new A satisfies
(5.22b). Such k always exists. Thus we can always obtain a proper controller when-
ever (II) holds. Note that the order of the controller is no more than r(= rankF).

Now we summarize the results above in this subsection in the following theorem.

Theorem 5.4 [MKOS96]
(1) The following statements (I) and (II) are equivalent:

(I) Given v > 0, there exists a proper controller of the form (5.19) such that
the closed-loop system is admissible and that ||Cy(sEq— Ag) ™  Balleo < 7.
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(IT) There exist matrices X, Y and positive scalars ¢, 6 that satisfy the following

inequalities:

ETX =XTE >0,

ATX + XTA+CTC + XT(3:B1B] — 0BBT)X <0,
EYT=YET >0, (5.27)
AYT + Y AT + BiB] +Y(5CTCL - 6CTO)YT <0,
ET(y*yT-X)>0.

(2) If (5.27) holds, we can assume that X,Y and A := %Y~ — X are nonsingular.
A proper controller that satisfies (I) is calculated from (5.25) and the procedure
in Remark 5.2, where F = —%BTX and G = —51/03”. The McMillan degree

of the controller is at most r.

Proof. Obvious from Lemma 5.3, Remark 5.2 and the Finsler's theorem [Jac77].

]

Theorem 5.4 reduces the output-feedback descriptor H.-control problem to solv-
ing the GARIs with the coupling inequality (5.27). If £ = I, the above results co-
incide with the results of the state space H., synthesis based on Riccati inequalities
[SMNO9Q].

We have to present a computational method to solve these coupled GARIs, but
this type of quadratic inequalities has never been studied. In order to get a solution to
(5.23)~(5.25), we give an equivalent LMI-condition below. From now on, we assume

that
X0
E-= [
0 0
for simplicity as well as D =0, N, = 0, H; = 0 and D; = 0. Every descriptor system

C ZeR*T=xT>0 (5.28)

is represented in a form satisfying these assumptions. We will use the following

notation:
TAn A B
A= :BIZ[ },Cl':[cll 012],
| Ao Ay Bis
T A 1 - AT 1
12 : B ;1 : cT
S - R R -
MxUs=1 ¢, 0 |0 MU=\, o |
OPIX(VH'TYZ—T) Omlx(n+m—r)
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where A;; € R™", By; € R™™ (1 € RP*", and the four matrices My, Ux, My, Uy
are column full rank. Let Nx and Ny column full rank matrices with maximum sizes

to satisfy NEMy = 0, NE My = 0, respectively.

Proposition 5.2 [MKOS96]
(1) The following statements (I) and (II) are equivalent:

(I) The inequalities (5.23)~(5.25) have a solution {X,Y, F, G}.

(II) There exist symmetric matrices Px, Py € R™*" such that

Py u-! i
>0, N%QxNx >0, NEQyNy >0, (5.29)
r-! Py
where
(—XpAT — AXT -X,CT -B
Qx = . ¢ NI 0 |, (5.30)
I ~BT 0 07
YA - ATYy -YIB, -CT
Qy = —BTY, AT 0 |, (5.30b)
L -Ch 0 v
[SPx 0 PyS 0
X = Yy = . 5.30c
M (5.300)
(2) If (5.29) is solvable, a solution to (5.23)~(5.25) is
X=9XT V=4V T F .= (X7, G = (Z2y 1), (5.31)
where
. TPy . Py 0
X::[ X:XrJ,Y: S i (5.32)
0 . Y,
[ X, W= —px(JF0x ) T My UL, (5.33)
(YT Z7] = —py(JT®y J) I Gy My U, (5.34)

Oy = (Qx + px Mx M) ™,

By 1= (Qy + py My ML),

Px > Amax { ML (Qx Nx (N Qx Nx) ' MEQx — Qx)(MY)TY,
v > Amax{ M (Qy Ny (NF Qv Ny) ' MEQy — Qy)(M})T},
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and J := (I,  Onx(mitp) ]T. FXorYis singular, modify it by adding diag{0,x», @ T}
with || small enough not to destroy (5.29).
Proof. See Appendix. []

Most of the computational complexity to solve (5.29) depends on r(r + 1), the
number of the elements of the two symmetric matrices Px and Py. This ensures that
such an augmentation of descriptor forms as (5.6) does not increase the complexity,

since it keeps the number of the finite modes.

