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Fig. 1-1 Electrical resistance changes during the cooling and heating of Fe-Ni[11] and
Au-Cd[12], illustrating the hysteresis between the martensitic reaction on cooling and the
reverse transformation. (after Kaufman and Cohen[13])
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Fig. 1-2  Magnetization curves of (@) Fe-31.7Ni, (b) Fe-24.7Ni-1.8C and (c)
Fe-3.9Mn-5.0C. (after Kakeshita et al. [14])
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Fig. 1-3 Magnetization curves of an ausaged Fe-Ni-Co-Ti alloy at 163 K above the
reverse martensitic transformation temperature A;. (after Kakeshita et al. [14])
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Fig. 1-4 Schematic illustration of the transformation from parent phase to martensite phase and

the transition from the multi-variant state to the single variant state by applying magnetic field.
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Fig. 1-5 (@) Relative orientation of Ni,MnGa sample, strain gauge and applied field for

measurements shown in (b) and (c). (b) Strain vs. applied field in the L2; parent phase at

283K. (c) Same as (b) but data taken at 265K in the martensite phase. (after Ullakko et al.[7])
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Fig. 1-6 Concentration dependence of martensitic transformation temperature of Fe-Pd.
(after Sugiyamaet al.[31])
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2 Fe-31.2at.% Pd
2.1.
Fe-Pd
2.2.
Fe-31.2at.%Pd
Pd 99.97 Ar
3mm/hour 1 2l/min
8mm 5cm
4 Specimen A D
Table 2-1
FesPt
Fe-25.0at.%0Pt
Fe-31.2at.9%Pd
Ar Fz
26 rpm
[100]
1373K 1

15

FesPt

FesPt

Fe 99.99
Fe-31.2at.9%Pd

Fz
28 rpm
Ar

1373K 24

Fe 99.99 Pt 99.95

4 mm/hour

Table 2-2
923K

Ar



923K  360ks

0.8 [1,2]
SQUID Quantum Design
: MPMS XL 40kA/m
2K/min
Fe-31.2at.%Pd X
MXP3 W Cu
Table2-1 Single-crystalline specimens of an Fe-31.2at.%Pd alloy
Specimen Size Measurement
Specimen A 1.0° 1.0° 3.0mm®, All plane{100}r (PP) Magnetic susceptibility
Specimen B 1.7° 1.8" 1.9mm3, All plane {100}, (PP) DSC, SM
Specimen C 8mmf ~ 1mm, plane normal: [001], (D) X-ray diffraction
Specimen D 3.7mm ([001]p) " 3.1mm ([110]p) " 3.1mm ([110],) (PP) Magnetostriction,, MT
Specimen E 1.6mm ([111]p)° 1.9mm ([110]5)" 2.1mm([112]5) (PP) Magnetostriction, MT

PP: parallelepiped, SM: Spontaneous Magnetization, MT: Magnetization

Table2-2 Single-crystalline specimens of Fe;Pt

Specimen Size M easurement

Magnetic susceptibility,

Specimen F 2.0mm ([001]p) ~ 2.4mm ([110]p) " 1.8mm([110],,) (PP)

Magnetostriction, MT
Specimen G 2.0mm ([111]p) " 2.2mm ([110],)" 2.2mm([112],) (PP)  Magnetostriction, MT
Specimen H 117 1.3 34mm°, All plane {100} (PP) SM
Specimen | 0.5" 3.0 3.0mm?, All plane {100}, (PP) X-ray diffraction,

PP: parallelepiped, SM: Spontaneous Magnetization, MT: Magnetization
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CuKa 40kV 30mA
77K 29/q 20=40 60deg
0.02deg/min S FesPt X
2 CuKa
Table 2-
DSC
DSC3100 50mg
Al
Ar 20K/min
[100] [111]
D_10R
[ K R
e D R

300K

3

100ml/min

2-1

Table2-3 Measurement condition of the X-ray diffraction, which is done to obtain the temperature

dependence of the lattice parameters

200 reflection 002 reflection
Temp )
Incident X-ray Measuring Measuring
(K] Slit [mm] _ Slit [mm] ,
time time
300
! 40kV, 150mA transverse
95 (0.5/0.5/0.3/0.5)
90 longitudinal
! (-11.0/- 12.0)
1sec transverse
30
(0.5/0.5/0.3/0.5)
longitudinal
(0.5/0.5/0.3/0.5) - /- - 12.0)
longitudinal
(-/-1-12.0)
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KFL-02-120-C1-11 PC-6
(DB-120P) DYNAMIC STRAIN AMPLIFIER(DPM-711B) Quantum
Design MPMS XL

