|

) <

The University of Osaka
Institutional Knowledge Archive

Title | XbUXy MEREAZAWCEBERY X7 LAREEICHE
ERAYIE

Author(s) | =74, &=

Citation |KFRKZ, 1997, HLXHmX

Version Type|VoR

URL https://doi.org/10.11501/3129025

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Methods and Application of Petri Net Unfoldings for

Discrete Event System Verification

January 1997

Toshiyuki Miyamoto

Methods and Application of Petri Net Unfoldings for

Discrete Event System Verification

(R}) Ry NEBZ AV ERESR Y AT MR BH%)

Toshiyuki Miyamoto

A dissertation submitted in partial fulfillment
of the requirements for the degree of
DOCTOR of ENGINEERING
at
the Graduate School of Engineering of Osaka University
Osaka, Japan
January 1997

Abstract

A Petri net is a formal model of concurrent systems which can be seen as an extension
of automata theory to include concurrency with the aid of algebra and graph theory.
Besides the advantages of the formal description of concurrent behavior that provides
verification ability based on linear algebra, Petri nets are also attractive since they
have a graphical representation. The formalism of Petri nets allows one to develop

a detailed investigation method of complex behavior of a discrete event system.

Thus, the major strength of Petri nets is their ability of analyzing many prop-
erties and problems associated with the correctness in the design of discrete event
systems. Reachability, liveness and safeness are fundamental problems in both ap-
plications and theoretical development of using Petri nets. The reachability problem
in Petri nets can be described as; for given an initial state and a target state, “Is
the target state reachable from the initial state?” It has been shown that the reach-
ability problem is decidable, but it needs at least exponential time and space with
respect to the size of a problem. When we restrict the structure of Petri nets, we can
solve these problems in polynomial time. The methods, however, strictly depend
on the structure, and it is impossible to extend the methods for Petri nets without
restriction. Recent researches are made concerning on the computational aspect of

these problems.

This thesis discusses a novel verification methodology of discrete event systems.
The proposed method is based on the partial order defined in an occurrence net
of events, called an unfolding. In this thesis, an efficient verification method is

developed motivated with the application to the synthesis of asynchronous circuits.

We first study the construction of unfoldings. Unfoldings provide three types of

I

IT

relation between instantiations of events. These relations play an important role in
the verification of Petri nets. The efficiency of the construction of unfoldings affects
much on that of the verification of properties of Petri nets. The proposed method
efficiently constructs unfoldings. Experimental results shows efficiency the method.
Next, we propose an efficient method of verification based on unfoldings of Petri
nets. We introduce a concept of concurrent-relation graphs. The graph represents
concurrent relation between instances in an unfolding. With the concurrent-relation
graph, we can verify the reachability problem and the upper bound problem in
an efficient way. Though the computational complexity of these two problems is
exponential in theory, experimental results shows that the method can solve these
problems in practical time in most case. Finally, we apply the unfolding method
to the synthesis of asynchronous circuits which is the original motivation of the
research of the thesis. Asynchronous circuits are important candidates of the next
generation architecture such as fast and low power consumption devices. In the
synthesis of asynchronous circuits modeled by Petri nets, however there exists a
substantial problem of so called state explosion. To avoid this problem, state space
reduction and parallel algorithm based on an efficient unfolding generation can be
derived. A novel logic function deriving algorithm is proposed which is an extension
of reachability problem considered in the previous chapter. The experimental results

demonstrate the efficiency of the method compared with the existing methods.

Acknowledgments

I wish to express my appreciation to Professor Sadatoshi Kumagai of Osaka Univer-
sity for supervising this thesis, encouraging me during the course of this work and
providing me with the ideal environment for my research activity.

I especially wish to express my sincere gratitude to Professor Dong-Ik Lee of
Kwangju Institute Science and Technology for his continuous guidance and numer-
ous valuable discussions throughout this work.

I am thankful to Professor Sinzo Kodama of Kinki University, Professor Hajime
Maeda of Osaka University, Professor Toshimitsu Ushio and Dr. Shigemasa Takai
for his encouragement throughout this work.

My sincere thanks are due to Professors Kenji Matsuura, Kiichiro Tsuji, Ry-
0zo Aoki, Takatomo Sasaki, Jyunji Shirafuji, Tatsuhiko Yamanaka and Masahiro
Nakatsuka for serving as members on my dissertation committee.

I am grateful to Professor Alex Kondratyev of the University of Aizu for his
helpful comments on this work.

I would like to appreciate Professor Takashi Nanya of University of Tokyo for his
helpful comments. |

I would like to thank the members of Kumagai Laboratory at Osaka University
for their kindly cooperation. In particular, Mr. Saito and Miss Hachikawa are to
be thanked for helping me. Also I would like to thank Miss Momosaki for her
encouragement.

Finally, I warmly thank my parents, who always support and encourage me.

I

Contents

1 Introduction

1.1 Discrete Event Systemso
1.2 Contributions and Organization of the Thesis
2 Preliminaries
2.1 Petri Net Model for Discrete Event Systems L
2.2 Behavioral Properties of Petri Nets
2.2.1 Reachability
2.2.2 Boundedness o
2.2.3 LIVENESS e e e e e e e
2.2.4 Reversibility o o o
2.2.5 Persistenceo e
2.3 Analysis Methods
2.3.1 The Reachability Graph Method
2.3.2 Incidence Matrix and State Equation Methods
2.3.3 Reduction and Decomposition Methods
2.3.4 The Symbolic Model Method
2.3.5 The Partial Order Method
3 Constructing Petri Net Unfolding
3.1 Imtroduction
3.2 Preliminaries o e
3.3 Improved Algorithm to Construct Unfolding

3.3.1 New Condition for Cutof Points

v

10
13
14
18

VI CONTENTS

3.3.2 Improved Algorithm 32

3.4 Experimental Results 36
3.5 Concluding Remarks 37
4 Verifying Petri Nets with Unfoldings 39
4.1 Introduction 39
4.2 Concurrent-Relation Graph 40
4.3 Reachability Verification with Unfoldings 48
4.3.1 Reachability Problem 48
4.3.2 Unfoldings and the Reachability Problem 48
4.3.3 Experimental Results and Comparison 54

4.4 Upper Bound Verification with Unfoldings 58
44.1 Upper Bound Problem 58
4.4.2 Unfoldings and Upper Bound Problem 58
4.4.3 Experimental Results and Comparison 99

4.5 Concluding Remarks 64

5 Synthesis of Asynchronous Circuits with Petri Net Unfoldings 65

5.1 Imtroduction 65
5.2 Synthesis of Asynchronous Circuits from STG’s 69
5.3 Synthesis of Asynchronous Circuits with Unfoldings 73
531 P(T)-Net’'s. i, 74
532 Tree 77
5.3.3 Next State Function Derivation 78
5.3.4 Several Techniques to Improvement 81
5.4 Experimental Results 89
5.5 Concluding Remarks, 92

6 Conclusions 93

Chapter 1

Introduction

1.1 Discrete Event Systems

A discrete event system is a dynamic system that evolves according to the spon-
taneous and asynchronous occurrence of events. Examples of discrete event sys-
tems include flexible manufacturing systems, communication networks, computer
operating systems, traffic systems, database management systems and many other
asynchronous distributed systems. Several models for discrete event systems have
been proposed. The simplest models, called untimed models, ignore the timing of
occurrence of events, and deal with only the order of event sequences. Untimed
models are classified into logical models such as automata and Petri nets[48, 40]
and algebraic models such as communicating sequential processes (CSP)[14] and a

calculus for communicating systems (CCS)[32].

A Petri net is a formal model based on concepts from automata theory, linear
algebra and graph theofy. Besides the advantages of the formal description of con-
current behavior that provides verification ability based on linear algebra, Petri nets
are also attractive since they have a graphical representation. In an early stage of
design process, this graphical representation offers a visual aid to understand inner
structure of a concurrent system; it gives a clear image of concurrency, sequentiality,
and choice, which are the fundamental features of discrete event systems both in a

intuitive visual level and a concrete graph-theoretical level. Moreover, the formal-

2 CHAPTER 1. INTRODUCTION

ism of Petri nets allows one to develop a detailed investigation method of complex

behavior of a discrete event system.

To verify the correctness of discrete event systems is not a simple matter. Major
strength of Petri nets is their ability of analyzing many properties and problems
associated with discrete event systems. Two types of properties can be studied with
a Petri net model; those which depend on the initial marking, and those which are
independent of the initial marking. The former type of properties is referred to as
marking dependent or behavioral properties, whereas the latter type of properties
is called structural properties. Most of control problems of discrete event system
such as delivering only correct results, termination, and absence of failure, etc., can
be formulated by reachability problem in net theory. For given an initial state and
a target state, the reachability problem in Petri nets can be described as; “Is there
any firing sequence that transfers an initial state to a target state?” It has been
shown that the reachability problem is decidable, but it needs at least exponential
time and space with respect to the size of a problem. Deadlock-freeness and absence
of overflow can be formulated by liveness and safeness in net theory, respectively.
Reachability, liveness and safeness are fundamental problems in both applications
and theoretical development of using Petri nets. As other fundamental properties
of Petri nets, we can mention boundedness, reversibility, persistence. coverability,
synchronic distance and fairness. These properties are structural properties, and
similar to the reachability problem, we need at least exponential time and space to

analyze these properties.

In analyzing these properties, several methods have been proposed, for ekample a
reachability(coverability) graph method[25, 28, 40], a matrix equation approach[40],
reduction or decomposition techniques[40, 26, 44], a symbolic model method[47, 12]
and an unfolding method|[29, 19, 37]. The reachability graph method is an exhaus-
tive method. The method generates all the state space, therefore the method is a
strong analysis method with the cost of constructing huge state space. Therefore the
method is applicable only for small nets because of the state space explosion. The
matrix equation approach or reduction and decomposition techniques are efficient

methods comparing with reachability graph approach. These methods, however,

1.2. CONTRIBUTIONS AND ORGANIZATION OF THE THESIS 3

have limitation: the matrix equation approach can solve only a few problems, and
decomposition techniques have strong restriction on the structure of Petri nets. The
symbolic model method[47, 49, 12, 22] can deal with huge nets by using Binary De-
cision Diagrams (BDD’s)[2]. Symbolic BDD traversal of a reachability graph allows
us to obtain its implicit representation that is more compact than explicit enumer-
ation of states. The BDD traversal, however, can be executed efficiently only if
the property to be verified can be formulated by characteristic predicate. Therefore
this method is effectively applied to systems modeled by k-bounded nets and finite
capacity nets. The unfolding method was introduced to avoid generating the reach-
ability graph for a bounded Petri nets[29, 19, 36]. It provides three types of relation
between instantiations of events in the Petri net. Though the computational com-
plexity of the symbolic model method and the unfolding method is still exponential,
these methods perform efficiently in fairly general cases. The aim of these methods
is to solve problems in practical time and space.

This thesis discusses a verification methodology of discrete event systems mod-
eled by bounded Petri nets. The methodology is based on the partial order provided
by the unfolding. The objective of the thesis is to provide practical verification
method in the various aspect of the design of discrete event systems. This thesis is

organized as stated in the next section.

1.2 Contributions and Organization of the Thesis

Chapter 2 gives basic notations on describing Petri nets and verifying nets.

In Chapter 3, we study a constructing method of unfoldings. Unfoldings were
proposed by McMillan in 1993[29]. Unfoldings provide three types of relation be-
tween instantiations of events. First, we point out a problem in the McMillans’s
unfoldings. That is McMillan’s unfoldings happens to be redundantly large. On the
other hand, to use unfoldings for verification, care must be paid on the reduction
size of unfoldings. An efficient construction method is proposed to achieve proper
reduction of the size of unfoldings, and as a result the reduction of the time to

construct an unfolding can be obtained.

4 CHAPTER 1. INTRODUCTION

Chapter 4 considers verification problems on Petri nets with unfoldings. First,
we introduce a concept of concurrent-relation graphs. The graph represents concur-
rent relation between instances in an unfolding. We introduce two graph division
methods, and it is shown that maximal complete subgraphs is preserved by the di-
vision methods. Next, it is shown that the reachability problem results to find a
maximal complete subgraphs in a concurrent-relation graph, and then an algorithm
to find the maximal complete subgraph is shown. Finally, we introduce a new prob-
lem, called the upper bound problem, and show that the upper bound problem also
reduces to find the maximum complete subgraph in a concurrent-relation graph. An
algorithm to find the maximum complete subgraph is shown for this problem.

In Chapter 5, we apply the unfolding method to the synthesis of asynchronous
circuits. Asynchronous circuits are important candidates of the next generation
architecture such as fast and low power consumption devices. In the synthesis of
asynchronous circuits modeled by Petri nets, however there exists a substantial prob-
lem of so called state explosion. That is we have to generate the whole state space.
To avoid this problem, state space reduction and parallel algorithm based on an
efficient unfolding generation is discussed. We introduce concepts of P-Net’s, T-
Net’s, tree, congruent relation, optimal tree selection and nesting. The P(T)-Net’s
are sub-nets of an unfolding, and they can be obtained by using concurrent relation
between instances in the unfolding. We have succeeded to propose an efficient algo-
rithm to derive next state logic functions by using the P(T)-Net’s and other concepts
proposed. A novel logic function deriving algorithm is proposed as an extension of
reachability problem and the simulation results demonstrate the efficiency of the
method compared with the existing methods.

Chapter 6 concludes the thesis.

Chapter 2
Preliminaries

This chapter gives basic notations on describing Petri nets and verifying nets.

2.1 Petri Net Model for Discrete Event Systems

This section introduces Petri nets to describe discrete event systems.
A Petri net(PN) is described by a five-tuple[40, 48]

PN = (P, T, F,W; M), (2.1)

where P is the set of places, T is the set of transitions, F C (I'x P)U(P x T) is flow
relations and W : F — N is a weight function, where A is the set of nonnegative
integers. It is assumed that P NT = (. An arrangement of tokens on a Petri net is
usually called a marking. In this thesis, we define a marking M as a multiset on P.
My is an initial marking. The number of tokens placed on p under a marking M is
denoted by

b(p, M). (2.2)

A Petri net structure without any specific initial marking is denoted by N =
(P, T,F,W). A Petri net with the given initial marking My is denoted by (N, My).
In Figure 2.1, an example of Petri nets is shown, where places are drawn as circles,

transitions are drawn as boxes, black dots in a place are tokens and arcs are labeled

with their weights. Labels for unity weight are omitted.

)

6 CHAPTER 2. PRELIMINARIES

Figure 2.1: An example of Petri net.

A net N is called ordinary, if a weight for each arc in F is one. For a node
z € PUT, ex (resp. re) denotes the multiset of input (resp. output) nodes of z.
The number of appearing nodes in ez or ze is given by the weight function, namely,
if for nodes x; and x5, (21,22) € F and W(x1, 29) = 2, then there are two z; in ex,.
A node 7 1s called a source (resp. sink) node if ez = @) (resp. ze = §).

We review execution rules for a Petri net N briefly[40, 48]. We assume that no
two transitions can fire simultaneously in N. A transition ¢ € T is said to be enabled
at a marking M if and only if each input place p € P of ¢ has more than or equal

to W(p, 1) tokens, denoted by the following notation,
Mit> . _ (2.3)

By firing of a transition ¢, a marking M transforms to M’, denoted by the following

notation,

Mt> M'. (2.4)

1 A node is a place or a transition.

2.2. BEHAVIORAL PROPERTIES OF PETRI NETS . 7

M' is obtained from M by deleting W (p,t) tokens from each input place of ¢ and
adding W (t, p) tokens to each output place of ¢. In case of Figure 2.1, transitions ¢;
and t; are enabled at marking My = {p;, p1, 3, p3}. After a fire of transition ¢;, My
changes to new marking M; = {p1, p2}.

2.2 Behavioral Properties of Petri Nets

A major strength of Petri nets is their support of analysis of many properties and
problems associated with discrete event systems. Two types of properties can be
studied with a Petri net model: those which depend on the initial marking and
those which are independent of the initial marking. The former type of properties is
referred to behavioral properties, whereas the latter type of properties is called struc-
tural properties. This section gives basic behavioral properties and their analysis

problems, which are related to this thesis.

2.2.1 Reachability

Reachability is a fundamental basis for studying the dynamic properties of discrete
event systems. A sequence of firings produces a sequence of markings. A marking
M, is said to be reachable from a marking My, if there exists a sequence of firings
that transforms M, to M,,. The set of all possible markings reachable from M, is
denoted by,

R(N, M) or simply R(M)). (2.5)

The set of all possible markings reachable from M, without firing of transition ¢t € T

is denoted by

and the set of all possible markings reachable from M, without firing of transitions
in the set Q C T is denoted by

R(N, My)\Q. (2.7)

8 CHAPTER 2. PRELIMINARIES

The reachability problem for Petri nets is the problem of finding if M,, € R(N, M)
for a given marking M, in a net (N, Mp). The reachability problem is decidable[25,

28] although it takes exponential space and time to verify in the general case.