5.5 Numerical Example (Hy-control for a descrip-

tor system)

This section shows a numerical example using the results of the previous section. Let
us consider a plant in Fig.5.1, which has a differentiating element and an integrating

element.

Z]
wy —
X X,
Bl ¢ [t
+
U 5+ y
1% 1 |x
s+1 + s
z
w; L2,

Fig.5.1 Plant with a differentiating element and an integrating element.

The following equations describe the plant:

9’:1=—-m1+u, j32=$1+’lU1,
j73=$4, Oab4=—x3+u+x1+w1,

21 =Ty + wWo, 22 = T2, Y = Tg+ T4+ wa,

where the second line of the above equations indicates the differentiating element:

Ty = %(u + 21 + wy). To avoid feed-through terms, we set zs := w, and define
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T = [r1,T2,7T3,%4,75)7 as a descriptor variable of the plant. Then each matrix in
(5.18) is given by

10 0 0 0] —1 0 0 07
01000 1 0 0 0
E=|00 10 0/,A=]0 0 1 0,
00000 1 0 -1 0 0
0 0 0 0 0 L0 0 0 0 -1

T 010 1 017
B=[1 00 1 0]",B = ,
00001

00011
C=[01011],C= ,
01000

D=0, N;=0, H =0, D, =0.

This plant has one jw-axis zero caused by the integrating element. The result of

convex optimization to minimize v subject to (5.29) is:

[ 7.2607 —-2.9437 0.3036
Py = | -29437 2.8013 -1.9834},

. 0.3036 —1.9834 3.8013
[13.0675 0.1796 0.4672

Py = {01796 2.0757 0.5671],
| 0.4672 0.5671 2.1246
4 = 3.1241,

where we used MATLAB version 4.0a, SP [VLB94] and MAKELMI [MOS964a]. Since
X and Y derived from these matrices were singular, we added diag{0sx3,0.0115} to
them. The modified X and ¥ are nonsingular and X,7Y, F, G computed from them
by (5.31) satisfies (5.27). The realization {A,, B,,C,, D,} of the derived controller is
given by:

—0.8831 —1.2198 —2.0557 -1.1624
i, =10% | 2.8968  4.0076  6.7599 |, B, = 10%| 3.8213 |,
—2.2296 —3.0780 —5.1892 —2.9321

C,=10°[-1.3058 —1.8064 —3.0451], D, = —1.7217 x 10%.

The singular value plot of the closed-loop transfer function is shown in Fig.5.2.
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5.6 Concluding remarks

This chapter provided new algebraic inequality conditions for descriptor systems: the
generalized Lyapunov inequality for the admissibility, and the generalized Riccati
inequality for H..-norm conditions. Using these inequalities, we proposed quadratic
stabilization via state-feedback and H,-control via output-feedback for descriptor
systems. In these synthesis methods, a derived controller satisfies not only quadratic

stability or H,-norm condition but also elimination of possible impulsive modes of

descriptor plants.

Singular Values

0
Frequency (rad/sec)

Fig. 5.2 Singular plot
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Chapter 6
Conclusion

LMIs have been recognized as powerful and comprehensive mathematical tool to rep-
resent properties (specifications in design) of linear systems. In this dissertation, we
have proposed a unified approach to solve control system synthesis problems described
in terms of LMIs.