2.3.
23.1
Fe-31.2at.%Pd
Fig. 2-2 40kA/m [100]p P
330K 4.2K
Fe-31.2at.%Pd 230K 230K
7
Tv 230K
7
Fig. 2-2
Tw
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Fig. 2-3 FesPt 80kA/m [100]p 300K
4.2K
85K
Tm
7
Fe-31.2at.%Pd Fig. 2-3
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Fig. 2-2 Magnetic susceptibility of an Fe-31.2at.%Pd single crystal under the

magnetic field of 40 kA/m applied along [100]p.
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Fig. 2-3 Temperature dependence of magnetic susceptibility of an ordered FesPt

under amagnetic field of 80 KA/m.
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Fig. 2-6 Thermo-magnetization curves of Fe-31.2at.%Pd under magnetic fields of 0.8,
1.6, 2.4 and 3.2 MA/m.
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Fig. 2-15 Evauation of magnetostriction due to dipole-dipole interaction by
subtracting the form effect from the experimental data of Fe-31.2at.%Pd at 240 K.
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Fig. 2-16 Evauation of magnetostriction due to dipole-dipole interaction by
subtracting the form effect from the experimental data of FesPt at 100 K.
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Fig. 2-17 Temperature dependence of magnetostriction due to dipole-dipole
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Fig. 2-19 Temperature dependence of magnetostriction due to dipole-dipole
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Fig. 2-21 Temperature dependences of the experimental and the calculated
magnetostriction constants of Fe-31.2at.%Pd under the [100] field.

[x 107]
- | Fe-31.2Pd o exp.| |
= 12¢ e cal. |-
o
U) L -
5
g 0.8} O -
o O
S o
Z 04 1
(@]
o)
c
<
= 0p, e e i

240 260 280 300
Temperature , T/ K

Fig. 2-22 Temperature dependences of the experimental and the calculated
magnetostriction constants of Fe-31.2at.%Pd under the [111] field.

36



[x10™]

g oL® e ¢ P A -
- O

c O

S 20} 4
w0

5 o

(&)

c _4 0 | -
s

8 ® cal.

3 e0f ©  exp.

(]

S

S o

S -80} .

| L | L | L | L |
100 150 200 250 300
Temperature , T/ K
Fig. 2-23 Temperature dependences of the experimental and the cal culated magnetostriction
constants of FesPt under the [100] field.

[x107]
_t‘ - O O
S 20F O -
2
8 O
S ® cal
8 10p | 1
= O  exp. 0
e
(0D
c
(@)]
g O @ o ° ° o

100 150 200 250 300
Temperature , T/ K

Fig. 2-24 Temperature dependences of the experimental and the cal culated magnetostriction
constants of Fe;Pt under the [111] field.

37



Table 2-4 The experimental and the calculated values of the magnetostriction constant | 199 Of

Fe-31.2at. %Pd

Temperature 240K 260 K 280K 300K 400 K
experiment 37 10* 1.7 10* 15" 10* 93" 10° 347 10°
calculation - 397 10° 1.9 10° 1.2° 10° 40" 10°

Table 2-5 The experimental and the calculated values of the magnetostriction constant | 145 of

Fe-31.2at. %Pd

Temperature 240K 260 K 280K
experiment 78" 10* 6.0" 10" 6.9° 10*
calculation — -1.8" 10° -1.7° 10°

Table2-6 The experimental and the calculated values of the magnetostriction constant | 19 Of FesPt

Temperature 100 K 150 K 200 K 250 K 300K
experiment 75" 10* 2.9 10* -1.5" 10* -6.1" 10° -1.97 10°
calculation 157 10° 1.2° 10° 9.0" 10° 55" 10° 3.0 10°

Table2-7 The experimenta and the calculated values of the magnetostriction constant | 11, of FesPt

