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  CHAPTER 1

INTRODUCTION

     During the last two decades, a great deal of effort has been
paid to the developrnent of replacement policies for stochastically

deteriorattng systems. At the present tirne, there is a need for

the development of replacement policies for modern complex systems

such as aircrafts, space vehicles, large scale computer systems and
so on. In this thesis we investigate the structure of optirnal

policies for replacement of sueh systems.

    Derman [14, 1963] considered the basic replacement problem of

an equipment whose states deteriorate stochastically during the

operating time. The equipmemt is inspected at the beginning of
each period and the state of the equipment is classified into one

of the (L-Fl) states, namely, O,1,...,L. The state O means the

equiprnent is new and the state L means the equipment is failed.

Either of two actions O or 1 is available for the states 1,2,...,

L-1, where action 1 is to replace and action O is not to replace.

If action 1 is taken, then the equipment is instantaneously replaced
by a new one. If action O is taken, then its state evolves from i

to o' in one period according to the transition probability P...
                                                         zo
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For a replacement, cost C is incurred, and if the equipment is failed

before being replaced, additional cost K is charged. Because of this

additional cost K he considered the possibility of replacing the

equipment before being failed. Then he has shown under the following

Condition A that the optimal replacement policy is a eontrol limit

policy such that replace the equipment if its state is in the set
                                              '{io,ao+1,...,L}, otherwise, do not replace• . '
                     '
     Con'dition A: The transition probabiliries {Pag.} have a stochas-

tically monotone property, that is , for each k=O,1,." ,L
   '            L
    .fk (i)"J. -i kPig', a :O,1,...,L-1

       '
is nondecreasing function with respect to a.
     '                                                      '      ttHere, Condition A asserts that the probability of deterioration

increases as the initial state nurnber increases. According to this

result, the search for an optimal replacement policy can be restrict-

ed within a distinRuished subclass of all control limit policies

which is very narrow compared with the class of all possible policies•

This often enables us to obtain an optimal replacement policy by a

simpler procedure. Moreover, control limit policies are generally

more tractable and easier for the'implementation of maintenance than
                                              'non-control limit ones. •                          '                                   '     Barlow and Hunter [2, 1965] considered the replacernent problem

for stochastically failing equipment whose lifetirne has cdf F(t).

They have showr} under the following Condition B that the optimal

replacement policy is an age replacement policy so as to replace

              /tthe equipment at failure or at age•T, whichever comes first.
          tt                               '                                 ttt     Condition B: The lifetime distribution F(t) has rFR property,

that is, the failure rate

           dF(t)     x(t)=                 / (1-F(t))
            dt
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is non. decreasing function of t.

Analogously to Condition A, Condition B states that the probability

of failure increases as the age increases. If the age of failed
equipment indicates infinity, then it is shown this age replacement

policy turns out to have the same structure as the control limit
policy.

     Jorgenson, McCall and Radner [25, 1967] considered an equip-

ment consisting of two components, labeled by Ul and U2. The failure
                                                                   'of its components are stochastieally independent and the equipment

fails when either component fails. !ts components can be replaeed

separately or jointly, and the following costs are considered:

     K : the breakdown cost                                   '
     Cl and C2 : the replacement cost of Ul and U2, respectively,

     C12 : the cost of replacing both components jointly,

Where C12<Cl+C2 is assumed. Then they studied the optimal replace--

ment policy for component Ul in the case when the failure rate of

component U2 is constant, and they have shown under Condition B that
the optimal replacement policy for component Ul is an (n,N) policy

such that

     (a) if x<n, replace component Ul only if it fails,

     (b) if n;ILc<N, replace component Ul if either component fails,

     (c) if N!s:, replace component Ul at once,

                                'where x is the age of component Ul. However, the structure of the

optimal replacement policy has not be resolved for a general case

where the failure rates of both components are increasing and the
cost of a breakdown is positive. Vergin f53, 1968] has derived

recursive functional equations by the technique of dynamic program-

ming, and has given numerical solutions for certain values of
some parameters. Further Berg [8, 1978] has suggested an oppor-•

tunistic age replacement policy for two components in general case,
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and has computed some long run operating characteristics of this

policy. This policy may be similar to the (n,N) policy for each

component.

     On the other hand, Tahara and Nishida [50, 1975] considered the

so-called minimal repair for replacement problems. In the minimal

repair, the equipment stays in the state prior to its failure. They

considered the following costs.,

     K:'the breakdown cost,

     C: the replacement cost,
         '     M: the minimal repair cost,
              '
whGre M<C+K is assumed. Then they have shown under Condition B that
                        'the optimal replacement policy is a (t,T) policy such that
                                          '                    '     (a) if x<t, carry out minimal repair only if it fails,

     (b) if ts:<T, replace the equipment only if it fails,

     (c) if Tsx, replaee the equipment at once,

                         tt tt tt               ''w' htere x .;Ls 'the age of t"ue equi-pittenLL. 'Ho-w-eLv"er, thiey 1iave llot discuss'

ed the structure of the optimal replacement policy for equipments

coRsisting of more than two components with minimal repair.

     In this thesis we consider replacement problems of an equipment

consisting of n components. Most of the previous replaeement models

have been developed for equipments consisting oÅí single-component.
However, most equipments consist of ' various components. Also, the
transition or failure probabilities of these componen-ts are usually

stochastically dependent and the cost of replacing several components
jointly is less than the sum of the costs required for separate re-
               ttplaeements. Then the replacement policy for each component may
                                                         'depend upon the states of the other components. Furthermore, we take

into consideration of minimal repair at failure of n--component systern.

Then we investigate the structure of an optimal replacernent policy

for components in the system possessing stochastic dependence and

-- 4-



economic interdependence under the criterion of minimizing the

expected total discounted cost, and wiil provide a simple replace•-

ment policy which leads to easier implementation. This policy will
be called (ABC)-policy. Moreover, we also study the group replace-

ment policy for the system and obtain the operating characteristics

of the simple replacement policies.

     In Chapter 2 we consider the structural relationship between

a system and its cornponents, and study a replacement problern for

components in the system. The system consists of n components
subject to Markovian deterioration, though its components are not

necessarily independent each other. We define a coherent system

con,sisting of n components. Furthermore, a coherent system with

minimai repair will be defined. Then we are interesting in clarify-

ing the structure of an optimal replacement policy for components

in these systems under the criterion of minimizing the expected total

discounted cost. First we formulate discrete time replacement model
for a coherent system. The system is observed at the beginning of

each time period and its state is identified. Immediately after each
observation an action is paken as to whether or not to replace each

component in the coherent system. We assume that the time consump-
tion for replacement is negligible. Then we can find the structural

properies of an optimal replaeement policy under certain conditions

concerning the costs and its transition probabilities. Finally,

numerical examples are shown to illustrate the optimal replacement

policy.

     In Chapter 3 we consider discrete time rep!acement models for

replacing components in a coherent- system with minimal Tepair. The

time consumption for replacement and minimal repair is not negligi--

ble. After each observation, an action is taken as to whether or not

to replace each component in the coherent system with minimal repair,

besides an action is taken as to whether or not to carry out minimal

repair, also. We first study the properties of the stochastic
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process representing the behavior of deterioration levels of the

coherent system, and clarify the structure of an optima! replacement

policy. Furthermore, we suggest a simple replacement policy, called
                           '                      '(ABC)-policy, which is easily implementable. ' .
            '     Continuous time rep!acement models are discussed in Chapter 4.

The deterioration process of the coherent system with minimal repair
                                 'is represented by a jump process in Section 4.2. Then the structure
                         '                                           'of an op,timal replacement policy is clarified similarly for Chapter 3.•
                           'In Section 4.3 we consider a coherent system consisting of n stochas-
                 'tically failing components with continuous lifetime distributions.

Its components are stochastically independent and economical!y inter--

dependent. Then we investigate the structure of an optimal replace-
ment policy for components in the coherent system. Furthermore, we
                   'examine the structure of an optimal group replacement policy for a

maintained coherent system consisting of n repairable components in
Section 4.4. Finally, we discuss the relation between the re'place--

ment problern and optimal stopping probl. eTn for th.e coherent .q.ysten.

subject to cuniulative damage model.

     In Chapter 5 the operating characteristics of several simple

replacement policies are obtained for two--component system. Two-
                 'component systern is one oÅí the important system in reliability or

replacement theory. First, for two-component parallel redundant
system with repair, we obtain the distribution of the first passage

time to the system failure, the stationary availability, the expected
  'number of repair and so on. Besides,'for two-component system under
(ABC)-policy, we show the stationary availability, the expected number

of the opportunistic replacement and so on. Finally, the operating
characteristics of two•-component system with minimal repair under

(ABC)-policy are obtained.
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Notes r'or Chapter !

     The replacement policies for stochastically failing system are
surveyed by McCall [34, 1965], and the survey of replacement models
for deteriorating system is given by Piershalla and Vaelker [40,
1976]. The fundamental rep!acement models appear in Derrnan [14,
1963]. Further results are obtained by Kolesar [30, 1966], Ross
[41, 1969], Kalyman [26, 1972], Kao [28, 1973], Feldman [!8, 19,
1977], Numrnelin [37, 1980] and Siedersleben [48, 1981]. The age
replacement policy is discussed by Barlow and Hunter [2, 1965], and
extended by Merimura [35, 1970], Wolfe and Subramanian [54, 1974]
and Cleroux, Dubuc and Tilquin [13, 1979]. The (n,N) policy is
treated by Jorgenson, McCall and Radner [25, 1967], and discussed
by Vergin [53, 19.68] and Berg [8, 1978]. The (t,T) po.licy appears
in Tahara and Nishida [50, 1975].
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                       CHAPTER 2

REPLACE),IIIINT PROBLEM FOR lviARKOVIAN DETERIORATZNG SYSTEMS

2.1 !ntroduction

     In this chapter we consider the structural relationship between

a systern and its components, and study the replacement problem for

components in the system. So far, replacement theories have been

developed for equipments consisting of single component. Most

equiprnent, however, consists of various components. Moreover, the

transition probabilities between the states of several eomponents

are not stochastica!ly independent and the cost of replacing several

components jointly is less than the sum of the costs of these sepa-

rate replacements. Then the replacement policy for each component
may depend upon the states of the other components, Our main inter-

est is the structural properties of an optimal replacement po.licy

with respect to a discrete time replacement. model for components in

a system cosisting of n components.

     In Section 2.2 we consider the dynamic and probabilistic rela-

tionship between the deterioration levels of the system and its

components, and give a formai definition of the system considered

in replacement problems. A discrete time replaeement rnodel is
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defined in Section 2.3. In Section 2.4, we investigate the struc-
tural properties of the optimal replacement policy minimizing the

expected total discounted cost. Finally in Section 2.5, we show

some examp!es of the optimal replacement policy.

2.2 Coherent System
                 '
2.2.1 Definitions
     First, we will give a formal definition of a system considered
in replacement problems. Let N={1,2,...,n} be a set of components
and Ee be a set of deterioration levels of component i for each iEN.
     z
And, let E be a set of deterioration levels of the system composed         s'of n components. A system composed of n components is said to be
an n-eomponent system if there exists a function Åë(.) with domain

Ee=ENEa and range Es. Using this function O(.), the present deteri-

oration level of the n-•componen# system is completely determined '

by the present deterioration levels of its components.
     Let Ei, iEN, and Es be partially ordered sets with relation ).

They are considered as lattices with maximal and minimal elements.

The maximal element e. of E. represents the worst state of compo-
                     zz
nent i, and the minimal element 0 of Ei represents the best state

of component i. Simi!arly the maximal element es and minimal ele-
ment 0 of Es represent the worst and best states of the n--component

systern, respectively.
                           '
     Definition 2.1. An n-component systern is said to be monotone
                                  12if Åë(xg)vÅë(xil)gÅë(ailv`nil) for an xe and rre in Ee.

           '
  '                      '     We ean easily obtain the following property from Definition 2.1

and assumptions of the state space.

,, ,,g:g:gr: iAg',.::g :Xg:c;g,rsc.egf\.:cE.io:..$,(l.g,og,$:? .s;o\..e ,sgs,tem
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and Åë(e)=es and Åë(0)=0 hold, where e=(el,•••,en) and 0"(0,•••,0)•
    '
     Remark 2.1. This property notes that improving the deteriora-
tion of a component i$ not harmful to the monotone system, further

notes that a monotone system is in the worst (best) state i.f every

component is the worst (best) state.

     Definition 2.2. Component a of an n-eomponent system is said

to be i?yeZevant if for each xeEEe there exists xsEEs such that
xs=Åë(xi,xc) for all xaEEi, where (.i,Xe)=(Xl,•..,Xa-1,•,Xih,.'..,

xn). Otherwise, component i is said to be relevan#.'

     Notice that the relevant component of the n--component system

has some role in the system. '
     In this thesis we restrict our consideration to the n-component
system such that the stwuetu?e funetion Åë(.) is monotone increasing

with respect to each argument, and every component is relevant.

     Definition 2.3. An n•-component system is said to be eohe"ent

if it is monotone and each component is relevant... '
                            '                       '
  '                      '              '2.2.2 Dynamic Models
     In the following we consider dynamic models in which the de-

terioration levels of the coherent system and its components vary
over time. Let (st,<7, P) be a probability space and T be a subset

of the extended real numbers. Further let (Ei,Bi) be a measurable

state space of component t where Bi contains all singleton events
{C} , xrEEi, and let (Es,Bs) be a measurable state space of the

coherent system. It is assumed that each state space is a non-empty

Borel subset of complete separable space. Then for each tET, let
Xi(t), iEN, be a measurable function which maps from (st,7) to (Ea,3i),

and the stochastic process {Xa(t); tET} is a deteveioveation p?oeess

for component i. Let Xe(t)=(Xl(t),...,Xn(t)) denote the vector

process of component deterioration. ' .

                               --1O--



     Definition 2.4. A coherent system is said to be MaTkov eoheT7ent

if the structure function Åë(.) is a rneasurable function from (Ee,Be)

to (Es,Bs) and a stochastic process {Xe(t); tET} is a Markov process

with  vaiues in a state space (Ee,Bc)"( ENEi'ENB2)'

  '     This definition states that the present deterioration level

of a coherent system at time t is completely determined by deteriora-

tion levels of components at the present time t irrespective of the
   'past. ' .               '
     Next we shall consider a failure of the coherent system. Let

Eo be a partially ordered set with relation > and a lattice with
minimal element 0 and maximal element eo. Further let (Eo,Go) be

a measurable state spaee, and let Xo(t), tET, be a measurable func-

tion which maps from (9,C7) to (Eo,Bo). Now let 6 be a failure time

of the coherent system. Namely,

     6=inf{tETl Xo(t)7EO}•

                          (t); tET}, called a dcnnagpv proeess, re-The stochastic process {X
                         0
presents the behavior of the state showing the damage of failure of

the coherent system, and may be interdependent upon the stochastic
process {O(X (t)); tc'T} and random damage for the coherent system.
            e
Let X(t)=(Xo(t),Xe(t)) be the deterioration process of the Markov

coherent system with failure and random damage.

     Definition 2.5. A Markov coherent system with random failure
damage is said to be M-MaTkov eoherent if a stochastic process

{X(t); tET} is a Markov process with values in a state space (E,B),

where (E,B)=( dgN Ed;,i!,N Bi) and No={O,l,...,n},

                oo                                  '
     Now we shall consider a minimal repair for a M-Markov coherent
system. LJhen this system fails at state a=(aro,t:e), ColO, the

minimal repair brings the system to the state c=(0,n ).
                                                   e                                      '
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     Example. We assume that the stochastic process {Xo(t); tE[l]}

depends upon the stochastic process {O(Xe(t)); tET} and the random

damage for the systern. Let Xo(t) denote the magnitude of the

shortage of the systern performance for the demand at time t. Then

the M-Markov coherent system fails tf the shortage occurs.

2.2.3 Replacement Policies
     Our. main interest is replacement problems for components in

a coherent system. Let Zc={Xe(t); tET} be the deterioration process

of a Markov coherent systern. The stochastic process Ze is called a
ooheMent pz)oeess for system deterioratton. Similarly, let Z={X(t);

tET} be a M-eoheiient pi)oeess. At a specified time point tET, the

state Xe(t) of the Markov coherent system is observed, and based

on the history of the stochastic process Ze up to time t, an action
                                   'is taken to replace each component or to keep it. Let De be the
action space of a replacement model for components in a Markov co-
her"ent sv.vtem.-. Sim+.ilarly w.he-nL t.he state X(t) of a M-Markov coherent

system is observed, the possible actions are "no aetion", "replace

each component" and "carry out minimal repair for the system". Let

D=D u{m} be the action space of a replacement model for a M-Markov
   e
coherent system. We assume that given the present state and action,

the evolution of the stochastic process Ze or Z untill the next

action is stochastically independent of the past. .
     We restrict ourselves to nonrandomized Markov policies. A
Markov policy ff(t,ae) is a BtxBe--measurable function from TxEe into

D sueh that x(t,xe) is an action when the state (ee is observed at

time t. Let Dein denote the 'set of all Markov policies. A Markov

policy is called stationapy•if it is independent of time, that is

7r(t,Xe)=n(Xe) for all tET and xeEEe. The set of all stationary

policies will be denoted by Des. We restrict policies to a subset
De in Des, which may be called a set of adnassahZe poZieies for a

-- 12-



Markov coherent system. Similarl-y- we define Ds as the set of

admissible policies for a M-Markov coherent system.

2.3 Statement of the Problem

2.3.I Explanation of the System
     In this section we consider a discrete time replacement model

for cornponents in a coherent system. This system consists of n com-
                'ponents under Markovian deterioration. The transition probabi!ities
of each component are not independent each oeher, and the cost of

replacing several components concurrently is less than the sum of

the costs of replacing them at different time. The state of the
coherent system possessing stochastic dependence and economie inter-
dependence is observed at the discrete time periods tcT={O,l,...}.

At these time points, an action is taken as to whether or not to
replace each component. We are interesting in the structure of the
optimal replacement policy of the discrete time replacement model

for components in such a system.

2.3.2 Action and Cost
     Let Xe(t)==(Xl(t),•••,Xn(t)) denote the state of n components

at time tET. After observing the state Xe(t) of the coherent system
                                         'at discrete time t, an action a is taken at each time point as to
                              e
whether or not to replace each component• Now let ae=(al,•..,an)

represent the action taken for components in the c.oherent system,
                                                   'where aiEDi={O,1} is an action taken for component Z, and DiENDi•

Here aa=1 means replacing component i, and ai=O means keeping it.

The time duration for replacement of each component is negligible.
     Let Z[ ={X[g(t); tET} be a stochastic process representing the

behavior of the state of the coherent system under a stationary
                       . The transition probability P"(t,x ,U) ofreplacement policy vED                      ee
                               -13-



the stochastic process zT is given by for each UEB

                        ee                                    '               '                              '                                     ,1 •                                     '          P"(1,Xe,U)"P[Xe(t+l)Eqi Xe(t)rXc, "(Xe)=ae]

(2•i) .Q(xae,u), . '''1 ''
                        e•                                      1•
where xge=(xSl,...,xZn), and xY=O if ai=1 and xZ•i=xi if ai=O•
                         /Then we can easily find that this system is a Markov coherent system
                                       'under each replacement policy TCDe•'., 1 ' .
                                   '     For the costs associated wtth the discrete time replacement

model of the Markov coherent system, we donsider a replacement cost
Ci(Xi) of component i, a set up cost K(ce) for replacement, and ap

operating cost B(xe) per period when the Markov coherent system is

in state Xe=(Xl,..•,xn) at the beginning of the period. We assume

that all costs and transition probabilities are known, and that

all costs are bounded and nonnegative. ' .
                '

2.3.3 Expectation of Discounted Cost
                                                          '     Let wn(t), tET, be the cost of the discrete time replacement
           '
model of the Markov coherent systern at time t under a replacement
policy 7cDe. The expected to.tal discounted cost VT.(ce) for an

infinite horizori, when we start with the state xe, is given by

                 t tt                                     •1
                    oo ••(2'2) V.(`C.)=E[ Z ortiD"' (t)]•

                   t=o •
                               '                                   '                             '                                                           'We are interested to determine the structure of the optimal replace-

ment policy which minimizes this expected total diseounted cost
                                      ttwith discount factor ctE[O,1).T. Let Vct(ce) be the minimum expected
                                '           'total discounted cost when the Markov coherent system is in state

ce at the beginning.'  Then letting T* be an optimal replacement

policy, we have . , ' .                                 tt

-14-



          V (x )=inf V (x )
           ct e TED rr e(2.3) e                = V. k (Xe)'

Under our assumptions, a stationary
exists in De (see Ross [42, 1970]).

functional equation:

(2•4) V.(X.)=rnin [K(X.)(1-Io(a
                   ED                 a                  ce
where
              '     R(X.)"B(X.)+"fE V.(U)QJ(X.,dU)

                    e
     A(ae)={kNlaecDe, ai=1}, and

     Io(a.)={ 1 af a.=0,
              O otheruise.

optimal

 Thus V
       ct

 ))+
e

'

  z
iEA (a

replacement policy
(Xe) satisfies the

  Ci ( ca)+R( cge)],

c)

T*

2.4 Optimal Replacement Policy

2.4.1 Introduction
     In this section we investigate the structural properties of an

optimal replacement policy minimizing the expected total discounted

cost under sorne conditions. We can find an optimal replacement
policy by so!ving the functional equation (2.4). We can not, how--

ever, obtain a solution explicitly for this system. So some prop-

erties on the optimal replacement policy and the corresponding
optimal expected total discounted cost are discussed.

2.4.2 Some Lemmas

     First we shall examine the

expected total discounted cost

condittons. Let B(E ) denote a
                   e

 structural

function V
         ct
 set of all

property ef the optimal
(Xe) under the following

bounded real valued B -
                     e

-15-



measurable function on Ee, and let F(Ee) be a subset of B(Ee) such

that for fcB(Ee), :2)>Lce in Ee implies j'(x,})if(ce). An increasing '

set UcEe is a subset for which the indicator function Iu(:e) is a

member of F(E ). We shall denote the family of all increasing set
             e

uby S(E.)• •
                                            '
     Condition 2.1. Q(xe,U)EF(Ee) for all UES(Ee)•

This condition asserts that the Markov coherent system has a tend--
ency of inonotonically increasing expexted deterioration. The fol-

lowing lemma will be used in the proof of Lemma 2.2 which presents
                                                             'a property of the optirnal expected total discounted cost.
                          '
     Lemma 2.1. If Condition 2.1 holds and hEF(Ee), then we have

                                              '     fE h(U)a(X.,d")EF(E.)' . . ' ' .
                                           tt       e'
                                                                 '     Proof: For hEF(Ee), there exists a nonnegative sequence {Z)i}
                                                            'andareal numberb such that for U.ES(E) .                   e ze
                n
     hn (Xe)"be+t:lhiIui (Xe)

and

     h(x )=lim h (x ).
                ne        e           n->oo '
  '
Then we have that
                                ' '                                             '                               n•     fE h. (Z'`) (2 (X. , dZ'`)"fE [ Z'.+ .Z hi Iu . (") ] CJ) (`i'. , d")

       e e. z=1,z .
                              1. .. ..                      =be+ilihie (Xe ' .Ui ) '

                             'Therefore the result follows directly from Condition 2.1 as n->co. I

         '
     The above lemma is a generalization of an important result
obtained by Derman [14, 1963]. The following lemm-a shows a struc-

ture of the optimal expected total discounted cost function under
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the fo!low:ng condition, and it is used in the proof of theorems

which present the structural properties of the optimal replacement
policy.

