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Abstract

The image formation in the field ion microscope was studied
theoretically by calculating both the ionization probability
and the current-voltage characteristics. The model was extended
to include the field adsorption effects on the imaging process.

In Chap.l, a general introduction was given to the
experimental results and the existing theory of field ionization
and ion current generation, giving particular attention to
points which were revised and extended in the present
investigation. The aim of the present work was made clear.

In Chap.2, field ionization probability of a gas atom
above a clean metal surface was calculated. The comparison and
criticism of various methods of calculation were given. The
effect of the orbitals of metal atoms on field ionization was
investigated approximating the metallic state by the
tight-binding method, and formation of the point image contrast
was discussed. The energy distribution of the field ionized
atoms was also obtained. The result was in agreéement with the
experimental observations.

In Chap.3, field ionization probability above a metal
surface with various adsorbed atoms was calculated. A
one-dimensional model calculation of the electronic transmission
coefficient of the field ionizing system was carried out; this
predicts that the ionization probability would be enhanced and
suppressed by the adsorption of the atoms with small ionization
potential, and by the field adsorption of the inert gas atoms
respectively. The latter effect was verified in case of the
three-dimensional calculation, which disagrees with the

previous investigator's prediction of the extremely high



enhancement of the field ionization by field adsorption.

In Chap.4, the dynamic approach to calculation of the
field-ion current was discussed. The velocity distribution
functions of the gas particles, attracted to the spherical
emitter, were derived. The dependence of the ion current on
the emitter temperature and the gas temperature was discussed.

In Chap.5, the field-ion current, based on the balance
equation for the velocity distribution function of the
concentrated gas particles in the emitter region, was calculated.
The expression for the ion current in terms of equilibrium
gquantities, such as the supply function and rate constants for
ionization and escape, was derived and used to discuss the
calculated results. The field adsorption effect on the ion
current was then investigated, based on the adsorption effects
on both the electronic transition probability obtained in
Chap.3 and the gas-surface interaction.

In Chap.6, the conclusions of the present invegtigation

were given.
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CHAPTER 1
INTRODUCTION
1.1 General
The field ion microscope (FIM) invented by Miller' is one
of the powerful devices for the surface science capable of
imaging the metal surfaces in atomic detail. >The detailed
interpretation of the image is now becoming increasingly
important as experimental technigues continue to develop and to

be applied to wider fie1d52’3. The recent discovery of

' necessitates a refi.ement

field-adsorption of an inert gas
of the theory of the field ionization process.

The present study is an attempt to improve the understanding
of the imaging process and image interpretation by both quantum
mechanical calculations of the field ionization probability and
theoretical considerations of the ion current generation.

The detailed investigation of the ion current generation
will provide fine demonstrations of the theory of the field
ionization by intermediating between the theory of the

microscopic process and the experimentally observable behaviour

of the ion current.

1.2 Field Ionization
1.2.1 The Hamiltonian of the Field Ionizing System

The process of field ionization may be viewed as a
rearrangement-type collision of an atom with a metal surfaces.
As a gas atom approaches the metal surface (shown in fig.1l),
the electrons and nucleus of the free atom begin to interact
with the N electrons of the metal, and the constitutive atomic

cores of the metal lattice7. For the time being, we consider
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field ionization of a monovalent atom (e.g. hydrogen). Also,

the independent-electron models, in which the interaction

poteﬂtial Vi o is replaced by an external (one-electron)

potential, is considered. A specific expression for V; was
10

given by Cutler and Davisg, and by Boudreaux and Cutler™ ,

analytically as

2
VvV, =V,(xr, R) - e"/4z , (1)
where 2
€ -10 2
Ve(r, R) = - =——][1 - exp(~Voz/8 x 10 )] + /IR + i,
4z

z >0, 2>%,, (2)

= -V z L0, 2>2, - (3)

Where z and Z are the components of the position r of the atomic
electron and the position R of the nucleus respectively, all in
A units (see fig.l). The quantity Vg4 is the depth of the
potential well in the Sommerfeld-Hartree model of the metal in
eV. The plane z = 0 is the metal surface and Z, is the cut-off
distance for field ionization discussed later. In eq.(2), the
first term is the image potential of the electron which includes
exchange and correlation effects9 and the second term is the
interaction of the electron with the image of the nucleus.

The total Hamiltonian of an atom near the metal surface

under the electric field F is

2 2
L S 2
H = - —V_ --—VR+er-eFZ+Vi—e/|r-—R|,
2m 2M

(4)
where m and M are the mass of an electron and a nucleus

respectively., In the rearrangement collision formalism, we
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assume that the separated parts of the system can exist, in the
initial and the final states, in two different arrangements
("channels") corresponding to the "original" and "rearranged"

systems. Namely,

where V¢ is the interaction potential of the ion with the metal.
The probability that the total system, initially in a state,
q}i , will rearrange itself into the final state qff in unit

time, has been shown to be given by12

P = (%) Se; -5 | <Welvepi> |2 (6)
within the first Born approximation, where

R )

He Ve = Be W - (8)

The rearrangement collision formalism has, however, some
difficulties, one of which is the lack of orthogonality between
the initial and final states of the system. Mittlemanll

pointed out that even in lowest order the Born approximation

must be changed from eq. (6) to

23T 2
P == SE; - Bo) (Y Ve - Tl W D70 (@

where 1T'f projects onto the final state of the system.

Since the motion of the nucleus is much slower than that of
the electron, the standard adiabatic assumptions are justified.
The Schrddinger equation of the electron that transfers from

the gas atom to the metal tip at the fixed position of the
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Fig. 1-1. Coordinate system of a metal and a

monovalent atom.
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Fig. 1-2. Potential diagram for an electron in
field-ionization.

—4-



nucleus is given by9

(-1 /2m-V2+ v, )Y =sm Y, (10a)

V(r,R) =V _(r,R) + eFz - e2 /1r-R | . (10b)

ol

The electronic potential V (r, R) is shown schematically in
fig.2. Then, field ionization consists in the tunneling of
electrons through the potential barrier which contains the

position R of the nucleus of the free gas atom as a parameter.

1.2.2 The Interpretation of the Field Ionization

Our discussion below follows that of Duke8. The idea of
tunneling can be formulated either as a time-dependent
initial-value problem or as a stationary-state problem. In the
former, one constructs a wave packet from the one-electron
eigen-states approximately localized in the interior region and
calculates that the integrated probability density in the
interior region decays exponentially for an initial period of
time. This formulation, although conceptually simple, suffers
from two defects. First, the initial wave packet can never be
‘completely localized in the interior region if constructed from
eigenstates of the full Schrbdinger equation. Second, the
time-dependent picture is cumbersome to use in actual
calculations.

To circumvent the first defect, Oppenheimerl3 devised a
simpler time dependent formulation. In this method, the initial
and the final states are taken to be eigenstates of different
Hamiltonians. The actual problem is regarded as a combination
of the two others with coupling and the process of field

ionization interpreted as consisting of transitions between

almost orthogonal states of the same energy. Thus, writing
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H = Hy, + Hy' = Hp + Hg' (11)

Oppenheimer gives the transition probability per unit time, P,

from the initial 4”0 to a continuum of final states \HD by

2

I

r

where

He Yo = Eo Yo o (13)
i, Wy =EL W), - (14)

Following Duke, we consider the relation between the
transfer-Hamiltonian model and Oppenheimer's formalism of
tunneling. The transfer-Hamiltonian modal consists of writing

the Hamiltonian of the system in the form

H=HL+HR+HT. (15)

Hy, and H, are the Hamiltonians of the two classically allowed

R
regions of configuration space, and Hn, is an operator describing
transitions between them. The existence and uniqueness of a

simple form such as eq.(1l5) for the given Hamiltonian is not

obvious. P is given by
2T
P = (-—)Z]<)_/|HT|0>,2 D(E, - Ep) . (16)
0 by

Duke pointed out that a decomposition of the form specified by
eq. (15) can be performed only in the sense of writing the
transition probability given by eq.(1l2) in terms of the matrix
elements of a transition operator, Hy , with matrix elements
defined by  (V|H, 0> = (XY - H,| 0). The

transfer-Hamiltonian model is in current use for the many-body
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description of tunneling, despite the weakness of its
conceptual foundations. As Feuchtwang14 pointed out, it
therefore remains an open question whether the formalism does
provide a reliable procedure for handling tunneling.

The simplest, and most easily utilized, interpretation of
the single-particle tunneling process is the stationary-state
theory of weakly quantized15 (or quasi-stationary) "bound-state
in the continuum". A state whose energy eigen value E is
larger than -V3 is non-degenerate and has a continuous spectrum.
For energy E near E, = ValZ, Z) + eFZ - I, the amplitude of the
wave function in the nucleus potential is large compared with
that outside the atom or in the metal. These states are called
resonance or virtual states. From the quasi-~classical point of
view, the problem reduces to obtain the transmission coefficient
of an electron through the potential barrier. The probability
that electrons tunnel from the atom to the metal is commonly

taken to be

= | Yy, 0/ P, o) | 2. (17)

It often is calculated using the WKB method.

From the quantum-mechanical point of view, Kemble15 has
given more rigorious discussion. He decomposed the resonance
states into the incident streams of particles on the barrier
and the corresponding reflected and transmitted streams. By
physical intuition, Kemble has shown that the wave form of the
waves trapped inside the atom must be nearly constant in time
and the transmission coefficient for the outgoing waves

incident on the barrier must be at all times very nearly equal

to the transmission coefficient for a train of waves of uniform
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amplitude and energy incident on the barrier. The stationary
state wave function and the transmission coefficient are
obtained by the matching wave function methole.

The local or atomic density of states N(E) is defined as

NE) = XK I(Y\ll 2] S -E) , (18)

where ‘Q“A is the isolated atomic wave function and summation
is over all eigen states in that are normalized to constant
current in the metal region. The energy distribution of N(E)
reflects the energy uncertainty of the weakly quantized state.
The width of the peaks on the resonance curve also gives the
ionization probability by the Heisenberg uncertainty principle15
Now, the minimum value Zc of Z at which the atom will be
ionized exists as the final state must be empty in
Oppenheimer's formalism. In the stationary state model,
critical distance Z, exists because if ion core comes up to ‘the
metal bevond the critical distance, the resonance energy of the
ion core potential is below the Fermi-level of the metal and so

it has one electron and ionization does not occur.

1.2.3 Calculations of the Field Ionization Probability

Reviews of the calculations of field ionization probability
have been given by Sharma, Fonash and Schrenk7 and by Muller and
Tsongz’lz. Some parts of the discussion below follow those of
them,

Subsequently to Miller's first observation of the field
ionization near a metal surfacel7, Inghram and Gomér18
initiated the one-dimensional WKB treatment of field ionization
in FIM, and some refinements were brought forward by Muller and

19

Bahadur The one-dimensional calculation provides many of
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the basic concepts such as the critical distance for ionization.
The kinetic energies of field ions, that correspond to
acceleration voltage, distribute correspondingly to the
distribution of locations of the origin of the ionization.
Tsong and Mﬁller20 observed that the half-width of this energy
distribution of ions (field ion energy distribution) is so
narrow that the zone, in which almost all ions are produced
(defined as the ionization zone), is less than 0.2 A in width.
The one-dimensional WKB calculations using square well models

for both the atom and the metal yield a half-width of about

0.4 A ZQ and the calculations with more rigorious
one-dimensional barrier yield that of 0.7 A 21. Boudreaux and

Cutler10 performed the three dimensional calculations of the
ionization probability using the time-dependent perturbation
theory. They took a state, that is given by a plane wave
inside the metal and by an exponentially decreasing function
outside the metal in the absence of the field, for the final
state and found the half~width of the ionization zone for an
atomic hydrogen on tungsten to be 0.11 A. Their formulation of
field ionization by the time-dependent perturbation theory is
criticized from Oppenheimer's points of view in section 2.1.
There, suitable choices of the initial and the final states are
discussed for the total Hamiltonian given by Boudreaux and
Cutlerlo.

Boudreaux and Cutler6 also calculated the ionization
probability by the rearrangement-type collision theory, and
obtained the narrow half-width of 0.12 A for atomic hydrogen at
a field of 2.3 Vv/A. Fonash and Schrenk22 investigated, by this

formalism, the effects of the Fermi surface on field ionization,

-9~



concluding that the anisotropy of the Fermi surface prc ‘uce a

2’12. Sharma and Schrenk23 also

regional image contrast
investigated, by the rearrangement collision formalism, the
effects of the surface potential periodicity from which they
conclude that the point image contrast of a FIM image is shown
to arise. Miller and Tsong12 concluded that the effectszz’23
they investigated are of secondary importance in explaining the
regional and point image contrasts. Sharma, Fonash and Schrenk7
claim that the rearrangement collision formalism does not
suffer from the ambiguity of the transfer Hamiltorian approach.

6,22,23

However, in the three calculations by the rearrangement

collision theory, eq.(6) was used, instead of eq.(9). This
approximation may yield nonsensical resultsll.

In contrast with the previous investigators, we take the
tight-binding Bloch states for the final metallic states in
section 2.2 and investigate the contributions of the s and d
orbitals to the total field ionization probability by the
Oppenheimer's theory. The regional image contrast
and point image contrast are qualitatively discussed. This
calculation may be regarded as the first attempt to gquantify
the extended~orbital concept of Knor and Mﬁller24. The
calculated widths of the ionization zone (0.32~~ 0.42 A) are
qualitatively in good agreement with the recent experimental

25 .26

observations by Utsumi and by Miller and Sakurai®".

4
"7 on

Let us consider the effects of field adsorption
field ionization probability. There are a few experimental
observations that a field-adsorbed inert atom increases the

27-30 31

field-ion current Alferieff and Duke have considered

one-dimensional model in which a neutral adsorbate is

-10-



represented by a delta function with its strength given by the
ionization potential (equals to 15 eV). The transmission
probabilities they obtained by the matching wave method with
and without an adsorbate are essentially unchanged. Duke and
Alferieff32 discussed that negative values of ionization
potenital correspond to pseudopotentials associated with neutral
adsorbates which are repulsive in the delta-potential limit.
Alferieff and Duke were interested in the effects of adsorption
on the lower energy Jason peaks33, not on the main peaks of

the ion energy distribution. The argument above urges us to
reconsider the problem in more detail. The model calculations
similar to those of Alferieff and Duke31 are presented in
section 3.1. The potential of a field-adsorbed inert gas atom
is represented by a potential well, in the strong potential

32

model The effects of the chemisorption or metallic

adsorption as well as those of the field adsorption are
investigated. In contrast with the WKB point of view12’34,
calculated ionization probabilities often are reduced by the
field adsorption.

