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Abstract

A new two-way method for solving fluid-structure interaction problems is proposed

by coupling immersed boundary method (IBM) and finite element method (FEM).

This new method enables efficient simulation of fluid-structure interaction. Pressure

and viscous forces are used for fluid and elastic body coupling. Pressure field is

solved using fractional step method (FSM). An efficient pressure retrieval method is

developed to allocate pressure information from the nearest fluid cell to Lagrangian

points on the object’s surface. At the cells occupied by a solid region, velocity field is

subjected to momentum exchange procedures. The second correction of pressure is

undertaken in the occupied region. The simplified marker and cell (SMAC) method

is used to find scalar values for velocity and pressure correction. The present method

is applied to 2-D flow fields with an elastic body to show the applicability of the

method. A NACA 0012 airfoil is used as the neutral shape of the elastic object

within the flow. The airfoils are initially placed in a fluid at rest with attack angle

of -5◦and -10◦. Then, a uniform flow is given at the inlet. The coupling of IBM

and FEM to study fluid and elastic body interaction problems have shown promising

results. The method also shows good performance in obtaining a solution in a feasible

computation time.
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Chapter 1

Introduction

Various engineering problems involving fluid-structure interaction (FSI) simulations

have been attracting researchers and engineers due to its significant physical rele-

vance. However, fluid-structure interaction problems involving fluid flow and moving

or deformable objects by itself is a very challenging subject. Typically, each of the

fluid and solid simulations were solved independently of each other, due to complexity

of the interface and limited resources in computing hardware. Even when problems

were studied experimentally, thorough understanding of fluid-structure interaction

has long been limited by the intricacy existing in these kinds of problems. Such

problems exist in broad scope of application, ranging from chemistry (eg. particulate

flow [1]), biology (motion of animals such as insect and fishes[2], heart valves and

blood flow[3]), solid mechanics (flexible filament in soap film [4]) and aeroelasticity

(aerodynamic loading on wings, flutter etc).

Decades of scientific research has proven that experiments are indispensable as a

source of reliable data for the understanding of certain phenomena. However, set-

ting up highly accurate and repeatable experiments requires significant investments

of time and financial resources. Despite the improvements in experimentation, fail-

ures in repeatability and acquiring deeper understanding are leading the researchers

to explore numerical simulations. Increasing speed and capability of current super-

computers and efficient computing techniques have promoted numerical simulation

methods as an alternative to study complex and intricate physical problems. Fluid-

solid interaction problems that were once out of reach for numerical studies are now

feasible.

Commonly [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], simulations of fluid-structure interac-

tions involving deformable bodies were carried out using body-fitted methods based
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on arbitrary Lagrangian-Eulerian (ALE) [15] to solve fluid flow and finite element

method (FEM) to solve structural deformation. One example of this is simulating

Parachute fluid-structure interaction [10, 11], where a very complex flow is modeled

with a highly deformable object. Re-meshing of fluid domain is done whenever large

deformation occurs.

Approaches in the ALE-FEM method can be divided into monolithic (fully-coupled)

[5, 6, 7, 8, 9] methods and partitioned (iterative)[10, 11, 12, 13, 14] methods. With

the monolithic methods, the fluid and the structural discrete equations are tightly

coupled and solved together. In the partitioned methods, each field is solved sepa-

rately and solution variables are passed iteratively from one field to the other until

convergence is achieved. Common drawbacks of ALE-FEM may be in speed and

efficiency. For objects with complex geometry, the mesh generation would not be a

simple affair, and the need to re-mesh the entire computational domain each time the

object deforms increases the computation load significantly.

One of the means to overcome the ALE drawback is to employ the fixed Cartesian

grid for the fluid. To handle interaction between fluid and solid boundaries, the

immersed boundary method (IBM) [16, 17, 18, 1, 19, 20] can be used to solve the

interaction force at the occupied fluid cells by the solid. Combining Cartesian grid

and IBM with FEM to solve flow field around deformable object and avoiding re-

meshing of fluid domain, will produce an efficient and fast method to solve FSI. As the

IBM-FEM application is being actively developed, a suitable IBM method is needed

for fluid-deformable object interaction. IBM has a few different and independently

methods to solve the interaction force between fluid and solid such as feed-back force

[3] and body-force [17]. Peskin’s [3] force generator uses rectilinear Eulerian grid for

the fluid phase together with a Lagrangian representation for the immersed boundary

at the object surface. The fluid and solid phases share the physical properties at

the immersed boundary by mutual interpolation between Eulerian and Lagrangian

references via a pseudo delta function as weight function. However, this method has

two adjustable parameters for the spring-dashpot feedback force, which are unable to

be determined uniquely.

In Kajishima’s [17] body force method, the force between the solid and fluid is

modeled by a volume fraction function of the solid volumetric fraction and the relative

velocities of the two phases. This method ensures no momentum leakage between the

phases as both fluid and solid share the rectilinear Eulerian grid, therefore, making

interpolation unnecessary. However, continuity is affected due to changes in the
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velocity field, enforced by volume averaging of the local fluid velocity and local solid

velocity. Using Kajishima’s method, the fluid-solid interaction is coupled by the

body force. To use pressure as means of coupling of fluid-solid interaction, additional

correction of pressure and velocity is needed. E. Boujo [21, 22] have explored the

effect of deforming bodies on fluid using body force method. However, due to the

unrobustness of the numerical procedure, the method could not deal with strong

interaction between fluid and solid.

In the present study, we propose a new two-way FSI approach using IBM-FEM to

solve the interaction of incompressible viscous fluid and an elastic body. Kajishima’s

[17] method is used to define the boundary of the structure and derive the velocity

field near the elastic body. The pressure field is solved using fractional step method

[23]. An efficient pressure retrieval method is also developed for the fluid-structure

coupling, which would significantly reduce the number of cells needed to be scanned.

Second-stage velocity and pressure corrections are proposed to take into account the

effect of momentum exchange on the pressure field. Pressure and viscous force are

used as surface forces on the elastic body and the deformation solved by FEM.

Chapter 2 describes the governing equation and numerical methods used in fluid-

solid interaction. Validation of IBM and FEM solver are further explain in detail

in Chapter 3. Chapter 4 then outlines the methods of coupling IBM-FEM while

describing the computational parameters. Results of the interaction dynamics are

then discussed in the latter part on Chapter 4. Finally, Chapter 5 summarizes the

outcome and conclusion of this study.

3



Chapter 2

Basic Equation and Numerical

Methods

2.1 Immersed Boundary Method

As the introduction describes, immersed boundary method (IBM) enables a fast and

efficient numerical simulation of fluid-solid interaction problems. The absence of re-

meshing of the computational domain by use of fixed and structured grid is possible

even as the object is displaced or deformed.