2.2.2 Boundedness

A net (N, My) is called bounded or safe, if for any marking M reachable from an
initial marking My, #(p, M) is bounded or at most one for each p € P, respectively.
Places in a Petri net are often used to represent buffers and registers for storing
intermediate data. By verifying that the net is bounded or safe, it is guaranteed
that there will be no overflows in the buffers or registers, no matter what firing

sequence is taken.

Upper Bound. An upper bound §(p, M) of a place p € P is the maximum number

of tokens that are placed at the place p in a marking reachable from M,, that is

t(p, M) = aremax i(p, M). (2.8)

The upper bound problem for Petri nets is the problem of finding the upper bound
for each place p € P. By finding the upper bound, we can estimate the number
of required buffers or registers. The upper bound M of the net in Figure 2.1 is as

follows:

M = {p,p1, D2, D3, D3, Pa, Ds}- (2.9)

2.2.3 Liveness

A net (N, My) is said to be live if, no matter what marking has been reached from
My, it is possible to fire ultimately any transition of the net by progressing through
some further firing sequence. This means that a live Petri net guarantees deadlock-
free operation, no matter what firing sequence is chosen. The net in Figure2.1 is a

live net.

2.3. ANALYSIS METHODS 9

2.2.4 Reversibility

A net (N, M) is said to be reversible if, for each marking M € R(N, M), M, is

reachable from M. The net in Figure2.1 is a reversible net.

2.2.5 Persistence

A net (N, My) is said to be persistent if, for any two enabled transitions, the firing
of one transition will not disable the other. Persistence is closely related to the
speed-independent implementation of asynchronous circuits[4, 19, 21, 22, 24, 30].

The net in Figure2.1 is not a persistent net.

2.3 Analysis Methods

This section reviews analysis methods of Petri nets. Analysis methods have been

classified into the following three groups so far:
1. the reachability(coverability) graph method,
2. the matrix equation approach, and

3. reduction or decomposition techniques.

Recently, other methods, called a symbolic model method and partial order approach

or unfolding method, draw much attention.

2.3.1 The Reachability Graph Method

A reachability graph RG of a Petri net PN = (N, My) is a digré,ph and is described
by a two-tuple

RG = (V&, Eg), (2.10)
where Vj is the set of markings reachable from M, in the PN, i.e.,

Vi = R(Mp), and | (2.11)
FErp = {(Ml,MJ)lMZ,MJ € VR, dt € T such that Mz[t> M]} (212)

10 CHAPTER 2. PRELIMINARIES

M,=[2020]"
t,
t,
t, t,
M, =[1100]" M,=[1011]"
M,=[0002]"

Figure 2.2: The reachability graph of the Petri net in Figure2.1.

is the set of directed edges. A directed edge (M;, M;) is drawn from M; to M;. In
Figure 2.2, the reachability graph of the Petri net in Figure 2.1 is shown. In the
figure, a marking M is written as an m x 1 column vector, where m is the number
of places. The j-th entry of M denotes the number of tokens in place Dj.

The reachability graph method is applicable only to bounded net, since, if a
given net is not bounded, the set of reachable markings increases infinitely. In case
of unbounded net, we use the coverability graph instead of the reachability graph [40].

This thesis studies only bounded nets, therefore discussion about the coverability
graphs is omitted.

The reachability graph method is the most powerful method in analyzing Petri
net properties. By using this method, all the previous properties can be verified.
It, however, requires exponential time and space in general case, therefore it is

impossible to apply this method to large Petri nets.

2.3.2 Incidence Matrix and State Equation Methods

Incidence Matrix. For a Petri net N with n transitions and m places, the inci-
dence matrix A = [a;;] is an n X m matrix of integers and its typical entry is given
by[40]

aij = a; — a; (2.13)

2.3. ANALYSIS METHODS 11

where a;’; = W(i,7) is the weight of the arc from transition ¢ to its output place j
and a;; = W(j,1) is the weight of the arc to transition ¢ from its input place j. Let

us consider the Petri net shown in Figure2.1. Its incidence matrix A is given by

Pr P2 P3 P4

- -

t{—-1 1 -2 0

A= (2.14)

ty | 1 0 1 -1

State Equation. In writing matrix equations, we write a marking M as an m x 1
column vector. The j-th entry of M; denotes the number of tokens in place j
immediately after the k-th firing in some firing sequence. The k-th firing vector uy
is an n x 1 column vector of n — 1 0’s and one non-zero entry, a 1 in the i-th position
indicating that transition ¢ fires at the k-th firing. Since the i-th row of the incidence
matrix A denotes the change of the marking as the result of firing transition ¢, we

can write the following state equation for a Petri net[39, 40]:
My=Mi_ 1+ A" , k=1,2,--- (2.15)

The state equation provides a necessary condition for the reachability problem[40].
Suppose that a destination marking M} is reachable from M, through a firing se-
quence uj,us,- - ,ug. Writing the state equation (2.15) for ¢ = 1,2,---,d and

summing them, we obtain

d
Mg=My+A") (2.16)

k=1

which can be rewritten as

ATz = AM (2.17)

d

where AM = My — My and =z = E ur. Here z is an » X 1 column vector of
. . . kzl . . .

nonnegative integers. The existence of such a vector z is the necessary condition for

that M, is reachable from M,.

12 CHAPTER 2. PRELIMINARIES

Structural Boundedness. A Petri net N is said to be structurally bounded if it
is bounded for any finite initial marking My. For structural boundedness, there is a

well-known proposition[40].

Proposition 2.1 A Petri net N is structurally bounded if and only if there exists

an m-vector y of positive integers such that

Ay <0. (2.18)

Invariants. An integer solution y of the homogeneous equation,
Ay =0 | (2.19)

is called an S-invariant, and an integer solution x of the transposed homogeneous
equation ATz = 0 is called a T-invariant. |

The set of places (transitions) corresponding to nonzero entries in an S-invariant
y > 0 (T-invariant z > 0) is called the support of an invariant. A support is
said to be minimal if no proper nonempty subset of the support is also a support.
An invariant y is said to be minimal if there is no other invariant y; such that
y1(p) < y(p) for all p. Given a minimal support of an invariant, there is a unique
minimal invariant corresponding to the minimal support. We call such an invariant
a minimal-support invariant. The set of all possible minimal-support invariants can
serve as a generator of invariants. That is, any invariant can be written as a linear
“combination of minimal-support invariants[31]. In [27], a fast algorithm to obtain
all minimal-support invariants is discussed. ‘

The upper bound discussed in subsection 2.2.2 can be calculated by using minimal- -
support S-invariants for structurally bounded Petri nets. The upper bound is given

by the following equation.
#(p, M) < min[M v/ yi(p)] (2.20)

where the minimum is taken over all nonnegative minimal-support S-invariant y;
such that y;(p) # 0. It is shown in [51] that this upper bound can not be improved

by using any other invariants. This method can be used only a case where, for each

2.3. ANALYSIS METHODS 13

place p € P, there exists at least one S-invariant y such that y(p) > 0. Let us consider
the Petri net shown in Figure2.1. Its incidence matrix A is given by equation (2.14).
y1 = [1101]" and y, = [0211]" are minimal-support S-invariants. Consider
equation (2.20) for place p; and My =[2020]".

t(p1, M) < min[Mg y1/y1(p1), My y2/y2(p1)]
= min{2/1,2/1] (2.21)
=2

We can obtain the upper bound M by applying equation (2.20) for each place. The

upper bound is
_ T
M:[z 1 2 2] . (2.22)

The incidence matrix and state equation methods require polynomial time and
space. Therefore, this method is efficient with respect to computational complexity
as compared with the reachability graph method. This method, however, can be
applied only to some subclass of Petri nets, and can not be applied to some other

problems, for example reachability, liveness, reversibility and persistence.

2.3.3 Reduction and Decomposition Methods

Reduction Method. To facilitate the analysis of a large system, we often reduce
the system model to a simpler one, while preserving the system properties to be
analyzed. In [40, 52], simple transformations, which can be used for analyzing
liveness, safeness and boundedness, are shown. In [42], an abstraction method for
Petri nets based on an equivalence of firing sequences of a specified subnet or a
specified subset of transitions was discussed.

As pointed out previously, a major weakness of Petri nets is the complexity
problem. Thus the reduction method is very important. This method, however,
can not be applied to some problems, for example reachability, reversibility and

persistence.

14 CHAPTER 2. PRELIMINARIES

!
0 1
U, U,
1 0 1
0 U, Us
1 0 . 1
0 1 0 1

Figure 2.3: A BDD representing a Boolean function (v V v3) A vs.

Decomposition Method. As another method to facilitate the analysis of a large
system, there is the decomposition method[3, 6, 7, 11, 26, 56, 57]. In [26], analysis
methods for liveness, safeness and reachability of free choice nets[40] are discussed.
In [56, 57, the decomposition method is applied to equal conflict systems. Compu-
tational complexity of these methods is polynomial, thus the decomposition method
provides an efficient verification method. It, however, can be applied only to sub-
class of Petri nets. It will be impossible that we apply the decomposition technique

to general Petri nets, and the restriction is too strong to apply general systems.

2.3.4 The Symbolic Model Method

This subsection reviews the symbolic model method[1, 2, 12, 13, 47, 49, 50] .

Binary Decision Diagrams. Binary decision diagrams (BDD’s) have been pro-
posed for representing and manipulating Boolean functions[1, 2]. A BDD is a rooted,

directed acyclic graph. The graph in Figure 2.3 is representing a Boolean function

f(vy,v9,03) = (01 V v) Avs. (2.23)

2.3. ANALYSIS METHODS 15

Figure 2.4: A reduced ordered BDD for (v; v Vg) A vs3.

We enter at the root node and then proceed downward through the graph, at each
node checking the value of its variable and taking the indicated branch. When a 0

or a 1 value is reached, this gives the value of f.

A given function can be represented by many different BDD’s. Bryant proposed
restrictions on BDD’s so that any function has exactly one canonical BDD[2]. A
total ordering is given for the variables, and a reduction of BDD’s is introduced. A
BDD can be reduced in the size without changing the denoted function by elimi-
nating redundant vertices and duplicate subgraphs. Figure 2.4 shows an example of
reduction of BDD’s. For any Boolean function f, there is a unique (up to isomor-
phism) reduced ordered BDD (ROBDD) denoting f. This means that ROBDD’s
give a canonical form for each Boolean function. Most commonly encountered func-
tions have a reasonable representation. For example, all symmetric functions are
represented by ROBDD’s where the number of vertices grows at most the square of
the number of arguments. In addition, the time complexity of any single operation

(V, A, etc.) is bounded by the product of the graph size.
The ordering of variables affects the size of an ROBDD. The problem of com-

puting an ordering that minimizes the size of a given ROBDD is a co NP-complete

problem. However, by using a small set of heuristics, one can select an adequate

16 CHAPTER 2. PRELIMINARIES

ordering most the time.

Hereafter, we assume that BDD’s are reduced and ordered.

Modeling R(N, M,) with BDD’s. BDD’s can represent large Boolean functions
compactly. If we can express a marking by a Boolean function, this will be a good
expression of the set of reachable markings. This technique was introduced in [47].

Let us explain the technique briefly. Assume that the upper bound of a given
Petri net (N, M) is M. For each place p; € P, we need ¢; variables, which is given
by

g = [log,(f(ps, M) + 1)], (2.24)

where [z] is the smallest integer that is more than or equal to z. Therefore each
marking that is reachable from M is expressed by a Boolean function with v vari-

ables, where

vl =) a (2.25)
=1

By summing Boolean functions, we can represent the set of reachable markings with
a BDD.

Example 2.1 As calculated before, the upper bound of the Petri net in Figure 2.1
is given by (2.22). Required variables are the following

G =4q3=4qs =2, (2.26)
g2 = 1,and (2.27)
lv] = 7. (2.28)

Assume that v; and v, are used for place p;, vs is used for py, v4 and vs are used
for ps and vg and v; are used for ps. Each reachable marking shown in Figure 2.2 is

expressed by the following functions.

Jo= 117020304 V5 Tg U7 (2.29)
J1 =1 va v3 U4 U5 Vg V7 (2.30)
J2 = U102 U304 v5 06 U7 (2.31)

N

f3 = U102 U3 Vs U5 U6 U7 (2.32)

2.3. ANALYSIS METHODS 17

Figure 2.5: A BDD representation of R(N, Mp).

The BDD of R(N, M) is drawn in Figure 2.5. In the figure some edges are omitted
to simplify. All the omitted edges are drawn to the node 0.

BDD Construction Algorithm. In Figure 2.6, an algorithm to construct a BDD
from a PN is shown.

BDD’s make it possible to operate on the set of markings, therefore computa-
tional complexity of the method depends on depth of the reachability graph. Con-
sequently, great improvement on both time and space can be expected.

There exist several results on this area. In [47], verification of safeness, liveness,

persistence is discussed. In [12], verification of concurrent systems described by finite

18 CHAPTER 2. PRELIMINARIES

Algorithm 2.1 Construction of a BDD from a PN
input: a Petri net PN.
output: a BDD.

begin
From = M,;
Reach = My;

while From # () do
foreach transition t € T
New = the set of markings generated by firing ¢ from From:;
From = From U New,
endforeach
From = From N Reach;
Reach = Reach U From;
endwhile
return Reach;
end

Figure 2.6: An Algorithm to Construct BDD from a PN.

capacity Petri nets is discussed. In [49], verification of deadlock freeness and home
state property is discussed. In [13], a method for computing reduced representation

of vector state spaces consisting of infinitely many states is presented.

2.3.5 The Partial Order Method

Occurrence Nets. Occurrence nets (OCN’s) were introduced to represent both
causality and concurrency between events[29]. Intuitively speaking, an occurrence

net represents possible system traverse by its net structure.

2.3. ANALYSIS METHODS 19

Definition 2.1 (Occurrence net) An OCN of a PN = (P, T, F,W; M) is a five-
tuple

OCN = (P, T', F'; Mg; L), (2.33)

where £ : PPUT’ — PUT is a function which maps P’ onto the set P and 7' onto
the set T. The net must have the following properties:

1. Vpe P :|ep| <1,

2. Viy, ty,t3 € T : (f1,t3) € F'*, (ta, t3) € F™* and et; Nety # O =t = t,,
3. Vit € T': L(ty) = L(ty), ot; = oty = t; = 1o,

4. YVt € T": L{ot) = oL(t) and L(te) = L(t)e, and

5. M} = xP" and L(M}) = M.

For a set of nodes X’ of an OCN, £(X') = {£(z')|z' € X'}. =P is the set of source

places on P. F* is the transitive closure of F'.

An OCN is an ordinary net, therefore the weight function is omitted. A node
in an OCN is called a (i-th) instance of a node in the PN, for example, p; is called
the first instance of p;. An OCN is an acyclic directed graph, and therefore the
transitive closure of the flow relation defines the partial order between nodes. This

partial order will be called the precedence relation and denoted by =. When
I = T2, (234)

node z; is called a predecessor of node z, and node x5 is called a successor of node
z1. For two nodes that are not in precedence relation in an OCN, let us define two
relations[29, 19].

Definition 2.2 (Conflict) In an OCN = (P',T", F'; My; L), nodes z,,z, € P'UT’

are in conflict relation, denoted by
T14z, (2.35)

if there exist distinct transitions t1, ¢, € T" such that et;Nety # B, and (t1,x1), (t2, 22) €
F'*,

20 CHAPTER 2. PRELIMINARIES

Definition 2.3 (Concurrent) Nodes z; and x5 in an OCN are in concurrent re-

lation, denoted by

1/ /T, (2.36)

if they are neither in conflict relation nor in precedence relation.

In Figure 2.7, an algorithm to construct an OCN from a given PN is shown[29].
In Figure 2.8, a PN and its OCN are shown. An OCN has following properties.
The image of the set of markings reachable from M| by the map L is equal to the

set of markings reachable from M; of the corresponding PN. Therefore
R(N, My) = L(R(N', My)). (2.37)

An OCN is a safe Petri net, because each place has at most one input transition
and M| is a safe marking. In an OCN an unsafe marking of a PN is represented by
plural copies of the unsafe place. See Figure 2.8, an unsafe marking M = {p;,p1}
of the Petri net is represented by M’ = {pi, p?} that is a safe marking.

The most interesting feature of OCN’s is their structural properties. In a PN,
even if events can occur concurrently, one of them can be a predecessor of the other
when the given PN is a cyclic PN. In a OCN, however, if instances are in concurrent
relation they remain to be in concurrent relation in any firing sequences. In an
OCN,;, transitions ¢; and t; are in concurrent relation if and only if there exists a
reachable marking M, in which both ¢; and ¢, are enabled and the firing of any
of them does not disable the other. Places p; and p, are in concurrent relation if
and only if there exists a reachable marking, in which both p; and p, are marked.
Moreover by seeking relationship between nodes in OCN’s, we can obtain detail
information about reachable states. For example, in Figure 2.8, for three instances
p3,p3 and p?, we can find three relations: p}//p?, pi//p? and p?ip2. These relations
show that in the PN markings {ps, ps} and {ps, ps} are reachable, but {ps, ps, ps} is
not reachable. Note that, for a given flow relation, nodes x; and x, are at least in

one of the relations z; = z2,09 = 1,219, or 21//25.