Nolan and Herman35 first pointed out that not the resonance
effects or the transition with the aids of virtual intermediate
states, but exchange effects owing to the overlap with the
adsorbate orbitals constitute the major effect in the
enhancement of the ionization probability. Their formalism is
quite similar to eq. (9) where the initial and the final states
are Slater determinantal states36. The enhancement factor,
which is the ratio of ionization rates with and without the

adsorbed atom, is evaluated by them. The values seem to be

rather too high such that 3~5 for helium as the adsorbate,
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30 ~ 90 for neon and 104 for argon, probably due to the
omission of the field term from the perturbation potential (see
section 3.2). 1Indeed, in the modified calculations, Nolan and
Herman37 obtained small enhancement factor: 1~ 0.4 for helium
and 2~ 10 for neon.

For the purpose of getting at the truth of the extremely
large enhancement factor given in the former paper of Nolan
and Herman35, we also calculate the ionization probability when
there are a field adsorbed atom on the apex of the metal atom
in the manner of the many body tunneling. A limited basis
consisting of the isolated orbitals of imaging inert gas atom,
que and of adsorbed atom,\YR and plane wave metal states which
exponentially decays outside the metal surface in the presence
of the field, qu are adapted. If all the basis states are
orthogonal to each other, the off diagonal terms, which arise
from the presence of the adsorbed atom, are composed of only
exchange integrals, Vg, = ‘J.qhk*(rl) v)%*(rz)-ez/rlz.\yg(rz)
qhHe(rl) d'tld'tz. We formulate the ionization probability
that it will contain the terms discussed above in the orthogonal
limit. Thus, the initial and the final states are defined by
properly orthogonalizing the limited basis, and then ionization
probability may be given by the Fermi-Golden rule, regarding
the off-diagonal terms as perturbation. Our calculations lead
to the considerable reduction of the ionization probability for
helium as the adsorbate, small reduction for neon and small
enhancement for argon. The ratios of the ionization
probabilities, with and without the adsorbed atom are 0.06, 0.7

and 4.0 for helium, neon and argon, respectively.

1.3 Ion Current Generation
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The present section will comprise a brief introduction of
the contributions of previous authors, following a survey of
Southon38. The first theoretical calculations of ion currents
were formulated in terms of a supply function, S, equal to the
number of gas atoms striking the emitter in unit time, and an
ionization probability, Q, describing the probability that an
impinging gas atom will be ionized in passing through the
ionization zone once. The relation between Q and P defined in
section 1.2 is given by2

Z o +d
Q=1 - expl[- 5 p(z) /v(2) dz] , (19)

Za

where d is the depth of the ionization zone and v{(%Z) is a
radial velocity of a gas atom. If d « 1, we obtain
0=1-eT (20)

d/v(zZ.) and T = P(Zc)—l and t and T are a time

I}

where t
duration of a gas atom and ionization lifetime respectively.

Good and Mﬁller39

first pointed out that S exceeds the
supply function in zero field, S,, due to the polarization
attraction (see appendix I). Correct analytical expressions of
the supply function S are available for ideal tip shapes, such
as the expression for a spherical tip38, for a cylindrical
emitter38, and for a hyperboloid shape40. We derive the
expressions of ds/dv, and dS/dv, for a spherical tip in chapter
4 where they are called Np(vy) and N¢(vy). The quantities vy
and Vi are the velocity components normal and parallel to the
emitter surface respectively.

19

Miller and Bahadur have derived an expression for the
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total ion current on the assumptions that a gas atom approaches
the emitter along a surface normal, strikes it only once and
rebounds with half the incoming velocity. The expression was

then given by
I =38Q;,. (21)

where Q.4 is the probability of ionization during the inward
journey. The calculated current initially rises steeply with
increasing field as Qin increases, whilst at high fields ion
current depends on the supply function alone since 3Qin is
equal to unity, in general agreement with measurements at room
temperature.

Miller?? pointed out first that an atom will be unable to
escape from the tip region, if the kinetic energy of the atom
after collision with the emitter is less than the polarization
energy, Ep , and it will eventually make a series of random
hops before being ionized. Gomer42 has outlined a theory of
the field-ion current which takes account of this behaviour.

Gomer42 has considered three regimes relevant to the
field-ionization process. At very low fields, the equilibrium
concentration of gas at the emitter, which exceeds ambient gas
concentration n by the Boltzmann factor exp( Ep/kT), will be

scarcely depleted. Thus, I is expressed, at very low fields
I =~ nQ exp(Ep/kT) AV (22)

where AV is the volume of the ionization zone . This expression
will be confirmed to exist by our detailed analysis discussed
later. The ion current rises steeply with increasing field due

to the strong field dependence of Q and the Boltzmann factor.
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The expression (21) derived by Miller and Bahadur19 takes no
account of the latter field dependence. At high fields, when
any gas reaching the emitter is certain to be ionized and
therefore no trapped atoms exist, the field ion current is
simply given by the supply function. At intermediate field
strengths, Gomer42 has shown that the balance of the rates of

escape by ionization, k;

i » and by diffusion to the shank of an

emitter, kg determines the steady state concentration of gas
at the emitter, N. Later, Southon38 pointed out that gas atoms
are prevented from diffusing towards shank by the polarization
potential, but will escape by thermally activated processes.

He also introduced the probability of capture, Pc , that a gas
atom striking an emitter surface is subsequently unable to
escape to a region of a zero polarization potential energy, and
the supply of gas atoms from the shank to the emitting area.

38, and Miller and Tsong2 discussed in detail

Gomer42, Southon
the field ionization processes, estimating the rate cbnstants,
k; and kd on the basis of the assumed somewhat ambiguous energy
(or velocity) distribution of trapped atoms. We will present,
in chapter 4, a thoroughly dynamical calculation of ion current
by simulating trajectories of gas atoms, without invoking the
distribution function.

Recently, Van Eekelen40 introduced somewhat different
distribution function, N{(v) : the rate, at which gas atoms
strike a surface, as a function of velocity component normal to
the surface. He formulated a balance equation for N(v), and
computed a number of properties of FIM, such as the field and

the temperature dependence of the total ion current. The

computed results, obtained without having to invoke a "deus
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ex machina", such as an unknown contribution from the shanks,
appear to be in good agreement with the experimental
observationsz’12’38.

We define the rate constants for ionization, ki and for

escape without ionization, k_ , as functionals of N(vn), and the

e
capture probability , Pc , as a functional of Nn(vn). Making use
of the balance equation for N(v) developed by Van Eekelen40,
we reformulated the expressions of the total-ion current in
terms of guantities defined above and the supply function. These
formulations enable us to discuss the computed results physically.
Then, we compute the field ion current versus other parameters of
interest, following Van Eekelen40, with slight modifications. One
of them is the extension of the , in a sense, one-dimensional
model to the three-dimensional one, which is accomplished by the
use of the velocity distribution function, Nn(vn). The dependence
of ion current on the tip temperature TS and the gas temperature
Tg is extensively investigated. Finally, the effects of field
adsorption on the ion current are investigated. The procedure
reveal that ion current is indeed increased by the field adsorp-
tion as observed experimentally 29, even if ionization probability
itself were suppressed correspondingly to our theoretical
predictions.

Finally, we refer to the author's stanspoint, in which
field adsorption is regarded to perturb the field ionization
process above a clean metal surface and not to change it dras-
tically. Thus, we investigate the mechanism of the ion current
generation above a clean surface at first and then the effects
of the field adsorption are investigated as the extended version
of the problem. Fortunately, the procedure is revealed to be a

suitable one.
-16-



CHAPTER 2
FIELD IONIZATION ABQVE CLEAN METAL SURFACE

It is important to calculate the field ionization probabili-
ty when there is no adsorbate on the metal surface, because the
procedure may give the fundamental step to understand the field
ionization process when there are adsorbate of various species
between the ionizable gas atom and the metal surface. Moreover,
field ionization on the clean metal surface actually takes place,
for example on the (110) plane of tungsten under the usual
experimental condition of FIMl and over all planes at high tip
temperatures.

In this chapter we present two calculations of ionization
probability on the basis of Oppenheimer's approximation. In the
first calculation how to choose the initial and the final states
on this approximation is shown assuming the metallic wave
function as plane wavesz. The tight-binding Bloch wave function
is used as a metallic state in the second calculation.

The usual time dependent perturbation theory is a description
of a transition between orthogonal states which are eigen-states
of the same Hamiltonian. In the treatment of the field ioniza-
tion process by this method, one must make certain of the ortho-
gonality between the initial and the final states or define them
which describe the electron transfer process reasonably. Then,
the transition probability is calculated by the Fermi Golden

rule, regarding off-diagonal parts of the total Hamiltonian as
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a perturbation. It will be shown in section 2.1 that a lack
of the orthogonality between the initial and the final states

leads to a nonsensical results.

2.1 Ionization Probability Calculations Using Plane Waves as
Metallic States
2.1.1 Formulation
First, we follow Oppenheimer's formalism3. Oppenheimer
has presented the approximate method of describing the time
dependence of the wave function |\ﬁ>under the total Hamiltonian

Ht which is given as

He expanded rw>as

pﬁ>= [0 exp (-2TLiyyt) +/J.C (Y't) |y'> exp(-2TLiv't) Av' , (2)

where

l
o

(H + Hy - Eg) |0> (3)

I
o

(H+H1“Ey) Iy > (4)
Ey = h)/ ’ (5)

and we change the original expression exp(2Tiyt) to exp(-27Ciyt).

Then we obtain

ih 9C (Vt) '
=Y H ()]0 + C ('Y y[HEA(EY Y dy!, 6
St [ 0> f v'e) V[Hg () v (6)

where
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It

Hl(t) exp[2Ti(H + Hl)t/h]Hl exp[-2Ti(H + Hy)t/h], (7)

Hy (t)

exp[2TCi(H + Hy)t/hlHy exp[-2 Wi (H + Hy)t/h], (8)

Integrating and iterating eq. (6), we obtain

c W) = YT (g, ) JOoY> (9)
T (e, t') = -1 ZTEASHl(I)dI + é§:(—i 2Cyn aty dT, ~~+ ) 4T,
h +/ n=2 h + 4’ t!
x Ho(THQ(T,) v v Hy (Ty) . (10)
4

We can get the usual time evolution operator U (t, t') in the

time dependent perturbation theory by changing Hl(t) to Ho(t) in
eq. (10).

2.1.2 Field Ionization Probability in FIM
The total Hamiltonian of the system which consists of an
atom (e.g., hydrogen) near the metal surface under high electric

field is given by

Ht=H+H0+Hl

= T + V(r) , (11)

where T is the kinetic energy and V(r) is given by (1-10b), the
expression of which is given first by Boudreaux and Cutler5 ,
Oppenheimer has shown that the transition matrix element to

the second order is

M=<VO§M1+M2]0> , (12)
where
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=
N
!

[1/h(Vg - V)] HpH] (14)
Vo = EO/h ' (15)

} 1, |Q> has a maximum for Y = Y.

o

and Y [Hg | Yp> <

There is some choice of H, Hjy and Hy for the total
Hamiltonian Ht‘ We discuss the three cases shown in Table 1.
The schematic diagram of the potential and the wave function for
the final state of the cases 1 and 2, and of the case 3 in
Table 1, are shown in Fig.la and Fig.lb, respectively.

The eigenfunction of the initial state | 0> is the hydrogen
1ls wave function Uy in case 1 and NgoUy[l + (F/I)(z-Z)]6 in cases
2 and 3, where Ny is the normalization constant, F is the field
strength and I is the ionization energy of the atom. The

eigenfunction of the final state [)) > in the classically

forbidden region is approximated by

VD> = Ng expl[-k()), z)]1, (16)

where for cases 1 and 2

X
k), z) = J [(2m/hz)(-EV + eFz' + V_ y11/2 g (17)
[+]
and for case 3 :
2
k(Y, z) = J[(zm/nzu—E,, v, 1Y% gz (18)
0

Ng is the normalization constant and EV is measured from the
vacuum level. Egs. (16 ), (17 ) and (18 ) are obtained on the
basis of a WKB approximation. Moreover, in the calculation of
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Table 2-1

Three Cases for Ionization Probability Calculations

ch(y-Y)I
H H Hy IR-h(Y-1p)
° (ev)
case 1 T —e2/|r—R\ Ve(r,RY+er 11.7
2
case 2 T+eFz -e“/{r-R | Ve(r,R) 11.9
case 3 T er—ez/[r—Rl ve(r,R) 7.07

* Ve(r,R) is given by egs. (1-2) and (1-3).

\

A

\J

METAL VACUUM

@)

\\\,// )

METAL VACUUM

Fig. 2-1. Schematic diagram showing the potential

and the wave function for the final state

of cases 1 and 2 (a) and 3 (b).
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the matrix elements below, Ve(r,R) in egs.(17) and (18 ) is

neglected and specifically k(y, z) of eqg.(18 ) becomes

kY, z) = k(\)z ’ (19)

k() = (-2nm,/mH 2 (20)

The favorable choice of the initial state and the final
state may be deduced by comparison of the ratio R of the second
order matrix element <]j0 |M2 |O> to the first order matrix

element ), | M| 0> with each other case

n - Vo | Hot1/h g = 9 o

o JH1) 0

(21)

The ratio <Yq | HgH; | 0>/<)}0 | B, | O> is calculated for each case
and shown in Table 1, where F = 2.3 V/A, I = 13.6 eV and the
Fermi energy of the metal is 4.5 eV. The energy hy may be
estimated to be such an energy that an electron of the metal of
this energy can arrive at the hydrogen atom without exponential
decay. 1In case 3, H + Hj has no field term and h(y - Yg) is
around the Fermi energy of the metal plus potential energy ve—m'
about 5.5 eV. 1In cases 1 or 2, H + H] has a field term eFz, and
h(y - Yo) may be greater than the ionization energy of 13.6 eV.

As Hj contains a field term in case 1, h(y - ))y) in case 1
may be greater than that in case 2.

The most favorable case may be case 1 from the convergence
discussed above and because in this case we can use the exact
eigenfunction for the initial state.

Now, the transition matrix element on the basis of

Oppenheimer's approximation to the first order is given by
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M= VoV, +eFzO(z)]0) (22)

where the final state |V is defined by egs.(16 ) and (17).
The expression (22) is quite similar to the one found from the
time dependent perturbation theory5 in which instead of egs. (16)
and (17), egs. (16) and (18) or the final state of case 3 are
used for [Yy> . It must be noticed that M is a function of the
separation distance R between the atom and the metal not only
because of the dependence of the integral (22) on the position
of the atom, but also because of the dependence of the final
wave function () on the position of the atom.

