
Title 四辺形の視覚的解釈

Author(s) 徐, 剛

Citation 大阪大学, 1989, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2382

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



THE VISUAL INTERPRETATION OF 

  QUADRILATERALS

GANG XU

FACULTY OF ENGINEERING 

     OSAKA UNIVERSITY 

        December 1988

SCIENCE



THE VISUAL INTERPRETATION 
   OF QUADRILATERALS

    By 

  Gang Xu 

December 1988

          A DISSERTATION 
           SUBMITTED TO 

THE FACULTY OF ENGINEERING SCIENCE 
       OF OSAKA UNIVERSITY 

      IN PARTIAL FULFILLMENT 
       OF THE REQUIREMENTS 

        FOR THE DEGREE OF 
      DOCTOR OF PHILOSOPHY



Contents

Preface iii 

Chapter 1 Introduction 1 

       1.1 Philosophy of vision research 1 

       1.2 What is a line drawing? 4 

        1.3 Review and critics of previous work 6 

       1.4 Overview of this dissertation 9 

Chapter 2 The General Viewpoint (GVP) Assumption 11 
       2.1 Projection and the GVP assumption 11 
       2.2 The GVP assumption for continuity and discontinuity 14 
       2.3 The GVP assumption for interpreting vertical and horizontal lines20 

Chapter 3 Interpreting Quadrilaterals: The Rectangularity RegularitA3 
       3.1 The rectangularity regularity 23 

       3.2 Deriving focal point and rectangle orientation 25 

Chapter 4 Interpreting "Curved Qadrilaterals": The LOC Regularity 34 
       4.1 Lines of curvature and the LOC regularity 34 
       4.2 Segmentation rule 38 
       4.3 A net-knitting algorithm 40 
       4.4 Surface orientation computation 48 

Chapter 5 Interpreting Quadrilaterals under Gravity 52 
       5.1 The gravity regularity 52 
        5.2 Camera-ground model 53 
       5.3 Ground contact relations 55 

Chapter 6 Quadrilaterals as Faces of a Rectangular Polyhedron 63 
       6.1 The geometrical level 63 
       6.2 The perceptual level 69 

Chapter 7 Summary and Discussions 73 
       7.1 Summary 73 
       7.2 Representation of visual information 75 
       7.3 Conditions for the rectangle interpretation 75 
       7.4 Perception of the contact relations 76 
        7.5 Towards a rule-based system 77 

Appendix Proof of the Constant Ratio Intersection Theorem 78 

Bibliography 82



Preface

      Computer Vision is a research field that encompasses many topics, each of 

  which tries to tackle a particular problem. They include stereo, motion, texture, 

  color, contour, and so on. This thesis is generally concerned with the problem 

  of the visual interpretation of line drawings, or as sometimes people call it, the 

  problem of shape from contour. Actually they are not exactly the same, though 

  the two largely overlap. The problem of shape from contour is still too big to 

  tackle in one step. Thus what we did was to choose some target which is within our 

  reach, and by shooting it we can obtain some insights into the nature of the general 

  problem of interpreting image contours. The target we chose is quadrilaterals, 

  planar and curved, with which everybody gets familiar in his/her very early stages 

  of education. 

     The work described in this thesis was done during my three-year Doctor's 

  Course in Osaka University. Just before it I took the prerequisite two-year Mas-

  ter's Course, during which I studied stereo, also a subfield of Computer Vision. I 

  came to Japan in 1983 after graduating from the Nanjing Institute of Technology 

  (now Southeast University) in China. I was very fortunate to be able to work 

  under the guidance of Professor Saburo Tsuji. I was much indebted to him for 

  his intellectual support. He provided me with inspiring advice and timely encour-

  agement, trusted me with the freedom to do my own thing, and talked with me 

  not only about computer vision but also about society and people. 

     I thank Professor Seiji Inokuchi and' Professor Tadahiro Kitahashi for serving 

  on my reading committee. The thesis has benefited from their comments and 

  suggestions. Professor Inokuchi also helped me receive a scholarship from the 

  Okumura Foundation, which supported me a great deal. 

     Professor Takeshi Kasai, since my first day in the university, has always given 
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me delightful time. I really enjoyed talking with him and listening to his historical 

stories, not only Japanese ones but also Chinese ones. 

   I am grateful to Dr. Masahiko Yachida, Dr. Minoru Asada, Dr. Norihiro 

Abe and Dr. Masakazu Imai for their constructive suggestions and generous 

coorperations. 

   I was really fortunate to have Hayase-san (Toshio Hayase) in the laboratory, 

who has been always there whenever I needed him. Many others contributed 

to the working environment of the laboratory. At the risk of forgetting some, 

they include Hengli Guo, Mayumi Akimoto, Nobuki Kajihara, Hiromi Tanaka, 

Weon Geun Oh, Seiji Yamada, Jiangyu Zheng, Qian Chen, Ichiro Kimura, Yasuaki 

Okamoto, Shunji Sako, Hideki Kondo, Kazuhisa Nishimura and Yasuo Hirouchi. 

My thanks also go to Hiroshi Kaneko and Takeshi Shakunaga for their kind hos-

pitality during my 5-week stay at the Musashino Telecommunications Research 

Institute of NTT in the summer of 1984. 

   Last but not least, I would like to thank the Chinese people, who bore the 

expense of my five-and-half-year stay in such a costly country.
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Chapter 1 Introduction

1.1 Philosophy of vision research 

Human brain, including the perceptual systems, is probably the last hardest nut 

for scientists to crack. It is so complex that one cannot really understand how 

it works by just cutting it into pieces, because it is of little value to observe the 

"dead" neural networks . Neurophysiologists actually do cut the brain into pieces 

to investigate how the neurons connect to each other, but this does not directly 

tell us what and how the brain is doing. The situation is analogous to the relation 

between physics and chemistry; one cannot understand all the chemical properties 

of a substance by just studying its physical properties. Besides the physiological 

approach, we have the psychological approach and the computational approach to 

brain research. Let us constrain our attention to vision. There is a division of 

labor for the three approaches. The computational approach tries to reveal what is 

computed and how it is derived; the psychophysical approach studys what specific 

algorithms are employed to calculate the solution; and the neurophysiological 

approach analyzes how the algorithms are implemented by the neural structures. 

   Similarly, in computer vision, we also have three levels of research: the com-

putational theory, algorithm and implementation [Marr, 1982]. At the level of 

computational theory, human vision and computer vision are considered to do the 

sane thing. At the level of algorithm, there usually are many algorithms to solve 

any particular equation, and human vision and computer vision do not necessar-

ily employ the same algorithms. At the level of implementation, of course, the 

hardware of human vision and that of.computer vision are completely different. 

   The three levels - computational theory, algorithm and implementation -

can be completely independent [Marr, 1982], or largely interdependent. Although 

addition can be accomplished equally by both an abacus and a calculator, a von 
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Neumann computer and a neural computer do fairly different things , with one 

able to do one thing and the other able to do another. 

   The work described in this thesis is mainly concerned with the computational 

end, i.e., what is involved in the derivation of information about the 3-dimensional 

world from the 2-dimensional figures, although we also present algorithms to solve 

the specified problems. 

   That we take the computational approach to vision research does not mean 

we see visors as a pure computation problem. On the contrary, we see vision as a 

process of inference. 

   The projection of our 3-D world onto a 2-D image plane is a many-to-one 

mapping. But the inverse - from a 2-D image to a 3-D scene is a one-to-many 

mapping; there are an infinite number of possible states of the 3-D world that are 

consistent with any 2-D image. Selecting one from the infinite number of possible 

interpretations is exactly what our visual perception does. This fact simply means 

that vision is a process of inference, one of inferring the most reasonable state of 

the world that is consistent with the given 2-D projection. It is clear, then, 

that additional information is required in this process to draw the conclusion. 

This additional information is the knowledge of the world, of the world's stable 

structural regularities. It is this knowledge that is the secrets of human vision 

and human perception at large. It fills in the blank inherent in the mapping from 

2-dimensionality to 3-dimensionality. Only by understanding this knowledge, can 

we really understand human vision and can we further develop any computer 

vision systems. Our task is thus to investigate what knowledge is employed in 

human vision, and to put it into an artificial vision system. 

   In this sense, a vision system is a knowledge system. It inherits most of the 

properties of any knowledge system. One needs to know which piece of knowl-

edge to apply at a particular time. One possible choice is the generate-and-test 
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paradigm. Thus there need to be not only bottom-up processes but also top-

down ones [Winston, 1984]. Once a piece of knowledge is triggered, the attached 

module computes consequent solutions. In this sense vision is also a computation 

problem. 

   The knowledge of the world can be classified into two categories: inherited 

knowledge and learnt knowledge. The two categories of knowledge are compared 

with each other as follows: the former has been embedded into human visual 

system through millions of years of evolution, and the latter through individual's 

learning experiences (of course, evolution is also a process of learning;) the former 

mainly serves to perceive shape and the latter mainly serves to perceive semantics, 

because semantics is learnt after birth; the former is common among individuals 

of a species, and the latter is relatively personal; the former is general and the 

latter relatively specific; the former is unconscious and the latter conscious. 

   This thesis is mainly concerned with the perception of shape, thus the knowl-

edge we are interested in is the inherited knowledge. Since it is unconscious, we 

cannot know it by introspection. The way we know it is through logical reasoning. 

Examples of it are rigidity in motion [Ullnian,1979a,b; Reuman & Hoffman, 1986], 

continuity in stereo [Marr & Poggio, 1979; Grimson, 1981] and transversality in 

part decomposition [Hoffman, 1983; Hoffman & Richards, 1986]. 

   On the other hand, the human visual perception is not simply a copy of exter-

nal world; it has its own internal structure, which functions in its own right. One 

indication of such an internal structure is the perceptual system's preference of 

pragnanz, or the preference of simple, regular forms over complex, irregular ones. 