Temperature 100 K 150 K 200 K 250 K 300K
experiment 25" 10" 24" 10" 21" 10" 16" 10 80" 10°
calculation -1.9° 10° -1.6° 10° -1.37 10° 91" 107 57 10”7

Fig. 2-21 Fig. 2-24 Table 2-4 Table 2-7
0.5 MA/m —
1

[24,25]

[26]
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3 Fe-31.2at.% Pd

3.1
Fe-Pd James and Wuttig Fe-30at.%Pd
[1]
Fe-Pd
Fe-31.2at. Pd
Fe-30at.%Pd
f.c.cf.ct. f.ct-b.ct.
[2-4]
[5] Fe-30at.%Pd
3.2.
2 Specimen D 2

Table3-1 Single-crystalline and polycrystalline specimens of an Fe-31.2at.%Pd alloy

Specimen Size M easurement

SpecimenD(S)  3.7mm ([001]p)° 3.1mm ([110]5)° 3.1mm ([110],) (PP)  MT, TE, MFIS
Specimen XS)  3.7mm ([001]p)° 3.1mm ([110]5)° 3.Amm ([110],) (PP)  OM

SpecimenK(P) 327 32" 3.0mm°® (PP) TE, MFIS, MT

S: single-crystalline, P: polycrystaline, PP: parallelepiped, MT: Magnetization, TE: thermal expansion, MFIS:

magnetic field-induced strain, OM: optical microscope observation
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Fig. 3-2 Schematic illustration of the capacitance cell and the cryostat.
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Fig. 3-4 Lattice correspondence between the parent and the martensite phases of
Fe-31.2at.%Pd. The <001> directions of the martensite variants (V1, V2, V3) are amost
parallel to <001>p.
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Fig. 3-5 Strain due to thermal expansion of an Fe-31.2at.%Pd single crystal measured
before the MFIS measurement under the [001]r field.
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Fig. 3-6 Theillustration from which eq. (3-3) for the evaluation of the variant fraction under
the strain measurement along [001]pare derived.
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Fig. 3-7 MFIS of an Fe-31.2at.%Pd single crystal measured at 77 K under
the magnetic field applied along [001]» after zero-field-cooling to 77 K.
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Fig. 3-8 A series of optical micrographs of an Fe-31.2at.%Pd single crystal taken under
the [001]p field after cooling to 81 K without a magnetic field.

48



James and Wuttig [1] 0.6%

256K 300K
13 Sugiyama
(4] 33 0.18
0.5 85
Fe-Pd
77K
Fig. 3-9
77K [001]p
0.5MA/m
Ni-Mn-Ga
[8-13]
150kJm® 1
7
100%
— 7 120kJm®
Fe-31.2at.%Pd Fig. 3-10
Fe-31.2at.%Pd
0.3MA/ IMA/m 0.012
Fe-Pd Ni-Mn-Ga
[14] [15,16]
[17,18]
Fe-31.2at.%Pd

49



X — T 1 —
- 1 my/atom
§ 151 =089T
® 10F =78emulgy Cep
gﬂ 05-— —D—B i
= ol
c .
2 05} 1
£ 10} Fe-31.2Pd -
5 [ T=77K
> .1,
g HI[001],

2.0 & 1

1 L 1

10 05 0 05 1.0
Magnetic Field, H/ MA m™

Fig. 3-9 Magnetization curve of an Fe-31.2at.%Pd single crystal measured at 77
K by applying a magnetic field along [001]p.
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Fig. 3-10 Magnetic field-induced strain of polycrystaline Fe-31.2at.%Pd at 77 K.
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Fig. 3-11 Magnetization curve of polycrystalline Fe-31.2at.%Pd measured at 77 K.
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Fig. 3-12 Thermal expansion of polycrystalline Fe-31.2at.%Pd in the field-cooling
and the zero-field-cooling processes.
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4 Fe-31.2at.% Pd

4.1.
Fe-31.2at.%Pd 77K [001]p
[1-3]
2 Fe-31.2at.%Pd
4.2.
Tabled-1 3 Specimen
D J Specimen L Specimen L

Table4-1 Single-crystalline specimens of an Fe-31.2at.%Pd alloy

Specimen Size Measurement
SpecimenD  3.7mm ([001]p) " 3.1mm ([110]p)" 3.1mm ([110],) (PP) TE, MFIS
Specimend  3.7mm ([001]p) " 3.1mm ([110]p)” 3.1mm ([110],) (PP) oM

Specimen L 1.6mm ([111]p)" 1.9mm ([110]p) " 2.2mm ([112]5) (PP) TE, MFIS, OM

PP: parallelepiped, D: disc, TE: therma expansion, MFIS: magnetic field-induced strain, OM: optical microscope

observation
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[001]¢

DI/I DI/
DI/I

(@) Specimen D (b) Specimen L

Fig. 4-1 Illustration of specimens for thermal expansion measurement under magnetic field.