The transition matrix element calculations by the two
methods are compared in Fig. 2. The matrix element by the time
dependent perturbation theory does not decrease as the distance
of the hydrogen atom from the surface increases, since Ey and
the exponential decay constant k(}))) in ¢qg. (20 ) decrease as the
separation of the hydrogen atom and the metal becomes large by
the condition |E,| = |I| - eFR, which is necessitated by the
energy conservation of the initial and the final state. Ey or
k(YY) do not depend on the position of the electron but depend on
the position of the nucleus of the gas atom.

The defects of the time dependent perturbation theory on
the basis of non-orthogonal eigenstates or ambiguous choice of

7

the transfer Hamiltonian may be reduced by using the

formalism on the basis of Oppenheimer's approximation.

2.2 Detailed Calculation of the Ionization Probability Using
, 8
Tight-Binding Bloch States as Metallic States

2.2.1 Introduction

The advanced quantum mechanical treatments of field
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Fig.

2-2.

A: OPPENHEIMER'S APPROX.

M CARBITRARY UNITS)

B; TIME DEPENDENT PERTUR,

I I |

3.4 3.6 3.8 4.0 4,2
SEPARATION DISTANCE (R)

The transition matrix element on the
basis of Oppenheimer's approximation
and the time dependent perturbation

theory.
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ionization processes of FIM must explain experimental results that
an image of FIM shows directly an atomic structure of a metal
surface as many spots, each of which corresponds to each an
individual atom of the metal surface. Knor and Miller® have
presented the qualitative interpretation of field ion images as
projections of regions where the fully occupied orbitals of

inert gas atoms can easily overlap with the partially occupied
single or hybridized orbitals of surface metal atoms.

Boudreaux and Cutler™’

have presented two different
approaches to the problem of the narrow field ionization zone,
using the rearrangement collision theory and the time dependent
perturbation theory. They claimed that their three dimensional
analysis gave extremely narrow half widths of ion energy
distribution of 0.11 A and 0.12 A in qualitative agreement with
the experiments by Tsong and MillerlO. Recent experiments,
however, show wider half widths as will be discussed in detail
in Section 2.3. The final state of the tunneling electron was
assumed to be a plane wave state in a metal in their work.

To date, Sharma and Schrenkll showed that the non-uniform
ionization probability at the critical distance is not the
result of field fluctuations, but is the result of the
distortion of the tail of the plane wave outside the surface by
a periodic surface potential.

The high resolution of an atomic scale in the FIM image
suggests that the configuration of electrons on metal surface
are very similar to those of the atoms in the bulk metal as Knor
and Miller ? noticed. Also, in consideration of the band
structure of a transition metal, it is important to consider the

tight-binding d-band electronic state in addition to the free
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s~like band electronic state to construct a model of electronic
configuration of the metal surfacelz.

In this chapter, the field ionization probability is
calculated by the method discussed in Section 2.1 assuming the
metallic state as the tight-binding Bloch wave function. It is
examined whether the ionization probability shows the atomic
resolution of the (001) crystallographic plane for example or

not and how the s-state and d-state contribute to the total

ionization probability.

2.2.2 Theoretical Discussion
An electron localized at a hydrogen atom is assumed to be

characterized by a hydrogen 1l-s state wave function :
Uy = Ng exp(-r'/agp) (23)

The coordinate system is shown in Fig.3. The metal surface is
considered as a plane where the electron gas has decayed to some
appropriate value of its density in the bulk and 1lying 2 A
above the lattice plane determined by the ion cores. For
simplicity only the case that the vector R lies on the XZ plane
is considered.

Let & 3k represent a k state of the j-th energy band in
the metal. For example, j is 1, 2, ... for 131, 'Agr ... ON
the [}axisl§ gijk is assumed to be given by the linear

combination of the atomic type wave function
3, - = B b & -Rp (% - Ry)
YN njk Pnl 7 Re) exp (- Red v (29
Lm

where the sum is over all N lattice sites of the metal and
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(001

Fig. 2-=3. The metal surface is defined as lying 2 A above the lattice plane of ion cores.
The origin O is chosen as shown in this figure. R is the vector from O to the hydrogen
nucleus. The metal surface is the (001) crystallographic plane with an interatomic spacing

of 3.16 A. The [110], [110], and [001] axes are parallel to
the X, Y and Z axes, respectively.

100
18
2 X
% Igdz’
gm
=}
g L N
Bix
1 1 1 I !
1.5 1.7 1.9 2.1 2.3

S

Fig- 2-4. The value of I2(6s) (X =Y =0, Z=Z.) as a function of S. Z. is obtained as
3.52 A for assumed Fermi energy Er of 5.5 eV measured from the bottom of the band
and Ve of 10.0eV. The values of I2(5dzz) (X =Y =0, Z=Z.) and I*(5dzx) (X=1.7,

Y =0, Z = Z.) are shown for Sd =2.34 A.
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QDn(r) is the atomic wave function of the metal atom. For
special k vector as symmetry (001) dircction ( Aaxis), ank is

' = e 3 = = 5 o
o' mo= 5dgs A5,n 5d,, and 54,

zero except for j = A 72X

j= A, n=6sorn-=5d,5and j = A._, n = 54 When the
1 7.2 2

x2_Y2 *
atom comes near enough to the metal surface, the electron
experiences perturbations due to F+Ve(r,R) which can

induce a transition of the electron from the atomic state Ug
into the metal state EEjk'

The probability of such a transition per unit time is given

by

P - 2T L2 JK@jklvl v>]? —2-as , (25
¢

T 2135 |v,&]

where E is the energy of the Eﬁjk:state measured from the bottom
of the band, S 2is the volume of the metal, and V(Z) is the

interaction »notential given by5

2 2 2
V(z) = ==— [1 - exp(-AZ)] += (1 —-££-+ 49—) + eFz, z2>0 (262a)
47 ry 22 4z%
= —VO{l +-%\—-[l - exp(N2)] cos(kz + § ) , z Lo (26D)
Z

where rj is the distance between an electron of the hydrogen and
an image of the hydrogen ion, [} is the dipole length of the
polarized hydrogen atom, and VO is the energy of the vacuum
measured from the bottom of the band. Values of the five

5 -
parameters in eq. (26b) are chosen as follows : k= 10.0 A l,

A=1.242"1, $=0.085and & = 0.44 A for Vq = 16.0 eV. The

second term in eq. (26b) represents the interaction potential
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energy of the electron with the image of the ion in the metal.
The surface integral (25) is performed on the equi-energy

surface of
E=Vy - [I-V(D], (27)

where I is the ionization energy of the hydrogen atom. By the
Pauli principle, P(R) = 0 for Z%,, where the critical distance
Z. is determined by introducing the Fermi energy to E in eq.(27).
Of the atomic wave functions in the sum of eq.(24), only

the 6s, 5dZ2 and SdZX orbitals are considered, as they stick out
from the surface. Some j state may be constructed mainly by the
6s or 5d atomic wave function and the so-called s-like band or
d-like band.

Now the atomic wave function ‘Pn is assumed to be a Slater

function14 as follows :

(P(Gs) = Nsr3 exp (-S.r) , (28a)
. .
P (5d,) = Ngr®@ ~ 1 exp(-s4r) V5 13z - a)2- r?1 25, (28b)
4Jﬁf r
¢p(sa,) =N Ma 1 oiesar) Y15 gz - a) o (28¢)
ZX d Pi=5gq '

where 4 is the Z coordinate of the metal ion core and taken as

1 1

-2 A. From the Slater rule, S. = 1.55 A", Sq = 2.34 A " and

'S

nd* = 4,2 for tungsten. For simplicity, nd* = 4 is used.

Consider the integral

<@jklv| Uy )

2 _\s . <¢ (r - R )|V|U (R)> exp(iiz-f{\)
‘r——‘§ njk n l 0 L
N On

Il

1 - 3 . A
(Ln
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where

L, ®, R) = <P xr-r) |v]ud . (30)

Since the hydrogen wave function U0 decreases exponentially as

exp(—r/ao), it is enough to consider only the integrals Ln(ﬁ,'ﬁL)
where'ﬁL varies among the surface lattice points. The origin of
ﬁl is chosen to be the nearest surface atom core to the hydrogen

atom and the integral I, is defined as

AL =

In(R)-— Ln(R, 0). (31)
So,
KN -~ > >
Ly(R, Ry) = I (R - Ry) (32)
(F. |lv]u)= 2 ZB LI (R - B,) exp(ik -RB) . (33)
jk 0 Nawen njk n L L
N
Ln

Now, the integral In(ﬁ) is to be calculated.

2.2.3 Evaluation and Results

Now we have

I(6s) = 5 Nsr3 exp(—SSr)V(Z)N0 exp(--fl) dT ’ (34a)
20
3 \’5 2 2, 1
I1(5d4,2) = N.r~ exp(-S4r) ———— [3(Z2 - )" - r7] —
2 Sd P r2
x V(2)N, exp(- ) dT ,  (34b)
a
0
3 J 15 1
I(54,,) = N.r~ exp(-Ssr) Y—— X(2 - 4)
zX g’ d d 2d7f' r?
x V(Z)Nj exp(—-Ei) at . (34c)
20
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The three-fold integral was carried out on an NEAC 700 to an
accuracy of no less than one part in 103. The integration (34)
can be carried out analytically when we use V = eFZ and d = 0 A.
The nature of the function In(R) obtained analytically under the
above special conditions, is quite similar to that obtained by
the numerical integration of eq.(34). This shows that the field
term may be dominant in the interaction potential and that the
numerical calculation of eq.(34) may be accurate.

The values of I°(6s) (X =Y =0, 2 = 2.), I°(5d,7)
(X =¥ =0, % =2) and I°(5d,,) (X =1.7, Y = 0, % = 3.) are
sensitive to the choice of S, and S4q (see Fig.4). The parameter
S is a measure of how tightly bound the electron is with smaller
S implying less tightly bound electrons. The radius r, where
the wave function of the metal atom has its maximum value is
(n* - 1)/8. For Sq and Sd from the Slater rule, T is 1.9 A and
1.3 A, respectively. The more expanded wave function (p(6s) at
the metal surface may suffer from the electric field penetration.
The hydrogen atom separated about 5.5 A from the metal ion core
sees the "6s" wave function as the compressed sphere in the
normal direction of the surface. So, it may be reasonable to
use the "6s" wave function of the SS values which are larger than
Sg from Slater's rule in the calculation of 12(65) (2 = 2,) and
its Z dependence. On the other hand, in the calculation of the
X dependence of I2(R)(63), the 6s wave function of Ss equal to

1

1.55 A"~ may be used. The result (Fig.4) shows that for values

of S of about 2.0 A”Y

S and Sd from the Slater rule,

I2(6s)Q:I2(5dZZ) and both the s-band and the d-band contribution
to the ionization process must be considered.

The strong dependence of the value of the transition matrix

-31-



element on the expansion of the wave function is in good
agreement with the experimental result of FIM images of SiC by
J. Kudo et al.l5. The images show that Si atoms (rm 3p= 1.06 A)

are much brighter than carbon atoms (r = 0.66 A) such as the

m 2p
second layer edge Si atoms constitute the image contrast of
(I11) plane of SiC where the top layer is constructed by carbon
atoms.

Now, the X dependence of Inz(ﬁ) at the critical distance is
shown in Fig.5. Let ZSXn represent the half width of In2

(X, Y=0, 2 =13 As (b(Sdzz) has a big lobe extending in the

C)'

Z~direction, [Xx(SdZZ) is smaller than AX(6s):
Ax(5d4,7) = 1.5 a, Ax(6s) = 2.1 A, (35)

On the other hand, Iz(Sde) has a maximum at X = 1.7 A.

The value of Inz(x, Y = 0, Z) decreases slowly from the
value of Z = Z, as Z increases by a nearly equal rate for some
X values. The half widths of I°(5d,2), I°(5d,,) and I%(6s) are
0.32 A, 0.30 A and 0.42 A, respectively (see Fig.6).

Now, consider the ionization probability P(ﬁ)

g
oy
I

n (2703 = IV, El

‘E‘ﬂ l<Z-Ejle|U0>,2 =~ as
J

1o2m L2 ng B_. I (R - R)exp(ik +R) 2—i-as.
YN 1 (23l ™ AE|
J g nt
(36)

To obtain P(ﬁ) itself, the knowledge of Bn and the k-E relation

jk
is necessary for each j state. The energy band calculation of

body-centered cubic tungsten by the non-relativistic augmented
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2
[ (ARBITRARY UNITS)

Fig. 2-5. The value of 12(65)(X,Y=0,Z=Zc), IZ(Sdzz)(X,Y=0,

- 2 =0 7= :
Z—Zc) and I (Sdzx)(X,Y—O,Z—Zc) as a function of X.
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I2 (ARBITRARY un1TS)

3.52 3,72 3.92 4,12 4,52
Fig. 2-6. 7(3)
The value of I2(6s) (X = Y =0, Z2),13(5d22) (X = Y =0, Z) and I%(5dzx) (X =1.7,
Y =0, Z) as a function of Z. The ratio of [I%5dzx)/I2(5dz2)]z~-z.
is 0.07. Ss is taken as 2.0 A-1,
The ratio of  [12(5dz2)/12(65)] x ~ois 0.7.

ZI2 ( ARBITRARY UNITS )

Fig. 2-7. oA

The ionization probability as a function of X for the assumed most simple case.
The X axis is chosen as in fig. 3. The separation distance of
the two atoms along the X axis is 4.47 A.
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plane wave method has been reported by Mattheissl6. The

calculation of P(ﬁ) by using the results of Mattheiss is not
performed in this paper because of its complexity.

Knor and Mﬁller9 have assumed that the atomic orbitals
directing the nearest neighbor atoms are dominant in the
ionization process. In bcc tungsten, these orbitals are 5dZX
and 54, for the plane which is being discussed. From the
calculated energy band structure by Mattheiss, there is no
evidence that only these atomic orbitals are dominant in the
sum of the atomic orbitals EZanjk' or in the surface integration
process.

