
Title ソースコードの類似性分析に基づくソフトウェア保守
支援に関する研究

Author(s) 吉田, 則裕

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/2431

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ソースコードの類似性分析に基づく

ソフトウェア保守支援に関する研究

提出先　　大阪大学大学院情報科学研究科

提出年月　2009年1月

吉田　則裕

内容梗概

長期にわたって運用される大規模ソフトウェアが増加したことから，保守作業
の効率化が重要な課題として取り上げられるようになった．ソフトウェアに対す
る保守作業の効率を下げている要因の 1つとして，ソースコード中の類似コード
片が挙げられる．類似コード片とは，ソースコードの一部分（コード片）のうち，
他のコード片と類似性が高いものを指す．ソースコード中のあるコード片を修正
すると，その類似コード片を同時に修正する作業が必要になることが多い．例え
ば，ソースコード中に欠陥が見つかった場合には，その欠陥を含むコード片の類
似コード片を探し，検査する必要がある．類似コード片に対する保守作業の効率
を上げるためには，ソースコード上における類似コード片の位置情報を記録する
方法や，集約可能な類似コード片の集合を抽出し，サブルーチンにする方法が考
えられるが，大規模ソースコードに含まれる類似コード片に対し手作業でこれら
を行うには大きな労力が必要となる．
これまでに，類似コード片の中でもコードクローン（トークン列や構文木が等
価であるコード片が存在するコード片）に着目し，自動検出を行うツール（コード
クローン検出ツール）が数多く開発されている．これらを用いることで，修正す
べきコード片のコードクローンを検出し，同様の修正を加える作業を支援するこ
とができる．また，クローンセット（コードクローンの同値類）を 1つのサブルー
チンにする作業の容易さを表すメトリクスを提示するなど，自動検出したコード
クローンの集約作業を支援する手法も提案されている．
しかし，既存のコードクローン検出ツールの問題点として，以下が挙げられる．

1. 同一クローンセットに属するコード片の集合を集約する際に，それらと呼び
出し関係を持つメソッドを含むコード片が属するクローンセット，もしくは
それらと変数を共有するコード片が属するクローンセットについても集約す
る必要が生じることがある．しかし，このようなクローンセット間の依存関
係（あるクローンセットを集約するためには，他のクローンセットの集約が
必要という関係）を，コードクローン検出ツールは検出しない．

2. トークン列や構文木が等価であるコード片が存在するコード片のみを検出
するため，構文上に差異がある類似コード片を検出できないことが多い．例
えば，あるコード片を複製し，例外処理やログ出力文を追加すると，それら
コード片はコードクローンとして判定されないことが多い．しかし，複製元

iii

のコード片を修正すると，例外処理やログ出力文を追加した複製先のコード
片についても，同時に修正する必要が生じることが多い．

本論文では，1. で挙げた問題点を解決するため，チェーンドクローンセット（同
時に集約を検討すべきクローンセットの集合）を提示することで，リファクタリン
グ支援を行う手法を提案する．本手法は，クローンセット中に存在するメソッド
呼び出し関係，およびメソッドと変数の利用関係を解析することで，ソースコー
ド中からチェーンドクローンセットを検出する．更に，検出したチェーンドクロー
ンセットを含むクラスからなる集合の継承関係から，適用可能なリファクタリン
グパターン（メソッドの抽出や引き上げ，親クラスの抽出）を提示する．適用実
験において，提案手法をオープンソースソフトウェアのソースコードに適用した
ところ，多くのチェーンドクローンセットを検出することができ，そのうちのい
くつかは提案手法が提示するリファクタリングパターンを適用することができた．
また，2. で挙げた問題点を解決するために，識別子の類似性に基づく類似コー
ド片検索手法を提案する．本手法は，クエリとしてコード片を与えると，識別子の
類似性に基づいて対象ソースコードから類似関数（クエリとして与えられたコー
ド片の類似コード片を含む関数）を検索する．具体的には，まず自然言語処理の
分野で提案されている類義語特定法を用いて，語（識別子を分割・正規化した後の
文字列）の類義語を特定する．次に，クエリとして与えられたコード片に含まれ
る全ての語について，同一もしくは類義語である語を含む関数を検出し，類似関
数として提示する．適用実験として，本手法を用いて類似した欠陥を含むコード
片の検索を行ったところ，類似した欠陥の多くを提示できることを確認した．ま
た，本手法と既存ツール（grepやコードクローン検出ツール CCFinder）との比較
実験を行い，それぞれの検索結果が持つ特徴を確認した．

iv

論文一覧

主要論文
[1-1] Norihiro Yoshida, Yoshiki Higo, Toshihiro Kamiya, Shinji Kusumoto, Kat-

suro Inoue: “On Refactoring Support Based on Code Clone Dependency Re-

lation”, Proceedings of the 11th IEEE International Software Metrics Sym-

posium (METRICS 2005), pp.16:1-16:10, Como, Italy, September 2005 (国
際会議録).

[1-2] 吉田則裕, 肥後芳樹, 神谷年洋, 楠本真二, 井上克郎: “コードクローン間の
依存関係に基づくリファクタリング支援”,情報処理学会論文誌, Vol.48, No.3,

pp.1431-1442, 2007年 3月 (学術論文).

[1-3] 吉田則裕, 服部剛之, 早瀬康裕, 井上克郎: “類義語の特定に基づく類似コー
ド片検索法”, 情報処理学会論文誌 [条件付採録] (学術論文).

関連論文
[2-1] 肥後 芳樹, 吉田 則裕, 楠本 真二, 井上 克郎: “産学連携に基づいたコードク

ローン可視化手法の改良と実装”, 情報処理学会論文誌, Vol.48, No.2, pp.811-

822, 2007年 2月 (学術論文).

