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Abstract

A new two-way method for solving fluid-structure interaction problems is proposed
by coupling immersed boundary method (IBM) and finite element method (FEM).
This new method enables efficient simulation of fluid-structure interaction. Pressure
and viscous forces are used for fluid and elastic body coupling. Pressure field is
solved using fractional step method (FSM). An efficient pressure retrieval method is
developed to allocate pressure information from the nearest fluid cell to Lagrangian
points on the object’s surface. At the cells occupied by a solid region, velocity field is
subjected to momentum exchange procedures. The second correction of pressure is
undertaken in the occupied region. The simplified marker and cell (SMAC) method
is used to find scalar values for velocity and pressure correction. The present method
is applied to 2-D flow fields with an elastic body to show the applicability of the
method. A NACA 0012 airfoil is used as the neutral shape of the elastic object
within the flow. The airfoils are initially placed in a fluid at rest with attack angle
of -5°and -10°. Then, a uniform flow is given at the inlet. The coupling of IBM
and FEM to study fluid and elastic body interaction problems have shown promising
results. The method also shows good performance in obtaining a solution in a feasible

computation time.
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Chapter 1

Introduction

Various engineering problems involving fluid-structure interaction (FSI) simulations
have been attracting researchers and engineers due to its significant physical rele-
vance. However, fluid-structure interaction problems involving fluid flow and moving
or deformable objects by itself is a very challenging subject. Typically, each of the
fluid and solid simulations were solved independently of each other, due to complexity
of the interface and limited resources in computing hardware. Even when problems
were studied experimentally, thorough understanding of fluid-structure interaction
has long been limited by the intricacy existing in these kinds of problems. Such
problems exist in broad scope of application, ranging from chemistry (eg. particulate
flow [1]), biology (motion of animals such as insect and fishes[2], heart valves and
blood flow(3]), solid mechanics (flexible filament in soap film [4]) and aeroelasticity
(aerodynamic loading on wings, flutter etc).

Decades of scientific research has proven that experiments are indispensable as a
source of reliable data for the understanding of certain phenomena. However, set-
ting up highly accurate and repeatable experiments requires significant investments
of time and financial resources. Despite the improvements in experimentation, fail-
ures in repeatability and acquiring deeper understanding are leading the researchers
to explore numerical simulations. Increasing speed and capability of current super-
computers and efficient computing techniques have promoted numerical simulation
methods as an alternative to study complex and intricate physical problems. Fluid-
solid interaction problems that were once out of reach for numerical studies are now
feasible.

Commonly [5, 6, 7, 8, 9, 10, 11, 12, 13, 14], simulations of fluid-structure interac-

tions involving deformable bodies were carried out using body-fitted methods based



on arbitrary Lagrangian-Eulerian (ALE) [15] to solve fluid flow and finite element
method (FEM) to solve structural deformation. One example of this is simulating
Parachute fluid-structure interaction [10, 11}, where a very complex flow is modeled
with a highly deformable object. Re-meshing of fluid domain is done whenever large

deformation occurs.

Approaches in the ALE-FEM method can be divided into monolithic (fully-coupled)
[5, 6, 7, 8, 9] methods and partitioned (iterative)[10, 11, 12, 13, 14] methods. With
the monolithic methods, the fluid and the structural discrete equations are tightly
coupled and solved together. In the partitioned methods, each field is solved sepa-
rately and solution variables are passed iteratively from one field to the other until
convergence is achieved. Common drawbacks of ALE-FEM may be in speed and
efficiency. For objects with complex geometry, the mesh generation would not be a
simple affair, and the need to re-mesh the entire computational domain each time the

object deforms increases the computation load significantly.

One of the means to overcome the ALE drawback is to employ the fixed Cartesian
grid for the fluid. To handle interaction between fluid and solid boundaries, the
immersed boundary method (IBM) [16, 17, 18, 1, 19, 20] can be used to solve the
interaction force at the occupied fluid cells by the solid. Combining Cartesian grid
and IBM with FEM to solve flow field around deformable object and avoiding re-
meshing of fluid domain, will produce an efficient and fast method to solve FSI. As the
IBM-FEM application is being actively developed, a suitable IBM method is needed
for fluid-deformable object interaction. IBM has a few different and independently
methods to solve the interaction force between fluid and solid such as feed-back force
[3] and body-force [17]. Peskin’s [3] force generator uses rectilinear Eulerian grid for
the fluid phase together with a Lagrangian representation for the immersed boundary
at the object surface. The fluid and solid phases share the physical properties at
the immersed boundary by mutual interpolation between Eulerian and Lagrangian
references via a pseudo delta function as weight function. However, this method has
two adjustable parameters for the spring-dashpot feedback force, which are unable to

be determined uniquely.

In Kajishima’s [17] body force method, the force between the solid and fluid is
modeled by a volume fraction function of the solid volumetric fraction and the relative
velocities of the two phases. This method ensures no momentum leakage between the
phases as both fluid and solid share the rectilinear Eulerian grid, therefore, making

interpolation unnecessary. However, continuity is affected due to changes in the
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velocity field, enforced by volume averaging of the local fluid velocity and local solid
velocity. Using Kajishima’s method, the fluid-solid interaction is coupled by the
body force. To use pressure as means of coupling of fluid-solid interaction, additional
correction of pressure and velocity is needed. E. Boujo [21, 22| have explored the
effect of deforming bodies on fluid using body force method. However, due to the
unrobustness of the numerical procedure, the method could not deal with strong
interaction between fluid and solid.

In the present study, we propose a new two-way FSI approach using IBM-FEM to
solve the interaction of incompressible viscous fluid and an elastic body. Kajishima’s
[17] method is used to define the boundary of the structure and derive the velocity
field near the elastic body. The pressure field is solved using fractional step method
[23]. An efficient pressure retrieval method is also developed for the fluid-structure
coupling, which would significantly reduce the number of cells needed to be scanned.
Second-stage velocity and pressure corrections are proposed to take into account the
effect of momentum exchange on the pressure field. Pressure and viscous force are
used as surface forces on the elastic body and the deformation solved by FEM.

Chapter 2 describes the governing equation and numerical methods used in fluid-
solid interaction. Validation of IBM and FEM solver are further explain in detail
in Chapter 3. Chapter 4 then outlines the methods of coupling IBM-FEM while
describing the computational parameters. Results of the interaction dynamics are
then discussed in the latter part on Chapter 4. Finally, Chapter 5 summarizes the

outcome and conclusion of this study.