In the immersed boundary method, the effect of the interface of the fluid and solid

is included in the governing equations of both phases by a special interaction force

term. Based on this interaction force concept, several distinctive methods have been

developed depending on the definition of the interactive force, and on how Eulerian

and Lagrangian variables (fluid and solid domain respectively) are connected.

IBM has a few different and independent methods to solve the interaction force

between fluid and solid, such as feed-back force [3, 16], direct forcing method [18] and

body-force [17]. Peskin’s [3, 16] feed-back force uses rectilinear Eulerian grid for the

fluid phase together with a Lagrangian representation for the immersed boundary

at the object surface. The fluid and solid phases share the physical properties at

the immersed boundary by mutual interpolation between Eulerian and Lagrangian

references via a pseudo delta function as weight function. However, this method has

two adjustable parameters for the spring-dashpot feedback force, which are unable to

be determined uniquely.

Mohd-Yusoff [18] introduced a more straightforward IBM known as “direct forcing
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method”. In order to enforce Dirichlet conditions at the boundary, interpolations are

performed between Lagrangian velocities at the solid surface and Eulerian velocities

at neighboring grid points. These interpolations have proved to be quite unrobust,

which is undoubtedly as obstacle for this method to become widespread for practical

applications.

In Kajishima’s [17] body force method, the force between the solid and fluid

is modelled by a volume fraction function of the solid volumetric fraction and the

relative velocities of the two phases. This method ensures no momentum leakage

between the phases as both fluid and solid share the rectilinear Eulerian grid and,

therefore, making interpolation unnecessary. However, continuity is affected due to

changes in velocity field enforced by volume averaging of the local fluid velocity and

local solid velocity. Using Kajishima’s method, the fluid-solid interaction is coupled

by the body force. To use pressure as means of coupling of new two-way fluid-solid

interaction, additional correction of pressure and velocity is needed.

2.1.1 Basic Equation

The governing equations for incompressible fluid flow are the continuity equation and

Navier-Stokes equations:

∇ · uuuf = 0 (2.1)

∂uuuf

∂t
+ uuuf · ∇uuuf = − 1

ρf

∇p + νf · [∇uuuf + (∇uuuf)
T ] (2.2)

where uf is fluid velocity, p is pressure, ρf density and νf is kinematic viscosity. Both

density and kinematic viscosity are kept constant for this study. Equations (2.1) and

(2.2) are solved by a finite difference method with the second order accuracy in space

and time.

2.1.2 Fluid-Solid Interaction

For cells partially occupied by the solid structure, Kajishima et al [17] proposed

an immersed boundary method that solves the momentum exchange at the fluid-

structure boundary. This method is briefly described by Yuki et al [24] as follows.

A velocity field uuu is introduced by calculating the volume fraction and finding the

local fluid velocity uuuf and the local solid phase velocity vvvp in each cell by:

5



uuu = (1 − α)uuuf + αvvvp (2.3)

where α(0 ≤ α ≤ 1) is the local solid volumetric fraction in a cell as shown in Figure

2.1. The fluid-structure interaction then can be solved at the interface by assuming

that the velocity field uuu follows the modified Navier-Stokes equations:

∂uuu

∂t
= − 1

ρf

∇p + HHHu + fff p (2.4)

HHHu = −uuu · ∇uuu + νf∇ · [∇uuu + (∇uuu)T ] (2.5)

a time advancement scheme for uuu can be proposed as follows:

uuun+1 = uuuI − ∆t
1

ρf

∇p + ∆tfff p (2.6)

uuuI = uuun + ∆t

(

3

2
HHHn

u − 1

2
HHHn−1

u

)

(2.7)

fff p =
α(uuup − uuuI)

∆t
(2.8)

where superscripts n represent time step, ∆t is the time increment. The body force fffp

accounts for the effect of the intruder on the fluid at the interface and inside the object.

It should be noted that, at α = 0 where zero interaction force (fff p = 0) is enforced,

the above time advancement is then carried by second-order Adam-Bashforth method

and the SMAC method for a single-phase fluid.

In the present study, the numerical schemes are modified, as pressure is used to

couple the fluid-structure interaction. The body force fff p is dropped from Equation

(2.4). The following equations describe velocity field uuuf , assuming it follows the

Navier-Stokes equations:

∂uuuf

∂t
= − 1

ρf

∇p + HHHu (2.9)

HHHu = −uuuf · ∇uuuf + νf∇ · [∇uuuf + (∇uuuf )
T ] (2.10)

a time advancement scheme for uuuf can be proposed as follows:

6



uuuI = uuun
f + ∆t

(

3

2
HHHn

u − 1

2
HHHn−1

u

)

(2.11)

1

ρf

∇2pn+1 =
∇ · uuuI

∆t
(2.12)

uuun+1
f = uuuI − ∆t

1

ρf

∇pn+1 (2.13)

where superscripts n represent time, ∆t is the time increment and uuuI is intermediate

velocity. Time advancement is then carried by second-order Adam-Bashforth method

and Fractional Step Method as a single continuum. A Poisson equation is then solved

with the divergence of the intermediate velocity uuuI as a source term to provide a

pressure pn+1, which is then used to correct the intermediate velocity, providing a

divergence free velocity uuun+1
f and integration proceeding to the next time step.

Figure 2.1: Uniform Cartesian grid for IBM and definition of solid volumetric fraction

α

2.1.3 Surface Digitizer

To apply immersed boundary method, a suitable and efficient surface digitizer is

required. This is due to the requirement that each solid volumetric fraction is needed

to be evaluated at each cell. Originally, Kajishima et al.[17] developed and used

an efficient method specifically for spherical objects. Recently, Yuki et al [24] have

simplified and improved the digitizer to also enable it for use of arbitrarily shaped

objects. It is based on the following hyperbolic-tangent function to digitize the fluid-

7



solid interface for obtaining α:

α =
1

2

{

1 − tanh

(

δs

σλ∆

)}

(2.14)

λ = |nx| + |ny| + |nz| (2.15)

σ = 0.05(1 − λ2) + 0.3 (2.16)

where n = (nx, ny, nz) is a normal outward unit vector at a surface element and

δs is a signed distance from the cell center to the surface element and ∆ is cell size

uniformly distributed over the computational domain. This digitizer was proven to be

accurate when the surface digitiser was used to evaluate the particle volume with 20

and 16 cells covering the diameter of spherical particle, Equation (2.14) gives 0.26%

and 0.43% in error respectively. Also from the simplified formulation, the digitiser

was able to reduce the processing time by 25% compared to the original digitiser.