     ConditioB 2•2• B(X.)EF(Ee), K(`C.)EF(Ee) a"d i,ZNCi(Xi)EF(Ee)'

     Lemma 2.2. If Conditions 2.1 and 2.2 hold, then the optimal
expected total discounted cost function Vct(xe) is a member of F(Ee).

     Proof: The proof is carried out by the successive approxima-
tion technique. Let Vo(rce)=O and define recurrsively:

(2' ?) Vk(Ce)"aM,iB [K(Xe)(i-io(ae))+i,X(a )Ca (Xi)+Rk(`X'[le)]

                  ee e
where
     Rk (X.)= Z3 (`X e)+ fE Vk-1 (U){9 (X.,dU)'

                     0
We first show Vk(xe)EF(Ee) for each k by mathematical induction.

For k=1 it follows trivially from Condition 2.2. Now suppose that

Vk(Xe) is a member of F(Ee) for some k. We show that the same re-
sult holds for k+1. Under Condition 2•1 and 2•2 we have Rk+1(Xe)

     ) by the induction hypothesis and Lemma 2.!. From equationEF (E
    e
(2.5) and Condition 2.2 we ean easily obtain that Vk+1(Xe) iS a

member of F(Ee). Also it is easy to see that Vk(ce)+Vct(xc) as k->eo,

since all costs are bounded and or<1. Thus V (c ) is a member of
                                           ct e    )• HF (E
   e
     Condition 2.2 states that the operating cost, the set up cost

for replacement and the replacement cost of components increase as

a function of deterioration level of the Markov coherent system.

2.4.3 Structural Properties

     The structural properties of the optimal replacement policy

for components in the Markov coherent system are investigated.

The following theorem shows a simple property of the optimal re-
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plaeement policy.

     Theorem 2.1. If the deterioration level of component i is in

the best state 0, then the action to keep component i is optimal.

     Proof: For each 2EN, we define

                  •  '(2'6), . [Yct(Xe)]Zk=.[l]:Bs[K(`Ce)(1'-io(`ie))+J.,X(..)C'EJ (`Cj)+R(X[ile)]'

and

(2  7) [Vct (Xe)]rZJ=all:D"zl [K(Xe)+g.,X(,ze)Cg (Xg)+R (X[IC)]'

                           ttl       - ...                                         tttwhere DgZ.L{aeEDel ai=g'} for each J'EDa• lrhen for (02 ,Xe)EEe we have

                        tt                                  tt ttt t                         '                                   '                                 '                                   '                - -••     [V. (0i,x.)]Zk-[Vct (0a,Xe) 1l

        ; mi.n,[.. E. .Ci(x.i)+R((0,:,n..)ae)]

         aeEDo gEA<ae) w " • ' -

           -a[l2' B3 [J',ll (..) Cg' (Xg')+R((0i,x.)ac)],

and for each aecDZo'

     J'EX (a.) Cg' (Xg')+R((0i'Xe)ae)-' [J.,X (..) Cg' (Xg )+Ci (0)+R((0i ,x.) (la 'a

        "- Ci (0)-R( (0i,x.)ae)-R( (oi,`n.) (ii'ae)).

                   '
                                  '                              'Thus from R((0i,xe)ae)=R((0i,xe)(li'ae))'  for aeEDZo'  we can easity

                       -• eobtain that [Vct(0i,ne)]Z k-[Vor(0i,xe)];<O. This completes the prcof.

                                        '                                                               '
     Remark 2.2. Note the optimal replacement policy is T(0)=O

from Theorem 2.1. This result is intuitively obvious.

e))]

Il
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     Let EZ"Elx"'xEa-lxEa+lx'''xEn for each icN, and Ji(xg) be a

                      --subset of Ea for each x:IEEZ. Let S(Ei) be the family of all in-

creasing set U in Ei.

     Definition 2.6. Let iTi be a stationary replacement policy for
component i in a Markov coherent system. Then ffi is said to be a
eont"oZ Zimat poZiey with respect to component a if and only if
                                  - e-there exists a ?epZaeement set Ji(xeZ)ESgEi) for each c:IEEZ sueh

ge#g.:i.,geedgt:.te, fz.'plig.i? the set Ji(cZ), replace compo...t a,

                                   '
     We examine some structural properties of the optimal replace•-

ment policy under the following additional condition.

     Condition 2.3. B(x )-K(x )- Åí C.(`c.)EF(E ).
                            e. zz e                       e                               •z.EN

     Theorem 2.2. If Conditions 2.1, 2.2 and 2.3 hold, then there
exists a control limit po!icy Ta with respect to eemponent i mini-

mizing the expected total discounted cost.
                       '
     Proof: From equations (2.6) and (2.7) we have

             --     (V. (X.)]Zk-[V. (X.)].Z,

                                     '         =.[l:D"z6 [-K (Xe ) Io ("e ) 'Ci (`X'i ) +g. ,X (..) Cg' (Xg' ) +R (X[le) ]

                 '             -a[gtD"Zb [g',X (..) CJ' (`r'{i)+R ( c,Sii 'a.) ) ] .

    '                           --Then the difference [Vct(xe)]t k-[Vct(xe)]; is a member of F(Ei) from

Condition 2.3 and Lemma 2.2. Thus the result follows frorn Defi-
nition 2.6. U
                                       '                                                .    Remark 2.3. The optimal replacement set J;(xZ) of eomponent i

                                                    '
                                                       '                                '                                                            '                              tt                                                             '                             --19- •



          - --     J;l (X[I )={`niEES [ ll. (X.) ] ZkE'=[ Vct (`Ce) ];} '

                                             '                        '
     Theorem 2.3. If Conditions 2.1, 2.2 and 2.3 hold, and the

action to replace.compongnt a in the worst state ei is optimal,

then we have JVs(eZ)DJ*(oZ).. .
              zz
     Proof: From equations (2.6) and (2.7) and assumptions of this

                          'theorem, we have for each zEN

        ,--     [ V. (xi ,e)] Zk- [ V. (eci ,e)];

                                   '
          .=[K(:i,e)+g. Z, NCJ• (eg•)+R (xi,0)]- [K( ci ,e)+J. Z, NCj (eJ•)+R (0)]

                    g'li
          =-- Ci (xi ) +R (xi , 0 ) --R (0 ) ,

   '
and from Theorem 2.1 we have

                -e     [V. ( ci ,0)]Zk- [V. (xa,0)];-R (xi ,0)-- [K (xi,0)+Ci (xi)+R (0)]•

Then the fovllo'.•'ing ineq'u'ality holds

               -- --     [v.(xi,e)]ft-[V.(xi,e)]; > (V.(xi,0)]Z-[Y.(xi,0)];•'

                                --Thus we can easily see that .IS(eZ)DJE(0Z) by the definition of the

optimal replacement set JE(xZ)• Il

                                               '
     Using the following definition we further clarify the

structure of the optimal replacement policy for components in a

Markov coherent system. •
                                              '
          '                                        '     Definition 2.7. Let Trk be an optimal replacernent policy. Then
the following set G(ae) is called an optimaZ r'egion of an action aeEDe

     G(ae)"{XeEEel T*(Xe)=ae}' .

     Property 2.2. 'If Conditions 2.1, 2.2 and 2.3 hold, then the
optimal region G(o) is closed in the sense that :IAc2cG(o) for an
                                                eexl and `n2 in G(o)• • •' ' '' ee                       '                                                                '
            ' '
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                       121 122     Proof: First if x Ax' --c or n Ax =c, then the result is
                       eee eeeobv ious . Let xg Ax2= (xiA xr9, . . . ,a jiA vS ') , then we have xgA cg <Lxg or

cgAcgm<x2 for each aEN. Thus we have x3Ac2EG(o) from Theorem 2.2.

                   '
     Remark 2.4. Notice that the optimal region G(O) of an action
                                                              EG (O)O is not always a decreasing set in the sense that for each x
                                                             e
                           . This fact is shown in Section 2.5XECe in Ee implies x6cG(O) .
     Property 2.3. !f Conditions 2.1, 2.2 and 2.3 hold, then the
optim

gl regio2n G(ll) is closed in the sense that xilvr:iliEG(ll) for

all x and x in G(ll).
     ee
     Proof: The result is easily obtained from Theorem 2.2. II
          '
     Property 2.4. If Conditions 2.1, 2.2 and 2.3 hold, then the
optimal region G(11) is an increasing set.

     proof: when xisx2 and xiEG(ll), we have for each a ED
                   ee c                                                       ee

     [K(xg") (1rIo (a.))+g.,X (. ) Cg• (`ir{i)+R (`vg"e) ]-[K( ng")+g. :,NCg• (` j)+R (0) ]

              •e
         k[K (caiii ) (! '- Io (ae) ) +g. ,X (. ) Cg• (xo• ) +R (xgac ) ]

                                 c
                                    -- [K( ci )+ z c . (`ci.)+R (o) ]

                                         e o•,N g g

          >o.

The first inequality is true from Condition 2.3, and the second
inequality follows from xZEG(ll). Thus the result is obtained

from equations (2•4). II

     Remark 2.5. We can intuitively expect that the optimal re-
                      ) is an isotone function such that xl>Lc2 inplacement policy "*(c               1e2 ceE irnplies rrth(x )2Trk(a ) in D . However this conjection is not
                      ce
correct. A counterexample is shown in Section 2.5.
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2.5 Example

2.5.1 Model
     In this section we consider a two-component system possessing
stochastic independence and economic interdependence. Let E7=E2=
{O,1,...,7} be the state spaee of each component. In this case the

transition probability e(:e,ye) of a two-component systern ts given

by ., '               12     e (x'         ,Y )=P eP ,        e e xlYl X2Y2
                                              '       .where Pk.y. is the transition probability of gomponent i. We assume

        zz .                                                                '                                                '          '  'z               is nondecreasing in ca for all kEEa. Then we canthat Z P     yapt XYi •

easily obtain that Z (9(xe,ye) for each UES(Ee) is a member of
                   YeEU
F(E.). Further we assume B(xe)=Bl(xl)+B2(c2) and K(Xe)"KfO•

                               'Table 2.1. Transition matrix PZ

xixyi o 1 2 3 4 5 6 7

o

1

2

3

4

5

6

7

o.oo

o.oo

o.oo

o.oo

o.oo

o.oo

o.oo

o.oo

O.30

O.25

O.10

O.05

O.05

o.oo

o.oo

o.oo

O.20

O.20

O.20

,O.10

O.05

O.05

o.oo

o.oo

O.15

O.I5

O.20

O.IS

O.10

O.10

O.05

o.oo

O.15

O.15

O.15

O.25

O.25

O.15

O.05

o.oo

O.10

O.10

O.15

O.20

O.20

O.25

O.10

o.oo

O.05

O.10

O.10

O.15

O.20

O.25

O.40

o.oo

O.05

O.05

O.10

O.10

O.15

O.20

O.40

1.00
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Tabie 2.2. 0perating cost Bi(sci) and replacement eost Ci(ci).

Xx.
  z

o 1 2 3 4 5 6 7

B.(x .)
 zz
C.(x.)
 zz

o

30

5

30

10

30

15

30

20

30

25

30

30

30

50

50

o

1

'2

3

!-

5

6

7

o l 2 3 4 5 6 7

G(O,O) G(O,1)

G(1,O) G(1,1)

Figure 2.1. 0pttmal replacem.ent policy for independent components

2.5.2 Numerical Exaniples

     To illustrate an optimal replacement policy for the system of

the preceding section, we consider numerical examples. The transi--
tion matrix Pi of cornponent i is given in Table 2.1. The operatin.g

cost Bi(ca) and the replacement cost Ci(xri) are given in Table 2.2.

Then Conditions 2.2 and 2.3 are satisfied. First consider the case

where the components are stochastically and econornically independent,
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i.e., suppose the set up cost is 2K when both cornponents are re-

placed. Then the optimal replacement policy for components in the

two-component system is shown in Figure 2.1 in the case of K=10 and

ct=O.95. Notice that this optimal replacernent policy for one compo-

?ggi S8gg:li depend on the state of the other component (see vergin

                     '          '        '

   o

   1

   2

   3

   4

   5

   6

   7

Figure

     On

in the

in

that

policy
(o,o)

the

always

G(O,O)

G(1,O)

e. (o,O

l

G(1,1)

    2.2. 0ptimal replacement policy for dependent components.

                         tt                                     '

        '                                                      '
     the other hand the optimal replacement policy for components

    two-component system possessing economic dependence is show

Figure 2.2 in the case of K=10 and ct=O.95. This sxample shows

  the optimal replacement policy has the form of a control limit
    with four regions. For example TVc(5,1)=(1,O) and zrk(5,2)=

   are not nondecreasing. .Therefore this example also shows that

 monotonicity of the optimal replacement policy Trk(ce) does not

 '                                                           '       '
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2.5.3 Special Case
     Here we consider the above two--component system with El=[O,oo]

and .E2={0,1}. Then the failure states of components are in state
e =oo and e pt1. We have from Remark 2.3 "

     Js (o)={`vlEE7I [v. (xl ,o)]j2.(v. (xl,o)]lil},

and

     Jf (i )={`rciaEi l [ V. (xi ,.i ) ] Zl[ V. (xi ,i) ]Iil }•

Thus there exist n and N such that

     JS (0)=[N, oo] ,

and'

     J'i (1)=[n, oo] .

Theorem 2.3 states that J)le(0)cJ)'c(1) i.e., nsN. Therefore the

optimal replacement policy T7 with respect to component 1 is the
same structural property of an (n,N) policy introduced by Jorgenson,

McCall and Radner [25, 1967] in discrete time case.

     In the numerical example, it can be seen that the optimal re-
placernent policy is fairly close to the (n,N) policy with N=5 and

n=4. Xt might be better to employ a simpler (n,N) policy because of
easier manipulation than a more complex one.

Notes for Chapter 2
      ttt
     The definition of the coherent system appears in Barlow and
Proschan [3, 1975], and is extended by EL-Neweihi, Proschan and
Sethuraman [17, 1978], Ross[45, 1979], Griffith [22, 1980] and
Buther [11, 1982]. Some standard concepts involving the notion
of order and lattices appear in Topkis [52, 1978]. The Markov
decision process is studied by Derman [14, 1963], Ross [42,1970]
and Howerd [24, 1960]. The control limit policy of two-component
system is discussed by Sethi [47, l977], and is extended by Hatoyarna
[23, l977].
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CHAPTER 3

DISCRETE TIME REPLACEMENT MODELS

3.1 rntroduction

     In this chapter we consider discrete time replacement models

with certain replaeerfient time. Suppose the coherent systern with

a random damage consists of n components under Markovian deteriora-
tion. Its components are not stochastically independent and eco--
nomically interindependent, and the replacement tirfie and minimal

repair time are not negligible, The objective of this chapter is

to clarify the structure of the optimal replacement policy for

components in the coherent system with rninimal repair. Further
we suggest a simple replacement policy, called (ABC)-policy, which

is easy for implementation.

     In Section 3.2, the discrete time replacernent model is consid-

ered more elaborately, and the strueture of the deterioration process

is discussed. Under reasonable conditions the structural properties

of the optimal replacement policy for minimizing the expected total

discounted cost are investigated in Section 3.3. In Section 3.4, we

show an example of an optimal replacement policy. Finally, in Section
3.5 we suggest s simpler (ABC)--policy which is easily manageable.
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3.2 Model Formulation

3.2.l Model of System ,
     In this section, we consider a discrete time replacement model

for a coherent system with minimal repair. The coherent system with

minimal repair consists of n components under Markovian deteriora-

tion, and possesses stochastic dependence and economic interdepend-

ence. The system is observed at the beginning of discrete time
per'iods t(T={O,1,...}, and classified into one of the possible
                               'number of the states. Further, when the system failure is observed,

it is classified into one of the number of states showing the degree
of the system failure. Then the possible actions are "no action!',
"replace each component"' and !'earry out minimal repaiT for the

coherent systern". A replaeement of each component means the change

of the component to new one, and minirnal repair for the eoherent

system brings the state showing the degree of the system failure
bacl< to the best state. The time consurnption required for replace--

ment or minimal repair can not be negligible Å}n this chapter. When

an action aED is taken on the coherent system with state x=(xro,...,
Xn), the tirne consurnption required for replacement or minimal repair,

T(x,a), has a probability distribution G(t;x,a) with a finite mean.

3.2.2 Underlying Stochastic Process
.,,t.kegilth' :. `l2;1"ii'Agnk,' l.:egr,gi-s",E,8)"7 Åíig:e,gf,g::.cgh.e[figt

coherent system with state X(t)=x, then we have X(t+T(x,a))=(0,xa),

                             •0and if a=m the X(t+T(c,a))=(0,xe). We are interested in the state '

of  the co Pere?..t system. ,.Thus we introduce the following stochastic

process Z ={g (t); tJET} under a replaeement TED
                                              s

(3.1) z" (t) =X(Tt)
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where O=To<Tl<172<..., Tt=tZ' t-1+S(z"(t-l),vr) and

          '
                        '     S(g"(tJ-1),T)=f l if' a' (g'i- (t-1))=o,

      , L tz7 (g 'T (t •-o,Tr) othevaise•
              '      '
Then the transition probability PT (t,x,U) of the stochastic process
zT is given by for each UEB

          pi' (1, c, u) .p [g TT (t+1)Eul g'r (t) = zr, Tr (x) =a]

                                               '            • = ag(x,U) if a=O,
                                           '(3.2)                      1 if a=m and (0,xe)EU,
                      1 '. if aEDI and (o,xg)cu,
                      tt/                      O othevaise.

Then we can easily find that the eoherent system with minimal repair
is a M-Markov coherent system under each replacement policy xED .
                                                              s                                        '
               '                            '
3.2.3 Some Lemmas .
     We shall study the structural properties of the deterioration
process Z of the M-Markov coherent system. Let B(E) be a set of all

bounded real valued B-rneasurable function on E. Let F(E) be a
subset of B(E) such that for fEB(E), x'>Lc in E implies f(x')tf(x).

Furthermore, let S(E) be the family of all increasing set U on E.

                                •1     Definition 3.1. Let M(E) be a set of probability measure on

the state space E. We say that I' IEM(E) is stoehastieaZZy smaZZe?
than P2EM(E), and denote this by Pl-<P2, if and only if ffdPlwwYfdP2

                                         '
     Remark 3.1. A simple approximation argument shows that this
is equivalent to the requirernent that Pl(U)gl'2(U) for all UES(E).

                                         ttt     Definition 3.2. A deterioration process Z of the M-Markov
coherent system is said to be stoehastieaZZu. monotone if and only
                                'if P[X(tJ)EUI X(s)=ec]EF'(E) for all UES(E) and ilJ>s in [I]=={O,1,•••}•
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     Condition 3•1. (?(x,U)EF(E) for all UES(E).

     The following lemmas show the structure of the deterioration

process Z of the M-Markov coherent system.

     Lemma 3.l. The deterioration process Z of the M--Markov

coherent system is stochasticaily monotone if and only if Condition
3.1 holds.

                                   '  '                                                           '     Proof: Assume the stochastic process Z is stochastically
monotone. Then Condition 3.1 follows from Definition 3.2 and (3.2).

!nversely, from Condition 3.1 we obtain that for each UES(E)

     p[X(t+1)EUI X(t)=x]=e(x,U)
   '
is a member of F(E). Suppose that for some k, P[X(t+k)EUI X(t)=x]

is a member of F(E). Then we have
                                                  '
     P[X(t+k+1)EUl X(t) =x]:fEP[X(t+k+1)EUl X(t+1) =u]Q(` ,du)

                          =fEP[X(t+k)El7l X(t)=u]e(x,du).

Thus from Lemma 2.1 and the induction hypothesis, we can easily
obtain that P[X(t+lc+1)ELII X(t)=x] is a member of F(E). Therefore
                        'the result directly follows. Il

     Lemma 3.2. The deterioration process Z of the M--Markov coherent
system is stochastically monotone if and only if E[f(X(t))l X(O)=x]

sE[f(X(t))l X(O)=x'] for all fEF(E) and xgx' in E.

     Proof: By a simple approximation argument the resuit follows
from Definitions 3.1 and 3.2. Il

                     t/t
3.2.4 Expectation of Discounted Cost

     We investigate the structure og an optimal rep!acement policy

which minimizes the expected total discounted cost with discount
factor ctE[O,l). For the costs associated with the discrete time
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replaeement model of the coherent system with minimal repair, we
consider a replacement cost Ca(X2;) of component i per period, a set

up cost K(x) of replacement per period, an operating cost B(x') per

period and minimal repair cost M(x) per period vvhen the system is in

state x at the beginning of the period. We assume that all costs

and transition probabilities are known, and that all costs are

bounded and nonnegative. Further we assume for simplicity that

each state space Ea is a subset of nonnegative real number R+.

     Now let Vct(x) be the rninimum expected total discounted cost
             'when the state of the system is x at the beginning. Then Vct(c) obeys

the functional equation: • '
                                                                  '              '                                '
          v. (x)=min[B(v)+ctfV. (u)9 (x,du),

                       '                              tt tl                    f{M(x)}i.ctt +cttV.(0,x.)}dG(t;x,m),

                                                t(3.3)
''  ' '  mini f{(K(x)+.z..C,•(c,:))li2I.
                    aEDM ÅëEA (a) ' v -- --
                                     +cttv (o,x`Z)}dG(t;x,a)]
                                         cte
where Dl={aEDel afo}, A(a)={icNl ai=1, aEDe}, xg=(arEll,...,:;In) for

   1aED , and

       '      a.'     xiz=( xi if ai= O,

         Lo af aa=1•

3.3 Structure of the Optimal Replacement Policy
                              '
3.3.1 Property of Optimal Expected Cost
     Our aim ls to examine t'he structural properties of the optimal

replacement policy for the coherent system with minimal repair,

under the criterion of the expected total discounted cost. First
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we seek the structural property of the optimal expected total dis-

counted cost function. The following theorem shows the structure
of 7 (x) under the following condition.
    ct

     Condition 3.2. (1) B(x)eF(E), K(x)EF(E), M(`re)EF(E) and

 Z C.(x.)EF(E).
 . z z2.EN
                '           '(2) l•-G(t;c,a)EF(E) for each tET and atO•

                                                                 '  ' This condition (1) means that the operating cost, the set up
                                                                 'cost of replacement, the minimal repair cost and the replacement
      'cost of components increase as a function of deterioration level of
                   'the coherent system with minimal repair. Condition (2) means that

the replacement time and minimal repair tirne have a tendency for

monotonically increase as a function of deterioration level of the

system.