[2-2] Norihiro Yoshida, Katsuro Inoue: “Towards an Investigation of Opportuni-

ties for Refactoring to Design Patterns”, Proceedings of the 1st International

Workshop on Software Patterns and Quality (SPAQu’07), pp.61-62, Nagoya,

Japan, December 2007 (国際会議録).

[2-3] Norihiro Yoshida, Takashi Ishio, Makoto Matsushita, Katsuro Inoue: “Re-

trieving Similar Code Fragments based on Identifier Similarity for Defect De-

tection”, Proceedings of the 1st International Workshop on Defects in Large

Software Systems (DEFECTS 2008), pp.41-42, Seattle, USA, July 2008 (国
際会議).

v

[2-4] 森崎 修司, 吉田 則裕, 肥後 芳樹, 楠本 真二, 井上 克郎, 佐々木 健介, 村上 浩
二, 松井恭: “コードクローン検索による類似不具合検出の実証的評価”, 電子
情報通信学会論文誌D，Vol.J91-D, No.10, pp. 2466-2477, 2008月 10月 (学
術論文).

[2-5] 馬場 慎太郎, 吉田 則裕, 楠本 真二, 井上 克郎: “Fault-Proneモジュール予
測へのコードクローン情報の適用”, 電子情報通信学会論文誌D, Vol.J91-D,

No.10, pp.2559-2561, 2008年 10月 (学術論文).

vi

謝辞

本研究の遂行するにあたり，常日頃より適切な御指導を賜わりました，大阪大
学大学院情報科学研究科コンピュータサイエンス専攻 井上 克郎 教授に，心から
深く感謝申し上げます．
本論文を執筆するにあたり，適切な御助言と御指導を頂きました，大阪大学大
学院情報科学研究科コンピュータサイエンス専攻 増澤 利光 教授，楠本 真二 教授
に心から感謝致します．
大阪大学大学院情報科学研究科コンピュータサイエンス専攻在籍中に，適切な
御助言と御指導を頂きました，大阪大学大学院情報科学研究科コンピュータサイ
エンス専攻 萩原 兼一 教授，八木 康史 教授 に感謝致します．
本研究を遂行するにあたり，直接具体的な御指導と御助言を頂きました，大阪
大学大学院情報科学研究科コンピュータサイエンス専攻 松下 誠 准教授，石尾 隆
助教，肥後 芳樹 助教，早瀬 康裕 特任助教，ならびに産業総合研究所 神谷 年洋
氏に心より御礼申し上げます．
本研究に関して，貴重な御助言を頂きました，株式会社富士通研究所 松尾 昭彦
氏，小林 健一 氏，前田 芳晴 氏，ならびに株式会社富士通東北システムズ 須藤
茂雄 氏に厚く御礼申し上げます．
提案手法の実現と評価を行うにあたり，様々な御協力を頂いた，大阪大学大学
院情報科学研究科コンピュータサイエンス専攻 服部 剛之 氏（現 日立電子サービ
ス株式会社）に深く感謝致します．
最後に，井上研究室の皆様の御助言, 御協力に御礼申し上げます．

