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CHAPTER 1

INTRODUCTION

During the last two decades, a great deal of effort has been
paid to the development of replacement policies for stochastically
deteriorating systems. At the present time, there is a need for
the development of replacement policies for modern complex systems
such as aircrafts, space vehicles, large scale computer systems and
so on. In this thesis we investigate the structure of optimal
policies for replacement of such systems.

Derman [14, 1963] considered the basic replacement problem of
an equipment whose states deteriorate stochastically during the
operating time. The equipmemt is inspected at the beginning of
each period and the state of the equipment is classified into one
of the (L+1) states, namely, 0,1,...,L. The state O means the
equipment is new and the state L means the equipment is failed.
Either of two actions 0 or 1 is available for the states 1,2,...,
L-1, where action 1 is to replace and action 0 is not to replace.
If action 1 is taken, then the equipment is instantaneously replaced
by a new one. If action 0 is taken, then its state evolves from 7

to J in one period according to the transition probability Pij'
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For a replacement, cost C is incurred, and if the equipment is failed
before being replaced, additional cost K is charged. Because of this
additional cost K he considered the possibility of replacing the
equipment before being failed. Then he has shown under the following
Condition A that the optimal replacement policy is a control limit
policy such that replace the equipment if its state is in the set
{io,i0+1,...,L}, otherwise, do not replace.
Condition A: The transition probabilities {Pij} have a stochas-
tically monotone property, that is , for each k=0,1,...,L

L
f, (@)= 1 P.., 2=0,1,...,L-1
k J=k 1J

is nondecreasing function with respect to <.

Here, Condition A asserts that the probability of deterioration
increases as the initial state number increases. According to this
result, the search for an optimal replacement policy can be restrict-—
ed within a distinguished subclass of all control limit policies
which is very narrow compared with the class of all possible policies.
This often enables us to obtain an optimal replacement policy by a
simpler procedure. Moreover, control limit policies are generally
more tractable and easier for the implementation of maintenance than
non-control limit ones.

Barlow and Hunter [2, 1965] considered the replacement problem
for stochastically failing equipment whose lifetime has cdf F(%).
They have shown under the following Condition B that the optimal
replacement policy is an age replacement policy so as to replace

the equipment at failure or at age T, whichever comes first.

Condition B: The lifetime distribution F(£) has IFR property,

that is, the failure rate

= LB (pee)



is nondecreasing function of ¢.

Analogously to Condition A, Condition B states that the probability
of failure increases as the age increases. If the age of failed
equipment indicates infinity, then it is shown this age replacement
policy turns out to have the same structure as the control limit
policy.

Jorgenson, McCall and Radner [25, 1967] considered an equip-

ment consisting of two components, labeled by Ul and U2. The failure

of its components are stochastically independent and the equipment
fails when either component fails. Its components can be replaced

separately or jointly, and the following costs are considered:

K ¢ the breakdown cost,
C1 and C2 : the replacement cost of U1 and U2, respectively,
C12 : the cost of replacing both components jointly,

where C12<Cl+C2 is assumed. Then they studied the optimal replace-

ment policy for component Ul in the case when the failure rate of

component U, is constant, and they have shown under Condition B that

2

the optimal replacement policy for component U, is an (n,N) policy

1
such that

(a) if x<n, replace component U, only if it fails,

1

(b) if n<x<N, replace component U, if either component fails,

1

(c) if N<zx, replace component U, at once,

1

where x is the age of component U However, the structure of the

1
optimal replacement policy has not be resolved for a general case
where the failure rates of both components are increasing and the
cost of a breakdown is positive. Vergin [53, 1968] has derived
recursive functional equations by the technique of dynamic program-—
ming, and has given numerical solutions for certain values of

some parameters. Further Berg [8, 1978] has suggested an oppor-

tunistic age replacement policy for two components in general case,



and has computed some long run operating characteristics of this
policy. This policy may be similar to the (n,N) policy for each
component.

On the other hand, Tahara and Nishida [50, 1975} considered the
so~called minimal repair for replacement problems. In the minimal
repair, the equipment stays in the state prior to its failure. They

considered the following costs.

K: ‘the breakdown cost,
C: the replacement cost,

M: the minimal repair cost,

where M<C+K is assumed. Then they have shown under Condition B that

the optimal replacement policy is a (t,T) policy such that

(a) if x<t, carry out minimal repair only if it fails,
(b) if t<x<T, replace the equipment only if it fails,

(¢) if T<x, replace the equipment at once,

where © is the age of the equipment. iscuss
ed the structure of the optimal replacement policy for equipments
consisting of more than two components with minimal repair.

In this thesis we consider replacement problems of an equipment
consisting of n components. Most of the previous replacement models
have been developed for equipments consisting of single-component.
However, most equipments consist of various components. Also, the
transition or failure probabilities of these components are usually
stochastically dependent and the cost of replacing several components
jointly is less than the sum of the costs required for separate re-
placements. Then the replacement policy for each component may
depend upon the states of the other components. Furthermore, we take
into consideration of minimal repair at failure of »n~-component system.

Then we investigate the structure of an optimal replacement policy

for components in the system possessing stochastic dependence and



economic interdependence under the criterion of minimizing the
expected total discounted cost, and will provide a simple replace-
ment policy which leads to easier implementation. This policy will
be called (ABC)-policy. Moreover, we also study the group replace-
ment policy for the system and obtain the operating characteristics
of the simple replacement policies.

In Chapter 2 we consider the structural relationship between
a system and its components, and study a replacement problem for
components in the system. The system consists of n components
subject to Markovian deterioration, though its components are not
necessarily independent each other. We define a coherent system
consisting of n components. Furthermore, a coherent system with
miﬁimal repair will be defined. Then we are interesting in clarify-
ing the structure of an optimal replacement policy for components
in these systems under the criterion of minimizing the expected total
discounted cost. First we formulate discrete time replacement model
for a coherent system. The system is observed at the beginning of
each time period and its state is identified. Immediately after each
observation an action is taken as to whether or not to replace each
component in the coherent system. We assume that the time consump-
tion for replacement is negligible. Then we can find the structural
properies of an optimal replacement policy under certain conditions
concerning the costs and its transition probabilities. Finally,
numerical examples are shown to illustrate the optimal replacement
policy.

In Chapter 3 we consider discrete time replacement models for
replacing components in a coherent: system with minimal repair. The
time consumption for replacement and minimal repair is not negligi-
ble. After each observation, an action is taken as to whether or not
to replace each component in the coherent system with minimal repair,
besides an action is taken as to whether or not to carry out minimal

repair, also. We first study the properties of the stochastic
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process representing the behavior of deterioration levels of the
coherent system, and clarify the structure of an optimal replacement
policy. Furthermore, we suggest a simple replacement policy, called
(ABC)-policy, which is easily implementable.

Continuous time replacement models are discussed in Chapter 4.
The deterioration process of the coherent system with minimal repair
is represented by a jump process in Section 4.2, Then the structure
of an optimal replaceﬁent policy is clarified similarly for Chapter 3.
In Section 4.3 we consider a coherent system consisting of n stochas-
tically failing components with continuous lifetime distributions.
Its components are stochastically independent and economically inter-
dependent. Then we investigate the structure of an optimal replace-
ment policy for components in the coherent syétem. Furthermore, we
examine the structure of an optimal group replacement policy for a
maintained coherent system consisting of » repairable components in
Section 4.4. Finally, we discuss the relation between the replace-
ment problem and optimal stopping problem for the coherent system
subject to cumulative damage model.

In Chapter 5 the operating characteristics of several simple
replacement policies are obtained for two-component system. Two-
component system is one of the important system in reliability or
replacement theory. First, for two-component parallel redundant
system with repair, we obtain the distribution of the first passage
time to the system failure, the stationary availability, the expected
number of repair and so on. Besides, for two-component system under
(ABC)—policy, we show the stationary availability, the expected number
of the opportunistic replacement and so on. Finally, the operating
characteristics of two-component system with minimal repair under

(ABC)-policy are obtained.



Notes for Chapter 1

The replacement policies for stochastically failing system are
surveyed by McCall [34, 1965], and the survey of replacement models
for deteriorating system is given by Piershalla and Vaelker [40,
1976]}. The fundamental replacement models appear in Derman [14,
1963]. Further results are obtained by Kolesar [30, 1966], Ross
[41, 1969], Kalyman [26, 1972], Kao [28, 1973], Feldman [18, 19,
1977], Nummelin [37, 1980] and Siedersleben [48, 1981]. The age
replacement policy is discussed by Barlow and Hunter [2, 1965], and
extended by Morimura [35, 1970], Wolfe and Subramanian [54, 1974]
and Cléroux, Dubuc and Tilquin {13, 1979}. The (n,N) policy is
treated by Jorgenson, McCall and Radner {25, 1967], and discussed
by Vergin [53, 1968] and Berg [8, 1978]. The (t,T) policy appears
in Tahara and Nishida [50, 1975].



CHAPTER 2

REPLACEMENT PROBLEM FOR MARKOVIAN DETERIORATING SYSTEMS

2.1 Introduction

In this chapter we consider the structural relationship between
a system and its components, and study the replacement problem for
components in the system. So far, replacement theories have been
developed for equipments consisting of single component. Most
equipment, however, consists of various components. Moreover, the
transition probabilities between the states of several components
are not stochastically independent and the cost of replacing several
components jointly is less than the sum of the costs of these sepa-
rate replacements. Then the replacement policy for each component
may depend upon the states of the other components. Our main inter-
est is the structural properties of an optimal replacement policy
with respect to a discrete time replacement model for components in
a system cosisting of » components.

In Section 2.2 we consider the dynamic and probabilistic rela-
tionship between the deterioration levels of the system and its
components, and give a formal definition of the system considered

in replacement problems. A discrete time replacement model is



defined in Section 2.3. In Section 2.4, we investigate the struc-
tural properties of the optimal replacement policy minimizing the
expected total discounted cost. Finally in Section 2.5, we show

some examples of the optimal replacement policy.

2.2 Coherent System

2.2.1 Definitions

First, we will give a formal definition of a system considered
in replacement problems. Let N={1,2,...,n} be a set of components
and Ei be a set of deterioration levels of component 7 for each ZeN.
And let Es be a set of deterioration levels of the system composed
of n components. A system composed of 7 components is said to be
an n-component system if there exists a function ¢(.) with domain
Ec=.H Ei and range Es' Using'this function ¢(.), the present deteri-

1€eN

oration level of the n-component system is completely determined
by the present deterioration levels of its components.

Let Ei’ ZeN, and Es be partially ordered sets with relation 2.
They are considered as lattices with maximal and minimal elements.
The maximal element ei of Ei represents the worst state of compo-
nent ¢, and the minimal element 0 of Ei represents the best state
of component <. Similarly the maximal element e, and minimal ele~-
ment 0 of ES represent the worst and best states of the 7n-component

system, respectively.

Definition 2.1. An wn-component system is said to be monotone
if ¢(xi)v¢(x§)5¢(xiin) for all xi and xi in E_.

We can easily obtain the following property from Definition 2.1

and assumptions of the state space.

Property 2.1. The structure function ¢(.) of the monotone system

1_2 1 2
. . S . . . >6 (0 in E
is isotone in the sense that xc_xc in Ec implies ¢(xc) ¢ ( c) in E_,
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and ¢(e)=e8 and ¢(0)=0 hold, where e=(ez,...,en) and 0=(0,...,0).

Remark 2.1. This property notes that improving the deteriora-
tion of a component is not harmful to the monotone system, further
notes that a monotone system is in the worst (best) state if every

component is the worst (best) state.

Definition 2.2. Component © of an 7-component system is said
to be irrelevant if for each xceEc there exists xseEs such that
= R .€E. . . = R o oo
x ¢(x$,xc) for all xteEi, where ( 7/,cr:c) (xj, 2L 199%i01s R

xn). Otherwise, component 7 is said to be relevant.

Notice that the relevant component of the #n-component system
has some role in the system.

In this thesis we restrict our consideration to the 7-component
system such that the structure function ¢(.) is monotone increasing

with respect to each argument, and every component is relevant.

Definition 2.3. An n-component system is said to be coherent

if it is monotone and each component is relevant.

2.2.2 Dynamic Models

In the following we consider dynamic models in which the de-
terioration levels of the coherent system and its components vary
over time. Let (2,7, P) be a probability space and T be a subset
of the extended real numbers. Further let (Ei’Bi) be a measurable
state space of component 7 where Bi contains all singleton events
{x} , zeE,, and let (ES,BS) be a measurable state space of the
coherent system. It is assumed that each state space is a non-empty
Borel subset of complete separable space. Then for each TeT, let
Xi(t), 2eN, be a measurable function which maps from (,7) to (Ei’Bi)’
and the stochastic process {Xi(t); teT} is a deterioration process
for component Z. Let Xc(t)=(XJ(t),...,Xn(t)) denote the vector

process of component deterioration.

-10-



Definition 2.4. A coherent system is said to be Markov coherent
if the structure function ¢(.) is a measurable function from (Ec’Bc)
to (ES,BS) and a stochastic process {Xc(t); teT} is a Markov process

with values in a state space (E ,8 )=( T E., T B.).
e’’e . 1, 7
12eN 1eN

This definition states that the present deterioration level
of a coherent system at time ¢ is completely determined by deteriora-
tion levels of components at the present time ¢ irrespective of the
paet.

Next we shall consider a failure of the coherent system. Let
E, be a partially ordered set with relation = and a lattice with

0
minimal element 0 and maximal element e, Further let (EO’BO) be

a measurable state space, and let XO(t), teT, be a measurable func-
tion which maps from (Q,J) to (EO,BO). Now let 6 be a failure time

of the coherent system. Namely,
§=inf{teT| X, (£)#0}.

The stochastic process {Xo(t); teT}, called a damage process, re-
presents the behavior of the state showing the damage of failure of
the coherent system, and may be interdependent upon the stochastic
process {¢(Xc(t)); teT} and random damage for the coherent system.
Let X(t)=(X0(t),Xc(t)) be the deterioration process of the Markov

coherent system with failure and random damage.

Definition 2.5, A Markov coherent system with random failure
damage is said to be M-Markov coherent if a stochastic process
{X(£); teT} is a Markov process with values in a state space (E,B),
where (E,B)=(.H Ei,.H Bi) and NO={0,1,...,n}.

LeNO teNO

Now we shall consider a minimal repair for a M-Markov coherent

system. When this system fails at state x=(m0,mc), xO#O, the

minimal repair brings the system to the state x=(0,xc).

-11-



Example. We assume that the stochastic process {Xo(t); teT}
depends upon the stochastic process {¢(Xc(t)); +eT} and the random
damage for the system. Let XO(t) denote the magnitude of the
shortage of the system performance for the demand at time Z. Then

the M-Markov coherent system fails if the shortage occurs.

2.2.3 Replacement Policies

Our. main interest is replacement problems for components in
a coherent system. Let Zc={Xé(t); teT} be the deterioration process
of a Markov coherent system. The stochastic process‘Zc is called a
coherent process for system deterioration. Similarly, let Z={X(%);
teT} be a M-coherent process. At a specified time point ¢e¢T, the
state Xc(t) of the Markov coherent system is observed, and based
on the history of the stochastic process Zc up to time ¢, an action
is taken to replace each component or to keep it. Let Dc be the
action space of a replacement model for components in a Markov co-

herent system. Similarly when the state X(£) of a M-Markov coherent
system is observed, the possible actions are "mo action", '"replace
each component' and "carry out minimal repair for the system'. Let
D=Dcu{m} be the action space of a replacement model for a M-Markov
coherent system. We assume that given the present state and action,
the evolution of the stochastic process Zc or Z untill the next
action is stochastically independent of the past.

We restrict ourselves to nonrandomized Markov policies. A
Markov policy ﬂ(t,xc) is a thBc—measurable function from TxEc into
D such that ﬂ(t,xc) is an action when the state xc is observed at
time ¢. Let Dcm denote the set of all Markov policies. A Markov
policy is called stationary if it is independent of time, that is
w(t,x0)=w(x0) for all teT and xceEc. The set of all stationary

policies will be denoted by Dcs' We restrict policies to a subset

Dc in Dcs’ which may be called a set of admissible policies for a

~12-



Markov coherent system. Similarly we define Ds as the set of

admissible policies for a M-Markov coherent system.

2.3 Statement of the Problem

2.3.1 Explanation of the System

In this section we consider a discrete time replacement model
for components in a coherent system. This system consists of n com-
ponents under Markovian deterioration. The transition probabilities
of each component are not independent each other, and the cost of
replacing several components concurrently is less than the sum of
the costs of replacing them at different time. The state of the
coherent system possessing stochastic dependence and economic inter-
dependence is observed at the discrete time periods teT={0,1,...}.
At these time points, an action is taken as to whether or not to
replace each component. We are interesting in the structure of the
optimal replacement policy of the discrete time replacement model

for components in such a system.

2.3.2 Action and Cost

Let Xc(t)=(X1(t),...,Xn(t)) denote the state of 7 components
at time teT. After observing the state Xc(t) of the coherent system
at discrete time %, an action a  is taken at each time point as to
whether or not to replace each component. Now let ac=(a1""’an)
represent the action taken for components in the coherent system,
where a.eDi={O,l} is an action taken for component Z, and D =.H Di'

1€N

Here ai=1 means replacing component %, and ai=0 means keeping it.
The time duration for replacement of each component is negligible.

Let Zg={XZ(t); teT} be a stochastic process representing the
behavior of the state of the coherent system under a stationary

replacement policy neDc. The transition probability Pﬂ(t,xc,U) of

-13-



the stochastic process Z; is given by for each UEBC

P"(l,xc,U)=P[Xe(t+1>eU! X, &)=z, m(x_)=a]

(2.1)
a
=Q(chaU)a

where xa0=(xa1,...,xa”), and z%%=0 if a.=1 and 2%i=x. if q.=0.

<] 1 n 7 i T 1 7
Then we can easily find that this system is a Markov coherent system
under each replacement policy WEDO.

For the costs associated with the discrete time replacement
model of the Markov coherent system, we consider a replacement cost
Ci(xi) of component 7, a set up cost K(xc) for replacement, and an
operating cost B(xc) per period when the Markov coherent system is
in state xc=(x1,...,xn) at the beginning of the period. We assume
that all costs and transition probabilities are known, and that

all costs are bounded and nonnegative.

2.3.3 Expectation of Discounted Cost

Let wﬂ(t), teT, be the cost of the discrete time replacement
model of the Markov coherent system at time ¢ under a replacement
policy WGDC. The expected total discounted cost Vw(xc> for an

infinite horizon, when we start with the state Z,,» is given by

(2.2) Vﬂ(xc)=E[tioutwﬂ(t)].

We are interested to determine the structure of the optimal replace-
ment policy which minimizes this expected total discounted cost
with discount factor ac[0,1). Let V&(xc) be the minimum expected
total discounted cost when the Markov coherent system is in state

xc at the beginning. Then letting 7% be an optimal replacement

policy, we have

~14~



Va(xc)=inf Vﬂ(mc)
ﬂEDc

=Vﬁ*(xc).

(2.3)

Under our assumptions, a stationary optimal replacement policy m¥*
exists in Dc (see Ross [42, 1970]). Thus V&(xc) satisfies the

functional equation:

(2.4) V (x )=min [K(x )Q-I.(a ))+ = C.(x.)+R (=),
; o a €D e 0Y e icA(a ) 17 c
(64 [&4 c
where
R(xc)=B(xc)+ocfE v )Q(x,,du),
c

={7 .= d
A(ac) {téN[aceDc, a; 1}, an

Io(ac)={ 1 Zf ac=0,
0 otherwise.

2.4 Optimal Replacement Policy

2.4.1 Introduction

In this section we investigate the structural properties of an
optimal replacement policy minimizing the expected total discounted
cost under some conditions. We can find an optimal replacement
policy by solving the functional equation (2.4). We can not, how-
ever, obtain a solution explicitly for this system. So some prop-
erties on the optimal replacement policy and the corresponding

optimal expected total discounted cost are discussed.