The directions of the applied magnetic field and the strain measurement are shown.
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3 [111]p
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[001]p
3
4.3.
4.3.1.
Fig. 4-2 3 [001]5
Tw
3
DI/ =(l - 1)/, (4-1)
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(©) D/l /1 [001],( H /1 [111],)
i [P
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a

[011]p

(4-2)

(4-3)

Fig. 4-2 Strains due to thermal expansion of an Fe-31.2at.%Pd single crystal measured

before the magnetic field-induced strain measurement under (a) the [001]p field, (b) the
[011]5 field and (c) the [111]p field.
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Fig. 4-3 Schematic illustration of the evaluation of the variant fraction under the strain

measurement along [001] and [011]p.
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0
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Magnetic Field, H/ MA m™*

Fig. 4-4 Magnetic field-induced strain of an Fe-31.2at.%Pd single crystal
measured at 77 K under the [001]p , the [011]p and the [111]p fields.
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4.3.2.

Fig. 45 200K [001]5
3 77K
200K 0.15MA/m 13
Fig. 4-2(a)
200K Fig. 3-4 (3-3) fann
100 200K
200K Fig. 2-4(b) cla 77K ca
Fig. 4-6
3.2MA/m
Fig. 3-9 2 (2-8)
Fig. 3-1 Fig. 4-6(a) [001]p
[011]p
77K 2.0 1.4 [111]p
77 K -0.58
[x107]
 Fe-31.2Pd |
3.0 pmmm—— >
i / [001], 77K |
= L
z20F gy (4 -
c i i ]
» 10F — 200K 1
0 1 1 1
0 0.5 1.0 1.5
Magnetic Field, H/ MA m™
Fig.4-5 MFISof an Fe-31.2at.%Pd single crystal at 77 and 200 K.
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(4-3) Fig. 4-7
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20K
[011]p foon 210K 77K 55%
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Fig. 4-6 Strains of an Fe-31.2at.%Pd single crysta in the zero-field-cooling process

andin
() [111]p.
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Fig. 4-7 Temperature dependence of the fraction of the variant, which lowers

the magnetocrystalline anisotropy energy most under the [001]p field ( fayn ),

the [011]p field ( fenpy ) and the [111]p field ( Fasgoon ).
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Fig. 4-8 A series of optical micrographs of an Fe-31.2at.%Pd single crystal taken in the
field- cooling process under the magnetic field of 1.2 MA/m applied aong [001]p.

——————
H=12 MA/m

Fig. 4-9 A series of optical micrographs of an Fe-31.2at.%Pd single crystal taken in the
field- cooling process under the magnetic field of 1.2 MA/m applied along [011]p.

~— e
H=12MA/m 200um_

Fig. 4-10 A series of optical micrographs of an Fe-31.2at.%Pd single crystal taken in the
field- cooling process under the magnetic field of 1.2 MA/m applied along [111]p.
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5 FesPt

5.1.
Fe-31.2at.%Pd
Pd 30a.%  Fe-Pd FesPt [1]
[2] FesPt
FesPt
5.2.
2 Specimen F I
Table5-1 FesPt
Cu-Ka X (100)
Fig. 5-1 90Mm
SQUID: Quantum Design MPMS XL
X
2 CuKa
X
Table5-2
Table5-1 Single-crystalline specimens of FesPt
Specimen Size Measurement

Specimen F(S)  2.0mm ([001]p) © 2.4mm ([110]p) " 1.8mm([110]P) (PP) Magnetization, TE, MFIS
Specimen I(S) 0.5" 3.0 3.0mm?, All plane {100}, (PP) X-ray diffraction,

Specimen M(P) 3.3 3.3° 3.4mm® (PP) X-ray diffraction, MFIS, MT

S: single-crystalline, P: polycrystaline, PP: parallelepiped, TE: thermal expansion, MFIS: magnetic
field-induced strain, MT: Magnetization
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Table 5-2  Measurement condition of the X-ray diffraction, which is done to obtain the magnetic
field dependence of the intensity.