     Theorem 3.1. Assume that the deterioration process Z of the M--
Markov coherent system is stocbastically monotone. If Condition 3.2

holds, then the optirnal expected total discounted cost function

V (x) is a member of F(E).
 a                 '
     Proof: The proof is carried out by the rnethod of Lemma 2e2e

Let Vo (x)=O and define recurrsively:

          Vk (x)=min[B (x)+cxfVk.1 (u)e (x,du),

                          1-ctt +.tV
                    f{M (X)1-. k-1 (0 ,x.) }dG (t;x ,m),
(3.4)
                                                t                    ::gi J{ (" (X)"i ,X (. ) Ci (Xi) ) l--- ctct

                                                       '                                  +cttVk-1 (0,xZ) }dG (t;x,a)].

                                  'tWe first show Vk(x)cF(E) for each k. We have fl--ctct dG(t;x,a)EF(E)

from Condition 3.2 (2) and Lemma 2.1. Therefore for k=1 it foilows
trivially from Condition 3.2 (1). Suppose that for some k
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Vk(x)EF(E), Vk(0,c.)gM(x)1(1-ct) and Vk(( )g(K(x)+Ci(vi))1(1-or) for

each iEN. Then under Condition 3.2, we obtain that

     B (x)+ctfVk (u)e (co , du)

                                                                 '
is a member of F(E) by the induction hypothesis and Lemma 2.1. 0n
                                      1the other hand, we obtain for eaeh aED

     (K(pu)"i,X(.)Ca (Xi))'}:t +cttVk (0)th2)

                        '
is increasing in t from the indugtion hypothesis. Thus

                           '    . f{ (K (X)"i ,X (.) Ca (Xi5 )'ii -- &,' ."g .1. vk (o•xZ) }dG (t; x. ,a) .

                               '::a2 MeMber Of tF(E)  from  Lernma 2  i  .,Pi.miiarly for .a=m we obtain

     f{M (x) l, i.g +ct tvl, (0, c.) }dG (t;x,m) •
               '
                     'is a member of F(E). Thus we have Vk+1(ac)EF(E) from equation (3.4).
Next we show that Vk+1(0,xe)gM(x)1(1-ct) and Vk+1(X)E.(K(X)+Ci(Xi))/

(1-ct). From the functional equation (3.4) we have

    '     Vk+i (x)si{M(x)ligt +cttvk (o,x6)}dG(t;x,m)

            sM (x) 1 (1-• ct ) .
            m                    '                                           '                      '                                               '
The last inequality is true since Vk(0,xe)gM(x)1(1-ct)•                                                       Thus we have
Vk+1(0,`C.)IELM(C)!(1-ct) from Vk+1(X)EF(E)• Also we have for each kN

                     '                                                                  '                                 '    '                                            '                               t ''     Vk+1(X)=`J{(K(`C)+Ca(Xi))llct. +cttVk(0,(0a,x.))}dG(t;x,(li,O))

                                                 '            :l.(K (x)+Ci (xi))1(1-ct)• ' '
                             '                                  '                            /Thus we obtain that Vk+1(x) is a member of F(E). Then we obtain

                   '                                                              '                     '
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Vzc(x)EF(E) for each k. Since a<1 and all costs are bounded, it is

easy to see that IZk(x)ÅÄVct(x) as k->co for each xEE. Therefore we

have Vi (`v)EF(E). Il '
      ct

3.3.2 Properties of Optimal Replacement Policy
     The structural properties of the optimal replacement policy

for the discrete time replacement model are investigated. Let
F(Dl) be a set of all bounded real valued increasing function on
Dl.

     Condition 3.3. (l) M(x)SK(x)+C.(itr.) for each aEN,
                            wa lt Z
(2) G(t;ec,a)sG(t;xr,m) for each aED ,
(3) 1--G(t;x,a)EF(Dl).

     Condition 3.3 (1) states that the minimal repair cost is not

larger than the replacement cost. Similarly, Condition 3.3 (2)

states that the minimal repair time is not larger than the replace-
ment time. Condition 3.3 (3) rneans that the replacement time has

a trend for monotonicaily increase as a function of the number of
                              'the rep!acement components.
                                                    '     The following theorems show some simple properties of the
                            ttoptimal replacement policy. '                                                           '                                          '
     Theorern 3.2. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2

and 3.3 hold. If the deterioration level of component i is in the
best state 0, then the action to keep component i is optimal.

     Proof: Let

            .     [ V. (x) ] ft =min [B (`c)+ctfV. (u)e (x , du) ,

                          t'                  f{M(x)l'--.ct +cttv.(o,x.)}dG(t;x,m),
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                                 t             .MZEgs f{ `"(X",•,X(.)Co' `Xg'))lig

                         +ct tv. (o,`cZ) }dG (t;x,a)],

                       tt                        '
    [Vict(X)];"i:2B3f{(K(X)"g.,X(.)Cg'(XJ'))lict" "ortV.(0,`x'[I)}dG(t;x/,a),

where DgZ'. tt{aEDel afO, ai=g'} for each g'EDa. [rhen we have

    '         -t    [V. (x)]Zk-[V. (x)];' •
                       '     i"{a:Dnz5 4 (K(X)"g•.X(.)Cg' (Xo'))}gt 'cttv. (o, c[l)}dG(t;x,a)

                       '        -.MiEDnzi f{(K(X)"g.,X(.)Cg'(` ,i))ll.ctt 'cttV.(o,xg)}dG(t;x,a)

           aand for each aED. •           v
   f{ (K(X)+o.,X(.)Cg' (Xg'))}[lt +cttV'. (0,X:l) }CIG(t;x,a)

     -f{ (K(` )+o.,X(ii,.)Co' (`i'j))li.ctt +orti7. (o,x5ia'a)) }dG(t;x, (ii,a))

     Y{ (K (X)",.,X (.) eg' (xo')) l!ct.t tct9v.'(o,xg) }dG (t;eq,a)

                              t       -f{ (K (X)+J.,X (.) Cg' (Xg')'+Ca (Xa ) ) lictct

                    +cttv. (o,x5ii'a)) }dG (t; c,a)

     =f{-ci (xa)ligt +ctt(v. (o, cZ)-v. (o, cEii'a)))}dG(t;ec,a).

    ie.
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The first inequality is true from Condition 3•3 (3) and the proof of
Theorem 3.1, and the second inequality follows from V (0,(0.,ic )a)
                                                    ctz"Va(0,(0i,xe)(li'a))• Furthermore from condition 3.3 a) (2),e

we
have for x.=0
          z
     min[B(`n)+orfV.(u)Q(x,du), f{M(x)}gt +cttV.(0,`v.)}dG(t;x,a)]

                  '                                          '           -f{(K(x)+ci(xi))lict.t +cttv.(o,(oi,x.))}dG(t;x,(li,a))

           <o.
                                                              .                                                             zThus we can easil\ obtain that the difference [Vct(Co,(0i,Xe))]k
-[Vct(co,(0i,ce))];<O• Therefore the result directly follows. II

   '
     Let EZ=Eox't'xEi-lxEa+lx"'xEn and Ji(xo,x:I) be a subset of

                 --Ei for each (co,:II)EEoxEZ. Let S(Ei) be the family of all in-

creasing set in Ei and DO={aEDI avEO}.

     Definition 3.3.. Let Ti be a stationary replacement policy for

component i in a M-Markov coherent system. Then vi is said to be a
eontToZ Zamat poliey with respect to component i if and only if there
                                - --exists a ioezpZaeement set Ji(xo,xZI)Es(Ei) foE; each (co,xcZj')EEoxEZ such

such that if state xi is in the set Ja(r;o,ae), repiace component 7,

otherwise , do not replace.

     The structure of the optimal replacement policy wi!1 be clari-

fied under the following additional conditions.

     Condition 3.4. (1) C.(x.)Å}C. for each iEN,
                         zz z
(2) G(t;xo)=G(t;x,a) for all aEDO,

                 iS(3) B(e)-K(x)flEg a'G(t;`o)cF(E.),

(4) IL4(x)-K(x)EF(E ).
                e
    Theorem 3.3. Assume that the deterioratien process Z of the M-
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Markov coherent system is stochastically monotone. rf Conditions 3.2,

and 3.4 hold, then there exists a control limit polic: b with

respect to component a' minimizing the expected total discounted

cost of the discrete time rep!acement model.

     Proof: Under Condition 3•4 (1) and (2), we have
              '           '            '' t'     [V.(ar)]Zk-[V.(v)];=min[B(c)-K(x)f}g dG(t;xo)+orfTr.(u)e(c,du),

                                          '                           f{ (M(x)-K(x))ligt +cttv. (o,x.)}dG(t;xo),

                           :2D"z5 f{,•,X(.)Co'iiXt "cttV. (0,xZ)}dG(t;x,)]

                                '
                                            t' '                          -[:2g3 f{,•,X(.)Cg'liorct "ortV.(o•xZ)}dG(t,x,).

                                               '
            ttThen from Condition 3.4 (3) and (4) we can easily obtain that the
                  --           -." JL"7y r- -t--Z. . - it Tnt " -           IVct<C)jk--tVor(XMr, iS a member ot Yi<Ei). 'i'nus the resuitdifference
follows from th,e definition of the control limit policy . Il

                             '     Remark 3.2. Let JE(:o,ark) be the optimal replacement set

minimizing the expected total discounted cost. Then since the
state space of component i is a subset of nonnegative real number
                                        'R+, there exists a control limit xE(xo,x[II)EEau{co} such that

J.* (xo , xZI )- [x; (xo , xZl ) , co ] fi Ei , where xr;l (xo ,' x:l ) =co for J.rk. (xo ,a [l ) =Åë .

                  '     Corollary 3.1. Under conditions of Theorem 3.3 if the action
to replace component i with the wgrst state.ei is optÅ}mal, and
K(X)-M(x)3:O, then we have x# (xo,eZ)gx;. (xo,oZ).

     Proof: Since the action to replace component i wÅ}th the worst

state ei is optimal, we have for each xocEo

                    --     [V. (xo, (xi,e))]Zk-[V. (xo, (xi,e))]; '
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          =f{ (K (Xo, (Xi,e))+g. Z,NCo•-Ci)li:t +(xtlZ. (0,(ci ,0)) }dG (t; r:o)

                                                                 '              -fi (K (`xro, (xi ,e) )+g. Z,NCo•)l."-.ctt +cttV. (0) }dG (tixo)

               '              t ld.t          "f{or (V.(0,(xi,0))-V.(0))--Cal-. }dC(t;xo),

and from Theorem 3.2 we have

          '                    --     [V. (xo, (xi,0))]Zk-[V. (xo, (Xz,0))];

              '          =min[B (xo, (xi,0))+ctfV. (u)e((` o, (xi,0)),du),

                                               '               f{M(xo, (xa,o))IIgt +cttv. (o, (xt,o))}dar (t;xo)

                    't              -f{K(xo,(xi,o))+ci)llg +ortv.(o)}dG(-b;xo)]

                                          t          S{ (M (xo , (xi ,o) )-K (xo , (xi ,o) ) -l g dG (t;xo)

                                                     '
                                            t'              +f{ctt(v.(o,(eci,o))-v.(o))-cilict. }dG(t;xo)•

                  '
Then from K(x)-M(c)IO, we have

                    --     [v. (.o, (xi,o))]Zk-[v. (xo, (xi,o))]k

           -• ••- -                                          z                         z          g[ V. (xo, (xi,e))]k-[V. (xo, (xi,e))]?

                                      --Thus we cai} easily obtain that xzrk. (xo,et)Exz*. (xo,0Z) by the definition

of x,rk.•(xo,`u:I)• ll

     Remark 3.3. This corollary is concerned with (n,N) policy

introduced by Jorgenson, McCall and Radner [25, 1967]. If the

coherent systern consists of two components and the state space
of compQnent 2 is E2={0,1}, then this corollary asserts that the
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optimal replacement policy for the coherent system with minimal
repair is an (n,N) policy with n=:S(xo,1) and N--xS(xo,0) for each

                                                  '
     Corollary 3.2. Under conditions of Theorem 3.3 if the action
to replace component i with the worst state ei is optirnal, and

G(t)=G(t;x,a), then we have x;(xo,ea)=x:i(eo,e'i) for each xoEEo.

     Proof: From the proof of Theorern 3.3, we have •

                    -t     [V. (xo, (xi ,e))]ft--[V. (xo, (xi,e))];

                                         '                                  '
          rf{ (K (`no, (xi ,e))+,\zib,•)'ligt, -}f.Mlv. (o, (xi,o)?}dG(t)

                '
                            •x              -f{ (K (` o, (xi ,e) )+iNCg• ,) lig +cttv. (0) }dG (t)

                        '          '          -f{-ci lxt +.t (v. (o , (thi , o) ) .- ti. (o) ) }dG (t) . '

Thus the result direc' tly follows. Il ' .'
                                         '
     Let F(Eo) be a set of all beunded reai increasing function on

Eo, and F(Eo) be a set of all bounded real decreasing function on Eo.

     Condition 3.5. (l) C.(x.)=C. for each 'iEN, . ''                          ZZI .(2) G(t)=(7(tJ;ar,a) for all aEDO,'. - ' '

            't '(3) B (x) --K (cc) flig clG (t) cF (Eo) ,- •

(4) M(n)--K(c)EF(Eo). • '  ••
   ' Theorem 3.4. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically monotone. If Conditions 3.2
and 3.5 hold, then a control limit ci(xo,xk) is a member of V(Eo).

     Proof: Under Condition 3.5 (1) and (2), we have

        '
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             --      [Y. (x)]Zk --f V. ( c) ];

                            t          =min[B(`n)-K(x)flli.ct clG(t)+ ctfV.(u)e(x,du),

                                           '           't               f{ (M (x)-K (x))li.ct +ct tv. (o ,x.) }dG (t),

                       '   . ' :lgS f{,.,X(.)Cgiii.ctt'cttV.(0•xg)}4G(t)]

                                   '
              ':ig3 f{,•,X(.)Co"i: "cttV.(g•xZ)}dG(t).

Thep from Condition 3.5 (3).and (4) we can easily obtain that the
difference [Vct(:)]Z k-[Vct(x)]; is a membgr of F(Eo). Thus the result

follows from the definition of xz*. (xo,xg). Ii

                       '     Remark 3.4. If the optimal aetion of the operating state
(0,cc) does not carry out minimal repair, then Theorem 3.4 holds

under M(x)-K(`)(F(Eo--{0}) in place of Condition 3.5 (4)•

                                               tt                                  t     condition 3.6. B(x)-M(c)fll--'g dG(t)EF(Eo).

                                     '
     Theorern 3.5. Assume that the deterioration process Z o,f the M-

Markov coherent system is stochastically monotone. If Conditions 3.

3.5 and 3.6 hold, then there exists a control limit xS(xe) for each

c EE such that the actioR to carry out minimal repair for the
 eesystem is optirnal if and only if the failure damage xo exceeds
xb' (ec0)'

     Proof: From the functional equation (2.4), we have for each

vEE •
     [V. (X)]a.o-'[Vct (X)]a=m

                                    1-ctt t
          =B(x)+ctfV.(u)Q(x,clu)--f{M(x)1.. +ct V.(0,x.)}dG(t)

                                                         '
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                                     1--ctt t
          =ctfV.(")Q(X,d")+f{B(X)'M(X)1-. "ct V.(0,X.)}dG(t)

                                       '
Then we have [Vct(x)]a.o-[V.(x)]a.m EF(Eo) by Conditions 3.2 and

3.6. Also under Condition 3.5 we have

     [Vi. (X)]a.o-[V. (X)]acDl

          ,= B (x)+ctfV. (u)Q (x,cZu)

                                     1-ctt t
              -[:2gl f{(K(X)+g•,X(.)Cg')1-ct +" Vct(0'Xe)}dG(t)

          = f{B (lc)-K (ac) ii igt}dc (t)+ctfv. (u)Q (x,du) ' '

                                                    '              -' [: IBl f{ g' ,X (. ) Cg' 11 '-' ctct t +ct tVct (0 , `n.) }dG (t) .

                               tt tl tt                             •1/lill..end lllii.h.a".g.III?(Xll]a=o-[iict(X)]af6 EF(Eo)• .[chus we /cqn easiiy

                     t t/t                               /t tt
    .Remark 3.5. VJhen the action to replace several components is

made in the state c=(xo,ve) (xofO), this action contains the action

to carry out minimal repair. Condition 3.4 (4) can be obtained .

from Condition 3.5 (3) and Condition 3.6. '
  ' 'The following properties clarify the structure of the optimaZ

or' oi. .q2 on G(a) ={xEEI TT (x) =a },. . ' ''

     Property 3.1. Assume that the deterioration process Z of the M-

Markov coherent systern is stocahstically rnonotone. If Conditions 3•2,

3.4, 3.5 and 3.6 hold, then the optimal region G(O) is closed in
                12                                  12the sense that c Ac EG(O) for all c and x in G(O).
     proof: For xi and x2 in G(o), we have xZ.Aacij.sxl, or xZ.Aec'z2.sxz2.

for each icN. Thus the result follows Theorems 3.3 and 3.5. Ii

                                              '     Propertu 3.2. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically monotone. If Conditions •3•2,

                       '                                                       '                                      '               •• -40-



3.-i, 3.5 and 3.6 hold, then the optimal region G(]1) is closed in
                12the sense that : vx EG(ll) for all xl and c2 in G(ll).

                                                      '
                                                        '     proof: The proof is similar to that of property 3.1• ll

     Property 3.3. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone. If Conditions 3.2,
3.4, 3.5 and 3.6 hold, then the optimal region G(Oi,ll) is closed
in the sense that xivx2EG(oi,ll) for aii xi and x2 .in G(oa,ll).

                 '                       121 122 '                                            then the result is     Proof: First if x Vx =c or xr Vx =x ,
obvious. Let niv:2==(:Svxo2,...,xllvcS), then we have civx2EG(oi,it)

uG(ll) from nl•v.Åéint<xl. or xl.vxi<=:S. for each aEN and Theorem 3.3. Then

we have

     [v. (xl vx2)]a. ll -[V. (xl Vx2)]a. (o ., ll)

                                   z
                         '          =f{ (K(x1 v`c2)+J.,zNco.)l'--ct.t +cttv. (o)}dG(t)

              -f{ (K(`ClVX2)+g.fZiCg')lXt +(XtVct (0' (XZ' "`Ci' '0)) }dG (t)

          .f{ci }gt +.t(v. (o)-v. (o, (x;.vcg. ,0)))}dG (t)

          kO.
The iast inequaiity is true since xZ.vxij.--x;. or xl.vxz2.--xz2., and xi and

ar2 in G(oz,ll). Then the result is obvious. Il

 '

     Property 3.4. Assurne that the deterioration process Z of the M-

Markov coherent system is stochastically monotone. If Conditions 3.2,
3.4, 3.5 and 3.6 hold, then the optimal region G(]l) is a member

of S(E).

     Proof: The result is easily obtained by Theorems 3.3 and
3.s. II
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 3.3.3 Some Special Cases
   '
     Next in the case where the replacement or minimal repair time

depends on the action, the structure of the optimel replacement
 policy is clarified under the following conditions.

     Condition 3.7. (1) Ci(xi)=Ci for each iEN,

 (2) M(x)=M(xo),

 (3) K(x)=K(xo).
                                                            '                          '
     Theorern 3.6. Assume that the deterloration process Z of the M-
Markov coherent system is stochastieally monotone, and Conditions 3.2

and 3.7 hold. If G(t;xo,a)=G(t;x,a), then there exists a control
                                          .Iimit policy Ti with respect, to component z minimizing the expected
        'total discounted cost of the d ;screte time replacement model.

     Proof: We have for each iEN
                            '                               '             --     [V. (x)]Zk-[V. (x)]$

          =min[B(c)+orfV. (u)e(c,du),

                             '
               f{M(xo)ii.ctt +cttV.(0,x.)}dG(t;xo,a),

                                                   '                                         t'               [Il:gS f{("(Xo)",.,X(.)CJ')l-'.'.ct "cttV.(0,x[;)}dg(t;xo,a)]

                                         t'              -I: :' g3 f{ (K(`9. g. )',• ,X (.) Cg')l!g "ct tV. (0 •` [l) }dG (t;x, ,a) .

                           --Then the difference [Vct(c)]ft"[Vct(c)]; is a.member of. F(Ei).. Thus

                                                'we can easily obtain the result. Il

                         t t/                              t /t tt     Condition 3.7'. (l) C.(c.)=C. for aEN,
                           zz                                  z
(2) M(x) =M(xo), • '

                      '(3) K(x)=K. , ''" .                                '
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     Theorem 3.7. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2
                                                                .and 3.7' hold. If G(t;a)=G(t;x,a.), then a control lirnit x5v(xo,xk) is

amember of i;(Eo). . .
                           '     Proof: We have

            --     [V. (x)]ft-[Y. (x)];

          =min[B (x)+ctfV. (u)e (x,du),

               f{M(xo)}ct.t +cttV. (0,x.) }dG (t;M) ,

               I:2'Bz,' f{(K",.,X(.)Cg')l--ctct' "cttV.(0,`cZ)}clG(t;a)]

              -.rn,iBg J{("',•,X(.)Cg')ligt '"tv.(o,x2I)}dG(t;a)

Then under Condition 3.7' we can easily obtain the result. Il

                            't     Condition 3.8, B(x)-M(cco)f}g dG(t;m)EF(Eo).

     Theorem 3.8. Assume that the deterioration process Z ot- the M-

Markov coherent system is stochastically monotone, and Conditions 3.2

3.7' and 3.8 hold. If G(t;a)=G(t;c,a), then there exists a control

limit XS(Xe) for each xeEEe such that the action to carry out minima!

repair for the syg.tern is optimal if and only if the failure damag"e

xo exceeds Xb'"(Xe)• '
     Proof: For each x EE we have
                       ee
     [ Vor (`C) ]a=o- { V. (`C) ]a.."B (X)+orfV. (")Q (X,dU) ,

                             -f{M(xo)llgt +cttv. (o,x.)}dG(t;m)

                              -43-

'



Then [Vct(x)la.o ct a.m is a member of F(Eo) by Condition 3.8.               -[V (x)l
Further under Condition 3.7' we can show

     [Vct (X)]aEDI "-[Vct (X)]a=O

          =:tD"i f{'(K",.,X(.)Cg')ligt "orty.(o,xg)}dG(t;a)

                       '        . . -{B(x)+ctfVi.(u)e(x,du)}

                                                                '                                    'is a member of F(Eo) by Condition 3.2. Thus the result is obvious.