2.4.2 Some Lemmas
First we shall examine the structural property cof the optimal
expected total discounted cost function Vd(xc) under the following

conditions. Let B(Ec) denote a set of all bounded real valued Bc-

-15-



measurable function on Ec’ and let F(Ec) be a subset of B(Ec) such
that for fEB(EC), xéZxc in Ec implies f(xé);ijc). An increasing
set UeEC is a subset for which the indicator function IU(xc) is a

member of F(Ec)' We shall denote the family of all increasing set

U by S(Ec)'
Condition 2.1. Q(xc,U)eF(EC) for all UeS(EC).

This condition asserts that the Markov coherent system has a tend-
ency of monotonically increasing expexted deterioration. The fol-
lowing lemma will be used in the proof of Lemma 2.2 which presents

a property of the optimal expected total discounted cost.

Lemma 2.1. If Condition 2.1 holds and heF(Ec), then we have

fE h(u)Q(x,,du)eF (E ).

e
Proof: For heF(Ec), there exists a nonnegative sequence {bi}

and a real number bc such that for UiES(Ec)

n
hn(xc)=bc+'z biIU.(xc)
1=1 1
and
h(xc)=lim hn(xc).

>0

Then we have that

n
z
1=

IE hn(u)Q(xc,du)=fEc [bc+

i b?IU_(u)]Q(xc,du)

1 1

noo.
=bc+'2 biQ(xc’Ui)°
=1 :
Therefore the result follows directly from Condition 2.1 as now, !
The above lemma is a generalization of an important result
obtained by Derman [14, 1963]. The following lemma shows a struc-

ture of the optimal expected total discounted cost function under

16—



the following condition, and it is used in the proof of theorems
which present the structural properties of the optimal replacement
policy.
Condition 2.2. B(xc)eF(Ec), K(xc)eF(Ec) and .Z Ci(xi)EF(Ec)'
1€eN
Lemma 2.2. If Conditions 2.1 and 2.2 hold, then the optimal

expected total discounted cost function Vu(xc) is a member of F(Ec)'

Proof: The proof is carried out by the successive approxima=-

tion technique. Let VO(xc)=O and define recurrsively:

(2.5) V'(xc)= min [K(xc)(l—I

; 0@ T C(@ )R, ()]

aceDc teA(ac)
where

Ry (z )=B(z )+ fEc Vy_ 1 (0@ du) .

We first show Vk(xc)eF(Ec) for each k by mathematical induction.
For k=1 it follows trivially from Condition 2.2. Now suppose that
Vk(xc) is a member of F(Ec) for some X. We show that the same re-
sult holds for k+1. Under Condition 2.1 and 2.2 we have Rk+1(xc)
eF(EC) by the induction hypothesis and Lemma 2.1. From equation
(2.5)land Condition 2.2 we can easily obtain that Vk+1(xc) is a
member of F(Ec)' Also it is easy to see that Vk(xc)+V&(xc) as koo,

since all costs are bounded and a<l. Thus Va(xc) is a member of

FE). |l

Condition 2.2 states that the operating cost, the set up cost
for replacement and the replacement cost of components increase as

a function of deterioration level of the Markov coherent system.

2.4.3 Structural Properties
The structural properties of the optimal replacement policy
for components in the Markov coherent system are investigated.

The following theorem shows a simple prcperty of the optimal re-
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placement policy.

Theorem 2.1. If the deterioration level of component % is in

the best state 0, then the action to keep compcnent %7 is optimal.

Proof: TFor each ZeN, we define

(2.6) [Vg(xc)]i= min, [K(x ) (1-I5(a )+ I C.(x.)+R(xgc)],
. a €D JeAla )
c 0 e
and
(2.7) [V&(xc)]i= mini[K(x + & C.(x.)+R(xgc)],

c »
aceDl JeA(ac)

where D%¥{a €D | a.=j} for each jeD.. Then for (0.,x )cE_ we have
J e el 71 7 1°7e’ e

i i
[Va(Oi’xc)]k_[VOC(O'Z:’xC)]I’ ’

. a
;angz[_ez_ ‘Cﬁ(xj)+R((0i’xc) eyl
e 0 J (ac)

-~ min.[ % C.(x )HRCO.,x ))1,

a eDl JeA(a ) voe

¢ 1 c

i

and for each a €D
¢ 0

D )Rz )%= 5 C.(x.)+Ci(0)+R((0i,xc)(1i’ac))]

. 7 g .
JeA(ac) JGA(QC)
_ a (1-,Cl )
= Cé(O)+R((0i,xc) e) R((Oi,xc) 227e’).
Thus from R((Oi,xc)ac)=R((0i,xc)(li’ac)) for aceDg we can easily

. 8 7 .
obtain that [V&(Oi’xc)]k [Vd(oi’xc)]r<0' This completes the prcof. H

Remark 2.2. Note the optimal replacement policy is m(0)=0

from Theorem 2.1. This result is intuitively obvious.
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1 . 7
Let E —Elx in_lei+1x XEn for each Z2¢N, and Ji(xc) be a

subset of Ei for each xzeEl. Let S(Ei) be the family of all in-

creasing set U in Ei'

Definition 2.6. Let " be a stationary replacement policy for
component 7 in a Markov coherent system. Then T is said to be a
control limit policy with respect to component 1 if and only if
there exists a replacement set Ji(xz)engi) for each xéeEt such
that if the state xi is in the set Ji(xé), replace component 7,

otherwise, do not replace.

We examine some structural properties of the optimal replace-

ment policy under the following additional condition.

Condition 2.3. B(xc)_K(xc)—ichi(xi)eF(Ec)'

Theorem 2.2. 1If Conditions 2.1, 2.2 and 2.3 hold, then there
exists a control limit policy L® with respect to component 7 mini-

mizing the expected total discounted cost.

Proof: TFrom equations (2.6) and (2.7) we have

7 7
[V, () 13-1V, )1

= min;[-K(z )1 (@ )-C, (z )+ T C.(x.)+R(ng)]
aceD J€A(ac)

QD

- min.{ I C.(xj)+R(x(li’ac))].

7" . &
a,eb, J€A(Clc)

. i 7z,
Then the difference [Va(xb)]k—[vd(mc)]r is a member of F(Ei) from
Condition 2.3 and Lemma 2.2. Thus the result follows from Defi-

nition 2.6. ||

Remark 2.3. The optimal replacement set J%(xz) of component ¢

is given by
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7 7 7
in(xc)={xi€E7;l [V, G )2 )1}

Theorem 2.3, If Conditions 2.1, 2.2 and 2.3 hold, aund the
action to replace component < in the worst state e; is optimal,

then we have %(Ql)DJé(Ol).

Proof: From equations (2.6) and (2.7) and assumptions of this

theorem, we have for each 7¢N

- 7 7
[V@(xi,e) ]k_[vd(mi’e)]l”
=[K(x.,e)+ I C.(e )R (x.,0)]-[K(x.,e)+ ¥ C.(e.)+R(0)]
ks JeN J o J % ke JeN
J#i

and from Theorem 2.1 we have

[V, (5500 V3= 17, (2,00 12mR (2,00~ [K ( ,0)4C, (2, )+R (0 ] .

, 7 1 7 7

[V, (g re) 1=V, (2,005 > [V (o, 011V, G, 001
Thus we can easily see that Jé(et)DJf(Oi) by the definition of the
optimal replacement set J%(xﬁ). I

Using the following definition we further clarify the
structure of the optimal replacement policy for components in a

Markov coherent system.

Definition 2.7. Let wn* be an optimal replacement policy. Then

the following set G(ac) is called an optimal region of an action a,eb,
= * =
G(a,) {xceEcl ™ (xc) ac}.

Property 2.2. If Conditions 2.1, 2.2 and 2.3 hold, then the
optimal region G(0) is closed in the sense that xiAxieG(O) for all

xl and x2 in G(0).
c e
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Proof: First if xZAx2=x1 or xzmx2=x2, then the result is
¢ e e e e e
7 ‘
obvious. Let x Ax2=(x1Ax2,...,x1Ax2), then we have xZAxgﬁxz or
e o 171 n o on ¢ a ¢

xiAxisxi for each ZeN. Thus we have xiAxiéG(O) from Theorem 2.2. H

Remark 2.4. Notice that the optimal region G(0) of an action
0 is not always a decreasing set in the sense that for each xcec(O),

xéﬁxc in Ec implies xéeG(O). This fact is shown in Section 2.5.

Property 2.3. If Conditions 2.1, 2.2 and 2.3 hold, then the
2
optimal region G(11) is closed in the sense that xivxcec(ﬂj for

all xz and m2 in G(11).
c c
Proof: The result is easily obtained from Theorem 2.2. ||

Property 2.4. If Conditions 2.1, 2.2 and 2.3 hold, then the

optimal region G(11) dis an increasing set.

Proof: When x]Sx2 and xzeG(H), we have for each a €D
¢ e e e e

[K(xﬁ)(l—lo(ac))+. 5 Cj(acj)+R(xiac)]—[K(x§)+.Z €1 )+R(0)]
JeA(ac) JeN

Z(K@D) (1-1

NER: C'.(xj)+R(xiac)]

jeA(ac)
~[K(zD+ T €, ()R (0)]
JeN
>0.
The first inequality is true from Condition 2.3, and the second
inequality follows from xieG(ﬂ). Thus the result is obtained

from equations (2.4). l

Remark 2.5. We can intuitively expect that the optimal re-
. 1,2 .
placement policy ﬂ*(xc) is an isotone function such that mCZxc in
. 1 2 . . . R .
Ec implies n*(xc)zﬂ*(xa) in Dc' However this conjection is not

correct. A counterexample is shown in Section 2.5.
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2.5 Example

2.5.1 Model

In this section we consider a two-component system possessing
stochastic independence and economic interdependence. Let EJ=E2=
{0,1,...,7} be the state space of each component. In this case the

transition probability Q(xc,yc) of a two-component system is given

by

: 1 2
Qx_,y )=P ‘P 5
citel Txgy, TxY,
where P; is the transition probability of component 7. We assume
917
that 1 P~ is nondecreasing in T for all keEi. Then we can

yi;k ¥194
easily obtain that = Q(xc,yc) for each UeS(E ) is a member of
yceU ¢
F(Ec)' Further we assume B(xc)=BZ(x1)+B2(x2) and K(xc)=K#O.

Table 2.1. Transition matrix Pﬂ

xi\yi 0 1 2 3 4 5 6 7
0 0.00 0.30 0.20 0.15 0.15 0.10 0.05 0.05
1 0.00 0.25 0.20 0.15 0.15 0.10 0.10 0.05
2 0.00 0.10 0.20 0.20 0.15 0.15 0.10 0.10
3 0.00 0.05 0.10 0.15 0.25 0.20 0.15 0.10
4 0.00 0.05 0.05  0.10 0.25 0.20 0.20 0.15
5 0.00 0.00 0.05 0.10 0.15 0.25 0.25 0.20
6 0.00 0.00 0.00 0.05 0.05 0.10 0.40 0.40
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Table 2.2. Operating cost Bi(xi) and replacement cost Ci(xi)'

\xi 0 1 2 3 4 5 6 7
Bi(xi) 0 5 10 15 20 25 30 50
Ci(x.) 30 30 30 30 30 30 30 50

0 1 2 3 4 5 6 7
0
1
z c(0,0) 6(0,1)
3
4
5
6 G(1,0) G(1,1)
7

Figure 2.1. Optimal replacement policy for independent components

2.5.2 Numerical Examples

To illustrate an optimal replacement policy for the system of
the preceding.section, we consider numerical examples. The transi-~-
tion matrix P~ of component ¢ is given in Table 2.1. The operating
cost Bi(xi) and the replacement cost Ci(xi) are given in Table 2.2.
Then Conditions 2.2 and 2.3 are satisfied. First consider the case

where the components are stochastically and economically independent,
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i.e., suppose the set up cost is 2K when both components are re-
placed. Then the optimal replacement policy for components in the
two-component system is shown in Figure 2.1 in the case of K=10 and
0=0.95. Notice that this optimal replacement policy for one compo-
nent doesn't depend on the state of the other component (see Vergin

[53, 1968]).

G(0,0) G(0,1)

G(1,0) G(1,1)

Figure 2.2. Optimal replacement policy for dependent components.

On the other hand the optimal replacement policy for components
in the two-component system possessing econcmic dependence is show
in Figure 2.2 in the case of X=10 and 0=0.95. This sxample shows
that the optimal replacement policy has the form of a control limit
policy with four regions. For example w*(5,1)=(1,0) and n*(5,2)=
(0,0) are not nondecreasing. Therefore this example also shows that
the monotonicity of the optimal replacement policy ﬂ*(xc) does not

always hold.
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2.5.3 Special Case
Here we consider the above two-component system with E1=[0,w]
and E2={0,1}. Then the failure states of components are in state

el=w and 82=]. We have from Remark 2.3

_ 7 7
3 (0)=la eE | [V (x,,0)132[V (x;,001,},
and
JE D=1z B, | IV G, D10V (z,,1)1}
7 171 o 1? k= o1’ r
Thus there exist n and N such that
J§(0)=[N,WJ,
and’
J§(1)=[n,W]-

Theorem 2.3 states that J*(0)cJ*(7) i.e., n<N. Therefore the

optimal replacement policy 7w, with respect to component 7 is the

1

same structural property of an (n,N) policy introduced by Jorgenson,
McCall and Radner {25, 1967] in discrete time case.

In the numerical example, it can be seen that the optimal re-
placement policy is fairly close to the (n,N) policy with N=5 and
n=4, It might be better to employ a simpler (n,N) policy because of

easier manipulation than a more complex one.

Notes for Chapter 2

The definition of the coherent system appears in Barlow and
Proschan [3, 1975], and is extended by EL-Neweihi, Proschan and
Sethuraman {17, 1978], Ross([45, 1979], Griffith (22, 1980] and
Buther [11, 1982]. Some standard concepts involving the notion
of order and lattices appear in Topkis [52, 1978]). The Markov
decision process is studied by Derman [14, 1963], Ross [42,1970]
and Howerd [24, 1960]. The control limit policy of two-component
system is discussed by Sethi [47, 1977], and is extended by Hatoyama
(23, 1977].
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CHAPTER 3

DISCRETE TIME REPLACEMENT MODELS

3.1 Introduction

In this chapter we consider discrete time replacement models
with certain replacement time. Suppose the coherent system with
a random damage consists of »n components under Markovian deteriora—k
tion. Its components are not stochastically independent and eco-
nomically interindependent, and the replacement time and minimal
repair time are not negligible. The objéctive of this chapter is
to clarify the structure of the optimal replacement policy for
components in the coherent system with minimal repair. Further
we suggest a simple replacement policy, called (ABC)-policy, which
is easy for implementation,

In Section 3.2, the discrete time replacement model is consid-
ered more elaborately, and the structure of the deterioration process
is discussed. Under reasonable conditions the structural properties
of the optimal replacement policy for minimizing the expected total
discounted cost are investigated in Section 3.3. 1In Section 3.4, we
show an example of an optimal replacement policy. Finally, in Section

3.5 we suggest s simpler (ABC)-policy which is easily manageable.
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3.2 Model Formulation

3.2.1 Model of System

In this section, we consider a discrete time replacement model
for a coherent system with minimal repair. The coherent system with
minimal repair consists of n components under Markovian deteriora-
tion, and possesses stochastic dependence and economic interdepend-
ence. The system is observed at the beginning of discrete time
periods teT={0,1,...}, and classified into one of the possible
number of the states. Further, when the system failure is observed,
it is classified into one of the number of states showing the degree
of the system failure. Then the possible actions are "no action",
"replace each component'" and "carry out minimal repair for the
coherent system'. A replacement of each component means the change
of the component to new one, and minimal repair for the coherent
system brings the state showing the degree of the system failure
back to the best state. The time consumption required for replace-
ment or minimal repair can not be negligible in this chapter. When
an action aeD is taken on the coherent system with state x=(x0,...,
xn), the time consumption required for replacement or minimal repair,

T(x,a), has a probability distribution G(£:;x,a) with a finite mean.

3.2.2 Underlying Stochastic Process

Let X(¢&)= (X (t),...,X (f)) represent the state of the coherent
system at time teT. If an actlon aeD —{aeD ! a#0} is taken on the
coherent system with state X(£)=x, then we have X(t+T(x,a))—(0,xc),
and if a=m the X(t+T(x,a))=(0,xc). We are interested in the state
of the coherent system. Thus we introduce the following stochastic

process Zﬂ={zﬂ(t); teT} uhder a replacement weDS

(3.1) zﬂ(t)=X(Tt)
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7
where O—T0<T1<T2<..., Tt_Tt—1+S(Z (t~1),m) and

S(a" (t-1),m)=( 1 if w(2" (£-1))=0,
T(Zﬂ(t—l),ﬂ) otherwise.
Then the transition probability Pﬂ(t,x,U) of the stochastic process

z" is given by for each UeB

P (1,x,U)=P[z" (t+1)eV| 2" (&)=, m(x)=a]
=¢ Q(x,U) Zf a=0,

(3.2) 1 if a=m and (O,xc)eU,
1 if aeDl and (O,xg)eU,
0 otherwise.

Then we can easily find that the coherent system with minimal repair

is a M-Markov coherent system under each replacement policy weD .
<

3.2.3 Some Lemmas

We shall study the structural properties of the deterioration
process Z of the M-Markov coherent system. Let B(E) be a set of all
bounded real valued B-measurable function on E. Let F(E) be a
subset of B(E) such that for feB(E), x'2x in E implies f(x')>f(x).

Furthermore, let S(E) be the family of all increasing set U on E.

Definition 3.1. Let M(E) be a set of probability measure on
the state space E. We say that PJEM(E) is stochastically smaller

than P_cM(E), and denote this by PJSP if and only if ffszéjfdPZ

2
for all feF(E).

2’
Remark 3.1. A simple approximation argument shows that this

is equivalent to the requirement that P](U);E2(U) for all UeS(E).

Definition 3.2. 'A deterioration process Z of the M-Markov
coherent system is said to be stochastically monotone if and only

if PIX(£)eU| X(s)=x]eF(E) for all UeS(E) and t>s in T={0,1,...}.
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Condition 3.1. @(x,U)eF(E) for all UeS(E).

The following lemmas show the structure of the deterioration

process Z of the M-Markov coherent system.

Lemma 3.1. The deterioration process Z of the M-Markov
coherent system is stochastically monotone if and only if Condition

3.1 holds.

Proof: Assume the stochastic process Z is stochastically
monotone. Then Condition 3.1 follows from Definition 3.2 and (3.2).

Inversely, from Condition 3.1 we obtain that for each Ue<S(E)
PIX(t+1)elU]| X(&)=2]=Q(x,U)

is a member of F(E). Suppose that for some k, P[X(t+k)€U| X(t)=x]

is a member of F(E). Then we have

P[X (t+k+1)eU]| X(t)=x]=fEP[X(t+k+l)eU! X (1) =ulQ (x,du)
=[P LX(EHR) U] X (£)=u)Q(z,du) .

Thus from Lemma 2.1 and the induction hypothesis, we can easily
obtain that P[X(t+k+1)€U| X(t)=x] is a member of F(E). Therefore

the result directly follows. H

Lemma 3.2. The deterioration process Z of the M-Markov coherent
system is stochastically monotone if and only if E[f(X(t))l X(0)=x]
<E[f(X(t))| X(0)=x'] for all feF(E) and x<x' in E.

Proof: By a simple approximation argument the result follows

from Definitions 3.1 and 3.2. ||

3.2.4 Expectation of Discounted Cost
We investigate the structure of an optimal replacement policy
which minimizes the expected total discounted cost with discount

factor 0€ [0,1). For the costs associated with the discrete time
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replacement model of the coherent system with minimal repair, we
consider a replacement cost Ci(xi) of component 7 per period, a set
up cost K(x) of replacement per period, an operating cost B(X) per
period and minimal repair cost M(x) per period when the system is in
state x at the beginning of the period. We assume that all costs
and transition probabilities are known, and that all costs are
bounded and nonnegative. Further we assume for simplicity that
each state space Ei is a subset of nonnegative real number R+.