2.3. ANALYSIS METHODS 21

Algorithm 2.2 Construction of an OCN from a PN
input: a Petri net PN.
output: an occurrence net OCN.
begin
Copy all places p € M, into the OCN.;
/* If My is not safe marking, make as many copies of a place as the
number of appearances in My */
while as many as possible do
Choose a transition £ € T from the PN_;
For each place in et, find a copy in the OCN. Let denote the set of
copies by P}, C P'. Do not choose the same set twice for the ¢.;
if You could not find the set P,,, then
Go back to the top of this while loop.;
else
if Ip1, p2 € Py : p1fpas, pr = pa or pr = p; then
Go back to the top of this while loop.;
else
Make a copy of t in the OCN. Call it ¢'.;
Draw an arc from each places in P, to t'.;
For each place in te, make a copy in the OCN and draw an arc
from t' to it.;
endif
endif
endwhile

end

Figure 2.7: An Algorithm to construct an OCN.

Unfoldings For live Petri nets, OCN’s can be extended infinitely, so it is impossi-
ble to apply OCN’s for the verification of Petri nets. Although an OCN for a cyclic
PN can be extended infinitely, it is always possible for a bounded PN to truncate the

22 CHAPTER 2. PRELIMINARIES

(a) (b)

Figure 2.8: A PN (a) and its OCN (b).

OCN up to a finite prefix that preserve all information about reachable markings of
the original PN. This prefix is called an unfolding.

A notion of cutoff points was introduced in [29]. This is necessary for truncating
an OCN.

Definition 2.4 (Cutoff point) In an OCN = (P',T', F'; M}; L), a transition ¢ €
T' is a cutoff point if and only if the following equation holds.

LR(N', My)) = L(R(N', Mp)\t) (2.38)

Several conditions to find cutoff points have been proposed[29, 19, 24, 8, 36]. In
Chapter 3, we discuss the condition a transition to be a cutoff point. Let @ be
a maximal set of cutoff points such that L(R(N', My)) = L(R(N', Mj)\Q). The

unfolding is defined as follows.

2.3. ANALYSIS METHODS 23

(a) (b)

Figure 2.9: A PN (a) and its unfolding (b).

Definition 2.5 (Unfolding) An unfolding is a finite prefix of an OCN, and it is
obtained by removing cutoff points in @ and all the places and transitions that

succeed a cutoff point in Q.

It has already been shown that unfoldings are finite for any bounded Petri nets in
[29].

In previous works[29, 19, 36], cutoff points are included in the unfolding. Strictly
speaking, unfoldings should not contain cutoff points. See Figure 2.9, in this case
an instance t2 can be a cutoff point. If #2 is a part of the unfolding and p? is not, an
empty marking is reachable after firing ¢!, #2, ¢2, ¢1 and ¢}, however in the original
marking any empty marking is not reachable. Therefore by containing cutoff points
redundant markings arises. In [8], succeeding places are contained, namely, in the

case Figure 2.9 an instance p? is also a part of the unfolding. It is obvious from

24 CHAPTER 2. PRELIMINARIES

Figure 2.10: An unfolding of the PN in Figure 2.1.

Definition 2.4 that all reachable markings are preserved even if unfoldings do not

contain cutoff points. In this thesis we assume that unfoldings do not contain any

cutoff points. In Figure 2.9, upper side of dotted line is the unfolding in this case.
In Figure 2.10, the unfolding of the PN in Figure 2.1 is shown. The set of

reachable markings of the unfolding is as follows.

R(N', M) = {{p1, 1}, p3, P3}, {P}. P} } (2.39)
{p}, P2, 1}, {p1, P3, D3}, {Pi, P2}} (2.40)

The PN is a live net, therefore its OCN extends infinitely. The unfolding, however,
is finite, and all reachable markings of the PN are preserved.

In [29], a method for analyzing deadlock by using branch and bound technique
is shown. In [19, 24], a method for checking safeness, boundedness and persistence
- by using unfoldings has been shown. In [55], a method for preventing the deadlock

by using unfoldings has been shown.

Chapter 3
Constructing Petri Net Unfolding

This chapter considers to construct Petri net unfoldings that have the advantage of

being smaller than unfoldings in the previous works.

3.1 Introduction

For a live Petri net, an OCN can be extended infinitely, so it is impossible to apply
OCN’s for the verification of Petri nets in general. Although an OCN for a live PN
can be extended infinitely, it is always possible for a bounded PN to truncate the
OCN up to a finite prefix that preserves all information about reachable markings
of the original PN. This prefix is called the unfolding. McMillan first introduced a
concept of an unfolding in [29]. We call the unfolding M-unfolding in this thesis.
Kondratyev et al. introduced a concept of reduced unfolding in[19]. We call the
unfolding K-unfolding in this thesis. The difference between M-unfolding and K-
unfolding is the condition a transition to be a cutoff point.

Let us consider characteristics of the two types of unfoldings. As for M-unfolding,
the unfolding happens to be redundantly large. See Figure 3.1. In the figure, a
sample Petri net(a) that has a series of choices and its unfolding(b) are shown.
Here, the upper side of the dashed line labeled M—unfolding is the M-unfolding. The
number of markings of the Petri net in Figure 3.1(a) is n, and the number of places
of the M-unfolding in Figure 3.1(b) is over 2".

25

26 CHAPTER 3. CONSTRUCTING PETRI NET UNFOLDING

K-unfolding
unfolding

phl pnz pn2
h M—unfol&ing y
]]
t ot , , t}
(a) | (b)

Figure 3.1: A Petri net with a series of choices (a) and its unfolding (b).

Finding a cutoff point of K-unfolding is simpler than that of M-unfolding. In
K-unfolding, however, all markings are preserved only for a subclass of Petri nets.
In Figure 3.2(b), upper side of dashed line labeled by K-unfolding is a K-unfolding
of the Petri net of Figure 3.2(a). In this case, t? is a cutoff point. Though a marking

{ps} is reachable, any corresponding marking does not appear in the K-unfolding.

Thus the problem is to reduce the size of M-unfolding as small as possible for

general Petri nets. Let us consider the problem of reducing the size of unfoldings.

3.2. PRELIMINARIES 27

2

, unfolding
t,

2

Ds

M-unfolding
(a) (b)

Figure 3.2: A Petri net that is not supported by K-unfolding (a) and its unfolding

(b).
3.2 Preliminaries

This section explains the M-unfolding and the K-unfolding.

Notations. Let us introduce some notions on OCN’s.

Definition 3.1 (Configuration) In an OCN, a subset 7, defined by transitions is

a configuration if :
1. Vt € T,.: T, contains all predecessors of ¢, and
2. th,tg € Tc . _'(tlﬂtg).

Definition 3.2 (Post-set, Final State) Let T, be a configuration of OCN N'.
The post-set of T, is the set of places p € P’ such that :

28 CHAPTER 3. CONSTRUCTING PETRI NET UNFOLDING

1. Vte T, :p & et, and
2.VtET —T,:pdte.
The post-set of T, is denoted by
T.e. (3.1)
A final state of T, denoted by F(T), is defined by

F(T,) = L(T,e). (3.2)

In an OCN, it is ensured that a configuration 7, exists for any reachable marking
M in the original PN such that F(T,) = M, and T, represents the set of transitions

which will fire in order to reach the marking M from M, in the original PN.

Definition 3.3 (Local Configuration) In an OCN, a local configuration of tran-
sition ¢ € T" is the smallest configuration that contains ¢ and all the transitions

preceding t by =. A local configuration of transition ¢ is denoted by
(=1). (3.3)

A local configuration (= t) is the smallest set of transitions including ¢ that must
be fired for ¢ to fire.

Definition 3.4 (Basic Marking) In an OCN, a basic marking of a transition ¢ €

T’ is defined as follows :

BM(t) = F((=1t)). (3.4)
As a special case of the basic marking, we define a basic marking of null transition
as follows :

BM() = M,. (3.5)

The null transition is used when we want to represent the initial marking M, by the
basic marking. Without loss of generality, we can assume that the null transition

precedes all transitions in an OCN.

3.2. PRELIMINARIES 29

M-unfolding. In the M-unfolding, for a condition that a transition is to be a

cutoff point, the following condition is used.
Condition 3.1 For a transition ¢ € 7" in an OCN, a condition is defined as follows:

' eT :t' =t and BM(t') = BM(¢). (3.6)

In the case of Figure 3.1, the basic marking of the null transition and transitions

tt become
BM() = {p:}, and (3.7)
BM(t) ={p} i=1---2", (3.8)

and the null transition precedes all transitions in the OCN, therefore transitions &%
are cutoff points. In Figure 3.1(b), upper side of dashed line labeled by M-unfolding
is the M-unfolding of the Petri net of Figure 3.1(a).

In the case of Figure 3.2, there exists no transition that satisfies the Condition 3.1.
In Figure 3.2(b), upper side of dashed line labeled by M-unfolding is the M-unfolding
of the Petri net of Figure 3.2(a).

K-unfolding. In the K-unfolding, for a condition that a transition is to be a cutoff

point, the following condition is used.
Condition 3.2 For a transition ¢ € 7”7 in an OCN, a condition is defined as follows:

3 € T': BM(¢) = BM(%). (3.9)

In the case of Figure 3.1, the basic marking of the null transition and transitions

ti become

BM() ={pm}, and (3.10)
BM(t;) = {n}, (3.11)

30 CHAPTER 3. CONSTRUCTING PETRI NET UNFOLDING

therefore transition ¢} is a cutoff point, and basic markings of transitions ¢}, , and
ti, fori=1---n— 1 become
BM(ty;y) = {pir1}, and (3.12)
BM(ty;) = {pin1}, (3.13)
therefore transitions t}; are cutoff points. In Figure 3.1(b), upper side of dashed line

labeled by K-unfolding is the K-unfolding of the Petri net of Figure 3.1(a).

In the case of Figure 3.2, basic markings of transitions ¢} and ¢? become
BM(t7) = {p,}, and (3.14)
BM(t7) = {p}, (3.15)

therefore transition ¢ is a cutoff point. In Figure 3.2(b), upper side of dashed line
labeled by K-unfolding is the K-unfolding of the Petri net of Figure 3.2(a).

3.3 Improved Algorithm to Construct Unfolding

This section considers the problem of reducing the size of unfoldings.

3.3.1 New Condition for Cutoff Points

We can use Condition 3.1 as a condition that a transition is a cutoff point, for

general Petri nets. Thus we can obtain the following lemma.

Lemma 3.1 In an OCN = (P',T', F'; M§; L), a transition ¢ € T’ is a cutoff point

when it satisfies Condition 3.1.
Proof: It has already proved in [29]. m
We introduce another condition as follows.

Condition 3.3 For a transition t € 7" in an OCN, a condition is defined as follows:
It € T' such that ¢'ft,
BM(t") = BM(t), and
There exists no cutoff points which is concurrent with ¢'.
(3.16)

3.3. IMPROVED ALGORITHM TO CONSTRUCT UNFOLDING 31

As for Condition 3.3, we can obtain the following lemma.

Lemma 3.2 In an OCN = (P, T", F'; M}; L), a transition t € T” is a cutoff point

when it satisfies Condition 3.3.
Proof: In an OCN, we can obtain the following equation without loss of generality.
R(N', M{) = R(N', Mg)\t U R(N', (= t)e) (3.17)

Since t'fit, disabled transition ¢ does not affect the firability of successors of ¢. There-

fore we can obtain the following equation.
R(N', (= t")e) C R(N', My)\t (3.18)

Since BM(t') = BM(t) and there exist no cutoff points which are concurrent with
', thus

LIR(N', (= t)e)) C LIR(N', (= 1)e))

C L(R(N', My)\t). (by (3.18)) (3.19)
Consequently,
L(R(N', M})) = LIR(N', M)\t U R(N', (= t)e)) (by (3.17))
= L(R(N', Mp)\t) U L(R(N', (= t)e))
= L(R(N', My)\t), (by (3.19)) (3.20)
therefore the transition ¢ is a cutoff point. n

In this thesis, we adopt Condition 3.1 and Condition 3.3 as conditions for a
transition to be a cutoff point. Since Condition 3.3 is independent of the class
of Petri nets, we can use the condition for general Petri nets. By adding another
condition(Condition 3.3), the size of unfolding becomes smaller than or equal to

that of M-unfolding. Let us confirm with examples in Figure 3.1 and Figure 3.2.

32 CHAPTER 3. CONSTRUCTING PETRI NET UNFOLDING

In the case of Figure 3.1, the basic marking of the null transition and transitions

¢ become
| BM()={m}, and | (3.21)
BM(ty) = {p}, | (3.22)

and the null transition precedes all the transition in the OCN, therefore transition

“t} is a cutoff point. Basic markings of transitions th,yand t) fori=1---n—1

become
- BM(tyi—1) = {pit1}, and (3.23)
BM(ty;) = {pit1}, | | (3.24)

transitions t3;_; and ¢3, for i = 1---n—1 are in conflict relation, and no cutoff point
exists, which is in concurrent with t};, therefore transitions ¢, are cutoff points. In
Figure 3.1(b), upper side of dashed line labeled by unfolding is the unfolding of the
Petri net of Figure 3.1(a). |

In the case of Figure 3.2, basic markings of transitions ¢} and ¢? become

BM(t;) = {ps}, and ' | (3.25)
BM(t;) = {ps}, (3.26)

transitions ¢} and ¢? are in conflict relation, and no cutoff point exists, which is in
concurrent with ¢, therefore transition ¢ is a cutoff point. In this case, transition
t? cannot be a cutoff point, because transitions t+ and t? are in concurrent relation.
In Figure 3.2(b), upper side of dashed line labeled by unfolding is the unfolding of
the Petri net of Figure 3.2(a).

As for the conditions that a transition is to be a cutoff point, a similar result is
reported by Kondratyev et al. in [24]. Esparza et al. define an adequate total order

on the configuration in [8], and introduce quite a difference condition.

3.3.2 Improved Algorithm

This subsection discusses an algorithm to construct unfoldings.

3.3. IMPROVED ALGORITHM TO CONSTRUCT UNFOLDING 33

Figure 3.3: A safe Petri net.

Explaining the algorithm to construct unfoldings simply, it is similar to that to
construct OCN’s, and only the difference is that cutoff points and their succeeding
places are not copied into the OCN. Then the output OCN is the unfolding. There-
fore, when a transition is copied, it is checked whether a transition is a cutoff point

or not.

Here, another problem, the order of coping transitions, comes into question.
See Figure 3.3 and Figure 3.4. The OCN of the Petri net in Figure 3.3 is shown
in Figure 3.4. Let us construct the unfolding from the Petri net. Assume that
transitions #1, t3, t3, t5, 1, t§, th, ¢2, ¢}, 42, tl and t3 are copied in this order. In this
case, transitions #2 and 2 are cutoff points, thus the upper side of the dashed line

labeled casel is the unfolding. Since transitions 2 and t3 are not copied, transition

34 CHAPTER 3. CONSTRUCTING PETRI NET UNFOLDING

1 1
IR |

t,
' 1

t

Figure 3.4: An OCN of the net in Figure3.3.

t3 will not appear in the unfolding. If the order of transitions 2 and t} are swapped,
only the transition ¢ is the cutoff point. Transition t} can not be a cutoff point,
since, for the cbrresponding transition ¢2, there exists a concurrent transition #2 that
is a cutoff point. In this case, the upper side of the dashed line labeled case2 is the
unfolding. This indicates that the size of unfoldings depends on the order of coping

transitions.

In Figure 3.5, an algorithm to construct an unfolding from a given PN is shown.
In Algorithm 3.1, union of transition t in the Petri net and the set P}, of places in
the unfolding are stored in the stack_of-union, where P, is the set of input places
of the copy t of t. | ' o

3.3. IMPROVED ALGORITHM TO CONSTRUCT UNFOLDING 35

Algorithm 3.1 Construction of an unfolding from a PN
input: a Petri net PN.
output: an unfolding.
begin
Copy all places p € My into the unfolding.;
/* If My is not safe, make as many copies as the number of appearances in My.*/
foreach t, € T and P, C P', with £(P},) = ety and Vpy,ps € P,,, = p1//p2
* Push union of t1 and P,; to stack_of union.;
endforeach
while stack_of_union is not empty do
Pop the first union of ¢; and P,,, from stack_of-union.;
if ¢ is not a cutoff point then
Make a copy of ¢; in the unfolding. Call it ¢].;
Draw an arc from each place in P}, to t}.;
For each place in t;e, make a copy in the unfolding and draw an arc from ¢}
to it. Denote the set of copies by P/ ,.;
foreach ¢, and P, , such that t, is enabled on P}, and P}, N Py, # 0
if the same union of t, and F,;, is not in stack.-of -union then
Push the union to stack_of-union.;
endif
endforeach
endif
endwhile

end

Figure 3.5: An Algorithm to construct an unfolding.

From Figure 3.4, we can find two groups of transitions,

GROUP, = {t1, 13,15, t1, 13,15}, and (3.27)
GROUP, = {t}, ¢}, ¢} 2 2 42}, (3.28)

For any pair of t; € GROUP; and ¢, € GROUP,, ¢; and ¢, are in conflict relation.