vii

目 次

第 1章 はじめに 1

1.1 ソフトウェア保守 . 1

1.2 ソースコードの類似性分析 . 4

1.2.1 類似コード片 . 4

1.2.2 コードクローン検出ツール CCFinder 5

1.2.3 その他のコードクローン検出ツール 9

1.2.4 類似コード片を対象としたリファクタリング 11

1.3 既存手法の問題点 . 13

1.4 本論文の概要 . 16

第 2章 コードクローン間の依存関係に基づくリファクタリング支援 19

2.1 導入 . 19

2.2 リファクタリング支援環境 Aries . 20

2.3 提案手法 . 21

2.3.1 本研究の動機 . 21

2.3.2 チェーンドクローン . 23

2.3.3 チェーンドクローンセットに対するリファクタリング 25

2.3.4 チェーンドクローンセットの分類 27

2.3.5 チェーンドクローンセットの分類を目的としたメトリクス . 28

2.3.6 実装 . 29

2.4 適用実験 . 32

2.4.1 概要 . 32

2.4.2 チェーンドクローンセットの検出 33

2.4.3 チェーンドクローンセットに対するリファクタリングの例 . 34

2.4.4 考察 . 36

2.5 関連研究 . 38

2.6 結論 . 39

第 3章 類義語の特定に基づく類似コード片検索法 41

3.1 導入 . 41

3.2 類似コード片検索 . 43

3.2.1 grepを用いた類似コード片検索 44

ix

3.2.2 CCFinderを用いた類似コード片検索 45

3.3 提案手法 . 46

3.3.1 手順 1（語の抽出） . 46

3.3.2 手順 2（類義語の特定） . 47

3.3.3 手順 3（入力コード片との照合） 49

3.4 適用実験 . 50

3.4.1 提案手法の適用実験 . 51

3.4.2 grepや CCFinderとの比較実験 56

3.5 考察 . 58

3.5.1 語のクラスタリングに用いる閾値について 58

3.5.2 語のクラスタリングについて 60

3.5.3 grepとの比較について . 60

3.5.4 CCFinderとの比較について 62

3.6 関連研究 . 62

3.7 結論 . 63

第 4章 むすび 65

4.1 まとめ . 65

4.2 今後の研究方針 . 66

x

図 目 次

1.1 類似コード片 . 5

1.2 クローンペアとクローンセット . 6

1.3 コードクローン検出例 . 8

1.4 類似コード片を対象とした “Extract Method” 12

1.5 類似コード片を対象とした “Pull Up Method” 12

1.6 類似コード片を対象とした “Extract SuperClass” 13

1.7 類似コード片を対象とした “Form Template Method” 14

1.8 類似コード片を対象とした“Consolidate Duplicate Conditional Frag-

ments” . 15

1.9 クローンセット間に存在する依存関係 16

1.10 類似コード片間の差異 . 17

2.1 DCHメトリクスの算出例 . 21

2.2 クローンセット間に存在する依存関係 22

2.3 呼び出し関係と呼び出し関係を表すグラフ 23

2.4 フィールド変数の使用と共有関係を表すグラフ（括弧内の数字は対
応する関係を表す） . 24

2.5 ケース 1 . 25

2.6 ケース 2とケース 3 . 26

2.7 ケース 4 . 27

2.8 提案するメトリクスの算出例 . 30

2.9 Chained Clone Set Selection View 31

2.10 Chained Clone Set View . 32

2.11 Source Code View . 33

2.12 ANTLRから検出されたチェーンドクローンセットの例 35

2.13 図 2.12のチェーンドクローンセットをリファクタリングした例 . . 36

2.14 JBossから検出されたチェーンドクローンセットの例 36

2.15 図 2.14のチェーンドクローンセットをリファクタリングした例 . . 37

2.16 分類 4のチェーンドクローンセットの例 37

3.1 類似コード片 . 43

3.2 類似コード片間の差異 . 44

xi

3.3 図 3.2(a)のコード片に対する修正 44

3.4 grepを用いた類似コード片検索 . 45

3.5 提案手法の概要 . 46

3.6 語の出現回数を表す行列の例 . 47

3.7 類義語の特定に用いる行列 . 48

3.8 入力コード片と対象関数の照合 . 50

3.9 かんなの実験結果 . 53

3.10 SPARS-Jの実験結果 . 54

3.11 コード片CFA，CFB，CFC . 55

xii

表 目 次

2.1 チェーンドクローンセットの分類 28

2.2 クローンセットの検出結果 . 40

2.3 チェーンドクローンセットの検出結果 40

3.1 適用対象のソフトウェア . 51

3.2 各コード片の検索結果 . 56

3.3 各クラスタに属していた語（抜粋） 57

3.4 コード片に含まれる語に属するクラスタ 57

3.5 grepによる検索の結果 . 59

xiii

第1章 はじめに

1.1 ソフトウェア保守
コンピュータシステムの用途が多様化した現代社会において，ソフトウェアが
担う社会的役割は極めて大きいと言える．ソフトウェアには高い信頼性が求めら
れる一方で，その開発にかけられる時間や投入できる人的，計算機資源は限られ
ている．そこで，信頼性の高いソフトウェアを効率的に開発する方法の実現を目
指した研究が盛んに行われている．このような研究分野は，ソフトウェア工学と
呼ばれる．
ソフトウェア工学における重要な課題の 1つとして，保守作業の効率化が挙げ
られる．ソフトウェアの保守作業とは，“納入後，ソフトウェアに対して加えられ
る，フォールト修正，性能または他の性質改善，変更された環境に対するプロダ
クトの適応のための改訂” のことを指す [33]．また，ソフトウェア保守は，その目
的により以下の 4つに分類されている [35]．

修正保守 発見された問題を修正するために，納入後に実施される，ソフトウェア・
プロダクトの対処的改変．

適応保守 変化した，または変化しつつある環境において，ソフトウェア・プロダ
クトを続けて使用可能なように維持するために，納入後に実施される，ソフ
トウェア・プロダクトの改変．

完全化保守 性能または保守性を改善するため，納入後に実施される，ソフトウェ
ア・プロダクトの改変．

予防保守 ソフトウェア・プロダクトのなかに潜む，潜在的なフォールトが，効果
的なフォールトに転じる前に，それを検出し，修正するために，納入後に実
施される，ソフトウェア・プロダクトの改変．

長期間にわたって運用されるソフトウェアの開発では，一般に保守作業にかかる
コストが大きいことが知られている [65]．そのため，保守作業の支援を目指して，
手法の研究やツールの開発が盛んに行われている．
保守作業を支援する手法やツールの中には，コンピュータを用いてソースコー
ドの分析を行うものが多い．保守作業を行う開発者は，ソースコードのどこをど
のように変更するか，変更した後にどのようなテストを実施するかを決定するた

1

めに，ソースコードの分析を行う．しかし，ソースコードが大規模である場合，手
動で分析を行うことは困難である．そこで，コンピュータを用いてソースコード
を分析することで，保守作業に有用と考えられる情報を自動的に抽出する手法や
ツールが数多く提案されている．それら手法やツールのうち，代表的なものを以
下に示す．

リバースエンジニアリング リバースエンジニアリングとは，システムの構成要素
(component)および構成要素間の関係を特定し，そのシステムを別の形式，
もしくはより高い抽象度で表現することである [17]．

ソフトウェア開発環境の中には，Imagix 4D[34]等のようにソースコードから
フローチャートやコールグラフ（関数間の呼び出し関係を表すグラフ）を生
成する機能を持つものや，Rational Software Modeler[32]等のようにソース
コードからクラス階層情報を抽出し，可視化する機能を持つものが存在する．

また，リバースエンジニアリングを行う手法の一種として，設計の復元 (De-

sign Recovery) [15]を行う手法が研究されている．設計の復元とは，設計に
関する抽象概念 (Design Abstraction) をソースコードおよび他の情報（設
計書や開発者の経験，対象とする問題とドメインに関する一般的な知識）か
ら再現することである [15]．設計の復元を行う代表的なツールとして，ソー
スコード中からデザインパターン（頻繁に用いられる設計，文献 [25]参照）
の実装部分を自動的に特定するツール [59, 61]をいくつか挙げることができ
る．これらは，ツールの開発者もしくは使用者がデザインパターンに関する
一般的な知識（デザインパターンが実装されている部分の構文的特徴など）
を予め与えておくと，その知識に基づいてデザインパターンの実装部分を対
象ソースコード中から特定する．このように，デザインパターンの実装部分
を特定することは，保守作業を行う上で有益であるとされている．例えば，
保守対象のソースコード内で実装されているデザインパターンを明示すると，
保守作業にかかる時間と混入する欠陥の数が減少したという実験結果が報告
されている [55]．