Now let Va(x) be the minimum expected total discounted cost
when the state of the system is & at the beginning. Then Va(x) obeys

the functional equation:
v, (:x:)=min[B(x)+ocha (1)Q(x,du),

[im( >1'°‘t
x 1-a
(3.3) 1oa®
min, [{(K@)+ I C.(x.))
aeD” 1€A{a) 7 T T 7

t .
+0. VOL (0 ,.’Ec) }dG (t ,.’E,?TI) >

+atV&(0,xg)}dG(t;x,a)]

1 . a a a
where D —{aeDc[ a#0}, A(a)={ieN] a,=1, aeDc}, xc—(le,...,xnn) for

aeDl, and

3.3 Structure of the Optimal Replacement Policy

3.3.1 Property of Optimal Expected Cost
Our aim is to examine the structural properties of the optimal
replacement policy for the coherent system with minimal repair,

under the criterion of the expected total discounted cost. First
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we seek the structural property of the optimal expected total dis-—
counted cost function. The following theorem shows the structure

of Vu(x) under the following condition.

Condition 3.2. (1) B(x)eF(E), K(x)eF(E), M(x)eF(E) and

T C.(x.)eF(E).
ieNn v *

(2) 1-G(t3x,a)eF(E) for each teT and a#0.

This condition (1) means that the operating cost, the set up
cost of replacement, the minimal repair cost and the replacement
cost of components increase as a function of deterioration level of
the coherent system with minimal repair. Condition (2) means that
the replacement time and minimal repair time have a tendency for
monotonically increase as a function of deterioration level of the

system.

Theorem 3.1. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone. If Condition 3.2
holds, then the optimal expected total discounted cost function

Vd(x) is a member of F(E).

Proof: The proof is carried out by the method of Lemma 2.2.

Let VO(x)=O and define recurrsively:

7, (@)=min[B@)+a[V, . )Q(x,du),

t
1-0 t
f{M(x)T:&—- +a"V,,_; (0, ) 3G (E52,m),
(3.4)
) [l T oGk
mlnl X 7: .’X?i 1o

aed ZeA(a)

+obv, | 0,69))1d6(t52,0) 1.

We first show Vk(x)eF(E) for each k. We have fi:z dG(t;x,a)eF (E)
from Condition 3.2 (2) and Lemma 2.1. Therefore for k=1 it follows

trivially from Condition 3.2 (1). Suppose that for some X
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Vk(x)eF(E), Vk(O,xc);M(x)/(l—a) and Vk(x)éik(x)+0i(xi))/(1—@) for

each ZeN. Then under Condition 3.2, we obtain that
B(x)+ufr/k W) Q (x,du)

is a member of F(E) by the induction hypothesis and Lemma 2.1. On

the other hand, we obtain for each aeD1

1—at

1-a

t b‘a
K@+ 2 Co(e)) o+, (0,27)

1eA(a)

is increasing in ¢ from the induction hypothesis. Thus

oo + .
[{E@+ © C.(e N2 +alv, (0,2%)1d6 (¢52,a)
. A A BN k e
zeA(a)
is a member of F(E) from Lemma 2.1. Similarly for g=m we obtain
that

t
f{M(x)}_Z +atVL(0,mn)}dG(t;x,m)

is a member of F(E). Thus we have Vk+l(x)€F(E) from equation (3.4).
11 (025 )M @) [ (1-a) and V, . (@) <(K(@)+C, (x,))/

(1-a). From the functional equation (3.4) we have

Next we show that V.

. |
Vg @ M@ T2 4"V, (0,5 ) }dG(53,m)
M(x)/ (1-a).

The last inequality is true since Vk(O,xc)éM(x)/(l-a). Thus we have

Vk+l(0,xc)§M(x)/(l—a) from;Vk+1(x)eF(E). Also we have for each 7e¢N

t
1-o t ]
Vk+1<x)éj{<K(x)+ci(xi))1:a"+“ v, (0,(0,;,x ))3dG(t;2, (1,,0))
<K@+ () / (1-a).

Thus we obtain that 1(x) is a member of F(E). Then we obtain

Vk+
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Vk(x)eF(E) for each k. Since a<l and all costs are bounded, it is
easy to see that Vk(x)%V&(x) as ks~ for each xcE. Therefore we

have Va(x)EF(E). Il

3.3.2 Properties of Optimal Replacement Policy

The structural properties of the optimal replacement policy
for the discrete time replacement model are investigated. Let
F(Dl) be a set of all bounded real valued increasing function on

pl.

Condition 3.3. (1) M(x);ﬂ(m)+€i(xi) for each ZeN,
(2) G(t;x,a)<G(t;x,m) for each aeDl,
(3) 1-G(t;z,a)eF (DY),

Condition 3.3 (1) states that the minimal repair cost is not
larger than the replacement cost. Similarly, Condition 3.3 (2)
states that the minimal repair time is not larger than the replace-

ment time. Condition 3.3 (3) means that the replacement time has
a trend for monotonically increase as a function of the number of

the replacement components.

The following theorems show some simple properties of the

optimal replacement policy.

Theorem 3.2. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2
and 3.3 hold. If the deterioration level of component % is in the

best state 0, then the action to keep component 7 is optimal.

Proof: Let

[V, () ommin B @)+ [V ()@ (,du),

l—at t
[ @)=~ +o"V 0,z ) 16 (t322,m),
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t
min [{k@+ = ¢, (x ))
aeDO JeA(a) J l—a

+o Va(O,xg)}dG(t;x,a)],

t
v, (x)] =min . [{(X@@)+ £  C. (x )

aeDJ JeA(a)

(0 x )}dG(t T,a),

where D; ={aeDc] a#0, a£=j} for each jeDi. Then we have

7 z
[V, ) 15-17, @17,

t
1-a t a
<min. [{K(@)+ T C.(x.)) +0. V(0,2 ) }dG(t;x,a)
.aeDg jeA(a)'J J ,1_ @ ¢
f 1- ut t a
-min. [{(X(x)+ C.(x.)) +aV (0,x7)}dG(tx,a)
aeDg JeA(a) J7J" 1 o ¢
and for each aéDi
t
J{k@)+ = =
JeA(a)
1-a® (1.,a)
~[{K@)+ = € (x.)) g~ +o V (0,727 ) Y6 (E3, (1;,a))

jea(i,a) 7 71T

J{K@+ 3 C,lx. ))l_
jeAla) ¢ 7

+o V 0,z Y6 (t3,a)
t
‘ 1-o
~H{E@)+ ¢ C.(x )+, (x.))7T—
f JeA(a) J 71 "1-0

(1;,a)

+a V , x ) Y G (32 ,a)

=[{- C, (. )

'@ (0,57~ v 0, x(l '3y YdG (£5,a) -

A
on]
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The first inequality is true from Condition 3.3 (3) and the proof of
Theorem 3.1, and the second inequality follows from V o, (0 > %
—V 0, (0 s X, )(1 a))' Furthermore from Condition 3.3 (1) (2),

have for x.=0
7

l—at
1-a

min[B(x)+afVa(u)Q(x,du), f{M(m) +utVa(0,xc)}dG(t;m,a)]

t
1-a t .
o +o VG(O,(Oi,xc))}dc(t,x,(li,a))

-[{ (K (@)+C, ()
<0.

Thus we can easily obtain that the difference [Va(xO’(Oi’xc))]z
7 .
—[Va(xO’(Oi’xc))]r<o' Therefore the result directly follows. ||
7 7
Let E —on XEi-IXEi+1x xEn and Ji(xO’xc) be a subset of
E, for each (xa,xg)eE0xE$. Let S(E.) be the family of all in-

creasing set in Ei and DO={aeD| a#0}.

Definition 3.3. Let T be a stationary replacement policy for
component < in a M-Markov coherent system. Then . is said to be a
control limit policy with respect to component ¢ if and only if there
exists a replacement set J.(x » L )eS(E ) for each (x oL )eE xE such

such that if state x, is in the set J (x % ), replace component Z,

0’
otherwise , do not replace.

The structure of the optimal replacement policy will be clari-

fied under the following additional conditionms.
Condition 3.4. (1) Ci(xi)sci for each ZeN,

(2) G(t;x0)=G(t;x,a) for all aeDO,

t
(3) Bx)-K(@) [0 d6(t32,) P (E ),
(4) M(@)-K(£)eF (E ).

Theorem 3.3. Assume that the deterioration process Z of the M-
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Markov coherent system is stochastically monotone. If Conditions 3.2,
and 3.4 hold, then there exists a control limit policy s with
respect to component i‘minimizingvthe expected total discounted

cost of the discrete time replacement model.

Proof: Under Condition 3.4 (1) and (2), we have

. ] £
[V, @) 13-V, () 1 mmin[B (@) -K @) [{oo G ($5))+a [V ()@, du),

t
1-a t
JLQ@@) =K @) — +aV_(0,2 )G (t52,),
1-oF | ¢t
min, [{ = cjl_g +a Vd(O,xg)}dG(t;xO)]
aéDO JeA(a)
1- i t a
-ming [{ T ¢ 4"V (0,50)}d6(t,a)).

aeD§ JeA(a) J

Then from Condition 3.4 (3) and (4) we can easily obtain that the
difference {Vu(x)];—[Vd(x)]; is a member of F(Ei)' Thus the result
follows from the definition of the control limit policy . ||
Remark 3.2. Let J%(wO,xz) be the optimal replacement set
minimizing the expected total discounted cost. Then since the

state space of component 7 is a subset of nonnegative real number

R,, there exists a control limit x%(x ,xz)eE.U{w} such that
+ 10 ¢ 1

Z Z 1 7
= oo =00 * =
Jg(xO,xc) [x%(xo,xc), ]nEi, where xz(xo,xc) for Ji(xo,xc) o.

Corollary 3.1. Under conditions of Theorem 3.3 if the action
to replace component 7 with the worst state ei‘is optimal, and

K(x)-M(x)>0, then we have x*(x ,ei)fx#(x ,0$).
= 10 _7,0

Proof: Since the action to replace component Z with the worst

state e, is optimal, we have for each xerO
[V @, @, e 1oV (2, (@ e)) ]
a0 k a0 r
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t
_ 1-a
—f{ (K(xox (‘rise))"l— .E Cj—ci)l"a
JeN

+atVa(0,(xi,0))}dG(t;x0)

t

1-o
-1y, (=, ,0) >+j§ch)1_Ot

+atVa(0)}dG(t;x0)

.t 1l-a
=[{a" (W (0, (x,,00)-V_(0))-C 7=

}dG(t;xO),
and from Theorem 3.2 we have
7 7
[Va(xos (xi’O))]k-[V(X.(xo’ (x,iso)) ]2"
=min[B(z,, (;,00)+a[V_)Q((x), (@, ,0)) ,du),

1-o
1-a

f{M(xO,(xi,O)) +atVa(0,(xi,0))}dG(t;x0)

t
_f{K(xO,(mi,O))+Ci)1:Z +atVd(0)}dG(t;x0)]

t
SOy, @;,00)-K,, @,,00) oo d0(E3,)

t
t 1-a
+I{d (VQ(O’(xi’O))—V&(O))_Cil—a

}dG(t;xa),
Then from K(x)-M(x)>0, we have
7 7
[VOL(xO’ (x’l:’O))]k—[Vd.(xO, (x’L.,O))]I"
<[V, (@, @;,e) -1V (2, (@ )]

Thus we can easily obtain that xf(xa,et)éxf(xO,Ot) by the definition

of wh(zy,at). ||

Remark 3.3. This corollary is concerned with (n,N) policy
introduced by Jorgenson, McCall and Radner [25, 1967]. If the
coherent system consists of two components and the state space

of component 2 is E2={0,1}, then this corollary asserts that the
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optimal replacement policy for the coherent system with minimal
repair is an (n,N) policy with n=x§(x0,1) and N=x§(x0,0) for each
erEO.

Corollary 3.2. Under conditions of Theorem 3.3 if the action

to replace component 7 with the worst state ei is optimal, and
7 1 ,
G(t)=G(t;x,a), then we have xi(mo,e )—x%(eO,e ) for each xero.

Proof: From the proof of Theorem 3.3, we have
V. @, @, e -1V @, (@, e)) ]
a0 L kK oo r

t
—f{(K(xO,(x oD+ 2 C ) +o v 0, (z,,00)}dG(t)
J#i 7

—f{(K(x s
0 JeN J

t
_ l-a t
=[{-C;im— +a"(V_(0, (x;,0))-V_(0))}dG(¥).
Thus the result directly follows. ||
Let F(EO) be a set of all beunded real increasing function on
EO’ and F(EO) be a set of all bounded real decreasing function on EO'

Condition 3.5. (1) Ci(xi):ci for each ZeN,

(2) G(t)=G(t;x,a) for all aeDO,

(3) B(x)
(4) M(x)—K(x)eF(EO).

Theorem 3.4. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone. If Conditions 3.2

and 3.5 hold, then a control limit xi(xo,xz) is a member of F{EO).

Proof: Under Condition 3.5 (1) and (2), we have
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i i
[V @1, -1V, @],
l—at
=min[B(z)-K (@) [{— do(t)+ [V @)Qx,du),

o
f{QW(x)-K(m)) +a V 0,z ,)}dG (),

Lt
min, [{ © ¢ i +a'v_(0,69)de (1))
aeD Jea(a) J1-o

£

1-a +utV 0" Ny Yde ().

-min. [{ = C;

aeD? JeA(a) Jl-a

Then from Condition 3.5 (3) and (4) we can easily obtain that the
difference [V (x) ] —[Va(x)]; is a member of F(EO)' Thus the result

follows from the definition of xé(xO,xZ). Il

Remark 3.4, 1If the optimal action of the operating state
(O,xc) does not carry out minimal repair, then Theorem 3.4 holds

under M(x)—K(x)eF(EO—{O}) in place of Condition 3.5 (4).

Condition 3.6. B(x)

Theorem 3.5. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone. If Conditions 3.2,
3.5 and 3.6 hold, then there exists a control limit xg(xc) for each
& €E such that the action to carry out minimal repair for the
system is optimal if and only if the failure damage xO exceeds

b3
xo(xc).

Proof: From the functional equation (2.4), we have for each

x €BE
e c

(V] oV, @]

t
=B(x)+afVa(u)Q(x,du)“f{M(x)i:z

t
+a Vd(O,xc)}dG(t)
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1-o
1-o

=afV&(u)Q(x,du)+f{B(x)—M(x) —atVa(O,xc)}dG(t)

Then we have [V&(x>]a=0~[vﬁ(x)]a=m EF(EO) by Conditions 3.2 and

3.6. Also under Condition 3.5 we have

vV, @1, 7, &1, pt

B(:)c)+ochd W) Q(x,du)

t
—minl f{(K(x)+ T C.)i:g
aeD JeA(a) J

4oV (0,x )1dE(t)
o &

t
1-a Y () +afV_ () (a,du)

1-o

J{B(x)-K(x)

1—at

1-o

ming [ I 05wl (0,2 ))d0@).

aeD JeA(a) J
Then we have [Vu(x)]a=0—[va(x)]a#0 eF(EO). Thus we gan easily
find the result. I

Remark 3.5. When the action to replace several components is
made in the state x=(x0,xc) (xO#O), this action contains the action
to carry out minimal repair. Condition 3.4 (4) can be obtained

from Condition 3.5 (3) and Condition 3.6.
The following properties clarify the structure of the optimal
region G(a)={xeE| n(x)=a}l.

Property 3.1. Assume that the deterioration process Z of the M-
Markov coherent system is stocahstically monotone. If Conditions 3.2,
3.4, 3.5 and 3.6 hold, then the optimal region G(0) is closed in
the sense that x]AxgeG(O) for all m] and x2 in G(0).

g 1 1 2 2
Proof: For xl and xZ in G(0), we have xiAxini or xiAxin.

7
for each ZeN. Thus the result follows Theorems 3.3 and 3.5. H

Propertu 3.2. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically monotone., If Conditions 3.2,
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3.4, 3.5 and 3.6 hold, then the optimal region G(Il) is closed in

1, 2 2
the sense that & vx eG(1l) for all xZ and & in G(11).
Proof: The proof is similar to that of Property 3.1. ||

Property 3.3. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone. If Conditions 3.2,
3.4, 3.5 and 3.6 hold, then the optimal region G(Oi,ﬂj is closed

in the sense that xzvx2eG(0i,ﬂ) for all xz and xZ in G(Oi,ﬂj.

Proof: First if xzvxg—xz or xzvx2=x2, then the result is

obvious. Let xzvxg"(xg g,...,xivxi), then we have xzvxgeG(Oi,HJ

uG(ll) from xévx§Sx§ or xiVx§$x§ for each 7¢N and Theorem 3.3. Then

we have

WV, @ va™) ],y -V, @ v )]a=(0i,nj

t
,j{(K(x v )+ z C ) +o V (0) }dG ()
jen v
, (@iv?,0))de (£)
7 1
J#e
1-a
=f{ 1
>0.

1
The last inequality is true since x.Vx.=x. or x.Vx.=x?, and £~ and
P 771 T 7 71 T
x” in G(Oi,ﬂj. Then the result is obvious. ||
Property 3.4. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically monotone. If Conditions 3.2,

3.4, 3.5 and 3.6 hold, then the optimal region G(Il) is a member
of S(E).
Proof: The result is easily obtained by Theorems 3.3 and

3.5. ||
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3.3.3 Some Special Cases

Next in the case where the replacement or minimal repair time
depends on the action, the structure of the optimel replacement

policy is clarified under the following conditions.

Condition 3.7. (1) Ci(xi)=0i for each 7eN,
(2) M(x)=M(x,),
(3) K(x)=K(x0).

Theorem 3.6. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2
and 3.7 hold. If G(t;xO,a)=G(t;x,a), then there exists a control
limit policy T with respect to component 7 minimizing the expected

total discounted cost of the discrete time replacement model.

Proof: We have for each 7eN
7 7
[V&(x)]k—[Va(x)]r

=min[B(x)+0LfVu @) Q(x,du),

t
J{M(x x5) 1 +o V 0, <, ) YdG (t; x, ,a),

.t
; @+ = c.)i +o v 0,59 Y6 (£32,),@) ]
aeDO JeA(a) J 1Ta
Lot
-min, f{(K(x )+ I C.)l +0 V 0, x )}dG(t xO,a)
aeDJ -~ JeA(a) I

Then the difference [Vu(x)]Z—[V&(m)]; is a member of F(Ei)' Thus

we can easily obtain the result. ||

Condition 3.7'. (1) Ci(xi);ci for ZeN,
(3) K(x)=K.
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Theorem 3.7. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditiong 3.2
and 3.7' hold. If G(t;a)=G(t;x,a), then a control limit xé(xO,xé) is
a member of F(EO)'

Proof: We have
7 7
[V, (@) -1V @],

qﬂﬂB@Hﬂﬂ“MQ@ﬂm,

t
+a V o, x, ) G (Eym),

f{M(x )
1- at
min. [{ta+ & c, )1_ +0 V 0,z “YYdG (tsa) ]
aeDO JeA(a) J
~min, [{(X+ I C, i:"‘
aéDZ JeA(a)

Then under Condition 3.7' we can easily obtain the result. |

Condition 3.8.

Theorem 3.8. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2,
3.7" and 3.8 hold. If G(¢;a)=G(tix,a), then there exists a control
limit xg(xc) for each xceEc such that the action to carry out minimal

repair for the system is optimal if and only if the failure damage

xO exceeds xg(xc).

Proof: For each xceEc we have

[V, @], o~V @] _ =Bl@)+a[V_ ()Q(z,du)

1-a t
- [z )7 (0, ) }dG (E5m)
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Then [V&(x)]a=0_[va(x)]a=m is a member of F(EO) by Condition 3.8.