36 CHAPTER 3. CONSTRUCTING PETR! NET UNFOLDING

Condition 3.3 causes the order sensitive feature of constructing unfoldings. To avoid
redundant unfolding construction, transitions in GROUP; should be copied after
transitions in GROUP; is copied. Algorithm 3.1 solves the problem by using a stack
stack_of-union. In the case of Petri net in Figure 3.3, the stack_of_union shifts as

follows.

transitions in stack_of_u‘nion :[t1, 6]

= copy t; as t] =
[ts,ts,ta] = copy t3 as t; =
[ts, ta] = copy ts as t3 =
[tr,ts, 2] = copy tr as t =
[ts, ta] = copy tg as ty =
(to, ta] = copy to as ty =
[t2] = copy ty as t; =
(t4, te] = copy ty as t; =
[te) = copy te as tg =
[t7, 18] = t7is not copied =
[ts] = g is not copied =

[

=

3.4 Experimental Reysults

This section gives experimental results. McMillan’s unfolding and the new proposed
unfolding are compared on size and CPU time. '
In Table 3.1, experimental results are shown. In the row “Petri net”, data of

bl

Petri net are shown: “net” is the name of Petri net, “|P|” is the number of places
and “|T'|” is the number of transitions. In the row “McMillan’s Unfolding”, data of
M-Unfolding are shown. In the row “New Unfolding”, data of unfolding are shown:
“|P'|" is the number of places, “|T'|” ‘is the number of transitions and “time” is
the CPU time to construct the unfolding. All the times have been measured on a

SUN SPARCstation 4 with 32MB main memory. These examples are taken from

3.5. CONCLUDING REMARKS 37

Table 3.1: Experimental Results

Petri net McMillan’s Unfolding | New Unfolding
net | |P| | |T] | |P'] | |T| time | |P'| | |T7| | time
pla | 10 8| 14 9 0.0 14 9 0.0
™wW 4 41 10 6 0.0 7 3 0.0

rwl0 | 4| 4] 120 100 06| 30| 10| 0.0
vme | 17| 17| 39| 35 00| 22| 19| 0.0
vme2 | 38 | 36 | 252 | 220 1.1 78| 68 0.1
vme3 | 57 | 53 | 678 | 586 9.5 | 117101 | 0.3

[40, 46, 54].
Results show that

e by adding Condition 3.3, reduction of unfoldings is achieved, and

e as a result, time to construct unfoldings is shortened.

3.5 Concluding Remarks

Construction of unfoldings have been studied. Previous proposed unfoldings called
M-unfolding and K-unfolding were compared first, some problems on these unfold-
ings were pointed out. The problem is how to reduce the size of M-unfolding without
loss of generality.

Next, a new condition for a transition was proposed, and it was proved that
the condition is a condition for a transition to be a cutoff point. The condition,
however, depends on the order of coping transitions, to avoid the ordering problem
an improved algorithm to construct unfoldings was proposed. The algorithm solves
the ordering problem by using a stack. By using a condition that was proposed by
McMillan and the new condition together, the reduction of unfoldings was successful
in term of constructing time as well as required space. Experimental results show a

significant effectiveness of the proposed method.

Chapter 4

Verifying Petri Nets with
Unfoldings

4.1 Introduction

Petri nets are widely recognized as a powerful model for discrete event systems
characterized by asynchronous and concurrent behavior. Petri nets have graphical
and mathematical features. Graphical feature provides with an environment to
design and to comprehend discrete event systems. Mathematical feature provides

an analysis power for several properties of such systems.

In verifying Petri nets, several methods have been proposed, for example, a
reachability(coverability) graph method|[25, 28, 40], a matrix equation approach[40],
reduction or decomposition techniques[40, 26, 44], a symbolic model method[47,
12] and an unfolding method[29, 19, 8, 36]. Though the reachability(coverability)
graph method is a strong verification method, it is applicable only for small nets
because of state space explosion. The matrix equation approach and reduction or
decomposition techniques have limitation on applicable classes. The symbolic model
method can deal with huge nets by using Binary Decision Diagrams (BDD’s)[2]. The
BDD traversal can be executed efficiently only if the property to be verified can be
formulated by characteristic predicate. Therefore this method is effectively applied
to systems modeled by k-bounded nets and finite capacity nets. On the other hand,

39

40 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

the unfolding method was introduced to avoid generating the reachability graph for

a general Petri nets[29, 19, 36].

This chapter considers a computational problem of reachability of finite state

systems modeled by bounded nets, and discusses the upper bound problem, which

can be defined as a problem of finding upper bound on tokens on a place in reach-

able markings. This chapter clarifies the relation between these problems and an

unfolding, and provides a method to verify these problems.

4.2 Concurrent-Relation Graph

The problems are closely related to the concurrent relation in unfoldings. Let us

introduce a notion of concurrent-relation graph.

Definition 4.1 (Concurrent-Relation Graph) Fora PN = (P, T, F,W; M,) and
its unfolding = (P',T", F’; M{; L), a concurrent-relation graph CG is an undirected

graph and denoted by a two-tuple
CG=(V, E),
where
VCPuT
is the set of vertices and
E = {(vy,vq)|t1,v9 € V,v1//va}
is the set of edges.
When the set of vertices are given by the following equation
Ve={x'lz e PUT, L(z) = T}, |
a subgraph defined by the concurrent relation’ with V, 15 dendted by

CG\z. .

(1)

(4.2)

(4.3)

(4.4)

(4.5)

4.2. CONCURRENT-RELATION GRAPH , 41

Figure 4.1: A readers-writers system.

Figure 4.2: The unfolding of the Petri net in Figure 4.1.

This graph is called a concurrent-relation graph induced by a node z. Similarly

when the set of vertices are given by
Vx ={z'|X CPUT, L(z)) € X}, (4.6)
a subgraph induced by Vx is denoted by

CG\X, | (4.7)

42 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

Figure 4.3: CG\P of the unfolding in Figure 4.2.

and is called a concurrent-relation graph induced by a set X. As an example, a
concurrent-relation graph induced by a set P for the unfolding of Figure 4.2 is
shown in Figure 4.3.

A CG is a graph representation of concurrent relations between instances in an
unfolding. A complete subgraph of the CG represents the set of instances in which
any pair of instances is in concurrent relation. Especially maximal subgraphs of
complete subgraphs are important. Let us introduce notions of maximal complete

subgraph and maximum complete subgraph.

Definition 4.2 (Maximal Complete Subgraph) Fora graph G = (V, E), a sub-

graph is called a maximal complete subgraph (or maximal clique) and denoted by
G = (V& EX), (4.8)
when
e G¥X is a complete graph, and
e there is no complete graph GX' = (V&' EK') such that VK C VK.

Definition 4.3 (Maximum Complete Subgraph) For a graph G = (V, E), a
subgraph is called a maximum complete subgraph (or maximum clique) and denoted
by

GKmax — (VKmax, EKmax) (4.9)

’

when

4.2. CONCURRENT-RELATION GRAPH 43

(5

(v
5

()0

Figure 4.4: Maximal complete subgra,phs of the CG in Figure 4.3.

o GKmax js 3 maximal complete graph, and

e the number of vertices is maximum.

In Figure 4.4, maximal complete subgraphs of the CG of Figure 4.3 are shown.
There are five maximal complete subgraphs in the CG. The complete graph at the
upper left in Figure 4.4 is the maximum complete subgraph.

In general, we must consider all combinations of vertices to find all maximal
complete subgraphs. Finding maximal complete subgraphs of an arbitrary graph is
a well-known NP-complete problem. Following lemmas show that maximal complete

subgraphs are preserved after dividing the graph at any articulation point.

Lemma 4.1 For a graph G, the set of maximal complete subgraphs is invariant

when we divide the graph G at an articulation point into non-separable subgraphs.

Proof: Let a graph G be divided into two non-separable subgraphs G; = (V4, E1)
and Gy = (Va, B,) at a point v € V. For each vertex vy (# v) € Vi and vy(# v) € Vs,

44 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

they are not adjacent. Therefore there is no complete subgraph induced by V where
VCViuV, VZViandV ¢ V. Consequently, the set of maximal complete

subgraphs is invariant. n

Let us introduce another division method.

Definition 4.4 For a graph G = (V, E), a subgraph G, with respect to a vertex

xz € V and its complementary subgraph Gz are defined as follows.

Go = (Vo, Eu), (4.10)
}Where

Ve = {x, adjacent vertices of z},and (4.11)

By = {(z,y)lz,y € Vi, (z,y) € E}. (4.12)

Gz = (Vg, Ex), (4.13)
where

Vz =V — {z, adjacent vertices of
(4.14)
whose all incident edges are in E,}, and

Ez ={(v1, v2)|v1,v5 € Vg, (v1,02) € E}

(4.15)
—{(", ")V, 2" € V,, By € V such that (v, y), (v",y) € E}.

Figure 4.5 shows subgraphs (2)Gyy and (b)GE of the graph in Figure 4.3. Here,
a vertex p} is removed from V;T;’ because all incident edges are in E,. Figure 4.6
shows subgraphs G,z and GE of the graph in Figure 4.5(b). Here, an edge (p?, p}) is
removed from £, because there exists no vertex y € V7 such that (P2, v), (pl,y) €
E.

Lemma 4.2 For a graph G = (V, E), the set of maximal complete subgraphs is
invariant when we divide the graph G into subgraphs G, and Gz with respect to a

vertex x € V.

4.2. CONCURRENT-RELATION GRAPH 45

2
- o))

(b)

Figure 4.5: Components with respect to p; of the CG in Figure 4.3. (a)G,; and
(b)GE'

Proof: We claim that all maximal complete subgraphs are preserved.

(1) Tt is trivial that each maximal complete subgraph in G whose vertices are in V;
is contained in G,.

(2) Let ' and v" be vertices which was removed from Fz in equation(4.15). With

respect to v’ and v”, we can obtain following two facts.
e A subgraph induced by {v',v",z} is a complete graph.

e Even if the edge (v/,¢") is in Gz, it is a maximal complete subgraph itself,

because the vertices do not have any common adjacent vertex.

Therefore a maximal complete graph containing a edge (v’,v") is contained in Gy,

and no maximal complete subgraph disappears from Gz by removing the edge

46 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

P,

(b)

Figure 4.6: Components with respect to p2 of the CG in Figure 4.5(b). (2)Gyz and
(b)Gz—E‘

(v/,v"). Therefore each maximal complete subgraph in G whose vertices are in
V& is contained in Gs.

(3) There exist no complete subgraph G’ = (V" ,E"), where V! CV, V' Z V, and
V' & Vg, because nodes v; € V' NV, and v, € V' N V5 are not adjacent.

Therefore all maximal complete subgraphs are preserved.

We claim that no additional maximal complete subgraph arises. (1) From the
definition of G,, each maximal complete subgraph in G, contains z. In G, all
adjacent vertices with z and all incident edges between these vertices in G are
contained. Each maximal complete subgraph in G, is thus a maximal complete
subgraph in G.

(2) From the definition of Gz, each maximal complete subgraph in Gz contains a

4.2. CONCURRENT-RELATION GRAPH 47

Algorithm 4.1 Divide a Graph into Mazimal Complete Subgraphs
input: A graph G.
output: Maximal Complete Subgraphs.
begin
Divide G into non-separable subgraphs.;
Append non-separable subgraphs to list_of_graphs.;
while list_of_graphs # 0 do
Take the first graph G’ from list_of _graphs.;
if Is G’ a complete graph? then
Append G’ to list_of _mazx_complete_subgraphs.;
break
endif
Divide G’ into subgraphs G., and GL.;
/* Don’t select a vertex as z, which is adjacent with all other vertices.*/
Divide G!, and G into non-separable subgraphs.;
Append non-separable subgraphs to list_of _graphs.;
endwhile

end

Figure 4.7: An algorithm to divide a graph into maximal complete subgraphs.

vertex that is not in V,. In Gz, all adjacent vertices with the vertex and all incident
edges to the vertex are contained, therefore each maximal complete subgraph in Gz
is a maximal complete subgraph also in G.

Therefore no additional maximal complete subgraph arises. [

In Figure 4.7, an algorithm to divide a graph into maximal complete subgraphs

is shown.

48 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

4.3 Reachability Verification with Unfoldings

This section discusses the reachability problem and reachability verification.

4.3.1 Reachability Problem

Reachability is a fundamental basis for studying the dynamic properties of discrete
event systems.

The reachability problem for Petri nets is formulated as follows.

Problem 4.1 (Reachability Problem) For a given PN and a marking M, is M

reachable from M,;?

The reachability problem is decidable[25, 28] although it takes exponential space
and time to verify in the general case. Therefore efficient algorithm for the reacha-
bility problem is required.

This thesis deals with only bounded Petri nets.

4.3.2 Unfoldings and the Reachability Problem

For the reachability problem, we obtained the following theorem.

Theorem 4.1 For a PN = (P, T, F, W; My) and its unfolding = (P, T',F'; Mj; L),
a marking M is reachable from M, if and only if in CG\P there exists a maximal
complete subgraph (V¥ EX) such that M = £(VX).

Proof: (=) Since M is reachable from M, there exists a configuration 7, such
that

F(T.,) =M. (4.16)
Let us assume that

P1,P2 € Tc.a (417)
ti1,19 € Tc, and (418)
(t1,p1), (t2,p2) € F'. (4.19)

4.3. REACHABILITY VERIFICATION WITH UNFOLDINGS 49

Since t1,ty € T,

1,/ /ts, or (4.20)
t1 = tz(OI‘ iy = tl) (421)

If ¢1//t3, then p1//ps since in an unfolding each place has at most one input transi-
tion. Else, without loss of generality we can assume t; = t3, from the definition of

the post-set and the configuration,
=(p1 = t2). (4.22)
Since in an unfolding each place has at most one input transition,

p1/ /D2 (4.23)

Consequently, there exists a complete subgraph induced by T.e in CG\P.

Let us show that the subgraph is maximal. Assume that

Ip e P',p¢&T.e: asubgraph induced by T, e Up is a complete subgraph,
(4.24)

namely p is concurrent with any place in 7,e.
(1) When the input transition of p is in T,. From p ¢ T,e and Definition 3.2, there

exists a transition ¢ such that

t € pe and teT. (4.25)
That implies

dp’ € T.e : such that p = p'. (4.26)

(2) On the other hand, when the input transition of p is not in 7. (a) If all the
preceding transitions of p are not in T, from Definition 3.2, all source places which

N

precede p must be in T e, ie.,

Vpy € My :if pg = p then py € T, ». (4.27)

50 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

(b) When some preceding transitions of p are in T, there exist transitions ¢, ¢ and

a place p” such that

=9 =>t"=>pteT. andt" ¢7T.,. (4.28)
If p” € T,e, then

A" € T,o:p" = p. | (4.29)
If p" ¢ T.e, then

Ap” € T,o: p" = p" and p"'tip". (4.30)

All these ((4.26), (4.27), (4.29) and (4.30)) contradict to p is concurrent with any
place in T.e(assumption (4.24)). Therefore a complete graph induced by T.e is
maximal.

(<) For a maximal complete subgraph (VE EX) such that M = L(V¥), there
exists a unique configuration 7, such that T,e = VX, A existence of a firing sequence
in PN corresponding to T, and that M is reachable from Mj after the firing of the

sequence are satisfied by the definition of unfolding. m

For the PN in Figure 4.1, we can obtain the set of reachable markings as follows
from Theorem 4.1: {p1, p1,p3, P03}, {P1,P3, P4}, {P1,p2} and {ps, pa}. See Figure 4.4.

By modifying Algorithm 4.1, we can obtain Algorithm 4.2 for Problem 4.1. See
Figure 4.8. Algorithm 4.1 is exhaustive, thus the algorithm is not efficient. In
Algorithm 4.2, by removing subgraphs that do not contain all vertices corresponding

target marking, we can reduce computation time.

Example 4.1 Let us practice Algorithm 4.2 with the net in Figure 4.9(a). Assume
that the destination marking is M = {p3,ps}. Unfolding of the net is drawn in Fig-
ure 4.9(b), and Figure 4.10(a) is the concurrent-relation graph induced by P. The
graph CG\P is a non-separable net, thus the graph is appended to list_of_graphs.
Since CG\P is not a complete graph, it is divided into graphs Gpé and G;}Z. These
graphs are drawn in Figure 4.11(a) and Figure 4.10(b). Here, Grp—(13 does not contain

any vertex corresponding to pg, therefore this graph is removed for list_of_graphs.

4.3. REACHABILITY VERIFICATION WITH UNFOLDINGS 51

Algorithm 4.2 Is Reachable?
input: A concurrent-relation graph C’G\P, and M.
output: TRUE or FALSE.
begin
Divide CG\P into non-separable subgraphs.;
Append non-separable subgraphs to list_of _graphs.;
/* Append only subgraphs containing all vertices corresponding to M. */
while list_of_graphs # 0 do
Take the first graph G’= (V', E') from list_of _graphs.;
if G’ is a complete graph, then
if L(V') == M then
return TRUE ;
endif
else
Divide G’ into subgraphs G, and G%.;
/* Do not select a vertex as x, which is adjacent with all other vertices.*/
Divide G/, and G% into non-separable subgraphs.;
Append non-separable subgraphs to list_of _graphs.;
/* Append only subgraphs containing all vertices corresponding to M.*/
endif
endwhile
return FALSE ;

end

Figure 4.8: An algorithm for the reachability problem.