Chapter 2

Basic Equation and Numerical
Methods

2.1 Immersed Boundary Method

As the introduction describes, immersed boundary method (IBM) enables a fast and
efficient numerical simulation of fluid-solid interaction problems. The absence of re-
meshing of the computational domain by use of fixed and structured grid is possible
even as the object is displaced or deformed.

In the immersed boundary method, the effect of the interface of the fluid and solid
is included in the governing equations of both phases by a special interaction force
term. Based on this interaction force concept, several distinctive methods have been
developed depending on the definition of the interactive force, and on how Eulerian
and Lagrangian variables (fluid and solid domain respectively) are connected.

IBM has a few different and independent methods to solve the interaction force
between fluid and solid, such as feed-back force [3, 16], direct forcing method [18] and
body-force [17]. Peskin’s [3, 16] feed-back force uses rectilinear Eulerian grid for the
fluid phase together with a Lagrangian representation for the immersed boundary
at the object surface. The fluid and solid phases share the physical properties at
the immersed boundary by mutual interpolation between Eulerian and Lagrangian
references via a pseudo delta function as weight function. However, this method has
two adjustable parameters for the spring-dashpot feedback force, which are unable to

be determined uniquely.

Mohd-Yusoff [18] introduced a more straightforward IBM known as “direct forcing
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method”. In order to enforce Dirichlet conditions at the boundary, interpolations are
performed between Lagrangian velocities at the solid surface and Eulerian velocities
at neighboring grid points. These interpolations have proved to be quite unrobust,
which is undoubtedly as obstacle for this method to become widespread for practical
applications.

In Kajishima’s [17] body force method, the force between the solid and fluid
is modelled by a volume fraction function of the solid volumetric fraction and the
relative velocities of the two phases. This method ensures no momentum leakage
between the phases as both fluid and solid share the rectilinear Eulerian grid and,
therefore, making interpolation unnecessary. However, continuity is affected due to
changes in velocity field enforced by volume averaging of the local fluid velocity and
local solid velocity. Using Kajishima’s method, the fluid-solid interaction is coupled
by the body force. To use pressure as means of coupling of new two-way fluid-solid

interaction, additional correction of pressure and velocity is needed.

2.1.1 Basic Equation

The governing equations for incompressible fluid flow are the continuity equation and

Navier-Stokes equations:

ou f 1 T

- tuy- VUf = ——Vp + vy [V’U:f + (VUf) ] (2.2)
ot Pf

where uy is fluid velocity, p is pressure, py density and vy is kinematic viscosity. Both

density and kinematic viscosity are kept constant for this study. Equations (2.1) and

(2.2) are solved by a finite difference method with the second order accuracy in space

and time.

2.1.2 Fluid-Solid Interaction

For cells partially occupied by the solid structure, Kajishima et al [17] proposed

an immersed boundary method that solves the momentum exchange at the fluid-

structure boundary. This method is briefly described by Yuki et al [24] as follows.
A velocity field u is introduced by calculating the volume fraction and finding the

local fluid velocity u; and the local solid phase velocity v, in each cell by:
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u=(1—-a)u;+ v, (2.3)

where a(0 < o < 1) is the local solid volumetric fraction in a cell as shown in Figure
2.1. The fluid-structure interaction then can be solved at the interface by assuming

that the velocity field u follows the modified Navier-Stokes equations:

ou 1

- - _= H 2.4
5 py Vp+H,+f, (2.4)
H, = —u-Vu+v;V-[Vu+ (V)] (2.5)

a time advancement scheme for u can be proposed as follows:

1
f
3 1
_ au, —ug)

where superscripts n represent time step, At is the time increment. The body force f,
accounts for the effect of the intruder on the fluid at the interface and inside the object.
It should be noted that, at @ = 0 where zero interaction force (f, = 0) is enforced,
the above time advancement is then carried by second-order Adam-Bashforth method
and the SMAC method for a single-phase fluid.

In the present study, the numerical schemes are modified, as pressure is used to
couple the fluid-structure interaction. The body force f, is dropped from Equation
(2.4). The following equations describe velocity field us, assuming it follows the

Navier-Stokes equations:

8Uf 1

M _vp+H, 2.
5 prp+ (2.9)
H, = —Uy - V’LLf + va ] [V’LLf + (V’LLf)T] (2.10)

a time advancement scheme for u; can be proposed as follows:
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3 1

1 V-u
p—fVQp"H = Atf (2.12)
1
uitt = up— At—vpt! (2.13)

Pf

where superscripts n represent time, At is the time increment and u; is intermediate
velocity. Time advancement is then carried by second-order Adam-Bashforth method
and Fractional Step Method as a single continuum. A Poisson equation is then solved
with the divergence of the intermediate velocity u; as a source term to provide a
pressure p"*!, which is then used to correct the intermediate velocity, providing a

divergence free velocity u;ﬁ“ and integration proceeding to the next time step.

(¥ (Solid)

1l -«
(Fluid)

Figure 2.1: Uniform Cartesian grid for IBM and definition of solid volumetric fraction

«

2.1.3 Surface Digitizer

To apply immersed boundary method, a suitable and efficient surface digitizer is
required. This is due to the requirement that each solid volumetric fraction is needed
to be evaluated at each cell. Originally, Kajishima et al.[17] developed and used
an efficient method specifically for spherical objects. Recently, Yuki et al [24] have
simplified and improved the digitizer to also enable it for use of arbitrarily shaped

objects. It is based on the following hyperbolic-tangent function to digitize the fluid-
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solid interface for obtaining a:

a = %{l—tanh (Ui‘l)} (2.14)

A= nel Iyl Ins| (2.15)
o = 0.05(1—-X)+0.3 (2.16)
where n = (ng,ny,n,) is a normal outward unit vector at a surface element and

0s is a signed distance from the cell center to the surface element and A is cell size
uniformly distributed over the computational domain. This digitizer was proven to be
accurate when the surface digitiser was used to evaluate the particle volume with 20
and 16 cells covering the diameter of spherical particle, Equation (2.14) gives 0.26%
and 0.43% in error respectively. Also from the simplified formulation, the digitiser

was able to reduce the processing time by 25% compared to the original digitiser.

2.2 Two-Stage Correction of Velocity and Pres-

sure

Velocity field of the fluid cells occupied by solid region will be derived by volume av-
eraging the local fluid velocity u; and the local solid phase velocity v, force described
by Equation (2.3). Careful treatment is needed for derivation of pressure field af-
fected by this change as it will affect the two-way fluid-solid interaction. As pressure
field is not corrected during velocity field volume averaging, a second derivative of
pressure is undertaken at the cells that are affected. Figure 2.2 shows the complete
procedure of two-stage correction of velocity and pressure. A small domain as Figure
2.3, bounding the near region of the object is chosen for the correction.