Further under Condition 3.7' we can show

LV, @1, p1 -V @] _,

1- t
=minl f{(K+ T c.) e

= +atVu(0,xZ)}dG(t;a)
aeD JeA(a) J e

~{B@)+a [V ()Q(x,du)}
is a member of F(EO) by Condition 3.2. Thus the result is obvious.

The following property, further, show the structure of the

optimal region of the replacement policy, but the proof is omitted.

Property 3.5. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically monotone, and Conditions 3.2
3.7" and 3.8 hold. If G(t;a)=G(t;x,a), then
(1) the optimal region G(0) is ciosed in the sense that xZAxZeG(O)
for all xl and x2 in G(0),

(2) the optimal region G(Il) is closed in the sense that xZVx2eG(HJ
for all xz and x2 in G(1),

(3) the optimal region G(Il) is an increasing set in S(E),

(4) the optimal region G(Oi,ﬂ) for each 7¢N is closed in the sense

that xZVxZeG(Oi,HJ for all xz and‘xZ in G(Oi,ﬂj,

3.4 Example

3.4.1 Model
In this section we consider a two-component system with minimal
repair. Let E0={0,1} and E_=E _={0,7,...,7} be the state space. The

172
transition probability is given by

0 7 2
(x,y)=P_ P .P
vy Tp TPy TYo o

-
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where Pg is the transition probability of the system failure
0 ,

damage, and P; (2=1,2) is the transition probability of component

A
2. To illustrate the optimal replacement policy, we consider a

0

numerical example. The transition probability matrix P of the
system failure damage is given in Table 3.1, and the transition
probability matrix P’ of component 7 is given in Table 3.2. The
operating cost B(x)=BO(x0)+BJ(x1)+B2(x2), the replacement cost Ci(xi)’
the set up cost K(x)=K(x0), and the minimal repair cost M(x)%M(xO)
are given in Table 3.3. PFurthermore the replacement time and minimal
repair time are one period. Then Conditions 3.1-3.6 are satisfied

except for Condition 3.5 (4).

. 0
Table 3.1. Transition probability matrix P ={P(w }

0°%75%9)Y)

(a) x0=0 and y0=0

xl\xZ 0 1 2 3 4 5 6 7
0 1.0 0.9 0.8 0.7 0.6 0.5 0.3 0.1
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.1
2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
3 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1
4 0.6 0.5 0.4 0.3 0.3 0.2 0.1 0.1
5 0.5 0.4 0.3 0.2 0,2 0.2 0.1 0.0
6 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.0
7 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

AL



(b) x0=0 and y0=1

4
xz\xZ 1 2 3
0 0.0 0.1 0.2 0.3 0.4 0.5 0.7 0.9
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9
2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9
4 0.4 0.5 0.6 0.7 0.7 0.8 0.9 0.9
5 0.5 0.6 0.7 0.8 0.8 0.8 0.9 1.0
6 0.7 0.7 0.8 0.8 0.9 0.9 0.9 1.0
7 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.0
(c) x0=1 and y0=0
P =0 for all x., and 2,
(xO,xz,x2)y0 1 2
(d) x0=1 and y0=1
P =] for all x, and z,.
@;,21,%5)Y,) 1 2

Table 3.2. Transition probability matrix P$={Px

xz\xZ 0 1 2 3 4 5
0 0.00 0.30 0.20 0.15 . 0.15 0.10 0.05 0.05
1 0.00 0.25 0.20 0.15 0.15 0.10 0.10 0.05
2 0.00 0.10 0.20 0;20 0.15 0.15 0.10 0.10
3 0.00 0.05 0.10 0.15 0.25 0.20 0.15 0.10
4 0.00 0.05 0.05 0.10 0.25 0.20 0.20 0.15
5 0.00 0.00 0.05 0.10 0.15 0.25 0.25 0.20
6 0.00 0.00 0.00 0.05 0.05 0.10 0.40  0.40
7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00
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Table 3.3. Costs Bi(xi)’ Ci(xi)’ BO(xO), K(xo) and M(xO).

Bi(xi) 0 5 10 15 20 25 30 35

Ci(xi) 70 70 70 70 70 70 70 70

xO 0 1
BO(xO) 0 300
K(xO) 100 160
M(xo) 160 160

3.4.2 Numerical Example

The optimal replacement policy for components in a two-
component system with minimal repair is shown in Figure 3.1 in
the case of a=0.95. This example shows that the optimal replace-
ment policy is similar to the (n,N) policy with N=6 and n=5 in
the case of x =0, and is fairly close to the (n,N) policy with

0

N=5 and n=5 in the case of x0=1.
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Figure 3.1. Optimal replacement policy.




3.5 (ABC)-Policy

In this section we are interesting in an elegant and simple
replacement policy which lets to easily implementable policy. The
optimal replacement policy is not so simple, and requires large scale
computations for implementation. Thus we consider a simple re-

placement policy for component 7, called (ABC)-policy, such that;

(1) if OSxi<A, keep component %,

(2) if ASxi<C, replace component % concurrently if other
components are replaced,

(3) if Bsxi<C, replace component 7 if the reliability system
fails,

(4) if <z, replace component % at once,

where z. 1s the state of component T

If the failure of the coherent system is not considered, then
this (ABC)-policy is similar to (n,N) policy with A=n and C=N.
Furthermore if the opportunistic replacement is not considered, then
this (ABC)-policy is similar to (t,T) policy with B=t and C=T in the
case of single-component system.

In the previous example, it can be seen that the optimal
replacement policy is fairly close to the (ABC)-policy with A=5,
B=5 and C=6. Thus in some cases it might be better to use a

simple (ABC)-policy than a more complex one.

Notes for Chapter 3

The random minimal repair cost is discussed by Cléroux, Dubuc
and Tilquin [13, 1980]. We extended this to a concept of the random
failure damage, and we considered minimal repair for the coherent
system with random failure damage. The (ABC)-policy suggested in
this chapter is a generalization of an (n,N) policy and a (t,T)
policy. The other typical replacement policies are an OARP (oppor-
tunistic age replacement policy) introduced by Berg [8, 1978], a
trigger-off replacement policy suggested in Bansard, Descamps,
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Maarek and Morihain [1, 1970], replacement policy IL, ¥, V suggested
in Morimura [35, 1970] and so om.

~50-



CHAPTER 4

CONTINUOUS TIME REPLACEMENT MODELS

4.1 Introduction

In this chapter we consider continuous time replacement models
for components in a coherent system. The coherent system consisting
of n components is monitored continuously. The time consumption re-—
quired for replacement is not negligible except for the cases in
Section 4.5. Our aim is to clarify the structure of the optimal
replacement policy for the following systems. (1) The deterioration
process of the coherent system is a jump process. (2) The coherent
system consists of n stochastically failing components. (3) The
maintained coherent system consists of n repairable components. Fur-
thermore, we will study the optimal stopping time for a replacement
problem of the coherent system consisting of n components under addi-
tive damage.

In Section 4.2 we consider a continuous time replacement model
for the coherent system consisting of n components under jump dete-
rioration. The binary coherent system, which consists of »n stocha-
stically failing components with some lifetime distributions, is
dealt with in Section 4.3. 1In Section 4.4 we discuss the group

replacement problem for the coherent system whose repairable
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components are separately maintained. Finally, we study the optimal
stopping problem for replacement of the coherent system under addi-

tive damage.

4.2 Jump Deterioration System

4.2.1 Explanation of Model

In this section we consider a continuous time replacement model
for the coherent system with minimal repair. The coherent system
consisting of » components is stochastically dependent and econom-
ically interdependent. The coherent system is monitored continuously
in infinite time interval T=[0,*), and classified into one of the
possible.number of states. The possible actions are 'no action",
"replace each component' and "carry out minimal repair for the coher-
ent system'". Let X(t)=(X0(t),...,Xn(t)) donote the state of the
coherent system with minimal repair. We assume that a stochastic
jump process, and an action is taken after
a jump has occurred. Further we assume that each state space Ei’

7eN, is a subset of R+.

4.2.2 Jump Deterioration Process

Let Zw={XW(t); teT} be a stochastic process representing the
state of the ccherent system with minimal repair under a replacement
policy WéDS. Let A{x) be a B-measurable function from E into R+.
It is interpreted as the jump rate when the current state is x and
the current action is "do nothing"Q Let @(x,U) be a B-measurable
function from E into [0,1] such that §(x,) is a probability measure
on (E,B) for each x<E. It means that if a jump occurs when the
current state is x and the current action is no doing, then the
state after the jump is determined by the probability measure Q(x,-).
Similarly let u(x,q) be a B-measurable function from E into R+ for

0
each a¢D and it is interpreted as the jump rate of replacement or
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minimal repair when the current state is x and the current action
is aeDO. If a jump of replacement occurs then the state after the
jump is (O,xg), and if a jump of minimal repair occurs then the

state after the jump is (O,xc). Thus we can easily find that the

. L
stochastic process Z  1is a M-coherent process.

4,2.3 Monotonicity
We shall examine some properties of the deterioration process

Z of the system with jump deterioration.

Definition 4.1. The deterioration process Z of the M-Markov
coherent system is said to be stochastically monotone if and only if
P[X(t)eU| X(s)=x] is a member of F(E) for all UeS(E) and all t>s in
T=[0,»).

Lemma 4.1. Assume that the jump rate A(x) is constant. If

@(x,U)eF(E) for each UeS(E), then the deterioration process Z of the

M~-Markov coherent system is stochastically monotone.

Proof: Since the jump rate is constant A(x)=XA, the transition

probability P(¢,x,U) is given by for each UecS(E)

onX

k!

P(t,x,0)= 3 K L,

k=0

where Qo(x,U)=IU(x) and
¢ @n=[ @ wmae@,d, k1.

Now we prove Qk(x,U)eF(E) for UeS(E) by induction. For k=1 it
follows trivially from Q(x,U)eF(E). Suppose Qk(x,U)eF(E) for some
k. Then we can easily obtain Qk+l(x,U)eF(E) from Lemma 2.1. Thus
for each k Qk(x,U)is a member of F(E) for UeS(E) and P(¢,x,U) is a
member of F(E) for Ue<S(E). Then the result is obvious from

Definition 4.1. |
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Definition 4.2. Assume that the deterioration process Z of the
M-Markov coherent system is a jump process, then the stochastic
process Z is said to be stochastically quasi-monotone if and only if

X(x)eF(E) and @Q(x,U)eF(E) for each UeS(E).

Remark 4.1. The jump process Z is a Markov process with state
space (E,B) (see Blumenthel and DeGroot [10, 1968]1). It is intuitively
expected that the stochastic process Z being stochastically quasi-
monotone is stochastically monotone, but this prediction is not

proved.

4.2.4 Expected Total Discounted Cost
Let wﬂ(t), teT, be the cost rate of the continuous time

replacement model with jump deterioration in time ¢ under a replace-
ment policy w. For the cost rates associated with the continuous
time replacement model, we consider a replacement cost rate Ci(xi)
of component 7, a fixed cost rate K(x) of replacement, an operating
cos£ B(x), and a minimal repair cost rate M(x). We assume that
M(x);ﬁ(m)+€i(xi) for each ZeN, and all cost rates are bounded and
nonnegative.

The expected total discounted cost Vﬂ(x) of the continuous
time replacement model for an infinite horizon when we start with

the M-Markov coherent system in state x is given by
-at m
(4.1) v (x)=E[fe " w (#)dt].

The objective is to investigate the structure of an optimal re-
placement policy which minimizes the expected total discounted cost
with discount factor aec(0,x). Let Va(x) be the minimum expected
total discounted cost when the initial state of the M-Markov coherent
system is x. Then letting 7* be an optimal replacement policy we
have

(4.2) V (@)=inf V ()
WEDS m
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=Vﬂ*(x).

First we begin by introducing the weak infinitesimal operator A of
i

. ™ , .
the stochastic process Z  for each neDs. For a function f in the

domain of Aﬂ we have

(4.3) A F@)=lint EBIF G ()= ()]

t+0
= (2 (@) [F)Qx,du)-1 (x) f (z) if m(x)=0
wlw,m) f(0,x )=ulx,m) f(x) f m(x)=m
( u(x,a)f(O,xz)-u (x,a) f(x) f W(x)=a€Dl

Of great importance is Doshi's formula (see Doshi {15, 1976])

(4.4) aV (x)=min[r(z,a)+A V (x)],
o T o
aeD
where r{(x,a) is a cost rate when the state is x and action is a.
Then the minimum expected total discounted cost Va(x) satisfies

the following functional equation:
aV&(x)=min[B(x)+k(x)de(u)Q(x,du)~A(x)Vu(x),
(4.5) M(z)+u (e,m)V (0,2 )-ulx,mV (),

min (K(@)+ 3 Cil@)tulz,a)V 0,2 -ulz,a)V (x)}).
. 6 c o
aeD JeA(a)

4.2.5 Structural Properties of Optimal Policy

We investigate the structural properties of the optimal replace-
ment policy for the M-Markov coherent system under jump deterioration.
First we shall examine the property of the optimal expected total

discounted cost function under the following condition.

Condition 4.1. (1) B(x)eF(E), M{x)<F(E), K(x)eF(E) and

.Z C&(xi)eF(E).
7€eN

(2) 1/u(x,a)eF(E).
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Theorem 4.1. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically quasi-monotone. If Condition

4.1 holds, then the optimal expected total discounted cost function

Va(x) is a member of F(E).

Proof: The functional equation (4.5) can be written as

V_(@)=nin aiA [B@)HA @) [V ()@, du)+ (b1 @)V (),

(4.6) M(x)+u(@,mV (0,2 )+ (A=A (x,m))V (x),

minl{K(x)+. T Ci(aci)ﬂl(x,a)VOL(O,xZH(A—u(x,a))Vu(x)}]
aeD zeA(a)

where A is any value larger than max{supi(x), supu(x,a)}. We can

calculate by using the successive approximation technique:

¥, @) =min &%K-[B(m)+k(x)ka(u)Q(m,du)+(A—k(m))Vk(x),
(4.7) M () +u (2c,m)Vy, (0,2 )+ (A-p (x,m))Vk(x),

minl{K(x)+ ) C.(x)+ulx,a)V (O,xa)+(A—u(x,a))V (x) }]
. (A o e o

aeD zeA(a)

where VO(x)=O for all xeE. Then the proof for the monotonicity of

Va(x)ﬁF(E) is carried out by mathematical induction. For k=1 it

follows trivially from Condition 4.1 (1). Suppose Vk(x)eF(E) for

some k. Then from Lemma 2.1 we have

ka(u)Q(x,du)eF(E).
Further from Condition 4.1 and the definition of A, we can easily
obtain Vk+l(x)€F(E)' Thus we have Vk(x)eF(E) for all k. Since

all cost rates and jump rates are bounded, it is easy to see that

Vk(x)+Va(x) as k»» for each xeE. Therefore the result is obtained. ||

The following theorem shows a simple property of the optimal

replacement policy.
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Theorem 4.2. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically quasi-monotone and Condition
4.1 holds. If the deterioration level of component Z is in the best

state 0, u(x,m)>p(x,a) for aeD1 and l/u(x,a)eF(Dl), then the action

to keep component 7 is optimal.

Proof: Let for each ZeN
[V, @ 1y=min —Lo (B @) [V, 00, d0+ (-2 @)V, (),

M(x)+u(x,M)Vd(0,xO)+(A—u(x,M))Va(x),

(4.8) min.{K(x)+ = C-(xj)+u(x,a)V¢(0,xg)+(A—u(x,a))Vu(x)}],

aeDO JeA(a)

[Va(x)]i=mini E%K-{K(x)+. b C.(xj)+u(x,a)Va(0,xg)
a D] Jeh(a)
+(A-u(x,a))V&(x)}].

Then we have
7 7
[V, @)~V @15

. 1 , a
;gzgiaiﬁ'[K(x)+3€§(a)0.ng)+u(x,a)Va(O,xG)+(A-u(x,a))Va(x)]
0

. 1
—min, — [K(x)+ =
aeDh

C.(x ) +ule,a)V (0,25 + (A (z,
: e g 5 (057 A~y (x a))Vd(x)]

and for each aeDg

K@)+ 5 C.(x.)4ule,a)V (0,27)+(h-u(x,a))V (x)
FeAla) J g o e a

—[K(x)+‘ z C.(x.)+Ci(xi)+u(x,(1i,a))Va(0,x£li’a))
JeAla)

+(A—u(x,(1i,a))V&(x)]

S-C. ()@, V(0,657 0,2},

<0.

-57~



1
The first inequality follows from the assumption 1/u(x,a)<F(D”) and
a
Theorem 4.1, and the second inequality is true since (Oi,x) =
. . 1
(Oi,x)(lt’a). Furthermore since n(x,m)>n(x,a) for each aeD” and

M(x);K($)+Ci(xi), we have for z,=0

min —= [B@)+ () [V (0@, d)+ (=1 @)V (@),
U@+ (@,mV_ (0,0 )+ (h-u(@,m)V_(x)]
1

+(A'—U (.’L‘, (17:,a))V(X (.’L‘)]
<0.

T i i V (x L ) ¢ .
hus we can easily obtain that [ a( 0’(0i’xc))]k [Vq(xO’(O@’xc))]r<O

Then the result is obvious. H

Here we add the following condition.

Condition 4.2. (1) Ci(xi)=ci for each ZeN.
(2)  B(@)/ (a+h)=K(x)/ (ot (x,)))eF (E ).
(3) M(x)—K(x)eF(Ec).

The following theorems show the structure of the optimal re-

placement policy under reasonable conditions.

Theorem 4.3. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically quasi-monotone. If Condi-
tions 4.1 and 4.2 hold and u(x,a)=u(x0), then there exists a control
limit policy m; with respect to component 7 minimizing the expected

total discounted cost of the continuous time replacement model for

the system with jump deterioration.

Proof: The functional equation (4.5) can be written as
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v (x)=min[ E%K {B(x)+A(x)fVa(u)Q(x,du)+(A—l(x))V&(x)},

1

(4.9) E;EKED%T {M(x)+u(x,m)Va(0,xc)}’

min

a
min {K(x)+ I C-(xj)+u(x,a)Va(0,xc)}]-

]
1 otulx,a) FeA(a)

Let for each ZeN
[v (x)]k“mln[ {B(x)+x(x)fV (1) Q (x, du)+ (A= ALr))V (x)1,

1

@D {M(x)+u(x,m)Vu(0,$c)},

(4.10)

{(K(x)+ T C.(x)+ulz,a)V 0,291,
JeA(a) @« ¢

min .

aeDt at+u (x,a)

0

S S
7 atu(x,a)
b

{ Von (x) ]P—mln

(K)+ = C.(x)tru,a)V 0,29},
=~ aeb J o @

JeA(a)
Then we have under Condition 4.2 and u(x,a)=u(x0)
7 7
[Vu(m)]kf[Va(x)]g

B(x) K(x) A(x) A A(x)

ath a+u(x0) u+A

fv (W)@, du)+ —5=V_ (@),

=min|

1

W{M(x)—]{(x)‘*‘u (xO)Vot (O,xc) },

ming ———={ & Culz)V (0,591]

acp}, (T oaq) I

1
7 a+u(x )
7

-min.