2.2 Two-Stage Correction of Velocity and Pres-

sure

Velocity field of the fluid cells occupied by solid region will be derived by volume av-

eraging the local fluid velocity uuuf and the local solid phase velocity vvvp force described

by Equation (2.3). Careful treatment is needed for derivation of pressure field af-

fected by this change as it will affect the two-way fluid-solid interaction. As pressure

field is not corrected during velocity field volume averaging, a second derivative of

pressure is undertaken at the cells that are affected. Figure 2.2 shows the complete

procedure of two-stage correction of velocity and pressure. A small domain as Figure

2.3, bounding the near region of the object is chosen for the correction.

Velocity field uuun
1 at the current time step n, is first introduce to derive for the next

time step n + 1. The intermediate velocity, uuuI is first derived by the second-order

Adam-Bashforth method (Equation (2.17)). A Poisson equation (Equation (2.18)) is

then solved with the divergence of the intermediate velocity uuuI as a source term to

provide a pressure pn+1
1 :

uuuI = uuun
1 + ∆t

(

3

2
HHHn

u1
− 1

2
HHHn−1

u1

)

(2.17)

1

ρf

∇2pn+1
1 =

∇ · uuuI

∆t
(2.18)
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which is then used to correct the intermediate velocity of Equation (2.17), providing

a divergence free velocity uuun+1
1 .

uuun+1
1 = uuuI − ∆t

1

ρf

∇pn+1 (2.19)

A velocity field uuun+1
2 is derived by the volume averaging the local fluid velocity uuuf and

the local solid phase velocity vvvp in each fluid cell that is partially or fully occupied

by solid cell, as shown in Equation (2.20).

uuun+1
2 = (1 − α)uuun+1

1 + αvvvn+1
p (2.20)

Since there is significant modification of the velocity field, the value of pressure should

also reflect these changes. Hence the development of the second-stage correction. This

procedure is also applied to fluid cells that are partially or fully occupied by solid cells

bounded by a region called small domain in Figure 2.3. Firstly, in Equation (2.21),

the SMAC method is used to find the scalar potential, φn+1. φn+1 then used as the

velocity and pressure correction factor as shown in Equation (2.22) and (2.23) to

obtain uuun+1
3 , pn+1

2 .

1

ρf

∇2φn+1 =
∇ · uuun+1

2

∆t
(2.21)

uuun+1
3 = uuun+1

2 − ∆t
1

ρf

∇φn+1 (2.22)

pn+1
2 = pn+1

1 + φn+1 (2.23)

where uuun+1
3 and pn+1

2 are velocity and pressure that satisfies continuity equation. The

velocity and pressure fields are used for the next time step.

2.3 Finite Element Method

2.3.1 Basic Equations

For solid phase, Navier’s equation which governs the solid’s displacement is used for

a homogeneous isotropic elastic material under plane strain condition.

ρ
∂2zi

∂t2
=

∂σij

∂xj

+ Fi (2.24)

9



Start / Continue

u2
n+1

, p1
n+1

Fractional Step Method 

t

u
p

HH
tuu

In

f

n

u

n

un

I

1

1

2

1

1

1

2

3
11

Velocity field volume averaging 

p

nn vuu 1

1

1

2 1

u1
n+1

, p1
n+1

u1
n
 , ,p1

n

u1
n

Velocity correction 

1

1

1

1

1 n

f

I

n ptuu

Small domain 

(Second stage 

velocity and 

pressure 

correction) 

u3
n+1

, p2
n+1

u2
n+1

,
n+1

SMAC method 

t

unn

f

1

2121

Velocity and pressure 

correction

11

1

1

2

11

2

1

3

1

nnn

n

f

nn

pp

tuu

FEM

Figure 2.2: Two-stage velocity and pressure correction algorithm

10



Small domain 

Whole domain 

Figure 2.3: Schematic showing the small domain

where ρ is density, ri displacement, t time, σij stress tensor, xj coordinate, and Fi

external force. The equation is discretized by a weighted residual method and results

in a linear matrix system which is shown as follows:

Mz̈̈z̈z + Kzzz = F (2.25)

where M is global mass matrix, K is global stiffness matrix, and zzz is the global

displacement vector. Wilson-θ method is used for the time advancement. Generally,

external forces F are the summation of the surface force components t and volume

force components f over all boundary elements Ωb and volume elements Ve are shown

by the following equation:

F =
∑

b

∫

Ωb

NT tdΩ +
∑

e

∫

Ve

NT fdV (2.26)

where N is the shape functions, and dΩ, the boundary elements. In the present study,

only one method of application of fluid forces has been considered, by explicitly

computing the fluid pressure and viscous forces and applying them as the surface

forces.

{t} =

{

Tx

Ty

}

(2.27)
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The fluid and the deformable object are linked by the fluid pressure p in Equation

(2.23) and viscous force, (νf · [∇uf +(∇uf)
T ]) to surface forces {t} in Equation (2.27)

as follows:

{

Tx

Ty

}

=
(

p + νf · [∇uf + (∇uf)
T ]
)

{

nx

ny

}

(2.28)

where {nx, ny}T is outward normal vector at boundary Ω.

2.3.2 Damping

Modeling the dynamics of the solid phase using Navier’s Equation (2.24) led to the

basic second-order propagation Equation (2.25). However, damping, which all actual

solids in motion experience (together with elastic and inertial forces), are not included

in this ideal modeling. Damping essentially dissipates energy for solids which includes

internal and structural damping. Internal damping is primarily due to micro-structure

imperfection, dislocation, and thermoplastic effects etc. in the material. Among inter-

nal damping there are generally distinguished viscoelastic damping, which depend on

the frequency of the oscillation, and hysteresis damping which does not. Meanwhile

structural damping is due to friction at the contacting surfaces of different elements.

Despite damping phenomena being non-linear, it is common to linearize dissipative

forces, for example, by assuming that they are proportional to velocity, leading to the

following equation of motion:

Mz̈ + Cż + Kz = F (2.29)

where C is the damping matrix. Although C is generally measured or assessed for a

particular mechanical system, one simple and common way to model damping is to

assume that the damping matrix can be taken as a linear combination of the mass

and stiffness matrices as:

C = fmM + fkK (2.30)

and fm and fk are called ‘Rayleigh damping coefficients’. These coefficients can be

related by using damping ratio equation shown as follows:

ζ =
fm + fkω

2

2ω
(2.31)

where ω = 2πfn and fn is the natural frequency.
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2.4 Coupling of IBM-FEM

In the Section 2.1.2, the effect of solid on fluid phase and also its implementation has

been outlined in detail. However, the influence of fluid on solid needs to be explained

here. In the present study, the application of fluid forces to the solid is through cal-

culation of pressure and viscous forces. As the Lagrangian coordinates (solid mesh)

do not exactly coincide with Eulerian coordinates (fluid cells), an efficient and yet

sufficiently accurate method for pressure retrieval is required. However, special inter-

polation techniques are not developed during this study, as these techniques require

further in-depth investigation.