Velocity field u} at the current time step n, is first introduce to derive for the next
time step n + 1. The intermediate velocity, uy is first derived by the second-order
Adam-Bashforth method (Equation (2.17)). A Poisson equation (Equation (2.18)) is
then solved with the divergence of the intermediate velocity u; as a source term to

provide a pressure p}tt:

3 1
1 AV cUF
—Vprtt = 2.18



which is then used to correct the intermediate velocity of Equation (2.17), providing

a divergence free velocity u} ™.

1
’U{H_l =Ur — Atp—Vp"+1 (219)
!

7+l is derived by the volume averaging the local fluid velocity u ¢ and

A velocity field uj
the local solid phase velocity v, in each fluid cell that is partially or fully occupied
by solid cell, as shown in Equation (2.20).

up ™ = (1 — a)uf™ + av) ™! (2.20)

Since there is significant modification of the velocity field, the value of pressure should
also reflect these changes. Hence the development of the second-stage correction. This
procedure is also applied to fluid cells that are partially or fully occupied by solid cells
bounded by a region called small domain in Figure 2.3. Firstly, in Equation (2.21),
the SMAC method is used to find the scalar potential, ¢"™!. ¢"*! then used as the
velocity and pressure correction factor as shown in Equation (2.22) and (2.23) to

obtain uf™, pitt,

1 V- n+1
—vgrtt = LYz (2.21)
Py At
1
uft™ = wltt — At—vVent! (2.22)
Py
pytt = pitt et (2.23)

where uj ™ and py ™! are velocity and pressure that satisfies continuity equation. The

velocity and pressure fields are used for the next time step.

2.3 Finite Element Method

2.3.1 Basic Equations

For solid phase, Navier’s equation which governs the solid’s displacement is used for

a homogeneous isotropic elastic material under plane strain condition.

822}i . 601-]»
ot? N aSL’j

p +F (2.24)
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Figure 2.2: Two-stage velocity and pressure correction algorithm
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Whole domain

Small domain

Figure 2.3: Schematic showing the small domain

where p is density, r; displacement, ¢ time, o0;; stress tensor, x; coordinate, and Fj
external force. The equation is discretized by a weighted residual method and results

in a linear matrix system which is shown as follows:

M: + Kz = F (2.25)

where M is global mass matrix, K is global stiffness matrix, and 2 is the global
displacement vector. Wilson-6 method is used for the time advancement. Generally,
external forces F are the summation of the surface force components t and volume
force components f over all boundary elements €2, and volume elements V, are shown

by the following equation:

— T T
F = Z/Q N"tdQ+ > [ NTfav (2.26)
b b

e Ve

where N is the shape functions, and df2, the boundary elements. In the present study,
only one method of application of fluid forces has been considered, by explicitly

computing the fluid pressure and viscous forces and applying them as the surface

{t} = {?} (2.27)

Y

forces.
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The fluid and the deformable object are linked by the fluid pressure p in Equation
(2.23) and viscous force, (vg-[Vus+(Vus)T]) to surface forces {t} in Equation (2.27)

as follows:

{;} = (p+vs - [Vus + (Vuy)")) {”} (2.28)

y Ty

where {n,,n,}" is outward normal vector at boundary Q.

2.3.2 Damping

Modeling the dynamics of the solid phase using Navier’s Equation (2.24) led to the
basic second-order propagation Equation (2.25). However, damping, which all actual
solids in motion experience (together with elastic and inertial forces), are not included
in this ideal modeling. Damping essentially dissipates energy for solids which includes
internal and structural damping. Internal damping is primarily due to micro-structure
imperfection, dislocation, and thermoplastic effects etc. in the material. Among inter-
nal damping there are generally distinguished viscoelastic damping, which depend on
the frequency of the oscillation, and hysteresis damping which does not. Meanwhile
structural damping is due to friction at the contacting surfaces of different elements.
Despite damping phenomena being non-linear, it is common to linearize dissipative
forces, for example, by assuming that they are proportional to velocity, leading to the

following equation of motion:

M: + C: + Kz = F (2.29)

where C is the damping matrix. Although C is generally measured or assessed for a
particular mechanical system, one simple and common way to model damping is to
assume that the damping matrix can be taken as a linear combination of the mass

and stifflness matrices as:

C=f.M+ fiK (2.30)

and f,, and f; are called ‘Rayleigh damping coefficients’. These coefficients can be

related by using damping ratio equation shown as follows:

N 2w
where w = 27 f,, and f,, is the natural frequency.

(2.31)
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2.4 Coupling of IBM-FEM

In the Section 2.1.2, the effect of solid on fluid phase and also its implementation has
been outlined in detail. However, the influence of fluid on solid needs to be explained
here. In the present study, the application of fluid forces to the solid is through cal-
culation of pressure and viscous forces. As the Lagrangian coordinates (solid mesh)
do not exactly coincide with Eulerian coordinates (fluid cells), an efficient and yet
sufficiently accurate method for pressure retrieval is required. However, special inter-
polation techniques are not developed during this study, as these techniques require

further in-depth investigation.

2.4.1 Pressure and Viscous Forces

Since velocity and pressure fields are known, it is possible to compute pressure and
viscous forces acting at any point of the fluid-solid interface, and to apply them as

external forces t in Equation 2.26:

t = —puni + Tun (2.32)

where n is the normal outward unit vector at the surface, n| is the unit vector parallel
to the surface and oriented downstream, and p,, and 7,, are respectively pressure and
shear stress at the surface (the subscript w stands for “wall”). With this approach,

no volume force is applied to the solid: f, = 0.

2.4.2 Pressure Retrieval Method

A method is developed to retrieve pressure information from the nearest fluid cell to
a Lagrangian point on the object’s surface. For each node on the surface of the FEM
mesh, the method scans a 3 x 3-mesh around the cell to which the node belongs.
Figure 2.4 is the schematic of this scanning method. Let A be the vector between
node j and cell center, and n the normal vector at node 7. Angle between A and n

is 6 where

A
0 = arccos ( — n ) (2.33)
|Alln|

The cell center is within the fluid domain when # < 90°. The pressure value at the

nearest point outside the object is allocated to the Lagrangian point at the object

13



surface. This method ensures that pressure is assigned for an object with multiple
interfaces within one unit cell. However, the cells size need to be sufficiently fine so
that the pressure values assigned are reasonably accurate without the need for an

interpolation scheme.