_ _ 200 reflection 002 reflection
Field [T] Slit [mm]
Incident X-ray| Measuring time |Incident X-ray| Measuring time
UP | 00
!
40 transverse
40kV, 10mA lsec 40kV, 300mA lsec
DOWN| 3.0 (0.5/0.5/0.3/0.5)
!
0.0
(a)
25000
(200)
20000
15000
10000
(300 (400)
300,
5000110y 221) |
(410)
-_L A1) | (210)211) (220) ‘(310()311) ‘k(azz) (331)(420)
0 i A A A A . W, N,
20 40 60 80 100 120 140
s (b
2 5000
S
% 4000
E (312)
— 3000
- (200)
(110)
2000
(100)
(320)
1000 I (1) @29
O,l " L ‘ JL - PP TN
20 40 60 80 100 120 140
2q (degree)

Fig. 5-1 X-ray diffraction profile of the polycrystalline FesPt: (a) cross-section and (b)
side view of the columnar structure.
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5.3.

4.2K
Fig. 5-2(a)
-3x10°/K F|g 2-5 X
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[001]e
¢ 7 [001]» fo
@- fo)ar +fcCr = agook (1+(DI/1)) 5.1
o & T a300K
300K (DI /1) T, T
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[x10 ]
T T T T T 1
0 \/* (a)_
= Fe,Pt Tu
8 | H/iD//[001], H = 0 MA/m
c I IR NN I R R
'S T
" / T e
2oL H =0 MA/m
IR IR RN RN NP B |

0 50 100 150 200 250 300
Temperature, T/ K

Fig. 5-2 Therma expansion of an ordered FesPt (a) in the cooling process and
(b) in the heating process without a magnetic field after a magnetic field-induced

strain measurement.
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= I i
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- ---u"
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02 L | L | L | L |
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Temperature, T/ K

Fig. 5-3 Temperature dependence of the fraction of the variants whose ¢ axis lies aong
[001]p in the zero-field-cooling process (broken line) and the zero-field-heating process

(solid line). Lines are guides for eyes.

[x10-2]
I I I I I I I
oL -
Fe,Pt
T=4.2K
-0.5 | -
I [001],
E -1.0 | 4 7
3 H
e o
B 15 4
20 | -
25011

-3 -2 -1 0 1 2 3
Magnetic Field, H/ MA m™*
Fig. 5-4 Magnetic field-induced strain of the martensite at 4.2 K. The field was applied and
removed in the sequence of A-B-C-D-E-F. The starting point of curve "A" corresponds to the
final point of Fig. 5-2 (a), and the fina point of curve "F" corresponds to the starting point of
Fig. 5-2(b).
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Intensity (arb. unit)

H// [001],

Tﬁ» Dk // [002],, 82
O

Before applying field —> .

After removing field —» ":‘

Under magnetic field
(H = 0.4 MA/m)

Fe,Pt
T=14K

49 50
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52

Fig. 5-5 The change of the intensity of the 002y reflection by the magnetic field.

This change in intensity is due to the rearrangement of martensite variants.
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Magnetization, M/ m, atom
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=62emu/g

ISEEERRERS
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1.0

Fig. 5-6 Magnetization curve under the magnetic field applied aong [001]s a 4.2 K. The
field was applied and removed in the sequence of A-B-C-D. The sequence of C-D corresponds

to the magnetization process where the recoverabl e rearrangement of variants occurs.
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Fig. 57 Magnetic field-induced strain of an FesPt polycrystalline specimen under the
magnetic field applied paralel to the columnar direction after zero-field-cooling
process.
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Fig. 58 Magnetization curve of an FesPt polycrystalline specimen at 5 K under
the magnetic field parallel to the magnetic field.
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6 FesPt