2.4.1 Pressure and Viscous Forces

Since velocity and pressure fields are known, it is possible to compute pressure and

viscous forces acting at any point of the fluid-solid interface, and to apply them as

external forces t in Equation 2.26:

t = −pwn⊥ + τwn‖ (2.32)

where n⊥ is the normal outward unit vector at the surface, n‖ is the unit vector parallel

to the surface and oriented downstream, and pw and τw are respectively pressure and

shear stress at the surface (the subscript w stands for “wall”). With this approach,

no volume force is applied to the solid: fp = 0.

2.4.2 Pressure Retrieval Method

A method is developed to retrieve pressure information from the nearest fluid cell to

a Lagrangian point on the object’s surface. For each node on the surface of the FEM

mesh, the method scans a 3 × 3-mesh around the cell to which the node belongs.

Figure 2.4 is the schematic of this scanning method. Let
−→
A be the vector between

node j and cell center, and n the normal vector at node j. Angle between
−→
A and n

is θ where

θ = arccos

( −→
A · n
|−→A||n|

)

(2.33)

The cell center is within the fluid domain when θ ≤ 90◦. The pressure value at the

nearest point outside the object is allocated to the Lagrangian point at the object

13



surface. This method ensures that pressure is assigned for an object with multiple

interfaces within one unit cell. However, the cells size need to be sufficiently fine so

that the pressure values assigned are reasonably accurate without the need for an

interpolation scheme.

j

j+1

j-1

Solid

Fluid

Fluid

Solid

A
n

Figure 2.4: Schematic of pressure scanning method
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Chapter 3

Validation

In this study, IBM and FEM were validated independently before proceeding to com-

bine both codes. The numerical setup for IBM validation is described, followed by a

discussion of Cp plots of XFOIL [25], two-stage correction method and the original

Fractional Step Method. For FEM validation, the solver is used to solve for free

oscillation eigenfrequencies and also the deflection of a beam under a gravitational

field.

3.1 IBM Validation

3.1.1 Numerical Setup for Validation

For the validation, the computational domain length and height are 7L and 3L re-

spectively where L is the chord length of the airfoil as show in Figure 3.1. The

object is a NACA0012 symmetric airfoil. The leading edge of airfoil is located at

x = 3L from the inlet. Table 3.1 shows the parameters used for the validation of

fluid flow using IBM. The Cartesian grid size, ∆x and ∆y = 0.01 with the number

of cells nx × ny = 700 × 300. The time step is ∆t = 0.003s, the free stream veloc-

ity, Uo = 1m/s. By estimating the boundary thickness to be approximately 5
√

νL
Uo

,

the mesh size ∆x and ∆y is much smaller then boundary layer when the Reynolds

numbers are, Re = 500 and 1000.
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Figure 3.1: Schematics of computational domain for validation

Table 3.1: Computational setup for validation.

Fluid parameters

Number of grid point 700 × 300

Reynolds number, Re
(

UoL
ν

)

500, 1000

Time increment, ∆t 0.003

Grid size,∆x, ∆y 0.01

Angle of incidence, α 0o,−5o
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3.1.2 Pressure Coefficient Plots

Pressure coefficients, Cp plots are simple means to gain an insight into the flow field of

the fluid flow and validate a computational method simulating airfoil and fluid flow.

It is defined as:

Cp =
p − po

1
2
ρoU2

o

=
p − po

qo

(3.1)

where p and po is the local and free stream pressure respectively. Local pressure p

is derived from the closest fluid cell to the surface of the airfoil as the pressure retrieval

method described. Figure 3.2 and 3.3 show results of pressure coefficient Cp against

chord length x/c at Re = 500 and 1000 with angle of incidence 0◦ and 5◦. Three

sets of results are presented in each figures, with two sets from IBM (Fractional Step

Method with two-stage correction and Fractional Step Method without correction)

and another set from XFOIL [25] software, which is based on a panel method and

designed to analyze subsonic airfoils and used as the benchmark.

When the angle of incidence is 0◦, IBM with two-stage correction shows a very

good agreement with XFOIL data for both Re = 500 and 1000. However, when Re =

1000, the Cp values near the leading edge show some discrepancies with XFOIL data.

On the contrary, IBM without two-stage correction show very large disagreement with

the XFOIL and also two-stage correction plots. The errors vary from 67% near the

leading edge to 37% at the trailing edge. For Re = 1000, the error increases to 71%

near the leading edge and 37% at the trailing edge. This discrepancies really shows

the need of two-stage correction method. In the original method, the local pressure

field p that affected by the Equation (2.3) are not corrected and the absent of forcing

term fp possibly lead to such error.

For a 5◦ angle of incidence plot, IBM without any correction continues the previous

outcome of significant differences with XFOIL data. The plot of two-stage correction

has generally good agreement with XFOIL. However, near the trailing edge, some

discrepancies with XFOIL exist. This highlights the known limitation of IBM to

solve flow near the thin/sharp edges, which is also known as Kutta-condition. Kutta-

condition exists when air flowing over the topside and air flowing under the bottom

side meet at the sharp trailing edge. There is no flow of air around the trailing

edge and forward towards the leading edge. As an airfoil with sharp trailing edge

begins to move with a positive angle of attack, the air passing the bottom side of

the airfoil reaches trailing edge and must flow around the trailing edge and along the
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topside of the airfoil towards the stagnation point. Inability to properly solve this

condition would affect the overall results of Cp distribution. However, since the error

is considerably small, IBM with two-stage correction method is very much capable

for further development in this study.

3.2 FEM Validation

The solid phase solver is shared with the work of Edouard Boujo [22] which validate

it through consideration of free oscillation eigenfrequecies. Simulation results for an

elastic beam were compared to theoretical predictions from the oscillation theory.

The deflection of a beam in gravitational field was also simulated to validate the

external volume forces such as the interaction force.

3.2.1 Free-Oscillation

In the case of free oscillation, an elastic beam of rectangular cross-section is investi-

gated, with one of the beam’s ends fixed in space (clamped condition). Theoretical

eigenfrequencies f ∗
n under free-oscillation (no external force) are given by [26]:

f ∗
n =

Anπ

16
√

3

T

L2

√

E

ρs

(3.2)

where n is the oscillation mode, T is the beam thickness, L is the beam length

E and ρs are Young’s modulus and density of the material respectively, and An

coefficients are given as follows:

An =



















1.1942, n = 1,

2.9882, n = 2,

(2n − 1)2, n ≥ 3.