In Chapter 2, we have presented a new parametrization of stabilizing output-
feedback controllers. The set of all stabilizing controllers of some order is connected
to a finite-dimensional convex parameter set, and this parametrization opened the
way to optimization calculation on the convex parameter set. In Chapter 3, we have
formulated the LMI-synthesis problem and defined a class of LMIs representing per-
formances of closed-loop systems. We have provided a solution to nonconvex problems
to synthesize a controller that satisfies any of the LMIs in the class. The solution is
a procedure to reduce them to convex optimization problems on the parameter set
defined in Chapter 2. The class contains almost all of conventional LMI-conditions,
such as H.-norm conditions, He-norm conditions, root-clustering conditions and so
on, for both continuous- and discrete-time systems. Therefore the solution is a unified
formula to synthesis problems for one of those LMIs. Furthermore, the class contains
new LMI-conditions for multi-objective design such as Hs/H,,/root-clustering, and
thus the solution enables controller design with more complex specifications.

In Chapter 4, we have considered robust performance problems formulated by
LMIs in the class defined in Chapter 3. We have treated two types of structured
uncertainties: norm-bounded uncertainties and polytopic uncertainties. For both
types, we have proposed algorithms to solve those synthesis problems via convex
optimizations on the parameter set. Asin Chapter 3, a larger class of LMI-conditions

than those ever considered are applicable with the results of Chapter 4 to representing

83



84

design specifications.

In Chapter 5, we have provided results of analysis and synthesis for descriptor
systems based on LMIs. We have proposed LMI-conditions for the admissibility,
a generalized stability, and H.-norm condition with admissibility. Applying these
LMIs, we have solved two synthesis problems: state-feedback quadratic stabilization
and output-feedback H.-control. In these problems, impulse elimination is attained
as well as each quadratic stability and H..-norm condition.

The results of this dissertation derive a new and more flexible CAD including
many existing methods such as H,, design. It enables design with complex multiple
specifications, which enlarges what designers can do in designing control systems.
The existing fast convex optimization algorithms [BG93, NN94, VB94] solve LMIs
on the parameter set. We have developed a tool [MOS96a] that derives LMIs of the
standard form (3.31) from such description of LMIs in a text file as P = PT > 0,
(AP; + BW;) + (AP; + BW;)T < 0. We have used them in the three numerical
examples of this dissertation. Lastly, if one find a new LMI-condition and it belongs
to the class £, Theorem 3.1 immediately derives a procedure to find a controller that
satisfies the LMI-condition.
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Proof of the results

Proof of Proposition 2.1.

This proposition is a special case of Theorem 3.1 in Section 2.3, aimed to explain the
parametrization. See the proof of Theorem 3.1, setting

B} T 0
&(P, %) = ®ryap(P, PA), Z(T) = [o T} .

Proof of Theorem 3.1.

First, we show some technical lemmas.

Lemma A.1  Assume that for some n, there exist P € PD(n+n,.) and K € K(n,)
satisfying ®(P, EL(K)) > 0. Then for any n), > n., there exist P’ € PD(n + n’) and
K' € K(n}) that satisfy ®(P',E(K')) >0 and K ~ K.
Proof. From K = {4, B.,C.,D.} and a matrix Ay € R(m=")x("=n<) define a,
controller K’ := { A}, B,, C, D,} as follows:
Al = [Ac 0 } , Bl := [ Be } , Coi=[Cc Omx(n—ng)] -
0 A O(n—no)xp

Then obviously K ~ K’, and we have

A(K") = {A(K) V } Bi [Bi(K)} , Gi(K') =[Ci(K) 0].

Next, define
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which implies
- PA(K 0 "~ PBi(K
P A = | FAE) } , P'By(K) = { () J .
0 PyAq 0
Hence, for some Tj, a permutation matrix, and @y, a function of (P, Ag), we have

®(P, 5(K)) 0 } -

@(P’,E(K’))=Tg[ 0 Bo( Py, Ao)

Next, define a function PP, T) as follows:
o If (P, %) = Pryap(P, PA), define Bypare( P, T) i= Pryap( P, A).

o Otherwise, define ®g,( P, X) by picking up all the state blocks (3.9) and the
corresponding off-diagonal blocks.