It is unfair to contribute this property to regularities of external world. Circles 

are preferred over ellipses [Barrow & Tenenbaum, 1981; Brady & Yuille, 1984] 

not because we regularly see circles in our environment (even though we see them 

more frequently,) but mainly because the internal structure of the perceptual sys-
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tem appreciates the simplicity or figural goodness of the circle interpretation. If 

we call the knowledge of our external worldd the natural regularities, then we should 

call the knowledge of our internal perceptual system the subjective regularities. 

(In fact, the preference of simplicity is not the privilege of perception; all the 

phases of cognition show this tendency [Kanizsa, 1979, p.238].) 

1.2 What is a line drawing? 

Computer Vision is a research field that encompasses many topics, each of which 

tries to tackle a particular problem. They include stereo, motion, texture, color, 

contour, recognition, etc. This paper is generally concerned with the problem of 

interpreting line drawings, or as sometimes people call it, the problem of shape 

from contour. Actually they are not exactly the same, though the two largely 

overlap. Line drawings have surprisingly great descriptive power. Barrow and 

Tenenbaum (1981) present an informal experiment to show that different shad-

ing gredients have little effect on the perceived shape of a surface defined by a 

given outline. Biederman (1985) also show that simple line drawings depicting 

complete objects can be identified almost as quickly as full-colored slides of the 

same objects. This experiment reinforces his premise that the earliest access to a 

mental representation of an object can be modeled as a matching of a line drawing 

representation of a few components. 

    Let us first catch what the term line drawing means. Line drawing can be 

defined in two different ways. One way is to define it from image; i.e., a line 

drawing is a representation of the edges, or intensity discontinuities, in an image, 

which result from depth discontinuities, orientation discontinuities, reflectance 

discontinuities and illumination discontinuities. The other way is to define it as 

drawn by hands; i.e., a line drawing is a two-dimensional picture composed of 

only line segments, invented by humans as a means of representing, describing 

and communicating three-dimensional shape of objects.



   The two kinds of line drawing are the same in the sense that they both rep-

resent significant changes in object shape, but they have some major differences. 

First, the hand-drawn figures are first filtered through human brain and thus 

include only semantically meaningful contours. But the edge images, extracted 
from real images by computer, include not only significant features representing 

shape changes, but also reflectance changes and illumination changes, and more 
seriously, they may also include many noise edges, which are inevitable if not 

processed very carefully. Secondly, the contours in a hand-drawn figure are not 

necessarily positionally accurate, but are topologically well-defined. On the other 

hand, the contours in an edge image are the honest projections of significant 

changes in the scene, but because of noise edges, the topological structures of the 

edges are not clear enough to start interpretation straightaway. 

   The line drawings we concern ourselves with in this thesis are those which in-

clude only topologically well-defined, semantically meaningful, but not necessarily 

positionally accurate (of course it is better to be accurate) contours. They can 

be generated either from hand-drawn figures or from edge images. In-the former 

case, what we need to do is to straighten the "straight" lines and to smooth out 

the "smooth" curves so that a computer can recognize them. In the latter case, 

we need to discard abundant meaningless noise edges and to supplement edges 

that are vital but absent due to the properties of edge extraction filters.
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1.3 Review and critics of previous work 

There have been generally two major approaches towards interpreting line draw-

ings. The first is the line labelling approach, and the second is the "shape-from-

contour" approach, to which the work described in this thesis belongs. 

   The first approach was initiated by Huffman [Huffman, 1971]. He restricts 

the scene to be a mini-world of trihedral polyhedra. A taximony of line labels 

describing the edges - convex, concave and occluding - is proposed. Using this 

taximony, each line junction (or vertex) is given a single catagorization defined 

in the junction dictionary, if the line drawing is a legal one. Unfortunately, the 

existence of such a globally consistent line labeling is only a necessary but not 

sufficient condition for the correctness of the line drawing. As the same junction 

dictionary was also independently discovered by Clowes [Clowes, 1971], the scheme 

is called the Huffman-Clowes labeling scheme. The work was followed by a series of 

papers that try to extend it. Waltz (1975) includes shadow and crack edges in the 

labeling set. Turner (1974) and Chakravarty (1979) entend the world to include 

curved objects. Sugihara (1979) develops a junction dictionary to deal with range 

data of objects of planar and curved faces. Mackworth (1973) proposes gradient 

space that is modified from the idea of dual space in [Huffinan, 1971] and uses it to 

derive necessary conditions for the correctness of a line drawing. Sugihara (1986) 

proposes the use of linear algebra to derive necessary and sufficient conditions for 

a line drawing to represent a legal scene. His approach reduces the correctness 

problem to one of checking the existence of a solution to a set of linear equations 

and inequalities. Kanade (1980) develops. a junction dictionary to deal with the 

Origami world, or paper-made objects. 

   While the line labeling approach does not produce any quantitative results, 

the shape-front-contour approach tries to recover surface shape from line drawing 

by employing additional constraints. An early attempt was the general viewpoint 
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assumption (see [Binford, 1981].) By assuming it, the most stable interpretation 
- it means that a slight change of viewpoint does not drasti

cally change the image 

configuration and its interpretation - is selected from among the possible . We 

will discuss it later in detail.

    Besides this, a number of other papers have also been published that try 

to answer the "shape from contour" question. [Koenderink & van Doorn, 1982; 

Koenderink, 1984] provide a mathematical (differential-topological) analysis on 

the relations between extremal boundaries and the underlying surfaces. Others 

are [Barrow & Tenenbaum, 1981], [Kanade, 1981], [Barnard, 1983] and [Brady & 

Yuille, 1984], which generally deal only with closed contours and assume that the 

image contours are, globally or locally, projections of planar space curves. Ellipses 

are interpreted as circles by additional assumptions of: uniformity of curvature 

[Barrow & Tenenbaum, 1981], maximum entropy [Barnard, 1983] and maximum 

compactness [Brady & Yuille, 1984], and quadrilaterals or parallelograms are in-

terpreted as rectangles by additional assumptions of maximum symmetry [Kanade, 
1981; Barnard, 1983]. Reviewing these papers, it is not difficult to find that the 

approaches are based on the psycological facts that ellipses and quadrilaterals 

(including parallellograms) are perceived as circles and rectangles, respectively. 

The approaches differ only in how the facts are accounted for and in what spe-

cific criteria they choose to achieve the predetermined aims. The psycology of 

line drawing perception was first studied by the Gestalt school [Kanizsa, 1979]. 

They propose pragnanz, or figural goodness, to be the criterion on which the hu-

man perception is based. The circle and rectangle interpretations are preferred 

because they are the most beautiful interpretations among the possible. Unfor-

tunately, however, the Gestalt psycologists could not give a theoretical account 

of the term pragnanz from the standpoint of information processing, and figural 

goodness remains to be judged mainly by human eyes (note that a recent progress 
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is an attempt to characterize pragnanz by transformational invariance [Pal mer, 
1983].) The lack of a definition of pragnanz leaves room for proposal of various 

specific criteria. The uniformity of curvature, entropy, compactness and symmetry 

criteria are developed in, and thus well suited to the specific cases, but they are 

not surely universal and do not necessarily apply to other cases. 

   Under the circumstances, two general paradigms are available. The first is 

the criterion-based paradigm, in which a universal criterion is developed and in-

terpretations are selected by maximizing or minimizing that criterion, as done in 

[Barrow & Tenenbaum, 1981], [Barnard, 1983] and [Brady & Yuille, 1984]. The 

second is the regularity-based paradigm, in which specific figural configurations 

that have definite interpretations are searched for and interpreted. Two examples 

are [Stevens, 1981], in which parallel (curved) contours are interpreted as lines 

of curvature on a cylindrical surface, and [Barnard & Pentland, 1983], in which 

elliptic arcs are directly interpreted as circular arcs. The causal relation between 

the interpreted and the interpretation is referred to as regularity. The task is 

thus to discover regularities, or causal relations, and then to apply them to spe-

cific interpretation processes. We consider that the regularity-based paradigm is 

more advantageous because (1) a line drawing is generally only qualitative, not 

quantitative, especially when it is hand-drawn; and (2) while interpretations are 

qualitatively stable, they are not always quantitatively invariant.
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1.4 Overview of this dissertation 

The problem of line drawing interpretation is too big to tackle in one step. Thus 

what we did is to choose some target which is within our reach, and by shooting it 

we can obtain some insights into the nature of the general problem of interpreting 

image contours. The target we chose is quadrilaterals, planar and curved, with 

which everybody gets familiar in his/her very early stages of education. 

   This thesis is composed of 7 chapters. In Chapter 2 we first explain basic 

terms and concepts, then discuss what the general viewpoint assumption means 

in the specific case of inferring 3-D continuity and discontinuity of a curve, and 

finally apply it to derive two important specific constraints on interpreting image 

vertical and horizontal lines. 

   In Chapter 3, we propose the rectangularity regularity to be the prime con-

straint in the visual interpretation of quadrilaterals and discuss the nature of the 

regularity. Interpreting quadrilaterals as rectangles under both orthographic and 

perspective projections is accounted for in a unified and consistent way. The "im-

age center" and focal length are determined together with rectangle orientation. 

   In Chapter 4, the rectangularity regularity is adapted to apply to "curved 

quadrilaterals". Applying the line of curvature (LOC) regularity, a 4-segment 

closed image contour is interpreted as four 3-D lines of curvature of the surface 

the image contour depicts. We further propose a segmentation rule, an algorithm 

for constructing a net of lines of curvature inside the boundary, and a method 

for estimating surface orientations at the net intersections. Some experimental 

results are also presented. 

   In Chapter 5, we analyze the role that gravity plays in visual perception and in 

interpreting quadrilaterals especially. Everything, including the perceiver itself, is 

attracted by gravity. As a consequence, objects must be supported by something. 