So, the contribution of all atomic orbitals to the
ionization probability P(ﬁ) must be considered. To see how
P (R) depends on the position vectoriﬁ, a calculation is
performed for the very simple case. At first,'ﬁ varies under
the condition that Z is constant (2 = Zg). The assumption is
that the j state has only one type of atomic orbital and the
total ionization probability is the sum of each non-interacting

band, called 6s, 5dZ2, etc. Then,

Py - L 2m L) 13 g Zln(ﬁ—‘ﬁl)exp(i’ﬁ-'ﬁl) 2_ 1 as, 37
Vv 71 )5 > (V,E|

A LN DS A 2 2 = -~ ~\ -
| V1, R - RL)exp(lk-RL)l = V12®-®) + 2§UIH(R - R,)
L {

X In(ﬁ—?t,)cos[?- (_I;L —“1311,)]. (38)

The summation is over the second nearest neighbor lattice site

. 2 2
in the surface, as In (R)<<In (0) for large |R);
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J

[N -\ . 5. § 2 1
Zln(R - R eXp(ﬂ?-RL)I — - ds
L

[V, E

h
_ 2—\_'_\ ._\__.\ —\_,\
- Nn(E)[glrl (R - Ry) + 2L,ZUAL—L' I,(R - ROI (R - R )], (39
where
1
N_(E) = J ds , (39a)
n
v El
and
A, = \costk: B - 138 (|88 )7, (39b)
- L L L

In general, [AL—LJ<§J” as the integrands cancel each other in

A, §
the surface integration. So, finally P(R) is approximated by

P(R) = =& 1 L2 XNn(E) inz(ﬁ‘-i‘t) . (40)

n ¥n 213 4 L

For each atomic orbital, z:gz(ﬁ —-ﬁl) is shown as a function of
X (see Fig.7). From the result, in this simple case it depends
on the relative magnitude of N, (E) whether the ionization
probability has a maximum at the point immediately above the
atoms or between the atoms.

Next, consider the Z dependence of P(ﬁ) for the simple case
mentioned above. The Z dependence of Inz(R) has nearly the same
half width for some X values. The Z dependence of P(E) is
obtained multiplying that of Nn(E) by that of Inz(ﬁ). The
energy E depends on R by eq.(27). From the calculated result of
the energy band by Mattheiss, Nn(E) is not expected to make the

half width of P(ﬁ) as narrow as 0.2 A (see Section 2.3).

2.2.4 Summary
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In the case of ionization from the (001l) plane of tungsten,

the interaction of metallic 6s, 5d22' 5d and SdYZ orbitals

ZX
with the hydrogen gas atom are important.

The overlap integrals of the 5d22 and 6s orbitals with the
hydrogen wave function have a maximum immediately above the
surface atoms and those of SdZX and SdYZ have a maximum at the
intermediate regionof the surface atoms. It depends on the
relative magnitude of these contributions to the ionization
probability, whether the total ionization probability has a
maximum immediately above the atoms, or intermediate of the atoms.
The point image contrast may arise from field adsorption of
imaging gases, as will be discussed in the later Sections.

In this treatment, the change of the wvalue of Inz(R) from
plane to plane, caused by the directional change of the atomic
orbitals (Pn(r) or by considering another atomic orbital, e.qg.,

5dX2 - y2 and 5d is one cause of the dependence of the

XYy’

~\
ionization probability P(R) from plane to plane.

2.3 Ion Energy Distribution of Field Ionized Gas Atoms
The experimental and theoretical results of the half-widths
of ion energy distribution are summarized in Table 2. Recent
experimental studies by Utsumi17 and Miller and Sakurai18 show
that the half widths of the ion energy distribution are not so
extremely narrow as Boudreaux and Cutler obtained
’

5
theoretically . The calculated values of ours are in good

agreement with the recent experimental results.
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Summary

Table 2-2

of Half-width of the Ion Energy Distribution

Half-width Method, site Reference
0.2A Experiment Tsong & Muller (10)
0.67A(2eV) D2 on (011) W
Sakurai (1)
1.0ev Above protruding atom
0.26A He on (110) W
0.48A zone decoration (17)
0.42A on (121) W Utsumi
0.29A H on (110) W
0.4A Theory WKB Tsong & Muller (10)
Boudreaux
0.7n WKB (Ph. D. thesis)
0.11A Time dependent Boudreaux & (5)
) perturbation theory Cutler
0.12A Rearrangement collision Boudreaux & (6)
Theory Cutler
0.38A Matching wave function present work
) method (section 3.1)
. . Iwasaki & v
0.38A Oppenheimer's method Nakamura (2)
0.32~0.42A Tight-binding wave Iwasaki & (8)
0.7eV metal state Nakamura
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CHAPTER 3

FIELD IONIZATION PROBABILITY ABOVE ADSORBED SURFACE

To interpret the images of FIM , it is very important to
understand how the images are formed when there are metallic or
chemisorbed atoms such as Ir and Mo or O2 and H2 on a metal
surface. Moreover, recent atom-probe experiments by Muller et. al.
definitely established the field adsorption of imaging gas atoms
such as He, Ne and Ar even above lSOKl. This apex-adsorbed atom
may have a significant effect on the field ionization process.
So, the general theory of the field ionization process must take
account of this effects.

In section 3.1, field ionization probability on the
adsorbed surface is investigated in general, by calculating the
transmission coefficient of an electron by matching wave
functions in one dimension.

Section 3.2 is devoted for the more detailed calculation of
the ionization probability when there are field adsorbed inert
gas atoms on the metal surface.

A simple square-well potential, which is parameterized by
its depth and the value of its lowest energy bound state, is
employed to represent the adsorbate potential, as the low-energy
scattering of electrons from finite-range potentials is insensi-
tive to the details of the potential , in section 3.1l. The valid-
ity and difficalties of a one-dimensional potential model have
been extensively discussed by Duke and Alferieffz.

A detailed introduction to the problems studied in section

3.2 will be given at the biggining of that section.
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3.1 One Dimensional Model Calculations of the

Transmission Coefficient

Alferieff and Duke3 has presented the calculation of the
ionization probability when there is an adsorbate by deriving
the one dimensional transmission coefficient for an electron.
Their interest was, however, in the effects of the adsorbate
represented by the delta potential, not on the main peak of
the ion energy distribution but in the lower energy Jason
peaks

Here we study the change of the ionization probability at
the main peak due to the adsorption represented by the potential
well as shown schematically in fig. 1. Transmission coefficients
for an electron are calculated by matching the wave
function in each region to construct the state which behaves as

5

the propagating wave into the metal in the metal region®’ The

wave functionis expressed in each region R (see fig. 1) as

follows.
exp(-ik,x)+ C exp(ik x), (Rl) (1)
2. 2 2= 2
ColY TL(3RYE 14 [¥ 11 ShyT ), (Ry) (2)
Cyexp (~ik,x) +C exp (ikyx), (Ry)  (3)
3
celv 93 GaYT 4c, 7 9 L3RYT), (R, (4)
Csexp(-iksx), (R5) (5)
where
y=Fz-E, (6)
o= - (n’F?/2m) 71, (7)
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Fig. 3-1. One-dimensional potential energy diagram for an

electron in the presence of an adsorbed atom in FIM.
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ki= 2m(E—Vi)/h, (8)

E=I-FZ, (9)

| are Bessel functions of the indicated order, F/|el is

and Jt
the field-strength, E is the energy of an tunneling electron
measured from the vacume level when field is zero, I is the
ionization energy of the gas atom and Z is the distance of it
from the metal surface. The matching condisions bring up the
simultaneous linear equations for Ci.EWCSF gives the transmission
coefficient for an electron.

Ion energy distribution of helium and hydrogen on clean
tuncsten calculated by this method is shown in figs. 2a and b
respectively. The relative values of the transmission coefficient
when there is an adsorbate to that when surface is clean are
summarized in table 1 for various depth Vl’ width W and position
d of the potential well that represents the adsorbate. W is given

by,
W=tan—l(BI/(Vl—BI) y1/2 /g (10)

where BI is the ionization energy of an adsorbate. The ratios as
a function of ion energy E are depicted in fig. 3.

The results are summarized as follows.

First, it is shown that the ionization probability is
enhanced by the adsorption of small depth and wide width

potential well "atom". So, it may be suggested that by the
adsorption of atoms with small ionization potential such as
alkali atoms and atoms whoes electron affinity are large,
bright spots are formed in the FIM image.

It must be noticed, however, that this enhancement does not

show the resonance in the ion energy distribution as fig. 3 in
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contrast with the case of the field emission2 . This is due to
the fact that in FIM the "size resonance" of the transmission
coefficient where E equals BI, can occur but the "symmetry
resonance” of it due to the symmetry of the barrier2 can not by
the following reasons. The distance between the adsorbate and
the ionizable gas atom is larger than that between the adsorbate
and the metal surface as the gas atom must be separated from

the metal than the critical distance (see fig.l. A gas atom

has one electron when its ground state energy E is smaller than
the Fermi energy of the metal.). Moreover, the ionization
potential of the gas atom is much greater than the work function
of the metal.

So, one should not expect that the enhancement of the
ionization probability by the adsorption necessarily add a peak
or shoulder in the ion energy distribution. This speculation is
consistent with a recent paper by Sakurai et al.6 . They have
shown that a field-adsorbed hydrogen promote field ionization
with neither a shift in the peak nor a broadening of the width
of the enerqgy distribution of helium ions.

Next, it is shown that the ionization probability is
sometimes reduced by the adsorption of an atom represented by
the deep depth and narrow width potential well (see table 1 and
fig.3). This potential well may be associated with the inert
gas in the point of view of the strong pseudopotential model? .
Duke and Alferieff 2 have investigated the influence of the

shape of the potential on the transmission coefficient by

computing it for potentials with a fixed BI and well depths V1=
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Table 3-1

Enhancement factor of the ionization probability at the main

peak for helium on tungsten. The position of the potential

well d is chosen to be 1.0A.

\\\\\ BI (eV) 5.0 15.0 25.0

v
1

BI x 2.5 5.55 2.16 1.24

(0.48) * (0.28) (0.22)

‘s 1.99 1.07 0.75

(0.20) (0.12) (0.09)

S 1.47 0.89 0.66

' (0.13) (0.07) (0.06)

10 1.27 0.82 0.62

(0.09) (0.05) (0.04)

1.17 0.78 0.60

x12.5 (0.07) (0.04) (0.03)

* The number in the parentheses indicate the width of the

potential well W in A units.
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3-3. Enhancement factor of ionization probability of

helium by field adsorption.
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2BI, 5BI, 10BI and 100BI. They pointed out that the increasing
of the transmission coefficient in the strong-pseudopotential
model of neutral adsorbates for small Vl ( or for large W ) may
by reinterpreted as an increase in the transmissivity of the
barrier because a wider " hole " has been cut out of the barrier.
Therefore, we may conclude that the possibility of a reduction
in the transmission coefficient by neutral adsorbates is a
general feauture of the model, omitting the result for BI=25.0eV
and Vl=2'5 BI in table 1.

This is the result of the exact calculation of
the one-dimensional problem of the transmission probability
and does not result from the WKB treatments of it. This result
is similar to that of the field emission2 . Namely, only the
exact calculation agreed to the fact that by the adsorption of
nitrogen on tungsten, the emission current is reduced. So, one
should not expect the increase of the ionization probability
from the point of view of the WKB approximation as Tsong7 did.

This reduction of the ionization probability is consistent
with the more detailed study of the field adsorption effects on
the field ionization probabilitys’9 . The experimental
observation that ion current is increased by the field
adsorptionlO may be explained by both the increase of the
capture probability for incident supply and the decrease of the
escape probability for trapped particles by the field

adsorption discussed in later chapters.
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3.2 Three Dimensional Calculation of the Field Adscorption Tffects
on the Field Ionization Probability

3.2.1 Introduction }

Tsong and Mﬁllerll’lzhave shown that the noble gas atom

adsorbes at the apex of the individual surface atom of the field

ion microscope (FIM) tip by the field-induced dipole-dipole

interaction, after the experimental establishment of the field

adsorption by Mﬁllerl3- A few experiments have shown that these

field adsorbed noble atoms increase the field ion currentlo’l4_l6.

We develop here the theory of the effects of the field
adsorption on the ionization probability 8 in detail as the
field adsorption takes place under normal conditions.

Many body effects of electrons such as the exchange and the
correlation effects may play an important role on the process as
a tunneling electron passes through the closed-shell systems of
a field adsorbed inert gas atom and so they must be properly
included in the theory.

Recently Nolan and Herman have reported that the
time-dependent perturbation calculation which includes exchange
effects between the adsorbate electronic orbitals and the
ionizable He atomic orbitals shows the enhancement of the
ionization rate of the He gas atoms by a factor of 3 to 5 for
helium as the adsorbate, 30 to 90 for neon and 104 for argonl7.

In their treatment, the interaction potential does not contain the
field term as the atomic state of the imaging gas atom in the
initial state and the metallic states in the final states are

assumed to be those in the presence of the field. However, the

actual wave function of the gas atom used in the calculation is
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that for no field. As a result the field term is neglected

in the interaction potential to which ionization rate is very
sensitive. This decomposition of the total Hamiltonian may be
regarded as that of case 1 in section 2.1 and on the other I nd,
the perturbaition potential H' which they used is composed of

only Ve(r,R), instead of Ve(r,R) + eFz. Probably, the rather

high enhancement factor may be due to the perturbation potential
which is largest in the region between the adsorbed atom and the
metal because it does not contain uniform-field-type terms. Indeed
in the later modified calculations Nolan and Herman used the dis-
torted electronic wave function of gas atom by the field and
obtained small enhancement factor for He (1-0.4) and Ne (2—10)9.
In this case, their choise of the initial and the final states
may be regarded as that of case 2 in table 1 of chapter 2.

We start by orthogonalizing the limited basis. On the
basis of these new defined orthonormal set, the expression of the
ionization probability is derived which include not only the
similar term discussed by Nolan and Herman i. e. the product of
the overlap integral and one body hopping matrix elements, but
also those terms which represents the transition of an electron
by Coulomb interaction.

3.2.2 Theoretical Considerations

The systems of the helium gas imaging a tungsten tip with
helium, neon and argon as the adsorbate are considered. A limited
bagis consisting of the isolated self-consistent He-atom orbitals
denoted by(pHe, the isolated self-consistent adsorbed-atom
orbitals(PA and the self-consistent eigenstates(i)k of the

semi-infinite metal under the electric field and under the
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presence of the ion core of the gas atom will be adopted.
Now let us introduce a new orthogonal set {q%Smade by
nonorthogonal set {¢§;Sand define creation and destruction
operators C}L+ and CF, for every spin orbitals 1”1 .
Then the Hamiltonian operator for the system is written

18
as

I 1N7% +o *
H = YSg'CrG- v._.C + > VijkL Ci C. CkcL ’ (11)

where/$;s is matrix elements of the one body operator Hy of the

system in the \Y\representation and

o~ * *

2
e

2

For the system discussion HO is

Hy = P2/2m + Vm(r) + VHe(r) + VA(r) + eFz |, (13)
_ 2
v_(r) = 2 A —Emet (13a)
metal |r - R |
m
_ —2e2
V., (r) = ’ (13a)
He |r - R I
He
~7ae?
VA(r) = __4AF . (13b)
‘r - RA |

where the coordinate system is shown in Fig. 4 and Z, and Zy is
the atomic number of the metal atom and adsorbate respectively
and the last term represents the effects of the uniform field.