Then obviously ®saie( P, X) > 0 holds and, if we set

Ey:=[Inin, Omi—n)x(ntne) ",
E=E®-- & Ey,

Py := ETPEy(> 0),

Ay = Py ET PA(K)E,,

we get PoAg = Ef PA(K)E,, which implies ®o(Pp, Ag) = ET®sare(P, )E > 0. [

Lemma A.2  Assume that for some n, > n there exist P € PD(n + n.) and
K € K(n.) that satisfy ®(P, £(K)) > 0. Then we have P’ € PD(n + n.) satisfying
®(P',L(K)) > 0 and, when (P')~! is partitioned as |

P, P
(P) = { 2 “2)} , Puy € PD(n), Py € PD(n,), (A1)
P(12) Pay
P19y is row full rank.
Proof. Obvious. L]

Lemma A.3 Suppose that ®(P,X(K)) > 0 holds for some P € PD(n + n.) and
K € K(n;). Then, for any n, > max{n,n.}, there exist K’ € K(n.) and P’ €
P(n + nl) satisfying (P, S(K)) > 0, K ~ K’ and
P s 077!
PP=|S S 0| ,P,SePDn),Ps>S5, P,ePD(n.—n). (A.2)
0 0 P
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Proof. From Lemma A.l and Lemma A.2, for any n, > max{n,n.}, we have
P e PD(n+n.) and K = {A,, B,,C.,D.} € K(n.) satisfying &(P,Z(K)) > 0 and,
when P~ is partitioned as

Pl [P(l) Paz)

= pT P(:)) j} , P(l) S PD(n), P(g) € PD(?ZC),
(12) 2

P19y is row full rank. Define the following matrix:

- [Pﬂ?)P@)l]‘l
(P(ﬁ))T ,

whose nonsingularity is easily checked. Setting Pf = Py, S = P(lg)P(g)lP(,{Q) and

P = P
0o 717 0 T

I, 0 Py Punl I 0 -t
-1 (1 (12) n
B Pofelpr byl Lo (peipn, P&
(P({f, )_)T (12) 2 [ (2)4(12) (12)]
P S 01"
=S S 0
0 0 P

and Py — § = Puy — PayPg Py > 0. Lastly, K' := {T™'A.T,T"'B,,C.T, D.}

implies

&P\ S(K") =E (K;‘ Z?TD (P, L(K))E ([% ;D >0
and K ~ K'. ]

Now we are ready for the proof of Theorem 3.1. We prove the statement (2) first.

Let us denote
T :={G.(s; K)|K € K(n,),®(P,2(K)) > 0, 3P € PD(n+n,)},
T = {Ge(8; Kmap(P)) P € P(np), ®*(p) > 0},

which are the left hand side and the right hand side of (3.16), respectively.

Suppose that Ge(s) € 7. Then, from Lemmas A.1~A.3, there exist K’ =
{A., B, Ce, D} € K(n,) and P’ € P(n + n,) of the form (A.2) such that K ~ K,
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Gu(s) = Cu(sI — A)"'B, + D, and ®(P',Z(K’)) > 0. Using P’ and K’, set a
parameter p := {Ps, P,, Pn, W;a, Wya, Wh, L}, where P, := (P; — S)~! and

Wi ' Wya
Wyt La
i - :
e B 1D - [ e
=|PB!'-P, O ' [Apfs’-f o} 01 S 0
! Bcl c :
0 + 0 I, ‘ 0 0 0/ 0 P

(A.3)

Then we get (2.13) for matrices defined in (2.11) through some manipulations. From

the equalities in (2.13) and Lemma 3.1,
®*(p) = Z(Uy )2(P', S(K"))E(U2) > 0

holds. Since (A.3) is the inverse of (2.10), the above parameter p implies K’ = {A,,
B., Ce, D.} = Kmap(p). Thus, from a controller Gy(s) € 7z, we have found a
parameter p such that ®*(p) > 0 and G(s) = Ge(8; Kmap(p)), which shows that
G(s) belongs to 7x.