Gy is divided into non-separable graphs, non-separable graphs are drawn in Fig-
ures 4.11(b) and (c). The graph in Figure 4.11(b) is a complete graph and satisfies

the condition

L(V) == M, (4.31)

52 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

1 1 1

y Dy Ds

D, .
P D,
1
y
p2 p 21
Dy
1
D 1 D5
. 3
Dbs

1
p
@pm !
D,
Opmz P,

)

3
s
=
3

Ps

-

Py

o

(a) (b)

Figure 4.9: Petri net “pla” (a) and its unfolding (b).

where V' is the set of vertices of the graph. Consequently, we can say that the
destination marking M = {ps, ps} is reachable.

54 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

(o) 8
()

<

(a) (c)

!

Figure 4.11: Reachability Verification(2). (a) G,. (b),(c) non-separable graphs of

(a).

4.3.3 Experimental Results and Comparison

This subsection compares the proposed method with other methods.

For verification of the reachability problem, we can enumerate the following
methods:

e the reachability graph method,
e the symbolic model method, and
e the unfolding method.

Table 4.1 shows the experimental results. “PN” is the name of Petri net. In
the row “RG”, data of the reachability graph method are shown: “|/R(M,)|” is the
number of reachable markings, and “time” is the CPU time to verify reachability
by using the reachability graph method. In the row “BDD?”, data of the symbolic
model method are shown: “# node” is the number of BDD nodes, and “time” is the
CPU time to verify reachability by using the symbolic model method. In the row
“unfolding”, data of the unfolding method are shown: “# place” is the number of
places in the unfolding, “# trans.” is the number of transitions in the unfolding, and
“time” is the CPU time to verify reachability by using the unfolding method. All
the times have been measured on a SUN SPARCstation 4 with 32MB main memory.

4.3. REACHABILITY VERIFICATION WITH UNFOLDINGS 35

Table 4.1: Experimental Results

PN RG BDD unfolding

|R(My)| | time | # node | time | #place | #trans. | time

pla3.3 9856 | 145.2 231 5.1 90 62| 0.7
pla3.4 14464 | 317.8 278 | 7.6 92 64 | 0.8
pla3.5 78720 - 314 | 19.2 136 97 | 2.1
vme2 586 0.8 128 2.7 64 95 0.3
vme3 10232 | 180.5 225 | 10.6 103 88 1.3
master-read 2108 7.1 3581 | 19.0 77 50| 0.6
din10 6.0 x 107 - 796 | 21.9 80 50 11
din20 3.7 x 10¥° - 1419 | 80.0 160 100 9.8
dme20 2.2 x 107 - 239 | 5.1 81 61| 0.7
dme40 4.5 x 1013 - 476 | 19.5 161 120 5.4

Although for the reachability method there is no restriction about applicable
class, the method can be applied only to small nets. Experiments on nets whose
“time” value is “~” failed because of the lack of memory. Experimental results have
proven that this method can not be applicable to large nets.

As for the symbolic model method, the calculation time includes the upper bound
verification time, because we have to know the upper bound in order to represent a
marking by a Boolean function. The details of the upper bound verification will be
discussed in the next section. All example nets are structurally bounded, therefore
checking the upper bound was done by the S-invariant method. As it is shown in the
experimental results of the next section, checking the upper bound by the S-invariant
method requires little time. Therefore we can consider the experimental results in
Table 4.1 as the time to construct the BDD tree. Experimental results prove that
the symbolic model method is efficient as for the consumption of time. As for the
consumption of space, the symbolic model method seems to be a good method on
the whole. For example, as for the net “dme40”, though the net has 4.5 x 10*3 states,
the set of reachable markings is represented by a BDD tree with only 476 nodes. In

56 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

p,

Figure 4.12: AGV system.

some cases, the method fails, for example, the net “master-read”. In general, the
size of the BDD tree depends on the order of variables. The problem of computing
an ordering that minimizes the size of a given BDD is a co NP-complete problem.
It seems that there exist some heuristics to obtain an adequate ordering[50, 12]. In
this experiment, however, we ordered one by one. If we use heuristics, the size could
be come smaller.

Similar to the symbolic model method, the unfolding method obtains better
results than the reachability graph method. Experimental results prove that the
unfolding method is efficient in terms of both the consumption of time and space.

Other advantages of the unfolding method are a by-product of a configuration
and the structure of unfoldings. A configuration shows the set of transitions that
must be fired, and the unfolding represents relations between transitions in the

configuration. This will be useful when we intend to control a discrete event system

4.3. REACHABILITY VERIFICATION WITH UNFOLDINGS

P ta1 Ds t4l Py t, D,
C . ml — \{1 . i j .

Ds 5 6 7 7 ty Ds

Figure 4.13: The unfolding of the AGV system.
Table 4.2: Reachability Verification
Reachability Graph | BDD unfolding
Efficiency non efficient efficient efficient
Characteristic 4 . structure of unfoldings

modeled by a Petri net[53]. See Figure 4.12. This figure shows a simple AGV
system. Let us consider a control specification that the number of tokens in a zone
“crossing” is at most one. Even if we adopt the symbolic model method, we can find
that the system is reachable to forbidden markings {ps, ps}, {p2,ps}, {Ps, P} and
{p3, ps}. With the symbolic model method, however, it is difficult to find firings of
what transitions cause the state transition to forbidden markings, because a BDD
tree represents the set of reachable states. Cost to find firing sequences on the BDD
tree is equal to the cost on the reachability tree. This is expensive. Figure 4.13 is
the unfolding of the AGV system. Let us consider a case in which the forbidden
marking is given by {ps,pe}. It is easily found that the system is reachable to the
forbidden marking, and from the configuration for the marking we can find that
firing of transitions ty, t3, t; and t5 causes the state transition to the marking.
Moreover ordering relations of these transitions are expressed by the structure of

the unfolding.

As a summary, we can obtain Table 4.2.

58 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

4.4 Upper Bound Verification with Unfoldings

This section discusses the upper bound problem and upper bound verification.

4.4.1 Upper Bound Problem

An upper bound #(p, M) of a place p € P is the maximum number of tokens which

are placed at the place p in a marking reachable from Mj, i.e.,

i(p, M) = wenax i, M). (4.32)

The upper bound problem for Petri nets is formulated as follows.

Problem 4.2 (Upper Bound Problem) For a given PN, what is the upper bound

of tokens in each place?

Although the upper bound problem is resolved for structurally bounded PN’s by
using S-invariants[40], for bounded but not structurally bounded PN’s we must con-
struct a reachability graph. It requires an exponential time. This section considers
the relationship between these problems and an unfolding, and proposes a method

to find an answer to these problems.

4.4.2 Unfoldings and Upper Bound Problem

For the upper bound problem, we can obtain the following theorem.

Theorem 4.2 For a PN = (P, T, F,W; M,), the upper bound for a place p € P,
denoted by #(p, M), is the number of vertices of the maximum complete subgraph

in the concurrent-relation graph CG\p, i.e.,
f(p, M) = [VEm=| CGEmex C CG\p. (4.33)

Proof: By Theorem 4.1, it is guaranteed that any marking M reachable from M,
is buried as a maximal complete subgraph in CG\P. Thus any sub-marking with
respect to a place p is buried as a maximal complete subgraph in CG\p. Namely, the
upper bound is given by the number of vertices of the maximum complete subgraph.

4.4, UPPER BOUND VERIFICATION WITH UNFOLDINGS 59

1 2
pl pl

(a) (b)

() (d)

Figure 4.14: iCG\p of the unfolding in Figure4.2. (a)CG\pi, (b)CG\p2, (¢)CG\ps
and (d)CG\ps.

Example 4.2 In Figure 4.14, concurrent-relation graphs induced by each place are
shown, and each graph is the maximum complete graph. Therefore we can obtain
the upper bound for each place as follows: #(py, M) = 2, §(ps, M) = 1, #(p3, M) = 2
and f(ps, M) = 2.

By modifying Algorithm 4.1, we can obtain Algorithm 4.3 for Problem 4.2. See
Figure 4.15. Algorithm 4.1 is exhaustive, thus the algorithm is not efficient. In
Algorithm 4.3, by listing subgraphs in the order of the number of vertices, we can

stop calculation when the graph being studied is a complete graph.

4.4.3 Experimental Results and Comparison

This subsection compares the proposed method with other methods.
For the verification of the upper bound problem, we can list the following meth-
ods:

e the reachability graph method,
e the S-invariant method, and

e the unfolding method.

60 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

Algorithm 4.3 Upper Bound for a Place p
input: A concurrent-relation graph CG\p.
output: Upper Bound for a Place p.
begin
Divide CG\p into non-separable subgraphs.;
Append non-separable subgraphs to list_of _graphs.;
/* Subgraphs are listed in the order of the number of vertices. * /
while list_of_graphs # § do
Take the first graph G’= (V', E') from list_of_graphs.;
if G’ is a complete graph, then
- /* The objective value is the number of vertices of graph G’.*/
return |V’|
else
Divide G’ into subgraphs G, and GL.;
/* Do not select a vertex as z, which is adjacent with all other vertices.* /
Divide G}, and G into non-separable subgraphs.;
Append non-separable subgraphs to list_of _graphs.;
/* Subgraphs are listed in order of the number of vertices. * /
endif
endwhile

end

Figure 4.15: An algorithm for the upper bound problem.

Table 4.3 shows experimental results. “PN” is the name of a Petri net. In the row
“RG”, data of the reachability graph method are shown: “|R(Mp)|” is the number
of reachable markings, and “time” is the CPU time to verify upper bound by using
the reachability graph method. In the row “S-invariants”, data of the S-invariant
method are shown: “# inv.” is the number of S-invariants, and “time” is the CPU
time to verify upper bound by using the S-invariant method. In the row “unfolding”,

data of the unfolding method are shown: “4# place” is the number of places in the

4.4. UPPER BOUND VERIFICATION WITH UNFOLDINGS 61
Table 4.3: Experimental Results
PN RG S-invariants unfolding
|R(My)| | time | # inv. | time | #place | #trans. | time
n reader-writer
n =10 12 0.0 2] 0.0 30 10| 0.0
n = 20 22 0.0 21 00 60 20| 0.2
n = 30 32 0.0 21 0.0 90 30| 0.7
n =40 42 0.0 2| 0.0 120 40| 1.8
n = 50 52 0.0 2 0.0 150 50 3.4
n X n ring
n =10 2 0.0 100 0.0 20 1 0.0
n = 20 2 0.0 400 | 0.2 40 1 00
n = 30 2 0.0 900 1.2 60 1 0.1
n = 40 2 0.0 1600 | 4.4 80 1| 0.1
n = 50 2 0.0 2500 | 8.8 100 11 03
pla3.3 9856 | 145.6 13| 0.0 90 62| 0.1
pla3.4 14464 | 318.0 13| 0.0 92 64| 0.1
pla3.5 78720 - 16| 0.0 136 97| 0.2
vme2 586 0.8 8 0.0 64 55 0.1
vmed 10232 | 180.5 17 0.1 103 88 0.2
master-read 2108 7.1 18| 0.0 7 50| 0.1
din10 6.0 x 107 - 30! 0.1 80 50| 0.1
din20 3.7 x 10% - 60| 0.7 160 100 0.6
dme20 2.2 x 107 - 21| 0.1 81 61| 0.2
dme40 4.5 x 1013 - 41 0.9 161 120 1.0

unfolding, “# trans.” is the number of transitions in the unfolding, and “time” is

the CPU time to verify upper bound by using the unfolding method. All the times

have been measured on a SUN SPARCstation 4 with 32MB main memory.
Although for the reachability method there is no restriction about applicable

62 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

¢,

Figure 4.17: A non structurally bounded net.

class, the method can be applied only to small nets. Experiments, on those nets

whose “time” value is “-” failed because of the lack of memory.

As for the S-invariants method, computational complexity of the method is inde-
. pendent with the number of reachable markings, and it depends only on the number
of S-invariants. This implies that the method can be applied to large nets if there
are few numbers of S-invariants, and this is shown in the results of large nets like
“pla3.3”, “pla3.4”, etc. Conversely, if there are too many S-invariants, the method
requires much more time than other methods, even if there are few numbers of reach-

able markings. The net shown in Figure 4.16 consists of 2n places and 2 transitions.

4.4. UPPER BOUND VERIFICATION WITH UNFOLDINGS 63

Figure 4.18: A readers-writers system with n process.

Arcs are drawn from transition #; to places p,y1,- .. ,Pon, from places ppi1,... ,Pon
to transition ty, from transition t; to places py,...,p, and from places pi,... ,Dn
to transition t;. Places pi,...,p, have a token at the initial marking. Although
the number of reachable marking of the net is 2, the net has n? S-invariants. As
a result, the method requires much more time than other methods. Moreover the
method can be applied only for structurally bounded nets. A net in Figure 4.17 is

not structurally bounded, since only one S-invariant of the net is as follows:
T
y = [0 01 1] (4.34)

Therefore the S-invariants method can not be applied to this net.

Similar to the S-invariants method, the unfolding method obtains better results
than the reachability graph method. The method can be applied to large nets, and
there is no restriction with respect to applicable class, namely this method can be
applied to non structurally bounded nets, like the net in Figuie 4.17. A shortcoming
of the unfolding method is that as the number of tokens in a place becomes high,
computational complexity increases. The readers-writers system with n processes is

drawn in Figure 4.18. In the net, n tokens are placed in places p; and ps at the initial

- 64 CHAPTER 4. VERIFYING PETRI NETS WITH UNFOLDINGS

Table 4.4: Upper Bound Verification

Reachability Graph S-invariant unfolding
Class no restriction structurally bounded no restriction
Efficiency non efficient efficient | efficient
Characteristic marking independent marking dependent

marking. Result of this example show that, more time is required as n increase. On
the other hand, since the net structure of the system is changeless, the incidence
matrix of the net is also changeless. Therefore S-invariants of the net is always two.
Thus computational complexity for this net is invariant. The independence from
the initial marking is a characteristic of the S-invariant method.

As a summary, we can obtain Table 4.4

4.5 Concluding Remarks

This chapter considered a computational problem of the reachability and the upper
bound problems.

First, a concept of concurrent-relation graphs was introduced. The graph rep-
resents concurrent relation between instances in an unfolding. Two graph division
methods were introduced, and it was shown that maximal complete subgraphs was
preserved by the division methods. , ‘

Secondly, it was shown that the reachability problem results in finding a maximal
complete subgraphs in a concurrent-relation graph induced by the set of places, and
an algorithm to find the maximal complete subgraph was shown. Experimental
results showed effectiveness of the proposed algorithm.

Finally, it was shown that the upper bound problem results in finding the max-
imum complete subgraph in a concurrent-relation graph induced by a place, and
an algorithm to find the maximum complete subgraph was proposed. Experimental

results showed effectiveness of the proposed algorithm.

Chapter 5

Synthesis of Asynchronous
Circuits with Petri Net Unfoldings

This chapter discusses the problem of synthesizing asynchronous circuits from signal

transition graphs (STG’s) description with unfoldings.

5.1 Introduction

The progress of VLSI technology enables us to manufacture low cost and high per-
formance software and hardware chips. We can divide the digital hardware systems

broadly into two categories:

e Synchronous: use an external global clock for observing system states, and

Clock

A

Register Register
SN N N j
— Sender — Logic .._# Receiver

Figure 5.1: Synchronous Communication.

65

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
66 ' NET UNFOLDINGS

Ack

Register Req Register

T Sender | Logie | >
’ Sender - Logic —— Receiver

Figure 5.2: Asynchronous Communication.

¢ Asynchronous: use internal and external events for observing system states.

In Figures 5.1 and 5.2, synchronous communication and asynchronous communica-
tion are shown. In the synchronous system, a change of system state is triggered by
an external global clock. On the other hand, in the asynchronous system, a change
of system state is triggered by internal and external events. Although almost all the
hardware is synchronous circuits, to materialize much lower cost and higher perfor-
- mance hardware, synchronous circuits have some problems, i.e., clock skew, power
consumption, etc. Asynchronous circuits have many potential advantages against

synchronous circuits, e.g.,

e high-speed operation: depending only on causal relation of signal transitions

with average delay instead of worsi-case delay,

e design cost reduction: due to separation between logical correctness and lower

level circuit timing,

e timing fault tolerance: thanks to insensitivity to delay variance in layout,

fabrication and operating environment, and
e low power consumption: due to signal transition made only when necessary.

Recently, there are urgent requirements for higher performance (high ability and low
power consumption) hardware. Despite many advantages of asynchronous circuits
over synchronous circuits, they have not been widely used beyond few applications,
e.g., interface circuits. We can point out following disadvantages of asynchronous

- circuits.

5.1. INTRODUCTION 67

e Area penalty in data path due to dual-rail encoding of data.

Completion detection is a source of inefficiency, especially in memory devices.

More sensitive to transient faults.

Pin penalty due to 2-railed data.

Interface with standard parts.

More sophisticated and diversified design techniques.