(3.3)

The concept of free-oscillation eigenfrequencies and eigenmodes is based on the as-

sumption that the deformation of the object can be described as a linear combination

of harmonic functions of time:

z(x, t) =

∞
∑

n=1

zn(x, t) =

∞
∑

n=1

ẑn(x)cos(ωnt + ϕn) (3.4)

or in complex notation:
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Figure 3.2: Plots of Cp against x/c for NACA0012 at 0◦ angle of incidence
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Figure 3.3: Plots of Cp against x/c for NACA0012 at 5◦ and Re = 500

z(x, t) =

∞
∑

n=1

zn(x, t) =

∞
∑

n=1

ẑn(x)ei(ωnt+ϕn) (3.5)

which define the whole system oscillating at the same frequency with each mode

being a unique solution of equation of motion. For a certain mode n, substituting

z̈n = −ω2
nzn into the undamped equation of motion (2.25) without the external force

gives:

(K − ω2
nM)ẑn = 0 (3.6)

which is an eigenvalue problem. For each mode n, the solution of (3.6) is made of the

eigenvalue ω2
n and the eigenvector ẑn which describes the frequency fn = ωn/2π of the

oscillation (time function cos(ωnt)) and the shape of the object deformation (space

function ẑn(x)), respectively . For a system solved by FEM with a finite number of

degree of freedom, the number of modes solvable is also finite. It is important to note

that only a lower range of eigenfrequencies have significant contribution to the time

response of the whole system.

To assess the results of FEM solver, a rectangular beam was modelled and meshed

with triangular elements [27]. The solver solves for mass, stiffness matrices and
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eigenvalue problem (3.6). Parameters of the beam are as follow; L = 1m, T = 0.2m,

E = 106 Pa and ρs = 103kg/m3. The beam was created using various mesh sizes,

with the finest mesh up to N = 700. Figure 3.4 shows the mode shapes ẑn of the first

three oscillation modes (ie lowest three frequencies). The figures are showing good

agreement with theoretical predictions and general outcome, by showing distinct series

of n nodes (zero displacement) and n anti-nodes (maximum displacement) at specific

locations along the beam.

Figure 3.5 shows the first two modes of eigenfrequencies fn with respect to N ,

being the number of nodal points to mesh the beam. It shows fast convergence

obtained with the increase of nodal points. The asymptotic value of f1 and f2 also in

a very good agreement with the theoretical frequencies f ∗
n predicted by (3.2).

0
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 n
=

2

0 0.2 0.4 0.6 0.8 1

0
0.1
0.2

 n
=

3

Figure 3.4: First three mode shapes of the free-oscillation of a beam clamped at one

end
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Figure 3.5: Lowest two eigenfrequencies of a beam clamped at one end

3.2.2 Volume Forces Implementation

For evaluation of volume force, a beam with a fixed end is considered and then placed

in a gravitational field. From the elastic beam theory, the maximum vertical deflection

due to gravitational field would be:

z∗g(L) =
3

2

ρsgL4

ET 2
(3.7)

where g is the gravitational acceleration. The same beam as in Section 3.2.1

was computed numerically by the FEM solver to find the deformation due to the

gravitational field. FEM solver solved the static problem Kz = F , where the external

force was applied as the volume force f = ρsg. Figure 3.6 shows the maximum vertical

deflection with respect to number of nodal points N . The asymptotic value of zg(L)

is within a very good agreement to theoretical value z∗g(L) as N increases, the error

is less than 4% when N = 482.
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Chapter 4

Application of IBM-FEM with an

Elastic Airfoil in a Uniform Flow

In this chapter, the IBM-FEM code is applied to an elastic airfoil in a uniform flow.

Fluid and solid domains parameters are specified together with the boundary condi-

tions. The airfoil is found to be oscillating when subjected to the uniform flow. The

Cl, Cd curves are analyzed and compared to the frequencies of shedding vortices from

the leading edge.

4.1 Numerical Setup

4.1.1 Computational Domain and Geometry

For the simulation involving IBM-FEM of an elastic airfoil in a uniform flow, the

computational domain length and height are 10L and 7.5L respectively where L is

the chord length of the airfoil as show in Figure 4.1. The airfoil is a NACA0012

symmetric airfoil. The leading edge of airfoil is located at x = 2.5L from the inlet.

On top and bottom boundaries of the computational domain, a periodic boundary

condition is used. At the inlet, a constant velocity Uo is prescribed and at the outlet,

gradient free condition is used.

4.1.2 Fluid and Solid Domain Parameters

Table 4.1 shows the fluid domain parameters used for the simulation of fluid-solid

interaction by IBM and FEM. The Cartesian grid size, ∆x = ∆y = 0.025 with the
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number of cells nx × ny = 400 × 300. The time step is ∆t = 0.003s, the free stream

velocity, Uo = 1m/s and the Reynolds number, Re = 500.

Table 4.1: Fluid domain parameters

Number of grid point nx, ny 400 × 300

Reynolds number Re
(

UoL
ν

)

500

Time increment ∆t 0.003

Grid size ∆x, ∆y 0.025

Free stream velocity Uo 1

Table 4.2 shows the solid domain parameters. The cases were setup between −5◦ and

−10◦ angle of incidence. Two nodes located on the center line at x′/L = 0.3 and 0.4

are assigned as fixed points for the airfoil and the rest are free to deform. The airfoil

is made of 456 triangular elements (ne), with 293 total nodal points (np) generated

using Triangle software [27]. A different set of material strength are considered for

the airfoil with the properties given in Table 4.2.

Table 4.2: Solid domain parameters

Airfoil chord L 1

Number of elements ne 456

Nodal points np 293

Young’s Modulus E (Pa) ∞(Rigid), 5.0 × 106, 2.0 × 102, 1.0 × 102

Poisson Ratio νs 0.45

Angle of incidence α −5o and −10o

4.1.3 Boundary Conditions

A constant uniform velocity (u, v)x=0 = (Uo, 0) is prescribed at the inlet, while the

convective boundary condition
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(

∂uuu

∂t
+ ū

∂uuu

∂x

)

x=10L

= 0 (4.1)

is specified at the outlet (x = 10L), where ū is the mean convective velocity at the

outlet. This is implemented on a collocated grid as

uuun+1
nx+1,j = uuun

nx+1,j − ūn ∆t

∆x
(uuun

nx+1,j − uuun
nx,j) (4.2)

where subscripts indicate space indices (i ranges from 0 to nx + 1 and j from 0 to

ny + 1) and superscript indicate time indices (n stands for tn = n∆t). The latter are

omitted in some equations when all refer to the same time. The vector notation uuu is

used when equations for u and v are the same. At the outlet a gradient-free condition

is specified:

(

∂p

∂x

)

x=10L

= 0 (4.3)

and implemented as pnx+1,j = φnx,j. For top and bottom boundaries, periodic bound-

ary conditions are specified.