回帰テスト選択手法 保守作業を困難にする要因の 1つとして，ソースコードの一
部を変更すると，変更部分だけでなく他の部分の振る舞いが変化する可能性
があることが指摘されている [14, 56]．このように，変更が他の部分に影響
することは波及効果 (Ripple Effect) [14]と呼ばれる．

波及効果が発生する可能性があるため，回帰テスト（変更後の振る舞いが要
求を満たしているかを確認するためのテスト）では，変更部分のテストだけ
でなく，他の部分についてもテストを検討する必要が生じる．このことから，
必要十分なテストの組み合わせを算出するための手法が数多く提案されてい
る [56, 57]．

保守対象がオブジェクト指向プログラムの場合，Dynamic Dispatch（同じ型

2

の参照型変数であっても，実行時におけるインスタンスの型に依存して呼び
出される手続きが変化すること）が原因で，開発者にとって波及効果を理解
することが難しくなる [56]．よって，一般的な手続き型プログラムと比較し
て，オブジェクト指向プログラムの方が，回帰テストにおいて実行すべきテ
ストを適切に特定することが難しいと言える．この問題を解決するために，
Chiantiというツールが開発されている [56]．Chiantiに，Java言語で記述さ
れた変更前と変更後のソースコードおよび変更前のソースコード用に作られ
たテストコードの集合を与えると，入力したテストコードの中で，再度動作
させるべきもののみを提示する．Chaintiは，まず，変更前と変更後のソース
コードについて，仮想メソッド（子クラスのメソッドがオーバライドできる
メソッド）をオーバライドするメソッドの集合のそれぞれ算出する．そして，
それらの差分を求めることでDynamic Dispatchの変化を特定し，Dynamic

Dispatchが変化する可能性があるテストコードを提示する．

メトリクスの計測 ソースコードの保守性（保守しやすさ）の評価を行うメトリク
スの代表的なものとして，CKメトリクス [16]が挙げられる．CKメトリク
スは，オブジェクト指向プログラムに含まれるクラスを対象とした 5つの複
雑度メトリクスから構成されている．CKメトリクスとして，複雑度メトリ
クスが満たすべき数学的性質 [64]を概ね満足していること [16]，加えて，他
のメトリクスの組み合わせよりも欠陥の発生を予測に有用であること [11]が
確認されていることが挙げられる．

プログラムスライシングの結果を利用したメトリクスがいくつか提案されて
いる [63]．例えば，メトリクスTightness[63]は，C言語における関数中の文
のうち，全てのスライス1に共通して含まれる文の割合であり，ほとんど文
が返値や大域変数の値に影響与えていると高い値になる．直観的には，単一
の目的で作成された関数はTightnessの値が高くなる．このようなプログラ
ムスライシングに基づくメトリクスを用いることで，オープンソースソフト
ウェアに含まれる関数の凝集性が低下していることを定量化できることが確
認されている [53]．

Kataokaらは，リファクタリングの効果を計測する 3つのメトリクスを提案
している [40]．リファクタリング [23, 54]とは，保守性の改善を目的とした
変更作業のことである（詳細な定義は 1.2.4節を参照）．これらメトリクス
は，メソッド間の結合に基づいてリファクタリングの効果を計測する．具体
的には，1つ目は返値を介した結合，2つ目は引数を介した結合，3つ目は変
数の共有に基づく結合を計測する．リファクタリングを行う開発者は，これ
らメトリクスを用いることで，リファクタリングによりメソッド間に存在す
る結合がどのように変化したかを調査することができる．

1関数の全ての返値，および関数中で変更される全ての大域変数をスライス基準とするスライス

3

以上のように，保守作業を支援するために多くの研究がなされている．
大規模ソースコードの保守を行うにあたって，ソースコード中に類似部分が多
く含まれることが問題にされており，類似性分析のための手法やツールが提案さ
れている．次節以降，主にソースコードの類似性分析について述べるが，保守作
業の現場において有効な支援を行うためには，類似性分析のみを単独で用いるの
ではなく，本節で述べたリバースエンジニアリングや回帰テスト選択手法，メト
リクスの計測と組み合わせて使う必要がある．

1.2 ソースコードの類似性分析

1.2.1 類似コード片

ソフトウェアに対する保守作業の効率を下げている要因の 1つとして，ソース
コード中の類似コード片が指摘されている [7, 13, 37, 39, 42, 46, 47, 66]. 類似コー
ド片とは，ソースコード中のコード片（ソースコードの一部分）のうち，一致も
しくは類似した要素（識別子や構文など）を含むコード片を持つものを指す．類
似コード片は，以下の理由で作成される [13, 41]．

既存コードのコピーとペーストによる再利用
近年のソフトウェア設計手法を利用すれば，構造化や再利用可能な設計が可
能である．しかし，コードの再利用が容易になったために，現実にはコピー
とペーストによる場当たり的な既存コードの再利用が多く行われるように
なった．

定型処理
定義上簡単で頻繁に用いられる処理．例えば，給与税の計算や，キューの挿
入処理，データ構造アクセス処理などである．

プログラミング言語に適切な機能の欠如
抽象データ型や，ローカル変数を用いられない場合には，同じようなアルゴ
リズムを持った処理を繰り返し書かなくてはならないことがある．

パフォーマンス改善
リアルタイムシステムなど時間制約のあるシステムにおいて，インライン展
開などの機能が提供されていない場合に，特定のコード片を意図的に繰り返
し書くことによってパフォーマンスの改善を図ることがある．

コード生成ツールの生成コード
コード生成ツールにおいて，類似した処理を目的としたコードの生成には，
識別子名等の違いはあろうとも，あらかじめ決められたコードをベースにし
て自動的に生成されるため，類似したコードが生成される．