It is usually perceived to be the ground plane, perpendicular to the direction of 
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gravity, if no evidence indicates otherwise. We first analyze the relation among 

the perceiver (camera), the ground and the rectangles supported by the ground, 
and then derive constraints to determine the rectangle orientation . 

   In Chapter 6, we report the conditions for interpreting quadrilaterals as faces 

of a rectangular polyhedron. There are two levels of interpretation: the geomet-

rical level and the perceptual level. The differences between interpretations at 

the two levels are also examined. 

   In Chapter 7, we present a brief review of the thesis, elaborate on some 

points, and make some concluding remarks.
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Chapter 2 The General Viewpoint Assumption

2.1 Projection and the GVP assumption 

We start with the introduction of the camera model. As shown in Fig. 2.1, F 

is the focus, which has the coordinates (x0, y0, -f). The focal length is f. The 

image plane is the xy-plane, and the image center 0 has the coordinates (x0, y0). 

We intentionally make both the "image center" and the focal length unfixed, 

because they are to be determined in the process of interpretation. While the 

camera system is a real one if the image is, it is a subjective one if the image is a 

hand-drawn figure. 

   An arbitrary space point (x, y) z) is projected onto the image plane as 

         (x0+(x-x0) , YO +(y-yo) f+,) ), if f 34 oo; 
        1(x) y) if f = oo. 

If f is finite, then the projection is called perspective projection; if f approaches 

infinity, then it is called orthographic projection. We do not have real cameras that 

have a focal length approaching infinity, but people usually assume for simplicity 

orthographic projection as an approximation if object dimensions are small com-

pared to the distance to the objects. In the case of hand-drawn figures, however, 

some are produced by assuming orthographic projection, and evidently differ-

ent from images taken by a real camera. Thus they can be interpreted only by 

assuming the "impossible" orthographic projection again. 

   The general viewpoint assumption is the most essential assumption in inter-

preting line drawings. Without it one cannot move even a tiny step. A straight 

line in image is not necessarily the image of a straight line in space; it can be a 

planar curve when the viewing direction is on that plane. It is also not neces-

sarily continuous; it may be broken segments. It is interpreted as a straight line 

in space only when the general viewpoint is assumed. The GVP assumption has 
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Y

Z

0 (xO,yO,0)

X

F (xO,yO,-f)

Fig. 2.1 The camera coordinate system
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been applied to many specific cases to derive specific constraints . Binford (1981) 

successfully presents a series of costraints which he argues should be invoked in 

absence of other evidence. Stevens.(1981) also applies the GVP assumption to rea-

son that parallel image curves should be interpreted as lines of greatest curvature 

on a cylindrical surface. 

   Conventionally, the general viewpoint is literally explained as such a position 

that perturbation of it does not qualitatively change the line-drawing configura-

tion. However, I would like to give another definition; i.e., the general viewpoint 

is such a camera position that a small change of it does not cause any degra-

dation, or, a small change of it does not make a more structured configuration 

less structured (e.g., a straight image line does not become a curved line, or, a 

continuous line does not become broken, etc.) Although the terms "unstructured" 

and "structured" still lack precision from the standpoint of information-processing, 
this definition explicitly reveal in what direction the perturbation of camera from 

a non-general position might change the image configuration, and in terms of 

"structuredness" this definition opens a possibility for the GVP assumption to 

be assimilated into the general perception law pragnanz. (Detailed analyses of 

pragnanz can be found in [Witkin & Tenenbaum, 1983; Witkin & Tenenbaum, 

1986; Kanizsa, 1979; Palmer, 1983], and a detailed analysis of "degeneracy" can 

be found in [Kender & Freudenstein, 1987].) In the following two sections we 

will apply the GVP assumption to analyze the relations between image continu-

ity and discontinuity and corresponding space continuity and discontinuity, and 

to account for the well-known fact that vertical and horizontal image lines are 

perceived as vertical and horizontal space lines, respectively. 

   Incidentally, we clarify the meanings of the terms regularity, assumption and 

constraint, which are often used, and sometimes confusingly. They essentially 

refer to the same thing, but differ in nuance. regularity is used in the objective 
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sense; assumption is used in the subjective sense; and constraint is used in the 

functional sense, once a regularity is assumed. We inherit the original uses if 

they are proposed by the others, e.g., the general viewpoint assumption [Binford, 
1981], the continuity constraint [Marr & Poggio, 1979; Grimson, 1981] and the 
transversality regularity [Hoffman & Richards, 1986]. 

2.2 The GVP assumption for continuity and discontinuity 

The terms we will use through this section, 1st-order, 2nd-order and 3rd-order 

continuity and discontinuity, mean continuity and discontinuity in position, tan-

gent and curvature, respectively. A higher order continuity implicitly implies 

continuity of lower orders. For simplicity, when we say an nth-order continuity 

we mean that n is the highest order of continuity and at the same time the nth-

order continuity is a (n+1)th-order discontinuity. For example, the intersection 

of two straight lines is a 1st-order continuity and at the same time a 2nd-order 

discontinuity. 

   It is trivial that 3-dimensional continuities in position, tangent and curvature 

are projected onto the image plane of a camera located at any position as at 

least 2-dimensional continuities in position, tangent and curvature, respectively. 

But for some special viewpoints, it is possible that a 3-D nth-order continuity is 

projected as a 2-D (n+1)th-order continuity. For instance, a 3-dimensional (1st-

order) continuous curve is always projected at least as a 2-dimensional (1st-order) 

continuous curve, and at some special viewpoints two curves not intersecting in 

space, i.e. a 1st-order discontinuity, may be projected as coincident in image, i.e. 

a 1st-order continuity. 

   A general viewpoint, in the specific case of continuity and discontinuity, is 

such a viewpoint that a small change of it does not reduce order of continuity. 

Table 2.1 shows all possible transitions of order (from 0 to 3) of continuity and 

discontinuity in the process of projection, where 0th-order continuity is a replace-
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anent of 1st-order discontinuity. And examples are shown in Fig. 2.2 to instantiate 

each transition that is caused by a special viewpoint. 

   While many possible order transitions of continuity are due to special view-

points, which will not occur if the general viewpoint is assumed, some are not 

caused by special viewpoints (within a certain range,) but by occlusion. Two ex-
amples are the well-known T-juncion and cylindrical junction as shown in Fig. 2.3, 

to which [Binford, 1981] pays much attention . We here reexamine them under 

our new framework. A T-junction in image (Fig. 2.3a) is a 1st-order continuity 

plus a 3rd-order continuity (orders higher than 3 are neglected because human 

perceptual system is not sensitive to it and does not make use of it.) Three cases 

are possible: (1) the stem is nearer to the viewer, and the 2-D 1st-order continuity 

is due to the special camera position; (2) the stem is coincident in space; (3) the 

stein is further away, and only a part of it is visible. By the general viewpoint 

assumption, the first possibility is eliminated. The second possibility is not an or-

der transition. The third possibility is an order transition , but is not dependent 

on viewpoint within a certain range. Thus the junction can be perceived as a 3-D 

1st-order continuity or as a 3-D 1st-order discontinuity (but the stem is further 

away.) 

   A cylindrical junction in image is a 2nd-order continuity plus a 3rd-order 

continuity (P in Fig. 2.3b,) or simply a 3rd-order continuity (Q in Fig. 2.3b.) 

The straight segment (let us say it without proof) in space can projectively be 

any segment lying on the plane determined by the focus and the image segment. 

Only if the straight segment is also tangent to the curves in space, can a small 

change of viewpoint not cause a sudden collapse of the configuration. If, however, 

the segment is not an apparent edge but an extremal boundary, it moves with 

the viewpoint and the order transition does not disappear by a small change of 

viewpoint (see Chapter 4 for a practical example.) 
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Table 2.1 Possible order transitions
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MOON.
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Fig. 2.2 Examples of continuity order transitions caused by special viewpoints
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(d)
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Fig. 2.2 (continued)
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(a)

P

(b)

Q

Fig. 2.3 The T-junction (a) and the cylindrical-junction (b)
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   In summary, in the process of projection the orders of 3-D continuity and 

discontinuity remain the same or increase. In .the latter case, it may be depen-

dent on viewpoint or independent of viewpoint. By assuming a general viewpoint, 

those order transitions due to special viewpoints can be removed from considera-

tion. On the other hand, the number of order transitions that are independent of 

viewpoint is limited, and thus makes it easy to recognize them. As a result, 3-D 

continuities and discontinuties are definitely somehow evidenced by 2-D continu-

ities and discontinuties. In this sense the projection is a qualitatively equivalent 

mapping. It is this qualitatively equivalent mapping that makes it possible to infer 

3-D features from their 2-D images. 

2.3 The GVP assumption for interpreting vertical and horizontal lines 

It is broadly known that (in absence of other evidence) vertical image lines are 

perceived as vertical space lines and horizontal image lines as horizontal space 

lines. The reasoning is divided into two steps. Applying the GVP assumption, 
the first step explains why straight image lines are perceived as straight space 

lines and the projection can be either perspective or orthographic , and the second 
step reasons that vertical image lines are perceived as vertical space lines, and 

horizontal image lines as horizontal and image-plane-parallel space lines, and the 

projection must be orthographic. 

    Straightness means that curvature is zero. Curvature is everywhere zero 

along a straight line. If the back image of a straight image line has any 1st-order 

discontinuities, any 2nd-order discontinuities, or the curvature is not everywhere 

zero, a slight change of viewpoint will make the straight line unstraight. Thus 

by assuming general viewpoint, all these possibilities are eliminated, and the only 

possibility is that the back image is also straight. The property of zero curva-

ture is irrelevant to the foreshortening. Thus the straightness interpretation is 

independent of the focal length; i.e., the projection can be either perspective or 
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orthographic. 