1| Hud
— ° ° o
Solid

Solid JH
< . <o /
— 1 AN A o
= _
—— Afﬁ\
< <® <@

n
Fluid \

Figure 2.4: Schematic of pressure scanning method
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Chapter 3

Validation

In this study, IBM and FEM were validated independently before proceeding to com-
bine both codes. The numerical setup for IBM validation is described, followed by a
discussion of C), plots of XFOIL [25], two-stage correction method and the original
Fractional Step Method. For FEM validation, the solver is used to solve for free
oscillation eigenfrequencies and also the deflection of a beam under a gravitational

field.

3.1 IBM Validation

3.1.1 Numerical Setup for Validation

For the validation, the computational domain length and height are 7L and 3L re-
spectively where L is the chord length of the airfoil as show in Figure 3.1. The
object is a NACAO0012 symmetric airfoil. The leading edge of airfoil is located at
x = 3L from the inlet. Table 3.1 shows the parameters used for the validation of
fluid flow using IBM. The Cartesian grid size, Az and Ay = 0.01 with the number
of cells n, x n, = 700 x 300. The time step is At = 0.003s, the free stream veloc-
ity, U, = 1m/s. By estimating the boundary thickness to be approximately 5 %,
the mesh size Az and Ay is much smaller then boundary layer when the Reynolds
numbers are, Re = 500 and 1000.

15



7L

A
v

|

Periodic Boundary
P _,
ox
T

3L

Figure 3.1: Schematics of computational domain for validation

Table 3.1: Computational setup for validation.

Fluid parameters

Number of grid point 700 x 300
Reynolds number, Re (UZL) 500, 1000
Time increment, At 0.003
Grid size,Ax, Ay 0.01
Angle of incidence, « 0%, —5°
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3.1.2 Pressure Coefficient Plots

Pressure coefficients, C), plots are simple means to gain an insight into the flow field of
the fluid flow and validate a computational method simulating airfoil and fluid flow.
It is defined as:

P —Do P —Do
= = (3.1)
500U %

Cp

where p and p, is the local and free stream pressure respectively. Local pressure p
is derived from the closest fluid cell to the surface of the airfoil as the pressure retrieval
method described. Figure 3.2 and 3.3 show results of pressure coefficient C), against
chord length x/c at Re = 500 and 1000 with angle of incidence 0° and 5°. Three
sets of results are presented in each figures, with two sets from IBM (Fractional Step
Method with two-stage correction and Fractional Step Method without correction)
and another set from XFOIL [25] software, which is based on a panel method and
designed to analyze subsonic airfoils and used as the benchmark.

When the angle of incidence is 0°, IBM with two-stage correction shows a very
good agreement with XFOIL data for both Re = 500 and 1000. However, when Re =
1000, the C), values near the leading edge show some discrepancies with XFOIL data.
On the contrary, IBM without two-stage correction show very large disagreement with
the XFOIL and also two-stage correction plots. The errors vary from 67% near the
leading edge to 37% at the trailing edge. For Re = 1000, the error increases to 71%
near the leading edge and 37% at the trailing edge. This discrepancies really shows
the need of two-stage correction method. In the original method, the local pressure
field p that affected by the Equation (2.3) are not corrected and the absent of forcing
term f, possibly lead to such error.

For a 5° angle of incidence plot, IBM without any correction continues the previous
outcome of significant differences with XFOIL data. The plot of two-stage correction
has generally good agreement with XFOIL. However, near the trailing edge, some
discrepancies with XFOIL exist. This highlights the known limitation of IBM to
solve flow near the thin/sharp edges, which is also known as Kutta-condition. Kutta-
condition exists when air flowing over the topside and air flowing under the bottom
side meet at the sharp trailing edge. There is no flow of air around the trailing
edge and forward towards the leading edge. As an airfoil with sharp trailing edge
begins to move with a positive angle of attack, the air passing the bottom side of

the airfoil reaches trailing edge and must flow around the trailing edge and along the
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topside of the airfoil towards the stagnation point. Inability to properly solve this
condition would affect the overall results of C), distribution. However, since the error
is considerably small, IBM with two-stage correction method is very much capable

for further development in this study.

3.2 FEM Validation

The solid phase solver is shared with the work of Edouard Boujo [22] which validate

it through consideration of free oscillation eigenfrequecies. Simulation results for an

elastic beam were compared to theoretical predictions from the oscillation theory.
The deflection of a beam in gravitational field was also simulated to validate the

external volume forces such as the interaction force.

3.2.1 Free-Oscillation

In the case of free oscillation, an elastic beam of rectangular cross-section is investi-
gated, with one of the beam’s ends fixed in space (clamped condition). Theoretical

eigenfrequencies f under free-oscillation (no external force) are given by [26]:

A, T |E
T 3.2
fa 16\/§L2”ps (3.2)

where n is the oscillation mode, 7' is the beam thickness, L is the beam length

E and p, are Young’s modulus and density of the material respectively, and A,

coefficients are given as follows:

1.194%, n=1,
An = 4 2.988%, n=2, (3.3)
(2n—1)%, n>3.

The concept of free-oscillation eigenfrequencies and eigenmodes is based on the as-
sumption that the deformation of the object can be described as a linear combination

of harmonic functions of time:

z(z,t) = Z Zp (2, t) = Z Zn(z)cos(wnt + ¢n) (3.4)

or in complex notation:
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Figure 3.2: Plots of C, against z/c for NACA0012 at 0° angle of incidence
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Cp

2w, t) = 3 za(w,t) = 3 2 ()eitenton (3.5)
n=1 n=1

which define the whole system oscillating at the same frequency with each mode
being a unique solution of equation of motion. For a certain mode n, substituting
%, = —w?z, into the undamped equation of motion (2.25) without the external force

gives:

(K — w2M)2, =0 (3.6)

which is an eigenvalue problem. For each mode n, the solution of (3.6) is made of the
eigenvalue w? and the eigenvector 2, which describes the frequency f, = w, /27 of the
oscillation (time function cos(w,t)) and the shape of the object deformation (space
function Z,(x)), respectively . For a system solved by FEM with a finite number of
degree of freedom, the number of modes solvable is also finite. It is important to note
that only a lower range of eigenfrequencies have significant contribution to the time
response of the whole system.

To assess the results of FEM solver, a rectangular beam was modelled and meshed

with triangular elements [27]. The solver solves for mass, stiffness matrices and
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eigenvalue problem (3.6). Parameters of the beam are as follow; L = 1m, T'= 0.2m,
E = 10° Pa and p, = 10kg/m3. The beam was created using various mesh sizes,
with the finest mesh up to N = 700. Figure 3.4 shows the mode shapes 2, of the first
three oscillation modes (ie lowest three frequencies). The figures are showing good
agreement with theoretical predictions and general outcome, by showing distinct series
of n nodes (zero displacement) and n anti-nodes (maximum displacement) at specific
locations along the beam.

