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Abstract 

The BESS-Polar Experiment has been carried out to search for novel primary origin of 
cosmic-ray antiprotons with high statistics and high sensitivity for cosmic-ray antiprotons 
with a novel primary origin. Measurement in the low energy region is emphasized as this is 
the region where possible primary antiprotons are most easily distinguished from secondary 
antiprotons. The BESS-Polar spectrometer has been devel9ped to realize long duration 
flight over Antarctica. A significant effort has been made minimize material thickness in 
the spectrometer in order to maximize the sensitivity in measurement of the low energy 
particles. A Middle Time-of-Flight (TOF) detector which has been newly introduced from 
BESS-Polar experiment has been indispensable to the detection of low energy cosmic-ray 
antiprotons until 0.1 GeV. 

lIn the BESS-Polar I flight which was carried out in 2004, the performance of the Middle 
TOF was limited because of the single-sided readout. This in turn determines the lower 
energy limit of performance for the antiproton identification. Based on the result of the 
BESS-Polar I experiment, we newly developed the double-sided readout Middle TOF for 
the BESS-Polar II experiment. The difficulty in design and construction of the BESS-Polar 
Middle TOF mainly comes from the spatial restriction in the magnet bore. We carefully 
developed the double-sided readout Middle TOF for BESS-Polar II. 

The BESS-Polar II experiment was carried out with a NASA long duration balloon flight 
over AntarCtica in December 2007 through January 2008. The newly developed spectrometer 
enabled more than 20 days flight. During this successful flight, the BESS-Polar II super­
conducting spectrometer collected 4.7 billion cosmic-ray events without any online event 
selection cuts. 

BESS-Polar II Middle TOF worked well during the flight. We acquired about five times 
the statistics, in the solar minimum period of BESS-Polar II, than that acquired by BESS­
Polar I flight. The performance of the Middle TOF realized the improvement of the per­
formance because of double-sided readout, and it has made an essential contribution to 
maximizing sensitivity of the BESS-Polar II spectrometer in the low energy region of 0.1 
GeV. 
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Chapter 1 

Introduction 

The measurement of cosmic-ray provides not only understanding of propagation [1], and 
acceleration of cosmic-rays in the galaxy but also offers the possibility of understanding the 
origin and early history of the Universe from a view point of elementary particle physics. 
The possible sources of cosmic-rays are novel process, such as evaporating primordial black 
holes (PBHs) [2] which are generated in the early Universe and the annihilation of neutralino 
dark matter [4,5,7]. 

A probe for such novel processes is to search for antiprotons, positrons and anti-matter 
nuclei which are heavier than antiprotons. Gamma-rays from antimatter annihilation might 
also provide a signature. The main component of antiprotons and positrons is expected to be 
secondary cosmic-rays which come from collisions of primary cosmic-rays with the interstellar 
matter. The production of low energy secondary antiprotons whose kinetic energy is lower 
than 1 GeV is strongly restricted by the kinematics [8-10]. On the other hand, the energy 
spectra of primary antiprotons is expected to peak lower than 1 Ge V [11]. From these 
reasons, the measurement of low energy cosmic-ray antiprotons is expected to be an effective 
probe for the primary sources. 

1.1 BESS-Polar project 

The Balloon-borne Experiment with a Superconducting Spectrometer, BESS, has been car­
ried out as a US-Japan scientific balloon program since 1993. It aims at studying elementary 
particle phenomena in the early history of the universe. It also provides very precise mea­
surements of absolute fluxes of cosmic-rays as fundamental references in cosmic-ray physics. 

The BESS experiments previous to the BESS-Polar experiment reduced the systematic 
errors by the annual improvement of detectors and beam test of the entire spectrometer [12]. 
Because the systematic errors were thus well reduced, the requirement of further precise 
measurement of antiprotons by subsequent BESS experiment simplified to "improvement of 
the statistics with long duration flight" and" enhancement of sensitivity for the low energy 
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1.2 Performance limited with BESS-Polar I Middle TOF 

The BESS-Polar project consists of two flights. The BESS-Polar I experiment was success­
fully carried out in 2004 [201. The BESS-Polar I Middle TOF used a singJe.sided readout 
because of the strong spatial restriction. The single-sided readout Middle TOF limited per­
formance and event quality. Figure 1.3 shows the time resolution of BESS-Polar I Middle 
TOF. The time resolution of BESS-Polar I Middle TOF changes from 300 ps to 650 ps de­
pend on the axial position. The upper limit of antiproton identification is limited by 1/(3 
which is calculated by the Time-of-Flight. Therefore, the upper limit of antiproton identifi­
cation is determined by the time resolution of Upper TOF and :Yliddle TOF. In DESS-Polar 
I, the upper limit of antiproton identification is about 0.65 GV. 
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Figure 1.3: The time resolution of DESS-Polar I Middle TOF depends on the axial position. 

In the BESS-Polar spectrometer, the track of cosmic-ray is reconstructed by the tracker. 
To keep the quality of the track reconstruction, we check the consistency of the hit informa­
tion from the tracker and hit position from TOF COllnters. For the axial hit position, the hit 
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