Next, let Geo(8) = Ge(8; Kmap(p)) belong to Tg. Then, setting K := Kpnap(p) and

P S 0771
P=15S S 0 ,
0 0 P

we can eagsily see that
®(P,B(K)) = Z(U; )@ (p)2(U5 ) > 0,

which implies that G.o(s) belongs to 77, and proves the statement (2).

Lastly, we prove the statement (1). The part (II)—(I) is clear. Conversely, if (I)
holds, Lemma A.1 guarantees that, for any ng > max{n,n.}, ®(P’,L(K’)) > 0 holds
for some P’ € PD(ng) and K’ € (ng). From this pair of P’ and K’, we derive a
parameter p = { Py, Py, Pn, Wyo, Wya, Wh, L.} € P(ny) satisfying (3.15). Further,
we easily get a parameter p’ € P(ng), n < Vngy < ng from the above p by:

p = {P, P, P, W;,,W,,, L.},

ga’

In' I(“"‘")
L; ::[In:J O]La[ 00],Ph ::[I(n{,—n) O]Ph|: ((]) :l;

! ! I’"ﬁ
Wiy o= Wea[Ly 0], Wy, = ) Wiya.
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Thus, for any n, > n, we get a parameter satisfying (3.15) in the above procedure by

3 — -
setting ng := n, or Ny =Ny, ]

Proof of Corollary 3.1.

Suppose that (i) holds. From theorem 3.1, there exists p € P{n) that satisfies &*(p) >

0. Settmg EO by
. I,
Ey = ,
’ [o}

@*Sf<an) = ET(EO)(I)*(p7X)E(EO) > O)

we get

which proves (ii). Conversely, assume that (ii) holds and set D, := W;P;'. Then we
have
®(P,L4(K)) = Z(P;)®™ (p, X)=(P;) > 0,

and this completes the proof. ]

Proof of Lemma 4.1.

Define w(t) and Z(¢) as follows:

B(t) = A3(2), (A.42)

Ns - ~
3t) = (I - HA)HCoz(t) + Cuult) + 3. Cryywi(t) — Cusz(t)).  (A.4b)
i=1
Then (4.5) is represented by

Esz(t) = Az(t) + Bu(t) + j\: Biw;(t) + B,a(t). (A.5)

i=1
From (A.4) and (A.5), we get

Ny :
Z(t) = Zea(t) + Zuult) + O Znwi(t) + Spu(t),

i=1
where (4.8) defines =Z,, Z,, etc. This implies
N,

B(t) = A(I = ZgA) 7 (Eea(t) + Zuu(t) + Y Ewwi(t)). (A.6)

=]
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Now consider a mapping defined on U:
A= =L 4 (I —ZL= ) EA(I — SgA) I = E525)7.

It is shown in [YK96] that this mapping is bijective from Uy to Uns, and we get
A(I—EgA) = (I -ZL=y) (A" + Z5)(I - Z5A)75. (A.7)

Substituting (A.6) and (A.7) into (A.5) completes the proof. ]

Proof of Lemma 4.3.

From (4.13) and Lemma 4.2, the inequality (4.15) holds for all A € Uy, if and only if

- , ISER
. 'K
3(P, %) &, PB, &7| ' ( )
' > 0. A8
~ I (K) )
BIPaT qla, 0
|[To(K) Ti(K) --Ty(K)]22 0 g 'y,
This matrix inequality belongs to £ if one defines an appropriate augmented plant as
Y. Therefore Theorem 3.1 shows that this inequality is equivalent to (4.16). ]

Proof of Theorem 4.2.