4.2 Results and Discussion

4.2.1 Airfoil Oscillating in a Fluid Flow at −5◦ Angle of In-

cidence

For airfoil at −5◦ angle of incidence, Fig. 4.2 and 4.3 show the lift and drag coefficients

in time history fashion for different Young’s modulus values. For the enlarged section

of the time history plot, the Cl and Cd were shown to be oscillating regularly. Three

points of interest are marked on each Cl plot to represent the minimum, average and

maximum down-force. At the exact time step, contour of absolute vorticity in the

vicinity of the airfoil are are plotted and shown in Fig.4.4. For this plot, the Young’s

modulus is E = 1.0 × 102 Pa. It is clear that the alternating vortex shedding are

one of the contributing factor for oscillation in Cl and Cd with time. It shows the

correlation between the vibrating nature of Cl and Cd with the edge displacement

and vortex formation.

From the Cl and Cd plots, it is possible to calculate the frequencies of changes in lift

and drag with time. Frequencies of the airfoil’s trailing edge oscillation in the free
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Figure 4.2: Time history of lift and drag coefficient for airfoil at −5◦ angle of incidence
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(a)

(b)

(c)

Figure 4.4: Contours of absolute value of vorticity near the airfoil at −5◦ angle of

incidence, E = 1.0 × 102, Re = 500 at:(a)minimum down-force;(b)average down-

force;(c)maximum down-force
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stream are also calculated. The eigenfrequency of the first mode are obtained from

the FEM code. Table 4.3 shows the frequencies of Cl, trailing edge displacement and

mode 1 of the airfoil. The Cl frequencies are proportional to the Young’s modulus

as the airfoil is getting softer, the frequency is also getting lower. Frequencies of the

trailing edge also compares very well with the Cl. However, for Case III, the frequency

is showing some possible discrepancies. The frequency is even higher than Case II

which has higher E. Eigenfrequencies of the airfoil are totally in disagreement with

values obtained for Cl and trailing edge.

Table 4.3: Frequencies of Cl and airfoil in free stream at −5◦

Case E Cl Frequency Trailing Edge Eigenfrequency of

Frequency Airfoil

(Pa) f(Hz) f(Hz) Mode 1, f((Hz)

I ∞ (Rigid) 1.136 -nil- -nil-

II 5.5 × 106 1.124 1.124 3.483

III 2.0 × 102 1.099 1.16 0.0021

IV 1.0 × 102 0.926 0.926 0.0015

Figure 4.5 shows the plots of lift and drag coefficient of an airfoil (E = 2 × 102

Pa) for the whole simulation time. When t is approaching t = 60s, it is clear that

the lift is oscillating with a different mode. Prior to t = 60s, the oscillation is regular

and better than the multimode oscillation. The irregularities in the oscillation could

be due to numerical errors as no phase change was detected from the flow. However,

there are also different factors that can cause this type of oscillation.

4.2.2 Airfoil Oscillating in a Fluid Flow at −10◦ Angle of

Incidence

For airfoil at −10◦ angle of incidence, the results are following the trend of cases from

−5◦. Fig. 4.6 and 4.7 show the lift and drag coefficients in time history fashion for

different Young’s modulus values. Three points of interest are marked on each Cl plot

to represent the minimum, average and maximum down-force. In these time steps,

contour of absolute vorticity in the vicinity of the airfoil are plotted and shown in
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Fig.4.8. For this plot, the Young’s modulus is E = 1.0 × 102 Pa. It is clear that the

alternating vortex shedding is one of the contributing factors for oscillation in Cl and

Cd with time.

Table 4.4 shows the frequencies of Cl and trailing edge displacement. Contrary

to −5◦ case, it remains true that Cl frequencies are proportional to the Young’s

modulus ie.: as the airfoil is getting softer, the frequency is also getting lower with

the frequencies of the trailing edge, also agreeing to the Cl frequencies. For comparison

with eigenfrequencies, the results are again in total disagreement.

Figure 4.9 shows the plots of lift and drag coefficient for the whole simulation

time. This time, the plots are showing the multiple mode shapes experienced by the

airfoil. The oscillation happens very early in the simulation, on the contrary to the

−5◦.

Table 4.4: Frequencies of Cl and airfoil in free stream at −10◦

Case E Cl Frequency Trailing Edge Eigenfrequency of

Frequency Airfoil

(Pa) f(Hz) f(Hz) Mode 1, f(Hz)

I ∞ (Rigid) 1.053 -nil- -nil-

II 5.5 × 106 1.042 1.052 3.483

III 2.0 × 102 0.862 1.0 0.0021

IV 1.0 × 102 0.769 0.64 0.0015

4.2.3 Discussion

Real fluid-solid interaction is highly complicated in nature, such simple representation

in this study is not enough to provide full physical understanding. From the results

in Table 4.3 and 4.4, we can see there is a general tendency that when the Young’s

Modulus (E) is lower, the trailing edge oscillation frequecies is also smaller. This is in

line with the reduction of eigenfrequencies of the airfoil with softer airfoil. With more

samples, we can deduce that the trailing edge frequencies are directly proportional to

the strength of the material.

Figure 4.5 and 4.9 show strong nonlinear vibration of Cl and Cd with respect

33



�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

-0.42

-0.4

-0.38

-0.36

-0.34

 43  44  45  46  47

C
l

Time

(b)

 0.124

 0.126

 0.128

 0.13

 0.132

 0.134

 43  44  45  46  47

C
d

Time

(a)

(a)

(b)

(c)

(a) Rigid

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

-0.42

-0.4

-0.38

-0.36

-0.34

 43  44  45  46  47

C
l

Time

(b)

 0.126

 0.128

 0.13

 0.132

 0.134

 0.136

 43  44  45  46  47

C
d

Time

(a)

(a)

(b)

(c)

(b) E = 5.5 × 106

Figure 4.6: Time history of lift and drag coefficient for airfoil at −10◦ angle of inci-
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Figure 4.8: Contours of absolute value of vorticity near the airfoil at −10◦ angle

of incidence, E = 1.0 × 102, Re = 500 at:(a)minimum down-force;(b)average down-

force;(c)maximum down-force
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Figure 4.9: Time history of lift and drag coefficient for airfoil (E = 2 × 102) at −10◦

angle of incidence
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to time. Few causes might influence the vibration, eg. multimode vibration of the

airfoil, strong interaction between fluid and solid and also numerical error if the wave

shape is very erratic. Multimode vibration usually caused by different forcing function

acting at the same time on the object. Numerical error causes the derivation of Cl

and Cd to be inconsistent as the value fluctuates hence giving a very nonlinear graph.