                             '     The following property, further, show the structure of the

optimal region of the replacement policy, but the proof is omitted.
                        '                                      '  . Property 3.5., Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2
3.7' and 3.8 hold. If G(t;a)=G(t;a,a), then
(1) the o:timal segion G(O) is elosed in the sense that xlAc2EG(o)

for'all x and x in G(O),
(2) the optimal region G(11) is closed in the sense that xlvx2EG(ll)

for aiiai and c2 in G(ll), ' •

(3) the optimal region G(ll) is an increasing set in S(E),
(4) the optimal region G(Oa,ll) for eaeh icN is closed in the sense
that xivx2EG(o2,ll) for aii cci and x2 in G(oi,ll),

                                '                                              '                t /t tt lt tt tt t
                                     '       '                        tttt tt ttt lt                             '3.4 Example '
                          11, ,,-
              '3.4.1 Model .                         '
     In this section we consider a two-component system with minimal

repair. Let Eo={0,1} and EfE2={0,1,...,2} be the state space. The

transition probability is given by .
                                         '         '             01 2'     e(x,Y)=Pecyo'Pxly1'Px2Y2
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       0           is the transition probability of the system failurewhere P

damage, and ?k.y. (a=1,2) is the transition probability of component

              zz
i. To illustrate the optimal replacement policy, we consider a
                                                      0numerical example. The transition probabiZity matrix P of the
system failure damage is given in Table 3.!, and the transition
probability matrix Pi of component a is given in Table 3.2. The

operating cost B(x)=Bo(xo)+Bl(xl)+B2(x2), the replacement cost Ci(xi),

the set up cost K(x)=K(xo), and the minimal repair cost fri(x)=M(xo)

are given in Table 3.3. Furthermore the replacement time and minimal

repair time are one period. Then Conditions 3.1-3.6 are satisfied

exc.ept for Condition 3.5 (4).

Table 3.1. Transition probabilitY MatriX PO={P(xo,xl,n2)yo}

(a) xo=0 and yo=0

XlXX2 o 1 2 3 4 5 6 7

o

1

2

3

4

s

6

7

1.0

O.9

O.8

O.7

O.6

O.5

O.3

O.1

O.9

O.8

O.7

O.6

O.5

O.4

O.3

O.1

O.8

O.7

O.6

O.5

O.4

O.3

O.2

O.1

O.7

O.6

O.5

O.4

O.3

O.2

O.2

O.1

O.6

O.5

O.4

O.3

O.3

O.2

O.1

O.1

O.5

O.4

O.3

O.2

O.2

O.2

O.1

o.o

O.3

O.3

O.2

O.2

O.1

O.l

O.1

o.o

O.1

O.1

O.1

O.1

O.1

o.o

o.o

o.o

-45-



(b) xo=0 and yo=1

XIXX2 O 1 2 3 4 5 6 7

o

1

2

3

4

5

6

7

O.O O.1 O.2 O.3
O.I O.2 O.3 O.4
O.2 O.3 O.4 O.5
O.3 O.4 O.5 O.6
O.4 O.5 O.6 O.7
O.5 O.6 O.7 O.8
O.7 O.7 O.8 O.8
O.9 O.9 O.9 O.9

O.4 O.5 O.7 O.9
O.5 O.6 O.7 O.9
O.6 O.7 O.8 O.9
O.7 O.8 O.8 O.9
O•7 O•8 Oe9 Oe9
O.8 O.8 O.9 1.0
O.9 O.9 O.9 1.0
O.9. 1.0 LO 1.0

(c) xo=l and yo=0 '
  P(xo,xi,x2)yo=O for aii xl and x2,

(d) Xo=1 and yo=1

  P(xo,xi,x2)yo"i for aii xi and x2.

Table 3.2. Transition probabUity matrix Pi={P }

                      xaYi
XIXX2 O 1 2 3 .4 5 6 7

o

1

2

3

4

5

6

7

O.OO O.30 O.20 O.15
O.OO O.25 O.20 O.,15
O.OO O.10 O.20 O.20
O.OO O.05 O.10 O.15
O.OO O.05 O.05 O.10
O.OO O.OO O.05 O.10
O.OO O.OO O.OO O.05
o.oo o.oo o.oo o.oo

• O.15 O.10 O.05 O.05
o.ls o.lo o.lo e.os
O.15 O.15 O.10 O.10
O.25 O.20 O.15. 0.10
O.25 O.20 O.20 O.15
O.15 O.25 O.25 O.20
O.05 O.10 O.40 O.40
O.OO O.OO O.OO 1.00
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Table 3.3. Costs Bi(xi), Ca(`na), Bo(xo), K(xo) and M(xo).

x.
 z

o 1 2 3 4 5 6 7

B.(c.) O
 z• z
C.(x.) 70
 zz

5

70

10

70

15

70

20

70

25

70

30

70

35

70

xo o 1

Bo (xo)

K(xo)

M(xo)

o

100

l60

300

160

l60

3.4.2 Numerical Example
                                           '
     The optlmal replacement policy for components in a two-

component system with minimal repair is shown in Figure 3.1 in

the case of ct=O.95. This example shows that the optimal replace-

ment poliey is similar to the (n,N) policy with N=6 and n=5 in
the case of xro=0, and is fairly close to the (n,N) policy with

N==5 and n=5 in the case of x =1.                           0
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(a) xo 0

     o

 o

 1

 2

 3

 4

 5

 6

 7
Xl

(b) xo 1

      o

 o

 1

 2

 3

 4

 5

 6

 7

Xl

l 2 3 4 5 6 7

G(O,O)

G(O,1)

G(1,O) G(1,1)

1 2 3 4 5 6 7

G(m)ttt' G(O,1)

G(l,l)

Figure 3.1. 0ptimal replacement
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3.5 (ABC)-Policy

     In this section we are ineeresting in an elegant and simple
replacement policy which lets to easily implementable policy. The
optimal replacement policy is not so simple, and requires large scale

computations for implementation. Thus we consider a simple re-
placement policy for component i, called (ABC)-policy, such that;

  . (1) if OSxi<A, keep component i,

     (2) if ASci<C, replace component a concurrently if other

     ' components are replaced,
     (3) if Bgxi<C, replace component i if the reliability system
                                 '                        '     '         fails,

     (4) if Cgxt, replace component i at once,

where xi is the state of cornponent i.

     If the failure of the coherent systern is not considered, then
this (ABC)--policy is sirnilar to (n,N) poiicy with A=n and CnN.

Furthermore if the opportunistic replacement is not considered, then
this (ABC)--policy is similar to (t,T) policy with B=t and C=T in the

case of single-component system.

     In the previous example, it can be seen that the optimal

replacement policy is fairly close to the (ABC)-policy with A=5,

B=5 and C=6. Thus in some cases it might be better to use a
simple (ABC)-policy than a more complex one.

Notes for Chapter 3

     The random minimal repair cost is discussed by C16roux, Dubuc
and Tilquin [!3, 1980]. We extended this to a concept of the random
failure damage, and we considered minimal repair for the coherent
system with random failure damage. The (ABC)•-policy suggested in
this chapter is a generalization of an (n,N) policy and a (t,T)
po!icy. The other typical replacement policies are an OARP(oppor-
tunistic age replacement policy) introduced by Berg [8, 1978], a
trigger-off replacement policy suggested.in Bansard, Descamps,
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             CHAPTER 4

CONTINUOUS TIME REPLACEMENT MODELS

4.1 Introduction

     In this chapter we consider continuous time replacement models

for components in a coherent system. The coherent system eonsisting
of n cornponents is monitored continuously. The time consumption re-
quired for replacement is not negligible except for the cases in

Section 4.5. 0ur aim is to clarify the structure of the optimal
replacernent policy for the following systems. (1) The deterioration

process of the coherent system is a jump process. (2) The coherent
system consists of n stochastically failing components. (3) The

maintained coherent system consists of n repairable components. Fur-
thermore, we will study the optimal stopping time for a replacement

problem of the coherent system consisting of n components under addi-

tive damage. '
     In Section 4.2 we consider a continuous time replacement model

for the coherent system consisting of n components under jump dete-

rioration. The binary coherent system, which consists of n stocha-
stically failing components with some lifetime distributtons, is

dealt with in Section 4.3. In Section 4.4 we discuss the group

replacement problem for the coherent system whose repairable
                                                        tt
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components are separately maintained. Finally, we study the optimal

stopping problem for replacement of the coherent system under addi-

tive damage.

4.2 jump Deterioration System

4.2.1 Explanation of Model
                                           '     In .this section we consider a continuous time replacement model

for the eoherent system with minimal repair. The coherent system
                                                        'consisting of n cornponents is stochastically dependent and econom-

ically interdependent. The coherent system is moRitored continuously
in infinite time interval T=[O,co), and classified into one of the
        'possible nurnber of states. The possible actions are "no action",'

"replace each component"' and '"carry out minimal repair for the cober-
                  '                               'ent system". Let X(t)=(Xo(t),...,Xn(t)) donote the state of the

coherent system with minimal repair. We assume that a stochastic
proco..ss Z={X(t); t•ET} is a .ium-.p proce.$, and an action is taken after

a jump has occurred. Further we assume that each state space Et,
                             '.zEN, isasubset of R+. •

4.2.2 Jump Deterioration Process
     Let zTr={xT(t); tET} be a stochastic process representing the

                             '  'state of the coherent system with minimal repair under a replacement

policy T(Ds. Let A(v) be a B-measurable function from E into R+.
                         ttIt is interpreted as the jump rate when the current state is x and
the current action is "do nothing". Let C9(ac',U) be a B-measurable

funct,ion from E into [O,1] such that Q(x,') is a probability measure

on (E,B) for each xcE. It means that if a jump occurs when the '
current state is x and the current action is no doing, then the
                                                       'state after the jump is determined by the probability measure 0.(x,').

Similarl oy let v(x,q) be a B-measurable function from E into R+ for

each ctED and it is interpreted as the jump rate of replacement or

                                                               '          '
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 minimal repair when the current state is x and the current action
 is acDO. If a jump of replacement occurs then the state after the

 jump is (0,xg), and if a jump of ndnimal repair occurs then the

 state after the jump is (0,xe). Thus we caR easily find that the
 stochastic process zT is a M--coherent process.

4.2.3 Monotonieity
   . We shall examine some properties of the deterioration process

Zof the system with jump deterioration. •
     Definition 4.1. The deterioration process Z of the M--Markov

coherent system is said to be stoehastiealZy monotone if and only if
P[X(t)EUI X(s)==c] is a member of F(E) for all UcS(E) and aU t>s in

T=[O,co).

     Lemma 4.1. Assume that the jump rate X(x) is constant. If '
C9(x,U)cF(E) for each UcS(E), then the deterioration process Z of the

M-Markov coherent system is stochastically monotone.
                                                                   '
     Proof: Since the jump rate is constant X(x)=X, the transition

probability P(t,c,U) is given by for each LfES(E)

     P (t'X'U) "k :t o (Åíl)ke-itQk (x,u) ,

                  '       0where Q (x,U)=Iu(x) and

     ak(x,u)=fEdi-i(u,u)e(ar,dLt), kzi•

                                                   'Now we prove ek(x,u)cF(E) for UES(E) by induction. For k=1 it
follows tr ivial ly from C2 (x , [1) EF (E) . Suppose (V.k (v, Cl) EF (E) for some

                               k+1k. Then we can easily obtain (?                                  (a,U)EF(E) from Lernma 2.1. Thus
for each k cgk(x,u) isa rp.ember of F(E) for UES(E) and p(t,x,U) is a

member of F(E) for [fES(E). Then the result is obvious from
Definition 4.1. H
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     Definition 4.2. Assume that the detetioration process Z of the

M-Markov coherent system is a jump process, then the stochastic
process Z is said to be stoehastieaZZy guasi-monotone if and only if

A(x)cF(E) and {9(`n,U)EF(E) for each UES(E).
     '
     Remark 4.1. The jump process Z is a Markov process with state
space (E,B) (see Blumenthel and DeGroot [10, 1968]). It is intuitively

expected that the stochastic process Z being stochastically quasi-

monotone is stochastically monotone, but this prediction is not

              '

4.2.4 Expected Total Discounted Cost
     Let wT(t), tET, be the cost rate of the continuous time

replacement model with jump' deterioration in time t under a replace-

ment policy ff. For the cost rates associated with the continuous
time replacement model, we constder a replacement cost rate Ca(xi)

of gomponent a, a fixed cost rate K(,x) of replacement, an operating

cost B(rc), and a minimal repair cost rate M(x). We assume that
                                                     '                                                 'M(c)gK(Åé)+Ci (xi) for each kN, and all cost rates are bounded and

nonnegative.

     The expected total discounted cost V (x) of the continuous
                                        T
time replacement model for an infinite horizon when we start with

the M-Markov coherent system in state x is given by

(4•O V. (c) =E[fe-' ct twT (t) dt].

                        '                                                'The objective is to investigate the structure of an optimal re-

placement policy which minimizes the expected total discounted cost

with discount factor ctc(O,co). Let Vor(c) be the minimum expected

total discounted cost when the initial state of the M-Markov coherent
                           'system is x. Then letting ffSc be an optimal replacement policy we

have

(4.2) V (x)=inf V (x)
           or av      ' TED                   s
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                 =V.fT vc (:) "

First we begin by introducing the weak infinitesimal operator A of
                                                              Tthe stochastic process ZT for each ncDs. For a function f in the

dotnain ofA we have •           IV .
            '
(4•3) A.f(c) =limt-L  IE [f (xTT (t) )-f (.)]

                 t+o
                         '  . ' = A(x)ff(u)a(x,du)-X(x)f(x) if vr(x)=O
                   p(x,m)f(0,xe)-v(x,m)f(x) if rr(x)=m
                 k v(x,a)f(o,x[l)-v(c,a)f(`n) zf T(x)=acDi

Of great importance is Doshi's formula (see Doshi [15, 1976])
   '
(4.4) ctV (ar)=min[or2(c,a)+A V (x)],
            OL                        . Tor                 acD

where p(x,a) is a cost rate when the state is( and action is a.
Then the minimum expected total discounted cost V (sc) satisfies
                                                ct
the following functional equation:

          a V. (x)=min[B(c) +X(c)fV. (u)e (`n,du)-A(c) V. (c),

                       '(4.s) M (x)+v (x,m) V. (0,xe)-v (x,m) V. (n) ,
             '             ,M,, ,iB1 { "K (`C)+J.,X(.,) Cg' ( Cci)+V (`C , `i) Vi. (0 ,`CZ ) -'P (:)c ,a) V. (x) } ] .

     '
4.2.5 Structural Properties of Optimal Policy .
     We investigate the structural properties of the optimal replace--

rnent policy for the M-Markov coherent system under jump deterioration

First we shall examine the property of the optimal expected total

discounted cost function under the following condition.

     Condition 4.1. (1) B(x)EF(E), M(x)EF(E), K(a)EF(E) and

 Z C.(x.)(F(E).
. t zzEN
(2) 11v (:c,a) cF (E) .
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     Theorem 4.1. Assume that thG detertoration process Z of the M-
 '

Markov coherent system is stochastically quasi-monotone. If Condition

4.1 holds, then the optimal expected total discounted cost function
V (x) is a mernber of F(E).

 or
                              '
     Proof: The functional equation (4.5) can be written as
          Vd (x) =m in .IA [B (x) +X (x)f V. (u)Q (x,du)+ (A-x ( c) ) v. (x) ,

                '                        '
 (4.6) ' M(:) +v (x,m) V. (0,ece)+ (A-X (x,m)) V. (x),

             I: t' Bi{K (X)+i ,X (.) Ci (`i't )+V (X,a) V. (0 , x[I)+ (A-u (x,a) ) vr. ( c) }]

                                                                    '
where A is any value larger than max{supX(x), supv(:,a)}. We can

calculate by using the successive approximation technique:
                                    '          Vk+1(c)=min .IA [l3(c)+X(x)fVk(u)C9(c,du)+(A-X(x))Vk(x),

                            tl ttt
(4.7) M(c) +v (x,M) Vk (0,x.)+ (A-u (X,M)) Vk (X),

                                     '             .M,iD"1{K(X)+i,X (.)Ca (X'i)+P (` ,a)V. (0, c[l)+ (A-v (x,a))y. (x)}]

                                     '
where Vo(x)=O for all nEE. Then the proof for the monotonicity of
V (x)EF(E) is carried out by mathematical induction. For k=1 it
 ct

follows trivially from Condition 4.1 (1). Suppose Vk(c)EF(E) for
some k. Then from Lemma 2.1 we have

     fVk(Z•i)(2(xr,du)EF(E).

     tt
                                      '     'Further [rom Condition 4.1 and the definition of A, we can easily
          'obtain Vk+1(v)EF(E)• Thus we haVe lik(ar)EF(E) for all k. Since
                                  1all cost rates and jump rates are bounded, it is easy to see that
Vk(x)+Vct(ec) as k-)o) for each xEE. Therefore the result is obtained. Il

                                  '                           ttt ttt 1                                '
     The following theorem shows a simple property of the optimal

replacement policy.
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     Theorem 4.2. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically quasi-monotone and Condition
4.1 holds. If the deterioration level of component a is in the best
state 0, p(x,m)2>JJ(c,a) for aEDI and 11p(cc,a)EF(Dl), then the action

to keep component i is optimal.

     Proof: Let for each iEN
          [V. (x)]/r=Inin .l}A [B(x)+x(x)fv. (u)Q. (` ,du)+(A--x(x))v.(c),

            M(x)+v(x,m)V (0,x )+(A-v(x,m))V (x),
                        cte                                          ct
                       '
(4'8)  [lllBzo' {K (X)+o.,X (.)CJ' (Xg')+u (`C,a) Y. (0,xg)+ (A'-p(c, (z)) v. (x) }],

   '
          [ Vct (X) ] I$ =[Il igs ct l}.A {K (X) +g. ,X (. ) Cg' (XJ' ) +V (`C ,a) 11. (0 , `i'[ili )

                                           +(A-v(cc,a))V (c)}].
                                                       ct
Then we have

            --     [V. (x)]ft-[V. (x)];

        ;SIIII,iD".tlctiA [K(`C)+g..K(.)Cg'(Xgr)+V(X,a)V.(0,a[II)+(A-•v(x,a))v.(n)]

            .1          -'[Il ,i D" zl' ct+A [K (X) +o. ,K (., ) Cg' (Xg' )+U (X ,a) Y. (0 ,x[i )+ (A"p (x ,a) ) v. ( c.) ]

               iand for each aED               0-
     IK(x)+ z c.(v.)+v(c,a)y (o,xa)+(A--v(` ,a))v (x)

          o'EA(a)gg or e ct
       -di [K(X)+J•,X (.) Co' (Xg')+Ci (`Ci)+y (x , (1i ,a) ) v. (o,ar5 1i ,a) )

                              '                                            + (A-v (x, (1 .,a)) V (x)]
                                                      zct
       g -ci (xi)+p (x,a){v. (o,xg)-v. (o,.Eii,a))}.

       <o.
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                                                             1The first inequality follows from the assumption 11v(x,a)cF(D ) and
                                                          a[2s.?:;?il.;es.a"g.;2:.::g;gd,l.::2U:li:,l.IIiS,tsE:e, Ig:C2.[kiBi=..,

M(x)gK(x)•-Ci(xi), we have for Xa"0 '
                               '                              '                         '     min .lÅ}A [B(:)+X(x)fV.(u)c9(x,clbt)+(A-x(x))v.(t),

        . M( c) +v (x,m) V. (0,xe)+(A-v (a ,m)) V. (gc)]

          l       - .+A [K(`i])Å}Ci(a'i)+U(`C,(1i,O))V.(0,(0i,`C.))

                              +(A--v(x,(la,a))V.(c)]

                              '
       <o.
                                                '                     '                                                              '                                                                .Thus we can easily obtain that [Vct(Xo,(0a,Xe))]Z k' -[Vor(Xo,(0i,Xe))];`O

Then the result is obviou$. H - ' '
        '
     Here we add the following condition. '
     CondÅ}tion 4.2. (1) C.(x.)=C. for each iEN.
                           zz z
(2) B(x)!(or+A)--K(x)1(or+u(`co))EF(E.)•

(3) M(x)-K(c)EF(E ).
                  e

     The following theorems show the structure of the optimal re•-
           'placement policy under reasonable conditions.

     Theorem 4.3. Assume that the deterioration process Z of the M-
Markov coherent system is stochast.icaliy quasi-monotone. If Condi•-

tions 4.1 and 4.2 hold and p(x,a)=v(xo), then there exists a control

limit policy Ti with respect to component i minimizing the expected

total discounted cost of the continuous time replacement model for
the system with jump deterioration.

     Proof: The functional equation (4.5) can be written as

.
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         V.(n)=min[ .ilA {B(c)+A(c)fV.(bl)(9(v,du)+(A--A(c))v. (x)},

                       1(4•9) ct+p(x,m) {M(X)+U(X,M)V.(0,X.)},

                   .Milgi ct+yi(x,a) {K(X)+o.,X(.)Cg' (` j)+V (` 'a)Va (0'`CZ)}]'

Let for each icN

  '         [ V. (x) ] {"min [ .llrA {B (x)+X (x) fV. (zt) (9 (`e , du )+ (A-x (x) ) V. (x) } ,

               l                    {M(x)+v(x,m)V (0,x )},            ct+v (sc,m) ct e
(4.10)

            I:l g'oz•' ct+v lx ,a) {K (X) +(i ,jil (. ) Cg' (xg' ) +y (`" ,a) V. (0 , `x [l ) } ] ,

         [Yct(X)]S=:iBg ct+vlc,a) {K(X)+g.,X(.)Cg'(`Cj)+v(`c,a)V.(0,xg)}•

Then we have under Condition 4.2 and v(c,a)=u(aro)
     [v. (.)]zk' -.[v. (x)]3

        =min[[if;i) •- .i,(%,) + kSi;i) fv.(u)a(x,du)+ "glif`C)v.(x),

                i             a+p (xo) {M (X)'K (X)+V (Xo) V. (0,Xe) },

             :,iD"z6 ct+vi(xo){g.,X(.)CJ'"v(xo)V.(0,xZ)}]

         -.M.iS3 or+u1(xo){g.,X(.)Cg'+V(Xo)V.(0,xg)}

                                               --So we can easily obtain that the difference [Vor(x)]ft-[Vct(x)]; is a

member of F(E.). Thus the result follows from DeÅ}'inition 2.6. il
            z
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     Theorem 4.4. Assume that the deterioration process Z of the M--

Markov coherent system is stochastically quasi-monotone and Conditions
                                          '4.1 and 4.2 hold. If the action to replace component i with the worst

state ei for eagh icN is gptimal, M(x)-K(x)gO and p(x,a)=v(xo), then

we have x;(xo,eZ)Exz*(xo,0Z). ' '
                               tt                                           '     Proof: Since the action to replace component i with the worst

state ei is optÅ}mal, we have for each xoEEo'
        i                    -. It-     [V. (xo, (xi,e))]ft-[V. (xo, (xa,e))1;

          = .IA[-Ci+p (Xo){V. (0, (`ci,0))--V. (o)}]

                    '                                    .t              '                                     '                                 '                                          'and from• Theorem 4.2 we have '
               '       t/      '                  '                    --     [v. (xo, (xi,o))]1-[v. (xo, (xi,o)).];

                                 '
          E .tA[P4(xo, ('xa,0))-K(xo, (xi,0))

             -- Ci+v (xo){ V. (0, (xi,0))- V. (0) }].