. . 8
We can obtain another expression of ﬁl where the operators

br+ and br create and destroy electrons in the basis state ¢>

as
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H= 2?}, rs sﬁxtu ud lzP nylngs rstuxuixtm l m’

rs t“ A".Q’m cht

(14)

where c:ao il wiatrix element Ver and V..., 1is (? representation and
?C is inverse matrix of overlap mnatrix of basis set {#&} .

The transition probability between Efi=bé;¢bH;;T[bznb;1)V>
and g& bk¢bHe;Eb]I > may be calculated by using
H cxpressed in eg.(l4). Although the initial and the final state
is Gefined strailghtforwardly, it may be too complicated to
calculate the transition probability between the states defined
aonc, bocause the expressions of the matrix elements are
compi:licated and the usual Fermi-Golden rule can not be used as
.br+ and b, does not obey the usual Fermion anti-commutation
rulus.

To avoid the difficulty discussed above, we can usec the
exprassion of Hamiltonian shown in eq.(1l) | The calculation of the
tra;.siticn probability may be straightforward on the basis of the
Hamiltonian expressed in eq. (ll)but we must take care in the
definition of the new basis set {Hfig, the initial and the final
states, chat they describe well the physical process that an
elcctron transits from the He gas atom to the metal.

Aftor the definition of ?Rﬁig, the total Hamiltonian. of the
system way be devided into the diagonal part Hg and the |

off-diagonal part Hgg.
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Fig. 3-4. The diagram of the system. The XY plane
is defined as the metalic surface and

the coordinate system is shown.

e

Fig. 3-5. Schematic diagram of wave functions used
in Coulomb term VAKAHe’
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od— (JZKY 'He k ‘5 Heo* ZVAHeCAJCHeo’
+Mv_ ., Cc  C 1+ (h. c.)
PRARENEY
+1/200% jlmclcrcja. 10 Cnsr, (15)

where the summation of the last term exclude those terms which
lead to the product of the number operators and so are included
in Hd.
Then, the transition probability between the initial state
— _~+ tat t ;
Sfi—CHed\CHe¢T[C “:Ck,IV> and the final state
=t +
Yf Ck'rCHew—“:C ][Ck' |V> is expressed as follows,

p=(2m) “n” (ek)‘<Yf ' Hod|§i>| ’ (16)

where N(ék) is the density of states.

According to eq.(1l5), the transition matrix element is
s ~
M= e [ ogl¥ 1) *Vige Vheknene

+Z>VAJkHer‘ gvkk 'c k' He
'

~N/ ~/
- - 17
ZVAkAHe ka'kk‘He' (17)
A K'coceop)

Now we define ‘Kas follows.
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Ya = ¢A ‘
Yie = ¢ He ~ ZA, (PA' <A"He> '

Vem Ge N b arkalD) - PuuCuel 1), 0o

where hereafter each bra and ket vector means corresponding
state.

The set ?ﬂ; defined above may be regarded orthonormal to
the order of the square of the overlap integrals.

The transition matrix elements M is calculated by introducing
eq.(12), (13) and (18) to eq.(l7). The details of the
derivation of the transition matrix elements are described in
Appendix 2.

Finally one obtains the transition matrix elements M as

M= <K |eFz ©(2) + U |HeY - <k|He) { He| eFz O (z) + U'He>

>T <k | {er e()+ U + VHF, He

AlAI(

|a" D A"| eFz 6(2) + U + vHF'He}, | 2> arlue »
Z<K |A'> ( A-l eFz B(2) + U - |Ey | 'He>

<K lA'> Va"A'A"He ’ (19

- E: V., , . +
A A'KA'He ATA"

where U(r) and V is the Hartree-Fock potential of the metal

HF ,He
and helium respectively and Bue is the first ionization energy
of helium.

In the above expression, the one body interactions in each
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terms are formulated and the matrix elements representing the
transition by Coulomb interaction are shown. The other terms
than the first two terms represent the field adsorption effects
on the transition probability.

Now, the level width function J7(€) of the net level
density of the imaging gas atom S)He(e) without adsorbate is

derived following Grimleyl8 as

Ve

]

2
T[EKZ. 'eKSHeK' h VHeK" 5(6K - Exn)

2
HeK VHeK, N(€g) ' (20)

Nl

)€ s

if imaging gas interacts with S electron of the metal and N(€)
is a slowly varying function. The transition matrix element
derived from this level width is equivalent to the first two
terms in eq. (19). The second term assures that the tranéition
probability converge to that of space ionization when imaging

gas is far apart from the metal surface.

3.2.3 Discussion and Results

The potential U{r) + eFZ ©(Z) is assumed to have the form
given by Boudreaux and Cutler (egs. (2-26a,b)). The metal wave
function used is givenby(2-16,17)The adatom wave functions are
approximated by the Slater-type orbitals. The inner core
orbitals and the PX and P orbitals are neglected as their
contributions to M are very small. The distance of the
adsorbed atom from the metal surface is 1.0 A for He, 1.2 A for
Ne and 1.4 A for Ar and IEHel = 24.46 eV. For F = 5,0 V/A and
at helium metal separation distance 4 A, the transition matrix

element M is calculated on a computer and each term of eq. (19)
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is shown in Table 2 indicated by the number in the parentheses.
Enhancement factor means |total transition matrix element /
direct transition matrix element,z.

If the basis set'§q%3are orthogonal to each other, M
contains only the first term and the 5th Coulomb interaction
term of eq. (19). vAKAHe is positive for S orbital of (PA and
negative for p orbitals (see Fig. 5). As the former term is
positive and absolute value of the two terms are same order of
magnitude the S state of the adsorbate suppress the transition
probability and the p state enhance it. As a result, in this
case of the approximation of orthogonal basis {qk}», the
ionization probability is suppressed by the helium field
adsorption and may be a little changed by the Ne or Ar field
adsorption.

In general, S orbital contribution of adsorbate of eq. (19)
is the opposite sign to the direct term but that of p orbital is

the same sign to it in the same way as V As a result the

AKAHe"
transition probability is suppressed by the field adsorption of
He considerably. For the case of Ne adsorption, the contribution
of S and p orbital cancel each other and the transition
probability is somewhat decreased by the field adsorption. For
the case of Ar adsorption, p orbital contribution is superior to
S orbital contribution and the transition is somewhat enhanced.

Each term of the matrix element shown in Table 4 shows the
sharp decrease as the separation of the gas atom from the metal
surface becomes large but the total ionization matrix element
obtained by the cancellation of each term show rather slow
decrease.

The ion current may be increased by the field adsorption of

helium by the increase of the population of ionizable gas atom
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in the ionization zone in spite of the decrease of the
ionization probability of the imaging gas atom itself. This
situation will be clarified in later Chapters on the basis of

gas kinetical theory of FIM.

Table 3-2

Calculated values of the each term of the transition

matrix element M

\\\
T Adsorbate He Ne Ar
e—_ )
Direct transition (1+42) -1.163 -1.163 -1.163
Transition due to
0.110 -0.022 -0.687
overlap <Al|He> (3)
Transition due to
1.018 0.203 ~0.455
overlap <K|A> (4)
Transition due to
‘ 0.329 0.034 0.014
Coulomb interaction (5+6)
Total transition
0.294 ~-0.948 ~-2.291
matrix element
Enhancement factor 0.064 0.664 3.88

(-] (-
Calculated values for F = 5.0 V/A at RHe = 4.0 A in arbitrary

units. The number in the parentheses indicate the term in eq. (19).
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CHAPTER 4

ION CURRENT GENERATION IN THE FIELD ION MICROSCOPE: I

DYNAMIC APPROACH

Notation used in this chapter
closest approach to the tip center for a particle
A% velocity of a particle far from the emitter
vp dipole attraction velocity
Ep=mvp2/2=dF2/2, where m and dlare the mass and polarizability
of a particle, respectively and F is field strength
V., V normal and tangential velocity components of a
particle at the emitter surface
Nn(vn), Nt(vt) rates at which particles strike unit emitter
surface per unit time, with velocity components
n

Pe (v ',Vt') probability for a particle, which hit the emitter

with velocity (vn',v '), to escape from the emitter

t

N(V,Tg) rates, at which particles strike unit emitter surface
per unit time, as a function of v and gas temp. Tg

Ke(v,Ts) probability for particles to escape after the first
impact or in their few hops as a function of v and

tip temperature TS

4.1 Introduction
The ion current generation in the field ion microscope.

(FIM) has been studied by Mi'lllerl ' Gomer2 and Southon®

dynamically. In the treatises, the total gas supply to the
field-ion emitter surface is found. The rate constants for
ionization and escaping from the tip region without ionization

are calculated and finally the total ion current is obtained.
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Really, the supply of captured atoms must be used instead of
the total supply as Southon3 has indicated. Both rate constants
and the probability of capture3 are the quantities averaged
over the velocity distribution of the particles at the tip
region in equilibrium and so are the functionals of the
distribution function

In this paper, instead of calculating the averaged
guantities such as effective ionization rate constant on the
basis of assumed somewhat ambiguous velocity distribution, ion
current is shown to be able to calculate thoroughly dynamically.
The incident trajectories and rebounds of all particles are
tracked and the ionized fractions generated in passing through
the ionization zone are summed up. The simplification that the
particles scattered from an emitter surface have the average
velocity is employed. It enabled us to get easily the
information on the influence of the many variables such as the
tip temperature and the gas temperature, in the field range
where particles are ionized in a few hops.

In tbe succeding chapter4, the velocity distribution of

the particles at the tip region is derived by the quasi-static

approach.

4.2 The Supply Function
In analyzing the hopping process of gas particles, it will
be assumed for simplicity that the emitter is spherical. Then,

the magnitude of the electric field F is given by
_ 2
F(r) = Fe(Re/T)° (1)

where F; is the electric field at the tip surface, r is the
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distance to the center of the tip and R, the tip radius.

A particle approaching the tip with, v, its velocity when
very far from the tip, and_f , the distance of closest approach
to the tip center if the electric field were zero, has radial
and tangential velocity, v,(r) and vi(r). Those are found

assuming the conservation of energy and angular momentum as

follows.
vplr) = v-{l - (_S’/r)2 + (VP/V)Z- (Rt/r)4)l/2 ’ (2a)
Vi (r) = vj?/r p (2b)
where
2 _ 2
mvy,©/2 = Ep = olF /2 , (2c)

and Vp is a dipole attraction velocity, Ep

energy of a gas atom, ¢{ is its polarizability and m its mass.

is the polarization

The number of gas particles that pass through a certain
rlane far from the tip in unit time with v between v and v + dv
and P between J and P+ df is called N(v,P )dvdp . As the
velocity distribution is Maxwellian far from the tip,

N(vcf )dvqf is given by

N(V,jD)dvdj> = n(m/2'll'.kTg)3/2 v3exp(—mv2/2kTg)-

271:5’ agdv , (3)

where n and ‘I‘g are the density and the temperature of the

ambient gas respectively and k is the Boltzmann constant. From

egs. (2a) and (2b)

~(Re/v) 2 wpdvy (4a)

SF
Jaf

(Rt/v)2 vedvy (4b)
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TIP SPHERE

Fig. 4-1. A trajectory of a gas particle from field free region to
the tip surface. v, and vy are the velocity components at

the tip surface.



where v, and v, are equal to vn(Rt) and v¢ (Ry), respectively.
The numbers of particles that approach the tip from a given
direction with v between v and v + dv and hit the tip surface in
unit time with v, between vph and vp + dv, and with v, between
vy and vy + dv, are called N(v,vp)dvdv, and N(v,vt)dvdvt,

respectively. We obtain from eq.(3) and egs.(4a) and (4b)

N(v, vy)dvdv, = n(m/2 T[kTg)3/2 v exp(—mvz/ZkTg)

2) Ry 2vpavdvy, (5a)

N({v, vy)dvdve n(m/ZIkTg)3/2 v exp(—mv2/2kTg)

20T Ry 2vedvdv, . (5b)

For a given value of v, the maximum value fmax(v) of f ,
at which the particle will reach the tip, exist55 . So, there
exist minimum values v . (v_) and v_, (v, ) of v at which the

min 1 min t

particle will hit the tip surface with a given v, and v,

respectively.
Vp = V4 forvn<vp,
Vmin(vn) -
2 2,1/2
(vn - Vp ) for Vh > vp ‘ (6a)
vtz/(2vp) for vy < \[Tvp ,
Vmin(vt) =
2 2,1/2
(V™= Vo ) for v, >J—2. Vg - (6b)

The numbers of gas particles that hit unit tip surface in unit

time with Vi between v_ and v + cilvn and with v

n between v, and

t
Ve + dvy are called Nn(vn)dvn and Nt(vt)dvt ;, respectively. We

obtain from egs. (5a) and (5b) and eqgs.(6a) and (6b)
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[0S}
jd.ﬂ.f dv N(v, vp)/47C th
Vmin(vn)

Nn(vn) =
2
Vn exp[—m(vp - vy /2kTg]
for vy L v_ ,
= S (m/kTg)e n &
exp(Ep/kTg) Vn exp(—mvnz/ZkTg)
for v, > Vo s (7a)
L)
Nt(vt) =jd_0. dv N{v, vt)/471‘_ th
Vimin (V)
2 2
Vi exp [~ (mvy™/2) /(4Ep kTg)]
for vy <fJ3-Vp '
exp(Ep/kTg) Vi exp(—mvt2/2kTg)
for vy S>SV2 Vp s (7b)
Sy = n(kTq/Z‘l[_'_m)l/2 , (7¢)

and Sy is the supply function in the absence of the electric
field and XL is the solid angle. The distributions, N, (vy) and
Ny (vy), for helium, at F, = 4.5 V/A are depicted in fig.2. The

thermal velocity, v = (kTg/m)l/2 is also indicated in fig.2.

th
The numerical value of velocity is expressed by the value of
the reduced velocity defined as \/mv2/2 in [eV]l/z.

The incident particle characterized by uP near ufmax(v)
will be accelerated by the dipole attraction force to have a
large value of Vi As can be seen from fig.2, no small fraction
of particles arrive at the tip surface with large tangential
velocities. Differentiating Ny (vy) with respect to Vir We
obtain the most probable tangential velocity, v

tm*

-63~-



B Nt

20° 300°

300° 20°

Nn.Nt ( ARBITRARY UNITS )
|

&, 1 | 1

0 0.095 0.19 0.285

VELOCITY COMPONENT Vi . Vq (evl/?)

Fig.4-2, Distributions of supplied particles, Nj(v,) and Ny (vy)
for helium, at a field strength of 4.5 V/A. 25 (eqg. (2c))
is 0.38 evl/z. The ratios of the maximum values
Ny (300°)/N, (20°) and Np (300°)/Ny(20°) are 0.017 and
0.034, respectively. Values of thermal velocity, Vi, are

shown by the arrows.