{ x C.+u(x0)Va(0,xg)}
aeD

JeA(a)
So we can easily obtain that the difference [V&(x)]z—[Va(x)]; is a

member of F(Ei)' Thus the result follows from Definition 2.6. H
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Theorem 4.4. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically quasi-monotone and Conditions
4.1 and 4.2 hold. If the action to replace component Z with the worst
state e, for each 1eN is opt1ma1 M(x)-K(x)<0 and u(x,a) u(x ), then

we have x*(xO,e )<x*(x 0" ).
Proof: Since the action to replace component ¢ with the worst

state e; is optimal, we have for each erEO

[V, @@y, (@;,0)) 13-V, (=), (@, e)) 1

= EIK[ ~C+u(z, ){V 0, G, 0)) v, (0}

and from Theorem 4.2 we have
7 1
[V, (s (2,00 1=V, @y, @500 17
< =5l (2,,00) =K, (25,00
=C ot (@ )V, 0, @,,00)-V ()],
Then from M(x)-K(x)<0 we have
7 1
[Voc(xO’(xi’e))]k—[Vot(xO’(xi’e))]r
7 7
20V (2, (@00 13-V (5, (@001,
Thus we can get x%(mO,Oi);gz(xo,eﬂ) by the definition of xf(xo,xz). Il

Theorem 4.5. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically quasi-monotone and Counditions
4.1 and 4.2 hold. If the action to replace component.i with thg
worst state e, is optimal, and n(x,a)=u, then xf(xo,ez)=x§(eo,el)

for each xOEEO

Proof: From the proof of Theorem 4.4 we have
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[V, (@, (@) 1=V (@, (2,001

1
= 37 {K(xo,(mi,e))+3§NC.—Ci+uVa(0,(mi,O))}

1
- EIX-{K(xO,(xi,e))+.Z C'+“Va(0)}
JeN

1 ,
- G+A {U(Vu(o’(xi’O))-Va(O))—Ci}'
Then the result directly follows. ||

Remark 4.2. We can now obtain the results similar to 3.3.3
when the jump rate of replacement or minimal repair depends upon
the action a. Furthermore, it might be better to employ a simpler
(ABC)-policy because of easier implementation than a more complex

optimal replacement policy.

We shall consider the following condition instead of Condition

Condition 4.3. (1) Ci(xi)=ci for each ZeN,

(2) u=u(x,a) for each xeE and aeD,
(3) M(@)-K(x)eF(E,),

(4) B(x)/ (a+h)-K(x)/ (atu)eF (E ).

Theorem 4.6. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically quasi-monotone. If Condi-

tions 4.1 and 4.3 hold, then xz(mO,x;) is a member of F(EO).

Proof: From the proof of Theorem 4.3 we have
7 z
v, @ ]7_<_—[Voc () ]_Yi
cminl = (BE@H @[V, 0@,d)+(M=-)1 @)V, @)1,

1
oy {M(x)+uVa(0,xc)},
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L pin K@)+ 3 AV (0,57)}]

aty aeD; JeA(a)
- = min K@+ I C b (0,2D)].
ari aeDZ JeAla) ¢ ¢

Then from Condition 4.3 we can easily obtain that [Vd(x)]z—[V&(x)];

is a member of F(EO)' Thus the result is obvious. ]| -
Further we consider the following condition.
Condition 4.4. B(x)/(a+A)—M(x)/(a+u)eF(E0).

Theorem 4.7. Assume that the deterioration process Z of the M-

Markov coherent system is stochastically quasi-monotone. If Condi-

tions 4.1, 4.3 and 4.4 hold, then there exists a control limit
xg(xc) for each xceEc such that the action to carry out minimal
repair for the system is optimal if and only if the failure damage

%
x, exceeds xO(xc).

1%

Proof: By using the functional equation (4.9) under Conditions
4.1, 4.3 and 4.4, we have

v, @] oV, @1
= E%X-{B(x)+x(x)fV&(u)Q(x,du)+(A—k(x))V&(x)
1
- a;;-{M(x)+uVu(0,xc)}

and

[V, @), oV, @1 1
= 5}71\ {B(x)+2 (x)[va )@ (x,du)+(A-1 (z))V_(2)}

1 ‘ a
- min, —— {K(@)+ I C.+uV 0,z )}.
1 . ’
aeD oty JeA(a) © ¢
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. _ C - .
Then we have [Va(m)]a=0 [Vu(x)]aeDleF(EO) from Conditions 4.3 and
4.4, Thus we can get the result. H

The following property can be proved similarly to those in

Chapter 3.

Property 4.1. Assume that the deterioration process Z of the M-
Markov coherent system is stochastically quasi-monotone. If Condi-
tions 4.1, 4.2, 4.3 and 4.4 hold, then
(15 the optimal region G(0) is closed in the sense that xiAmaeG(O)
for all x] and x2 in G(0).

(2) the optimal region G(11) is closed in the sense that xlvx2€G(D)
for all xz and mZ in G(11).

(3) the optimal region G(Il) is an increasing set in S(E).

(4) the optimal region G(Oi,ﬂj for each ZeN is closed in the sense

that xzvxéeG(Oi,H) for all xl and x2 in G(Oi,ﬂj.

4.3 Binary Coherent System

4.3.1 Model Formulation

We consider the following continuous time replacement model
for a binary coherent system. The binary coherent system consist-
ing of 7 components is stochastically independent, and it is eco-
nomically interdependent. The binary coherent system is monitored
continuously in time interval T=[0,x), and the failure of components
is detected immediately. The time to failure of component < has a
continuous pdf fé(t) with finite mean l/ki. The failure time cdf
of component 7 is denoted by Fi(t) and the failure rate function

is Ai(t)=fi(t)/'F—i(t), where fi(t)=l—Fi(t).

An action is taken as to whether or not to replace each compo-

nent, based upon the result of monitoring. When an action a, is
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taken, the replacement time has an exponential distribution function

1
G(t,xc,ac)—l—exp{—u(xc,ac)t} for each a,eb”.

4.3.2 Age Deterioration Process

i . .
Let Zc={Xg(t); teT} be a stochastic process representing the
ages of components in the binary coherent system under a replacement

policy meD . The state space of this process z" is E = I1 E. and
e c ¢ o ©

Ei=[0,wl, where the state xi=w represents the failure state of
component <.

Now we consider component 7 in the binary coherent system.
The following lemma shows the property of the deterioration process

{Xi(t); teT} of component <.

Lemma 4.2. If the life distribution of component 7 is IFR,
then the deterioration process {Xi(t); teT} is stochastically mono-

tone.

(4.11) P(t,mi,b’i)=P[Xi(t+s)eUi[ X (8)=x,]

={_1 if xi+tEUi’
(Fi(xi)_pi(xi+t))/Fi(xi) otherwise.

Thus the result follows from IFR property. H

The following lemma shows the property of the deterioration

process Zc={Xc(t); teT} of the binary coherent system.

Lemma 4.3. If the life distribution of each component is IFR,
then the deterioration proéess'Zc of the binary coherent system is

stochastically monotone.

Proof: The result directly follows from Proposition 2 of Kamae,

Krengel and O'brien [27, 1977]. H
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4.3.3 Cost Structure

The objective of this section is to investigate the structure
of the optimal replacement policy which minimizes the expected total
discoﬁnted cost with discount factor a>0. For the cost rates asso-
ciated with the continuous time replacement model of the binary
coherent system, we consider a replacement cost rate Ci(xi) of
component 7 with age Loy @ fixed cost rate K(mc) of replacement,
and an operating cost rate B(xc) when the binary coherent system
is in state % . We assume that all cost rates are bounded and non-
negative.

Let Va(xc) be the minimum expected total discounted cost when
the initial state of the binary coherent system is x . Then from
the Doshi's formula (4.4) we can find the structural properties of
the optimal replacement policy. However, it is hard to deal with
this functional equation. Consequently, in this section we approx-—
imate Zc={Xc(t); teT} by a discrete time Markov chain with unit time
interval % and investigate the structural properties of the optimal

replacement policy without this functional equation.

4.3.4 Structure of Optimal Policy

We examine the structure of the optimal expected total discount-
ed cost and the structural properties of the optimal replacement
policy for the binary coherent system.

Condition 4.5. (1) B(xc)eF(Ec), K(xc)eF(Ec), and iiNCi(xi)eF(Ec).

(2) l/u(xc,ac)eF(EG).

Theorem 4.8. Assume that the life distribution of each compo-
nent is IFR. If Condition 4.5 holds, then the optimal expected

total discounted cost function Vd(xc) is a member of F(Ec)'

Proof: We approximate Zg ={Xg(t); teT} by a discrete time

Markov process with unit time interval 4. Now define the discrete
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time Markov process Z;={Xc(k); keN} as follows;

il v _ -
P[Xc(k+z)=(<z]+z),...(zn+1))| Xc(k)—(ZZ,...,Zn), m(1)=0]

=(1-k T x.(1.)),
ieN v *

4 = ©
PLX (kD)= (L HD), ey (L 41Dy, (1

pagt)se s (L4D))

(4.12)

T
X ()=(Ly,. 2 ), (1) =01 =), (L)P,

1

PIX] (k+D)=1] XL (K)=L, m()=a_eD1=(1-Fn(Z,a ),
LI (er)=17| X0 (Y=L, w(D)=a_eD 1= (T,a ),

where Ai(W)=O, ®+Zi=w and O<h<[max{nsupk(xc),supu(x@,a)}]~1. Then
it can be found that the transition matrix Q(%) of this Markov chain
satisfies Condition 3.1 in Chapter 3. Thus the expected total dis-
counted cost function Vg(xc) for the discrete time Markov chain is

a member of F(Ec) similarly to Theorem 3.1. Letting Z+0, we see
that the result holds for Condition 4.5 similarly to that of Barlow

and Proschan [4, 1976]. H

The structural properties of the optimal replacement policy
for components in the binary coherent system are shown in the follow-

ing theorems. The proofs are similar to those of Chapter 3.

Theorem 4.9. Assume that the life distributiom of each compo-
nent is IFR, and Condition 4.5 holds. If component 7 is new with
state 0 and 1/u(xc,ac)€F(Ec), then the action to keep component 7 is

optimal.
Condition 4.6. (1) Ci(xi)=0i for each ZeN.

(2) B(xc)—K(xc)eF(Ec).

Theorem 4.10. Assume that the life distribution of each compo-
nent is IFR. If Conditions 4.5 and 4.6 hold, then there exists a

control limit policy ™. with respect to component 7 minimizing the
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expected total discounted cost.

Theorem 4.11. Assume that the life distribution of each compo-
nent is IFR, and Conditions 4.5 and 4.6 hold. If the action to

replace failed component 7 is optimal, then xé(mt)épé(Ot).

Property 4.2. Assume that the life distribution of each compo~

nent is IFR. 1If Conditions 4.5 and 4.6 hold, then

2
AxéeG(O)

0kt

(1) the optimal region G(0) is closed in the sense that x
for all xi and xi in G(0).

(2) the optimal region G(I1) is closed in the sense that xivxiec(ﬂj
for all mi and xi in G() .

(3).the optimal region G(Il) is an increasing set in S(Ec)'

(4) the optimal region G(Oi,ﬂj for 7eN is closed in the sense that

xzvxdeG(O.,HJ for all xl and x2 in G(0.,11).
¢ e 7 e e 7

Remark 4.3. 1In this case of binary coherent system, the simple

(ABC)-policy is reduced to the (n,N) policy with A=n and C=N.

4.4 Group Replacement Problem

4.4.1 Group Replacement Policy

In this section we consider a continuous time replacement model
for a maintained coherent system which is not stochastically monotone.
This coherent system consists of »n repairable components. Each com-
ponent is subject to random failure. Upon failure the component is
repaired and recovers its function perfectly. Ross[44, 1976] has
proved that the distribution of the time to first system failure has
NBU ( new better than used ) property when all components are initia-
1ly good, and have exponential 1life distributions with parameter Ai
7eN, and repair time distributions with parameter M 1eN. Thus
efforts to replace the maintained coherent system before system

failure may be advantageous. On the other hand, as compared with
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individual repair upon failed components, the group replacement may
cause. a loss for some good components. However, we can expect to
obtain advantage of scale merit.

The coherent systen is monitored continuously, and based upon
the hysteresis of monitoring, an action is taken as to whether or not
to replace the maintained coherent system. The objective of this
section is to study the structure of the optimal group replacement

policy minimizing the expected total discounted cost.

4.4.2 Maintained Coherent System

Consider a maintained coherent system. The coherent system
consists_of n components and has n.repair facilities. Each of its
components is either up or down, and acts independently each other.
When component 7 goes up (down), it remains up (down) for exponen-
tially distributed time interval with parameter Xi (ui) and then
goes down (up). Let uptimes and downtimes be independent. The
£

Pax ey

+ ~ +- ~ra 1»
Lhe Loherenu S_yotcux ac any tim depends u

ime depends upon the states of

sState ©
components through a coherent structure function ¢

Let for 7eN

Xi<t)={ 0 2f component i 18 up at time t,

1 otherwise.

Then the evolution of the state of component 7 is described by the

stochastic process {Xi(t); teT}l. Let
X (=00, (), 05X ()
and

¢(Xc(t))= 0 <f the coherent system is up at time t,

1 otherwise,

then the state of the coherent system is summarized by binary 7-
vector X () with a state space Ec={0,l}n and the actual state of

the maintained coherent system is described by the stochastic
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process {¢(Xé(t)); teT}.

At each time epoch t€T, observing the state Xc(t)=xc, an action
can be done whether to replace the maintained coherent system, or to
keep it. We assume that the time needed to replace the coherent
system is exponential with parameter u,. Let w(xc)eDc={O,1} repre-
sent the action taken for the coherent system at any time ¢, where
n(xc)=1 means to replace the coherent system and w(xc)=0 means to
keep it. For the cost rate P(xc,ﬂ(xc)) associated with the main-
tained coherent system, we consider the following cost rate. At
time ¢ when the state is xc and an action n(xc)=0 is taken on the
maintained coherent system, then the cost is incurred at the rate
r(xc,O)=P¢(x )+. z ri, where P is the system down cost rate,

tECO(xc)
s 1€N, is the repair cost rate of component < and Co(xc) denotes
the set of currectly failed components. On the other hand, When
an action TT(xc)=l is taken, then the cost is incurred at the rate
P(xc,1)=R, where R is the replacement cost rate (i.e., R/uO is the
expected replacement cost).

The objective is to investigate the structure of the optimal
group replacement policy minimizing the expected total discounted
cost with discount factor «>0. Now let Va(xc) be the minimum exp~
ected total discounted cost when the initial state of the coherent
system is X@(0)=xc. We derive the weak infinitesimal operator Aw
of the stochastic process Z;={Xg(t); teT} for each ﬂeDe. For a

function f in the domain of ATr we have

A f(x )=lim t‘lax £ (£))-f @ )]

t40 e
= b Xi(f(li,xc)—f(xc))+ ) “i(f(oi’xc)—f(xc))’
ieCl(xc) ieco(xc)
if ﬂ(xc)=0,
uo(f(O)-f(xc)), if n(xc)=1
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where Cj(xc)={ieNl xi=j}, (7=0,1). From Doshi's formula (4.4) the

function Va(xc) satisfies the following functional equation:

(2"7:+u7:Va (07: ,xc)—Va (occ) )

AV (1. -V y
(4.13) feC. (x )Al( u( z’xc) a(xc))

R+u0(Va(0)-V&(xc))].

4.4.3 Properties of Optimal Policy

Some properties on the optimal group replacement policy and the
corresponding optimal expected total discounted cost function are
discussed. The following two theorems show the structure of the
optimal total discounted cost function, and they are used in the
proof of theorems which present the structural properties of the

optimal group replacement policy.

Theorem 4.12. The minimum expected total discounted cost func-

tion V (x ) is a member of F(E ).
a e e

Proof: The functional equation (4.13) can be written as

V (x )=min [P$(x )+ I (v A4p.V (0.,2 ))
a e e’ s () T 71t o 1
1" .
+_ z Ain(li,xc)
(EONESD
) c
4,14
( +(A- L u.—- I Ai)VA(xC)}/(u+A),
ieC. (x ) ¥ ieC (x )
17¢ 0 e
- 4
{B4u )V (O +(A=u DV (x )3/ (0+M) ],
where A is any value larger than max{p,, max { =Z Lt ) A
¢ & dec (@) © ieC () *
¢ e 17¢e 0e
+ max A.}}. We can calculate by using the successive approxima-

. 7
ﬂeCl(xc)

tion technique:
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e
+(A- % .- I AV, (x ) (ath),
. T . 17 ke
zeCl(xc) zeco(xc)

{R+u0Vk(0)+(l\—u0)Vk (xc) Y/ (a+A) ],

where Vo(xc)=0 for all xceEc. Then to prove the monotonicity of
14 (mc) we use mathematical induction. TFor k=1 the result follows
easily from the properties of the structure function ¢ and the
definition of Co(xc) and Cl(xc). Suppose the result is true for
some k. At the k+1 stage, if an optimal action is to keep the

maintained coherent system for (Ji’xc)eEc’ 1eN, then

Ve o %) Vg (05%)
;iP¢(Zi,x )+j€cz(1_,m )(P'+ujvk(1i’0j’xc))
1V e
+(A—jeci(li,xe) uj—jé CZ(Zi,xc))\ ')Vk (]i ,xc) 1/ (o)
—[P¢(0i’x0)+jecz(0, ; )(r.+uij(0i,0j,xc))
1727 ¢
+3€Cz(0i’xc) k(o C)
+(A_jeCi(Oi,xc)nj—jeCZ(Oi,xc)Xj)Vk(Oi’xC)]/(a+A)

ilp(¢(Zi’xc)—¢(0i’xc))+Pi

+ % (Vk(l 0 x )~ V (0 0 x ))
jeC (0.,x ) )
1 2 ¢
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+. )} Aj(Vk(li’zj’xc)—Vk(Oi’zj’xc))
JECO(Oi’xc)

+(A=A .~ T L A (W (2, )=V, (0., )]
v JEC (] R ) J JEC (0 s ) J
/ (a+A)
> 0.

On the other hand, even if an optimal action is to replace the main-

maintained coherent system, k+1(1 T )=V (0 s )20 is proved

k+1
similarly to the above. Thus for each k, Vk(xc) is a member of

F(Ec)' Then from the successive approximation technique, as
1im Vk(x )= V (x ),
koo

Va(xc) is a member of F(Ec)' H

Theorem 4.13. The minimum expected total discounted cost

function Va(xc) is not larger than R/a.

The above theorem is easily proved by the functional equation
(4.14). Nex the structural properties of the optimal group replace-

ment policy for a maintained coherent system are characterized.

Theorem 4.14. If all components are operating, then an optimal

action is to keep the maintained coherent system.

Proof: This follows directly from the functional equation

(4.14) and Theorem 4.13. H'

Theorem 4.15. An optimal group replacement policy w*(xc) is

a member of F(Ec)'

Proof: The functional equation (4.13) can be written as

Va(xc)=min [{P¢(xc)+. T (ri+uivu(0i’xc)
1eC. (x )
17
(4.15) + I > 14 (1 ST )
ZeC, (x) @

-72-



+(A- T .- Z AV (x )}/ (ath)
ic (=) v Cylz,) Lee

{R+u0Va(0)}/(a+u0)].

Notice that the latter quantity does not contain variable z,- From
Theorem 4.12 and the above fact, the result is easily obtained. H
Property 4.3. If p,> % wot I A; and Réf¢(xc)+

15C1(xc) zeCO(xc)
z r. for xCGEc, then an optimal action is to replace the
ieCl(xc)

maintained coherent system.

Proof: The functional equation (4.13) can be written as

Vd(xc)=min [{P¢ (x )+%€C2(x )(ri+ind(0i,mc)
1 7 ¢
(4.16) + AV (Z1.,2 )HA{o+ 2 .+ oz x.1,
icCy(a ) roe voe icc, (@) 1 ieCy ()
{R+u0Va(0)}/(a+u0)]-

The result is shown by comparing each term with one in functional

equation (4.16). Thus we see
[Va(xc)]ﬂ(xc)=0-[V&(xc)]ﬂ(xC)=l

={Pp(x )+ ¢ (r.+p.V (0.,x ))+ I AV (Z.,x )}
iecl(xc) i " a1 e ieco<x@) a1

/(o+ T et I X )={R+u .V (0)}/ (atu.)
ieC.(x ) © feC (x ) © 0a 0
1v c 0 ¢

A1/t B w3 A )=1/(ehu)IR
1€C, (x ) 1eC, (xz )
1 ¢ 0 e
+{( pot I Ai)/(a+ z ek I 2.)
ieC) () © ieCy(x)) ieC (@)~ 1eCylx ) t
-uol(a+u0)]Va(0)
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>[1/( + ) u .+ z AD)-1/(o+u D) eV (0)
== . T . 7 0 o
zecl(xc) zeCO(xc)

+[(. b wit ) Ai)/(a+. z wt b xi)
1eCl(xc) teco(xc) teCl(xc) aeco(xc)
—UO/(OH‘HO)]VOL(O)

>0

The first inequality follows from the assumptions and Theorem 4.12.
The second inequality is true from Theorem 4.13. H

Property 4.4. 1If p < L p.+ I M. and B/u.<[P¢(x )+

1eC (x ) ¥ ieC (x ) © = ¢
17¢ 0e
+ ¥ .r.l/l z w4z X.] for x €E , then an optimal action
ieC. @) " ieC.(x) “ieC (x ) * ¢ ¢

17¢ 17 0 e

is to replace the maintained coherent system.