4

一致または類似した要素を含むソースファイルA ソースファイルBコード片CF1 コード片CF2コード片CF3

修正の検討が必要修正 一致または類似した要素を含むソースファイルA ソースファイルBコード片CF1 コード片CF2コード片CF3

修正の検討が必要修正

図 1.1: 類似コード片

特に，Linuxや JDK (Java Development Kit) などの大規模ソースコードは大量の
類似コード片を含むことが報告されている [39][47]．
ソフトウェアの保守を行う際に，あるコード片を修正するとその全ての類似コー
ド片を見つけ出し修正を行う必要が生じることがある．図 1.1は，修正を要する
コード片CF1と，同様の修正を要する類似コード片CF2，CF3を表している．特
に，ソースコード中に欠陥が見つかった場合には，その欠陥を含むコード片の類
似コード片を探し，検査する必要がある [46][47][66]．しかし，ソフトウェア中の
類似コード片を人手で探すためには大きな労力が必要となる．特に，大規模ソフ
トウェアが対象の場合，全ての類似コード片を人手で探すことはより困難となる．
類似コード片に対する保守作業の効率を上げる手段として，以下が考えられる．

(1) ソースコード上における類似コード片を検出し，その位置情報を記録する．

(2) 集約可能な類似コード片の集合を抽出し，単一のサブルーチンにする．

(1)で挙げた作業を支援するツールとして，コードクローン検出ツールが挙げら
れる．これらは，類似コード片の中でもコードクローン（トークン列や構文木が
等価であるなど同値関係を持つコード片が存在するコード片）に着目し，自動検
出を行うをツールである．1.2.2節では，既存のコードクローン検出ツールについ
て述べる．

(2)で挙げた作業は，リファクタリング [23, 54]（ソフトウェアの外部から観測し
たときの動作を変化させることなく，ソースコードの品質を改善する作業）の一
種と考えることができる．リファクタリングの解説書である文献 [23]において，開
発者が類似コード片を集約する際の典型的な方法について述べられている．1.2.4

節では，この方法について述べる．

1.2.2 コードクローン検出ツールCCFinder

コードクローンの定義は研究者により様々であるが，類似コード片の中でも同
値関係（例：トークン列や構文木が等しい関係など）を持つコード片が存在するも

5

クローンペア
クローンセット
クローンペア
クローンセット

図 1.2: クローンペアとクローンセット

ののみを指すことがほとんどである [7, 13, 37, 39, 42]．本節では，コードクロー
ン検出ツールの代表例として CCFinder[39]を紹介する．
まず，CCFinderおけるコードクローンの定義，および関連する語について述べ
る．あるトークン列中に存在する二つの部分トークン列 α，βが等価であるとき，
αと βは互いにクローンであるという．またペア（α，β）をクローンペアと呼ぶ
（図 1.2）．α，βそれぞれを真に包含する如何なるトークン列も等価でないとき，
α，βを極大クローンと呼ぶ．また，互いにクローンであるトークン列を同値とし
たときの同値類をクローンセットと呼ぶ（図 1.2）．ソースコード中でのクローン
を特にコードクローンという [67]．

CCFinderは，単一または複数のファイルのソースコード中から全ての極大クロー
ンを検出し，それをクローンペアの位置情報として出力する．CCFinderの持つ主
な特徴は次の通りである．

細粒度のコードクローンを検出
字句解析を行うことにより，トークン単位でのコードクローンを検出する．

大規模ソフトウェアを実用的な時間とメモリで解析可能
例えば 10MLOCのソースコードを 68分 (実行環境 Pentium3 650MHz RAM

1GB)で解析可能である [67]．

様々にプログラミング言語に対応可能
言語依存部分を取り替えることで，様々なプログラミング言語に対応できる．
現在は，C/C++，Java，COBOL/COBOLS，Fortran，Emacs Lispに対応
している．またプレーンテキストに対しても，分かち書きされた文章として
解析可能となっており，未対応の言語に対しても完全一致判定によるコード
クローンはとることができる．

実用的に意味を持たないコードクローンを取り除く
• コードクローンは小さくなればなるほど偶然の一致の可能性が高くなる
が，最小一致トークン数を指定することができるため，そのようなコー
ドクローンを検出しないようにできる．

6

• モジュールの区切りを認識することで，複数のモジュールをまたがって
いるコードクローンを取り除いている．

ある程度の違いは吸収可能
• ソースコード中に含まれるユーザ定義名，定数をパラメータ化すること
で，その違いを吸収できる．

• クラススコープや名前空間による複雑な名前の正規化を行うことで，そ
の違いを吸収できる．

• その他，テーブル初期化コード，可視性キーワード (protected, public，
private等)，コンパウンド・ブロックの中括弧表記等の違いも吸収する
ことができる．

CCFinderのコードクローン検出手順（ソースコードを読み込んで，クローンペ
ア情報を出力する）は大きく四つの過程から成り立っている [39]．

ステップ 1（字句解析）ソースファイルを字句解析することによりトークン列に変
換する．入力ファイルが複数の場合には，個々のファイルから得られたトー
クン列を連結し，単一のトークン列を生成する．

ステップ 2（変換処理）実用上意味を持たないコードクローンを取り除くこと，及
び，些細な表現上の違いを吸収することを目的とした変換ルールによりトー
クン列を変換する．例えば，この変換により変数名は同一のトークンに置換
されるので，変数名が付け替えられたコード片もコードクローンであると判
定することができる．

ステップ 3（検出処理）トークン列の中から指定された長さ以上一致している部
分をクローンペアとして全て検出する．

ステップ 4（出力整形処理) 検出されたクローンペアについて，元のソースコード
上での位置情報を出力する．

実際に，CCFinderによってどのようなコードクローンが検出されるのか例を示す．
図 1.3に説明のための Javaのソースコードを示す．このソースコードには，互
いに似通った二つのメソッドが含まれ，左端には行番号が付されている．ここで，
最小一致トークン数を 5トークンに定め，図 1.3のソースコードに対しコードク
ローン検出を行うと，図 1.3 中の A1 (4行目-6行目)と A2 (16行目-17行目), B1 (8

行目- 10行目)と B2 (20行目-22行目), そして C1 (12行目)と C2 (25行目)がそれ
ぞれクローンペアとして検出される．それぞれのクローンペアの長さは順に 7, 18,

6トークンとなっている．見ての通り，A1 とA2 の間，B1 とB2 の間には次のよ
うな幾らかの違いが含まれているがコードクローンとして検出可能となっている．

• 名前空間の違い (e.g. “org.apache.regexp.RE” と “RE”).