We prove only (2) here; the proof of (1) easily follows that of (2). Since ® € Lc¢g,
there exists some ®; € L¢ such that @ = &, @ &, @ --- @ ®y, for some Ny. From
the definition of L¢, each ®; has only one diagonal block of the form c,(f,g(Pfl + AT P)
and A does not appear in any other parts. According to @, define II(7") as follows:

I(T)=I(T) @ Ix(T) & - - & Iws(T), (A.9a)

{ T if By, has the form of ¢\)(PA + ATP),

I(T) = (A.9b)

I otherwise.
Then, since Lo C Ly and ®; € Ly is defined to have PB; terms in the form of
(3.25), we see that (4.30) is equivalent to the following matrix inequality and that its
left hand side is biaffine with respect to (n,6):

1 ([E (0 }P”) (P, Z,(K, 7,0))T1 (P—l [ET(”) IOCD > 0.

ne n
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Therefore the above inequality is equivalent to

E; O EL, 0
Hq 0 ; ]P‘l) @(P,EP(K;[j,k]))>O,H<P‘1[ @) ; D>o,
j:l,?,...,nE,k:l,?,...,nA.

Lastly, this is equivalent to (4.31), which is proved in a similar way to that of Theorem

3.1. ]

Proof of Theorem 5.1.

(Sufficiency) Suppose that (5.8) has a solution X. Since A and X are nonsingular

from (5.8b), for any non-zero complex number s,
1
det(sE — A) = (—s)"detA det(;[ — AN E)

holds. The right hand side of this equality, which is not identically zero, proves
the regularity of (E, A). Next, the matrix L := —ATX — XT A is nonsingular and
satisfies that (E, A, L7) is observable [Cob84b]. From Lemma 5.2, (E, A) has neither
impulsive nor unstable finite modes.

(Necessity) Obvious from Lemma 5.2. O]

Proof of Theorem 5.2.

We prove only (I) here.

(Sufficiency) Theorem 5.1 guarantees the admissibility of (E, A). The H,, norm
condition is derived by simple manipulations.

(Necessity) Since (E, A) is admissible, there exist nonsingular matrices L, R such
that

7 07 As O
= LER, = LAR (A.10)
0 0] 0 I
hold for a stable matrix .4;. We also denote that
B,
{B =LB, [C; C;]=CR.

The transfer function in (5.5) is represented by G(s) = Cy(sI — Aq)" By — CsBs.
From ||G||s < 7, there exists P > 0 such that

—ATP - PA,—-CTCy; PB,—CIC,B,

{ BTP - BTCTC,  +I— BTCTC,B,
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holds [ZK88]. Let o > 0 and define W := CTC, + al, Z := —CTCy. Then W > 0,
and for sufficiently small «,

~ATP - PA;—CICy; PB;+ Z7B, ] 0
BIP+BTZ 4%l — BTW B,

is also valid. Using this inequality, we can easily verify that

P 0
X=1L" } R
z -w
satisfies (5.9b). The condition (5.9a) obviously holds for this X. ]

Proof of Proposition 5.1.

The necessity is obvious. We prove only sufficiency. Suppose that (5.14) holds. If Y is
regular, F = MY =T makes (E, A+ BF) admissible. Otherwise, consider ¥ = Y + 6K
with § > 0. We have EYT = EYT + §EKT > 0 for any § > 0 and

(AYT + BM) + (AYT + BM)T |
= (AYT + BM) + (AYT + BM)T + §(AKT + KA")

<0

for enough small § > 0 with det(Y + 6 K) is nonsingular. ]

Proof of Theorem 5.3.