To overcome these difficulties, an establishment of formal mathematical methodol-
ogy and development of a synthesis tool are necessary.
For the systematic asynchronous circuits design methodology, assumption on

wire and gate delay is important. We can enumerate four delay models.
e Fundamental Mode (Huffman model):

— Variable delays with known bounds.

— Input changes occur when circuit is stable.

In this model, technology mapping is easy, but verification is difficult since

delay must be considered.
e Speed-Independent (Muller model):

— Finite, but unbounded, gate delays.

— No wire delays.

In this model, technology mapping is more difficult, but verification is easy

since time is excluded.
e Delay-Insensitive:
— Finite, but unbounded, gate delays and wire delays.

¢ Quasi-Delay-Insensitive:

oA =L
slow

Figure 5.3: Hazards.

— Delay-Insensitive + Isochronic Forks
In practice this is the same as speed-independent.

A hazard is a signal transition not specified by the designer. In Figure 5.3, a typical
example of hazards is shown. When input signals change from ab to ab, and lower
and-gate is slow, then the output signal of the or-gate will be 1 — 0 — 1. Such
an illegal signal change is called a hazard. For the completion of the asynchronous
system design, the elimination of hazards is important, but hazards make the asyn-
| chronous system design difficult. In the speed-independent design, disabling cannot
occur for unbounded gate delay model, therefore there exists no hazard, and a com-
plex theory of hazards is not necessary for this delay model. This thesis assumes
the speed-independent delay.

STG’s were introduced in [4]. STG’s are Petri nets, whose transitions are inter-
preted as a signal transition on the circuit inputs or gate outputs, and its marking
represents a binary state of the circuit. Asynchronous behavior of circuits can be
modeled by concurrent firings of transitions of STG’s. Under an assumption that
target circuits are speed independent, we can obtain a hazard free implementation
from an STG. To derive a logic function of circuits, however, the knowledge of binary
states, namely a set of all reachable markings is required. In a case an underling net
is restricted to a live and safe free-choice net (LSFC net), methods to derive a logic
function or to verify Complete State Coding (CSC) property in polynomial time
have been presented without generating a whole state space[45, 46]. This method

5.2. SYNTHESIS OF ASYNCHRONOUS CIRCUITS FROM STG'S 69

uses the decomposition method discussed in section 2.3. As stated before, it is im-
possible to extend the result to a general case, since the method strongly depends
on the structural characteristics of LSFC nets. It is shown in [54, 59] that LSFC net
is too restrictive to represent asynchronous circuits. In a general case, a logic func-
tion can be derived by constructing a reachability graph, called a State Graph(SG).
Unfortunately, as discussed in Chapter 4 the method based on SG’s is not efficient
since it requires exponential time complexity to construct an SG, and the method is
not applicable to large STG’s. The problem is thus to derive an efficient algorithm
that reduces a computation time as much as possible.

In [29], the unfolding method to avoid the state space explosion problem in the
verification of Petri nets is proposed. In [19], a property of STG’s, called correctness,
is defined, and a verification method for correctness by using reduced unfoldings is
proposed. This chapter discusses a method on deriving logic functions of asyn-
chronous circuits by using STG unfoldings, and compares with other methods. The

method proposed in this chapter assumes the correctness of STG’s.

5.2 Synthesis of Asynchronous Circuits from STG’s

This section reviews the methods of synthesizing asynchronous circuits from STG’s.
STG’s are Petri nets, whose transitions are interpreted as a signal transition on
the circuit inputs or gate outputs. A signal transition can be represented by +s or

—s for a transition of signal s from 0 to 1, or from 1 to 0, respectively.

Definition 5.1 (STG) An STG is a triple G = (N, A, A), where N is a PN or
an OCN, A is the set of signals and A : T — {+, —} x A is the labeling function.

Henceforth we assume |A| = d.

In Figure 5.4, an example of STG’s and its unfolding are shown. For any firing
sequence of N, there corresponds a unique sequence of signal transitions in an STG.
In an STG, a marking of an STG or corresponding OCN represents a binary

state of the circuit.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
70 NET UNFOLDINGS

%@ pm
% +Ri’

C i 4R

" Figure 5.4: An STG(a) and its unfolding(b).

Definition 5.2 (State) In an STG, a state on a marking M, denoted by S(M, Vp)

or S(M), is a binary vector (s1,---,sq4) of the circuit, where V5 is an initial state

5.2. SYNTHESIS OF ASYNCHRONOUS CIRCUITS FROM STG’S 71
s,Ri,Ro,Ai
s
- » 0*001% As 01*00 +—
= ~ A/-R,l
LR *01* A 0*000
110* A>t</ \1 * ts
0*1 10*00
+Ro SAi
/ \1 A/+R1
R 11*11%* A 110*0
_/ \1 A/+RO
1011* 1*1*10
M ‘/Ri \f
1*010 01*10* LAl
-s

\ A/Ri \

0010* AL 01*1*1 R
R P TR Ai | -Ri

~ho 001*1 01*01*

Figure 5.5: The SG of STG in Figure5.4(a).

corresponding to My. If M;[t>M;, then
S(M;,Vo)r =14 1 else if A(t) = +s (5.1)

S(M;, Vo)r else

For the set M of markings of an STG, S(M, V) = {S(M, V)|M € M}.

Note that if an initial state V; is not given, we can derive it from an initial marking

My in polynomial time[19].

Let us consider deriving a logic function from an STG. A State Graph(SG)

is the reachability graph of the STG in which a state is assigned to each marking
reachable from an initial marking. In Figure 5.5, the SG of the STG in Figure 5.4(a)

is shown. In the SG, the value of signals s, Ri, Ro and Ai are listed in this order,

and changeable signals are labeled by *. For example, 0 * 001x indicates, current

values of signal s, Ri and Ro are 0, that of signal Ai is 1, and signals s and Ai are

changeable in this state.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
72 NET UNFOLDINGS

Definition 5.3 Define a set of markings for signal s; as follows:

= {M € R(My)| M[t>}, o (5.2)
ML = {M € R(Mp)| S(M); =1 A (=M[t'>)}, | (5.3)
M = {M € R(My)| M[¢'>}, and | (5.4)
Mg, ={M € R(My)| S(M); =0 A (-M[t>)}, | (5.5)

where t (resp. t') is any transition such that A(¢) = +s; (resp. —s;).

Intuitively, M is the set of markings in which the signal s; is changeable from 0 to
1, and Mﬁ is the set of markings in which the signal s; is stable to 1. Similarly for
Mg, and Mgi. The set of states corresponding to a set of markings M is denoted
by M. For signal s, we can obtain the following sets of states.

= {0001, 0000}, (5.6)
= {1001, 1000, 1101, 1100, 1111, 1011}, (5.7)
M = {1110,1010}, and (5.8)
M® = {0010,0110,0111, 0011, 0101, 0100}. (5.9)

- Definition 5.4 (On-set, Off-set) Two sets of states On-set and Off-set for signal
s, denoted by On-set(s) and Off-set(s), are defined as follows.

~ On-set(s) = M U M?, and (5.10)

Off-set(s) = M7 U M. (5.11)

Plus and minus logic functions f,+ and f,— of signal s are represented by' the

disjunction of states in On-set(s) and Off-set(s), respectively[4]. Thus we can obtain
_ the following logic functions for signal s from (5.6), (5.7), (5.8) and (5.9).

fot = RiRo + sRo + sAi (5.12)

fs— =5Ro + RoAi + 5Ri (5.13)

The STG in Figure 5.4 have 2 input signals Ri and Ai, 1 internal signal s, and 1

output signal Ro. Thus after deriving logic functions of signal Ro, we can obtain an

asynchronous circuit. A RS flip-flop implementation is shown in Figure 5.6.

Therefore we need the set of states to derive logic functions.

Ro
Ri }S Ro
Ai L
S
ey SRy
D

Figure 5.6: RS flip-flop implementation.

5.3 Synthesis of Asynchronous Circuits with Un-
foldings

This section discusses a method to derive logic functions from STG’s by using un-

foldings.

Different from the reachability verification, we need the set of states to derive
logic functions, namely we have to search the whole state space. Constructing the
SG is not so expensive when the given STG is small. In some small nets, we can
construct the SG in shorter time than constructing the unfolding. The method
proposed in this section thus aims to divide the state space into small pieces whom
we can obtain easily. The concurrent relation between nodes in unfoldings is used

in order to obtain special sub-nets of the unfolding.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI

74 NET UNFOLDINGS
psl psl psl DPs
-Af -Ri' -Af -Ri'
1 2 1 2
Py Y Do Y
(2) (b) (c)

Figure 5.7: Examples of P(T)-Net’s.(a) is T-Net(+s'), P-Net(p}), P-Net(p}). (b) is
P-Net(p;). (c) is T-Net(—s?).
5.3.1 P(T)-Net’s

This subsection introduces new concepts P-Net’s and T-Net’s, and studies their

characteristics.

Definition 5.5 (P-Net) A P-Net of a place p is a subnet P-Net(p) = (P,, T}, F})

of an unfolding, where

T, ={t € T'|t//p}, (5.14)
Po={p' e P|3teT,:p cetvy cte},and (5.15)
Fy = {(z1,22) € F'lz1,22 € P,UT,}. (5.16)

Definition 5.6 (T-Net) A T-Net of a transition ¢ is a subnet T-Net(t) = (P, T3, F})

of an unfolding, where
T, ={t' e T'|t'/ /t}, (5.17)
Po={p eP|3 €T,:p cot' vp €t'e} and (5.18)
Fy={(z1,22) € F'|11,2, € ,UT}. (5.19)

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 75

In Figure 5.7, P-Net’s and T-Net’s for the unfolding in Figure 5.4(b) are shown.
Transitions in a P-Net(p) or T-Net(t) can fire in the unfolding when a token is

placed in place p or when transition ¢ is enabled, respectively.

Lemma 5.1 In an unfolding, for each place p' € P, in a P-Net(p) = (Pp, T}, Fp)

with ep # (), we can write

{ p € (= ep)e ‘if oy’ NT, =0, and (5.20)
p & (= eple if ep NT, #0.
Proof: (1) Case op' NT, = (. Since p' € B,

3t € p’ @ such that t//p. (5.21)
From equation (5.21),

-(p' = p). (5.22)

(a) If p' € M}, then, from equation (5.22) and Definition 3.2, p’ € (= ep)e.
(b) If ep' <= p, then p = ep’ = p' = t. This contradicts equation (5.21).
(c) If ep'dp, then tfp. This contradicts equation (5.21).
(d) Assume ep’//p. This contradicts that ep' N7, = §.
(e) If ep’ => p, then, from equation (5.22) and Definition 3.2, p' € (= ep)e.
Consequently, p’ € (= ep)e.
(2) Case o’ N T, # 0. That implies ep'//p, therefore op’ & (= ep). From
Definition 3.2, p' & (= ep)s. n

Lemma 5.2 In an unfolding, let M'[t > (= t)e. For each place p’ € P in a
T-Net(t) = (P, T}, Ft), we can write,

(5.23)

peM if oy NT,=10
o & M' if ep'NT; # 0.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
76 NET UNFOLDINGS

Proof: The proof of this lemma is similar to that of Lemma 5.1. Therefore it is

omitted here. n

When a marking of P-Net(p) is equal to xP,, we denote this marking by M?,

and define the state V¥ as below.

VP { S((= ep)e) if ep# 0 (5.24)

¢ S(Mj) if ep=10

When there is a token on all source places in T-Net(t), we denote this marking by
Mg, and define the initial state V{f as

Vo = S(M',Vy), (5.25)
where M'[t> (= t)e.

Theorem 5.1 The set of states of an unfolding, in which there is a token on place
D, is equal to the set of states in the SG of P-Net(p) with initial marking M} and

initial state V{.
Proof: (1) Case where ep # . In the unfolding, let us describe (= ep)e as follows,
(= ep)e={plUuRU P, (5.26)

where Py = Mg and P, = (= ep) ¢ —{p} — ;. From Lemma 5.1, P, N B, =

therefore

b

ij € P1 o € Pp. (527)
From Definition 5.5 and equation (5.27),
Vp; € P1,Vt € pje : pit,p=tort = p. (5.28)

Hence ¢ is not enabled when a token is placed on p. Since (= ep)e is the first
marking, in which place p have a token, the sets of states are equal.

(2) We can prove similarly in the case where op = §. . -

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 77

Theorem 5.2 The set of states of an unfolding, in which a transition ¢ is enabled,
is equal to the set of states in the SG of T-Net(¢) with initial marking M¢ and initial
state V. '

Proof: The proof of this theorem is similar to that of Theorem 5.1. Therefore it

is omitted here. n

Theorem 5.1 and 5.2 show that we can obtain the set of states in which a token is
placed on a place p (resp. states in which a transition ¢ is enabled), from the SG of
P-Net(p) (resp. T-Net(t)). Hereafter an initial marking of a P-Net (resp. T-Net) is
given by M} (resp. M{), and an initial state of a P-Net (resp. T-Net) is given by
VP (resp. V). |

Example 5.1 In the unfolding in Figure 5.4(b), the set M(p}) of reachable mark-

ings, in which a token is placed on place pi, is given by the following equation,

M(p1) = {{p1, ps} {p1,p5}}- (5.29)

And its corresponding set of states is given by
M(p!) = {1001, 1000} (5.30)

P-Net(pi) is shown in Figure 5.7(a), and its initial state is given by the following

equation,
VI = 5((= ep})e, V3) (5.31)
= S({pi,pi},0001) (5.32)
= 1001. (5.33)

Therefore from the SG of P-Net(p}), we can obtain the set of states,

M(pt) = {1001, 1000}. (5.34)

'5.3.2 Tree

This subsection introduces new concept tree, and studies its characteristics.
The set of states of a P-Net of each series place is mutually disjoint. We define

a set of places, called a tree, to search all state space.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
78 - NET UNFOLDINGS

Definition 5.7 (Tree) In an unfolding, a set I' C P’ of places is called a tree when

dpel:pe M), and | ' ' (5.35)
VpeT:Vtepetenl #0. o , (5.36)

Although a choice of a tree I' is not unique, the reachable states can be obtained

from any I' as shown in the following theorem.

Theorem 5.3 For a given STG, the set of all states of the STG is equal to the
- union of the set of all states of P-Net(p), where a place p belongs to a tree I' of its

unfolding, i.e.,

S(R(N, M), Vo) = | S(R(P-Net(p), M}), V) (5.37)

pel v
Proof: It has been proved in Lemma 3.1 and Lemma 3.2 that the set of all
markings of an STG can be derived by the set of all markings of its unfolding. From
the definition of a tree, for any marking M reachable from My of the STG, there
exists a place p’ with p’ € T' A L(p') € M in the unfolding. Then from Theorem 5.1,

we can derive any state of the STG from its unfolding. =

5.3.3 Next State Function Derivation

The set M (resp. M) is the set of states in which the transition ¢ with A() = +s
(resp. —s) is enabled. We can obtain the set .K/l\j and ﬂ/t\s” from the SG of T-Net(?).

Consequently, the following theorem can be obtained.

Theorem 5.4 For a given STG, logic functions of a signal s can be derived by the
Algorithm 5.1.

Proof: The proof of this theorem is trivial. Thus it is omitted here. n

Theorem 5.4 provide us with a means to derive logic functions by dividing into
smaller set of states. The main problem on deriving logic function is the state space

explosion problem. This division method will help us to derive logic functions.

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 79

Algorithm 5.1 Deriving a Logic Function for Signal s
input: an STG.
output: On-set(s) and Off-set(s).
begin
Construct an unfolding from the STG.;
Find a tree I' in the unfolding.;
foreach place p e T’
Construct the SG of P-Net(p).;
foreach state in the SG
if the value of signal s of the state is 1
Add the state to On-set(s);
else
Add the state to Off-set(s);
endif
endforeach
endforeach
foreach transition ¢t with A(t) = +s (resp. —s)
Add all states in the SG of T-Net(t) to On-set(s) (resp. Off-set(s)).;
Delete all states in the SG of T-Net(¢) from Off-set(s) (resp. On-set(s)).;
endforeach

end

Figure 5.8: An algorithm to derive a logic function.

Example 5.2 Consider a case of deriving logic functions of signal s for the STG in
Figure5.4(a). A tree of the unfolding in Figure5.4(b) is ' = {p}, p3, ps, p7, P}, P}
We can obtain the following sets of states for each places. In each state, the values

of signal s, Ri, Ro and Ai are listed in this order.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI

80 NET UNFOLDINGS
M(p}) = {0001,1001, 1101, 1111, 1011} (5.38)
M(p}) = {0000, 1000, 1100, 1110, 1010} (5.39)
M(p}) = {0110,0010} | (5.40)
M(p}) = {0111,0011} (5.41)
M(p?) = {0101,0001} (5.42)
M(p?) = {0100, 0000} (5.43)

Here, .//\/\t(p) = S(R(P-Net(p), M), VF). After calculating SG of all the P-Net’s,
On-set(s) and Off-set(s) are obtained as follows.