Figure 3.5 shows the first two modes of eigenfrequencies f,, with respect to N,
being the number of nodal points to mesh the beam. It shows fast convergence
obtained with the increase of nodal points. The asymptotic value of f; and f; also in
a very good agreement with the theoretical frequencies f* predicted by (3.2).

i 0.1}

0 02 04 06 08 1

Figure 3.4: First three mode shapes of the free-oscillation of a beam clamped at one

end
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Figure 3.5: Lowest two eigenfrequencies of a beam clamped at one end

3.2.2 Volume Forces Implementation

For evaluation of volume force, a beam with a fixed end is considered and then placed
in a gravitational field. From the elastic beam theory, the maximum vertical deflection

due to gravitational field would be:

ey 3psgL?
%) =5
where ¢ is the gravitational acceleration. The same beam as in Section 3.2.1

(3.7)

was computed numerically by the FEM solver to find the deformation due to the
gravitational field. FEM solver solved the static problem Kz = F, where the external
force was applied as the volume force f = p,g. Figure 3.6 shows the maximum vertical
deflection with respect to number of nodal points N. The asymptotic value of z,(L)
is within a very good agreement to theoretical value 2} (L) as N increases, the error
is less than 4% when N = 482.
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Chapter 4

Application of IBM-FEM with an

Elastic Airfoil in a Uniform Flow

In this chapter, the IBM-FEM code is applied to an elastic airfoil in a uniform flow.
Fluid and solid domains parameters are specified together with the boundary condi-
tions. The airfoil is found to be oscillating when subjected to the uniform flow. The
C}, Cy curves are analyzed and compared to the frequencies of shedding vortices from

the leading edge.

4.1 Numerical Setup

4.1.1 Computational Domain and Geometry

For the simulation involving IBM-FEM of an elastic airfoil in a uniform flow, the
computational domain length and height are 10L and 7.5L respectively where L is
the chord length of the airfoil as show in Figure 4.1. The airfoil is a NACA0012
symmetric airfoil. The leading edge of airfoil is located at x = 2.5L from the inlet.
On top and bottom boundaries of the computational domain, a periodic boundary
condition is used. At the inlet, a constant velocity U, is prescribed and at the outlet,

gradient free condition is used.

4.1.2 Fluid and Solid Domain Parameters

Table 4.1 shows the fluid domain parameters used for the simulation of fluid-solid
interaction by IBM and FEM. The Cartesian grid size, Ax = Ay = 0.025 with the
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number of cells n, x n, = 400 x 300. The time step is At = 0.003s, the free stream
velocity, U, = 1m/s and the Reynolds number, Re = 500.

Table 4.1: Fluid domain parameters

Number of grid point | ng,n, | 400 x 300
Reynolds number Re (%) 500
Time increment At 0.003
Grid size Ax, Ay 0.025
Free stream velocity U, 1

Table 4.2 shows the solid domain parameters. The cases were setup between —5° and
—10° angle of incidence. Two nodes located on the center line at 2'/L = 0.3 and 0.4
are assigned as fixed points for the airfoil and the rest are free to deform. The airfoil
is made of 456 triangular elements (n.), with 293 total nodal points (n,) generated
using Triangle software [27]. A different set of material strength are considered for

the airfoil with the properties given in Table 4.2.

Table 4.2: Solid domain parameters

Airfoil chord L 1

Number of elements Ne 456

Nodal points ny 293

Young’s Modulus E (Pa) | co(Rigid), 5.0 x 10°,2.0 x 10%,1.0 x 10?
Poisson Ratio Vs 0.45

Angle of incidence e} —5% and —10°

4.1.3 Boundary Conditions

A constant uniform velocity (u,v),—o = (U,,0) is prescribed at the inlet, while the

convective boundary condition
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ou  Ou B
(5 +75) =9 .

is specified at the outlet (z = 10L), where u is the mean convective velocity at the

outlet. This is implemented on a collocated grid as

At

n —n n n

o netly — U A—x(unx—f—l,j - 'u‘nx,j) (4.2)

Up,+1,5

=1Uu

where subscripts indicate space indices (i ranges from 0 to n, + 1 and j from 0 to
n, + 1) and superscript indicate time indices (n stands for ¢, = nAt). The latter are
omitted in some equations when all refer to the same time. The vector notation u is

used when equations for v and v are the same. At the outlet a gradient-free condition

and implemented as p,,+1; = ¢n,, ;. For top and bottom boundaries, periodic bound-

is specified:

ary conditions are specified.

4.2 Results and Discussion

4.2.1 Airfoil Oscillating in a Fluid Flow at —5° Angle of In-

cidence

For airfoil at —5° angle of incidence, Fig. 4.2 and 4.3 show the lift and drag coefficients
in time history fashion for different Young’s modulus values. For the enlarged section
of the time history plot, the C; and C; were shown to be oscillating regularly. Three
points of interest are marked on each C} plot to represent the minimum, average and
maximum down-force. At the exact time step, contour of absolute vorticity in the
vicinity of the airfoil are are plotted and shown in Fig.4.4. For this plot, the Young’s
modulus is £ = 1.0 x 10? Pa. It is clear that the alternating vortex shedding are
one of the contributing factor for oscillation in C; and Cy with time. It shows the
correlation between the vibrating nature of C; and C; with the edge displacement
and vortex formation.

From the C; and C, plots, it is possible to calculate the frequencies of changes in lift

and drag with time. Frequencies of the airfoil’s trailing edge oscillation in the free
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Figure 4.4: Contours of absolute value of vorticity near the airfoil at —5° angle of
incidence, £ = 1.0 x 10%, Re = 500 at:(a)minimum down-force;(b)average down-

force;(c)maximum down-force
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stream are also calculated. The eigenfrequency of the first mode are obtained from
the FEM code. Table 4.3 shows the frequencies of C}, trailing edge displacement and
mode 1 of the airfoil. The Cj frequencies are proportional to the Young’s modulus
as the airfoil is getting softer, the frequency is also getting lower. Frequencies of the
trailing edge also compares very well with the C;. However, for Case 111, the frequency
is showing some possible discrepancies. The frequency is even higher than Case II
which has higher E. Eigenfrequencies of the airfoil are totally in disagreement with

values obtained for C; and trailing edge.