—-64-



v, = (2/mY? aegerpt? (8)

We obtain the supply function S by integration as follows.

& fmax (V)
s =\ av ap N, £)
0 0

78]
J~ dvn N, (vy)
0

s, {( T E,/kTq) /2 erf((Ep/krg) /2 4 exp(—Ep/kTg)} :

(9)

I

H

This is the formula for S as derived by Southon3 .

4.3 Ion Current Generation

Now we introduce the collision matrix following Van Eekelen5 :
particles that have hit the surface with velocity (vn', vt')
rebound with a velocity distribution W(v, , vt)
= b(v, , Vi vn', ve'). The collision matrix is derived on
the basis of classical "hard cube model"6(see appendix 3). A
particle that left the surface with velocity (v, , vt) has a

radial kinetic energy E(r) at distance r from the center of the

tip as follows.

il

E(xr) = mv *(r)/2

2 2 2
mv 2/2 + mve®/2 11 - (Re/0)%] - Epll - (Ry/m) ]
(10)
A particle will escape if its kinetic energy E(r) is positive
for any r and otherwise it will return to the tip and hit the

surface again. There exists the minimum value v of v, at

nc n
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which E(r) has no zeros and so a particle can escape.

v = v (1 - mv /4B, . (11)

nc Vp
Then, an incident particle with initial velocity v will be
eventually trapped if it looses kinetic energy, by collision
with the surface, more than mv2/2 - (mvt2/2)2/4Ep instead of
mv2/2.
When a particle, which has velocity (vn ’ Vt) at the'surface,

passes through the ionization zone, it is ionized with the

probability Q(vy, , V). The probability Q is given by
Q(vy » vy) = 1 - expl-t(vy, , v¢)/T 1 , (12)
where
R +Z,+d ar
t(Vn ’ Vt) = — (13)
[v (r)]
Rt+Zc n

and T is the ionization lifetime of a particle in the
ionization zone which is Z, above the surface and whose depth
is d. v,(r) in eq.(13) are given by eq.(2a) and by eq.(10) for
a newly arriving particle from field free region and for a
rebounding particle, respectively. We use the formula for T

given by Gomer2
T =271 expro.6s(z -3 ) (1 - 7.6 Ftl/z)l/z/Ft], (14)

with the ionization energy I and the work function ga in ev,
and Fo in Vv/a; ) is the orbital fregquency of the tunneling
electron in the gas atom.

Particles that have arrived at the tip surface at a certain
instant of time drop off from the tip region during their many

hops by the thermal activation and field ionization, if they

are captured after the first impacts. The procedure is repeated
-66-



by a computer till the number of particles N(v,f’) converge to
a very small fraction for each incidence characterized by v
and 33 . The total ion current is obtained by summing up the
numbers of generated ions.

It is impracticable to perform the whole procéss discussed
above by a computer and we simplify the rebound process as
follows. It is assumed that a fraction Py of rebounding
particles that have hit the surface with velocity (vp'y V')

will escape with velocity (Vn ' vt) and the remainder of them

e

go on trajectories returning to the surface with velocity

(vnr , Vt), where P, Vie and Vor are defined as follows.
0o
Po = jﬂ b(vy ,» vy » vy'y vi')dvy (15a)
Vnc
o o)
Vie = Vn°b(vn r Vi o vn', Vt')dvn/Pe ’ (15b)
Vhe
: Vne . ,
Vo = Vpeb(vp » ve v vty v AV /(1 - Pg) (15c¢)
0

4.4 Results and Discussion

The total ion currents of helium on tungsten are calculated
by repeating the hopping 200 times for each incidence on a
NEAC 700, where R, = 500 &, (k= 0.205 a3, z_ =3.54, d = 0.3 1,

C
V= 2.4x10'0%ec™?

, I =24.6 eV and P = 4.5 eV. Except for
higher tip temperature than 300 K, almost the same results are
obtained for different choice of the collision matrix, b and

bLS(See appendix 3). The tip temperature Tg has effects on the

total ion current through the collision matrix. Only a fraction
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lO—'7 of particles are supplied to the hopping states that do

not reach the ionization zone, after 65 hops when F, = 4.5 V/A

3

t
and T, = 80 K. For Tg = 20 K, the fraction increases to 10~

S
and only 45 hops are needed to decrease the hopping height
below Zq-

The dynamic equilibrium between the gas ionization
probability and the probability of escape without ionization
from the tip region by thermal activation may play an important
role in determining the amount of the ion current7 . The number
of particles that had velocity v, when very far from the tip

and arrive at the unit tip surface in unit time, N({(v, Tg) is

given by

N( _ max(v) 2
v, Tg) = do dj) N (v, f ) /4R - (16)
0

The fraction of N (v, Tg), which escape without ionization after
the first impact or in their few hops, is called K (v, Tg) .

The temperature dependence of both quantities may be noticed.
Some results of Kg(v, Tg) for the collision matrix b, together
with N (v, Tq), are depicted in figs.(3a), (3b) and (3c). Figs.
(3a) and (3b) show that incident particles having larger initial

velocity than about 0.20 eVl/2

almost escape from the tip region
after few collisions. It is also shown that the probability of
escape, Ko decreases as field strength increases (from fig. (3b))
and the mass ratio of the gas particle to the metal atom, /;L
increases (see fig. (3c)).

It can be seen from fig.(3c) that the trappedAfraction of

the total incident particles increase as the temperature of the

gas in the field free region becomes low. This shows clearly
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Fig. 4-3.

The escape probability Ko versus velocity of an incident
particle when very far from the tip, v, for helium with a
tungsten tip, (a) at a field strength of 4.5 V/A, (b) at a
surface temperature of 80 K, (c) at F = 4.5 V/A and
Tg = 80 K, for )i equal to ordinary value of 0.02177 and

2.5, together with N{(v, Tg).
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the large dependence of the ion current on the gas temperature
and the importance of keeping the average gas temperature low
by the metal electrode in contact with the cold finger of the
conventional FIM design8 .

The purely dynamical approach for calculating the total
ion current which is shown in 4.3 may be performed by e. g.
the Monte Calro method. However, the simplification employed
by using egs. (18a), (18b) and (18c) underestimates the
probability of escape of particles after multiple collisions
with the surface. So, the calculation of the ion current by
the simplified procedure is valid in relatively high field
region and high tip temperature region. The behaviour of the
ion current for whole field and temperature range will be

studied in the nexst chapter, making the results obtained

here as a step.
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CHAPTER 5
ION CURRENT GENERATION IN THE FIELD ION MICROSCOPE:
II. QUASI STATIC APPROACH
Notation used "in this chapter
v radial velocity of a particle
\'% maximum radial velocity, above which particles
escape from tip region
N'(v), N(v) rates at which particles hit and leave unit tip
surface per unit time with radial velocity v
I, 1! total ion current and contribution from bound
particles in the tip region, respectively
N supply of particles which are in bound states
k., k rate constants for ionization and escape; the
averaged out ionization and escape probability
over distribution N(v), respectively
p capture probability defined by the averaged out
trapping probability over distribution Nn(v),

where Nn(v) is Nn(vn) in chapter 4

5.1 Introduction

Experimental measurements of field ion current versus
other parameters of interest have been reported by a number of
authorslﬂ'5 . The increase of ion current by the field
adsorption6 of imaging-gas has also been reported by McLane
et al.7 . These experimental results afford data for the

improvement of our understanding of the whole process of ion
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current generation, which becomes of greater significance for
the interpretation of the image.

There are two different ways for calculating field ion
current, which are called by Miller and Tsong8 , the dynamic
and the quasi-static approach. The former one has been
discussed in the previous chapterg, henceforth referred
to as I, in treating the purely dynamical calculation of ion
current. The quasi-static approach developed in the paper of

10 , henceforth referréd to as VE, enabled us to

Van Eekelen
calculate the velocity distribution function of gas particles
and to explain many experimental features.

We follow Van Eekelent® to compute the field ion current
with some modifications and extensions as follows. 1) The
expression of the velocity distribution function of the
supplied particles derived in I is used. 2) The tip temperature
and the gas temperature are taken independently. 3) Field
adsorption effects are demonstrated.

In the present study, equilibrium properties such as rate
constants for ionization and for escape are formulated as
functionals of distribution function. The expression of the
total ion current by these termsll’12 , which is familiar but
not well founded, is reformulated on the basis of the balance
equation derived in VE. The computed results are discussed in

the light of these rate constants and the capture probabilityl2 .

5.2 The Balance Equation
It will be assumed for simplicity that the emitter is
spherical. The local field variations at the tip are not taken:

into account., Also we disregard supply of gas particles from
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the shank of the tip.

It is shown in I that velocities of the arriving particles
at the tip surface from field free region should not be supposed
to be purely radial as VE did. It is assumed that all newly
incident particles on the tip surface have tangential velocity
to the surface plane, vV, equal to the most probable tangential
velocity Vim given by eqg. (4-8). A velocity distribution of
particles that have hit the surface with velocity (v,', v'),

where v,' is radial velocity, is described by the collision
9,10

matrix b(vn r Vi o vn', vt') We base the collision
matrix on the hard cube modell> (see appendix 3). As it
conserves the tangential velocity of a particle, it may be
justified to assume that tangential velocities of all particles
are equal to/vtm. Hereafter, v means v in I and collision
matrix is written as b(v, v').

Particles which left tip with radial velocity v smaller

than v, which is given by eq. (4-11), go on trajectories
returning to the surface. We obtain, for Ve = Vi ¢
— 1/2
Ve = vp - (kTg/2m) , (1)

where Vo is a dipole attraction velocity ((X/m)l/th, k is the
Boltzmann constant, Tg is the temperature of the ambient gas,
Fy is the electric field at the tip surface,  is a
polarizability of a gas atom and m its mass.

Now, following VE, we call the numbers of gas particles
that in unit time hit or leave unit tip surface with radial
velocity between v and v + dv, in equilibrium, N'(v)dv and

N(v)dv, respectively. Particles which hit tip with v >V, come
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only from field free region. Particles which hit tip with

V Vs on the other hand are composed of two components:
particles arriving from field free region and particles which
have previously hit the tip and return from a round trip
passing through the ionization zone twice. The number of
particles which arrive at unit tip surface in unit time from

field free region with radial velocity v between v and v + dv,

N,(v), is given by eq. (4-7a). Thus, in equilibrium we have
N'(v) = Nn(v) {l - Q(v)} for v >Ve o,
N' (v) = Np,(v) fl - Q(v)} + N(v) fl - Q(v)‘B2 for v <vc '

(2)
where Q(v) is the probability for a particle, which leaves the

tip with velocity (v, v__), to be ionized in passing through

tm

the ionization zone once which is given by egs. (4-11,12 and 13).

We have, by definition of a collision matrix

(%)
N(v) = S. N'(v')b(v, v')dv' . (3)
o v

By substituting (2) into (3), we obtain the balance equation

for N(v)
v
¢ 2
N(v) = N(v') {1 - Q(v")}b(v, v')av' + Ng(v) , (4)
0
where
7Y
N (v) = j Nn(v'){l - Q(v')}b(v, v')av' . (5)
[
If we put Q = 0 in N (v) and integrate over v using normalization

condition of b, we get
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50 &
S\Ns(v)dv = j\ Nn(v)dv = 8 , (6)

o

where S is the supply .function and the second equation of (6)

is given by eq. (4-9). For free particles, v> v the

C r
ionization probability Q(v) is replaced by Qq = Q(vc),
following VE.

The derivation of the total ion current I as an example of

the eguilibrium quantities of the system has been shown in VE.

There, the part of I due to the ionization of bound particles,

V< Ve , was shown to be
Ve
' = N(v) fZQ(v) - Q(V)Z.}dv . (7)
0

We have, from eq. (4)
Ve
N(v) = Nt'(v')b(v, v')dv' + NS(V) ’ (8)

where

N, (V) = N(v) {1 - Q(vfj2 : (9)

Nt'(v) gives the contribution to N'(v) from "bound" particles,
after they have passed the ionization zone twice. We call the
probability of escape and capture of a particle,which hit tip
with radial velocity v', P, (v') and P (v'), respectively. They
are given by the relation

R

P (v') = b(v, v')dv = 1 - Pt(v') . (10)

v
C

1f we integrate N(v) from 0 to v_, using egs.(9) and (10), we get

C

-76=-



v v
C C
S nwav =\ nwmf1- e} av

[*]
¥ SNn(v){ 1 - 0(W)] Pe(viav . (11)

o

One finds, by transposition

\Y
c
S {N(v) - Nt'(v)} dv + 2kgN¢'

0
= (1 - £2>,) PS5 (12)
where
VC
Nt'== S Nt'(v)dv ’ (13a)
0
v
C
2kg = S P (VINL' (V)Av/N,' , (13Db)
0
2]
<epg = S Q(V)Np (v)dv/s , (13c)
[}
V)
Pc = g Nn(v){l - Q(v)} Pt(v)dv/(l"<Q>s)S . (134)
[+

The brackets indicate an average and ke gives the rate constant
for escape and P, gives the capture probability for the supply.

From (9), we have

Ve
{N(V) - Nt'(v)} dv = Ny - N.'
0

il
[3e]
Hhr
2
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where

v
c
Nt = 5 N(v)dv , {15a)
0
Ve
2ki = N(v) ¥2Q(V) - Q(V)z}dV/Nt . (15b)
0

K; gives rate constant for ionization. We obtain, from egs.(12)

and (14)
{2ki + (1 - 2k 2k J N = (1 - LIPS - (16)
From eq.( 7)

ki(l - Q) P_S
I' = 2KNp = — 5 = (17)
Ky + (1 - 2kj)kg

For k; <K 1, the number of bound particles that in unit

time hit and leave unit tip surface, N, is given by

N = N_ + Nt' ~ 2N, . (18)

Then, for ki<< 1

kiPCS
I' = kiN = e—————, (19)
k. + k
i e
where
Ve
k; = j N(v)Q(v)dv/N, (20a)
0
1 Va
ke = -;— N(V)Pe(v)dv/Nt , (20b)
0
00
P, = S\Nn(v)Pt(v)dv/S . (20¢)
°
Equation (19) is the formula given by Southonlz . It may be
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noticed that ki and k. are functionals of N (v).

The total ion current I is given by
I =1 +<0Pp8 + 0. (s~ <KQ> 5 ~-1") . (21)

The second term and the third term give the contribution to I
from incoming free particles and outgoing free particles,

respectively.