On-set(s) = {1001,1101,1111,1011, 1000, 1100, 1110, 1010} (5.44)
Off-set(s) = {0001, 0000, 0110, 0010, 0111, 0011, 0101, 0100} (5.45)

Instantiations of +s and —s in the unfolding in Figure 5.4(b) are +s!' and —s!. The

sets of states of each T-Net’s are as follows.

——

M(+s') = {0001, 0000} (5.46)
M(—s') = {1110, 1010} (5.47)

Here, M\(t) = S(R(T-Net(t), M{), V). Therefore at the end of Algorithm 5.1, On-
set(s) and Off-set(s) are obtained as follows.

On-set(s) = {1001,1101, 1111, 1011, 1000, 1100, 0001, 0000} © (5.48)
Off-set(s) = {0110,0010, 0111, 0011, 0101, 0100, 1110, 1010} (5.49)

In Figure5.9, the Karunaugh map for signal s is shown. A state in On-set(s)
(resp. Off-set(s)) is expressed by 1 (resp. 0) in the map. Consequently, we can

derive logic functions of signal s from the map as follows.

fs+ = RiRo + sRo + sAi ‘ (5.50)
fs— =5Ro + RoAi +5Ri (5.51)

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 81

Ai __Ri

Figure 5.9: The Karunaugh map for signal s.

5.3.4 Several Techniques to Improvement

This subsection discusses a method to extend the Algorithm 5.1.

Congruent Relation

Let us introduce a concept of congruent relation to eliminate redundant state space

construction.

Definition 5.8 (Congruent) In an OCN, nodes x; and z, are called in congruent

relation, denoted by
x1 = 19, (5.52)

if two sets of transitions, which are in concurrent relation with nodes z; and z,

respectively, are the same.

From Definitions 5.5, 5.6 and 5.8, it is obvious that if nodes are in congruent
relation, P(T)-Net’s of each node have the same structure. Therefore reachability
graphs of these P(T)-Net’s are the same, since the set of source places is given for
an initial marking of a P(T)-Net.

For a given P(T)-Net, we can derive the SG by constructing the reachability
graph and assigning a state to each marking from a given initial state. Thus when

nodes z; and z, are in congruent relation, we can use the reachability graph of the

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
82 NET UNFOLDINGS

P(T)-Net of node z; for that of node x5. Constructing the reachability graph is the
most expensive in deriving logic functions. Therefore great time reduction can be
expected by eliminations of construction of a reachability graph.

There are many cases in which nodes are in congruent relation.. Here we show
three cases in which nodes are in congruent relation. Note that in each case checking

congruent relation is done in a few steps.

Lemma 5.3 In an unfolding = (P, T, F; My; £), a place p € P and a transition

t € T are in congruent relation, when

ot = {p}. | | (5.53)

Proof: Let us describe T as follows,
o
T=TIUT/UT? UTS

(5.54)
=TIuT/ uT? UTF U {8,

where Tﬁ (resp. Tt”) is the set of transitions in conflict with p (resp. t), Tp/ / (resp.
T//) is the set of transitions concurrent with p (resp. t), T,” (resp. T;7) is the set
of transitions which are predecessors of p (resp. t) and 1.7 (resp. T;7) is the set of
transitions which are successors of p (resp. t). From of = {p}, we can obtain
T? =T7, and (5.55)
T! C T} (5.56)

Consider a case where |p e | = 1, namely pe = {t}. From pe = {t},
T =T u{t}. ' (5.57)

For each transition ¢ € T tﬂ’ there exist distinct transitions t;,¢, € T such that
o1 Neoty # B and (t,1),(t2,t') € F*. From pe = {t}, t; # t, therefore ¢; is a
predecessor of p. That implies Ttii C Tg, so that, from equation (5.56),

T} =T} (5.58)

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 83

From equations (5.54), (5.55),(5.57) and (5.58),
TIUT; UTS =T uT” UTS u{t}, (5.59)

namely, Tp/ /= Tt/ /.,

In a case where [p e | > 1, the set 7, can be expressed by
Ty =T U{t} UT, (5.60)

where each pair of sets T,=, {t} and T, is mutually disjoint. For each transition
t" € T,, there exists a transition ¢ € T, such that (¢, ¢") € F*, ¢" € pe and t"" # ¢,
thus ##t”, namely,

T, C T} (5.61)
Therefore, from equations (5.55), (5.56), (5.60) and (5.61),

TUT UTS CTIUT? UTS U{t}UT,

(5.62)
= Ttﬁ Ul U th u{t},

namely,
T/ c1). (5.63)

For a transition t3 € Tp/ / from et = {p}, a predecessor of t is p or is a predecessor

of p, thus

(3 = t).p (5.64)
Similarly,

=(t = t3). (5.65)

Assume that tits, then there exist distinct transitions t4,t5 € T such that etsNet; #
0 and (t4,t), (ts,t3) € F*. t4 is t or is a predecessor of p since a predecessor of ¢ is

p or is a predecessor of p. When t4 is £, ¢5 is a successor of p, thus ¢3 is a successor

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
84 NET UNFOLDINGS

of p. This contradicts that ¢35 € Tp/ /. When t4 is a predecessor of p, t3 € T}f. This
contradicts that t3 € Tp/ /. Therefore

ﬂ(tﬂtg). (5.66)
Equations (5.64), (5.65) and (5.66) imply
T/ c1/, (5.67)

so that T,,// = Tt//.

Consequently p and ¢ are in congruent relation. n

Lemma 5.4 In an unfolding = (P, T, F; My; L), a place p € P and a transition

t € T are in congruent relation, when

te = {p}. (5.68)

Proof: The set of transitions (T}, etc.) are defined similarly. Since to = {p} and
op = {t}, it is obvious that T} = 7, Iy =715, T;7 = T U {t} and Ty =1/,

Therefore p and t are in congruent relation. n

Lemma 5.5 In an unfolding = (P, T, F; My; L), places p1,ps € P are in congruent

relation, if

ot = {p1} and te = {p,}, (5.69)
where epy = {t}.
Proof: From Lemma 5.3,

T/ =T/ (5.70)
From Lemma 5.4,

T/ =T/ (5.71)

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 85

Therefore
Tl =T}, (5.72)
so that p; and ps are in congruent relation. =

Example 5.3 In the case of the unfolding in Figure 5.4(b), we can find following

congruent relations.

+st @ pl « 4Ri' = pl ¥ Ro!

ps = -Ril = pf

plox Al = pl (5.73)
—st = pl = Al = pi = —Rol

pd = AP = p

When we have to obtain the sets of states for P-Net(pi), P-Net(p}), and T-Net(+s'),

we have only to construct the reachability graph of one of these nets.

Optimal Tree Selection

In Algorithm 5.1, we construct SG’s for each place in a tree and for each transition
whose firing means a signal transition of a given signal s. We show a method to find
an optimal tree by using congruent relation positively. The congruent relation is
defined by the equivalence of sets and is an equivalent relation so that we can define
the equivalent class of places, called C-class. From the condition of Lemma 5.5 and
the fact that each place has at most one input transition, each C-class is a partial
ordered set including the greatest element, where a is greater than b if a = b. When
ot = {p,} and te = {py}, if p, is in a tree, p; must be in the tree, from the condition
2 of Definition 5.7. Therefore for each C-class, only the SG of the greatest element
is needed to construct. To optimize the selection of a tree, introduce a notion of
weight for each place. A weight w(p) of a place p is given according to the following

criteria:

e For a given signal s, let T, be the set of transitions with A(¢) = xs'.

lys is +5 or —s.

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
86 NET UNFOLDINGS

Algorithm 5.2 Finding an Optimal Tree
input: an unfolding.
output: an optimal tree.
begin
For each place p € P’, decide weight w(p).;
For each place p € My, call function Tree-place(p).;
A place p € My of which the value of the function Tree-place is minimum
is the root place of an optimal tree.

end

Figure 5.10: An algorithm to find an optimal tree.

e For a C-class P, if there exist a transition ¢t € T} and a place p € P witht 2 p,
for each place p’ € P, w(p') = 0.

e For a C-class P, if there does not exist a transition ¢ € T, and a place p € P
with ¢ £ p, for the greatest place p’ € P, w(p') = g(p'), for other places p” € P,
w(pll) —

Ideally the function g should be a cost to construct an SG. Practically, g(p) is
expressed as a function of the number of nodes that are concurrent with p in this
thesis. A weight of a tree I' is given by the sum of weights of places in I". The
problem is to find a tree whose weight is minimum. Since an unfolding is an acyclic
directed graph, we have only to find optimal sub trees recursively in order to find
an optimal tree. An algorithm to find an optimal tree is shown in Figure 5.10. In

Figures 5.11 and 5.12, functions which are used in Algorithm 5.2 are shown.

Example 5.4 Consider a case of deriving logic functions of signal s for the STG

in Figure 5.4(a). If the function g is given by g(p) = 2=, where z is the number of

5.3. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH UNFOLDINGS 87

Function 5.1 Tree-place (p : place) : weight ;
begin
foreach transition t € pe
Tree-transition(t).;
endforeach
return the sum of all value of the Tree-transition and w(p).;

end

Figure 5.11: Function Tree-place.

Function 5.2 Tree-transition (t : transition) : weight ;
begin
foreach place p € te
Tree-place(p).;
endforeach
Decide a place 9/, such that the value of Tree-place(p’) is minimum, as
one of successors of et.;
return the value of Tree-place(p’).;

end

Figure 5.12: Function Tree-transition

transitions concurrent with p, a weight of each place is given as follows:

w(py) = w(pio) = w(ps) =2, (5.74)
w(p;) = 32, (5.75)
w(pg) = 16, (5.76)
w(ps) = w(ply) = 4, | (5.77)

and for other places the weight is 0. From Algorithm 5.2, an optimal tree of Fig-
ure 5.4(b) is

T = {pi, p1, P2, D3> Pe» D1 D3> Do }- (5.78)

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
88 , NET UNFOLDINGS

Figure 5.13: P-Net(p}).

In this case, we can eliminate the construction of reachability graph for the P-Net
of place pi, p3, ps, py and p2. The number of states of P-Net(p}) is 2, that of T-
Net(+s') is 2, that of P-Net(p!) is 4, that of T-Net(—s') is 4 and that of P-Net(p2)
is 2. Therefore total number of searched states is 14. When we do not use this
optimization, we have to search 24 states. Therefore this optimization can be seen

as a state reduction method.

Nesting

Though P(T)-Net’s are smaller than the unfolding, they are not always much smaller
than the STG. See Figure 5.13, where P-Net(p}) is shown. In this case, the net has
still 8 places and 5 transitions. The original STG has 10 places and 8 transitions.
Algorithm 5.1 provides a method to divide state space. Therefore, nesting the
algorithm will be useful for this problem. Let us consider the case that we construct

the SG of P(T)-Net’s by using the algorithm. We can list the following properties.
e The P(T)-Net is an OCN, therefore we can omit constructing unfolding.

e We can also omit the step with respect to T-Net’s, because we need only the

whole state space of the given P(T)-Net.

e By the similar reason, we do not have to classify the states into On-set and

Off-set, and have only to sum up the states.

In Figure 5.14, a nesting algorithm to obtain the set of states of a P(T)-Net is shown.

5.4. EXPERIMENTAL RESULTS 89

Algorithm 5.3 Deriving a set of states of P(T)-Net’s
input: a P(T)-Net.
output: the set of states of the net.
begin
Find a tree I' in the net.;
foreach place p € T’
Construct the SG of P-Net(p).;
Sum up the sets of SG’s.;
return the set of states.;

end

Figure 5.14: Nesting algorithm.

Example 5.5 Let us apply the algorithm to P-Net(pj). If we choose the set

T = {pg, Ps, Pe: Pt D3> P} (5.79)

as a tree, we can divide the net into 6 P-Net’s. Although these nets have no nodes,
they have an initial state. Namely, each nets has only one state. Now, we can derive
six states for P-Net(p}).

As stated above, we can avoid the state space explosion problem by nesting the
algorithm. If a divided net is still large, we continue to apply the algorithm to the

net.

5.4 Experimental Results

Table 5.1 shows the experimental results. “STG” is the name of STG’s, “sig” is the
number of signals, “tr” is the number of transitions and “states” is the number of
states of its SG. The examples used for our experiments have been obtained from
[46, 36, 22]. In the column “OSN”, “OSN”, “OSN”, “OSN” and “OSN”, average

time to derive a pair of (plus and minus) logic functions of one signals shown in

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
90 NET UNFOLDINGS

Table 5.1: Experimental results(1)

STG sig | tr states | OSN | OSN | OSN | OSN | OSN
master-read | 14 | 28 2108 9.8 9.3 9.6 6.4 2.5
pla3.3 14 | 28 9856 | 77.4| 682 | 65.6| 21.8| 6.4
pla3.4 15| 30 14464 | 121.0 | 110.0 | 100.3 | 29.7 | 10.1
pla3.5 16| 32| 78720 -a| -a| -al|1149| 348
vme3 19| 53 10234 | 46.5| 426 | 355| 323| 3.4
din10 30| 60| 6.0 x107 -3 -3, -3 -b | 909.8
dme20 40 | 80| 2.2 x107 -a -a -a -b | 785
dme40 80 | 160 | 4.5 x10'3 -a -a -a| -b| 7684

second. “O” means that we select optimized tree, and “O” means that we used
an arbitrary selected tree. “S” means that redundant state space construction was
skipped by using the congruent relation, and “S” means that the state space was
constructed for each P(T)-Net’s. “N” means that the P(T)-net’s were divided into
smaller P-Net’s when they were still large, and “N” means that the state space
was constructed even if a P(T)-Net was large. As for a weight function, we used
a function w(n) = 2', where n is a place or a transition and # is the number of
transitions that are in concurrent with n in this experiment. Since there is no
systematic way to decide the weight function and we prefer smaller P(T)-Net’s,
we used the function. Since congruent relations given by Lemmas 9.3, 5.4 and 5.5
were not sufficient, we kept the information of transitions in P(T)-Net’s for each
place and used the information to check the congruent relation. Nesting was started
when a sum of number of transitions and places exceeded a given threshold. In
this experiment, we took 30 as a threshold. All the times have been measured on a,
SUN SPARCstation 4 with 32MB main memory. Experiments on nets whose “time”
value is “-a” failed because of the lack of memory. “~b” means that the experiments

were stopped compulsory because it did not finish in one day.

Experimental results show that

5.4. EXPERIMENTAL RESULTS 91

Table 5.2: Total number of searched state

number of states

SG 10234
OSN 15090
0SO 14945
OSN 8340
OSN 1708
OSN 83

e Algorithm 4.1 is not sufficient to avoid the state space explosion,

e Techniques “optimal tree selection”, “congruent relation” and “nesting” are

not sufficient alone, and

e by combining these techniques, we can avoid the state space explosion problem.

As for the possibility of the state space reduction, for example, the number of
states of vime3 is 10234. For a specified signal, total number of searched states in
each case is shown in Table 5.2. From this table, proposed method can be seem an
efficient method with respect to state space reduction.

Table 5.3 shows the results obtained by the previous methods and the proposed
method. “STG” is the name of STG’s, “sig” is the number of signals, “tr” is the
number of transitions and “states” is the number of states of its SG. In column
“from [22]”, results by using tool “Petrify” is shown. Shown values are the sum of
“trav”, “init” and “enc” in the output file of the tool. In the column “SG”, time to
construct the whole SG is shown in second. In the column “unfold”, average time
to derive a pair of (plus and minus) logic functions of one signal is shown in second.
The weight function, nesting threshold and conditions for congruent relation were
the same with the previous experiment. All the times have been measured on a
SUN SPARCstation 4 with 32MB main memory. Experiments on these nets whose
“time” value is denoted by “—a” failed because of the shortage of memory. “-b”

means that the experiments were stopped compulsory because it was not finished in

CHAPTER 5. SYNTHESIS OF ASYNCHRONOUS CIRCUITS WITH PETRI
92 NET UNFOLDINGS

Table 5.3: Experimental results(2)

STG sig | tr states | from [22] SG | unfold
master-read | 14 | 28 2108 99.8 8.6 2.5
pla3.3 14 | 28 9856 174.7 | 183.7 6.4
pla3.4 15| 30 14464 244.2 | 396.5 10.1
pla3.5 16 | 32 78720 3646 | -a 34.8
vme3 19| 533 10234 452.9 | 246.1 3.4
din10 30| 60| 6.0 x107 4590.9 —a | 909.8
dme20 40 | 80| 2.2 x107 1806.0 -a 78.5
dme40 80 | 160 | 4.5 x10'3 -b -a | 7684

one day. From the experimental result, the proposed method is more efficient than

constructing the whole SG in order to derive logic functions.

5.5 Concluding Remarks

This chapter discussed the problem of synthesizing asynchronous circuits from STG’s.
In order to obtain next state logic functions from a given STG, the whole state
space must be constructed. An algorithm to obtain next state logic functions was
proposed. The concepts of P-Net’s, T-Net’s, the tree, the congruent relation, the
optimal tree selection and nesting were introduced. The proposed algorithm utilizes
these concepts, and provides with a method to avoid the state space explosion prob-
lem by dividing the state space into smaller pieces. Experimental results showed

effectiveness of the proposed algorithm.