7

1. static void foo() throws RESyntaxException

2. {

3. String a[] = new String [] {"123,400", "abc"};

A1 4. org.apache.regexp.RE pat =

A1 5. new org.apache.regexp.RE("[0-9,]+");

A1 6. int sum = 0;

7. for (int i = 0; i < a.length; ++i)

B1 8. {

B1 9. if (pat.match(a[i])){

B1 10. sum += Sample.parseNumber(pat.getParen(0));}

11. }

C1 12. System.out.println("sum = " + sum);

13. }

14. static void goo(String [] a) throws RESyntaxException

15. {

A2 16. RE exp = new RE("[0-9,]+");

A2 17. int sum = 0;

18. int i = 0;

19. while (i < a.length)

B2 20. {

B2 21. if (exp.match(a[i]))

B2 22. sum += parseNumber(exp.getParen(0));

23. i++;

24. }

C2 25. System.out.println("sum = " + sum);

26. }

:

:

図 1.3: コードクローン検出例

• 変数名の違い (e.g. “pat” と “exp”).

• 改行とインデントの違い

• 中括弧表記の違い

これらの違いは，CCFinderのトークン変換処理によって吸収される．

8

1.2.3 その他のコードクローン検出ツール

以下に，その他のコードクローン検出ツールの中で主要なものを挙げる．

Covet

文献 [51]で定義された種々の特徴メトリクスの幾つかのメトリクス値を比較
することによって，コードクローン検出を行う．現在，試作段階にあり，検
出対象言語は，Javaである．

CloneDR[13]

抽象構文木 (AST)の節点を比較することによって，コードクローン (類似部分
木)の検出を行う．また，部分的に異なっているコードクローンも検出するこ
とが可能であり，検出したコードクローンを自動的に等価なサブルーチンや
マクロに置き換えることも可能である．検出対象言語は，C/C++，COBOL，
Javaである．

Dup[4][5][6][7]

ユーザ定義名のパラメータ化を行った後，行単位の比較によりコードクロー
ンを検出する．マッチングアルゴリズムには，サフィックス木探索 [28]を用
いているため線形時間で解析可能である．

Duploc[20]

前処理として，空白やコメント等を取り除いた後，行単位 (のハッシュ値)で
の表検索を用いた比較によってコードクローンを検出する．また，コードク
ローンの散布図等のGUIを備えたツールであり，ソースコード参照支援を
行う．検出対象言語は，C，COBOL，Python，Smalltalkである．

JPlag[45]

ソースコードを字句解析し，トークン単位での比較を行う．プログラム盗用
の検出を目的として開発され，プログラム間の類似率を検出する．検出対象
言語は，C/C++，Javaである．

Komondoorらの手法 [42]

関数等にまとめるのに適したコードクローンの抽出を目的として，プログラ
ム依存グラフ (PDG)上での各節点の比較を行うことでコードクローン (同型
(isomorphic)部分グラフ)を検出する．文字列比較や抽象構文木等を用いた
方法では検出できなかった非連続コードクローンや，対応行の順番が異なる
クローン，互いに絡みあったクローン等を検出可能である．[42]で作成され
たツールの検出対象言語は，Cである．

Krinkeの手法 [43]

ASTやTraditional PDGに似たFine-grained PDGというグラフ上での類似

9

(similar)部分グラフ (同型部分グラフではない)を検出することで，コードク
ローンが存在すると思しき場所を検出する．試作ツールの検出対象言語は，
Cである．

SMC[10][8][9]

まず特徴メトリクスによってコードクローンと思しきメソッドに絞り込む．
次に絞り込まれたメソッドのペアに対し，表検索を用いることでメソッド単
位のコードクローンを検出する．特徴メトリクスによって絞り込まれている
ため，実用上ほぼ線形時間で解析可能である．また検出されたペアのメソッ
ドは，特徴により 18種類に分類される．さらにそれぞれの分類については
共通メソッドへの書き換え指針が示されている．

MOSS[2]

検出アルゴリズムは公開されていない．JPlag同様，プログラム盗用の検出を
目的として開発された．検出対象言語は，Ada，C/C++，Java，Lisp，ML，
Pascal，Scheme である．

CP-Miner[47]

CP-Minerは，まずソースコード中のユーザー定義名を正規化（特殊文字に
置換）した後，ソースコード中の各文をハッシュ値に変換する．つまり，ユー
ザ定義名が異なる文であってもその他が一致していれば，同じハッシュ値に
変換する．続いて，ハッシュ値のシーケンスに対して，CloSpanアルゴリズ
ム（Sequential Pattern Miningを行うアルゴリズムの一種）を適用すること
で，頻出するハッシュ値のシーケンスを求める．最後に，頻出するハッシュ
値のシーケンスに対応するソースコードをコードクローンとして提示する．
CloSpanアルゴリズムは，連続でない（不一致部分を含む）シーケンスであっ
ても検出することができるため，それを用いているCP-Minerは不一致部分
を含むコードクローンであっても検出できる．

Wahlerらの手法 [62]