5.3 The Collision Matrix

Let us define c(v, v') as the probability that normal
velocity of a gas particle is changed, by the collision with
the surface, from v' to v. On the basis of the classical hard
cube model, c(v, v') is found from one-dimensional, head-on
collision of a particle with the surface atoms that have a
Maxwellian velocity distribution13 . So, c(v, v') is identical
with that derived by VE in one-dimensional model. We use the
collision matrix b(v, v') that is constructed by VE from
c(v, v') for higher value of v and from a Maxwell distribution
at a partially accomodated temperature for lower value of v.
The derived matrix b(v, v') satisfies the condition of detailed
balance. Some collision matrixes are depicted in fig.l. The
dependence of the matrix on the tip temperature TS may be
noticed.

Probabilities of escape, Pe(v) are shown in fig.2. The
escape probability, Pe for the bound particle becomes small as
the tip temperature decreases or as the field strength increases.
The situation is reversed for the particle that hit the surface
with larger nomal velocity. This may be understood as follows.
Particles have some probability to collide with the metal atoms

moving in the same direction and to loose necessary amount of
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The collision matrix elements, b(v, v') for helium with
a tungsten tip, at a field strength of 5.0 V/A and Tgq = 80 K.
The incident normal velocity v' for each curve is shown by

1/2

the arrow. The value of Ve 1s 0.380 in ev (see I for

the unit of velocity).
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Probabilities of escape, Po(v) for helium with a

tungsten tip at Tg = 80 K, and at F 2.5 v/A (dashed

curves) and at F = 4.5 V/A (solid curves). The values of

1/2

ve are 0.169 and 0.338 eV for F = 2.5 V/A and 4.5 V/A,

respectively.
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velocity to be trapped, when the surface is high temperature.
As regards Po it changes only slightly when Tg is

changed.

5.4 Results and Discussion

The balance equation (4) is the second kind Fredholm type
integral equation. Following VE, it is replaced by matrix
equation and sg?ggg% Some particle distributions for helium on

by iteration.
tungsten are depicted in figs.3, 4 and 5. Figure 3 shows the
dependence of the particle distributions on the tip temperature
at very low field of 2.5 V/A. The curves and those found from
Maxwell distributions fit together except for 300 K. At 300 K,
the population of high-energy particles is lowered than that
found from Maxwell distribution, because high-energy particles
are easy to escape by thermal activation.

Shown in fig.6 are the ratios of Nt to the thermal
equilibrium value of the supply function, SO exp(Ep/kTS). S0
and Ep are given by (4-7c) and (4-~2c) respectively. For low F,
e. g. 2.0 v/A, and for TSEE 80 X, kg is much greater than ki.

In this case, seen from fig.6, Ny is often nearly equal to

So exp(Ep/kTS). Then,
k, —~ PS5 exp(-Ep/kTS)/ZSO . (23)

At 20 Kand F = 2.0 v/A, ke is comparable to ki and the
concentration of gas particles at the tip surface is much
smaller than that in thermal equilibrium.

The structure of particle distribution for low temperature
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Fig. 5-3,.

Particle distribution for helium with a tungsten tip
under isothermal conditions, at a field strength of
2.5 v/A, from the present calculation, solid curves and
the Maxwell distribution, dashed curves. The latter
curves are normalized so that their lower velocity parts
fit together with those of the former curves. The peak

values of the solid curves (the values of v,) are

8 4 2

1.3 x 10~ (0.196), 5.3 X 10" (0.169) and 2.4 %X 10° (0.131)
in PV/,]2R.m (evl/z) units for T equal to 20 K, 80 K and

300 K. Where P is the gas pressure and V its volume.
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Fig. 5-4.
Particle distribution, N(v) together with Ng(v) and Q(v),
for helium with a tungsten tip at Tg = Tg = 20 K and

F = 4.0 V/A. The peak value of Q(v) is 0.3. v, = 0.317 eVl/2
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Particle distribution for helium with a tungsten tip at
Tg = Tg = 80 K. The thermal velocity, Vin (fﬁ—/_rh_) is
shown by an arrow. The value of v, for F = 5.5 V/A is
0.423 evl/?, The peak values are 2.3 X 10>, 4.4 X 10%,
2.6 X 10% ana 1.1 x 10% (pv/y27Tm ) for F equal to 3.0,

4.0, 4.4 and 5.5 (V/A).
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The ratio Nt/Soexp(Ep/kTs), for helium with a tungsten

tip, under isothermal conditions.
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discussed by VE is seen from fig.4. It can be seen from fig.5
that the low-energy peak virtually disappears at 80 K. This
has been also indicated by VE. It can be also seen from fig.5
that particles are ionized before they are well accomodated to
the tip temperature for high field.

When TS rises, ko increases both by the increase of P, for
the bound particles and by the shift of the peak of the
particle distribution to the larger velocity shown in fig.3.
When field is increased, in spite of the decrease of P, for
the bound particles (see fig.2), ke increases by the shift of

the peak of the particle distribution to the larger velocity

(see fig.5). The values of ke,ki and N, for various temperatures

and rfields are collected in appendix 4.
5.4.1 Current-Voltage Characteristics

Logarithmic plots of tiie total ion current I versus the

field strength F, for helium on tungsten, are given in fig.7.
The curves exhibit most of the features observed experimentallylﬁ's’14
in the similar way to VE. The values of the slope of an almost
straight high-field region and of the cut-off field strength12
are in good agreement with those of VE.

The slopes of low-field region are 46, 34 and 31 at T
equal to 20 K, 80 K and 300 K respectively in isothermal
conditions. This increase of the slope with decreasing
temperature is in good agreement with the experiment by Chen
and Seidman14 . They explained this temperature dependence of
the slope of very low field region by the assumed expression of
the ion current similar to eq. (22).

Anyway, for low field where k 3> kj , ion current is

expressed by
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Logarithmic plot of the total ion current per unit tip
surface versus the field strength for helium with a

tungsten tip, under the same gas pressure.
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I = k;P.S/ke - (24)

On the other hand, in the straight high-field region, ion
current must be expressed by egs.(19) or (17) and (21).

In fig.8, the ratios of the ion current to the supply
function, S, together with Pc, have been plotted. As has been
shown in I, P, increases when field strength increases.

As discussed by Tsong and Miller® , the number of atoms
escaping from the tip region without ionization is indeed
comparable or larger than the ionized fraction under the usual
experimental conditions. As VE has stressed, the straight
high-field region is an intermediate region where the current
does not equal the supply. At 20 K, ke is much smaller than kj

for ¥ > 2.25 V/A. Then,
I = P.S . (25)

The curves I /S and P, for T = 20 K in fig.8 fit together for F
from 2.5 V/A to 4.0 V/A. For higher field, the contribution

from free particles become large.

5.4.2 Temperature Effects

Tsong and Miller® have investigated the effects of the
tip temperature on the ion current at a given field strength and
gas temperature. Plots of the ion current versus the tip
temperature, for helium on tungsten, are given in fig.9. The
calculated curves for F = 3.25 V/A seem to fit with the
experimental curves. The tip temperature dependence of the
ion current is explained by the behaviour of k., as a function
of T4 discussed in this chapter. For low field, when Tg rises,

ion current decreases rapidly by the rapid increase of kg.
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The ratios I/S (solid curves) and the capture probability
P. (dashed curves) versus field strength for helium with a

tungsten tip.
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For high field, on the other hand, when TS rises, ion current
decreases only slowly, in agreement with the experiment, by
three reasons as follows. The increase of kg with Ty becomes
small as the shift of the peak of the distribution with Tg is
less remarkable for high field. Next, k; becomes larger than
ke for high field and ion current is proportional to (k; + ke)-l
not to ke_l. Finally, the contribution to the ion current

from free particle, which is insensitive to Tg , becomes large
for high field.

It is observed experimentally that ion current with 78 K
gas temperature decreases only slightly at T4 = 78 K. This
effect is more remarkable for neon and hydrogen on tungsten at
3.8 V/A and 4.5 V/A respectively5 . The calculations suggest
that this may be explained as follows. For temperature and
field strength in discussion, ke is much smaller than kj and so
(kg + ke)_l, and hence I decreases only slightly as k, increases.

It can be seen from fig.7 that the shifts of the cut-off
fields towards higher fields are caused mainly by the increase
of Tg. This effect may be explained as follows. From the
discussion of sec. 5.4.1, the cut-off may be considered as the
field at which ki becomes comparable to keg. When Tg4 rises, ke
increases and then the cut-off field, where kirvfke , shifts
towards higher fields.

The gas temperature has effects on I mainly through its
effects on S and P,. The total supply to the tip, S is
proportional to Tq under the same gas pressure. Our calculation
showed that P, increases the number by 24 times when Tg
decreases from 300 K to 20 K. This dependence of Pc on Tg has

been discussed in I.
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Fig. 5-9.
Relative ion current versus tip temperature for helium
with a tungsten tip with 20 K and 80 K gas temperature.
Solid lines are calculated curves for various field

strength. Dashed lines are experimental curves at

F = 4.5 V/A Dby Tsong and Mﬁller5
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Ratios of ion current at two different temperatures under
isothermal conditions are plotted as a function of field
strength in fig.10. The curves exhibit most of the features
observed experimentally5 . However, the critical field strength
where the value of the ratio increases abruptly is smaller by

0.5 VvV/A for I and 1.0 V/A for I

20”80 80/ 1300"

5.4.3 The Effects of Field Adsorption on Ion Current
Tsong and Mﬁller15 have shown that the probability P, that
at any instant of time an inert-gas atom is field adsorbed6 on

the apex of the surface atom is given by

) exp(-H/kTg) §} 1 . (26)

Pa= {1+ (MoTg/p

where H is the short-range binding energy and C is a constant
which can be estimated from experimental conditions. For field

adsorption of helium on tungsten, H is chosen as (fa - l)Ep

= 1,399 Ep , where f, is an enhancement factor, and C as
C(TS/PgaSF) = lo_ssec at 20 K, 2mTorr and 4.5 V/A15 . For
PgaS = 2mTorr, the values of P, for a variety of temperatures

and fields have been collected in table 1. The field adsorption
may have effects on I by changing the ionization probabilityl6’17
and by changing the gas-surface interaction. So, we calculated
the ion current for the two cases where the ionization life time,
T (see eq. (1-14) ) is assumed to be T, = (1 - 0.9 Po) T and
T, = (1 +9.0p,)T . Field ionization are enhanced and
suppressed by a factor of ten by field adsorption in the case 1
and 2 respectively.

It is assumed that the change of the gas-surface

interaction by field adsorption is taken into account for by
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Ratio of ion current at two different temperatures

under isothermal conditions versus field strength for

helium with a tungsten tip.

Solid lines

are calculated

curves and dashed lines are experimental curves by Tsong.Mﬁller5
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taking the mass ratio of a gas particle to a metal atom, )A as
a function of P_ . Here M is assumed to be (1 + Pa{)‘ , for
both cases. Then, the accomodation coefficient is increased by
two times by field adsorption. The calculated results are
shown in fig.11l.

The curves exhibit many interesting features. 1) In the

straight high-field region, ion currents are increased

equally for both cases. The values of k_, (kj) are 2.2 x 107°
(4.0 x 1073, 4.7 x 107% (4.0 x 107%, 2.2 x 1077 (4.0 x 1077y,
and 2.2 x 1078 (4.0 x 107%) for T equal to T x lO_l, T ,
T x 10 and T x 10° at F = 3.0 V/A, T_ = 20 K and T, = 80 K.

These show that ke strongly depends on kj and ke <K kj for the
field range in discussion. Then I is expressed by P,S and the
shifts of I towards higher values are solely caused by the
increase of P, by field adsorption.

It may be noticed that, in general, some part of the
straight high-field region is independent on the magnitudes of
ki , though narrow for higher tip temperature (see the curve
for Tg = Tg = 80 XK in fig.ll). Ion current, which is
proportional to kj/(kj + ke) for the field region in discussion,
is kept constant for the change of the ionization probability
on account of the following change of ke, as discussed above.

2) The enhancement and the suppression of the ion current due to
those of the field ionization by field adsorption are seen in
both the extremely low field region where I = kjP,.S/ke and in
the relatively high field region where contribution to I from
free particles, < Qj>SS becomes large. 3) In the case 2, where
field ionization is suppressed by field adsorption, the curve

for Tg = 20 K and Tg = 80 K intersects with the curve for no
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Table 5-1

Probability P, for helium with a tungsten tip for 2mTorr.

T_ (°K) 20 80 300
(V/B)

2.0 0.98 3.6 x 107/ 1.4 x 1077
2.5 1.0 1.2 x 107° 4.1 x 1077
3.0 1.0 7.3 x 107% 1.4 x 1078
3.5 1.0 8.7 x 1072 5.8 x 1078
4.0 1.0 0.96 2.5 x 107/
4.5 1.0 1.0 1.6 x 1070
5.0 1.0 1.0 1.3 x 107°
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Logarithmic plot of the total ion current versus the
field strength for helium with a tungsten tip. Solid
lines 1 and 2 are calculated curves for the case 1 and 2,
respectively. Dashed lines are the curves when no
adsorption effect are considered. The total supplies are

plotted also (dot-dash~lines).
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adsorption.

This reversal of the values of ion current from field
adsorbed surface and from no-adsorbed surface, when field is
increased, suggests the mechanism to explain the unusual
features of FIM image at 4.2 K18 . At 4.2 K, the brightness of
image spots in the same plane change as the field strength is
varied. The metastable site atom A in fig.1l2 is imaged brighter
than the atom B and C in the very high field region (F>5.7 V/A).
When the applied voltage is lowered the image brightness of the
atom A is diminished and the images shown by the broken lines in
fig.1l2 become brighter18 . At 4.2 X, the probability of field
adsorption Py at site B or C may be larger than that at site A,
because, to the former site adsorbed inert atoms are supplied
by migration of them from the inner part of the (011l) plane.

The field-adsorbed or physisorbed helium atom increases
the time spent by an ionizable helium gas atom in the ionization
zone by improving the accomodation as well as suppresses the
ionization probability of the gas atomle’17 . On the analogy
of 3), the latter effect is expected to be more effective than
the former effect at very high field and vice versa in the
working-range of the field. WNamely, at very high field the
ionization life time of a gas particle, T is so short that
particles that are flying even in high speed are almost ionized
in passing through the ionization zone once, and so, it does
not matter for ion current generation whether the lost
momentum of the particle is large or not. On the other hand, in
the working-range of the field where the ionization life time is

long, the change of the staying time of particles in the

ionization zone by the field adsorption is more effective than
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the change of the ionization probability itself.

Then, at very high field, the image of the atom A is
brighter than that of B or C, because the ionization
probability at A site is less suppressed by less adsorbed
helium atoms than that at B or C site. When the applied field
is lowered, the images of more adsorbed sites B and C become

brighter than that of less adsorbed site A.