This nonlinearity is more apparent at very low E which suggested that it can be one

of the reason for such results. As we are observing the trends of the lift and drag

coefficients, further investigation is required to accurately understand the real nature

of the events. Also it is again recommended to find the link between eigenfrequencies

and the frequencies of Cl and vortex shedding.
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Chapter 5

Conclusion

In the present study, a new fluid-structure interaction (FSI) approach using IBM-

FEM to solve the interaction of incompressible viscous fluid and an elastic body was

proposed. Kajishima’s [17] method was used to define the boundary of the structure

and derive the velocity field near the elastic body, and the pressure field was solved

using fractional step method. An efficient pressure retrieval method is also developed

for the fluid-structure coupling, which would significantly reduce the number of cells

needed to be scanned. Second-stage velocity and pressure corrections were proposed

to take into account the effect of momentum exchange on the pressure field. Pressure

and viscous force were used as surface forces on the elastic body and the deformation

solved by FEM. The chapters can be summerized as follows:

• IBM was validated by obtaining the Cp distribution on the airfoil. Meanwhile,

FEM was validated through calculation of eigenfrequencies and deflection due

to gravity.

• Using pressure and viscous force as fluid-structure coupling, it was successfully

applied for fluid flow past an elastic deformable body. Mixed modes in the vi-

bration of the airfoil were clearly observed, especially when the Young’s modulus

is 1.0 × 102 Pa.

• For a moderately stiff airfoil, the oscillation shows very close agreement with

the generation of vortex at the trailing edge.

• Reducing the strength of the material is resulting the decrease the frequency of

the trailing edge.
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This study shows the applicability of the proposed method in simulating fluid-solid

interaction problems. The method is able to simulate a strong interaction between

fluid and solid. This method can be further expanded into various applications such

as in biology, heart valves and blood flow, solid mechanics and aeroelasticity.
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Appendix A

IBM for Thin Profile Object

To apply IBM (body force) on a thin profile object, a new method is developed to

identify surrounding fluid cells nearest to the Lagrangian point on the object’s surface.

For each node on the surface of the object, the method selects a 3×3-mesh around

the cell to which the node belongs. The same procedure is repeated for all nodes

and redundant cells will be removed. Local solid volumetric fraction of each cells are

calculated using Equations (2.14,2.15,2.16). Since the thin object has 2-sides, 1 side

must be treated as an external surface and another side as internal surface. Figure

A.1 shows the selected fluid cells near the thin body.

A.1 Simulation Setup

Two simulation cases have been set up. Case 1, involving a crescent shaped thin body

and Case 2 with thin airfoil. Both bodies are initially placed in a fluid at rest and

the thin airfoil with an attack angle of 15◦. The fluid is subjected with an instan-

taneous start at the inlet with velocity Uo. Figure A.2 and A.3 show schematics of

the computational domains for both cases and Table A.1 and A.2 shows the compu-

tational conditions. On top and bottom boundaries, a periodic boundary condition

is used. At the inlet, a constant velocity is prescribed and at the outlet, a gradient

free condition is used.
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x

Figure A.1: Fluid cells selected for calculation of local volumetric fraction
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Table A.1: Computational setup for crescent shaped body (case 1)

Parameters Coarse mesh Fine mesh

Number of grid point 200 × 150 400 × 300

Reynolds number, Re
(

UoL
ν

)

200 200

Time increment, ∆t 0.005 0.0025

Grid size,∆x, ∆y 0.1 0.05

Table A.2: Computational setup for this airfoil (case 2)

Parameters Coarse mesh Fine mesh Extra fine mesh

Number of grid point 200 × 150 400 × 300 800 × 600

Reynolds number, Re
(

UoL
ν

)

200 200 200

Time increment, ∆t 0.005 0.0025 0.00125

Grid size,∆x, ∆y 0.1 0.05 0.025

Angle of attack (α) 15◦ 15◦ 15◦

15oU

Periodic

Boundary

0
x

p

20

Crescent

shaped thin 

body

y

x

Figure A.2: Schematic of computational domain for crescent shaped thin body
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15oU

Periodic

Boundary

0
x

p

20

Thin airfoil y

x

Figure A.3: Schematic of computational domain for thin airfoil

A.2 Results and Discussion

A.2.1 Crescent shaped thin body

For a crescent shaped thin body, two possible configurations were tested for the se-

lection of further mesh refinement. The first configuration is to assign the surface

facing the incoming flow as the external surface (left external) and the second config-

uration assigns the surface opposing the incoming flow as the external surface (right

external). Figure A.4 shows the velocity vectors for both configurations. The plots

are at the same time instance of t = 5 where the flow is still developing. From the

plots, we can observe the virtual thickness represented by the empty spaces. From

there, we can see that the configuration of LE is much better in simulating the flow

over a thin body.

The virtual thickness area is identified as an area that needs to be handled to

obtain a reasonable solution. Further refinement of the mesh is done to see the effect

on the virtual thickness. Figure A.5 shows the velocity vectors for the refined mesh of

a crescent shaped thin body. Figure A.5(a) plotted at the instance of t = 5 where the

fluid flow is still developing and Figure A.5(b) plotted at t = 200 where the fluid flow

is fully developed. The virtual thickness area seems to be reduced quite significantly.

With further refinement, the virtual thickness will become negligible to the dimension

of the thin body.
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(a) Left external (LE)

(b) Right external (RE)

Figure A.4: Velocity vectors plot for LE and RE on crescent shaped thin body at the

same time instance of t = 5

46



(a) At time instance of t = 5

(b) At time instance of t = 200

Figure A.5: Velocity vector plot of refined mesh for crescent shaped thin body
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A.2.2 Thin airfoil

To study the effect of mesh refinement on the virtual thickness, thin airfoil is subjected

under the same flow condition as a crescent shaped thin body. The mesh was refined

up to 3 times and the coefficient of lift is measured for all three instances. Figure A.6

shows the velocity vectors of flow around thin airfoil with 3 mesh sizes. In Figure

A.6(a), the velocity vectors clearly show the effect of virtual thickness as the flow

near the leading edge is being deflected quite significantly. Refinement of mesh shows

the reduction of deflection due to virtual thickness of the thin airfoil.

(a) Coarse mesh (b) Fine mesh

(c) Extra fine mesh

Figure A.6: Velocity vectors of thin airfoil with 3 different mesh sizes
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Table A.3 shows the CL of thin airfoils with 3 different mesh sizes. CL for fine and

extra fine mesh are very close in values. It shows the convergence in CL with respect

to mesh refinement. The virtual thickness for fine meshes is negligible such that, it

does not affect much in the values of CL.

Table A.3: CL of thin airfoil according to mesh sizes

Mesh size, ∆x CL

0.1 0.84

0.05 0.74

0.025 0.75
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Appendix B

Airfoil and Mesh Construction

B.1 NACA Profile

The undeformed airfoil shape is based on NACA 0012 profile which belongs to NACA

4-digit series. It was designed for aircaft wings and developed by National Advisory

Committee for Aeronautics (NACA). The airfoil shape can be precisely generated by

equations that described the properties. Equation B.1 is for generating NACA 0012.