Proof: The result is proved similarly to Property 4.3. H

Remark 4.4. The results of this section remain valid even when

we extend the cost rate r(xc,O) is a member of F(Ec) and r(0,0)=0.

Remark 4.5. We notice that the monotone property of the optimal
group replacement policy holds irrespective of failure and repair
rates, but of course the actual policy ﬂ(xc) depends an the values

of failure and repair rates.

4.4.4 Example

To illustrate the optimal group replacement policy, we give a
numerical example. We consider a so called bridge structure system
shown in Figure 4.1. The failure and repair rates of components
are given in Table 4.1. The repair cost rate of components are also
given in Table 4.1. The system down cost rate, replacement cost

rate, and replacement rate are P=5.0, £=10.0, and p,=2.0, respectiely.

0
Then we obtain the optimal group replacement policy for the maintained

coherent system by the value iteration method. Also to illustrate

7=



Figure 4.1, Bridge structure system

Table 4.1. Failure rates, repair rates, and cost rates.

A u r
U1 0.1 1.0 2.0
U2 0.1 2.0 2.0
U3 0.2 1.0 2.0
U4 0.1 1.0 2.0
U5 0.1 2.0 2.0
the results of Properties 4.3 and 4.4, the values ml(x )= Iz My
teCl(xc)
+ 2 Ai’ m2(x6)=P¢(xc)+. pX r.s and m2(xc)/m](xc) are
ﬂeCO(xc) LeCl(xc)

computed. The results of these computations are given in Table 4.2
in the case of the discount factor a=0.05. No.4,6,11,13,18, and 25
satisfy the condition of Property 4.3, and No.1,2,3,5,7,9,17, and

21 satisty the condition of Property 4.4. But No.8,10,12,14,15,19,
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Table 4.2. Optimal replacement policy

: mg(xc)
wg de) mle) ) M) p ey Vel

&
3
8
8
8

1 1 1 1 1 1 1 1 2.80 15.0 5.35 18.60
2 1 1 1 1 0 1 1 2.04 13.0 6.37 18.60
3 1 1 1 0 1 1 1 2.44 13.0 5.33 18.60
4 1 1 1 0 0 1 1 1.68 11.0 6.55 18.60
5 1 1 0 1 1 1 1 2.48 13.0 5.24 18.60
6 1 1 0 1 0 1 1 1.72 11.0 6.40 18.60
7 1 1 0 0 1 1 1. 2.12 11.0 5.19 18.60
8 1 1 0 0 0 1 1 1.36 9.0 6.62 18.60
9 1 0 1 1 1 1 1 2.04 13.0 6.37 18.60
10 1 0 1 1 0 0 1 1.28 6.0 4.69 18.60
11 1 0 1 0 1 1 1 1.68. 11.0 - 6.55 18.60
12 1. O 1 0 0 0 1 0,92 4.0 4.35 18.60
13 1 0 0 1 1 1 1 1.72 11.0 6.40 18.60
14 1 0 0 1 0 0 1 0.96 4.0 4.17 18.60
15 1 0 0 0 1 0 1 1.36 4.0 2.94 18.60
16 1 0 0 O 0 0 0 0.60 2.0 3.33 17.64
17 0 1 1 1 1 1 1 2.44 13.0 5.33 18.60
18 0 1 1 1 0 1 1 1.68 11.0 6.55 18.60
19 0 1 1 0 1 e 1 2.08 5.0 2.88 18.60
20 0 1 1 0 .0 0 1 1.32 4.0 3.03 18.60
21 0 1 0 1 1 1 1 2.12 11.0 5.19 18.60
22 0 1 0 1 0 0 1 1.36 4.0 2.94 18.60
23 0 1 0 O 1 0 0 1.76 4.0 2.27 18.13
24 0 1 0O 0 O 0 0 1.00 2.0 2.00 16.15
25 0 0 1 1 1 1 1 1.68 11.0 6.55 18.60
26 0 0 1 1 0 0 1 0.96 4.0 4.17 18.60
27 0 0 1 6 1 0 1 1.32 4.0 3.03 18.60
28 0 0 1 0 0 0 0 0.56 2.0 3.57 17.38
29 0 0 0 1 1 1 1 1.36 9.0 6.62 18.60
30 0 0 0 1 0 0 0 0.60 2.0 3.33 17.46
31 0 0 0O O 1 0 0 1.00 2.0 2.00 16.15
32 0 0 0 0 0 0 0 0.24 0.0 0.00 14.07

20,22,26,27, and 29 don't satisfy these conditions when the optimal
action is to replace the maintained coherent system. This shows

that the conditions of Properties 4.3 and 4.4 are not necessary for
replacing the system. No.10,12,14,15,19,20,22,26, and 27 show that

a preventive replacement is optimal.
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4.4.5 Concluding Remark

We have been examined the structure of optimal group replace-
ment policy for a coherent system consisting of # repairable com-
poments. We showed that the optimal group replacement policy mini-
mizing the expected total discounted cost is a monotone policy
without regard to the failure and repair rates. Further we discussed
sufficient conditions for the group replacement of the maintained
coherent system. It is a furture problem to find the structure of
an optimal group replacement policy when we have to consider fixed

costs for turning on or turning off repair facilities.

4.5 Optimal stopping problem

4.5.1 Cumulative Damage Model

In this section we consider a coherent system in a random
enviroment., The coherent system consists of 7 components which are
subject to a sequence of random shock occurring in a Poisson stream
at rate A. Each shock causes a random amount of damage and these
damages accumulate additively. The successive shocks of magnitudes
Y(1), Y(2),..., for components are positive, independent, identi-
cally distributed random variables having a known distribution func-
tion F(y). A system failure can only happen at the time of a shock
arrival and occurs with probability depending on the amount of accu-
mulated damages in each component. The failure probability is a
nondecreasing function of the accumulated damages caused by all
previous shocks. More precisely, if the cummulative damage is
Xc(t)=xc for components at time ¢ and a shock of magnitude Yy, occurs,

Then the coherent system fails with known probability l—s(x0+yc).

The function s(.) is referred to as a survival function. Upon
failure, the coherent system must be replaced by a new one having

the same properties, and at this time a failure cost is incurred.
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If the coherent system is replaced before failure, a smaller cost

is incurred. Thus, there is an incentive to attempt to replace the
coherent system before failure. We allow a controller to replace
the coherent system at any stopping time 7'<S, where & is the failure
time of the coherent system.

The purpose of this section is to derive an optimal replacement
policy which minimizes the total long-run average cost per unit

time for a coherent system.

4.5.2 TFormulation

We will describe the damage process in detail. For <6, a
stochastic process Zc={Xé(t) ; teT} represents the cumulative damages
attributed to shocks during [0,%t]. The state space is Ec=[0,w)n.
Then we allow a controller to intend a planned replacement at any
stopping time I'<§. Upon failure, the coherent system must be re-
placed by a new similar one, and the replacement cycles are repeated
indefinitely. Every planned replacement cost equals ( and replace-
ment by failure incurs an additional cost of K. We study the
group replacement policy which is optimal in the sense that it
minimizes the total long-run average cost per unit time.

We consider a renewal process formed by successive replace-
ments of similar systems. Using familiar results in renewal theorem,
we see that the long-run average cost is the expected cost over a
replacement cycle divided by the expected duration between replace-
ments. That is, the average cost associated with a stopping time
T<6 will be

_CH+KP[6=T)

(4.17) ¢T~———-———~—~E[T] )

In our application the coherent system always start with Xé(0)=0,
Let Em denote expectation under the condition Xc(0)=xc, and E

c
without suffix represents expectation under the condition Xc(0)=0.

Let A be the infinitesimal operator of the stochastic process
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Zc' For a function f in the domain of A, the infinitesimal operator

is defined as follows:

,=1
Af(xc)=iig t Exc[f(Xc(t))—f(xc)]-

We use Dynkin's formula

T
B, PO, EN1=f )=k, | [AF & (s))ds]
which is valid for any f in the domain of A and any stopping time T

having finite expectation (see Dynkin [16, 1965]).

4.5.3 Optimal Stopping Time

We derive the optimal group replacement policy which minimizes
the total long-run average cost per unit time. The damage process
Zc is clearly a strong Markov process (see Blumenthal and Getoor
[10, 1968]). Let y¥*=inf wT be the optimal average cost. A stopping
time I* is said to be gptimal if ¢*=WT*' Then in order to prove

the main theorem we need the following lemmas.

Lemma 4.4. Let d(x ) be defined by d(x )=E_ [6], then
c e’ Tz,
1
d(mc)= —x-+fEcd(xc+yc)s(xc+yc)dF(yc).

Proof: Let 1 be the intershock time. Then by applying a

remewal theorem we have

d(xc)=Exc[T+E [s11

XC(T)

=Ex [T]+Emc[EXé(T)[6]]

c
1
5t fEcd(xc+yc)s(xc+yc)dF(yc). I

Lemma 4.5. If the function l—s(xc) is a member of F(Ec) and

there exists x, such that s(xc)#l and xc#O, then the function d(xc)
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is bounded.

Proof: By the assumption there exists mé such that B=s(xé)<l
and xé#O. For chxé , since the function 1—S(xc) is a member of

F(Ec)’ we have from Lemma 4.4
1
dx )< ——+ fEcBw(xc+yc)dF(yc).

Thus we have

1 n 1
d(x )< ZB=
e A =0 A(1-8)

8

while by using the renewal function M.(xz')= % Pla.+Y.(1)+...+Y.(n)
et gttt 1
é@é], the mean time needed to achieve Xi(t)gxé is no more than

M.(x')/X. That is, for each x ¢E we have
e ¢ e

1
1"'6 ]:

d(xc);:—%—{ LM ()
n=1

and thus the proof of Lemma 4.5 is complete. l

Lemma 4.6. For every stopping time 7'<§, we have the following

equation:

E. [d(XC(t))I(T<6)]=Ex [6-T1
c e

where I(.) is an indicator function.
Proof: By the strong Markov property we have

E. [d(Xc(T))I [S1

c

(T<6)]=ExC[EXc(T) (r<s)1}

=E, [6-T]. Il
cC

Lemma 4.7. 1If T maximizes the following function GT

6T=W*E[6]—C-K~E[{w*d(Xc(T))—k}I ]

(T<8)

then 7 minimizes wT.

-80~



Proof: For every stopping time T, the following inequality holds

C+KP[T=6]
l’)*; E[T] ’

and a stopping time 7<$§ minimizes the average cost if it maximizes

6T=w*E[T]—C—KP[T=6]

Using Lemma 4.6, we obtain

eT=w*{E[T]—E[5“T]}‘C'K+KE[I(T<6)]

=w*E[T]—C—K+E[{¢*w(XC(T))+K}I 1. ||

(T<8)

S = . i
Let (xc) fE s(xc+yc)dF(yc) Now we have the main result of

. . c
this section.

Theorem 4.16. An optimal stopping time 7% is
T%=min[inf{£>0] X (t)eGl,8]

where
G={xC€Ec| w*—AK(l-S(xc));p}.

Proof: Let W(mc)=w*d(xc)—K. By Lemma 4.5 the function W(xc)

is bounded. Then we have

A¥(x )=lim t"lEx [v(x, (et

-¥(x )]
£40 e ¢

(£<8)
=—A[W(mc)—fE W(xc+yc)s(xc+yc)dF(yc)].
c
From W(xc)=w*d(xc)—K, we obtain

Aw(xc)=—x[w*d(xc)-K—jEc{w*d(xc+yc)—K}s(xc+yc)dF(yc)].

Using Lemma 4.4, we have

1
AW(mc)=—A[¢*{ —X—-+fEcd(xc+yc)s(xc+yc)dF(yc)}— K
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_wkacd(xc+yc)s(xc+yc)dF(yc)+KfEcs(xc+yc)dF(yc)]

=_¢*+AK[1-IE s(xc+yc)dF(yc)]
e

=—y*+AK (1-5 (occ)) .

From Lemma 4.5 and T<§, we have
E[T]<E[8] <.

Then since E[T]<», we may apply Dynkin's formula to yield
BL0*0 (X (1)) =K]=E[ [ {-pAK(1-5 (X (5))) }ds +y*E[ 8] K.
Using Lemma 4.7, for every stopping time 7<38, we have

eT=—C+E[Ig{w*—xk(1-5(xc(s)))}ds].

By the definition of the optimal stopping time 7% and l—S(xc)eF(Ec),

we have

PEAK(1-S(X (£)))>0  2f and only if ¢<T*.

For every stopping time T<§, we have
0, =0 =E[[7 (p*AK(1-S(X_(8))) }ds]=E[ [-{y*-AK(1-5 (X (s))) }de]
T% T 0 5] 0 c

=E[ [ (W-2K(1-5 (X _(2))) }ds]-E[ g L*-aK(1-5 (X _(2))) }ds]

B[, TP-AKA-5(X_()) )1 )

(T<T*)ds

‘ds]

—-E[fg:':{ll)v%—)\]{(l"s(xc (8))) 11 (T=T*)

>0.

Thus T maximizes eT, and this completes the proof of the optimality
of T*. ||
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4.5.4 Example

We consider a two-component system. A component ¢ fails as
soon as the cumulative damage exceeds a fixed threshold Li' Then
the survival function s(xc) is

s(xz,x2)= (0 zf xjgﬁz and Xo2Lg,

1 otherwise.

Also we assume that each shock causes a random amount of damage
which is exponentially distributed, Fi(yi)=1—exp{-uiyi}. Then by

the definition of S(xz,xg) we have

Sy ,2,)= 1—exp{—u1(Lz—xz)-ug(LZ—x2)} if Oz ,<L, and 05 <Ly,

1—exp{—u1(L1~xZ)} if Ozx <L, and To2Lgs
1—exp{-u2(L2—x2)} if x,2L, and 0 <Ly,
0 otherwise.

By Theorem 4.16 we have the optimal stopping region G shown in

Figure 4.2.
T2
L, \
‘ G
[
| \
PN
L2+ﬂ_logif' | J
2 | |
L x
0 1., y* 1 1
LZT;ZOQAK

Figure 4.2. Optimal stopping region G
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4.5.5 Concluding Remark

Theorem 4.16 states that it is optimal to replace the coherent
system when the process Zc={Xc(t); teT} enters into the optimal
stopping region G, or the system fails, whichever occurs first.
The stopping problem considered here has a structure similar to
stopping problems treated by Ross[43, 1971] and Bergman[9, 1978].
Ross investigated the optimality of so-called infinitesimal-look-
ahead (ILA) stopping rules, and Bergman studied the expected
infinitesimal-look—-ahead (EILA) stopping rules. It is a future
proplem to find effective algorithms to obtain an optimal stopping

region G.

Notes for Chapter 4

Optimal replacement policies for two-component system with
increasing running cost are discussed by Berg [7,8, 1976] when the
lifetimes of components are exponentially distributed. The structure
of jump process is discussed by Blumenthal and Getoor [10, 1968].
The functional equation (4.5) can also be obtained by using the
semi~Markov decision process in Ross [42, 1970]. Furthermore the
functional equation (4.6) can be obtained by using the equivalence
between continuous and discrete time Markov decision process in
Serfozo [46, 1979]. The method of approximation of the coherent
system deterioration process Z is discussed by Barlow and Proschan
(4, 1976]. Moreover, the distribution of time to first failure in
multi~component system is discussed by Ross [44, 1976] and Chiang
and Nie [12, 1980]. The group replacement of a multi-component
system with deterioration only appears in Sivazlian and Mahoney [49,
1978]. The optimal stopping time for replacement problem is treated
by Feldman [18, 19, 1977] and Taylor [51, 1975].
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CHAPTER 5

OPERATING CHARACTERISTICS OF REPLACEMENT POLICIES

5.1 Introduction

In this chapter we investigate the operating characteristic
of replacement policies for a coherent system. The operating
characteristic of a replacement policy is a measure defined on
the induced stochastic process when a replacement policy is im-
plemented. Some of the operating characteristics examined in this
chapter are the reliability; the availability; the expected rate
of system failure; the expected rate of joint replacement of
components; the expected rate of replacement. These operating
characteristics are the information needed to establish a suitable
replacement policy.

In Section 5.2 and 5.3, the operating characteristics of
the simple failure replacement policy for a two-component system
are obtained. The operating characteristics of the (ABC)-policy
for a two—component system are shown in Section 5.4, furthermore
the operating characteristics of the (ABC)-policy for a two-com-

ponent system with minimal repair are discussed in Section 5.5.
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5.2 Two-Component Parallel System with Repair: I

5.2.1 Explanation of Model

In this section we consider a two-component redundant system
with repair. The system consists of two identical components ;n
parallel. A failure of a component is detected immediately, and
repair ( or replacement )} begins. Then the other component continues
the job. However, if an operating component fails when the other
component is under repair, then the failed component must wait for
repair until a repairman becomes free. Of course, this situation
means the system failure. It is assumed that a repaired component
goes into operation immediately. The time to failure and the repair
time have the general continuous pdf's f(%) and g (%), respectively.
The cdf of the time to failure is denoted by F(f) and the hazard rate
function is A(t)=f(t)/f(t), where ?{t)=1—F(t). Similarly, the cdf of
of the repair time is G(¢) and u(t)=g(t)/5(t). We assume that the
failure and repair processes for two components are entirely inde-
pendent, and the repaired component is as good as new.

Let us now define Xi(t) as the age of component %, 7=1,2, at
time teT, and set Xi(0)=0' Let Y(£) represent the time that has
elapsed up to time ¢t since the beginning of the current repair job.
Furpher let N(Z) denote a random variable that assumes values 0, 1
or 2. In this model, we shall set N(t)=Q when both components are
operating at time ¢, N(£)=1 when one is operating and the other is
under repair or replacement at time ¢, and N(¥)=2 when two components
are inoperated. These variables Y(¢), V(%) and Xc(t)=(Xj(t),X2(t))

define Markov processes in continuous time.

5.2.2 Equations of the System
We first consider the operating characteristic of a two-com-
ponent system with repair when the system failure doesn't ocuur.

We define the following state probabilities;
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P, (t,x)dz=P[N(£)=0, Oli(s)<l for all s<t,
x<X](t)=X2(t)<x+dx| X_(0)=01,

Pz(t,x,y)dxdy=P[N(t)=O, 0<V(s)<l for all szt,
x<Xi(t)<x+dx, y<X3~i(t)<y+dy

for some i and x>y | X (0)=0],

P2(t,x,y)dxdy=P[N(t)=l, 0<l(s)<l for all s<t,
x<Xi(t)<mhix for some %,
Y<Y (t) <y+dy | X (0)=0].

By connecting the above state probabilities at time ¢+h with those
at time ¢ and taking limits as %>0, we get the following differen-

tial equations governing the behaviour of the system

d )
{ —§;'+ 7§E-+ ZA(x)]PO(t,x)—O,
3 3 3
(5.1) [+ 5 5y 2@ + 2P (F,2,1)=0,
d p 3
) Y=
{ ot 3a 5y + A(x) + u(y,]Pg(t,x,y, 0.