   The concepts of verticality and horizontality originate from gravity (descrip-

tion of incorporating gravity into perception as a constraint is to be detailed in 

Chapter 5.) Everything, including the perceiver itself, is attracted by gravity. As 

a consequence, objects must be supported by something. It is usually perceived to 

be the ground, perpendicular to the direction of gravity, if no evidence indicates 

otherwise. To keep stability, the horizontal axis of the image plane is favorably 

parallel to the ground, as humans look forward while keeping two eyes horizontal. 

The optical axis of the camera points obliquely to the ground, as humans look 

some feet ahead on to the road. For a space vertical line at an arbitrary location 

to be projected as an image vertical line, it is necessary that the projection be 

orthographic. Otherwise we need the condition that the camera's optical axis is 

horizontal or that the space vertical line is coplanar with the camera's vertical 

axis. 

   By assuming this camera model, it is clear that any space lines lying on any 

vertical planes, not only the space vertical lines, are projected as vertical lines in 

image. But if the lines are not the vertical lines, then a small change of viewpoint 

makes their images no longer vertical. Only the space vertical lines, even if the 

viewpoint changes, are still projected as vertical. 

   The same line of reasoning applies to horizontal image lines. Assuming the 

same camera model, it is clear that any space lines that are perpendicular to 

the image vertical axis are projected as horizontal lines. But if the lines are 

not simultaneously horizontal in space, then a small move of viewpoint along the 

vertical direction make their images no longer horizontal. Only the horizontal 

and image-plane-parallel space lines are still projected as image horizontal lines, 

even if the viewpoint translates in any direction and rotates around the horizontal 

axis, but not around the optical and vertical axes (the image horizontal lines will 
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no longer be horizontal if one turns viewing direction away.) This restriction on 

viewpoint change shows that a general viewpoint is not always absolutely general, 
but sometimes only means the least probability of qualitative changes due to 

viewpoint changes.
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Chapter 3 Interpreting Quadrilaterals: The Rectangularity Regularity

   In this chapter we propose the rectangularity regularity to be the prime 

constraint in the visual interpretation of quadrilaterals and discuss the nature of 

the regularity. Interpreting quadrilaterals as rectangles under both orthographic 

and perspective projections is accounted for in a unified way. The "image center" 

and focal length are determined together with rectangle orientation. 

3.1 The Rectangularity Regularity 

The human visual perception, as a part of the brain, is the product of millions 

of years of evolution. As a consequence, various regularities of nature have been 

embedded into the vision system. On the other hand, the human visual perception 

is not simply a copy of external regularities; it has its own internal structure, 

which functions in its own right. One indication of such an internal structure 

is the perceptual system's prefernce of pragnanz, or simple, regular forms over 

complex, irregular ones. It is unfair to contribute this property to regularities of 

external world. Circles are preferred over ellipses [Barrow & Tenenbaum, 1981; 

Brady & Yuille, 1984] not because we regularly see circles in our environment, but 

mainly because the internal structure of the perceptual system appreciates the 

simplicity or figural goodness of the circle interpretation. This kind of regularities 

- if one would also like to call them regularities - is subjective regularities
, in 

contrast to external natural regularities. 

   The rectangularity regularity is such a subjective regularity resulting from 

the internal structure of the perceptual system. All quadrilaterals can be queued, 

according to the degree of regularity, as: rectangle, parallelogram, trapezium 

and generic quadrilateral (Fig. 3.1). It is generally difficult to define degree of 

regularity universally, but here it is intuitive and we do not try to give a theoretical 

definition [Palmer, 1983]. It , is observed that a single quadrilateral tends to be 
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a rectangle a parallelogram

a trapezium a generic

     -1 

quadrilateral

Fig. 3.1 Quadrilterals are queued by the degree of regularity. 
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always perceived as a rectangle. To put it another way, a quadrilateral in image, 

whatever its degree of regularity is, tends to be interpreted as a rectangle in space , 

the most regular interpretation among the possible , and the 2-D irregularity is 

thought of as being caused by the projection. It is from this observation that the 

rectangularity regularity is generalized. 

   The rectangularity regularity has long been recognized as being of impor-

tance. Barnard (1983) computes the planar orientation of a rectangle from its im-

age, a quadrilateral, under perspective projection. Kanatani (1986) discusses how 

to compute spatial orientations of the faces of a rectangular trihedral polyhedron. 

Xu and Tsuji (1987a,b) extends this regularity to curved surfaces and proposes 

the LOC (line of curvature) regularity to recover shape of curved surfaces. In 

this paper we give a unified and detailed account of interperting quadrilaterals in 

image as rectangles in space under both orthographic and perspective projections. 

3.2 Deriving focal point and rectangle orientation 

   In this section we discuss how and to what extent the 3-D orientation of a 

quadrilateral is determined by incorporating the rectangularity regularity. The 

coordinate system we assume, as shown in Fig. 2.1, is different from those we 

usually use, in that the coordinate origin is located on the image plane and in that 

the z-axis is independent of the focal point, which has the coordinates (x0, y0, -f). 

Both the "image center" (x0, y0) and the focal length f are then to be determined 

in the process of interpretation. While the camera system is an objective one if 

the image is a real one, it is a subjective one if the image is a hand-drawn figure. 

   What is known is a quadrilateral in the image, and what is to be known is the 

orientation of the rectangle that projects that quadrilateral, and the location of 

the focal point, but not the distance or size of the rectangle. Let the four corners 

of the quadrilateral be A, B, C and D, as shown in Fig. 3.2. Extending the 

segments AB and CD, we have the intersection P (xl, yl). Since AB and CD 
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   Fig. 3.2 An image quadrilateral ABCD. Extending the laterals, 

we have two intersection points P and Q. 
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are the images of two parallels, P is the vanishing point of the parallels. Similarly, 

extending the segments BC and DA, we have the intersection Q (x2, y2), which 
is also a vanishing point, of the other pair of parallels. P and/or Q approach 

infinity if the corresponding image segments are parallel. 

   A straightforward demonstration of the concept of vanishing point is that the 

line connecting the focal point and a vanishing point is parallel to the space parallel 

lines that give rise to that vanishing point. As shown in Fig. 3.3, PF is parallel 

to A'B' and C'D', and QF is parallel to B'C' and D'A'. Since A'B'C'D' is a 

rectangle, PF is perpendicular to QF. The plane determined by PF and QF is 

parallel to the plane on which the rectangle lies, and thus the orientations of the 

two planes are identical. The segments PF and QF can be expressed in vector 

form as (xl - x0, yl - y0, f) and (x2 - x0, y2 - y0, f), respectively. From the 

perpendicularity, the inner product of the two vectors is zero. By this equation 

F can be determined or at least constrained. Once F is determined
, the plane 

normal (let it be called n) can also be determined as the outer product of PF and 

QF. In the following, we discuss three cases of PF and QF: (1) neither P nor Q 

approaches infinity; (2) either P, .or QQ approaches infinity; and (3) both P and Q 

approach infinity.
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   Fig. 3.3 PF is parallel to A'B' and C'D', and QF is parallel to 

B'C' and D'A'. Since A'B'C'D' is a rectangle, PF is perpendicular to 

QF. 
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(casel) 

If both P and Q do not appproach infinity, then the quadrilateral is a 

one. From the perpendicularity of PF and QF we have 

          (xl - xO)(x2 - x0) + (yl - yO)(y2 - y0) + f 2 = 0. 

Clearly, f (f > 0) can be determined as

generic

(3.1)

           f = V-(xl - xO)(x2 - x0) - (yl - yO)(y2 - y0). (3.2) 

This equation describes a hemisphere with a diameter PQ , on which F is con-
strained to lie, as shown in Fig. 3.4. For f to have a solution, the point 0 (x0, y0, 0) 

must satisfy the following inequality: 

            (xl - xO)(x2 - x0) + (yl - yO)(y2 - y0) < 0. 

This means that 0 must lie inside the circle with PQ on the image plane. When 

Q reaches the midpoint of PQ, all of PO, QO and PQ become radii of the 

hemisphere, and f has the maximal value, half the length of PQ. To determine 

F completely, however, we have to first know where the attention is oriented; 

i.e., where 0 is. If there are three or more quadrilaterals in a real image, then 
P can be determined as the intersection point of the hemispheres corresponding 

to each quadrilaterals (see Section 4 for a special case.) A prerequisite to this 

solution is that the hemispheres do have a common point; i.e., the image is a real 

one. However, as in hand-drawn figures, quadrilaterals are usually produced by 

individual attentions. Consequently, they should be, and can only be, perceived 

separately. One reasonable choice for each quadrilateral is the intersection of the 

two diagonals, which is the centroid of the corresponding rectangle in space, if 

the centroid is within the circle with a diameter PQ. As mentioned above, the 

maximal value for f is half the length of PQ. Trially, the closer to a parallelogram 
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Fig. 3.4 F lies on the hemisphere with a diameter PQ.
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the quadrilateral is, the greater f is. On the other hand, humans prefer long 

focal lengths in the perception of figures. This answers why a parallelogram is 

more often used to represent a rectangle, and why a parallelogram is more easily 

perceived by our eyes as a rectangle. 

(case2) 

If one of P and Q approaches infinity, then the quadrilateral is a trapezium. 

Without loss of generality, suppose that P approaches infinity, while Q does not. 

PO (xl - x0, yl - y0) can be expressed by (a, b) as P approaches infinity. Adding 

the z-component, PF can be expressed by (a, b, c), where a, b and c are all 

constants. c approaches zero if f does not approach infinity, and c may still be 

zero even if f does approach infinity. Can f approach infinity? Suppose that it 

does. Then clearly BC is parallel to DA, and their intersection Q also approaches 

infinity. This leads to a contradiction. Thus f cannot approach infinity and c 

equals zero. 