6.1.
FesPt
FesPt 0.6
Terfenol-D [1-4]
6.2.
5 Specimen F G
Table 6-1
KFL-02
Fig. 6-1 [001]p [O11]p [111]p
<001>p
6.3.
6.3.1.
Fig. 6-2
5 [001]p
Tm 3
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DI/ =(l - 1)/, (6-1)
4.2K Specimen F Specimen G
0.49 0.29
<001>p <001>p Cc
fe [011]
1-f, 51
Fig. 6-2(b) (c) 4.2K
51

47 3

Table6-1 Single-crystalline specimens of Fe;Pt

Specimen Size M easurement

Specimen F 2.0mm ([001]p)" 2.4mm ([110]p)° 1.8mm ([110],) (PP)  TE, MFIS

Specimen G 2.0mm ([111]p)" 2.2mm ([110],)" 2.2mm ([112],) (PP)  TE,MFIS

PP: parallelepiped, TE: thermal expansion, MFIS: magnetic field-induced strain,

[001]¢ [011]e

DI/

4+—>
DI/l // [100]»

(a) Specimen F

[111]e

S
[001]¢

(b) Specimen G

- — T

Fig. 6-1 Illustration of specimens for magnetic field-induced strain measurement. The

directions of the applied magnetic field and the strain measurement are shown.
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Fig. 6-2 Strains due to therma expansion of an FesPt single crystal measured before

the magnetic field-induced strain measurement under (@) the [001] field, (b) the [011]¢

field and () the [111] field.
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Fig. 6-3 Magnetic field-induced strain of an FesPt single crystal measured at 77 K

under the [001]p, the [011]p and the [111] fields.
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Fig. 6-5 Temperature dependence of the fraction of variant which lowers the
magnetocrystalline anisotropy energy most under the [001]r field, f., in the field-cooling

process and in the zero-field-cooling process.
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Fig. 6-6 Temperature dependence of the fraction of variant which lowers the
magnetocrystalline anisotropy energy most under the [011]r field, 1-f, in the
field-cooling process and in the zero-field-cooling process.
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Fig. 6-7 Temperature dependence of the fraction of variant which lowers the
magnetocrystalline anisotropy energy most under the [111]r field, f;, in the field-cooling
process and in the zero-field-cooling process.
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Fig. 6-8 Temperature dependence of the recoverable strain of an FesPt single

crystal under the [001] field.
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Fig. 6-9 Temperature dependence of the recoverable strain of an FesPt single
crystal under the [011]p field. The strain was measured along [001].
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Fig. 6-10 Temperature dependence of the recoverable strain of an FesPt single crystal
under the [111]r field. The strain was measured along [001] .
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Fig. 6-14 Temperature dependence of the fraction of variant which has the lowest
magnetocrystaline anisotropy energy under the [111]p field 3.2MA/m after
zero-field-cooling, fp, and the fraction of variant which contributes the recoverable magnetic
field-induced strain.
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Fig. 6-15 Temperature dependence of the fraction of variant which lowers the

magnetocrystalline anisotropy energy most under the [001]p field, fp, in the field-cooling
process (open circle) and after zero-field-cooling process (solid circle).
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7.1.

3 6 Fe-31.2at%Pd FesPt

Fe-31.2at.%Pd FesPt
1.2.
Table 7-1 7-2 Specimen N P 2
2

Fe-31.2at.%Pd
Fe-31.2at.%Pd 200mm 500mm

Table7-1 Single-crystalline and polycrystalline specimens of an Fe-31.2at.%Pd alloy

Specimen Size Measurement
Specimen D (S) 3.7mm ([001]p) ~ 3.1mm ([110]p)~ 3.1mm ([110]P) (PP) MT

Specimen N (S) 1.6mm (thick), 1.9mm (width), 2.1mm (gauge length) Stress-strain curve
Specimen O (P) 1.3mm (thick), 3.3mm (width), 9.5mm (gauge length) Stress-strain curve

S: single-crystalline, P: polycrystalline, PP: parallelepiped, MT: Magnetization
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Table7-2 A dngle-crystalline specimen of an FesPt alloy

Specimen Size M easurement

Specimen P (S) 25" 2.8° 29mm?, All plane {100}, (PP) MT

S: single-crystalline, PP: parallelepiped, MT: Magnetization

SQUID :Quantum Design MPMS XL
2 1

1 Fig. 3-9 Fig. 5-6

Fig.7-1
Fe-31.2at.%Pd Specimen D
[001]p FesPt Specimen P 29mm [001]p
AG-50kNI 57107 /sec
[001]e