Table 4.3: Frequencies of C; and airfoil in free stream at —5°

Case E C; Frequency Trailing Edge Eigenfrequency of
Frequency Airfoil
(Pa) f(Hz) f(Hz) Mode 1, f((Hz)
I | oo (Rigid) 1.136 nil- nil-
II 5.5 x 10° 1.124 1.124 3.483
I | 2.0 x 10? 1.099 1.16 0.0021
IV | 1.0 x 10? 0.926 0.926 0.0015

Figure 4.5 shows the plots of lift and drag coefficient of an airfoil (E = 2 x 10?
Pa) for the whole simulation time. When ¢ is approaching ¢t = 60s, it is clear that
the lift is oscillating with a different mode. Prior to ¢ = 60s, the oscillation is regular
and better than the multimode oscillation. The irregularities in the oscillation could
be due to numerical errors as no phase change was detected from the flow. However,

there are also different factors that can cause this type of oscillation.

4.2.2 Airfoil Oscillating in a Fluid Flow at —10° Angle of

Incidence

For airfoil at —10° angle of incidence, the results are following the trend of cases from
—5°. Fig. 4.6 and 4.7 show the lift and drag coefficients in time history fashion for
different Young’s modulus values. Three points of interest are marked on each Cj plot
to represent the minimum, average and maximum down-force. In these time steps,

contour of absolute vorticity in the vicinity of the airfoil are plotted and shown in
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Fig.4.8. For this plot, the Young’s modulus is £ = 1.0 x 10* Pa. It is clear that the
alternating vortex shedding is one of the contributing factors for oscillation in C; and
Cy with time.

Table 4.4 shows the frequencies of C; and trailing edge displacement. Contrary
to —b° case, it remains true that C; frequencies are proportional to the Young’s
modulus ie.: as the airfoil is getting softer, the frequency is also getting lower with
the frequencies of the trailing edge, also agreeing to the C; frequencies. For comparison
with eigenfrequencies, the results are again in total disagreement.

Figure 4.9 shows the plots of lift and drag coefficient for the whole simulation
time. This time, the plots are showing the multiple mode shapes experienced by the

airfoil. The oscillation happens very early in the simulation, on the contrary to the
—5°.

Table 4.4: Frequencies of C; and airfoil in free stream at —10°

Case E C; Frequency Trailing Edge Eigenfrequency of
Frequency Airfoil
(Pa) f(Hz) f(Hz) Mode 1, f(Hz)
I | oo (Rigid) 1.053 nil- nil-
II 5.5 x 106 1.042 1.052 3.483
I | 2.0 x 102 0.862 1.0 0.0021
IV | 1.0 x 10? 0.769 0.64 0.0015

4.2.3 Discussion

Real fluid-solid interaction is highly complicated in nature, such simple representation
in this study is not enough to provide full physical understanding. From the results
in Table 4.3 and 4.4, we can see there is a general tendency that when the Young’s
Modulus (F) is lower, the trailing edge oscillation frequecies is also smaller. This is in
line with the reduction of eigenfrequencies of the airfoil with softer airfoil. With more
samples, we can deduce that the trailing edge frequencies are directly proportional to

the strength of the material.

Figure 4.5 and 4.9 show strong nonlinear vibration of C; and Cy with respect
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Figure 4.8: Contours of absolute value of vorticity near the airfoil at —10° angle
of incidence, £ = 1.0 x 10, Re = 500 at:(a)minimum down-force;(b)average down-

force;(c)maximum down-force
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to time. Few causes might influence the vibration, eg. multimode vibration of the
airfoil, strong interaction between fluid and solid and also numerical error if the wave
shape is very erratic. Multimode vibration usually caused by different forcing function
acting at the same time on the object. Numerical error causes the derivation of Cj
and Cy to be inconsistent as the value fluctuates hence giving a very nonlinear graph.
This nonlinearity is more apparent at very low E which suggested that it can be one
of the reason for such results. As we are observing the trends of the lift and drag
coefficients, further investigation is required to accurately understand the real nature
of the events. Also it is again recommended to find the link between eigenfrequencies

and the frequencies of €} and vortex shedding.
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Chapter 5

Conclusion

In the present study, a new fluid-structure interaction (FSI) approach using IBM-
FEM to solve the interaction of incompressible viscous fluid and an elastic body was
proposed. Kajishima’s [17] method was used to define the boundary of the structure
and derive the velocity field near the elastic body, and the pressure field was solved
using fractional step method. An efficient pressure retrieval method is also developed
for the fluid-structure coupling, which would significantly reduce the number of cells
needed to be scanned. Second-stage velocity and pressure corrections were proposed
to take into account the effect of momentum exchange on the pressure field. Pressure
and viscous force were used as surface forces on the elastic body and the deformation

solved by FEM. The chapters can be summerized as follows:

e IBM was validated by obtaining the C), distribution on the airfoil. Meanwhile,
FEM was validated through calculation of eigenfrequencies and deflection due

to gravity.

e Using pressure and viscous force as fluid-structure coupling, it was successfully
applied for fluid flow past an elastic deformable body. Mixed modes in the vi-
bration of the airfoil were clearly observed, especially when the Young’s modulus
is 1.0 x 10? Pa.

e For a moderately stiff airfoil, the oscillation shows very close agreement with

the generation of vortex at the trailing edge.

e Reducing the strength of the material is resulting the decrease the frequency of

the trailing edge.
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This study shows the applicability of the proposed method in simulating fluid-solid
interaction problems. The method is able to simulate a strong interaction between
fluid and solid. This method can be further expanded into various applications such

as in biology, heart valves and blood flow, solid mechanics and aeroelasticity.

40



List of Publication

Papers in Scientific Journal

1. Tuan-Ya T.M.Y.S., Takeuchi S. and Kajishima T. and Ueyama A.,“Immersed
boundary method (body force) for flow around thin bodies with sharp edges”;

International Journal of Mechanical and Materials Engineering (accepted).

Presentation at International and Domestic Confer-

ence

1. Boujo E., Tuan-Ya T.M.Y.S., Takeuchi S., Kajishima T., “Study of fluid-
structure interaction problem involving deformable objects by a new finite el-

ement - immersed boundary approach.”3rd International Symposium on Aero
Aqua Bio-Mechanisms, Np.P07(CD), July 2006, Ginowan, Okinawa, Japan.

2. Tuan-Ya T.M.Y.S., Takeuchi S. and Kajishima T., “Study of hydrodynamic force
acting on an elastic object using immersed boundary and finite element meth-

ods”; Symposium on Computational Fluid Dynamics, NO.B5-4(CD); December
2006; Nagoya, JAPAN.