   From the perpendicularity of PF and QF, we have 

                  a(x2 - x0) + b(y2 - y0) = 0. (3.3) 

This equation constrains OQ t6 be perpendicular to AB and CD; i.e., 0 must 

lie on the line perpendicular to AB and CD drawn from O. Let us call the line 

IQ (Fig. 3.5). Since f is free, F is constrained to lie on the plane that is projected 

onto the image as IQ. When 0 is located at Q, the orientation is completely 

determined by the orientations of AB and CD as (b, -a, 0).
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(case3) 

If both P and Q approach infinity, then the quadrilateral is a parallelogram or a 

rectangle. In this case, PO is parallel to AB and CD, and QO is parallel to BC 

and DA. 0 is actually not constrained. Suppose that the orientations of PO and 

QO are expressed by (a, b) and (a', b'), respectively. Adding the z-components, 

PF and QF are expressed by (a, b, c) and (a', b', c'), respectively. a, b, c, a', b' 

and c' are all constants. Both c and c' approach zero if f does not approach 

infinity, and c and c' may still be zero even if f does appoach infinity. From the 

perpendicularity of PF and QF, we have 

                          aa' + bb' + cc' = 0. (3.4) 

A special case is that ABCD is a rectangle; i.e., 

                            aa' + bb' = 0. (3.5) 

Then 

                                   cc' = 0. (3.6) 

Three cases are possible: 
                                  c= 0, c' = 0; 

                             c= 0, c' 5 0; 

                             c 0, c = 0. 

If either of c and c' is not zero, then f approaches infinity and the projection can 

only be orthographic; otherwise ABCD would not be a rectangle. If both c and 

c' are zero, then f is not constrained. The projection can be either orthographic 

or perpspective. In this case, the rectangle normal can be determined as (0, 0, 1); 

the rectangle is parallel to the image plane.
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Chapter 4 Interpreting "Curved Qadrilaterals": The LOC Regularity

   In this chapter we propose the line of curvature (LOC) regularity, by which 

a 4-segment closed image contour is interpreted as four 3-D lines of curvature 

on the surface that the image contour depicts. Based on the LOC regularity , 
we present a segmentation rule, an algorithm for constructing a net of lines of 

curvature inside the boundary, and a method for estimating surface orientations 

at the net intersections. Some experimental results are also illustrated. 

4.1 Lines of curvature and the LOC regularity 

For a curved surface, how the surface curves is an important description. Euler 

discovered that at any point on any surface there are always a direction in which 

the surface curves most, and a direction in which the surface curves least (spheres 

and planes are exceptions, because the surface curvature is identical in every 

direction at every point.) The two directions are always orthogonal and are called 

the principal directions, or, the direction of greatest curvature and the direction of 

least curvature. The corresponding curvatures are called the principal curvatures. 

By starting from some point and always moving along the direction of the greatest 

curvature, we trace out a line of greatest curvature, and similarly, by moving in 

the direction of least curvature, we trace out a line of least curvature. [Struik, 

1961]. The lines of greatest curvature and the lines of least curvature form two 

mutually orthogonal families of curves covering the surface simply and without 

gaps (excluding umbilic points where the curvature is equal in every direction). 

They are together referred to as lines of curvature. On a surface of revolution 

lines of curvature are the meridians and the circles, and on a cylindrical surface 

lines of curvature are the straight rulings and the parallel cross sections. 

   The line of curvature (LOC) regularity describes the relation between certain 

image contour configurations and the line of curvature interpretations. Examples 
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are shown in Fig. 4.1. Each closed contour is interpreted as four lines of curvature 

on the surface that the contour depicts. While a detailed segmentation rule is to 

be given in a later stage, a brief description of the configuration is given here . 

The closed contour is formed by four segments, the intersections are the tangent 

discontinuities, or the curvature discontinuities, and every two non-intersecting 

segments are similar each other to a certain degree. 

    Another example is shown in Fig. 4.2. The parallel contours are interpreted 

by [Stevens, 1981 & 1986] as lines of curvature on a cylindrical surface. The other 

family of lines of curvature is the straight rulings, which can be recovered by 

connecting the corresponding points on the parallel contours. 

    While the LOC regularity does appeal to our intuition, how can we assess 

that to exploit the LOC regularity is a right choice even if it is not a priori 

guaranteed valid? The situation is basically different from that of Ullman (1979); 

the rigidity regularity is guaranteed valid by taking enough views of enough dots 

to overdetermine the solution for rigid motion, but we do not have any means of 

judging the validity of the LOC regularity from the image contours themselves. 

An argument can be made on the statistical ground. Stevens (1986) suggested 

that the majority of physical curves across the surfaces of manufactured objects 

and many biological forms are lines of curvature. This line of argument does 

provide the existential basis for the LOC regularity, but one still cannot guarantee 

its validity in specific cases. Here again we consider that the LOC regularity is a 

subjective one, resulting from the perceptual system's preference of regular forms 

over irregular ones. To put it another way, the line-of-curvature interpretation is 

the most regular, most structured one among the possible. If this is true , then 

we can further conclude that lines of curvature provide more power to constrain 

a surface than any other curves.
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   Fig. 4.1 A cylindrical (a), an elliptic (b) 

with line of curvature boundaries 
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   Fig. 4.2 Parallel surface contours are interpreted as 1 

vature on a cylindrical surface by Stevens (1981). 
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4.2 Segmentation rule 

A closed boundary is segmented as lines of curvature if the following conditions are 

satisfied: (1) there are four tangent discontinuities or curvature discontinuities; 

and (2) every two non-intersecting segments defined by the four discontinuities 

(there are only two pairs) are similar each other. 

   Recall that lines of curvature intersect at a right angle in space. When 

projected onto image at a general viewpoint (see Chapter 2), the intersections 

become tangent discontinuities. The only exception is the case of cylindrical junc-

tion, where the intersection is on an extremal boundary and the line of sight divides 

the right angle. While the image tangent at such an intersection is continuous, 

the image curvature is discontinous (human eyes are insensitive to derivatives of 

order of 3 and more). Thus, by searching for tangent discontinuities and cur-

vature discontinuities, we can segment a closed image boundary into continuous 

space segments. Fig. 4.3 is simply a copy of Fig. 2.3b. 

    In general, 4 lines of curvature bound a simple surface patch. Every two non-

intersecting segments form a pair. Thus there are two pairs, one of lines of greatest 

curvature, the other of lines of least curvature. A line of greatest (or least) 

curvature can be thought of as obtained by moving the other line of greatest (or 

least) curvature along the way guided by the lines of least (or greatest) curvature. 

For an arbitrary smooth surface, the two segments of each pair are not parallel 

(both 2-dimensionally and 3-dimensionally), but are deformed smoothly, and thus 

similar, to some extent (in some sense the similarity is a kind of symmetry [Brady 

& Asada, 1984].) The similarity can be quantified by computing the correlation 

of the two curvature functions (of the segment points.) 

    While the four-segment boundaries are a general case, three-segment and 

five-segment boundaries can also be interpreted as lines of curvature in certain 

cases. For example, a conical surface may have only three lines of curvature, if the 
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apex, which is a degenerate line of curvature, is included. If there are more than 4 

segments along the boundary, then the problem is whether or not the surface can 

be divided into smaller four-segment surface patches by adding lines of curvature . 

4.3 A net-knitting algorithm 

Lines of curvature form two mutually orthogonal families of curves that cover the 

surface simply and without gaps like a piece of cloth. If sampled sparsely, it is like a 
net, both two-dimensionally and three-dimensionally. Having segmented a closed 

boundary into four segments, we knit a line-of-curvature net inside the given 

boundary. Since how to knit the net depends on how the lines of curvature flow 

over the surface, we first present a theorem that states the property of constant 

ratio intersection of lines of curvature over a class of surfaces, and then propose 
an algorithm for the net-knitting in image. Finally experimental examples and 

discussions are also given. 

   A. Theorem of Constant Ratio Intersection 

   Before we present the theorem, we first fix notations and give preparatory 

explanations. 

   As shown in Fig. 4.4, a surface patch bounded by four lines of curvature can 

be expressed by using the lines of curvature as the parametric lines in the form 

               x = x(u, v), ul < u < u2, v1 < v < v2, (4.1) 

where x is (x, y, z)T. The four intersections are P, x(u1, v1), Q, x(u2 , vl), R, 

x(u2, v2) and S, x(ul, v2), and the four lines of curvature, PQ, QR, SR and PS 

are 

                    x x(u, vl), ui < u < u2, 

                    x = x(u2, v), v1 < v < v2, 

                    x = x(u, v2), ul < u < u2, 

                    x = x(ul, v), v1 < v < v2. 
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Fig. 4.4 Parameterized coordinate system
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By constant ratio intersection of a line of curvature u = const ., we mean 

                     ~'ul-Fk(u2-u1) dx dx                          du                d 
Jul du du 

           dv ( u2 ) = 0, 0 < k < 1; (4.2)                          /' dx dx du 
                    ul du du 

i.e., the line of curvature u = ul + k(u2 - ul) divides the arc length of any line of 

curvature v = const. that it intersects at the same ratio . 

   [Theorem] (1) If the surface patch (that is bounded by four lines of cur-

vature and without umbilics on it) is taken from a surface of revolution, then a 
meridian intersects any parallel at a constant ratio, and a parallel intersects any 

meridian at a constant ratio inside the boundary; (2) If the surface patch is taken 

from a generalized cone whose axis is straight and perpendicular to the planar 

cross section, then a fluting intersects any skeleton at a constant ratio inside the 

boundary; and (3) If the surface patch is taken from a developable surface whose 

Gaussian curvature is zero, then a line of curvature other than a ruling intersects 

any ruling at a constant ratio inside the boundary. [end] 

   The proof of this theorem is given in the appendix. 

   B. Algorithm 

   We first describe the algorithm and then give explanations. 