Then from M(x)-K(x)sO we have

                    --     [V. (xo, (xi,e))]Zk-[V. (xoi (xi,e))];

                               '                          tt                      '                          -•-          l.[ V. (xo, (xi,0))]Zk-[V. (eco, (Xi,0))];

                                      '                                                                     '                                     'Thus we can get c;(xo,0i)lxz*.(ao,ei) by the definition of n2(xo,xg>. il

                                                       '
     [rheorem 4.5. Assume that the deterioration process Z of the M-
                                                      'Markov coherent system is stochastically quasi-monotone and Conditions
4•1 and 4.2 hold. Zf the action to replaee component i with the
                                                     --worst state ei is optimal, and v(x,a)=v, then xz*. (xo,eZ)=xS(eo,eZ)

                                 'for each xoEEo. '

     Proof: From the proof of Theorem 4.4 we have
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                    --     [V. (xo, (xi,e))]Zk-[V. (xo, (xi,e))];

          = .iA {K (Xo, (Xi ,e))+o. Åí, N Cg•-Ci +V Yct (O, (Xa,0)) }

           '1              " ct+A {K(Xo'(Xjz 'e))+g.iNCg'+PVct(0)}

             l          = .+A {u(V.(0,(ci,0))-V.(0))-Ci}.

                                    '
Then the result directly follows. il

     Remark 4.2. We ean now obtain the results sirnUar to 3.3.3

when the jurnp rate of rep!acement or minimal repair depends upon

the, action a. Furthermore, it might be better to employ a simpler
(ABC)-policy because of easier implementation than a more complex

optimal replacement policy.
                                        tt     We shall eonsider the following condition instead of Condition

                             '

                                           .     Condition 4.3. (l) Ci(sc'i)=Ci for each zEN,

(2) "gmp(x,cr) for each rcE and a(D,

(3) M(` )--K(` )EF(Eo),

(4) B(:)1(ct+A)-K(ac)1(ct+y)cF(Eo).

     Theorern 4.6. Assume that the deterioration process Z of the M-

Markev coherent system is stochastically quasi--monotone. If CondF
                                    .tions 4.1 and 4.3 hold, then c;. (a:o,cg) is a member of Ii;(Eo).

     Proof: From the proof of Theorem 4.3 we have '

                             '            --     [V. (x)]Zk-[V. (x)]; ' ,
                                      '                                            '          =min[ .llA {B(x)+X(x)fv.(u)Q(c,dz`)+(A-x(x))v.(x)},

                .iv {M(X)+UV.(0,Xe)},
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                ctlv' .M,iDnzb• {K(X)+J•,ll (.) Cg'+V Yct (0'X[li) }]

       . T ctlv .M:,"zi{K(X),1,•,X(.)Cg'+PVct(9'Xl)]'

                                                              '                                 '                                                   '                                                        '                                                         t-Then from Condition 4.3 we can easily obtain that [Vct(x)]Z-[Vct(x)];

is amember of F(Eo). Thus the result is obvious. II d '
                        '
                                                         '     Further we consider the following condition.
                                                     '                                                          '
                                                                   '     Copdition 4.4. B(`c)/(ct+A)--M(x)1(ct+v)EF(Eo). .
                                    '     Theorem 4.7. Assume that the deterioration proeess Z of the M-
Markov cdherent system is stochastically quasi•-monotone. If Condi-

                                                                 'tions 4.1, 4.3 and 4.4 hold, then there exists a control limit
                                        '
X'o"(Xe) for each XeEEe such that.the action to carry out minimal

repair for the system is optimal if and only if the failure damage
xo exceeds x5n(Xe).

     Proof: By using the functional equation (4.9) under Conditions
                                                   '4.l, 4.3 and 4.4, we have '
     [Vor (X)]azo-[Vct (`C)]a=m

               '                        '          = .tA {B (x)+X (x)f Vi. (u)e (x,du)+ (A-x (x)) vr. ( x,)

             'L .tv {M(x)+uYct(q,xe)}

and

                 '     [Vor (X)]a=ony[Vct (X)]aEbl

          = .lliA {B (x)+X (sc)fV. (u) C9 (x , du )+ (A--X ( xr) ) V. ( rr) }

                        '
                                             '              - :2,".i orlv {K(X)il.,X(.)C,•"vV.(0,xg)}•

                                '
                   '                                            '
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Then we have [V.(X)]a.o--[Vct(x)]aEDIEF(Eo) from Conditions 4.3 and
                                                               '4.4. Thus we can get the result. Il

     The following property ean be proved similarly to those in
                'Chapter 3.

     Property 4.1. Assume that the deterioration process Z of the }C-

Markov coherent system is stochastically quasi-monotone. rf Condi-
ti gns 4•l, 4.2, 4.3 and 4.4 hold, then
(1) the optimal region G(O) is closed in the sense that aiAc6EG(O)
for an xi and x2 in G(o).
(2) the optimal region G(ll) is closed in the sense that vlvx2cG(]1)

for aii ci and x2 in G(ll).

(3) the optimal region G(11) is an increasing set in S(E).

                                         .[k],tll9.lig-:.tT?gi.,r,,e,gi;:.Gi21',ll,,' .liZr,,sa:.: k?II,i;1,c.iosed in the sense

4.3 Binary Coherent System

4.3.l Model Formulation
     We consider the following continuous time replacement mode!

for a binary coherent system. The binary coherent system consist-
ing of n components is stochastically independent, and it is eco-•

nomically interdependent. The binary coherent system is monitored
continuously in time interval T=[O,oo), and the failure of components

is detected immediately. The time to failure of component i has a
continuous pdf fi(t) with finite mean 1!Xi. The faUure time cdf
of cornponent i is denoted by Fi(t) and the failure rate functien

is M (t) =fi (t) IFi (t), where Fa (t)=l-Fi (t).

     An action is taken as to whether or not to replace each eompo-

nent, based upon the result of monitoring. When an action a is
                                                           e
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taken, the replacement time has an,ekponential distribution function
G(t;xe,ae)=1-exp{-u(ae,ae)t} for each czeEDI.

                             '     '4.3.2 Age Deterioration Process '' . '
  ' Let zTer={x[i(t); tET} be a stochastic process representtng the

ages of components in the binary coherent system under a replacement
policy TEDe. The state space of this process Zor e iS Ee= ENEi and

                                        /
Ei=[O,oo],, where the state ti=oo represents the failure state of

cornponent i. • •                                                 '
     Now we consider component i in the binary coherent system.

iill:.(l?l.iOtWEIIIIgole[l][tPllpg:2Wnst zE?e property of the deterioration process

     Lemma 4.2. If the life distribution of component i is XFR,
then the deterioration process {Xi(t); tET} is stochasticaliy mono-

                                              '
     Proof: T:he tr4ansitinvn fun.ctien -P(t,xi,Ui) oÅí the .e.tochast.".c

process {Xi(t); tET} is given by for UfS(Ei) . .
(4.1I) p(t,xi,Ui)=p[Xi(t+s)EUil Xi(s)==xi]

                    =,1 if x.+tEU.,                     {-- -. zz
                       (F .(x .)-F . (x .+t)) !77. (x .) o theruise.
                         zz                               zz                                         zz

Thus the result follows from IFR property. H

     The f6ilowing lemma shows the property of the deterÅ}oratÅ}on

process Ze"{Xc(t); t(T} of the binary coherent system. .
                                      '
     Lemma 4.3. If the life distribution of each component is rFR,
l2oenchgg2ig:iteiYiilg#otts:e?rocess Ze. of the binary eoherent system is

     Proof: The result directly follows from Propositton 2 of Karnae
Krengel and O'brien [27, 1977]. Ii • .
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4.3.3 Cost Structure
     The objective of this section is to investigate the structure

of the optimal replacement policy which minimizes the expected total

discounted cost with discount factor ct>O. For the cost rates asso-

ciated with the continuous time replacement model of the binary
coherent system, we consider a replacement cost rate Ca(Xi) of

cornponent i with age xi, a fixed cost rate K(ce) of replacement,

and an operating cost rate B(xe) when the binary coherent system

is in state x . We assume that all cost rates are bounded and no'n--
             e
     .negatlve.
     Let V (x ) be the minimum expected total discounted cost when
          or e
the initial state of the binary coherent system is xe. Then from
the Doshi's formula (4.4) we can find the structural properties of

the optimal replacement policy. However, it is hard to deal with

this functional equation. Consequently, in this section we approx-
imate Zo={Xe(t); tET} by a discrete time Markov chain with unit time

interval h and investigate the structural properties of the optimal
                                                          'replaeement policy without this functional equation.

4.3.4 Structure of Optimal Policy .
     We examine the structure of the optimal expected total discount-

ed cost and the structural properties of the optimal replacement

policy for the binary coherent system.

     Condition 4.5. (1) B(rc )EF(E ), K(x )EF(E ), and Z C.(x.)cF(E ).
                         .e e e e icNzZ e
(2) 11v(x ,a )cF(E ). ' '
     Theorem 4.8..Assume that the life distribution of each compo-
nent is' IFR. If Condition 4.5 holds, then the optimal expected
total discounted cost function Vct(are) is a mernber of F(Ee). .

                           tt
     Proof: We approximate Zg ={Xg(t); tcT} by a discrete time

Markov process with unit time interval h. Now define the discrete'

                                                         '
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time Markov process ZR={Xe(k); kEN} as follows; . .

          P[X[:(1`+1)=((Zl+1),'''(Z.+1))1 X[I(k)"(Zl,''',Z.), "(Z)=O]

            • =(1-hZX.(Z .)), '                              • z z                     . z.EN
          P[Xg(k+1)"((Zl+1),•••,(Za-1+1),oo,(Za+1+1),•'',(Z.+1))
(4.I2)

           '               '          . IX[II(k)"(Zl,•••,Z.), T(Z)=O] ='Xa(la)h}

        '        . P[X.TT' (k+1)=:l i I.ii' (k) =Z, Tr (l) "a.ED1 ]= (1-kP (Z, a.) ) ,

                              '      . p[xZ(k+o-zal xg(k)=Z, T(Z)-a.EDi]=hv(Z,a.),.' .

                '                         'where xi(oo)=o, oo+Za=oo and o<h<[max{nsupx(ce),supy(xe,a)}]-'1. Then

it can be found that the transition matrix Q(h) of this Markov chain

satisfies Condition 3.1 in Chapter 3. Thus the expected total dis-
counted cost function vN (x ) for the discrete time Markov chain is
                       ct e
a member of F(E ) similarly to Theorem 3.1. Letting h+O, we see

that the result holds for Condition 4.S similarly to that of Barlow
and proschan [4, 1976]. Il .

   • The structural properties of the optimal replacement poiicy

for components in the binary coherent system are shown Å}n the follow-

ing theorems. The proofs are similar to those of Chapter 3.

 . Theotem 4.9. Assume that the life distribution of each compo-
nent is IFR? and Condition 4.5 holds. If component i is new with
state 0 and 11p(xe,(ze)EF(Ee), then the action to keep component 2 is

                                                         '                                 '                             '

     Condition 4.6. (1) Ci(xa)=Ci,• for each iEN.

(2) B(x )-K(c )EF(E ). . .       eee •.' .
     Theorem 4.10. Assume that the life distribution of each compo-
nent is IFR. If Conditions 4.5 and 4.6 hold, then there exists a
                                                  .control limit policy T. with respect to component z minimizing the
                      z
                                                              '                                          '
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expected total diseounted cost.

     Theorem 4.11. Assume that the life distribution of each compo-

nent is IFR, and Conditions 4.5 and 4.6 hold. If the action to
                                                --replace failed component i is optimal, then xg(coZ)gc;(0Z).

                      '                                             '
     Property 4.2. Assume that the life distribution of each compo-

nent is IFR. If Conditions 4.5 and 4.6 hold, then
                                                        12(1) the optimal region G(O) is closed in the sense that x Ac                                                            EG(O)
                                                        ec         12for allx andx in G(O). .         ee(2) the optimal regton G(ll) is closed in the sense that xlv:2EG(]i)
                                                         eefor aii xi and x2 in G(ll).

         ee(3) the optimal region G(ll) is an increasing set in S(E ).
(4) the optimal region G(O.,U) for iEN is closed in thee sense that

UeVXe(G(Oi,ll) fOr all Ce atid Xe in G(Oi,ll)•

                                   '     Remark 4.3• In this case of binary coherent system, the simple
(ABC)-policy is reduced to the (n,N) poliey with A=n and C=N.

           '                    '

4.4 Group Replacement Problem

      '4.4.1 Group Replacernent Policy

     In this section we consider•a continuous time replacement model
for a rnaintained coherent system which is not stochastically monotone.

This coherent system consists of n repairable components. Each com-

ponent is subject to random failure. Upon failure the component is
repaired and recovers its function perfectly. Ross[44, 1976] has
proved that the distribution of the time to first system failure has

NBU ( new better than used ) property when all components are initia--

lly good, and have exponential life distributions with parameter Xi

zEN, and repair time distributions with pararneter pi zEN. Thus

efforts to replace the maintained coherent system before system

failure may be advantageous. On the other hand, as compared with
                              '
              '
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individual repair upon failed components, the group replacement may

cause a loss for some good components. However, we can expect to

obtain advantage of scale merit. ' '
  • The coherent systen is monitored continuously, and based upon
                                                            'the hysteresis of monitoring, an action is taken as to whether or not

to replace the rnaintained coherent system. The objective of this

section is to study the structure of the optimal group replacement

policy minimizing the expected total discounted cost.

4.4.2 Maintained Coherent System
                              tt     Consider a maintained coherent system., The coherent system

consists of n components and has n repair facilities. .Eaeh of its

components is either up or down, and acts independently each other.
When component a goes up (down), it remains up (down) for exponen-

tially distributed time interval wigh parameter Xi (pa) and then

goes down (up). Let uptimes and downtimes be independent. The

state of the coherent system at any tin,,e dep.o-nAus upon the states of

components through a coherent structure function Åë(•)•

             .     Let for zEN
                '
     Xi(t)={ O if eomponent i is up at time t,'

             l othevaise, .
                             '
Then the evolution of the state of component i is described by the

stochastic process {X.(t); tET}. Let ' '                     z
                                 '                                    '                           '     Xe (t)= (Xl (t),''",Xn (t))

                      '                          'and

                                      '
     O(Xe(O)={ 2 Z.'ilh.thil[lig91eve"t system is mp at time t,

                                t/t t
then the state of the coherent system is summarized by binary n-
                                       nvector Xe(t;) with a state space Ee={O,1} and the actual state of

the maintained coherent system is described by the stochastic

                                            '
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process {O(X (t)); tET}.
            e
     At each time epoch tET, observing the state Xe(t)=Xe, an action

can be done whether to replace the maintained coherent system, or to

keep it. We assume that the time needed to replace the coherent
system is exponential with parameter po. Let r(xe)EDo={O,1} repre-

sent the action taken for the coherent systern at any time t, where

n(xe)=1 means to replace the coherent system and T(xre)=O rneans to

keep it. For the cost rate y(x ,v(ar )) associated with the main-
                              ee
tained coherent system, we consider the following cost rate. At
time t when the state is x and an action rr(x )=O is taken on the
                          eemaintained coherent system, then the cost is incurred at the rate
?(x ,O)=PÅë(c )+ Z r'., where P is the system down cost rate,
   0' e iEco(xe)i
or) a, aEN, is the repair cost rate of component i and Co(ce) denotes

the set of currectly failed components. On the other hand, When
                           'an action n(Xe)--1 is taken, then the cost is incurred at the rate

P(xesl)=R, where R is the replacement cost rate (i.e., Rlvo is the

expected replacement cost).

     The objective is to investigate the structure of the optimal

group replacement policy minimizing the expeeted total dtscounted
cost with discount factor ct>O. Now let Vor(:e) be the minimum exp--

ected total discounted cost when the initial state of the coherent
system is X (0)=x . We derive the weak infinitesimal operator A
           ee                                                               vrof the stochastic process ZiT={XT(t); i5ET} for each TED . For a
                          ee efunction f in the domain of A we have
                            "
    Avf(Xe)=lf: t-'iEx.[Jt7(K[l(t))-f(Xe)]

                        '
                                                         '           = iEci(x.)Xi(f(ii'Xe)'f(Xe))+i,cg(..)Pi(f(0i'Xe)-'f(xe))'

                                   '                     ... if r(x.)=O,
              Vo(f(0)-f(X.)), 'Zf "(X.):l
                                      '
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Where CJ•(Xe)={icNI ci==j}, (o'--O,1)• From Doshi's formula (4.4) the

function V (x ) satisfies the following functional equation:
          ct e
                                          '          ct Vor (`Ce) "Mi" [PO (Xe)+i,ci (xe) (pmi+ViVct (.9i.'Xe)-Vct ( ne) )

                            + Z X.(V (1.,ec )-V (x )),
(4.•i3) aEco(xe)Z ct Z9 qe
                       R+vo(V.(0)-V.(C.))]•

               '
4.4.3 Properties of Optimal PolÅ}cy

   Some properties on the optimal group replacement policy and the

corresponding optimal expected total discounted cost function are
discussed. The following two theorems show the structure of the'

optimal total discounted cost function, and they are used in the

proof of theorems which present the structural properties of the

optimal group replacement policy.

                            '     Theorem 4.12. The minimum expected total discounted cost fune-
              'tion V (x ) is a member of F(E ).
      ct c                              e
Proof: The functional equation (4.13) can be written as
                       '          V. (ec.)=mi" ,[PÅë (Xe)+i,ci (,,.)fr'i +Ui• Vor (0i'Xe))

                          + z x.V (1 .,x )
                                   z ct                                        ze                           iECo (Xe)
 (4.I4)
                          +(A-icci ( xr.)U2 -•i Ecg (..)X'i ) Vor (Xe) }1 (ct+A) '

                                                  '
                       {fil+uoV. (0)+ (A-"yo) V. ( :.) }1 (ct+A ) ] ,

                                             '
where A is any value larger than MaX{Po' c[l[liie{aE:1(xe)Pi+icci(xe)Xi

                                      tt+ :.g:1(xe)Aa}}' We Can Calculate.by using the successiyg approxima-

tion technique: '
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     Vk+i (xe)=mi" [{PÅë (Xe)+i,ci (x.) (Ya+PaVk (9i'Xe))

                        +iccg (..)Ai Yk (ii'Xe)

                        + (A-iEci (x.)Pi-iEc: (x.)Xi) Vk (Xe) }/ (ct+A)'

                   {R+voVk(0)+(A-po)Vk(:.)}/(ct+A)],

wh6re Vo(xe)=O for all veEEo. Then to prove the monotonicity of

V (x ) we use mathematical induction. For k=1 the result follows
 ct 0
easily from the properties of the $tructure function Åë and the

definition of Co(xe) and Cl(xe). Suppose the result is true for
some k. At the k+1 stage, if an optimal action is to keep the
maÅ}ntained coherent system for (li,cce)EEe, acN, then

                      tt                          '                      '     Vk+i(ii'Xe)'Vk+i(0i'Xe)

         k[ PÅë (1- z' 'Xe)+g•,cZl (1i ,x.) (To'+V g' Vk (1i '0o` 'Xe))

             +g•ccg (ia ,..)Xg' Vk (ii'iJ' ,X.)

             +(A--jECZI(li,x.)PU'-J'EcZo(li,x.)Xg')Yk(7i'Xe)]1(ct+A)

                                                           '          - [PÅë (0i 'Xo)-J' .r ci (ot ,.e) (?g'+V g' Vl< (0i '0o' 'Xe))

                '             +g'Ec: (oa ,x.)Ag' Vk (0i 'lg" X.)

                                '             +(A-J'EcZl(oi,x.)Vg'-jEcZo(oa,x.)Xg')Vk(0i'Xe)]/(or+A)

         !z[P(Åë (1 . ,x )-Åë (O . ,x ))+or? ,
                        ze z         - ze
             +o•,cZ(o.,x )Vg'(Vk(1i'0g''Xe)-Vk(0i'0J''Xe))

                 l z e
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              +g'Eci(oi,..) Xg' (Vk (li'lg" Xe)- Vk (0i,lg•,x.))

                                '              +.(A-Xi-'jEci (h ,x. )VJ'-g',ci (oi ,..) Xg' ) (Vk (li 'Xe)-Yk (0i 'Xe

              1(ct+A) . .                                '
                               '                                     '           kO.. 1 ,
On the other hand, even if an optimal action is to replace the main-
maintained coherent system, Vk+1(li,Ce)-Vk+1(0i,ie);llO iS prOVed

similarly to the above. Thus for each k, Vk(xe) is a member of

F(Ee). Then from the successtve appyoximation technique, as
                            '
                                               '     2i:':' Vk (Xe)"Vct (Xe), .

               'vor(ce) is a member of F(Ee)• ll

                                        '     Theorem 4.13. The minimum expected total discounted cost
function V (x ) is not larger than R/ct.
          ct e

     The above theorem is easily proved by the functional equation

(4.14). Nex the structural properties of the optimal group replace-

ment policy for a maintained coherent system are charaeterized. .

..,,.:h:•gr:: ft51g',,gf.:l.:,:2.::2"2".Xg.2.r: z;g:gxf"g• then an optimai

     '                      '                                      '(4.i4grgflg:ThTeholSemf21ii03Ki'S lirectiy from the functionai equation

     Theorem 4.15. An optimal group replacement policy T"C(xe) is
                                                                'a member of F(E ).
               e
                            '     Proof: The functional equation (4.13) can be written as

          V (x )=min [{Pth(c )+ Z (?.+p.V (0.,x )
           ct 0 e accl (xe) Z Z ct Z e

(4.15) + Z X.V (1 .,x)                              kCe(xe) Z ct Z e

                          '
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                          +(A-i ci(`n.)Pi-i cg(,..)Xi)Vor(xe)}!(ct+A)

                 {R+voV. (0) }! (ct+vo)]•

Notice that the latter quantity does not contain variab!e xe• From
Theorem 4.12 and the above fact, the result is easily obtained. II

  . Property 4'3' if poki,ci(,,.)Yi+i,ci(,,e)Ai a"d Rgi)Åë(Xe)+

icci(:e)T]i fOr ireEEc, then an optimal action is to replace the

maintained coherent system.