Wahlerらの手法は，ソースコードの抽象構文木を表すXML表現からコード
クローンを検出する．具体的には，まずXMLで記述された抽象構文木に対
して，Frequent Itemset Miningアルゴリズムを適用することで，頻出する文
の集合を特定する．そして，それら文をコードクローンとして提示する．こ
の手法の特徴は，ソースコードをXML形式に変換できれば，どのようなプ
ログラミング言語のソースコードからでもコードクローンを検出できること
である．いくつかのプログラミング言語はソースコードをXML形式に変換
する方法 [22, 50, 58]が提案されているため，Wahlerらの手法を用いること
で，それらプログラミング言語のソースコードからコードクローンを検出す
ることができる．

10

Clone Miner[12]

Clone Minerは，字句解析後のトークン列に対してSuffix Arrayアルゴリズム
[1]を適用することでコードクローンを検出する．CCFinderと同様に，コー
ドクローン検出前にユーザ定義名を正規化（特殊文字に置換）する．加えて，
Clone Minerはコードクローン検出後にFrequent Closed Itemset Mining[27]

を適用することで，同一ファイルに含まれやすいクローンセットの集合を特
定している．

1.2.4 類似コード片を対象としたリファクタリング

リファクタリングとは “外部からみたときの振る舞いを保ちつつ，理解や修正が
簡単になるように，ソフトウェアの内部構造を変化させること”であると定義され
ている [23, 54]．

Fowlerは文献 [23]の中で，リファクタリングを検討すべき箇所にあらわれる特
徴を Bad Smellと呼び，その代表例として類似コード片を挙げている．類似コー
ド片を取り除く手法として，次のような対処方法がある (以下，オブジェクト指向
プログラミング言語，特に Javaを例にとって述べる)．

“Extract Method”

ひとまとめにできるコード片がある場合に，新たなメソッドとして定義し，
抽出されたコードを抽出先のメソッドへの呼び出し文に置き換える．特に重
複したコードに限ったリファクタリングではないが，重複したコードで最も
単純な例は，同一クラス内の複数メソッドに同じ式があるものである (図 1.4

参照)．

“Pull Up Method”

同じ結果をもたらすメソッドが複数のサブクラスに存在した場合，それらを
親クラスに引き上げる．最も単純なケースは，複数のメソッド本体が全く同
じである場合である (図 1.5参照)．重複したコードが兄弟クラスに存在した
場合には，“Extract Method” を行ってから，“Pull Up Method”を行えば
よい．

“Extract Class”

二つのクラスでなされるべき作業を一つのクラスで行っている際に，新たに
クラスを作って，適当なフィールドとメソッドを元のクラスからそこに移動
する．これも特に重複したコードに限ったリファクタリングではないが，全く
関係のない複数のクラス間で，重複したコードが見られるときには，メソッ
ド引き上げの代わりに別のクラスとして定義する．

“Extract SuperClass”

似通った特性を持つ複数のクラスがある場合に，新たに親クラスを作成して，

11

void printOwing(double amount){

printBanner();

System.out.println(“name:” + _name);

System.out.println(“amount:” + amount);

}

void printOwing(double amount){

printBanner();

printDetails(amount);

}

void printDetails (double amount){

System.out.println(“name:” + _name);

System.out.println(“amount:” + amount);

}

図 1.4: 類似コード片を対象とした “Extract Method”

Employee

Salesman Engineer

getName() getName()

Employee

getName()

Salesman Engineer

図 1.5: 類似コード片を対象とした “Pull Up Method”

共通の特性を移動する．“Extract Class”との違いは，継承するか委譲するか
の違いである (図 1.6参照)．

“Form Template Method”

類似の処理を同じ順序で実行しているが，各処理が異なる場合，各処理を同
じシグニチャを持つメソッドとして，親クラスに引き上げる．例えば，よく
似た処理を同じ順番で実行しているものの，処理内容が違う場合には，順序
の制御を親クラスに移動し，異なる処理については，元のクラスで行わせる
(図 1.7参照)．

12

Party

Employee Department

getAnnualCost()
getId()

getAnnualCost()
getHeadCount()

getAnnualCost()
getName()

Department

getTotalAnnualCost()
getName()
getHeadCount()

Employee

getAnnualCost()
getName()
getId()

図 1.6: 類似コード片を対象とした “Extract SuperClass”

“Consolidate Duplicate Conditional Fragments”

条件式の全ての分岐に同じコード片がある場合，式の外側に移動する (図 1.8

参照)．条件記述以外にも，例外記述にも適用可能である．例えば，tryブロッ
ク内の例外の原因となる文の後，および全ての catchブロックの中に重複コー
ドがあるときは，finallyブロックに移動する．

“Replace Conditional with Polymorphism”

switch文などは重複したコードを生成しやすくしている．同じような switch

文がある場合は，新たな分岐を追加した際に全ての switch文を探して似た
ような変更をしなければならない場合も多く，新たな分岐での処理も他の分
岐と比較し類似した処理が並ぶことが多いためである．その中でも特にオブ
ジェクトの種類で分岐していた際には，ポリモーフィズムを利用した“Extract

Method”等で対処することができる．

1.3 既存手法の問題点
既存のコードクローン検出ツールの問題点として，以下が挙げられる．

• クローンセット間の依存関係を検出しない．

同一クローンセットに属するコード片の集合を集約する際に，それらと呼び
出し関係を持つメソッドを含むコード片が属するクローンセット，もしくは
それらと変数を共有するコード片が属するクローンセットについても集約す
る必要が生じることがある．しかし，このようなクローンセット間の依存関

13

Site

Residential Site Lifeline Site

getBillableAmount() getBillableAmount()

Site

Residential Site Lifeline Site

getBaseAmount()
getTaxAmount()

getBaseAmount()
getTaxAmount()

getBillableAmount()
getBaseAmount()
getTaxAmount()

double base = _units * _rate * 0.5;

double tax = base * Site.TAX_RATE * 0.2;

return base + tax;

double base = _units * _rate;

double tax = base * Site.TAX_RATE;

return base + tax;

return getBaseAmount() + getTaxAmount();