These equations are to be solved under the following boundary and

initial conditions,
Boundary conditions:
P_(t,x O)=ftP (t,x,u)uu)du
] b b O 2 bl b ’
X t '
(5,2) P2(t9x90)=2>\(x)PO(t)x)"'IOPZ (t,x,u)x(u)du+fxpz(t,u,x)>\(u)du,

Pa(t,O)=P1(t,O,y)=P2(t,0,y)=O.

Initial conditions:
PO(O,O)=1,

(5.3) PZ(O,x,y)=P2(0,x,y)=0-
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Taking Laplace transforms of equations (5.1) and (5.2) with respect

to ¢ and using initial conditions, we have

(5.4.a)  [s+ —— + 21 () 1P (5,2)=0,

ox

) 9 ’ ~
(5.4.b) [S+—'a—£‘+'—a—:[;-+ A (x)+ l(y)]P’f(S,x,y)—O,
(5.4.0) o+ =+ 7%;-+ A @)+ 1 () 1P5(e,2,)=0,

(5.5.a)  Pi(s,0)=1,
(5.5.b) P?(S,x,0)=ng§(s,x,u)u(u)du,
(5.5.¢)  Py(s,2,0)=2X (@) P% (s,2)+[gP% (8,2, ()t [ P (3,u,2) A () dlu,

where "*" denotes the Laplace transform. The solution of equation

(5.4.a), using (5.5.a), is given by

(5.6) Pg(s,x)sf(x)ze'sx.

The partial differential equation (5.4.b) is Lagrange's linear
equation. Thus Lagrange's auxiliary equations are given by

dx _ dy _dp’f(syx!y)

1 1 ) [s+x(x)+x(y)]P§(s,x,y)

Solving these equations, we have

.’)C=y+@z s
o FoNT -8Y /&
Pj(S,x,y)=02F(x)F(y)e /F(c]),

where cq and ¢, are arbitrary constants. Therefore the general

solution of equation (5.4.b) is given by
5 _ T\ -8y
(5.7) Pi(s,x,y)—Hj(s,x-y)F(x)F(y)e ,

where Hl(s,x—y) is an arbitrary function. Similarly the general

solution of equation (5.4.c) is given by
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(5.8)  Ps,z,y)=Hy(e,a-F@EEe 7,

where Hg(s,x—y) is also an arbitrary function.

In order to find the form of functions Hz(s,x—y) and HZ(S,x-y)
in (5.7) and (5.8), we proceed as follows: The probability densities
along x axis in (5.7) and (5.8), setting y=0, are given by
(5.7") p§(s,x,0)=yz(s,x)'ﬁ(x),

(5.8") Pg(s,x,O)=H2(s,x)F(x).

Substituting (5.8) and (5.7') into (5.5.b), the following integral

equation holds
(5.9) HZ(s,x)=ng2(s,x—u)g(u)ensudu.

Similarly, substituting (5.6), (5.7) and (5.8') into (5.5.c), we have

the following integral equation
(5.10) Hz(s,x)=2f(x)e—sx+ gﬂl(s,m—u)f(u)e~sudu
+[71, (g, u~z)fu)e “¥du.

Further, substituting (5.9) into the right side of (5.19), we

get the following equation

(5.11) Hg(s,x)=2f1x)e-sx+f:K(s,x,u)Hg(s,u)du,

where

-8 (x+u)

K(s,z,u)=[o[f @-u-y)e tf(wtuty) e lg()dy,

and f(t)=0 for ¢<0. Equation (5.11) is the well-known Fredholm
integral equation. Once we have obtained Hg(s,x), P?(s,m,y)
and P§(S,x,y) by (5.7), (5.8) and (5.9), we can compute various

operating characteristics.
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5.2.3 Various Characteristics of the System
Consider the reliability of the system starting from Xi(0)=0,
7=0, 1. Now let R(t) denote the reliability of the system and §

denote .the time to the first system failure. Then we have
R(t)=P[8>¢]

=P[0<N(s)<l for all s<t| X_(0)=0].

From the definition of PO(t,x), Pz(t,x,y) and PZ(t,x,y), integrat-
ing these functions with respect to x and y, and adding, the

reliability of the system can be written as
z 2
R(ﬁ):fO[PO(t,x)+fo{P1(t,x,y)+P2(t,x,y)}dy]dx.

Then using (5.6)-(5.8) we obtain the Laplace transform of the

reliability of the system

(5.12) R*(s)=f:[?(x)2e—sx+ﬁz(s,x)az(s,x)+H2(s,x)a2(s,x)]dx,

where

az(s,x)=fgf(é+uff(u)e—sudu,
a2(s,x)=fgf(x+u)5(u)e—sudu,

and the mean time to the first system failure is given by

(5.13) E[8]=1im R*(s)
g0

=[7IF (@) 248, (@)a, @)+, (@) ay (@) Jde,

where ai(x)=ai(0,x) and Hi(x)=Hi(O,x) for Z=1 or 2. Then integral

equation (5.11) is given by

(5.13") H2(x)=2f(x)+f§K(x,u)H2(u)du,
where

K(a,u) = Lf (@umy)+f (whuty) 1g () dy -
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The above integral equation can also be written as
By (@)=2f (@)+2 £ [(K (,0)f u)du,
2 0k
k=1
where

K](x,u)=K(x,u),
Kk(x,u)=f§K(x,y)Kk_l(y,u)dy, k>2.

Thﬁs using the equation (5.9), we have
H](x)=2fgf(m—u)g(u)du+ 23 fgf;Kk(x—u,y)f(y)g(u)dydu.
k=1

We consider the probability that a repairman is idle at time ¢
when the system failure doesn't occur in [0,#]. Denote by I(¢) the

above probability starting from Xb(0)=0. We have
I(t)=P[N(t)=0] X (0)=0].

Thus from the definitions of PO(t,x) and P2(t,x,y), the Laplace
tranceform of I(t) is obtained by integrating (5.6) and (5.7) over

x and y.

-8

(5.14)  Ix(e)=[3IF@) e i (s,2)a, (s,2)]dx.

Next consider the expected total idle time of a repairman
during the interval [0,¢t] (£<8). Denote by Ié(t) the expected
total idle time of the repairman during [0,?]. Then the Laplace
transform of Ie(t) is given by

I*(s)=I*(s) /s,

and the expected total idle time of the repairman prior to the system

failure is
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(5.15) I =1im sI*(s)
e s>0

=[P (F )+ (@) ag (=) 1de

We consider the expected number of replacement or repair during
the interval {0,¢]} (£<8). Using the definition of Pg(t,x,y), the

expected number of replacement is given by

_(trx

Re(t)—fofOPg (x,y,0)dydzx.
The Laplace transform of Re(t), using (5.8), is obtained
1 ® =
5. R =
(5.16) £(@)= —= [, (s, 2)F (@) da,
and the expected number of replacements prior to the system failure
is
(5.17) Re=lim st(s)
s>0

=jOH2(x)F(x)dm.

5.2.4 Examples
Example 5.2.1
Consider the case where time to failure obeys a k-Erlang

distribution and the repair time is arbitrarily distributed. Then

the pdf of the time to failure is given by

k k-1
_ At -\t
(5.18) ()= —?z:ij7-e .
We shall not solve the Fredholm integral equation (5.11), but will
obtain some operating characteristics using the relation of integral

equations (5.9) and (5.10). Inserting (5.18) into (5.9) and (5.10),

we have

(5.19) H](s,x)=f:H2(s,x—u)g(u)ensudu,
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k k-1

_ A=z -(s+\)x
Hy(s,2)= oy7 @
(5.20) R &~ BT @y (5 0y @KL (BUg,
(k-1)! 01"
+~__§E__ e—(s+k)xwa1(s u)(x+u)k'l “Au g
(k-1)1 o~ ¢ .
In. order to obtain the operating characteristics, let us define
Hij(s) as,
[ J =A\x . . _
Hij(s) fOHi(s,x)x e "dx, 7=1,2, j=0,1,...,k-1.

Thén, multiplying equations (5.19) and (5.20) by xJe—xx and integrat-

ing with respect to x, we obtain

J
(5.21) sz(s)= z

Jy oy yd=n (G-n)
n=0(”)(l) g (3+A)H2j(8),

(eri-1y1 225

[

(s) » :
sz (k=1)! (2A+s)k+J
J . , k
(k4n=-1)1? A
+1 () Hy.  (s)
(5.22) =0 " (k-1)! (2A+3)k+n 15-n
k-1 . K
k-1, (n+g)! A
+ (.7) — H (s),
neg " (k-1)!? (2A+s)n+3+l 1k-n~1

where

5 ()= 20V g @™ dv,  §=0,1,....%-1.

The above equations are the set of 2k linear equations in 2k variables
Hij(s) (<=1,2., j=0,1,...k-1) with known coefficients.

Then we have some operating characteristics from the solution
of 2k linear equations. In order to obtain the reliability R(%),

inserting (5.18) into (5.12) we have
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k-1 k-1 . . i+]
re)= 3 5 (7 —*—~Az;311
i=0 =0 (2)3+8) |
. i+7
k-1 k-1 .. A H s
e A A O 1.”% ‘
(5.23) i=0 =0 n=0 7 n!(2A+s)$+J-n+l
k-1 < 7 7= m_{m
ey oy A 1 _ Zn(—1)4g< ) (1) JH. (8
! T-n+1 T-n-m+1" " 2n """

=0 n=0 ™ (s+)) m=0 m! (s+))

Then, inserting the solution of the foregoing set of linear equations
into (5.23), we find the Laplace transform of the reliability, and
the mean time to the first system failure by setting s=0. Similarly,

we obtain the other operating characteristics as follows.,

k-1 k-1 .. ., i+

=0 =0 s (2at+s) ™Y
(5.24) k=1 k-1 4 147

- - Joo., . A H_ (&)
+y v 3 <1+Q—n) 1n_+. —~ .
1=0 =0 n=0 v n!3(21+3)1 Jn
‘ k-1 Ai
* = e T

(5.25)  R%(e) iio = Hy (8).

The above reliability A*(s) can be obtained by using the regenerative
properties (see Kodama and Deguchi [29, 1974]), however, the other
operating characteristics are new.

Next, comnsider a two-stage Erlang failure distribution as a

special case. Then, the pdf of the time to failure is given by
£x)=)ze ME,
Then, the solution of linear equations (5.21) and (5.22) is given as
2
H10(3)=2A (2x+s)g (s+\) e,

HJJ(s)=2A2[Zg(s+A)—(2A+s)g(l)(s+x)]c,
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2
H20(3)~2A (2 +8)ec,

2
HZZ (S)—l})\ C,

where
o7lo (2aks) [ (2ts) (atstnZg D) (s+0)-422g (s+1) 1,
g(s+k)=g(0)(s+x).

And, inserting Hij(s) (2=1,2., J=0,1.) into equation (5.23), we find
the reliability R%(s);

2 2
R (8)= 105 +63s+s

(2048)°>
2
+ 22 e kisrers?)g (s40)-2 (61 +5aste)g D (s4) ]
(2)+s)
2
+ 222 2 [(6A2+6A3+32)(1—9(3+A))+A(2A2+313+32)g(1)(s+k)],
(2A+s)

and the mean time to the first system failure is

(L
E[§]= j; + 12-4g(M)+g

W
i (2(1-g0g P 003

The above result agrees with that of Kodama and Deguchi [29, 1974].

The other operating characteristcs are

2 2
Ta(s)= 10 +6XS;s
€ (20+s)
2
+ -25*E¥§-[(16x2+8xs+32)g(s+x)-x(6A2+5As+32)g(1)(s+x)],
(2X+s)
1
__5 8g (M) -3)g (&)
To= o * )

43{2(1-g (V) )+rg (A)},
RZ(S)= 2%2(4A+S)c/s,

(1)

Re=2/{2(l—g(A))+Ag 1.

~95~



Example 5.2.2
Consider the case where time to failure is distributed

uniformly in the interval [0,1] and the repair time is constant

F(t)={ £ 0gt<l,

1 1<t
(5.26) =
G(t)= {o 0<t<1/2,
1 1/2<t.

In exampie 5.2.1 we obtained the operating characteristic by solving
the 2k linear equations instead of the Fredholm integral equation.
In this example we solve the integral equation explicitly and obtain
the mean time to the first systém failure, the expected total idle
time of a repairman prior to the system failure, and the expected
number of repairs prior to the system failure.

First let us solve the integral equation (5.13"'). For 0O<x<1,

inserting (5.26) into (5.13'), we have

H. (x)= f2+ffH9(u)du O<x<1/4,
P 0 2 =
1
(5.27) 2+f09"+ /2H2(u)du 1/4<2<1/2,
1
2+[3 /2 Hy)duw — 1/2zz<1.

For O<wx<1/4, differentiating both sides of integral equation (5.27)

with respect to x, we obtain
—é H. (x)=H_(x)
de "2 2N

Thus, using H2(0)=2, the solution of the above differential equation

is given by
(5.28) Hg(x)=2ex.

For 1/4<x<1/2, using (5.28), the solution of the integral equation

(5.27) is given by
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(5.29) Hg(x)=2e—x+1/2.

Similarly for 1/2<x<1, using (5.28) and (5.29), we have

1
(5.30)  H, (@)= [Zex /2 1/2<06<3/4,

1 -
2(2e /t-el™®) 3/4<x<l.

Furthermore, using the relation of equation (5.9), we have

H](x)= {O O<x<1/2,
_x...l/
(5.31) 2e 2 1/2=x<3/4,
2617 3/4<z<1.

Next let us calculate a,(x) and a,(x). From equation (5.26)

we have
a, ()= [(l—x)2(2+x)/6 0<z<1,
(5.32) 0 1<z,
ag(x)= {(B—Ax)/S 0<x<1/2,
,(1-x)2/2 1/2<2<1,
Lo 1zx.

Then inserting (5.28)-(5.32) into (5.13), the mean time to the first

system failure E[8] is given by

/y

1
E[8]= (123e ~-141)/24.

Similarly, the other operating characteristics are given by

- Y
1 =(299e "% -348)/96,

l/u

Re=(49e ~64)/8.

5.2.5 Remarks

The reliability of two-component parallel redundant system with
general distribution is obtained by solving the integral equation,

based upon the pdf's of the time to failure and the repair time.
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However, the integral equation is not easily solved. The procedure
developed in this section, in principle, can be applicable to the
other models such as the process which describes the behavior of the
system does not have regenerative states. Note that other techniques,

based upon Markov renewal processes, are not applicable to such

systems.

5.3 Two-Component Parallel System with Repair: T

5.3.1 Fundamental Equations
In this section we consider the stationary operating character-
istics of the two-component system with repair. We define the

following state probabilities,
PO(t,x,y)dxdy=P[N(t)=O, x<Xi(t)<x+dx, y<X3_i(t)<y+dy

for x>y and some il XZ(O)=Y(O)=O],
Pz(t,x,y)dxdy=P[N(t)=l, x<Xi(t)<m+dx, y<Y (&) <y+dy

for some il X1(0)=Y(O)=O],
P, (t,x)dx=P[N(£)=1, z<X_ (t)<wtdz, X, (t)=Y(¢)

for some il XJ(O)=Y(O)=O],
P (t,2)de=P[N(£)=2, x<¥ (t) <atdex | X, (0)=Y(0)=0].

Using these probabilities, we have the following differential equa-

tions governing the behavior of the system

3 _0 3 —
[ —B—t* + S + —'a—y—— 4+ (x)+A (y)]PO(t,x,y)—O,
3 2 0
-0
['j;; + 7;;-+A(x)+u(x)]P2(t,x)=O,
[ o + = (x)]Pg(t,x)=>\(x)P2(t,x)+f§)\ )P, (t,u,2)du.

These equations are solved under the following boundary and imitial

conditions.

-98-—



Boundary conditions:

Po(t,x,0)=fgu(u)P1(t,x,u)du+u(x)P2(t,x),

5 P, (t,2,0)=[TN P ) (6,2, u) dut [ DN G P (,u,0) dt

P, (£,0)=[0u GO, (¢, ) du,
P, (£,0,y)=P_(£,0,y)=P, (£,0)=0.

Initial conditions:

P2(0,0)=1,
(5.35)
PO(O,x,y)=P1(O,x,y,)=P3(0,x)=O.

5.3.2 Various Characteristics
We are interested in the stationary operating characteristics

of a two-component system with repair. Thus, we counsider the

following steady state probabilities
PO(x,y)=lim PO(t,x,y),
£>00

Pz(x,y)=lim Pz(t,x,y),
£t

Pg(x)=lim P2(t,x),

oo
Pg(x)=lim Pg(t,x).

t->00
General properties of Markov processes assure the existence of such
probabilities when distributions of time to failure and the repair
time have finite moments. The above probabilities are free from ¢,
and thus, the stationary probabilities are obtained by solving
equations (5.33) since the derivatives with respect to t are all

zero. The general solution of such equations is given by
P, (,y)=cH (x=y)F (x)F (),

(5.36) P (@, y)=cH, (@=y)F@)GY),
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P2(x)=c<f(x)5(x),

P (x)=cF ()G (@) +eC @) [o[7H, (y=u) £ () dydu.,

In order to find the functions HO(') and HZ(')’ and the constant €
in equation (5.36), we proceed as follows. Setting y=0, the proba-

bilitity densities along the x-axis in (5.36) are given as,
(5.37) P, (x,0)=cH,(x)F (),
' P, (z,0)=cH , @)F (@) .

Substituting equations (5.36) and (5.37) into both sides of equation

(5.34), we have the following integral equation for HO(.) and HJ(.)
(5.38) - HO (x)=f'gH1 (x~-u)g (W) dutg (),

— X — bt -
(5.39) i, (ac)—fOHO(sc u)f(u)du+fo0(u 2) F(u)du.

Further, substituting equation (5.38) into the right side of

equation (5.39), we get the following integral equation

(5.40) H](x)=a(x)+fzK(x,u)H1(u)du,

where

a (x)=[ g (@-u)+g (u=z) £ () du,
K(x,u)=[ (g (w-u-y)+g (y-x-u) 1f () dy,

and g(£)=0 for t<0. Equation (5.40) is the well-known Fledholm
integral equation. A constant ¢ is obtainable by the normalizing

equation
(5.41) f:ngO ('x,y)dydx+f§ngz (x,y)dydx+f§132 (x)dx+f°O°P3 (w)de=1.

Once we have obtained HO(x), Hz(x) and ¢, then we can compute

various operating characteristics.
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We obtain the operating characteristics using various state
probabilities and densities in case of the steady state two-component

system. Let AU be the stationary system availability. Then we have

AU=1im P[N(£)=0 or 1]

Lo

From the definitions of PO(t,x,y), Pz(t,x,y) and P2(t,x), integrat-
ing these functions with respect to x and y, and adding, the station-

ary availability is obtained as following.
o e o 0 o
4, = o[oPp @ y)dydet [ [P, (e y)dydet [ 0P, () dec.

Then using ecuations (5.36) and (5.41) we obtain the stationary

availability
(5.42) A =cf [ 18, @y)F)+H, @G () Yay+G (@) 1da,

where
ot ﬁ%{1+j; H, @F @)dw 1+ [ o7, @) F @) F () duds,

and
Wi=[Csde (e .
0
Now we consider the probability that a repairman is free.

Denote by I, such probability. Then we have

I =1im P[N{(£)=0].
S
froo

Thus from the definition of PO(t,x,y), Ié can be written as
(5.43)  IT_=["[%H (c-y)F(@)F (y)dady.
) s /0070

Next, we consider the expected number of system failures per
unit time. Using the definition of Pg(t,x), we have the expected

number of system failures
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(5.44) Fe=P2(O)

=C.

5.3.3 Some Special Cases
We shall consider the case in which times to failure obeys a k-
Eriang distribution and the repair time is arbitrarily distributed.