Suppose that (5.17) holds. We get 6 > 0 as in the proof of Proposition 5.1 and
GHO)AB) + BO)F)YT +Y(A(8) + BOF)TGT(n) < 0. (A.11)

This implies the admissibility of (H, G=}(n)(A(#)+ B(0)F)) for all (n,0) € Q"F x Q4
and hence (E(n), (A(8) + B(#)F)) is admissible, satisfying (A.11) and (5.17b).
Next, we prove the quadratic stability of the dynamic part of the closed-loop
system, showing that ¢(z) := z7Y~'Hz is a Lyapunov function for any function
(8(t), 6(t)) that varies in Q"F x Q"4. We get ¢(z) > 0 easily. Since Y is nonsingular
and Y'H = HTY~T > 0, we have Hz = 0 if ¢(z) = 0. Further, we see that Hz = 0
induces z = 0 as follows: Consider the following singular value decomposition of H
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and partition of G~1(n)( A(8) + B(9)F):

¥ O
l: 0 0
An,0) = [{111(77, 0) %12(77, 9)

Aa(n,0) Axn(nb)

] = U HVg,
= UgG(n)~'(A(0) + B(O)F)Va.

Then the closed-loop system is represented as follows:

Sadi(t)= An(n,0)31(t) + Awa(n, 0)da(t) ’ (A.12a)
0= Ag(n, 0)81(t) + Anal(n, 6)32(2), (A.12b)

I
&

where [27(¢) 2Z(@®)]" = V¥ z(t). Since A(n,§) has no impulsive modes for all (n, §) €
Q"2 x Q"4 the block Ayy(n,6) is nonsingular [Shi95]. The condition Hz = 0 is

represented in (A.12) as #; = 0, and we have

Thus ¢(z) = 0 derives z = 0. Lastly,

Z;‘%q(:f;(t)) = 20T ()Y " Hi(t) = 227 ()Y 1G-H0)(A(8) + B(6)F)z(t),

which shows that ¢(z) is negative-definite from (A.11). ]

Proof of Lemma 5.3.

(Necessity) Suppose that (I) holds. Then, from Theorem 5.2, there exists X that
satisfies (5.22). Moreover, when X, is partitioned as

_ [Xu Xi2

_ } | X1 € R™™, Xy € RP (A.13)
Xo1 Xo

we can assume that X and the diagonal blocks Xi; and Xy, are nonsingular. If not,
we can derive another solution X that meets this assumption as follows: denote by K
and K fixed nonsingular matrices such that ETK = KTE > 0 and ETK = KTE > 0,
and define

_ {R’ 0 }
K, =

0 K
Next, let o be a positive scalar that is small enough to satisfy G, (Xy+aK; Ag, Ba, Ca) <

0 and not an eigenvalue of —K~1X;, —K=1 X5, nor ~K7'X4. Then we can easily
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see that (5.22) and the above assumption of nonsingularity holds for X/, := X +aK

instead of X .
First, define the following matrices:

st 1) Latn, 0
S -XSTXE 1] T | XX, 1)
. . - X1 — XpXak X 0
X, = 37 clT:[ 11 124492 <321 },
0 Xoo

Ey:=S"'E T, Ay:= 5—1Ac1f,
Bcl = g_chl, écl = CclT-

Then, from (5.22),

TT(ECI;XCI>T = EZ;X’C[ = Xg;Ecl > 0, (A143,)
TTQ‘Y(‘XCI; Acla Bch Ccl)j:’ - g‘y()z-’cl; Acl, Bcl, é'cl) < O (Al4‘b)

hold. The (1,1)-blocks of (A.14) imply (5.23) for X := X1; — X19X5' Xo1 and F :=

~C X5 Xon.
Next, define the following matrices:
5. [I ~-Xi' X% P I —Xﬁleg} |
0 I 0 I
_ _ - X1 0
/cl=ST/clT—[ ! }7
*

Ey:=S'E T, Ay:=51ALT,
Bcl = S’_—chl; C_’cl = CCIT)

where the ‘+’ part is not used in the following discussion. From (5.22),

THNEIX)T = EYX, = XYE, >0, (A.153)
TTG(Xu; Aay Ba, Ca)T = Go(Xu; Au, By, Co) < 0 (A.15b)

hold. Define 2T

> 2 =T X 0

}/Cl = ﬁ/ <X = .
0 *

Then we can easily verify that (A.15) implies

EJY] =Y, EL >0, (A.16a)
G, (YT, AL, CT, BT <. (A.16Db)

cl»
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The (1,1)-blocks of (A.16) guarantee that (5.24) holds for ¥ := 42X7;¥ and G :=
XTXxIB.
Lastly, from (5.22a),
ET(yY T - X) = BT(X12X5 Xo1) = XL X5H (XLE) X35 Xoy > 0.