   As shown in Fig. 4.5, the segments aO-al, b0-b1, cO-cl and dO-d1 bound 

a surface patch. The points a2, b2, c2 and d2 are the center points that divide 

each segment into equal chord lengths. The points a3, a4, b3, b4 , c3, c4, d3 

and d4 are the chord centers of the new segments. We can go further until 

sufficient resolution is reached. We first find the point ab2cd2, which has both 

an equal distance to the points a2 and b2, and an equal distance to the points 

c2 and d2. The point is regarded as the intersection of the segments a2-b2 and 

c2-d2. Similarly, we can find the intersection of the segments a2-ab2cd2 and 

c3-d3. Repeating this process, we have two point sets that are dense enough 

to approximate the segments a2-b2 and c2-d2. Interestingly, they divide the 
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Fig. 4.5 A net-knitting algorithm
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the surface into four subsurfaces, to which the algorithm described above can be 

recursively applied to knit a dense LOC net. 

   The algorithm is based on three assumptions: (1) both the lines of greatest 

curvature and the lines of least curvature have the property of constant ratio 

intersection; (2) the arc center of each segment in image is the projection of the 

arc center of the corresponding segment in space; and (3) the arc center of each 

segment has the same distance to the two end points. 

   If the assumption (1) holds, then we can draw a line of curvature through 

the arc centers of the boundary segments (in space) of each pair . As stated in 

the theorem, a broad class of surfaces possesses the property of constant ratio 

intersection of lines of curvature. Empirically, if the boundary segments of each 

pair are similar, the lines of curvature on surfaces which do not strictly satisfy 

the assumption (1) can still be treated as they do. 

   If the assumption (2) holds, then the segments drawn through the arc centers 

of the boundary segments of each pair are the projections of the lines of curva-

ture through the arc centers of the corresponding segments in space. Because of 

the foreshortening, this assumption does not always hold. However, if the space 

segments of each pair are foreshortened in nearly the same way, then we can still 
draw lines of curvature through the arc centers of the image segments of each 

pair, though they are no longer the projections of the lines of curvature through 

the arc centers of the corresponding space segments. 

   If the assumption (3) holds, then we can find the arc centers of the lines of 

curvature inside the boundary before the complete segments are reconstructed . 

Provided that the segments are curved in a similar way, being based on this 

assumption does not introduce error, even if the assumption does not hold strictly . 

   In summary, if these assumptions do no hold, the obtained net only approx-

imate the original surface. We call this net the first-order approximation . If, 
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however, the curvature of the boundary segments is not too great, then the error 

is within tolerance. 

   C. Experimental examples and discussions 

   The algorithm has been implememnted on a lisp machine. Two examples are 

shown in Fig. 4.6 and Fig. 4.7. The output nets are intuitively satisfactory. Note 

that the input boundary segments can be either extremal or discontinuity edges. 

   The algorithm works perfectly on cylindrical surfaces. Given two parallel 

straight line segments and two parallel curved segments as the boundary, the 

algorithm outputs an accurate line-of-curvatur net inside the boundary, which is 

identical with the net constructed by Stevens (1981). For cylindrical surfaces, the 

assumption (1) holds strictly, while the other two do not. The obtained nets are 

accurate because the boundary segments of each pair are completely the same. 

For an arbitrary surface, as discussed before, the net knit by this algorithm is not 

as accurate as for a cylindrical surface. 

   The first-order approximation can be refined. The assumption (3) can be 

removed by modifying the chord centers to be arc centers. This is done by a 2-D 

relaxation method. We call the net so modified the second-order approximation. 

The assumption (2) can also be removed. Since the 3-D arc length can be calcu-

lated by integration after surface orientation at the intersections is obtained, the 

2-D arc centers can be modified to be arc , centers again by relaxation. We 

call this modified net the third-order approximation.
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4.4 Surface orientation computation 

A line-of-curvature net is a bridge between a 2-D boundary and its 3-D surface 

shape. Once the net is knit, the surface orientation at the intersections can be 

estimated. The lines of greatest curvature and the lines of least curvature intersect 

each other at a right angle in space, but they are foreshortened to obtuse angles 

(plus acute angles) in image. Stevens (1981) proposes the bisector method to 

estimate the surface orientation at each intersection, which is expressed by tilt 

and slant (see also [Witkin, 1981].) The more obtuse the angle, the more accurate 

the estimation. If the obtuse angle reaches two right angles, then the surface 

orientation is uniquely determined; the slant is a right angle, and the tilt is the 

normal of the image segment. 

   Stevens (1981) also proposes a method of propagating the surface orientation 

along the parallels on a cylindrical surface, from places where it is determined 

accurately to places where it is not. In image, a parallel intersects the straight rul-

ings, which have a constant orientation, at different angles. As shown in Fig. 4.8, 

when the angle changes from 01 to ,Q2, we have the equation 

                    tanT1 tan,Ql = tanr2 tan Q2, (4.3) 

where. Ti and r2 are the tilts. If rl, 01 and Q2 are known, then T2 can be 

calculated. 

   However, for an arbitrary smooth surface, both the lines of greatest curvature 

and the lines of least curvature change their orientations. As shown in Fig. 4.9, 

suppose that when we move along a line of curvature from an intersection to the 

next one, V turns to V and U turns to U'. Provided that the changes are not 

great, we can modify the method proposed by Stevens (1981) into a two-step 

approximation method. Without loss of generality, assume A,Q2 > OQ1. We first 

fix U (let LQ1 = 0) and calculate a new tilt due to only A02. Next we fix V' and 
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calculate a new tilt 

tilt r is determined

due to 081. The obtained tilt is the required one. 

 the slant a can also be calculated as 

                   _1 tanr 
       a = t

Once the

                           an 
tan3 Q (4.4) 

In sum nary, after the surface orientation at the most obtuse angle is determined, 

we can propagate it along the lines of curvature to all the other intersections by 

the method just described.
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Chapter 5 Interpreting Quadrilaterals under Gravity

   Everything, including the perceiver itself, is attracted by gravity. As a conse-

quence, objects must be supported by something. It is usually perceived to be the 

ground plane, perpendicular to the direction of gravity, if no evidence indicates 

otherwise. In this chapter we first analyze the relation among the camera, the 

ground and the rectangles supported by the ground, and then derive constraints 

to determine the rectangle orientation.

5.1 The gravity regularity 

Everything, including the perceiver itself, is attracted by gravity. As a conse-

quence, objects must be supported by something. It is usually perceived to be 

the ground, perpendicular to the direction of gravity, if no evidence indicates oth-

erwise. The gravity regularity is generalized from this universal fact (an exception 

is the space stations where objects are in a gravity-free state.) Unlike the rect-

angularity, this is a natural regularity objectively existing in the external world. 

Thus far it has attracted only a little attention. Kanade et al. (1983) analyzes 

skewed symmetry under gravity. Recently, Sedgwick (1987) reports a produc-

tion system that generates an interpretation of the environment based on linear 

perspective information and contact relations between surfaces and the ground. 

Tsuji et al. (1986) also reports a mobile robot that perceives, and navigates in, an 

indoor environment with a horizontal flat floor and objects standing vertically on 

the floor. 

   To perceive the world is, in many cases, to perceive the relations among the 

perceiver, the ground and the objects on the ground. By introducing the ground, 

the relation between the perceiver and the rectangles reduces to the suns of the 

relation between the perceiver and the ground, and that between the ground and 

the rectangles supported by it. All these relations can be described in either a 
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viewer-centered representation or a world-centered representation based on the 

ground [Sedgwick & Levy, 1985] (see section 7.2 for a detailed discussion on the 

representation of visual information.) 

5.2 Camera-ground model 

Let the normal of the ground plane be expressed by ng in the viewer-centered 

coordinate system. ng actually implies the relation between the perceiver and 

the ground. As discussed in Section 2.3, to keep stability, the horizontal axis of 

the image plane is favorably parallel to the ground , as humans look forward while 

keeping two eyes horizontal. Rotate the camera around the horizontal axis of 

the image plane by an angle of a so that the optical axis of the camera points 

obliquely to the ground, as humans look some feet ahead on to the road . For a 

space vertical line at an arbitrary location to be projected as an image vertical 

line, it is necessary that the projection be orthographc . The camera-ground 

model is shown in Fig. 5.1. Assuming this camera-ground model , we have 

                         ng = (0, 1, - tan a). (5.1) 

   Before concluding this section, we have two points to note . The first is that 

the orthographic projection is a necessity of the vertical-to-vertical mapping , but 

it at the same time does not exclude perspective projection for other purposes . 

The rectangles can still be projected as non-parallelograms . To perceive local 

shape of an object, the perspective information is required; whereas to perceive 

the more global relation between the perceiver and the ground , the orthography 

is required. It is really of interest to observe human's this flexibilty to swing 

between orthographic and perspective projections. 

   The second is that the camera model is employed to perceive objects lying on 

the ground and thus is not suitable to perceive objects suspending from a ceiling . 

However, if we assume a minus a, then many of the properties can be inherited . 
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5.3 Ground contact relations 

Because of the planarity of rectangle and the linearity of its sides, there exist only 
three kinds of contact relations between the ground and a rectangle: (1) the whole 

rectangle contacts the ground; (2) one of the four sides contacts the ground; and 

(3) only one of the four corners contacts the ground. When the whole rectangle 

contacts the ground, the orientation of the rectangle and that of the ground are 

identical. All the four sides are perpendicular to the ground. When only one 

side contacts the ground, that side is perpendicular to the normal of the ground. 

If the rectangle does not stand vertically, it is interpreted to be prevented from 

falling by something else behind it. When only one of the corners contacts the 

ground, it is most likely that we perceive the rectangle standing vertically, if some 

condition is met. 