H
/Spri ng
A
C t a S S
: a >
C

C axis a axis

Fig. 7-1 Schematic illustration of specimen settings for measurements of magnetization
curves under magnetic field applied aong a axis and ¢ axis of Fe-31.2at.%Pd and FesPt.
Specimens are compressed with jigs made of non-magnetic beryllium bronze and phosphor

bronze.
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7.3.
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a c
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Magnetic field, H/ MA m™
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Fig. 7-2

Fig. 7-4
James
[2]
Muto

30MPa

Fig. 7-2 Magnetization curves of an Fe-31.2at.%Pd single crystal measured along a

axis (solid circle) and ¢ axis (open square) from 4.2 to 230 K.
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Fig. 7-3 Magnetization curve of an annealed pure Fe with the same shape as Specimen D
under the magnetic field along the longest edge. The demagnetizing factor is determined
from the gradient of the curve to be 0.23.
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Fig. 7-4 Magnetization curves of an Fe-31.2at.%Pd single crystal measured along a axis

(solid circle) and ¢ axis (open square) from 4.2 to 230 K after demagnetizing field
correction.
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Fig. 7-5 Temperature dependence of the magnetocrystalline anisotropy constant of
Fe-31.2at.%Pd.
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Fig. 7-6 Tetragonality dependence of the magnetocrystalline anisotropy constant of an

Fe-31.2at.%Pd.
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Fig. 7-7 Magnetization curve of an FesPt single crystal measured along the a axis and the ¢
axisat 4.2 K.
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Fig. 7-8 Stress-strain curves of an Fe-31.2at.%Pd single crystal measured by applying an
external uniaxial tensile stress along [001]p at (a) 80 K, (b) 120 K, (c) 160 K and (d) 200 K.
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Fig. 7-9 Temperature dependence of the shear stress required for
rearrangement of variants, t,e, of an Fe-31.2at.%Pd single crystal.
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Fig. 7-10  The method for the calculation of the twinning shear.
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Fig. 7-11 Temperature dependence of the twinning shear of Fe-31.2at.%Pd.
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Fig. 7-12 The present method for the evaluation of the change in the variant fraction under
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Fig. 7-13 Temperature dependence of the energy dissipation due to rearrangement
of variantsin an Fe-31.2at.%Pd single crystal.
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Fig. 7-14 Stress-strain curve of a polycrystalline Fe-31.2at.%Pd obtained
by the tensile test at 80 K.
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8.1.

3 7 Fe-31.2at.%Pd FesPt
8.2.

[1-3]
Fig. 8-1
tmag [4-8]
t req
tmag>treg

U mag »Lreg

t mag t req
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Twinning plane movement

Fig. 8-1 Schematic illustration of rearrangement of variant through the movement of
twinning plane across which a shear stress acts.
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H a

Viow Vhigh

Fig. 8-2 Schematic illustration of two kinds of variant just before rearrangement of
variant occurs under the [001]p field. One variant (Vign) has higher magnetocrystalline
anisotropy energy than the other (Vo) because of the deviation of the spontaneous

magnetization from the easy plane (c plane).
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Uhigh =- MgH cosg + K, sin’q 8-6
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Viow Vhigh

Fig. 8-4 Schematic illustration of two kinds of variant just before rearrangement of
variant occurs under the [011]p field. One variant (Vyign) has higher magnetocrystalline
anisotropy energy than the other (Vo) because of the deviation of the spontaneous

magnetization from the easy plane (¢ plane).
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Fig. 8-6 Temperature dependence of the maximum magnetic shear Stress, t g,

and the twinning shear Stress, t ¢
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Table8-3 Schmid factors of Fe-31.2at.%Pd under the tensile stress applied along [001] .

Twinning plane and Shear direction Schmid factor
(011)p[011] ﬁ
(011) H011]p ﬁ
(101)p[101] p ﬁ
(101) p[101]p ﬁ
(110)s[110] p z(hzhj_—kzkilz)
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Fig. 8-7 The distribution of magnetic field generated by the magnet installed in MPMS
(manufactured by Quantum Design), which is used in the present study.
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