    Proof: The functional equation (4.13) can be written as

         Vor (`Cc)=Min [{PÅë (Xe)+i,cit (..) (X'i+ViVct (0i 'Xe)

                                                          '                  '(4•i6)  . +a,cg (x.)MVct (ii'Xe)}!{or+icci (xe)Pi+iEcg (x.)

                     {R+p o V. (0) }/ (or+v o ) ] •

The result is shown by comparing each term with one in functionai
equation (4.16). Thus we see

     [ Vict (X(? ) ] rr (x.)" O- [ Vct (`Ce) ]T (`Ce)=l

                                           '        "{PÅë.(Xe)+i,ci (xe) (nei+Vi V" (0i'Xe))+i,c: (x.)Xa Vor (1i'Xe)}

            1(ct+ z v•+ z                'ZEC1(`C.) Z )iEco(c.)Xi)-'{R+V0Vct(0)}1(Ot+Po)

                          '                            '                    tt
        gl!(ct+ z• p.+ z                                 Aa)"1/(ct+vo)]R
               iECI(X.) Z iCCo(Xe)

                '            +[ (icCi (x.)Vi+iECg (x.)Xi)/("+iECi (x.)Pi+k Cg (x.)Xi)

                                                          '            --po! (ct+po)]Y. (o) i
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          4[11( +i,ci (..)Pi+i,cg (..)Xa)-1/(ct+Po)]ctVct (0)

             +[ (iECi (x.)Pi+icCg (x.) Xi)/(ct+k Ci (x.)Pi+iECg (xe)})

                -vol (ct+yo)] V. (0)

          IO

                                                               'The first inequality follows from the assumptions and Theorem 4.12.
      'The second inequality is true from Theorem 4.l3. Il

     '     Property 4•4• Zf po`i,ci(,,c)va+i,cg(.e)Xa a"d R!Vo;S=[PÅë(Xc)+

+tEci(x6)r'i]1[iEci(xe)Pi+k'ci(xe)Ml fOr XeEEe, then a? optim.al actigp

is to replace the maintained coherent system.

                                                        '     Proof: The result is proved similarly to Property 4.3. H
        '                                                           '
     Remark 4.4. The results of this section remain valid even when
we extend the cost rate pm(c ,O) is a rnember of F(E ) and ne(0,O)=O.
                           ee                               '
     Remark 4.5. We notice that the monotone property of the optimal

group replacement policy holds irrespective of failure and repair
rates, but of course the actual policy T(ce) depends an the values
                                   'of failure and repair rates.

4.4.4 Example
     To illustrate the optimal group replacernent policy, we give a

numerieal example. We consider a so called bridge structure system

shown in Figure 4.1. The failure and repair rates of components

are given in Table 4.1. The repair cost rate of components are also
                                 ttgiven in Table 4.L The system down cost rate, replacement cost
                                                  'rate, and replacement rate are P=5.0, R=10.0, and po=2.0, respectiely.

Then we obtain the optimal group replacement policy for the maintained

coherent system by the value iteration method. Also to illustrate
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Figure 4.1. Bridge structure system

Table 4.1. Failure rates, repair rates, and cost rates.

x 1.i Xi

Vl

U2

U3

U4

Us

O.l

o.!

O.2

O.1

O.1

leO

2.0

1.0

1.0

2.0

2.0

2.0

2.0

2.0

2.0

the results

+z x. aECo(x.) Z

computed.

in the case

satisfy the
21 satisty

 of properties 4.3 and 4.4, the valueS MI(rce)"

' M2(Xe)=PO(Xe)+i,:1(xe)vei' a"d M2(Xe)!Ml(Xe)

The results of these computations are given in

 of the discount faetor ct=O.05. No.4,6,11,13,

 condition of Property 4.3, and No.1,2,3,5,7,9
the condition of Property 4.4. But No.8,10,12

  E la.         zicC1 (Xe)

are

 Table 4.2

18, and 25

,17, and

,14,15,19,
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Table 4.2. 0ptimal replacement policy

No. Xl X2 X3 X4 xs Åë (X.) TF (X

                 M2 (ece )
.) Ml(Xe) M2(Xe) Ml(X.) V

 ct
(x

e
)

1
2

3
4

1
1

1
1

1
1

1
1

1

1

1
1

1

1

o
o

1

o
l
o

1

l

1

1

1

1

1

1

2.80
2.04
2.44
1'. 68

15
13
l3
11

.

.

.

.

o
o
o
o

5
6

5
6

.

.

.

.

3S
37
33
55

18
18
18
l8

.

.

.

.

60
60
60
60

5
6•

7

8

1

i
1

1

l

1

1

l

o
o
o
o

1

1

o
o

1

o
l
o

1

1

1

1

1

1

1

1

2.48
1.72
2 .• 12

1.36

13
11
Zl

9

.

.

.-.

.

o
o
o
o

5
6
5
6

.

.

.

.

24
40
l9
62

18
18
18
18

.

.

.

.

60
60
60
60

9

10
11
12

1
1

1

I•

o
o
o
o

1

1
1

1

1

1

o
o

1
o
1

o

1

o
1

o

1

1

l

1

2.04
1.28
1.68
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20,22,26,27, and 29 don't satisfy these conditions when the optimal
                          'action is to replace the maintained coherent system. This shows
that the conditions of Properties 4.3 and 4.4 are not necessary for

replacing the system. No.10,12,14,15,19,20,22,26, and 27 show that

a preventive replacement is optimal.
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4.4.S Concluding Remark
                                       '     We have been exarnined the structure of optimal group replace-

ment policy fpr a coher.ent system consisting of n repairable com--

poments. We showed that the optimal group replaeement policy mini--

mizipg the expected total discounted cost is a rnonotone policy

without regard to the failure and repair rates. Further we discussed
sufficient conditions for the group replacement of the maintained
                'coh.erent system. It is a furture problern to find the structure of

an optimal group replacement policy when we have to consider fixed

costs for turning on or tuTning off repair facilities.

4.5 Optimal stopping problem

4.5.1 Cumulative Damage Model
     In this section we consider a coherent system in a random

envirornent. The coherent system consists of n components which are

subject to a sequence of random shock occurring in a Poi$son stream

at rate 1. Each shock causes a random amount of damage and these
damages accumulate additively. The suecessive shocks of magnitudes

Y(1), Y(2),..., for components are positive, independent, identi-

cally distributed random variables having a known distribution func-

tion F(y). A systern failure can only happen at the time of a shoek

arrival and occurs with probability depending on the amount of accu-

mulated damages in each component. The failure probability is a
nondecreasing function of the accumulated darnages caused by all

previous shocks. More precisely, if the cummulative damage is

Xo(t)=xe for components at time t and a shock of rnagnitude ye occurs,

                                                              ).Then the coherent system fails with known probability 1-s(x                                                           +y
                                                          ee
The function s(.) is referred to as a survival function. Upon

failure, the coherent system must be replaced by a new one having

the same properties, and at this time a failure cost is incurred.
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If the coherent'system is replaced before failure, a smaller cost

is incurred. Thus, there is an incentive to attempt to replace the

coherent system before failure. We allow a controller to replace
    'the coherent system at any stopping time Tk6, where 6 is the failure
                        '                                                              'time of the coherent system. '
The purpose of this section is to derive an optimal replacement

policy which minimizes the total long-run average cost per unit
                           'tirpe for a coherent system.

     '        '          '
4.5.2 Formulation
                                                 '     LJe will describe the damage process in detail. For t:s6, a

stochastic process Ze={Xe(t) ; tET} represents the cumulative damages
attributed to shocks during [O,t]. The state space is Ee=[O,oo)n.

Then we allow a controlier to intend a planned replacement at any

stopping time T<6. Upon faiJure, the coherent system must be re-
placed by a new similar one, and the replacement cycles are repeated

indefinttely. Every planned replacement cost equals C and replace--
ment by failure incurs an additionai cost of K. 'w'e study the

group replacement policy which is optimal in the sense that it

minirnizes the total long-run average cost p. er unit time.

     We consider a renewal process formed by successive replace--
                                         'ments of similar systems. Using familiar results in renewal theorem,
                         'we see that the long-run average cost is the expected cost over a
replacement cycle divided by the expected duration between replace-t

ments. That is, the average cost associated with a stopping time
T<6 will be

             C+,I<P [6=T](4.17) eT- E[IIi] •
                       '
In our application the coherent sys•tem always start with Xe(O)=O,

Let Ece denote expectation under the condition Xe(O)=ce, and E
without suffix represents expectation under the condition Xe(O)=O•.

     Let A be the infinitesimal operator of the stochastic process
                                       '
                                                               '
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Ze. For a function f in the domain of A, the infinitesimal operator
is defined as follows:

     Af(` e)ptlII: t-iE`c6[f(Xe(t))-f(xe)]'

                              '
We use Dynkin's formula

     E`v. [j" (Xe (T))]-fb (X.)"E.. [fgAf (X. (s))ds ]

whtch is valid for any f in the domain of A and any stopping time T

having finite expectation (see Dynktn [16, 1965]).
                                                   '

4.5.3 Optimal Stopping Time

   ' We derive the optimal group replaeement policy which minimizes

the total long-run average cost per unit time. The damage process
Ze is clearly a strong Markov proeess (see Blumenthal and Getoor

[10, l968]). Let pt=inf eT be the optimal average cost. A stopping
time Tec is said to be gptimal if ip*=tpT,,,. Then in order to prove.

the main theorem we need the following lemmas.

     Lemma 4.4. Let d(xe) be defined by d(xe)=E,ne(6], then

                                  '
     d(`C.)= fl- +fE CI(Xe+Ye)S(`C.+Ye)dF(Y.)'

            .e
     Proof: Let T be the intershock time. Then by applying a

reraewal theorem we have '
                        (6]]     d(x )=E              [T+E        e Xe Xe(T)

          =E [T]+E                             [6]]                      [E            Xe Xe Xe(T)

          = k + fE `l(Xe+Ye)S(Xe+Ye)`Zl7(Y.>' II

                    c

     Lemma 4.5. If the function 1-s(: ) is a member of F(E ) and
                                       eethere exists xe such that s(xe)A and xelO, then the function d(xe)
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is bounded. .
     Proof: By the assumption there exists rr5 such that B=s(ar,5)<l

#?,d .Yl:l5 hger. `f::.>Li.X6,s,,iig"4Ce.4the f""ctzo" i'-s(` .) is a member of

                                  '                           '             i     d(Ce)5 x + fE BW(Xe+Ye)dl"(Ye)'
                    e
                        '                                   '                          'Thus we •have
                 oo /..                               '                         '             1 nl     d(Xe)S x nioB = X(1-' B) '' .

                                          '                                         / oo
while  by using the renewal function Mi(x5)" n4oP[Xi+Ya(1)+'''+Ya(n)

Igxi], the mean time needed to achieve Xa(t)=>ar5.is no more than

Mi(x5)IX. That is, for each xeEEe we t}ave // .
                 co     d(ece)g } [.i iMa (XE) + ilB ], ' . '

                            tt t tt t
and thus the proof oÅí Lemma 4.5 is complete. •II

equ

gtL.oeMnla f'6' FOr eVerY StOPpzng time TE6, we have the fonowing

     Ec [d(X.(t))I(T.6)]=E,, [6-T] .

                                 '                        '
                                                                'where l(.) is an indicator functien.. ' '

     Proof: By the strong Markov property we have

     E,, [d (X. (T) )I (gi.6) ]"E,, [Ex (!z,) [6I (T<6) ] ]

       ce                               e
                • =E,, [6-•fi]. H
                           e

     Lemma 4.7. If T maximizes the following function eT

     eT= th ""E [ 6 ]-C' K-E [ { W"d (X. (!Z') ) ""k}I (Iz7.6 ) ]

then lZi  minimizes "T• •'
        '
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Proof: For every stopping time SZ', the following inequality holds

         C+KP [T=6]     ip",E. E[tz'] ' '
and a stopping time T:s!6 minimizes the average cost if it maximizes

     eT=Q*E [T] -- C- Kp [!z7.6] .
                                 '
Using Lemma 4.6, we obtain

   '     e tz,=" 'k {E [T ] '-E [6-T] }-C- K+1<E [I (tr,.6) ]

                                         ]• H       =WCE [ T ] - C-- K+E [ {W kw (X (tZT) ) +K}I
                           e (T<6)
     Let S(Ce)"fE S(Xe+Ye)dl?(ye)• Now we have the main result of
thfs section. e
                       '
     Theorem 4.16. An optimal stopping tirne T* is

     TVc=min[inf{tllOl Xc(t)EG},6]

                  '        '
where
     G"{`C.`E.i ip*-XK(1-'S(Xe));SIO}'

     Proof: Let Y(xe)xthrkd(xc)-K. By Lemma 4.5 the function Y(xe)

is bounded. Then we have
     A Y (X.)= ;t: t-iE.. [Y (X. (t))I (t<6)-Y (X.)]

           "-X[Y(`Ce)-fE Y(X.+Ye)S(Xe+Ye)de(Ye)]'
                       e

                                         'From Y(a: )=abVcd(a )-K, we obtain
        ee
     AY(`Ce)"-X[ip'`d(Xe)-K-fE {W"d(Xe+Y.)-K}S(`C.+Ye)dZ"(Y.)]'

                           e

                                      'Using Lemma 4.4, we have

    AY(`C.)"-X[e'le{ Al +fE d(Xe+Ye)S(Xe+Ye)dZ7(Ye)}- K

                         c
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               -th ofE d (`i'e+Ye) S (`Ce+Ye) CZF (Yc) +KfE S (Xe+Ye) dl7 (JZ e) ]

                    e .e                                      '                                   '                      '          '
           =-ofC+AK[1-fE S(`C.+Ye)dF(Ye)]

                       e               '
           --th*+XK(l-S(x )).
                        e

From Lemrpa 4.5 and T;6, we have

     E [T] .sE [6 ] <co .

                           '
Then since E[T]<co, we may apply Dynkin's formula to yield

     E [ ip tkw (X. (T) ) -K] =E [ fg{ -th Sc+XK(1-S (X. (s) ) ) }ds ] +th ikE [ 6 ] -K.

         '    '                '                      t ttUsing Lemma 4.7, for every stopping time IZ's6, we have

                                     '                   '     eT=- C+E [fg{"*- XK (1 -- S (X. (s))) }ds ]T

By. the definition of the optimal stopping time TSc and 1-S(xe)EF(Ec)

we have

                (t)))>O af and only af t<T7k.     ip x'- XK(1-S (X
               e
                          '
For every stopping time t];S!6, we have

     eT,,-eTIE [ fg'k { th fc-xKa-s (x. (s ) ) ) }ds ] --E [ fg{ th >'c-xK(i-s (x. (s ) ) ) }ds ]

           ='E If l" { th *"XK(1NS (X. (S ) ) ) }`ZS ] -E [f(i{ th '"-XK(1'S (X. (S) ) ) }dS ]

               TYc           =E[fT {thYc--AK(1-S(X.(s)))}I(T.T.)ds]

                                             '              -E [ f:,, { th '"-XK(1-S (X. (S) ) ) }I (Tzfzis, ) CIS ]

                                         -           tt                                             '           >o.
           -           -                               '                                                       '
Thus T maximizes eT, and this completes the proof of the optimality

of r'c• Il '                                 '                                                          '                                                                  '                                                     '                                 '      '
                              --82-       tt t                                        '

'



4.5.4 Example
     We consider a two-component system. A component i fails as
          'soon as the cumulative damage exceeds a fixed threshold Li. Then
the survival function s(x ) is
                          c

     s(ccl,x2)=fO if xlkLl and cslL2,

               Ll otheornDtse.

Al'so we assume that each shock causes a random amount of damage

which is exponentially distributed, Fi(yi)=l-exp{--viyi}• Then by

the definition of S(x7,x2) we have

     S(oci,c2)= i-exzp{-vi(Lfxri)--v2(L2--x2)} if 0gxl<Ll and 0gLar2<L

                1-exp{--vl(Ll-xl)} if Ogcl<Ll and x2k,L2,

                l-exrp{-v2(L2-x2)} if xrlktLl and O;ELc2<L2,

                O othermise.
By Theorern 4.l6 we have the optimal stopping region G shown in

Figure 4.2.

                   X2
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Å~
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4.5.5 Concluding Remark

     Theorem 4.16 states that it is optimal to replace the eoherent
                                                                '                       t ttsystem when the process Zo={Xe(t); tET} enters into the optimal

stopping region G, or the system fails, whichever occurs first.

The stopping problem considered here has a structure similar to
stopping problems treated by Ross[43, 1971] and Bergman[9, l978].
                             '                             'Ross investigated the optimality of so-called infinitesimal-look-

ahead (ILA) stopping rules, and Bergman studied the expected

infinitesimal-look-ahead (EILA) stopping rules. It is a future

proplem to find effective algorithms to obtain an optimal stopping

region G.

Notes for Chapter 4
                 '      '
     Optimal replacement policies for two-component system with
increasing running cost are discussed by Berg [7,8, l976] when the
lifetimes of components are exponentially distributed. The structure
of jump process is discussed by Blumenthal and Getoor' [10, 1968].
The functional equation (4.5) can also be obtained by using the
semi-Markov decision process in Ross [42, 1970]. Furthermore the
functional equation (4.6) can be obtained by using the equivalence
between eontinuous and discrete time Markov decision process in
Serfozo [46, 1979]. The method of approximation of the coherent
system deteriOration process Z is discussed by Barlow and Proschan
[4, 1976]. Moreover, the distribution of time to fÅ}rst failure in
rnulti-component system is discussed by Ross [44, 1976] and Chiang
and Nie [12, 1980]. The group replacement of a multi-cornponent
system with deterioration only appears in Sivazlian and lr!ahoney [49,
1978]. The optimal stopping time for replacement problem is treated
by Feldman [18, l9, 1977] and Taylor [51, 1975].

-84-



                     CHAPTER 5

OPERATINC CHARACTERISTICS OF REPLACEMENT POLICIES

5.1 Introduction

     In this chapter we investigate the operating characteristic
of rep!acement policies for a coherent systern. The operating
                                                            'characteristic of a replacernent policy is a measure defined on

the induced stochastic process when a replacement policy is im-

plemented. Some of the operating characteristics examined in this
chapter are the reliability; the availability; the expected rate

of system failure; the expected rate of joint replaeement of

components; the expected rate of replacement. These operatiRg
characteristics are the information needed to establish a suitable

replacernent policy.

     In Section 5.2 and 5.3, the operating characteristics of

the simple failure replacement policy for a two•-component system

are obtained. The operating characteristics of the (ABC)-policy
for a two-component system are shown in Section 5.4, furthermore

the operating characteristics of the (ABC)-policy for a two-com-

ponent system with minimal repair are discussed in Section 5.5.
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5.2 Two-Component Parallel System with Repair: I

5.2.1 Explanation of Model .
     In this section we consider a two-component redundant system

with repair. The system eonsists of two identical eomponents in

parallel. A failure of a cornponent is detected immediately, and
repair ( or replacement ) begins. Then the other component continues

the job. However, if an operating component fails when the other

componen't is under repair, then the failed component must wait for

repair until a repairman becomes free. Of course, this situation

means the system failure. It is assumed that a repaired component

goes into operation immediately. The time to failure and the repair
time have the general continuous pdf's f(t) and g(t), respectively.

The cdf of the time to failure is denoted by F(t) and the hazard rate
function is A(t)=f(t)/7F(t), where 75(t)=1-F(t). similarly, the cdf ef
                                                                   'of the repair time is G(t) and p(t)=g(t)IG(t). We assurne that the

failure and repair proeesses for two components are entirely inde-

pefident, and the repaired component is as good as new.

     Let us now define J\a(t) as the age of compoRent i, i=1,2, at

time.tcT, and set Xi(O)=O..Let Y(t) represent the time that has

elapsed up to time t since the beginning of the eurrent repair job.

Further let Al(t) denote a random variable that assumes values O, 1

or 2. In this model, we shall set IV(t)=Q when both cornponents are

operating at time t, Al(t)=1 when one is operating and the other is
under repair or replacement at time t, and Al(t)=2 when two components

are inoperated. These variables Y(t), Al(t) and Xc(t)=(Xl(t),X2(t))

define Markov proeesses in continuous time.

         t tt/t                           '                            '5.2.2 Equations of the System,,

     We first consider the operating characteristic of a two-com-

ponent system with repair when the system failure doesn't ocuur.
We define the foliowing state probabÅ}lities;
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     Po(t,ar)du=P[ru(t)=O, OgN(s)gl for all sgslt,

                   x<Xl(t)=X2(t)<x+cZcl X.(O)=O],

    Pl (t, v,y) cZxdy =P [N (t) =O, O ru (s);1 for all sEt,

                       ar<Xa(t)<x+cZx, y`X3La(t)`Y+dY

                       for some i and x>yl Xe(O)"O],

    I'2(t,X,Y)clxdy=P{N(t)=1, O;N(s):;1 for all s;st,

                       x<X.(t)<o-+-cZc for some i,
                          z                       y<Y (t) <y+dy i X. (O) --O]•

                  ttBy connecting the above state probabilities at time t+h with those

at time t and taking limits as h->O, we get the following differen-

tial equations governing the behaviour of the system

            oa          [ bt + bx + 2X(x)]Po(t,x)=o,

            Be(s.1) [ Dt + e. + Da y +x(x) +x(y)]pl(t,x,y)=o,

            eae          [ Dt + Dx + ey +X(ec) +V(Y)]P2(t,X,Y)"Oe

These equations are to be solved under the following boundary and

initial conditions. '
    Boundary conditions:

                              '         pl (t,x,o) "fgp2 (t,x,u)v (u)du,

                                                        '         P2 (t,x,O)-2X (x)Po (t,x)+f:Pl (t,x,u)X (u)du+fSPI (t,u,x)A (u)du,
(5.2)

    '
         Po (t,O)=Pl (t,O,Y)=P2 (t,O,Y)=O.