   Which contact relation is perceived is largely dependent on the assumption of 

the perceiver's posture. The full contact relation is perceived only if the upper and 

lower corners are obtuse angles much greater than 90 degrees (Fig. 5.2a) - i.e., 

the rectangle is remarkably slanted towards the sky - because we are not used 

to looking straight downward (see Chapter 4 and [Stevens, 1981] for an analysis 

of the relation between the image angle of two orthogonal space vectors and the 

orientation of their outer product.) The corner contact relation is perceived only 

if one of the diagonal, of which the midpoint is the centroid, is vertical in image, 
and the upper and lower corners are acute angles (Fig. 5.2b) - again because of 

the posture assumed by the perceiver. The one side contact relation is perceived 

if the full contact and the one corner contact relations are not. The side that has 

the smaller angle to the horizontal axis is most likely perceived to contact the 

ground plane, because we prefer interpretations that are less slanted from the 

image plane (Fig. 5.2c,d). 

   If the perspective projection is assumed, a rectangle is no longer projected 
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as a parallelogram, but as a generic quadrilateral. In this case, there are two 

vanishing points. If the rectangle lies on the ground, then the two vanishing 

points must lie on the horizon (Fig. 5.3). 

   We do not intend to claim the completeness of the analysis, because per-

ception of one contact relation is not necessarily exclusive of another and the 

conditions are not completely quantified. Even so, however, if we manage some-

how to quantify the conditions - e.g., in the case of the full contact relation, the 

condition may be that the upper and lower angles are greater than 150 degrees 

- then we can completely determine the contact relations (see Section 7.2.3 for 

a discussion on this subject.) 

   The above three contact relations can be respectively expressed as 

                  PF • ng = 0, and QF. ng =0; (5.2) 

                (PF X QF) - ng = 0; (5.3) 

                    PF•ng = 0, or QF.ng = 0. (5.4) 

   In the following we discuss two special cases in which one pair of edges of the 

parallelogram is either vertical or horizontal.
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VP1 horizon VP2

   Fig. 5.3 If the rectangle lies on the ground, then the 

points must lie on the horizon. 
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Fig. 5.4 A rectangle standing vertically on the ground
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(Casel) 

Since it is a parallelogram, the projection is orthographic. Without loss of gen-

erality, suppose that PO = (0, 1, c) is vertical, and QO = (1, b', c') is not vertical 

(Fig. 5.4). If the image angle between PO and QO is /3 (/3 zA 0), then 

           PO - QO = (0,1) . (1, b') = 1(0, 1)11(1, b')I cos /3; 

i.e., 

                           b' = cot /3, (5.5) 

PF is interpreted as a vertical in space and thus is identical with ng. Since PF 

is vertical, QF must be parallel to the ground. Thus we have 

               QF - ng = (1, cot /3, c') • (0, 1, - tan a) = 0; 

i.e., 

                          c = cot a cot /3. (5.6) 

The normal of the rectangle is then 

    n = PF x QF = ng x QF = (0, 1, - tan a) x (1, cot cot a cot (5.7)
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   Fig. 5.5 If the horizontal lines are interpreted as parallel to the 

image plane, the parallelogram cannot be interpreted as a rectangle . 

But it is perceived by our eyes as a rectangle obliquely standing on the 

ground. 
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(Case2) 

Without loss of generality, suppose that the image of PF is horizontal, and that 

of QF is not. As discussed in Section 2.3, PF is horizontal and parallel to the 

image plane, expressed by PF = (1, 0, 0). Since

PF . QF = 0,

and 

                             PF • ng = 0, 

we have 

                       PF . (QF - ng) = 0. (5.8) 

That is, QF must also be vertical. Thus the parallelogram shown in Fig. 5.5 cannot 

be interpreted as a rectangle. This contradicts the perception by human eyes. In 

fact we perceive the figure as a rectangle standing obliquely, not vertically, on the 

ground. This is another example of the difference between interpretations at the 

geometrical and perceptual levels (see Chapter 6.)
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Chapter 6 Quadrilaterals as Faces of a Rectangular Polyhedron

   Any figures can be interpreted at two different levels: the geometrical level 

and the perceptual level [Sugihara,1986]. While interpretations at the geometrical 

level niust strictly obey mathematics, interpretations at the perceptual level show 

humanlike flexibility. Interpretations at two levels may be fairly different. We first 

deal with the geometrical level. 

6.1 The geometrical level 

It can be mathematically proven that a trihedral polyhedron with quadrilateral 

faces is a hexahedron. If all the faces are parallelograms, the hexahedron becomes 

a parallelepiped. If the parallelograms are rectangles, then the parallelepiped 

becomes a rectangular polyhedron. 

   Trivially, when a parallelepiped is projected onto an image from a general 

position, orthographically or perspectively, at most three of its six faces are visible. 

All the three visible faces in the image are parallelograms if the projection is 

orthographic, and are not if the projection is perspective. 

   Now we consider the inverse problem - how to infer the original object 

from its non-degenerate image [Kender & Freudenstein, 1987]. We are given 

three quadrilaterals, every two of which have a common edge - this condition 

is sufficient to define their interrelations. Since there are three common edges, 

the total number of edges is 9 (=12-3). They can be grouped into three, each of 

which has three non-intersecting edges, as el-e2-e3, e4-e5-e6, e7-e8-e9 shown in 

Fig. 6.1. The first condition for the figure to mean a real object is that the edges 

of each group, when extended, meet at a common point, which may approach 

infinity. 

   In the following we try to find the conditions for the three quadrilaterals to 

be simultaneously interpreted as rectangles. 
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   If none of the three intersection points approaches infinity, we need only to 

examine whether or not the three hemispheres, each of which is determined by the 

two vanishing points (the common intersection points) as described in Section 3.2, 

have a common point; i.e., whether or not the following three equations have a 

solution for (x0, y0, f ). 

          (x1 - xO)(x2 - x0) + (yl - yO)(y2 - y0) + f2 = 0, 

           (x2 - xO)(x3 - x0) + (y2 - yO)(y3 - y0) + f 2 = 0, 

           (x3 - xO)(xl - x0) + (y3-- yO)(yl - y0) + f2 = 0, (6.1) 

where (xl, yl), (x2, y2) and (x3, y3) are the three intersection points. Taking the 

differences of every two equations, we have 

            (xl - xO)(x3 - x2) + (y1 - yO)(y3 - y2) = 0, 

            (x2 - xO)(xl - x3) + (y2 - yO)(yl - y3) = 0, 

            (x3 - xO)(x2 - xl) + (y3 - yO)(y2 - yl) = 0. (6.2) 

These equations mean that (x0, y0) is the orthocenter of the triangle (Fig. 6.2) 

formed by the three intersection points (xl, yl), (x2, y2) and (x3, y3). Thus, 
fortunately, the three hemispheres always have a common point. 

   If only one of the three intersection points approaches infinity, then we have 

the following three equations, 

           a(xl - x0) + b(yl - y0) = 0, 

           a(x2 - x0) + b(y2 - y0) = 0, 

          (xl - xO)(x2 - x0) + (yl - yO)(y2 - y0) + f 2 = 0, (6.3) 

where (a, b) is the orientation vector, and (x1, yl) and (x2, y2) are the coordinates 

of the other two intersection points. The difference of the first two equations 

means that the parallel edges are perpendicular to the line linking the other two 
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Fig. 6.2 The orthocenter of the triangle is the 
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intersection points. The focal point is not completely determined, but constrained 

to lie on a semicircle, whose two end points are the two intersection points, and the 

plane on which the semicircle lies is perpendicular to the image plane (Fig. 6.3). 

   If two of the three intersection points approach infinity and the other one 

does not, then one of the three quadrilaterals must be a rectangle. As discussed 

in Section 3.2, if two vanishing points approach infinity, then the corresponding 

image quadrilateral is a parallelogram or a rectangle. If the parallelogram is to 

be interpreted as a rectangle in space, then the projection must be orthographic. 

If the projection is orthographic, then all rectangles in space are projected as 

parallelograms in image. Thus, if two of the three intersection points approach 

infinity and their corresponding quadrilateral is not a rectangle, then the other 

one must also approach infinity. As described in Section 3.2, if a space rectangle 

is parallel to the image plane, then it is projected as an image rectangle under the 

perspective projection. If it is a face of a rectangular polyhedron, then the other 

two visible faces are projected as generic. quadrilaterals, with the corresponding 

vanishing points not approaching infinity. 

   If all the three intersection points approach infinity, then the projection is 

orthographic. The condition for a rectangular polyhedron interpretation is that 

the following three equtions have a common solution for c1, c2 and c3. 

                        VI•V2+c1c2=0, 

                      V2 V3 + c2c3 = 0, 

                       V3 • V1 + c3cl = 0, (6.4) 

where V1 = (al, bl), V2 = (a2, b2) and V3 = (a3, b3) are the orientation vectors 

of the three groups of parallel edges. Easily we have 

                   c12 _ o (V1 • V2) (V1 • V3)                           (V2 • V3) 

                   c22 _ _ (V2 • V3) (V2 • V1)                            (V3 • V1) 
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                  c32 = _ (V3 • V1) (V3 . V2) (6.5)                           (V
1 . V2) 

The condition for a solution of cl, c2 and c3 is that all the three inner products 

are negative - all the three angles around the central corner are greater than 90 

degrees. It is impossible that two of the three inner products are positive and the 

other one negative, because otherwise one of the angles around the central corner 

would be greater than 180 degrees, reducing the three quadrilaterals to two.