3. Tuan-Ya T.M.Y.S., Takeuchi S. and Kajishima T.,“Immersed boundary and fi-
nite element methods approach for interaction of an elastic body and fluid by
two-stage correction of velocity and pressure”; Proc. Joint ASME-JSME Flu-
ids Engineering Conference, FEDSM2007-37160(CD); July 2007; San Diego,
California, USA.

4. Tuan-Ya T.M.Y.S., Takeuchi S. and Kajishima T., “Immersed boundary method
for flow around thin bodies with sharp edges”, 3rd Asian-Pacific Congress on
Computational Methods, p.28 (abstract), December 2007, Kyoto, JAPAN

41



Appendix A

IBM for Thin Profile Object

To apply IBM (body force) on a thin profile object, a new method is developed to
identify surrounding fluid cells nearest to the Lagrangian point on the object’s surface.
For each node on the surface of the object, the method selects a 3x3-mesh around
the cell to which the node belongs. The same procedure is repeated for all nodes
and redundant cells will be removed. Local solid volumetric fraction of each cells are
calculated using Equations (2.14,2.15,2.16). Since the thin object has 2-sides, 1 side
must be treated as an external surface and another side as internal surface. Figure
A.1 shows the selected fluid cells near the thin body.

A.1 Simulation Setup

Two simulation cases have been set up. Case 1, involving a crescent shaped thin body
and Case 2 with thin airfoil. Both bodies are initially placed in a fluid at rest and
the thin airfoil with an attack angle of 15°. The fluid is subjected with an instan-
taneous start at the inlet with velocity U,. Figure A.2 and A.3 show schematics of
the computational domains for both cases and Table A.1 and A.2 shows the compu-
tational conditions. On top and bottom boundaries, a periodic boundary condition
is used. At the inlet, a constant velocity is prescribed and at the outlet, a gradient

free condition is used.
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Figure A.1: Fluid cells selected for calculation of local volumetric fraction

43



Table A.1: Computational setup for crescent shaped body (case 1)

Parameters Coarse mesh Fine mesh
Number of grid point 200 x 150 400 x 300
Reynolds number, Re (UZL) 200 200
Time increment, At 0.005 0.0025
Grid size,Ax, Ay 0.1 0.05

Table A.2: Computational setup for this airfoil (case 2)

Parameters Coarse mesh Fine mesh Extra fine mesh
Number of grid point 200 x 150 400 x 300 800 x 600
Reynolds number, Re (UZL ) 200 200 200
Time increment, At 0.005 0.0025 0.00125
Grid size,Ax, Ay 0.1 0.05 0.025
Angle of attack («) 15° 15° 15°
P 20 .
A
> T
— ..
Periodic
Ed Boundary
Uo — > 15
> »_
N K ox
N Crescent e
N shaped thin
N body
y A

Figure A.2: Schematic of computational domain for crescent shaped thin body

44



20

A
A\ 4

A
R T
—> .
Periodic
U — Boundary
9
o 15
> T\ P _
ox
¥ ~ Thin airfoil
> e
9
9

Figure A.3: Schematic of computational domain for thin airfoil

A.2 Results and Discussion

A.2.1 Crescent shaped thin body

For a crescent shaped thin body, two possible configurations were tested for the se-
lection of further mesh refinement. The first configuration is to assign the surface
facing the incoming flow as the external surface (left external) and the second config-
uration assigns the surface opposing the incoming flow as the external surface (right
external). Figure A.4 shows the velocity vectors for both configurations. The plots
are at the same time instance of ¢ = 5 where the flow is still developing. From the
plots, we can observe the virtual thickness represented by the empty spaces. From
there, we can see that the configuration of LE is much better in simulating the flow

over a thin body.

The virtual thickness area is identified as an area that needs to be handled to
obtain a reasonable solution. Further refinement of the mesh is done to see the effect
on the virtual thickness. Figure A.5 shows the velocity vectors for the refined mesh of
a crescent shaped thin body. Figure A.5(a) plotted at the instance of ¢ = 5 where the
fluid flow is still developing and Figure A.5(b) plotted at t = 200 where the fluid flow
is fully developed. The virtual thickness area seems to be reduced quite significantly.
With further refinement, the virtual thickness will become negligible to the dimension
of the thin body.
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Figure A.4: Velocity vectors plot for LE and RE on crescent shaped thin body at the

same time instance of t =5
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Figure A.5: Velocity vector plot of refined mesh for crescent shaped thin body
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A.2.2 Thin airfoil

To study the effect of mesh refinement on the virtual thickness, thin airfoil is subjected
under the same flow condition as a crescent shaped thin body. The mesh was refined
up to 3 times and the coefficient of lift is measured for all three instances. Figure A.6
shows the velocity vectors of flow around thin airfoil with 3 mesh sizes. In Figure
A.6(a), the velocity vectors clearly show the effect of virtual thickness as the flow
near the leading edge is being deflected quite significantly. Refinement of mesh shows

the reduction of deflection due to virtual thickness of the thin airfoil.

s T L I |
s ssasyc—"" -t oo ———

== ss s s s s

(a) Coarse mesh (b) Fine mesh

A AAAR A

(¢) Extra fine mesh

Figure A.6: Velocity vectors of thin airfoil with 3 different mesh sizes
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Table A.3 shows the C, of thin airfoils with 3 different mesh sizes. C}, for fine and
extra fine mesh are very close in values. It shows the convergence in C' with respect
to mesh refinement. The virtual thickness for fine meshes is negligible such that, it

does not affect much in the values of C7.

Table A.3: C'p, of thin airfoil according to mesh sizes

Mesh size, Az C,

0.1 0.84
0.05 0.74
0.025 0.75
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Appendix B

Airfoil and Mesh Construction

B.1 NACA Profile

The undeformed airfoil shape is based on NACA 0012 profile which belongs to NACA
4-digit series. It was designed for aircaft wings and developed by National Advisory
Committee for Aeronautics (NACA). The airfoil shape can be precisely generated by
equations that described the properties. Equation B.1 is for generating NACA 0012.

+y = 0.6(0.29/7 — 0.1260x — 0.35162% + 0.28432* — 0.1015z* (B.1)
The NACA 4-digit series can be defined as:

e First digit describing the maximum camber as percentage of the chord.

e Second digit describing the distance of maximum camber from the airfoil leading

edge in tens of percent of the chord.

e Last two digits describing maximum thickness of the airfoil as percent of the
chord.

Therefore, the NACA 0012 airfoil is symmetrical, the 00 indicating it has no

camber and has a maximum thickness of 12% of the chord.