     Initial conditions:
                    '
         Po (O,O)=1,

(5.3)         Pl(O,X,Y)=P2(O,X,Y)=O.
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Taking Laplace transforms of equations (5.1) and (5.2) with respect

                                                'to t and using initial conditions, we have

         '               a          [S+ 3. + 2X(x)]Pb,(s,ec)=O,(5.4.a)

(5•4•b) [s+ aD . + a3 y +X(x)+ X(y)]PS(s,x,y)=O,

               Da          [S+ B. + Dy + )t(:)+ v(y)]Pli(s,x,y)=o,(5.4.c)

        '                                 '          p"o•c (s,O)=1, •(5.5.a)
                         '
          p'5 (s,x,o)=f8ps (s,x,u)v (u)du, .(5.5.b)

          PS2, (s,x,O) ==2X (x)Pb'c (s,x)+f8PS (s,x,u)A (u)du+f.ooPS (s,za,x)x (u)du,(5.5.c)

                                    'XII??2?. tr ''.g .e. :g t?: . st h. 2) lira:. laE :. .g:a:;;form • . The soiution of equatign

                                                        '                                           '(5•6) ps (s ,x) -7 (x) 2,-SX.' • • ,
                            '
The partial differential e' quation (5.4.b) is Lagrange's linear

equation. Thus Lagrange's auxiliary equations are given by
     de - --gdu - ddPS (s ,x,y)

      1 1 [s+X(x)+X(y)]PS(S,x,y) '.

Solving these equations, we have

     x= y+S' '
     P,ic (s,x,y) =o2i(x)7(y)e-SYIP(e1),

                           '                       '                         '                               '                           tt                         t tt
where el and e2 are arbitrary constants. Therefore the general

solution of equation (5.4.b) is given by ' •
                                             '
(5•7) P/S (s,x,y)=Hl (s,x-y)IZ7(x)[F'(y)e-SY,

                                  '
where Hl(S,x-y) is an arbitrary function. Sirnilarly the general

solution of equation (5.4.c) is given by

                      '
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(5• 8) I)2" (s ,a ,y)=H2 (s ,x-y)IZF( c)Zii (y) e"SY ,

        tt
where ff2(s,x-y) is also an arbitrary function.

     In order to find the Åíorm of functions Hl(s,ec-Y) and fl2(S,X-Y)

in (5.7) and (5.8), we proceed as follows: The probability densities

along x axls in (5.7) and (5.8), setting y=O, are given by

(5.7') P' i (s,x,O)=ff1 (s, xr)F(x),

(5. 8t) Ppti (s, c,O)=H2 (s,x)F (x).

Substituting (5.8) and (5.7') into (5.5.b), the following integral

equation holds

(S,9) Ul (S,x)nf:H2 (s,x-za)g (u)e-SUdu.

          '
Sirnilarly, substituting (5.6), (5,7) and (5.8') into (5.5.c), we have
                                         '                                                                    'the following integra! equation •
(5. 10) H2 (s, :) =2f (x) e-SX+f(gff1 (s ,x-u)f (u) e•'S"du

                            +J:Hl (s,u-x)f (u) e-S"du.

                                               '
Further, substituting (5.9) into the right side of (5.19), we

get the following equation

(5.11) e2 (s ,x)=2f (x) e-SX+f:K (s ,x,u) e2 (s,u)dza,

where
                               '     K(s ,x,u) == f8 [f(x-u-y) e-SY+f (a,+u+y ) e-S (`V+za ) ]g (y ) dy ,

and f(t)=O for t<O. Equation (5.11) is the we!1-known Fredholm
                    'integral equation. Once we have obtained fl2(s,x), PS(s,x,y)

and P*2(Ssx,y) by (5.7), (5.8) and (5.9), we can compute various

operating characteristics.
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5•2.3 Various Characteristics of the System

     Consider the reliability of the system starting from Xi(O)=O,

a=O, 1. Now let R(t) denote the reliability of the system and 6

denote the time to the first system faUure. Then we have
                                  '                                                    tt                                   '                       '                         '     R (t) -- P [6> t] •
         =p[OgN(s)s,1 for all sYI X.(O)=O].

                                                            '                                                   'From the definition of Po(t-,x), Pl(t,x,y) and P2(t,x,y), integrat-

ing these functions with respeet to x and y, and adding, the

reliability of the system can be written as

     R (t) ==fg[po (t,x)+f8{pl (t,x,y)+p2 (t,ec,y) }dy]czx.

        '                    '               'Then using (5.6)-(5.8) we obtain the Laplace transform of the

reliability of the system .'
 '

                                             tt(s.12) Rx' (s)=f6 [iF (` )2e-9X+Hl (s, n) al (s,x)+H2 (s,x)a2 (S,X)]du,

                       'where
                 '                               '     ai (s ,x) =J:ltr( c+u )7(u)e-'Szadu ,

           '
     a.o (S ,X) =f:iTt (x+za )i(bl)e"-SUdu ,

                             '                            '                          '                           '
and the mean time to the first system failure is given by
     '
(5.13) E[6]=lim RSc(s) .,. ' .
               s+O '
              =f8[7(x)2+Hi (x)ai (x)+H2 (x)a2 (x)]du,

                           'where ai(x')=ai(O,ac') and Hi(c)=ffi(O,x) for i=1 or 2. Then integral

equation (5.11) is given by

                              /t(5.13,) ll2 (x) == 2f(c) +f8K (ec,u)ff2 (u) du,

                                      'where
         '     tt     K (x,u)=f8[f (x-u-y)+f (x+u+y)]g (y)dy.
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The above integral equation can also be written as

                   co     ll2 (X)=2f (x)+2kl1f6Kk (x,u)f (u)du,

where
     Kl (x,u)=K(n,u),

     Kk (x,za)=f8K (x,y)Kk-1 (y,u)dy, • kkL2.

  '
Thus using the equatien (5.9), we have

                              co     ffi (x)"2f6f(x-u)g (u)du+ 2k:if8f8Kk {x-u,y)f(y)g (u)dydu.

                                                        '
     We consider the probability that a repairman is idle at time t

when the systern failure doesn't occur in [O,t]. Denote by f(t) the

above probability starting from X (O)=O. We have
                                e

     J(t)!=pw(t)tol x.(o)-o].

Thus from the definitions of Po(t,sc) and P2(t,x,y), the Laplace

tranceform of f(t) is obtained by integrating (5.6) and (5.7) over

x and y.

(s.14) -z">k (s)=f:[F (x)2e"SX+Hl (s,c)al (s ,` )]cZc.

     Next consider the expected total idle time of a repairman
during the interval [O,t] (t<6). Denote by J                                              (t) the expected
                                            e
total idle time of the repairman during [O,t]. Then the Laplace

transform off(t) ts given by '              e
     fg (s)=fSc (s)1s,

and the expected total idle time of the repairman prior to the system

failure is
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 (5.15) f =lim sJVc (s)
           e sm>o e

            .f8 [i5 (ec) 2+Hl (x)a1 (x)]du•

                                 '           '
     We consider the expected number of replacement or repair during

the interval [O,t] (t<6). Using the definition of P2(t,x,y), the

expected number of replacement Å}s given by
                    '                      '                                  '     R. (t)= f8f8p2 (x,y,o) dy du.

               'The Laplace transform of Re(t), using (5.8), is obtained

                tt(s. 16) Rec (s)= g fsff2 (. ,.)ii7 (.) du, •

                                   '                                                 '        '
l.gd the expected number of replacements prior to the system failure

                                              '                                   tt                                        '                                 '(5•17) R=lim sR)'c (s) •' .             sÅÄO

             .oo -            =Yoll2 (X)F (x)dn.

                 '                '
5.2.4 Examples
     Example 5.2.1
     Consider the case where time to failure obeys a k-Erlang

distribution and the repair time is arbitrarily distributed. Then
the pdf of the time to•failure is given by
                   '                              '                         ttt tt tt/               • k k-1
                         -xt                xt(5.18) .f(t)" (k-l)Ie '
            '
                              '                                                '
We shall not solve the Fredholm integrai equation (5.11), but will
obtain some operatiing characteristics using the relation of integral

equations (5.9) and (5.IO). Inserting (5.18) into (5.9) and (5.10),

(5•19) Ul (s,x)=f:H2 (s,x-u)g (za)e-SUdu,
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                     k k-1                            - (s+X)x                    xx          ll2(s,x)= (k-1)t e

                          k' (5'20) ' + (kll)! e"(S+A)Xf8ff1(s,u)(x-u)k-le(9+X)Udu

                     + (kli).t e-(S+X)`CJ8H2(s,u)(:+u)k'-le"XUdu.

In•order to obtain the operating characteristics, let us define
ffi s' (S ) a s ,

                     .    Hig•(s)=f6ffi(s,gc)vgehX`ncZx, i=i,2, ge--o,i,...,k-1. .

                                                  .Th6n, multiplying equations (5.19) and (5.20) by xt7e-X[V and integrat-

ing with respect to n, we obtain

                 .(5•2i) llig• (s)=.J --z o (l) (-i)g'-"g (g"-") (s+x)H2g. (s),

 '                             k                 (k+g"-1)! 2x            (s)=                               k+g'                  (k--1) .r         ll                          (2X+s)          2g'

(s.22) '  +./lto(gn') (i{Zi})r! (2xi.k)k+n llig'--n(s)

                   +.k"4'g (kEi) 'l/}Il3fklliiil, (,,.Ein+J'+i "ik-n--i(S)'

     g(0')(s)=f8(-sc)0'g(x)e-SX ds, s'-o,i,...,k•-i.

The above equations are the set of 2k linear equations in 2k variables

ffig•(s) (a=1,2•, o'--O,l,•..k-l) with known coefficients.

     Then we have some operating characteristics from the solution

of 2k ltnear equations. !n order to obtain the reliability R(t),

inserting (5.18) into (5.l2) we have '
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          Rrk(s)-i.I: i.Ig(i;.j) ,,,..i/rl,l'.,

(s 23) +i-z: i-E"g ."-i, (Z'l-`n) .,(iillff,i\iSi.,

                   +.k.--ig.11to.Xti[(..x)l•h.+irli;zZi!/i;I> ililllSi }irl)(..x(M);•Enli$li]ll2n(s)•

                           '            '
Then, inserting the solution of the foregoing set of linear equations

into (5.23), we find the Laplace transform of the reliability, and

the mean time to the first system failure by setting s=O.                                                          Similarly,
we obtaln the other operating characteristics as follows.

               tt  '
                                            '                                     '                         '                                    -• -          f2(s)- i.l,g i.I/i (i;•j) .,,,ii",z•.,.i .

                            '           '                      '                          '(5•24•) .k;i k;i g,' ri+Ji.-.i Aa+g'ffin$S).

 ' 'i;o u'-:o n;oN Åë ' nts(2x+s)Z+0-n+1 '

                 k-1 i         'x          R2(S)= i;o a/s ff2i(S)'(5.25)

                            '                                 '
The above reliability R)k(s) can be obtained by using the regenerative

properties (see Kodama and Degu'chi [29, 1974]), however, the other

operating characteristics' ar'e new.
                                                 '     Next, consider a two-stage Erlang failure distribution as a

special case. Then, the pdf of tbe time to failure is given by
                                               ' '
     f(x)=x2..-Xx.

                           '        '                            1.Then, the solution of linear equations (5.21) and (5.22) is given as

                                                       '     ll1o (s)=2x2 (2x+s )g (s-x) e,

                             '     ull (s)=2x2[2g (s+x)- (2x+s)g (i) (s+x)]e,

                                     '
                              '
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     ll2o(s)=2x,2(2 +s)e,

              2     ff21(S)=4x e,

where
     e-i== (2x+s)[ (2x+s) (2x+s+x2g (i) (s+x)-4x2g (s+x)],

     9 (S+X) =9 (O) (S+X).

And, inserting ff..(s) (i=1,2., g'---O,l.) into equation (5.23), we find
                zg
the reliabi!ity RSc(s);

               22     R*(s)..:l!!2i.:.ts!ILflt2-O +6S+S

             (2A+s)

              + 2X2e 2 [a6x2+sAs+s2)g(s+x)--x(6x2+sxs+s2)g(i)(s+x)]

                (2X+s)

           + 2X2e 2 [(6A2+6xs+s2)(i-g(s+x))ÅÄx(2x2+3xs+s2)g(i)(s+x)],

             (2X+s)

and the rnean time to the first system failure is

     E[6]"45x+z3A;71ilill[ifl3lli;lif}:XI-;{i2Z2gXit+A(g)(i(])a)}'

The above re$ult agrees with that of Kodama and Deguchi [29, 1974].

The other operating characteristcs are

                22             10X +6Xs+s     fx' (s)=      e3               (2X+s)

                   2x2e 2 2 2 2                                                            (i)              + 2 [(16X +8Xs+s )g(s+X)-x(6x                                                               (s+x)]                                                          )9                                                   +5Xs+s
                  (2X+s)
                '    f.=45x+zxti:E2flill7i{;(iA;(i])Xig](x)}'

    Rv"(s)= 2x2(4x+s)e1s,

      e•    R =21{2(1-g(x))+xg(l)(x)}.
     e
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     Example S.2.2
     Consider the case where time to failure is distributed

uniformly in the interval IO,1] and the repair time is constant

(s.26)'F(t)=' (i ?ti.lii' ' .
          G(t)-(9 9;;i.li2i

        'In example 5.2.1 we obtained the operating characteristic by solving

the 2k linear equations instead of the Fredholm integral equation.

In this example we solve the integral equation explicitly and obtain

the mean time to the first system faUure, the expected total idle

time of a repairman prior to the system failure, and the expected

number of repairE prior to the system failure.

     First let us solve the integral equation (5.13'). For OEx<1,

inserting (5.26) into (5.13'), we have • •
          H- (X)= r 2+ fcrH- (U)dU O"`.X`1/4,'
           u'         . vuU                                      --                                  '                  2+f-onti12H2 (u)du 114Eoc<112,
(5.27)

                  2+f:-i12 fl2(u)du 1!2gx<1•

                                     '
For O;$x<1!4, differentiating both sides of integral equation (5.27)

with respect to x, we obtain •
                                     ttttt t
                        '      d ••' T. H2 (X)=ff2 (ec)•• . •

                     ttThus, using El2(O)=2, the solution of the above differential equation

is given by

                  x(5.28) ff2(x)=2e .

For l!41c<1!2, using (5.28), the solution of the integral equation

(5.27) is given by
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(5•29) H2 (x) --2e-X+112. . .

Similarly for 1/2Åíx<l, using (5.28) and (5.29), we have

                    x--1/2 1!2<x<3/4,
(5'30)  ll2 (X)"  ( i:2.11q.-.1-X) 314:'X<l'

Furthermore, using the relation of equation (5.9), we have

,,1,,, Hi(X'= [!,2ifzai!2 i;il/lli,I4• •' .•

w6 havNeeXt let US CalCUIate al(n) and a2(c). From equation (s.26)

          ai (x)- (8-x)2(2+x)16 21:ii,

                                    Osx<l!2,          a2(x'=(,(i'-'Xlli ,7,..<i,

                                       -                (o                                    1<x.                                     h.                                                                 '                                     m
EPS:.k"igi.i.i:g Eigi81.g(E;.31k g';to `5•i3)• the mean time to the fi.,,

     E[6]= a23ei/4 --i4i)/24.

Similarly, the other operating characteristics are given by
     f."(299el14 -348)196,

    R=(4gei14 -64)!s. /
      e

                    ttt5.2.5 Remarks
     The re!iabUity of two-component parallel redundant systern with

general distribution is obtained by solving the integral equation,
based upon the pdf's o.f the time to failure and the repair time.
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However, the integral equation is not easily solved. The procedure
developed in this section, in principle, can be applicable to the

other models such as the process which deseribes the behavior of the
system does not have regenerative states. Note that other techniques,

based upon Markov renewal processes, are not applicable to sueh

systems.

5.3 Two-Component Parallel Systern with Repair: II

5.3.l Fundamental Equations

     In this section we consider the stationary operating character-

istics of the two-component system with repair. We define the
following state probabilities,
        '
     Po(t,x,y)cZxdy"P[ru(t)=O, x<Xa(t)<X+CZX, Y<X3-a(t)`Y+dY

                 . for x>y and some il X2(O)"Y(O)=O],
     Pl(t,x,.)clcd.u=P[N(t)=1, x<Xi(t)<x+cZx, vu<Y(t)<y+dvu

                        for some il Xl(O)=Y(O)=O],

     P2(t,x)dLc=P[N(t)=1, x<Xi(t)<x+cZc, Xa(t)=Y(t)

        . for some il Xl(O)=Y(O)=O],
     P3(t,sc)cZc-P[ru(t)=2, x<Y(t)<x+dul Xl(O)=Y(O)-O].
           '
Using these probabilities, we have the following differential equa-

tions governing the behavior of the system

          [ Bat + BD. + aby +x(x)+x(y)]po(t,x,y)=o,'

             aaa(s•33) [ ll : la.x ;x(a.y).,lh)(X]agP(t(%l-P-g,(t'X'Y)."=O' ,

          [ eBt + a3. +v(x)]P3(t,X)"X(X)P2(t,X)+fZX(U)Pl(t,",X)d"•

                                               '                             tlttl t t                           '                                                    'These equations are solved under the following boundary and initial
conditions.
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     Boundary conditions:

          po (t,x,o)=f6v (u)Pl (t,x,za)du+v (x)P2 (t,x),

                                     '          Pl (t,x,O)=f8X (u)Po (t,x,bl)du+fSx (u)po (t,u,x)du,

 (S.34)
          p2 (t,o) =f8v (u)p3 (t,za)du,

          Po (t,O,Y)=Pl (t,O,Y)=P3 (t,O)=O.

   ' Initial conditions:

          P2(O,O)=1,
(5.35)

          Po (O,X,Y)=Pl (O,X,Y,)=P3 (O,X) =O.

5.3.2 Various Cha.racteristics

     We are interested in the stationary operating characteristics
of a two-component system with repair. Thus, we consider the
following steady state probabilities

     Po (.x ,y)=1 im Po (t, v,y),
             t-><p

     Pl(x,y)=lim Pl(t,x,y),
             t->ao

     P2(x)=1im P2(t,`n),
           trr><n

     P3(c)=lim P3(t,x). ,
           t"'oo

General properties of Markov processes assure the existence of such

probabilities when distributions of time to failure and the repair

time have finite moments. The above probabilities are free from t,
and thus, the stationary probabilities are obtained by solving

equations (5.33) since the derivatives with respect to t are all

zero. The general solution of such equations is given by

         Po (`n ,y) =e ffo (x-y)F (x)F (y ) ,

         f'1 (`C,y) =eHl (x-y)F( c)G(y) ,(5.36)
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     P2(x)=e Z"(x)G(x),

     P3 (x) =eF (x)Z';(x)+eZ7(x) f:f:ll1 (y-u)f(y ) dydu .

In order to find t' he functions llo(.) and ll1(.), and the constant e

in equation (5.36), we proceed as follows. Setting y=O, the proba-

bilitity densities along the x-axis in (5.36) are given as,

(5.37) Po (c, O)=eHo (x)F (x),

          Pl (` ,O)=eUl (x)F(`:). .

Substituting equations (5.36) and (5.37) into both sides of equation

(5.34), we have the following integral equation for Ho(•) and Hl(•)

(5.38) ' Ho(x)=f:Hl (x--bl)g(za)du+g(x),

                                   tt
(5•39) Ul (x)=f8Ho (x-u)f(u)du+f.coflo (u--x)f (u)du.

Further, substituting equation (5,38) into the right side of

equation (5.39), we get the following integral equation

                                  '         '(5.40) ll1 (ec)=a(c)+f8K (x,u)El (u)du,

                                'where
     a (x)=f8{g (x-u)+g (u--x) }f (u) du,

     K(x , za ) =f8{g (x-u-y )+g (y-x--u) }f (y ) dy ,

     '
                                                  'and g(t)=O for t<O. Equation (5.40) is the well-known Fledholm
                                 'integral equation. A constant e is obtainable by the normalizing
                        '     .equatlon
                        '
(s.4i) f8f8'Po (x,y)dydu+f8f:Pi (x,y)dycZx+f8P2 (x)cZ ol-fgP3 (x)du--i•

                         '                               'Once we have obtained ffo(x), fl1(x) and e, then we can compute

various operating characteristics.
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     We obtain the operating characteristicg. using various state

probabilities and densities in case of the steady state two--component

system. Let Av be the stationary system availability. Then we have

     Av=lim P[Al(t)=O or 1]
        t+>oo

From the definitions of Po(t,:,y), Pl(t,rc,y) and P2(t,c), integrat--

ing these funetions with respect to x and .y, and adding, the station--

ary availability is obtained as fo]lowing.

     A.-f? f6P, (:Åé , y ) dy cZ r7+f:if[:P, ( c ,y ) d.u cZtv+f:iP, (x) cZx .

Then using eauations (5.36) and (5.41) we obtain the stationary

avqilability
                             '                            tt                              '          A.= ef8J(li { {Ho ( c-y )lil7(y)+Hl (` -y )i(y ) }dy+Zii(x) ] du ,(5.42)

where
     e-i- : [i+J"8 Hi (` )IZi(x)(zx]+f:f8Ho(ar)IZ7(x+u)77(u)dudu,

                                              '

                              '     u--l=f? tdG (t)• '

     Now we consider the probability that a repairrnan is free.

Denote by Xs such probability. Then we have
                                '                                       '     J- =lim P[IV(t)=O].
      s        tH>eo .                             '                           '
Thus from the definition of Po(t,x,y), Z- s can be written as

(5•43) f,m-f8fi:Ho(c-y)iF(x)iF(y)cZxdy.

                      tt             '     Next, we consider the expected number of system failures per
unit time. Using the definition of P2(t,a), we have the expected

number of system failures
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(5'44) F. ==P2 (O)

            =e.

5.3.3 Some Special Cases
     We shall consider the case in whi.ch times to failure obeys a k-

Eriang distribution and the repair time is arbitrarily distributed.

In this case, the pdf of the life time is given by

(s.4s) '  f(t). x(i-tkiil .-xt. '

                                                   '
We shall not solve the integral equation (5.40), but will obtain

the operating characteristics using the relation of the integral

equationS (5.38) and (5.39) instead of (5.40). Inserting equation

(5.45) into equations (5.38) and (5.39), we have . . .

          Ho (x)=f6ff1 (u)g (x-u)du+g (x), •

-u --s -•- Ak "'IU-tX". Lk-'I A7Z 't
                 (k-1)/ e tJoHo(u)(c--u)<b.4b)                                           e du          li1 <X) ,.

      . +f8ffo (u) (ec+u).kkl.-X"d.]'.

                                    '
     In order to obtain some operating characteristics, let us

define

                 .     ffig•=f8Hi(u)uae-XUdu, i=O,1, J'---O,1,...,k-1,

                'and muitipiying equation (s.46) by xg'e-XX and intergrating, we obtain

               .      ' ffoo•--.J-io{(l)(--og'-"g(g'-n)(x)Hig.+(-bt7•g(o')(x)}, . • .