(Sufficiency) Suppose that (II) holds. Then we can assume that A := y?Y T - X
is nonsingular. We will see that the matrix

s
el - — —A A

satisfies (5.22) with a controller (5.26). First, if we set £ = E,

,},2ETy—T _ETA}

ETx, =
el [—ETA ETA

The equalities in (5.23a) and (5.24a) guarantee that EZ X, = X% E.;.. Moreover, for

any z,y € R",
VETY-T —ETA} [:r]

T T
77 ] [ ~ETA  ETA ||y
=y TET Xz + (z —y)TETA(z —y) > 0
holds from (5.23a) and (5.25), and this implies (5.22a). Next, define the following

matrices:
- - {I I}
=T := ,
0 I
5 I %;YAT _ I ;IQ-YTA
1o I |7 "o I |’
- N . X 0 _ ~y-T ¢
Al ST‘X—CIT = y Xg = ST/ clT = ' ’
0 A 0 *
Ay = SYAyT, By:=S5"'By, C.:=CuT,
7cl - 5—1 4clf-z__’a Bcl - _chh C'cl - Cc[T,

and consider the following partitions:
Vi Vie

[Vl Vis
VE T

-~ ~ = XC;AC7BC7CYC ’
7T } G (Xa; Aa, Ba, Ca)

} = g’y(;cuficl,écluécl)’ [

where V4,V € R™*". Then Vo =V, - V; +‘712+1~/1€ holds (see Lemma 4 in [SMN90]).
Further, setting A B and C by (5.26), we derive Vi = Vig = Vfg = G, (X; A+
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ByF,B;,C1) < 0 from (5.23b) and Vi < 0 from (5.24b). Finally, we obtain (5.22)

from .
6% Aus B Gy = | & O[T 0 ”]<o
v\ <Xely el Pely el ) — I I 0 ‘71 0 I .

Proof of Proposition 5.2.

(Necessity) Suppbse that (5.23)~(5.25) hold. Then X and Y are nonsingular.
Setting X :=yX T,V := YT, W = y(FX )T and Z := 7(Y~'G)7, we have the
following LMIs:

XET=EXT >0, ETY =YTE >0, ET(Y - X T) >0, (A.17a)

T—AXT — XAT - BWT —-wBT -XcT -B

—C X7 v 0 | >0, (A.17b)
i -BT 0 07
[—ATY —YTA-CT7Z -277Cc -YTB, -CT

~-BTY yI 0 | >0. (A.17c)
3 -y 0 vl

Since E is assumed to be the diagonal form of (5.28), the equality conditions in
(A.17a) imply that X and Y have the following form:

s
X = 'Xr ,Y-:
0

where Xi,Y; € R™" are nonsingular. Defining Py := v-1X, and Py = V2!, we
get the first inequality in (5.29) from the inequality conditions in (A.17a). Next, if

we set X as in (5.30c), it is easy to check that (A.17b) is identical to

X7
Qx — MxUT [WTT] JT—J[X, W]UxMT >0, (A.18)

which gives NYQxNx > 0. We get N Qy Ny > 0 from (A.17c) in the same way.
(Sufficiency) Suppose that (5.29) holds and define X, Y by (5.31). Then (5.23a),
(5.24a) and (5.25) are easily checked. Next, applying Theorem 1 in [IS94], we see that
[X,. W] defined in (5.33) satisfies (A.17b). The proof of (A.17¢) is similar. Setting
F,G as in (5.31), we get (5.23b) and (5.24b) from (A.17b) and (A.17¢c), respectively.

[
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