5.5 Conclusions

The rate constants for ionization, k; and for escape, ke
are formulated as functionals of distribution function, N(v).
The formula of the total ion current, I that is expressed by
the rate constants, the total supply, S and the capture
probability, Pc is derived. The formula coincides with that
given by southon'? for kj<< 1. The behaviours of the ion
current are analyzed by using these equilibrium properties of
the system. In the very low field region, I is equal to
kiPcS/ke and in straight high-field region, I is equal to
kiPcS/ (ki + ke). In the latter region, there exists a part
where I is independent of the values of kj.

The effects of the tip temperature, Tg are discriminated
from those of the gas temperature, Tg. The dependence of I on
Tg 1s qualitatively explained by the Tg dependence of ke. The
gas temperature has also been shown to have considerable effects
on the ion current, in agreement with the results of I.

It is shown that the ion current is indeed increased by
the field adsorption of inert gas atoms even if the field

17

ionization probability were suppressed . Moreover, the

proposed mechanisms that the ionization probability is decreased
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and the staying time of a particle in the ionization zone is
increased by the field adsorption of an inert gas atom enabled
us to explain the experimentally observed anomalous features

of field ion images at 4.2 K successfully.
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CHAPTER 6
CONCLUSIONS

The Oppenheimer's method to calculate the transition
probability between non-orthogonal states is applied to the
field ionization in FIM, leading us to determine the probable
choice of the initial and the final states and the perturbation
potential.

Detailed calculation of the ionization probability using
tight-binding states as metallic states has revealed the
sensitive dependence of the ionization probability on the
extention of the metal orbital outside the surface. It is
also found how s- and d-state of the metal contribute to the
field ion images. The consistent results of ion energy
distribution with experiments has also been derived.

It has been shown by the simple one-dimensional
calculations that the ionization probability is likely to be
increased by the adsorption of species of low ionization energy
such as chemisorption or metallic adsorption, without resonance
in the transmission coefficient. On the other hand, the
ionization probability is shown to be decreased by the
adsorption of inert gas atoms in some cases. To corroborate
the latter prediction the expression for the ionization
probability through adsorbed inert gas atom is derived in the
three-dimensional and many-body theoretical manners. The
expression is examined to be reasonable in the absence of the
adsorbate, and also in the orthogonal limit of the basis set.
The calculation show that ionization probability for helium as
imaging gas is indeed decreased by the field adsorption of

helium and neon, although the degree of reduction for helium as
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adsorbate is much higher than for neon.

With the aim of intermediating between the atomic
description of field ionization processes suhc as the
ionization probability and the gas-metal collision and the
macroscopic properties of FIM such as ion current voltage
characteristics, the extension of the theory of the ion
current generation is undertaken.

The distributions of supply of particles at the tip
surface as functions of velocity components have been derived.
The author reveals the importance of cooling the ambient gas
temperature which is likely to be a cause to increase the
catching probability of the firstly incident particles to the
emitter surface.

Based on the existing formula of the balance equation for
the distribution of concentrated gas particles, the expression
for the total ion current in terms of equilibrium quantities
such as rate constants for ionization and for escape by
thermally activated processes has been derived. Field ion
current is computed versus other parameters of interest on the
basis of the balance equation which is extended from
one-dimensional model to the three-dimensional one. The
computed properties of the FIM such as the field and
temperature dependence of the total ion current, which agreed
fairly well to the experimental observations, have been
discussed physically in the light of the above mentioned
expression for the field ion current. The present
investigation enables us to discriminate between the effects of
the gas temperature and the tip temperature, leading us to

understand the detailed mechanisms of ion current generation.
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It is confirmed that only a fraction of particles attracted to
the tip by‘polarization contributes to the ion current, as
suggested by the previous investigators.

Finally the experimental results that the ion current is
enhanced by the field adsorption of inert gas atoms is
qualitatively explained by the present treatment of the ion
current generation, consistent with the theoretically expected
suppression of the ionization probability in the previous
chapter. Moreover, the proposed mechanisms that the ionization
probability is decreased and the staying time of a particle in
the ionization zone is increased by the field adsorption of an
inert gas atom enabled us to explain the experimentally
observed anomalous features of field ion images at 4.2 K
successfully.

The procedures of the present work may shed new light on

the understanding of the image formation mechanisms in FIM.

APPENDIX 1
THE POLARIZATION ENERGY OF ATOM AS POTENTIAL ENERGY
The total Hamiltonian of a valence atom under the electric

field may be expressed as follows.

H = - —— Vo’ - —— 7, - =+ ()T - FR-R, (1)
2M 2m IR - T

N
where F(¥) is the field strength.

We apply the Born-Oppenheimer approximation. Then the
eigen function of the total Hamiltonian,'Yﬁ(r, R) may be

decomposed as,

Ve, r o= e, re Pom (2)
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2 2

*h 2 e S RN N S
(- —— ~ ———— + eF(r)-r ~ eF(R)-R) (r, R)
2m V= IR -7 qbr '
= U(R) ‘Pr(r, R) , (3)
2
h 2 _
(- —2}: VR + U(R)) (PR(R) = ECPR(R) . (4)

Now, if F varies so slowly as F is constant in the range

where <P r(r, R) has remarkable magnitude,

. }

P N - RN
(F(r).T - F(R)-R) P _(r, ) ARceF(R).- & -R) P_(r, B). (5
Then, U(R) is calculated by the perturbation theory as

U(R) = W - L Ckl?(R)z , (6)
2

- —V.

2
e = (7)
- =) (r'R)—Wq)(r'R)r
om lR - r‘ ?r r

where (X is the polarizability of an atom.
So, the motion of the ion core is described by the

following equation.

2
M 2

This shows that the polarization energy of an atom acts as
the potential energy of the atom.

However, we must remember, following Slaterl-, that U(R) is
really not just a potential energy but it also includes the

kinetic energy of the electronic motion.

APPENDIX 2
DERIVATION OF THE TRANSITION MATRIX ELEMENT
BETWEEN SLATER DETERMINANTAIL STATES
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Consider first the one body matrix elements V. in eq.(3-17).

KHe
T = {80 - 3 G <aled - ¢y, <rel >}
p2
'2_m_ + Vm(r) + VHe(r) + VA(r) + er}

{CPHe(r) - ZA:' (PA’ <A'l He>} at

<K lzi_z + Vi lHe> + Kk |eFz + v, + v [HeD

I

- X KX ]5112-2_ v, Ay <A'|He>

Al

- %5 Cxlerz + v + v |aD> <A"He>
- Z <A' — +VH 'He><Kl >
- 32 <A"eFZ + vV, + Vm'He> <K)A>

Al

- <He| ;if + VHe,He> <KIHe>
- <He, eFz + V_ + V, |He) & KlHe>
2 <A' £ VAIA">< UESPE Y

+Z <A'|er + Vg t V. IA">< A",He>< 'A> . (L)

AH

By introducing the two body matrix elements, some terms of
eq. (1) ’cancel each other and such interaction potential as VA
are canceled,

Now consider VHeKHeHe
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P d

VHeKHeHe = VHeKHeHe - VHeHeHeHe <K IHe>

"% VHea 'HeHe &|ad -3¢ VieRa 'He <A"He>

! Al

+ 20 Vyaiange K[AD {arjurey . (2)

A A!l

The first term of eg. (2) and the first teris of eq. (1)
together become the one matrix element of the Hartree-Fock

Hamiltonian between (PK and ¢He as

o2 02
O +, . llHe * VHeKHeHe
t He
54) (_"—— + VHF He ¢He aT = EHe<K | He> ’ (3)
where
2 * ' 2
VHF,He - =2 (PHe (r') e (PHe(r') dT' . (a)
lr"RHe‘ Jr - |

In the same manner, all the other VHe in eq. (1) may be
rewritten as VHF He together with the remaining four terms of
r
eq. (2) . Consequently, the first term and the 7th term in

ed. (1) cancel each other.
~

Next consider Z( Z A KHeA o VAKAHe) .
NS ~ ‘
%( %Z‘VAO‘KHeAO‘_ Varane! =ZA {2 VakHer ~ VaRAHe %<A | 5e) -

(2 v

AKA'A ~ Vakaa') ’%—T‘ <KIAD 2 Vi,

LRI D Vapiane = 2<K] HeD Vap e + <xlHe) Vapeane

A

+ }\Z‘%“<A"He> (x |an> (2 VaA"A'A " VAA"AA')} . (5)
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The first term in eg. (5) and the term '<K|VA|Hé> which

appears in the second term of edq. (1) cancel each other.

%_7\2 Vakmea * <K 1Vyl He >
* 2e2 L . .
e e e ) e

h jCPK*

In the same manner, by the 4th and the 6th term of eq. (5),

Pue® aT =~ o . (6)
A!

the interaction VA which appear in the 6th and 8th term in
eq. (1) will vanish.

Now, the 3rd and the last term in eq. (5) are used to
rewrite VA in the 3rd and the 9th term of eq. (1) to VHF,A in

the same manner as VHF,He’ and in 1 consequence these two
terms in eqg. (1) cancel each other.
For example the 3rd term of eq. (5) and the 3rd term of
eq. (1) together become

2 r
%é"He> SCPK {~—-—+V (r) + 2 Z ¢A (r')e ¢A( ') aT’

2m |r - '

i '¢A*(r')¢A.(r') ez(pA(r)}
$)ee b e o

2
_% <arue> (x ,_z_i_ t YV A | 2>

—%(A’\He}(K]A’) E . (7)

Finally, the role of the remaining terms of eg. (3-17)

~ . .
K@~VKK'0'K’G‘He - j}ZVK kK 'He T2y be to rewrite eFz + V_(r) in

eq. (1) to eFzO (z2) + U(r) where U(r) is the Hartree~Fock

potential of the metal defined below.
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For example,
<K|tHr”He> ,
* 2
, (x! (1)
= S(PK*(r){Vm(r) + Z ¢K i (PK i at’

Ko lr - r'|

] Z)( G =) e Do) b0 } Buu ) .

(8)

Finally one obtains the transition matrix elements M as

eq. (3-19),

APPENDIX 3
THE COLLISION MATRIX

The scattering of a gas atom from a solid surface is called
thermal scattering when the kinetic energy of the gas atom is a
few tenths of an ev 2 and this is the case in the usual
condition of FIM. This scattering is well explained by the
simple classical model which assume the solid atom as a cube
and so the velocity component parallel to the surface is
conserved3 . We base the collision matrix on this model.

The relation of the normal velocity components of the gas
atom before and after the collision may be obtained from the
velocity distribution of the free metal particles, assuming

. 4
conservation of energy and momentum .

b(v_ ' , v, ' , Vo r V

t)
= C 6(Vt'~ vt)(vn + vn') exp(-M((1 +)*)vn - (1 —)ﬂ)vn')z/BkTs),
(1)
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where )1= m/M and C is the normalization constant determined

by the following normalization condition.

‘SOO _SO
dv, ' dv_'b(v_ , v, , v ', v') =1 (2)
-a;t ) o n n t n t

When gas atom is considered to collide with the metal atom
3
of effective collision speed as Logan and Stickney supposed,

the collision matrix is given as,

bLS(Vn" Vt" VooV

£)

=g S(uy'-v) @Ry /(1 + Mv = (1= v 2

exp(—Mvn((l +)A)\G; - (1 - )A)vn)/4kTS)A). (3)
Both collision matrixs gives the average vn'av as
Vi'ay = V(L =M /(L 4M) 4 2kTg M/ (Mv (1 M) . (4)

Logan and Stickney called the collision characterized by (4) as
. o ' '
representative collision. As bLS(vn ’ vt ’ vn ’ Vt) shows very

sharp peak at vn' = vn'av , the results by using this matrix is
almost equal to that based on the representative collision. The
average accomodation coefficient obtained from eq. (4)
resembles that of two dimensional classical hard sphere
collision. In this connection, the classical hard sphere value
of accomodation 4 M(1 +'}*)-2 is 0.083 in the case of a helium
atom on tungsten.

We followed Van Eekelen (appendix 2 of the reference 4 ) to

obtain the collision matrix that is used in the matrix equation

in Chapter 5.
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APPENDIX 4

Values of kg, kj, and Ny for helium with a tungsten tip.

20 80 300

F(V/A) Tg(°K)
20 76 -6 24 -7 58 +1* 55 =2 29 -7 82 +4 52 -1 26 -7 82 +3
2.0 80 17 -4 60 -7 40 +6 i0 -1 49 -7 68 +3 67 -1 40 -7 11 +3
300 16 -2 40 -7 48 +3 37 -1 41 «7 21 +2 14 39 -7 60 +4
20 48 -6 19 -4 64 +7 88 -3 18 -4 70 +5 29 -1 12 -4 20 +4
2.5 80 26 -6 10 -4 19 +7 21 -2 12 -4 50 +4 37 -1 10 -4 30 +3
300 11 -4 19 -4 63 +5 87 ~2 17 -4 15 +3 62 -1 15 -4 23 42
20 72 -5 55 -3 29 +6 18 -3 72 -3 15 +6 15 -1 51 -3 47 +4
3.0 80 47 -5 40 -3 68 +5 34 -3 60 -3 22 +5 20 ~1 48 -3 72 43
300 84 ~5 51 ~3 78 +4 18 -2 65 -3 98 +3 33 -1 55 ~3 65 +2
20 29 -4 43 -2 49 +5 68 -3 80 ~2 22 +5 94 -2 66 -2 72 +4
3.5 80 42 -4 68 -2 52 +4 79 =3 96 -2 33 +4 12 -1 75 =2 12 +4
300 49 -4 65 -1 86 +3 10 ~2 93 -2 51 +3 19 -1 78 -2 13 +3
20 15 -3 44 -1 59 +4 25 ~2 45 ~1 49 +4 14 -1 43 ~1 31 +4
4.0 80 11 -3 35 -1 13 +4 22 ~2 43 -1 94 +3 14 -1 41 ~1 65 +3
300 20 -3 50 -1 15 +3 28 ~2 53 ~1 13 +3 18 -1 50 -1 90 +2
20 20 -3 12 25 +4 43 -2 12 22 +4 22 ~1 12 15 +4
4.5 80 21 -3 13 40 +3 44 -2 13 38 +3 23 -1 13 30 +3
300 31 -3 15 58 +2 48 -2 15 55 +2 25 -1 16 45 +2
20 23 -3 29 11 +4 68 -2 29 98 +4 32 -1 30 76 +3
5.0 80 26 -3 31 18 +3 69 -2 31 17 +3 29 -1 32 15 +3
300 38 -3 35 26 +2 73 -2 35 25 +2 32 -1 36 24 +2
* The values of ke, ki and Nt are arranged in order. For example, 76 -6 means 0.76 X 10—6. Ny is

in the units of PV/J 2nm .
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