In this case, the pdf of the life time is given by

k k-1
At -\t
(5.45) )= =137 ©
We shall not solve the integral equation (5.40), but will obtain
the operating characteristics using the relation of the integral
equations (5.38) and (5.39) instead of (5.40). 1Inserting equation
(5.45) into equations (5.38) and (5.39), we have

Ho(x)=f§Hz(u)g(x—u)du+g(x),
Ak

L I -AU . ¢ k=1 2u
(5.40) Hl(x)=“(7€—_——l—)—‘!—e ”O O(M)(oc u) e du
+f (u)(x+u)k -1 Audu].

In order to obtain some operating characteristics, let us

define
™ j —-A\U . . _
Htj—fOHi(u)u'e du, 2=0,1, J=0,1,...,k-1,

and multiplying equation (5.46) by xJe_xx and intergrating, we obtain

J
o T () 1T o, e 1)7g 9 ooy,
" n=0
i
B gy (kin-1)! _-n_-(k+n)
G4y Ey s ) T #oj-n
+7< ok K1y )L - Gre1-k) = e+ E
=0 (k+1)! i
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where

g(j)(X)=f:(—u)je—kug(u)du,

The above equations are the set of 2k linear equations in 2k variables
Hij with known coefficients.
Then, we have the operating characteristics from the solution

of 2k linear equations. In order to obtain the system availa-

bility, inserting (5.45) into (5.42) we have

k-1 . 7 .
A=cz [0t i!(m!)'lx””+m'lg(m)(x)
v N
=0 m=0
k-1 g
£33 ¥ (t+i " y (1) -1 G l i=J4n 1H0n
(5.48) J=0n=0
7 T=-n
5 anTE, 0" - enThen” =10 311,
n
n=0 m=0
where
. k-1 .
c—lnu—l{l+ ) (i!)'lxlyz.}
. T
=0
k=1k-1 .
+3 5 % ( +7 Ty (uy I 1H0n.
1=07=0n=0

Then, inserting the solution of the foregoing set of linear
equations into (5.48), we obtain the system availability AU
Similarly, we obtain the idle time probability for the repairman

I8 and the expected number of system failures per unit time Fe

k-1k=1 g

T3 I % (z+q n)( ) -1 n l ~L=F+n~ 1H0n,
1=07=0n=0
F =c.

e
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Example 5.3.1

Consider an exponential failure time distribution as a special
case.
Fey=re M,
Then equation (5.46) becomes
Hy =g WH, 4G (XD,
H10°H 0"
The solution of the above equation is given by

Hyn=H0=9 W)/ (1=g (1)) .

Thus inserting HOO and HJO into equation (5.48) we find the stationary

availability

A =@2-gO))/(g+2r/w),

and similarly we obtain the idle time probability for the repairman

and the expected number of system failures

I =g () /(g )+2a/w),
F =21 (1~g (A\))/ (g (\)+21/u)

The above resluts coincide with those obtained by Gaver [20, 1963].

Example 5.3.2
Consider a two stage Erlang distribution. By setting k=2 in
equation (5.45) we get a two-stage Erlang distribution
2, =X
=22,
Hence, by equation (5.47), we have

Hyp=g G+g OO,

__ @D (1)

-1
B = "
27 () 42

10 01)’
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_— _'l gy . T ~
Hy,=2 " Hy G0 0

The solution of the above equations is given by

022D
Hy=g M) =g 00 ey,

(1)

H,ym@)=2g Y 00y /e,

(1)

H,,=(@)=-Ag """ (A))/xe s

where

(1

Cy=2(1=g(A))+rg "7 (1).

Thep, inserting HOO’ HOZ’ H]O and H]] into equation (5.48) we obtain

the stationary availability
A_=18(142) /342 (30-8)g (V) /22 (4-30)g () 2 /a2 (6-71)g 1 (1)

W yan (1-3) (¢ 0?3

+12(A-1)g(A)g
11ax 2-2g P 0y ra10g () -29 1) 21600 D (011,
and the idle time probability for the repairman and the expected
number of system failures as,
T =105 ()-29 ) *-62g P 0 17 1ar 2-2g P )y
+10g (V) -29 (V) =620 P ()3,
F = M20-g 00D 1t e-ag P o
+10g ()-29 W) =6rg P (1) ).

Example 5.3.3

We shall solve the integral equation (5.39) where we assume
that the time to failure and the repair time are exponentially dis-
tributed. The pdf's of the time to failure and the repair time are

Fey=re M,

-ut
g (t)=ue ne
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and thus, integral equations (5.38) and (5.39) are written to be as

_(x . —-uu —ux
HO(x)—fOH](x ulue  dutue ,

HZ(x)=ng0(x—u)Ae_Audu+f:H0(u—x)xe~xudu.

Differenting both sides of the above equations with respect to x,

we obtain the following equation
Ly @y=ult, @)1, @)
dx"0 1 0 ’

Ly @=r 1, @)1, @]

The general solution of the differential equation is given by

e—(k+u)x

b

HO(x)= u o+
H](x)= u + e~(k+U)x.

Then we obtain the state probabilitis ag,

_ = (xty)
PO(x,y)—cge R

e o ATmUY
P](x,y)—cge s

Pg(m)=02e_(k+“)x,

AHu ~Xx_e-(x+p)x

g e

Py(x)=c )
where
-1 2 2 2

ey T=TH2TH2) /20

Thus, we have the following operating characteristics
2 2
A= (UE2)) /(W 22 7+20)
2 2 2

Ié=u [ (uTH2X74200) ,

Fe=2A2u/(u2+2K2+2Au).
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5.4 Simple Replacement Policy for Two-Component System

5.4.1 (ABC)-Policy without minimal Repair

In this section we consider the operating characteristics of
a simple replacement policy for two-component system. The system
consists of two identical components working in series. We don't
consider minimal repair. In this case, a simple replacement policy

implemented is an (ABC)-policy auch as,

(a) if component 7 reaches at age C and the other component 3-7
is operating in the interval 0;§3_i<A,-then replace component

7 only,

(b) if component 7 reaches at age C and the other component 3-7
is operating in the interval A§§3_i<c, then replace both com-

ponents together,

where T = means that component 7 is failed. This policy is similar
to an oppotunistic age replacement policy (OARP).

The cdf's of the time to failure and the repair time of single
component are similar to Section 5.2. Furthermore, the cdf of the
time consumption required for preventive replacement of single
component is denoted by Gj(t), and the failure replacement and
preventive replacement of bothe components have the general distribu-

tions G2(t) and Gg(t), respectively.

5.4.2 Fundamental Equations

We consider the operating characteristic of the two-component
system under (ABC)-policy. Let Yz(t) represent the time that has
elapsed up to time £ since the beginning of the current preventive
replacement job of of single component. Further, let YZ(t) denote the
time that has elapsed up to time ¢ since the beginning of the
current failure replacement job of both components, and let Yg(t)
denote that of the current preventive replacement job. The other

notations are similar to Section 5.2. Then we define the following
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state probabilities:
P (t,x)da=P[2<X, (£)=X, (t)<w+dr, N(t)=0] X_(0)=0],
P (¢,@,y)dudy=P [x<X, (t) <widz, y<X,(t}<y+dy, V(£)=0| X (0)=0],
P, (t,@,y)dy=P X, (£)=c, y<¥(t)<y+dy, N()=2| X_(0)=)],
P (t,,y)dy=P[X, ()=x, y<¥(t)<y+dy, N(t)=2| X (0)=2],
P, (t,x2,y)dy=P X, ()=, y<¥ (ti<y+dy, N(¥)=2| X (0)=2],
P (t,2,y)dy=P[X, (t)=x, y<¥,(t)<y+dy, N(t)=2] X _(0)=2],
P6(t,y)dy=P[y<Y2(t)<y+dyl X (0)=0],
P7(t,y)dy=P[y<Y3(t)<y+dy[ X, (0)=0].
Using these probabilities, we have the following differential equa-
tions governing the behavior of the system under (ABC)-policy:

5 3 _
[ v + Y. -+2A(x)]P0(t,x)—O,

3 9 =
+ e + 5 -+A(x)+A(y)}PZ(t,x,y)‘0’

+ - +U(y)]P2(t,CC,y)=O,

+ +u(y)]P3(t,93,y)=0,

(5.49)
[ 3¢ + E +u1 (y)]P4<t9x3y)=O,
[ 57 + 5,7 ;1P (E,%,)=0,
[ 2 + o 4, () 1P, (£,)=0,

o 4, (1P, (£,)=0.

These equations are to be solved under the following boundary and

initial conditions.

Boundary conditions:
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¢ ¢
Py (t,0)=[u, P, (t,y)dy+ [ ou ()P, (8,y)dy s
t~ : t-
- -
P (,0,2)=[ TP, (8,2,)dyH | ", P, (F,2,)dy,

PZ(t’x’0)=>\ (-'L')PO(t,x)"‘,rlgin(t,x_'_A’C))\ (Z/)Pz (t’xay)dy’

fmin(t,x+A,C)
0

Po(t,2,0)=X(x)F, (t,x)+ AN@)P,(t,y,x)dy,

P4(t,x,0)=PZ(t,x,C),
(5.50) P (t,2,0)=P,(t,C,x),
_rmin(£,C)
P6(t,0)—fA M@)P, (¢,2)dx

Cmin(C,x+A)
+fAfmax(A,x—A){x(x)+x(y)}P1(t:x,y)dydx

+Igf2in(t’x+A’C)x(¢)Pl(t,x,y)dydx

+fgfzin(t’y+A’C)K(y)P1(t,x,y)dxdy,

c

max(A,C—A)pJ(t’x”)dx

P (t,0)=P, (¢,C)+[

C
+fmax(A,C—A)P](t’C’y)dy°

Initial conditions:
P0(0,0)=l,
(5.51) P (0,x,y)=F,(0,2,y)=P,(0,2,4)=0,
P,(0,2,y)=P (0,2,y)=P,(0,y)=F,(0,y)=0.
Similarly to Section 5.3, we will obtain the following steady state
probabilities:
Po(x)=11m Po(t,x),

f e
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P (z,y)=lim Pl(t,x,y),

£

Pz(x,y)=lim Pg(t,x,y),

Lo

Pg(x,y)=lim Pg(t,x,y),
P4(x,y)=1im P4(t,x,y),
P5 ‘(ny)'—’lim P5 (t,x,y) ]

Pé.(y)'—'lim Pé,(t,y),

T

P,(y)=lim P (%,y).

ey

The above probabilities are obtained by solving equation (5,49) since
the derivatives with respect to ¥ are all zero. The general solution

of such equations is given by

P, (x)=c'ﬁ(x)2, for 0zx<C,

P (x,y)=cH(z-y) F(2)F (y), for 0z, y<c,

Py (@) =c(F @)y @45 O O o yF ) paoduiB @),
for O<x<A,

P, (2,y)=e T @) 7 @+ O g (o) F () £ ) 1T ()
for 0zx<A,

P4(x,y)=cH(x—C)?Qx)f(C)Ez(y), for 0<x<A,

P, (x,y)=cf1(c—x)’i'(c>'ﬁ(x)51 W), for 0<x<A,

P, @)=c{ [SF (2)f (@) de
C mi — —
+f R O T o) (@) P 0OAF () (@) Yl
+ ARG g (VP (o) £ () dudl

+J‘13J'I£I\1in (C ,U+A)H(m_u)‘ﬁ(x)f(u)dudm}*G-g (y) ’
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C

max(A,C_A)H(x—C)F(x)F(C)dx

P, (y)=¢{'ﬁ(c)2+f

C — = _
+jmax (A,C_A)H(C-—x)F(C)F(x)dx}GS ().

where

H(x)=f(x)+f‘(‘)‘i“ (@850 g (osa) £ () dutH (C-2)F(C)

H(-z)=H(x),
1 (Cs, .2 crC -
— = [ F @) "des[ [ [ @y F (2)F () dydz

+ 2 M F @ @[y O p @) F @) ) dy e

+ __2_..J'AH (x-C)YF (x)F (C)dx
H,70

1
u

UF@ s @ds
2

C mi - —
+] SR o ooy (F () ()+F @) £ () Yyl

+ o ARG oy T ) £ () dyde

+ = F@R2f @0 F@T (C)dzl.
3 b d

5.4.3 The Operating Characteristics

We shall obtain the following operating characteristics; the
system availability, the expected number of replacements of single
component per unit time and the expected number of replacements of
both components per unit time. They are of great importance in
replacement theory.

Consider the stationary abailability. Now denote by Av the
stationary availability. We have

Av=lim PN (t)=0].

‘£-ro0
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From the definitions of PO(m) and Pz(x,y), integrating these

functions, the stationary availability AU is given as

. C c,C
AU:ii: {fOPO(x)dx+fOfOP1(x,y)dxdy}.

Then using equation (5.52) we obtain the stationary availability
C— C = =
Av=c{fOF(x)2dx+f0f8H(x—y)F(x)F(y)dxdy}.

Let Rsf denote the expected number of failure replacements of

single component per unit time in the long run. Then we have

. A A
Rsffllm {fop2(t,x,O)mIOPS(t,x,o)dx}.

£->c0

Thus from equation (5.52) we have

=201 [(F (2) £ () dwot [

min( +A,C)
Rsf o “*

H(x-y)F (x) f () dydx}.

Similarly, 1let Rsp denote the expected number of preventive
replacements of single component per unit time. Then we have

Ryp=1im {f‘éP4(t,x,O)dx+f‘gP5(t,x,0)dx}

t

20 i ‘gH (x-C)F (z)F(C)dx.

Next, let RP denote the expected number of common failure

f

replacements of both components per unit time. Then we have

R ,=1im P_(t,0)
ef v g

~e{2[F@)f @)de

+j2fmin(c,x+A)

max (C gy @) T @ F@+F ) f (@) Ydude
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+zfAfmin(C,x-}-A)

0’A H(z=y)F (y) f (x)dydzx}.

Further, let Rep denote the expected number of common preventive

replacements of both components per unit time. Then we have

B op=lim P_(£,0)

L0

c

= N2
=elr(©) +2fmax(A,C—A)

H(z-C)F(x)F(C)dx}

5.4.4 Special Case
Consider the case where the time to failure obeys an exponential

distribution. Then, the pdf of the time to failure is given by

f(t)=ke—lt.

In this case, the solution of integral equation (5.52) is given by

A (1- -AC)
H(x)= A = 7 (A=C) for 0zx<C-A, A<C<2A,
e (l-e )
A (1-e"*% for C-A<x<A, A<C<2A,
M (1 PARO)) (4 AC
rett for 2A<C.

Thus we can obtain the operating characteristics.
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5.5 Simple Replacement Policy for Two-Component System with

Minimal Repair

5.5.1 (ABC)-Policy

In this section we consider the operating characteristics of
a two-component system with minimal repair. The system consists of
two identical components working in series. The simple replacement
policy implemented is an (ABC);policy such as,
(1) when the two-component system is operating,

(a) if component 7 reaches at age C and the other component 3-7

is operating in the interval Ozx 7:<A, then replace compo-

3~
nent 7 only,
(b) if component i reaches at age C and the other component 3-7

is operating in the interval A<x 7:<C, then replace compo-

nents 1 and 2 together. >
(2) when the two-component system fails,
(a) if the age . of component 7 is in the interval Oégi<B,
for =1 and 2, then carry out minimal repair,
(b) if the age x; of component Z is in the interval O§$i<A

and the other component is in the interval B<x i<C, then

F—
replace component 3-7 only and carry out minimal repair,
(c) in the other case replace components 1 and 2 together.
The time consumption required minimal repair has the general dis-

tribution GO(t). The other distributions are similar to Section 5.4.

5.5.2 Fundamental Equations

We consider the operating characteristics of the two-component
system under (ABC)-policy. Let YO(t) represent the time that has
elapsed up to time 7 since the beginning of the current minimal repair

job. We define the following state probabilities
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P, (t,2)de=P (<X (£)=X ,(¢) <adz, V(t)=0| X_(0)=0],

Pz(t,x,y)dy=P[X1(t)=X2(t)=x, y<Y0(t)<y+dy,
N(t)=1| x_(0)=0],

P, (t,y)dy=Ply<¥,(t)<y+dy| X_(0)=0],

Pg(t,y)dy=P[y<Y3(t)<y+dy| X_(0)=0].

Using these probabilities, we have the following differential equa-
tions governing the behaviour of the two-component system under

(ABC)-policy,

3 3 ot
[ _‘5'1;‘ + '8?' +2A () ]Po(t,x)=I[O’B) (x)JOUO(y)PZ (t’x’y)dy’
for 0O<x<C,
' d 3 B
(5.56) [ ~52'+ 5§~.+ uo(y)]Pz(t’x’y)"O: for 0<x<B,

) ]
[ ¢ T S + u2(y)]P2(t,y)=O,
)

3
[ 5zt 55—'+ ug(y)]PS(t,y)~O.
These equation are to be solved under the following boundary and
initial conditions.

Boundary conditions:

t
P,y (t,0)=[ luy (NP, (t,y) g () Po(t,y))dy,

P](t,x,0)=2X(x)P (t,x), for 0<x<B,
(5.57) c 0
. P2(t,0)=j'B2>\(x)P0(t,x)dx,

PS(t,O,O)=O.
Initial conditions:
P,.(0,0)=1,

0

G538 b 0,2,9)=P,(0,5)=P, (0,y)=0.

Similarly to Section 5.3, we obtain the following steady state

probabilities
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P (x)=1lim P
0 iy O
P, (x,y)=1im P, (t,z,y),
£
P, (y)=1im P_(t,y),
2T n ety
P, (y)=1lim P (t,y)-

£

(t,x),

Then the general solution of these equations is given by

Pylx)=¢ ¢ 0<x<B,
oF () 27 (B) 72 B<x<C,
(5.50) - F7(@:¥)=2e1 @6, @), 0<x<B,
P, (1)=cF(©) T (®) Ty ),
Pg(y)=265%(y)fg?(x)f(B)_zf(x)dx,
where

¢ ep S F@)F )™ ot %0 fon () dot %f(C)?(B)'

+ 2 [F@)F ) (x)da,
Mo B

-1 e .
Wy —fotgi(t)dt, 1=0,2,3.

5.5.3 The Operating Characteristics

~

)Z

We shall obtain the following operating characteristics; the

stationary availability, the expected number of preventive replace~

ments, the expected number of failure replacements and the expected

number of minimal repair. They are of great importance in replace-

ment theory.

Consider the stationary availability. Now denote by Av the

stationary availability. We have
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Au=lim P{N(£)=0].

£>c0
From the definition of PO(t,m), integrating this function, the

stationay availability can be written as

A

. C
v=11m fOPO(t,$)dx.
—>C0

t
Then, using equation (5.59), we obtain the stationary availability

(5.60) 4 =clB+[TF(2)°F(B) 2dr).

Let Mé denote the expected number of minimal repair per unit time

in the long run. Then we have

M, =lim P[N()=1,Y,(£)=0].

oo

Thus, from the definition of Pl(t,x,y), Mp is given as,

e~

. s B
(5.61) M_=1im [P, (s, 0)d

£
B
=2c[ ) (x)dzx.
Similarly, let Rep denote the expected number of preventive

replacements per unit time. Then, using the definition of P2(t,y),

we have
(5.62) R _=cF(C)F®)2
ep

Let Ref denote the expected number of failure replacements per unit

time. Then we have

(5.63) Ref=2cfgﬁ<x)f(3)‘2f(x)dx.

Notes for Chapter 5

The two-component redundant system has been treated previously
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by using the supplementary variable method (see Gaver [20, 1963],
Liebowity {31, 1966], Linton and Saw [33, 1974], and Linton [32,
19761), semi~Markov processes (see Osaki [38, 1970]) and regenerative
properties (see Gnedenko, Belyaev and Solovyev [21, 1969], Kodama

and Deguchi (29, 1974], Osaki [39, 1970]). The operating character-
istics of the (n,N) policy are computed byJorgenson, McCall and
Radner [25, 1967]. Bisides those of (t,T) policy appear in Tahara
and Nishida [50, 1975], and those of OAPR appear in Berg [8, 1978].
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