6.2 The perceptual level 

   While interpreting figures at the geometrical level is strictly governed by 

mathematics, it must possess certain degree of flexibility at the perceptual level; 

otherwise it would not work on hand-drawn figures in a humanlike way [Sugihara, 

1986]. Both the condition for a real object interpretation and the condition for a 

rectangular polyhedron interpretation derived at the geometrical level have to be 

changed. First, in a hand-drawn figure, it is too strict a condition that the three 

edges of each group, when extended, meet at a common point. Also, the parallel 

edges are only nearly parallel. Secondly, as given in Fig. 6.4, even when one of 

the three angles around the central corner is exactly 90 degrees, the figure is still 

perceived as a rectangular polyhedron (the interpretation is mathematically im-

possible.) A feasible explanation for this fact is that the individual quadrilaterals 

are first interpreted separately (as rectangles) and then integrated as faces of a 

rectangular polyhedron in a less strict way than at the geometrical level. This 

kind of perception seems quite ubiquitous. When drawing a man or an animal, 

children usually put together a frontal view of the face and a side view of the 

body. But the flexibility has its limit; if one of the three angles around the central 

corner is less than 90 degrees, the figure is no longer perceived as a rectangular 

polyhedron (Fig. 6.5,) but an ordinary parallelepiped [Perkins, 1983; Kanade & 

Kender, 1983]. 
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   Fig. 6.4 Perception 

"you are wrong" .

says, "it is a cube". Mathemetics argues,
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   Fig. 6.5 

less than 90 

poyhedron.

  If one of the three angles around the central corner is 

degrees, the figure is. no longer perceived as a rectangular
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   Lastly, although the rectangular polyhedron interpretation is mathematically 

correct if all the three intersection points of each edge group do not approach 

infinity, it does not always agree with human perception, if the orthocenter of 

the triangle formed by the three intersection points is far away from the figure 

itself, simply because we do not draw such figures to represent and communicate 

something.
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Chapter 7 Summary and Discussions

   We are now in a position to look back over the work described in the previous 

chapters, point out remaining problems and suggest directions for future research. 

7.1 Summary 

Throughout this thesis the main goal has been to develop computational theories 

for interpreting various image quadrilaterals. To develop specific algorithms to 

calculate solutions to the theories has only been the secondary goal. The strength 

of the computational approach lies in providing a framework within which math-

ematicians, computer scientists, psycophysicists and neurophysiologists can de-

scribe and connnu nicate their understanding of the problems. 

   In the previous chapters we have introduced our philosophy of vision research, 

defined the goal of our research, contrasted our work with the background, and 

proposed several regularities and constraints to be employed in the visual inter-

pretation of quadrilaterals. By studying these seemingly simple figures, we have 

obtained a number of insights into the nature of the general problem of interpret-

ing image contours. 

   Following a general introduction in Chapter 1, Chapter 2 introduced basic 

terms and concepts, restated the general viewpoint assumption in our new frame-

work, and then applied it to inferring 3-dimensional continuity and discontinuity, 

and to interpreting image vertical and horizontal lines. In Chapter 3, we proposed 

the rectangularity regularity to be the prime constraint . in the visual interpreta-

tion of quadrilaterals. The nature of the regularity has been analyzed, and we 

believe that this kind of regularities is specific forms of our perceptual system's 

preference of regular forms over irregular forms, and should be called subjective 

regularities. By incorporating the rectangularity regularity, quadrilaterals in im-

age are interpreted as rectangles in space, and the "image center" and focal length 
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are determined together with rectangle orientation. The orthographic projection 

is treated as the limit of perspective projection as f approaches infinity. In Chap-

ter 4, we adapted the rectangularity regularity to apply to interpreting "curved 

quadrilaterals". Applying the line of curvature (LOC) regularity, a 4-segment 

closed image contour is interpreted as four 3-D lines of curvature on the surface 

that the image contour depicts. We further proposed a segmentation rule, an 

algorithm for constructing a net of lines of curvature inside the boundary, and 

a method for estimating surface orientations at the net intersections, and finally 

presented some experimental results. In Chapter 5, we discussed the role that 

gravity plays in visual perception and in interpreting quadrilaterals in particular. 

Everything, including the perceiver itself, is attracted by gravity. As a conse-

quence, objects must be supported by something. It is usually perceived to be 

the ground plane, perpendicular to the direction of gravity, if no evidence indi-

cates otherwise. We first analyzed the relation among the perceiver (camera), the 

ground and the rectangles supported by the ground, and then derived constraints 

to determine the rectangle orientation. In Chapter 6, we examined the condi-

tions for interpreting quadrilaterals as faces of a rectangular polyhedron. There 

are two levels of interpretation: the geometrical level and the perceptual level. 

While interpretations at the the geometrical level must strictly obey mathematics, 

interpretations at the perceptual level show humanlike flexibility. Interpretations 

at the two levels are usually fairly different.
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7.2 Representation of visual information 

It is natural to write any descriptions of spatial relations and 3-D models into the 

image, which we coin as visual map, though the coexistence of 2-dimensionality and 

3-dimensionality makes it sound paradoxical. Spatial relations can be described in 

both, or either of, the viewer-centered coordinate system [Marr, 1982] (when, e.g., 

it is used for navigation,) and a more objective world-centered coordinate system 

[Sedgwick & Levy, 1985]. Shape of objects is usually, if not exclusively, object-

centered, so that mental rotations can be performed if needed. The point is that 

we can never imagine an absolute object-centered 3-D model, because a subject 

is always present, and he must assume a position and an orientation relative to 

the object. No reference frame other than the image, or the visual map, then, is 

more natural and straightforward. In this sense the process of visual perception 

can be understood as one of adding 3-D descriptions to the 2-D image, literally 

one of image interpretation. 

7.3 Conditions for the rectangle interpretation 

In Chapter 3 we have proposed the rectangularity regularity to be the prime 

constraint in the visual interpretation of quadrilaterals, by which quadrilaterals 

in image are all interpreted as rectangles in space. It is true that humans do tend 

to interpret quadrilaterals in image as rectangles in space, but it is also true that 

humans do not interpret all quadrilaterals in image as rectangles in space. We did 

not provide the conditions for a quadrilateral in image to be firmly interpreted as 

a rectangle in space in this thesis. However, we consider that the quantification of 

the conditions is possible through psycological experiments. It is our conviction 

that the parameters underlying the perception are the maximal possible focal 

length and the distance between the intersection of the two diagonal (that is 

the centroid if it is a rectangle) and the associated "image center". The longer 

the focal length, the shorter the distance from the intersection to the associated 
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"image center"
, the easier the quadrilateral is interpreted as a rectangle.

7.4 Perception of the contact relations 

In Chapter 5, we analyzed the three contact relations between the ground and 

a rectangle supported by it. Although we can intuitively determine the contact 

relation when given a specific figure, the boundary between different interpreta-

tions is not always clear. If we are to incorporate this into a practical artificial 

vision system, it is required to completely quantify the conditions for each contact 

relation. Again psycological experiments can be conducted. Two parameters are 

sufficient to describe the "space" if a parallelogram rather than a generic quadri-

lateral is used as the object. One of the parameters is the lowest angle of the 

parallelogram, whose supplementary angle uniquely determines the other pair of 

angles, and the other parameter is the right-lower edge's angle to the horizontal 

axis. Varying the two parameters and asking the subjects to answer which contact 

relation they perceive, we can divide the 2-D "space" into three regions , each of 

which corresponds to a specific contact relation.
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7.5 Towards a rule-based system 

The regularity-based approach to the visual interpretation of line drawings opens 

an attractive route to the development of a rule-based system of line drawing 

understanding. Essentially, line drawings are more symbolic than images and thus 

more suited to symbolic processing, to which the matured AI tool of knowledge-

based systems applies. We have in this thesis investigated a number of pieces of 

knowledge that are employed in human perception of line drawings. But they 

account for only a tiny portion. Still much is yet to be searched for. As the 

knowledge increases, the problem of conflicts among the rules will emerge. One 

solution to the problem is to assign a priority value to each rule. The humanlike 

flexibility will not be achieved if there is not a powerful mechanism to coordinate 

the rules.
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 Appendix Proof of the Constant Ratio Intersection Theorem 

[Proof] 

(1) If the z-axis is the axis of revolution of the curve z = f (v) (Fig. A.1), the 

resulting surface can be given as 

                     x = (v cos u, v sin u, f (v)). (A.1) 

The line of curvature are the meridians and the parallels, given by u =const. and 

v =const., respectively. For the meridians, the ratio of length 

                 ful+k(u2-ul) dx dx                    Jul du - du du                                  = k, 0 < k < 1; (A.2) 
                  fu2 Vdx , dx du                       J u1 du du 

is independent of v. For the parallels, the interval 

     vl+k(v2-vl) dx 
* dx = /'vl+k(v2-vl)   IV dv - 1 + [f'(v)]2 dv, 0 < k < 1;    l TV TV vl 

                                                     (A.3) 

is itself independent of u. 

   (2) If the planar cross section curve is-given by 

                     x = f (u), y = g(u), (A.4) 

the z-axis is taken as the v-axis of the generalized cylinder, and the expansion 

function is h(v) (Fig. A.2), then the resulting surface can be expressed as 

                x = (h(v) f (u), h(v)g(u), v). (A.5) 

The lines of curvature are the flutings and the skeletons, given by u =const. and 

v =const., respectively. The arc length 

L l+k(u2-ul) dx dx ul } k(u2-ul)           du ' du du = jl [f'(u)]2 + [g'(u))2 du, 0 < k < 1; 
                                                     (A.6) 
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Fig. A.1 A surface of revolution
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(f (u),g (u))

u

Fig. A.2 A cross section of a generalized cylinder
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is itself independent of v. 

   (3) If a developable surface has zero Gaussian curvature, then one set of the 

lines of curvature are the straight lines. the surface can be rewritten as 

                  x(u, v) = A(v)u + B(v). (A.7) 

The straight lines are then given by u=const.. The length ratio 

fui +k(u2-ul) du ' d- du ful+k(u2-u1) A(v) A(v) du                           ul = k
, 0<k<1;      u2 dx dX du f u2 A(v) . A(v) du      ful du du u1 

                                                     (A.8) 

is independent of v. 

   [end]
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