Chapter 6
Conclusions

This thesis studied the problem of verifying discrete event systems which were mod-

eled by Petri nets by using their unfoldings.

Chapter 3 studied constructing unfoldings. Previous proposed unfoldings called
M-unfolding and K-unfolding were compared first, some problems on these unfold-
ings were pointed out. The problem is how to reduce the size of M-unfolding without
loss of generality.

Next, a new condition for a transition was proposed, and it was proved that the
condition is a condition for a transition to be a cutoff point. The condition, however,
depends on the order of coping transitions, thus an improved algorithm to construct
unfoldings was proposed to avoid the ordering problem. The algorithm solves the
ordering problem by using a stack. By using a condition that was proposed by
McMillan and the new condition together, the reduction of unfoldings was successful
in term of constructing time as well as required space. Experimenﬁal results show a
significant effectiveness of the proposed method.

Chapter 4 considered a computational problem of the reachability and the upper
bound problem.

First, a concept of concurrent-relation graphs was introduced. The graph rep-
resents concurrent relation between instances in an unfolding. Two graph division
methods were introduced, and it was shown that maximal complete subgraphs was

preserved by the division methods.

93

9 CHAPTER 6. CONCLUSIONS

Secondly, it was shown that the reachability problem results in finding a maximal
complete subgraphs in a concurrent-relation graph induced by the set of places, and
an algorithm to find the maximal complete subgraph was shown. Experimental
results showed effectiveness of the proposed algorithm.

Finally, it was shown that the upper bound problem results in finding the max-
imum complete subgraph in a concurrent-relation graph induced by a place, and
an algorithm to find the maximum complete subgraph was proposed. Experimental
results showed effectiveness of the proposed algofithm.

Chapter 5 discussed synthesizing asynchronous circuits. In order to obtain next
state logic functions from a given STG, the whole state space must be constructed.

An algorithm to obtain next state logic functions was proposed. The concepts
of P-Net’s, T-Net’s, the tree, the congruent relation, the optimal tree selection
~ and nesting were introduced. The proposed algorithm utilizes these concepts, and
provides with a method to avoid the state space explosion problem by dividing the
state space into smaller pieces. Experimental results showed effectiveness of the
proposed algorithm. ’

The verification methodology with Petri net unfoldings leaves possible directions

of future research listed as follows:

. Unfoldings will be used to verify other properties of Petri nets, e.g., reversibil-

ity, coverability, etc.
o The methodology will be useful for the control theory of discrete event systems.
o CSC property verification should be done by using unfoldings.

This thesis has been studied unfoldings and Petri net’s verification methodology
by using unfoldings. The effectiveness of unfoldings was shown by experimental
results of verifying the reachability problem and the upper bound problem and

deriving next state logic functions.

References

1]

2]

3]

[4]

[5]

[9]

S. B. Akers, “Binary Decision Disgrams,” IEEE Transactions on Computers,
vol.C-27, no.6, pp.509-516, 1978.

R. E. Bryant, “Graph-Based Algorithms for Boolean Function Manipulation,”
IEEE Transactions on Computers, vol.C-35, no.8, pp.677-691, August 1986.

E. Best, “Structure Theory of Petri Nets: the Free Choice Hiatus,” Lecture
Notes in Computer Science, vol.254, pp.168-206, June 1987.

T. A. Chu, “Synthesis of Self-timed VLSI Circuits from Graph-theoretic Spec-
ifications,” in Proceedings of ICCD’87, pp.220-223, October 1987.

J.M. Couvreur and E. Paviot-Adet, “New Structural Invariants for Petri Net

Analysis,” Lecture Notes in Computer Science, vol.815, pp.199-218, June 1994.

J. Esparza and M. Silva, “Circuits, Handles, Bridges and Nets,” Lecture Notes

in Computer Science, June 1989.

J. Esparza and M. Silva, “Top-down Synthesis of Live and Bounded Free Choice

Nets,” Lecture Notes in Computer Science, June 1990.

J. Esparza, S. Romer and W. Vogler, “An Improvement of McMillan’s Unfolding
Algorithm,” Technical Report, Technische Universitat Miinchen, August 1995.

N. Funabiki and S. Nishikawa, “Comparisons of Energy-Descent Optimization
Algorithms for Maximum Clique Problems,” IEICE Transactions Fundamen-
tals, vol.LE79-A, no.4, pp.452-460, April 1996.

95

96 | B REFERENCES

[10] H. J. Genrich and R. M. Shapiro, “Formal Verification of an Arbiter Cascade,”
Lecture Notes in Computer Science, vol.616, pp.205-223, June 1992.

[11] M. Hack, “Analysis of Production Schemata by Petri Nets,” M. S. thesis, TR-
94, Project MAC, MIT, 1972.

[12] K. Hiraishi and M. Nakano, “On Symbolic Model Checking in Petri Nets”, IE-
ICE Transactions on Fundamentals, vol.E78-A, no.11, pp.1479-1486, November
1995.

[13] K. Hiraishi, “Reduced State Space Representation for Unbounded Vector State
Spaces,” Lecture Notes in Computer Science, vol.1091, pp.230-248, June 1996.

[14] C. A. R. Hoare, “Communicating Sequential Processes,” Prentice Hall, 1985.

[15] M. Iri, I. Shirakawa, Y. Kajitani and S. Shinoda, Graph Theory with Ezercise,
Corona Publishing, 1983. (in Japanese)

- [16] H. Kagotani and T. Nanya, “On Performance Enhancement of Two-Phase
Quasi-Delay-Insensitive Circuits,” IEICE Transactions Information & System,
vol.J78-D-1, no.4, pp.416-423, April 1995.

[17] M. Kishinevsky, A. Kondratyev, A. Taubin and V. Varshavsky, “Concurrent
Hardware: The Theory and Practice of Self-Timed Design,” John Wiley and
Sons, London, 1993.

[18] M. A. Kishinevsky, A. Kondratyev and A. Taubin, “Specification and Analysis
of Self-Timed Circuits,” Journal of VLSI Signal Processing, no.7, pp.117-135,
1994.

[19] A. Kondratyev and A. Taubin, “On Verification of the Speed - Independent
Circuits by STG unfoldings,” Technical Report 94-2-001, The University of
Aizu, 1994.

[20] A. Kondratyev, M. Kishinevsky and A. Yakovlev, “Monotonous cover trans-
formations for speed-independent implementation of asynchronous circuits,”
Technical Report , The University of Aizu, July 1994.

REFERENCES 97

[21]

[22]

[23]

[24]

A. Kondratyev, A. Taubin and Sergey Ten, “Verification of Asynchronous Cir-
cuits by Petri Net Unfoldings,” In Proceedings of ETFA’9/, pp.404-413, 1994.

A. Kondratyev, J. Cortadella, M. Kishinevsky, E. Pastor, O. Roig and A.
Yakovlev, “Checking Signal Transition Graph Implementablity by Symbolic
BDD Traversal,” in Proceedings EDTC-95, pp325-332, March 1995.

A. Kondratyev, M. Kishivevsky and A. Yakovlev, “On Hazard-Free Implemen-
tation of Speed-Independent Circuits,” in Proceedings of ASP-DAC’95, pp.241-
248, August 1995.

A. Kondratyev, M. Kishinevsky, A. Taubin and Sergei Ten, “A Structural Ap-

* proach for the Analysis of Petri Nets by Reduced Unfoldings,” Lecture Notes

[25]

[26]

[27]

[28]

[29]

[30]

in Computer Science, vol.1091, pp.346-365, June 1996.

S.R. Kosaraju, “Decidability of reachability in vector addition systems,” in
Proceedings of the 14th Annual ACM Symp. on Theory of Computing, pp.267—
281, May 1982.

D.-I. Lee, “Analysis and Synthesis of Petri Nets by State Machine Decomposi-
tion,” Ph.D Thesis, Osaka University, January 1993.

J. Martinez and M. Silva, “A Simple and Fast Algorithm to Obtain all Invariants
of a Generalized Petri Net,” Lecture Notes in Computer Science, vol.52, pp.301-
310, June 1982.

E.W. Mayr, “An algorithm for the general Petri net reachability problem,”
SIAM Journal on Computing, vol.13, no.3, pp.441-460, August 1984.

K. I. McMillan, “Using unfolding to avoid the state explosion problem in
the verification of asynchronous circuits,” Lecture Notes in Computer Science,
vol.663, pp.164--177, June 1993.

T. H.-Y. Meng, R. W. Brodersen, and D. G. Messershumitt, “Automatic Syn-
thesis of Asynchronous Circuits from High-Level Specifications,” IEEE Trans-
actions on Computer-Aided Design, vol.8, no.11, pp.1185-1205, November 1989.

31]

32

[34]

98 REFERENCES

G. Memmi and G. Roucairol, “Linear algebra in net theory,” Lecture Notes in
Computer Science, vol.84 [15], pp.213-223, 1980. -

R. Milner, “Calculus for Communication Systems,” Lecture Notes in Computer
Science, vol.92, 1980. ‘

T. Miyamoto, D.-I. Lee and S. Kumagai, “An Efficient Method to Derive
Logic from Signal Transition Graphs for Asynchronous Circuits,” Proceedings
of JTC’96, pp.766-769, July 1995.

T. Miyamoto, D. I. Lee and S. Kumagai, “An Efficient State Space Search
for the Synthesis of Asynchronous Circuits by Subspace Construction,” IEICE
Transactions on Fundamentals, vol.E78-A, pp.1504-1510, November 1995.

T. Miyamoto and S. Kumagai, “An Efficient Algorithm for Deriving Logic Func-
tions of Asynchronous Circuits,” Proceedings of Async’96, pp.30-35, March
1996.

T. Miyamoto and S. Kumagai, “An Efficient Algorithm for Deriving Logic

Functions of Asynchronous Circuits,” IEICE Transactions on Fundamentals,

- vol.LE79-A, pp.818-824, June 1996.

[39]

[40]

T. Miyamoto and S. Kumagai, “A Graph Theoretic Approach to Reachability
Problem with Petri Net Unfoldings,” IEICE Transactions on Fundamentals,
vol.E79-A, pp.1809-1816, November 1996.

T. Miyamoto and S. Kumagai, “On Deriving Logic Functions of Asynchronous
Circuits by STG Unfoldings,” IFICE Transactions on Information & Systems,
vol.E80-D, to appear, March 1997.

T. Murata, “State equation controllability, and maximal machings of Petri
nets,” IEEE Transactions on Automatic Control, vol.A-22, n0.3, pp.412-416,
June 1977.

T. Murata, “Petri Nets : Properties, analysis and applications,” Proceedings of
the IEEE, vol.77, no.4, pp.541-580, April 1989.

REFERENCES 99

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

C. J. Myers and T. H.-Y. Meng, “Synthesis of Timed Asynchronous Circuits,”
IEFEE Transactions on VLSI Systems, vol.1, no.2, pp.106-119, June 1993.

M. Nakagawa, S. Kumagai, T. Miyamoto and D.-1. Lee, “Equivalent Net Re-
duction for Firing Sequence,” IEICE Transactions on Fundamentals, vol. E78-A,
pp.1447-1457, November 1995.

T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako and A. Takamura, “TITAC :
Design of a quasi-delay-insensitive microprocessor,” IEEE Design & Test of
Computers, vol.11, no.2, pp.50-63, 1994.

M. Notomi and T. Murata, “Hierarchically Organized Petri Net State Space for
Reachability and Deadlock Analysis,” in Proceedings of IPPS5’92, pp. 616622,
March 1992.

E. Pastor and J. Cortadella, “An Efficient Unique State Coding Algorithm for
Signal Transition Graphs,” in Proceedings ICCD’93, pp.174-177, October 1993.

E. Pastor and J. Cortadella, “Polynomial Algorithms for the Synthesis of
Hazard-free Circuits from Signal Transition Graphs,” in Proceedings IC-
CAD’93, pp.250-254, November 1993.

E. Pastor, O. Roig, J. Cortadella and R.M. Badia, “Petri Net Analysis Using
Boolean Manipulation,” Lecture Notes in Computer Science, vol.815, pp.416-
435, June 1994.

C. A. Petri, “Communication with Automata,” in Griffis Air Force Base, New
York, Technical Report RADC-TR-65-377, vol.1, 1966.

O. Roig, J. Cortadella and Enric Pastor, “Verification of Asynchronous Circuits
by BDD-based Model Checking of Petri Nets,” Lecture Notes in Computer
Science, vol.935, pp.374-391, June 1995.

A. Semenov and A. Yakovlev, “Combining partial orders and symbolic traver-
sal for efficient verification of asynchronous circuits”, in Proceedigns of ASP-
DAC’95, pp.567-573, August 1995.

[51]

[52]

[53]

[54]

[58]

[59]

[60]

100 | REFERENCES

»

M. Silva, “Petri Nets in Automation and Computer Engineering,” Kluwer

Academin Press, 1989.

I. Suzuki and T. Murata, “A method for stepwise refinements and abstractions
of Petri nets,” Journal of Computer and System Science, vol.27, no.1, pp.51-76,
January 1983.

S. Takai, “State Feedback Control of Discrete Event Systems,” Ph.D Thesis,
Osaka University, January 1995.

A. V. Yakovlev, “On Limitations and Extensions of STG Model for Designing
Asynchronous Control Circuits,” in Proceedigns ICCD’92, pp.396-400, October

- 1992.

A. Taubin, A. Kondratyev, M. Kishinevsky and S. Ten, “Deadlock Preven-
tion Using Petri Net Unfoldings,” in Proceedigns of CESA’96, Symposimu on
Discrete Fvents and Manufacturing Systems, pp.426-431, July 1996. ‘

E. Teruel and M. Silva, “Liveness and Home States in Equal Conflict Systems,”
Lecture Notes in Computer Science, vol.691, pp.415-432, June 1993.

E. Teruel and M. Silva, “Well-formedness of Equal Conflict Systems,” Lecture
Notes in Computer Science, vol.815, pp 491-510, June 1994.

A. Valmari, “Compositionality in State Space Verification Methods,” Lecture
Notes in Computer Science, vol.1091, pp.29-56, June 1996.

A. V. Yakovlev, M. A. Kishinevsky, A. Kondratyev and L. Lavagno, “OR
Causality : Modelling and Hardware Implementation,” Lecture Notes in Com-
puter Science, vol.815, pp.568-587, June 1994.

M. Yoeli, “Specification and Verification of Asynchronous Circuits Using
Marked Graphs,” 1987.

List of Publications by the Author

I. Transactions

1. T. Miyamoto, D.-I. Lee and S. Kumagai, “An Efficient State Space Search for
the Synthesis of Asynchronous Circuits by Subspace Construction,” IEICE
Transactions Fundamentals, vol.E78-A, pp.1504-1510, November 1995.

2. M. Nakagawa, S. Kumagai, T. Miyamoto and D.-I. Lee, “Equivalent Net Re-
duction for Firing Sequence,” IEICE Transactions Fundamentals, vol. ET8-A,
pp-1447-1457, November 1995.

3. T. Miyamoto and S. Kumagai, “An Efficient Algorithm for Deriving Logic
Functions of Asynchronous Circuits,” IEICE Transactions Fundamentals, vol.E79-
A, pp.818-824, June 1996.

4. T. Miyamoto and S. Kumagai, “A Graph Theoretic Approach to Reachabil-
ity Problem with Petri Net Unfoldings,” IEICE Transactions Fundamentals,
vol.ET9-A, pp.1809-1816, November 1996.

5. T. Miyamoto and S. Kumagai, “On Deriving Logic Functions of Asynchronous
Circuits by STG Unfoldings,” IEICE Transactions Information & Systems,
vol.E80-D, to appear, March 1997.

II. International Conferences

1. T. Miyamoto, D.-I. Lee and S. Kumagai, “An Efficient Method to Derive
Logic from Signal Transition Graphs for Asynchronous Circuits,” Proceedings
of JTC’96, pp.766-769, July 1995.

101

102 | List of Publications by the Author

2. T. Miyamoto and S. Kumagai, “An Efficient Algorithm for Deriving Logic
Functions of Asynchronous Circuits,” Proceedings of Async’96, pp.30-35, March
1996. | -

3. T. Miyamoto and S. Kumagai, “A Multi Agent Net Model of Autonomous
- Distributed Systems,” Proceedings of SESA’96, Symposium on Discrete Events
and Manufacturing Systems pp.619-623, July 1996.

4. S. Kumagai and T. Miyamoto, “An Agent Net Approach To Autonomous
Distributed Systems,” Proceedings of SMC’96, pp.3204-3209, October 1996.

III. Technical Reports and Convention Records

1. T. Miyamoto, S. Takai, D.-I. Lee and S. Kumagai, “Feedback control for
safeness and fairness of discrete event systems,” Technical Report of IEICE,
CAS92-48, September 1992 (in Japanese).

2. T. Miyamoto and S. Kumagai, “An Efficient Algorithm for Deriving Logic
Functions of Asynchronous Circuits,” Technical Report of IEICE, CST95-30,
Janunary 1996 (in Japanese).

3. T. Nobata, T. Miyamoto and S. Kumagai, “An agent net model of autonomous
distributed systems,” Technical Report of IEICE, CST95-30, January 1996 (in

Japanese).