±y = 0.6(0.29
√

x − 0.1260x − 0.3516x2 + 0.2843x3 − 0.1015x4 (B.1)

The NACA 4-digit series can be defined as:

• First digit describing the maximum camber as percentage of the chord.

• Second digit describing the distance of maximum camber from the airfoil leading

edge in tens of percent of the chord.

• Last two digits describing maximum thickness of the airfoil as percent of the

chord.

Therefore, the NACA 0012 airfoil is symmetrical, the 00 indicating it has no

camber and has a maximum thickness of 12% of the chord.

B.2 Meshing with Triangle Software

The coordinates of NACA 0012 can be generated by Equation B.1 or obtained from

various sources such as handbooks or internet. The completed airfoil profile can be
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meshed Triangle software [27]. Triangle is a C program for two-dimensional mesh

generation and construction of Delaunay triangulations, constrained Delaunay trian-

gulation and Voronoi diagrams. Some of the command line switches that are used in

meshing the airfoil are:

• -p meshes an input file (.poly file) which contains a collection of vertices and

segments that describe line, holes and attributes;

• -r refines a previously generated mesh.

• -q quality mesh generation with no angles is smaller than 20◦. Another mini-

mum value can be specified as such as -q28. However in practical, the algorithm

will succeed for minimum angle up to 30◦ but could not converge for angle above

34◦;
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Appendix C

Wilson-θ Method

Wilson-θ is an implicit method for solving equations or systems of equations in step

by step manner, such as the second-order equations of motion (2.25) and (2.29). It

was earlier developed to overcome stiff problems in finite element analysis.

Wilson-θ assumed that the acceleration varies linearly over time interval I =

[tn; tn + θ∆t] where θ is a constant. Following the assumption, the acceleration at

any time t = tn + τ is:

z̈n+τ = z̈n +
τ

θ∆t
(z̈n+θ − z̈n) (C.1)

Integrating Equation C.1 for velocity and displacement at instant tn + τ :

żn+τ = żn + τ z̈n +
τ 2

2θ∆t
(z̈n+θ − z̈n) (C.2)

zn+τ = zn + τ żn +
τ 2

2
z̈n +

τ 3

6θ∆t
(z̈n+θ − z̈n) (C.3)

Substituting τ = θ∆t into (C.3) produces the acceleration at instant of t = tn + θ∆t:

z̈n+θ =
6

(θ∆t)2
(zn+θ − zn) − 6

θ∆t
żn − 2z̈n (C.4)

Solving (C.2) and (C.4) gives the velocity:

żn+θ =
3

θ∆t
(zn+θ − zn) − 2żn − θ∆t

2
z̈n (C.5)

Finally, by substituting Equations (C.4) and (C.5) into equation of motion (2.29)

produces:
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(

K +
3

θ∆t
C +

6

(θ∆t)2
M

)

zn+θ =Fn+θ + C

(

θ∆t

2
z̈n + 2żn +

3

θ∆t
zn

)

+M

(

2z̈n +
6

θ∆t
żn +

6

(θ∆t)2
zn

) (C.6)

therefore the displacement zn+θ can be calculated, provided the state {zn, żn, z̈n} at

instant tn is known and Equation (C.4) is inverted. Finally, the desired condition of

{zn+1, żn+1, z̈n+1} at instant tn + ∆t is obtained from Equations (C.1)-(C.3) where τ

is replaced by ∆t.

Whenever the damping matrix is represented as a linear combination of the mass

and stiffness matrices, such as Equation (2.30), C = fmM + fkK, then C does not

need to be calculated, and Equation (C.6) can be rewritten as:

[(

1 +
3fk

θ∆t

)

K +

(

6

(θ∆t)2
+

3fm

θ∆t

)

M

]

zn+θ

=Fn+θ + K

[

fkθ∆t

2
z̈n + 2fkżn +

3fk

θ∆t
zn

]

+M

[(

2 +
fmθ∆t

2

)

z̈n +

(

6

θ∆t
+ 2fm

)

żn +

(

6

(θ∆t)2
+

3fm

θ∆t

)

zn

]

(C.7)

Wilson-θ method is unconditionally stable if θ > 1.37. However, large value of θ may

cause unnatural damping, and the value θ = 1.4 is mostly recommended.
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Appendix D

Figures of Cl, Cd and Contours of

Absolute Vorticity

The figures presenting the Cl, Cd and the contours of absolute vorticity are presented

for each cases simulated in this study. Cl and Cd are presented in time history graph

in order to capture the effect of vortex formation with the values of lift and drag.

The time histories plots are first shown over the whole simulation time and a sec-

tion is selected for further magnification. From the magnified figures, corresponding

minimum, average and maximum downforce are identified from Cl curve. For each

points selected, a corresponding absolute vorticity contours is produced. From here,

the relevance of Cl can be deduced with the formation of vortex structures.
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Figure D.1: Time history of lift and drag coefficient for rigid airfoil at −5◦ angle of

incidence:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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(a)

(b)

(c)

Figure D.2: Contours of absolute value of vorticity near the rigid airfoil at −5◦ angle

of incidence at:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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Figure D.3: Time history of lift and drag coefficient for airfoil (E = 5.5 × 106 Pa)

at −5◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.4: Contours of absolute value of vorticity near the airfoil (E = 5.5 × 106

Pa) at −5◦ angle of incidence at:(a)minimum downforce;(b)average downforce;

(c)maximum downforce
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Figure D.5: Time history of lift and drag coefficient for airfoil (E = 2.0 × 102 Pa)

at −5◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.6: Contours of absolute value of vorticity near the airfoil (E = 2.0 ×
102 Pa) at −5◦ angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.7: Time history of lift and drag coefficient for airfoil (E = 1.0 × 102 Pa)

at −5◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.8: Contours of absolute value of vorticity near the airfoil (E = 1.0 ×
102 Pa) at −5◦ angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.9: Time history of lift and drag coefficient for rigid airfoil at −10◦ angle of

incidence:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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(a)

(b)

(c)

Figure D.10: Contours of absolute value of vorticity near the rigid airfoil at −10◦ angle

of incidence at:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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Figure D.11: Time history of lift and drag coefficient for airfoil (E = 5.5 × 106 Pa)

at −10◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.12: Contours of absolute value of vorticity near the airfoil (E = 5.5 ×
106 Pa) at −10◦ angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.13: Time history of lift and drag coefficient for airfoil (E = 2.0 × 102 Pa)

at −10◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.14: Contours of absolute value of vorticity near the airfoil (E = 2.0 ×
102 Pa) at −10◦ angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.15: Time history of lift and drag coefficient for airfoil (E = 1.0 × 102 Pa)

at −10◦ angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(a)

(b)

(c)

Figure D.16: Contours of absolute value of vorticity near the airfoil (E = 1.0 ×
102 Pa) at −10◦ angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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