B.2 Meshing with Triangle Software

The coordinates of NACA 0012 can be generated by Equation B.1 or obtained from

various sources such as handbooks or internet. The completed airfoil profile can be

20



meshed Triangle software [27]. Triangle is a C program for two-dimensional mesh
generation and construction of Delaunay triangulations, constrained Delaunay trian-
gulation and Voronoi diagrams. Some of the command line switches that are used in

meshing the airfoil are:

e —p meshes an input file (.poly file) which contains a collection of vertices and

segments that describe line, holes and attributes;
e -r refines a previously generated mesh.

e —q quality mesh generation with no angles is smaller than 20°. Another mini-
mum value can be specified as such as -q28. However in practical, the algorithm
will succeed for minimum angle up to 30° but could not converge for angle above
34°;
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Appendix C

Wilson-60 Method

Wilson-6 is an implicit method for solving equations or systems of equations in step
by step manner, such as the second-order equations of motion (2.25) and (2.29). It
was earlier developed to overcome stiff problems in finite element analysis.

Wilson-6 assumed that the acceleration varies linearly over time interval I =
[tn;tn + OAL] where 6 is a constant. Following the assumption, the acceleration at

any time t =t,, + 7 is:

Sy = En + @(Z'nw — Z) (C.1)

Integrating Equation C.1 for velocity and displacement at instant ¢,, + 7:

2
Zn4r = Zn + 7z, + m(ZnJr@ — Zn) (CQ)
., T e i}
Zndr = Zn + Tz, + E,Zn —+ M(ZnJr@ — Zn) (C?))

Substituting 7 = #At into (C.3) produces the acceleration at instant of ¢ = ¢, + OAt:

. 6 6 . .
Zn40 = m(qur@ — Zn) — @Zn — 2Zn <C4)

Solving (C.2) and (C.4) gives the velocity:

3 OAL

ZnJr@ = @(szr@ — Zn) — 2Zn — Tzn (C5)

Finally, by substituting Equations (C.4) and (C.5) into equation of motion (2.29)

produces:
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3 6 (JAN 3
K M =F —7Z 2z —
( +9Atc+ (OAD? )Zn+e n+9—|—0< i Zn + z"+«9AtZ”)

6 6
M (23 '
* ( AT (eAt)Zz")

therefore the displacement z,.4 can be calculated, provided the state {z,, 2,, 2.} at

(C.6)

instant ¢, is known and Equation (C.4) is inverted. Finally, the desired condition of
{Zn+1s Zn11, Zn1} at instant ¢, + At is obtained from Equations (C.1)-(C.3) where 7
is replaced by At.

Whenever the damping matrix is represented as a linear combination of the mass
and stiffness matrices, such as Equation (2.30), C' = f,,M + fK, then C does not

need to be calculated, and Equation (C.6) can be rewritten as:

_ fk9A 3fk

| In0A 6 6 3fm
+MK 5 )zn+<9At+2fm) Zn <<9At) +@) n}

Wilson-6 method is unconditionally stable if # > 1.37. However, large value of § may

cause unnatural damping, and the value # = 1.4 is mostly recommended.
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Appendix D

Figures of (), C; and Contours of
Absolute Vorticity

The figures presenting the C}, C; and the contours of absolute vorticity are presented
for each cases simulated in this study. C; and C, are presented in time history graph
in order to capture the effect of vortex formation with the values of lift and drag.
The time histories plots are first shown over the whole simulation time and a sec-
tion is selected for further magnification. From the magnified figures, corresponding
minimum, average and maximum downforce are identified from Cj curve. For each
points selected, a corresponding absolute vorticity contours is produced. From here,

the relevance of C) can be deduced with the formation of vortex structures.
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D.1 5° cases

0.3
0.25 | 1
0.2 1
S 015 1
01 1
0.05 8

@ o 10 20 30 40 50 60 70 80 90

-0.05 | 1
01} 1
_ -015F :
-0.2 1
-0.25 1
-0.3 1
-0.35 : : : : : : : :
b o 10 20 30 40 5 60 70 8 90

0.0484
0.0483
0.0482
0.0481

0.0479
0.0478
0.0477
0.0476

@ 53 54 55 56

-0.118

-0.1185
-0.119 . _(d) N\ /

/N /N \ /

s RN [N N /
01205 |/ \ / e / N/
o2/ \ N\ N/
01215 |/ N4 N pd

-0.122
() 53 54 55 56

Time

Figure D.1: Time history of lift and drag coefficient for rigid airfoil at —5° angle of

incidence:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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(c)

Figure D.2: Contours of absolute value of vorticity near the rigid airfoil at —5° angle

of incidence at:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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Figure D.3: Time history of lift and drag coefficient for airfoil (F = 5.5 x 10° Pa)
at —5° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(c)

Figure D.4: Contours of absolute value of vorticity near the airfoil (E = 5.5 x 10°
Pa) at —5° angle of incidence at:(a)minimum downforce;(b)average downforce;

(c)maximum downforce
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Figure D.5: Time history of lift and drag coefficient for airfoil (F = 2.0 x 10* Pa)
at —5° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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Figure D.6: Contours of absolute value of vorticity near the airfoil (£ = 2.0 X
10> Pa) at —5° angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.7: Time history of lift and drag coefficient for airfoil (F = 1.0 x 10* Pa)
at —5° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(c)

Figure D.8: Contours of absolute value of vorticity near the airfoil (£ = 1.0 X
10> Pa) at —5° angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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D.2 10° cases
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Figure D.9: Time history of lift and drag coefficient for rigid airfoil at —10° angle of

incidence:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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Figure D.10: Contours of absolute value of vorticity near the rigid airfoil at —10° angle

of incidence at:(a)minimum downforce;(b)average downforce;(c)maximum downforce
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Figure D.11: Time history of lift and drag coefficient for airfoil (£ = 5.5 x 10° Pa)
at —10° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(c)

Figure D.12: Contours of absolute value of vorticity near the airfoil (£ = 5.5 X
10 Pa) at —10° angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.13: Time history of lift and drag coefficient for airfoil (£ = 2.0 x 10? Pa)
at —10° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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(c)

Figure D.14: Contours of absolute value of vorticity near the airfoil (£ = 2.0 X
10> Pa) at —10° angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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Figure D.15: Time history of lift and drag coefficient for airfoil (£ = 1.0 x 10? Pa)
at —10° angle of incidence:(a)minimum downforce;(b)average downforce;(c)maximum

downforce
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Figure D.16: Contours of absolute value of vorticity near the airfoil (£ = 1.0 X
10> Pa) at —10° angle of incidence at:(a)minimum downforce;(b)average down-

force;(c)maximum downforce
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