(s•47) ll2g•--./lto(Ji (itZi}l," x-n2-(k+e)lloJ•-. '

                                                        '               '        • k-l                +.io (k: ) :lifi' ] l, x- ("'0'"i-k) 2'- (""g"i ) llok-.- i ,

                                             '

                                                       tt
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where
     g (g') (x)=fÅé (-u)g' e'X"g (u)du,

                                 '
The above equations are the set of 2k linear equations in 2k variables

ffiJ• with known coefficients.

     Then, we have the operating characteristics from the solution

of 2k linear equations. In order to obtain the system availa-
  .bility, inserting (5.45) into (5.42) we have •

              k-1 . t                           - E it (m .r )-1x-"i+"' -' lg (M) a)                      -z-l          A =e Z [i!X
           v              •i=o m=o
   • +kSl gi (i+q'-n)(.'.,)-lxn'-12-i-'j+'i"le

                          z 0n(5•48) g'=On=O . '
                  i-                + S (n.t)-iHin{xn-i ..Zin (m.r)"i(-i)m n+n?-ig(m)(x)}],

                 n=O                                   m=O
                                              '
where
               k--l .     .-i--, v-i{ i+ .z (i !) --.ixZuii}

               z=O
                               '
            .kEiksi gx' (i+u:-n)(.!)-ixn-i2-i'-j'n-'iH

             .. z 0n'             z=oo=                  on=o

Then, inserting the solution of the foregoiRg set of linear

equations into (5.48), we obtain the system availability Av•

Similarly, we obtain the idle time probability for the repairman

I- and the expeeted number of system failures per unit time F

     f =.kilkSl 0i (i+q'-n)(..,)-lxn-12'"i-3'+n-1ff

      S i= og' -- on=o Z 0n'
     F =e.
      e
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     Example 5.3.1
     Consider an exponential failure time distribution as a special

                        '                                         'case.

            -xt     f(t)=Ae .

Then equation (5.46) becomes

     Hoo=9 (X)Hl o+9 (X),

     ll =H .      10          00
                          '
The solution of the above equation is given by

                                            '     lloo==Hl o=g (X) 1 (1-g (A) ) .

        'Thus inserting Eloo and fflo into equation (5.48) we find the stationary

availability

     A.=(2-g(X))1(g(X)+2x!v), .
and similarly we obtain the idle time probability for the repairman

and the expected number of system failures
                                  tt
     f."g (X)! (g (x)+2x!v),

     F. =2X (1-g (X))1 (g (X)+2Xly).

The above resluts coincide with those obtained by Gaver [20, 1963].

                                         '     Example 5.3.2
     Consider a two stage Erlang distribution. By setting k=2 in

equation (5.45) we get a two-stage Erlang distribution

     f(t)=x2te-At.

Hence, by equation (5.47), we have
           '
     Hoo-g(X)+gQ)Hlo,
           (1)                   (1)              (X)-9                      (x)Hlov(X)Hl1,     Hol"-g

          -1     lllo=2 (lloo+Xllol),
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          --1     ff11=2 (fr'o2+Eo•o/x).
           tt                '
The solution of the above equations is given by

     Hoo=g (X) (2-9 (X))/el,

              2                   (l)     ffol=(9(X) -2X9 (X))IXel,
                 (1)     ff1 o= (9 (X)-Xg                    (x))lcl,

                 (1)     ff11" (g (X)-xg                    (x))IXel,

where

                   (1)    el=2 (1-g (A))+Xg                      (x).

Then, inserting Uoo, llol, Hlo and Hfl into equation (5.48) we obtain

the stationary availability
     A.-{8 (1+X)!X+2 (3x--8)g (x)lx+2 (4-- 3x)g (x)21x+2 (6--7x)g (1) (x)

           +i2 (x-i)e a)g (i) (x)+4x a-A) (g (i) (x))2}

                    (1)                                                (1)                                         2           !{4X(2-Ag                       a))1x+1 Og (x)-2g (x)                                                   (x)},                                          -16Xg

and the idle time probabilit.y for the repairman and the expected

number of system failures as,

                          (1)                     2                                          (l)     f.={ lOg (X ) -- 2g (x)                             (X)}1{4X(2-Xg                                             (x))/v                      -6X9
           +iog (x)-2g (x) 2-6xg (i) (x)},

                       (l)                                       (1)    F.= X{2(1--g(X))+Xg                          (X)}1{4X(2-Xg                                          (x))!v

                             (1)                        2                                (x)}.          +log (x)-2g (x)                         --6Xg

     Example 5.3.3
     We shall solve the integral equation (5.39) where we assume

that the time to failure and tbe repair time are exponentially dis-
tribute.d. The pdf's of the time to failure and the repair time are

     f(t)=x.-Xt,

     9(t)=pe-Vt,

                               --1O5--



and thus, integral equations (5•38) and (5.39) are written

     ffo (X)"f:el (x-za)ve-PUdu+ve-YX, .

     ff1 (X)= f8Ho (x-u)Xe-X"du+f:Ho (u-x)xe-X"du.

ei.fgeb l/l;e.:,/ei,!,i,eb,,l.)g.].li:,,:.i,;tfh,?..zboveeq"ationswithres,..t

   '                                                    '     zSirHi (x)=x{ffo (x)--ui (x)}. . •

The general solution of the differential equation is given

     ffo (x) == p + ."- (X+v )x,

     Hl (` )= p+ .'- (X+v)x. • .

Th.en we, obtain the state probabilitis A.s,

     Po (x ,y)=e2e-X (X+Y), . .

               -Xx-yy .     Pl (x,y)=e2e ,
     P2 (X) ==e2e' (X+U )X,

     P3 (x) "eSIV (e-XX- .' (A+v )ec') ,

where

     e2-i=(v2+2x2+2xv)12x2u.

Tbus, we have the following operating characteristics

    Av==p(v+2x)/(p2+2x2+2xy), '
     fs ==v21 (u 2+2x 2+2xu), .

                                  '     Fe=2A2vl(y2+2x2+2xv). . . . ' '
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5.4 Simple Replacement Policy for Two•-Component System

5.4.1 (ABC)-Policy without minimal Repair

     In this section we consider the operating characteristics of

a simple replacement policy for two-component system. The system
consists of two identical components working in series. We don't

consider minimal repair. In this case, a simple replacement policy

implemented is an (ABC)-policy auch as,
                                                          '                      --     (a) if component z reaches at age C and the other cemponent 3'Z

     is operating in the interval Ogx3-i<A, 'then replace component

     a only,

     (b) if component i reaches at age C and the other component 3--7

     is operating in the interval Alg:3-i<C, then replace both com-

     ponents together,

where xi=oo means that component i is failed. This po!icy is similar
to an oppotunistic age replacement policy (OARP).

     The cdf's of the time to failure and the repair time of single

component are sirnilar to Section 5.2. Furtherrnore, the cdf of the

time consumption required for preventive replacement of single
component is denoted by Gl(t), and the failure replacement and

preventive replacement of bothe components have the general distribu•-

tions G2(t) and G' 2(t), respectively.

5.4.2 Fundamental Equations

    We consider the operating characteristic of the two-component
system under (ABC)-policy. Let Yl(t) represent the time that has

elapsed up to time t since the beginning of the current preventive

replacement job of of single component. Further, let Y2(t) denote the

time that has elapsed up to time t since the beginning of the

current failure replacement job of both eomponents, and let Y                                                             (t)
                                                            3
denote that of the current preventive replacement job. The other

notations are similar to Section 5.2. Then vife define the following
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state probabilities:
              '     Po(t,ar)du=P[c<Xl(t)-X2(t)<ntcZc, N(t)-Ol X.(O)=O],

                                           '     Pl (t,`z ,y)dndy =P [`c<Xl (t) <x+clx, y<X2 (t) <y+dy, rvV (t)= ol x. (o)=o] ,

                '                                                           '     I'2(t,x,y)dy---P[Xl(t)=x, y<Y(t)<y+dy, N(t)=21 X.(O)=)], '

     P3(t,x,y)dy=P[X2(t)=x, y<IY(t)<y+dy, IV(t)=21 X.(O)=2],

     P4(.t,x,y)dy=P[Xl(t)=x, y<Yl(t)<y+dy, N(t)=21 X.(O)=2],

     Ps(t,x,y)dy=P[X2(t)=x, y<Y2(t)<y+dy, N(t)=2i X.(O)=2],

     P6(t,y)dy=P[y<Y2(t)<y+dyl X.(O)=O],

     P7(t,y)dy==P[y<Y3(t)<y+dy[ X.(O)=O].

    '        '
Using these probabilities, we have the following differential equa-

tions '

(5. 49)

These

initial

     Boundary

goverurng the behavior of the system under (ABC)-policy:

       Db    [ Bt + D. +2X (x) ]Po (t,x) =o,

    [. aDt + DD. + Day +A(x)+A(y)]Pl(t,x,y)=O,

                                  tt       DD    [ Dt + ay +V(Y)]P2(t,x,y)=O,

       DD    [ at + Dy +p(Y)]P3(t,x,y)=O,

       DD    [ St + Dy +Pl(Y)]P4(t,X,Y)=O,

    [ bbt + Dby +vl(y)]ps(t,x,y)=o,

      DD    [ at + By +V2(Y)]P6(t,y)=O,

      3a    [ at + by tV3(Y)]P2(t,y)--O•

                            '
equations are to be solved under the following boundary

  conditions.

       conditions:
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(5.50)

(5

  Initial

.51)

Similarly

probabilities:

    Po (x)=1im

Po (t,O)=f otv2 (y)P6 (t,y)dy+fotp 3 (y)P2 (t,y)dy ,

Pl (t,x,O)=fg-Xv (y)P2 (t,x,y)dy+fot-Xv1 (y)P4 (t,x,y)dy,

pl (t,o,.).fg-xp (y)p3 (t,.,y)dy+fg-xp1 (y)ps (t,.,y)dy,

p2 (t,x,o)=x (c) po (t,`c)+f:i" (t,X+A,C)x (y)p1 (t,:,y)dy,

p3 (t,v,o).x (.)po (t,.)+f:in(t,`xr+A,C)x (y)pl (t,y ,.)dy,

P4 (t,X,O)=Pl (t,X,C),

Ps (t,X,O)=Pl (t,C,X),

P6 (t,o)=fXi" (t,C)x (x)po (t,x)du

         +fXf:g: EX;X.t,")) {x (x)+x (y)}p, (t,x,y)dyczx

         +f6fi:i" (t, ntA , C) x ({p) pi (t , tr ,y) dydy

         +JafmAi n (t ,y+A,C) x (y)pl (t,,, ,y) dudy ,

P2(t,O)=Po (t,C)+fli.. (A,c-A)Pl (t, i:, ))(ZC

           c         +fmax (A,c-A)P7 (t,C,y)dy.

  condltions:

Po(O,O)=1,

Pl (O,ac,Y)=P2 (O,X,Y)=P3 (O,X,Y)ptO,

P4 (O ,X,Y)=Ps (O,X,Y)=P6 (O ,Y) =P7 (O ,Y)=O.

to Section 5.3, we will obtain the following steady

    Po(t,x),
 tooo
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st.ate



The

the

of

  Pl (x ,y)=Ilth. Pl (t,x,y) ,.

  P2 (cc,y)=1 im P2 (t ,a ,y),

         tÅÄoo

  P3(n,y)=1im P3(t,:,y),
         t->DO

 P4(x,y)=1im P4(t,ac,y),
         t-'oo

 Ps(x,y)=1im Ps(t,x,y),
    ' t->oo
 P6(y)=lim P6(t,y),
       t-)eo

 l)2(y)=1im P2(t,y).
       t->oo

 abov'e probabi!ities are obtained by solving equation (5,49) since

 derivatives with respect to t are all zero. The general solution

such equations is given by

            --- 2      Po(x) :cF(x), foT OEx<C,
      Pl(x,y)==eH(ar-y)Z7(x)F(y), foy OÅíx, y<C,
      p2 (x,y) ure{7 ,( c) t• (x)+f:i" (X+A ,C) ff (x-u)i7 (x)f(u)dza }z7 (y) ,

                                           foT Osx<A,
      p3 (x ,y) =c {i (x)f(x)+f:in (X+A , C) fl (x-u)7 ( c)f(za) dbl }ZY (y) ,

                        -, , foM OSx<A,
      P4(c,y)=eff(x-C)F(x)R(C)Gl (y), fioy O;llx<A,

      Ps(c,y)=eff(C--x)F'(C)IJ'(x)Gl (y), , for7 o;` <A,

      P6 (y ) -e { fXi (x)f (x) czx

                             '              +fX f:g: [x;a.7+-Q]H(xL.) {7 (.)f(.).i (.)f (.) }d.de

                  '                     '              +fafi:in (C , c+A)H(,,-.)77(.)f(.) d.cin

              +fg f:in (C,u+A)H (.-u)7 (x)f (u) du cZx }Zi2 (y),
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          P2 (Y ) =C" {IZ7 (C) 2+f,C... (A , c..A) fl (` 'C)i7 (X)icr(C) du

                   +fi:ax (A , c-A) ll (Cptx)i7 (c)77 (x) du }Z73 (.y ) .

where
                                          '     ff (.) .f (. )+f:i" (X+4 , C ) ll (x-bl )f(u ) du+ff (c-x)7(c ) ,

     ll (-x) =H (cc) ,

      g - f8iff(ar)2de+f,Cf8H(`c-y)77(x)7'(y)dydu

            + i fa{7i(.)f(.)+f:in(x+A,c)H(.-y)x(.)f(y)dy},z.

                                                        '           + ilfgll(x-c)7(x)7(c)du

                        '           " e,.{fX7(x)f(x)czx

                  +fxf:g: [g l l:t.fi ] ll (x-, ) {I(x)f (, ) if (, )f(.) }d, du

                  . 2fgfmAin(c,x+A)ll(,,-y)iF<y)f(,,)dydn

           + :3 {IZ7(C)2+2.flii..(A,c-A)H(c-c) IZi'(:)7'(c)czx}.

                             '

5.4.3 The Operating Characteristics
     We shall obtain the following operating characteristics; the
system availabi!ity, the expected number of replacements of single

component per unit time and the expected number of replacemeRts of

both cornponents per unit time. They are of great importanee in

replacement theory.
     Consider the stationary abailability. Now denote by Av the

stationary availability. We have

     A =lim P{Al(t)=O].
      v        t->co
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From the definitioRs of Po(( ) and Pl([c,y), integrating these

functions, the stationary availability Av is given as
               '
     A.-lim {fCopo(x)dn+f8f8pl(x,y)cZccly}.

        t->CD
                                      '
Then using equation (5.52) we obtain the stationary availability

      Ag-e{f8i7(c)2du+f8f8e(ec-y)i7(x)iiji(y)czxdy}. . ..

 '

 ' Let Rsf denote the expected number of failure replacements

single component per unit time in the long run. Then we have

    R.f .- le.s {fgp, (t,ec,o) cz v+ fg, p, (t,., ,) du }.

Thu$ from equation (5.52) we have '.
                                         '
     J?.f-2e{ f8i7( n)f( c) cz t}+faf:i? (x+A 'C) ]y ( c-y)IP ( c)f(y ) dy d,x } .

                            '

Similarly, let R                   denote the expected number of preventive
                sp
replacements of single component per unit time. Then we have

           '       '                         '                                                               '     R.p-tle.g {fap4(t,x,o)(in-fAo-ps(t,x,o),z,v} . '

                  '        -2efaH(x--c)i7(x)7'(c)du.

                        /                                          '                             '                                            '                                           '
     Next, let Ref denote the expected number of common failure

replacements of both components per unit time. [Fben we.have

                         '
                                             '    Ref=lilg'; P6(t,O) • ,• • •

        "e{2fXi(x)f(x)czx

            +fXf::: Eg ; ll;.tB H (x-y ) {7.(x) f (y ) +7 (y )f (x) }duczx
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            +2 fafi:in (c ,a +A)H (.-y)li7 (y )f(,,) dy du } .

                 denote the expected number of common preventiveFurther, let R
              eP
replacements of both components per unit time. Then yJe have

    R      ep=;i!{.I; P7(t,o) .

      ' =e{i7(c)2+2Jlli..(A,c-A)ff(n-c)IZ5(c)77(c)czc}

5•4•4 Special Case

     Consider the case where the time to failure obeys an exponential

distribution. Then, the pdf of the time to failure is given by

            -xt     f(t)=Xe .

In this case, the solution of integral equation (5.52) is given by

                   -xc                      )              X(1-e     e(`C)= .-AAa..e2X(A-C)) . fO? OEIX`C'A, AEC<2A,

                       -xc            e-XA(lli21'x'7A-c)))(l...xc) fOr C'A;SlxÅíA, A.`=c`2A,

              XA                                             foT 2AsCr            Xe

Thus we can obtain the operating characteristics.
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 5.5 Simple Replacement Policy for Two-Component System with

     Minimal Repair

5.S.1 (ABC)-Po]-icy,
                                 ttt     In this section we consider the operating characteristics of
               'a two-component system with minimal repair.'  The system consists of
two identical components working in series. The simple replacement
policy i.mplemented is an (ABC)--policy such as,

 (1) when the two-component system is operating,

     (a) if component a reaches at age C and the other component 3-a

        is opgrating in the interval Ogx3-i<A, then replace compo-
             .        nent z only,
     (b) if component a reaches at age C and the other component 3-7
                         tt        is operating in the interval Algl:3-i<C, then replaee compo-

        nentsland2together. ' •                    '(2) when the two--component system fails,

     (a) if the age x.. of component i is in the interval OÅíx..<B,
        for i"1 and 2: then carry out minimal repair,' b

     (b) if the age xi of component i is in the interval OEIxi<A

        and the other eomponent is in the interva! B;SLx3-i<C, then

        replace component 3-i only and carry out minimal repair,

     (c) in the other case replace components 1 and 2 together.

The time consumption required minimal repair has the general dis-

tribution Go(t). The other distributions are similar to Section 5•4•
   '              '                      '                                                               '                                        '
                                                                    '5.5.2 Fundamental Equations '  '
     We consider the operating characteristics of the two-cornponent
system under (ABC)-policy. Let Yo(t) represent the time that has
elapsed up to time t since the beginning of the current mtnimal repair
                                                     '                                                                'job. We define the following state probabilities
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     Po(t,x)du=P[`c<Xl(t)=X2(t)<x+du, N(t)=Ol X.(O)"O],

     Pl(t,x,y)dy=P[Xl(t)=X2(t)=x, y<Yo(t)<y+dy,
                      N(t)-II x (o)=o],
                               e
     P2(t,y)dy=P[y<Y2(t)<y+dyl X.(O)=O],

     P3(t,y)dy=P[y<Y3(t)<y+dyI X.(O)=O].

   '
Using these probabilities, we have the following differential equa-•

tions governing the behaviour of the two-component system under
(ABC)-po1icy,

          [ Dbt + Ba. +2x(.)]po(•t,.)=I[o,B)(.)fgpo(y)pl(t,.,y)dy,

                                                foy Osx<c,
 (sjs6) [ aDt + Day +vo(y)]Pi(t,x,y)=O, foT ogx<B,

             a3          [ at + By + v2 (Y)]P2 (t,y)=O,

             Ba          [ Dt + Dy + V3(Y)]P3(t,Y)=O•

                                                   'These equation are to be solved under the following boundary and

initial conditions.

     Boundary conditions:

          po(t,o)=fg{u2(y)p2(t,y) +p3(y)P3(t,y)}dy,

          Pl(t,x,O)==2X(x)Zi)o(t,x), fove O,kx<B,
(5.57) • P2 (t,o) =f82x (x)po (t,x)du,

          P3(t,O,o)=o.

     Initial conditions:

          Po (O,O) =1,
(5.58)          Pl (O,X,Y)=P2 (O,Y)=P3 (O,Y)-O.

similarly to Seetion 5.3, we obtain the following steady state

probabilities
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     Po(x)=IEIg.; po(t,x),

     Pl(x,y)=1im Pl(t,x,y),
             tfi>eo
     P2 (Y)= lll.s P2 (t,y) ,•

     P3(Y)=lll.h P3(t,y)•

                   '
Then the general solution of these equations is given by

        '            '               '                                                tt
          po (x)=[ z.. ,., ,i,,,"2 gnvf.:li]

                                      n                              '                                  '
         . Pl(x,y)=2eA(x)Gl(y), .• O;slx<B, (5.59) .
          P2(y)=elZf(c)21Z7(B)"21ii;2(ef), .' .' /

                            /          P3 (y ) =2 eZ73 (y ) fCB'F- (x )7(B) -' 2f (.) du ,

                              tt
where
                                '                                                    '     eAi-B+fCl ([l7(x)iF (B)-i)2czx}-t- -:Ii-b f6x(x)(z + -l'i-slp(c)lg7(B)-"i)2

       '                                                       '
         + ,2,fSI(x)i(,)-2f(.)du,

     v;.l-f?litJga(t)dt, .. i'=Q,2,3•

                                  '
5.5.3 The Operating Characteristics
                                    '
     We shall obtain the following operating characteristics; the

stationary availability, the expected number of preventive replace-

ments, the expected number of failure replacements and the expected

number of minirnal repair. They are of great importance in replace'

ment theory. .
     Consider the stationary availability. Now denote by Av the
stationary availability. We have
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     A =lirn P[Al(t)=O].
      v        t-'oo
From the definitioB of Po(t,x), integrating this function, the

stationay availability can be written as

         A."]•im f8po(t,x)czc.

             t'co

Then, using equation (5.59), we obtain the stationary availability

(5• ' 60) A.= e{ B+fCB-F- (x) 277(B)'2de}.

Let Me denote the expected number of minimal repair per unit time

in the long run. Then we have

     M.=lim P[AI(t)=l,Yl(t)=O].
        t-it'

Thus, from the definition of Pl(t,ar,y), Me is given as,

(s.61) M.ntlim fgPl (t, zr,O)de

             tr'co

            =2efoBx (x) czx .

Sirnilarly, let R                   denote the expected number of preventive
                ep
replacements per unit time. Then, using the definition of P2(t,Y),

we have

              - 2-                        -2(5.62) R =eli(C)                    F(B)
          ep
        denote the expeeted number of failure replacements per unitLet R     ef
tirne. Then we have

(5•63) R.f-2efg77(x)7i(B)-2f(` )czx.

Notes for

The

 Chapter 5

two-cornponent redundant system
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has been treated previously



by using the supplementary variable method (see Gaver [20, 1963],
Liebowity [31, 1966], Linton and Saw [33, 1974], and Linton [32,
1976]), semi-Markov processes (see Osaki [38, 1970]) and regenerative
properties (see Gnedenko, Belyaev and Solovyev [21, 1969], Kodama
and Deguchi [29, 1974], Osaki [39, 1970]). The operatÅ}ng character-
isttcs of the (n,N) policy are cornputed byJorgenson, MeCall and
Radner [25, 1967]. Bisides those of (t,T) policy appear in Tahara
and Nishida [50, 1975], and those of OAPR appear in Berg [8, 1978].
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