図 1.7: 類似コード片を対象とした “Form Template Method”

係（あるクローンセットを集約するためには，他のクローンセットの集約が
必要という関係）を，コードクローン検出ツールは検出しない．

図 1.9(a)は，クローンセット間に存在する依存関係を表している．図 1.9(a)

中のクラスA，Bにまたがる 3つのクローンセットの間には，メソッド呼び
出し関係やフィールドの利用関係が存在する．これらクローンセットのうち，
メソッド a1とメソッド b1が属するクローンセットのみに対して集約を試みる
と，親クラスに新たに作成したメソッド s1から子クラスのメソッド a2と b2

を呼び出すことが出来なくなる（図 1.9(b)）．ここで，メソッド a2とメソッ
ド b2が属するクローンセット，加えて，それらメソッドがそれぞれ呼び出し
ているメソッド a3とメソッド b3が属するクローンセットについても同様に
集約を行えば，メソッド a1とメソッド b1が属するクローンセットについて
も容易に集約することができる（図 1.9(c)）．

14

if (isSpecialDeal()) {

total = price * 0.5;

send();

}

else {

total = price * 0.98;

send();

}

if (isSpecialDeal())

total = price * 0.5;

else

total = price * 0.98;

send();

図 1.8: 類似コード片を対象とした“Consolidate Duplicate Conditional Fragments”

図 1.9(a)のように，あるクローンセットを集約するためには，他のクローン
セットについても集約を行う必要が生じることがある．しかし，既存のコー
ドクローン検出ツールは，クローンセット間に存在するメソッド呼び出し関
係やフィールドの利用関係を検出しないため，開発者はクローンセット間の
依存関係を知ることが困難である．

• トークンや構文上差異がある類似コード片を検出できないことが多い．

あるコード片の類似コード片を検索する際に，コードクローン検出ツールを
用いる方法が考えられる．コードクローン検出ツールを用いることで，ある
コード片と（トークン列や構文木が等価であるなど）同値関係を持つコード
片を検出することができる [30]．例えば，CCFinder[39]を利用すれば，ある
コード片とトークン列が等価なコード片を列挙することができる．しかし，
コードクローン検出ツールは同値関係を持つコード片のみを検出するため，
トークン列や構文上差異がある類似コード片を検出できないことが多い．

図 1.10は，コードクローン検出ツールを用いても，トークン列上の些細な差
異が原因で，類似コード片を検出できない例である．これら 2つのコード片
は，日本語入力システム “かんな”[71]バージョン 3.6のソースコードに含まれ
ていた類似コード片であり，各コード片の 3～5行目は，共にバッファからの
読み込み処理を表している．図 1.10(a)の最終行の右辺は (short)S2TOS(buf)

であるが，図 1.10(b)の最終行の右辺は (Ushort *)bufであり，トークン列上
に差異が存在する．そのため，CCFinderを用いて，一方のコード片とトーク
ン列が等価なコード片を検出したとしても，もう一方のコード片を検出する

15

クラスA
メソッドa1メソッドa2

クラスB
メソッドb1メソッドb2call call

フィールド変数va フィールド変数vb

メソッドb3callメソッドa3call
クローンセット
クローンセットクローンセット

referrefer referreferクラスA
メソッドa1メソッドa2

クラスB
メソッドb1メソッドb2call call

フィールド変数va フィールド変数vb

メソッドb3callメソッドa3call
クローンセット
クローンセットクローンセット

referrefer referrefer

(a) リファクタリング前

クラスAメソッドa2 クラスBメソッドb2メソッドb3callメソッドa3callクローンセットクローンセット

クラスSメソッドs1フィールド変数vsuncallableuncallableuncallableuncallable
referrefer referrefer
クラスAメソッドa2 クラスBメソッドb2メソッドb3callメソッドa3callクローンセットクローンセット

クラスSメソッドs1フィールド変数vsuncallableuncallableuncallableuncallable
referrefer referrefer

(b) リファクタリング後（1つのみ）

クラスA クラスB

クラスSフィールド変数vsメソッドs1メソッドs2call
メソッドs3call

referrefer

クラスA クラスB

クラスSフィールド変数vsメソッドs1メソッドs2call
メソッドs3call

referrefer

(c) リファクタリング後（3 つ同
時）

図 1.9: クローンセット間に存在する依存関係

ことはできない．

1.4 本論文の概要
本論文では，前節で挙げたコードクローン検出ツールの問題点を解決するため
に，以下の 2つの手法を提案し，評価実験を行った結果について述べる．

1. コードクローン間の依存関係に基づくリファクタリング支援手法

チェーンドクローンセット（同時に集約を検討すべきクローンセットの集合）
を提示することで，リファクタリング支援を行う手法を提案する．本手法は，

16

ir_debug(Dmsg(10, "ProcWideReq7 start!!¥n"));

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.yomilen =(short)S2TOS(buf);

バッファからの読み込み処理
(a) 欠陥を含むコード片

ir_debug(Dmsg(10, "ProcWideReq14 start!!¥n"));

buf += HEADER_SIZE; Request.type14.mode = L4TOL(buf);
buf += SIZEOFINT; Request.type14.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type14.yomi = (Ushort *)buf;

バッファからの読み込み処理
ir_debug(Dmsg(10, "ProcWideReq14 start!!¥n"));

buf += HEADER_SIZE; Request.type14.mode = L4TOL(buf);
buf += SIZEOFINT; Request.type14.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type14.yomi = (Ushort *)buf;

バッファからの読み込み処理
(b) 同様の欠陥を含むコード片

図 1.10: 類似コード片間の差異

クローンセット中に存在するメソッド呼び出し関係，およびメソッドと変数
の利用関係を解析することで，ソースコード中からチェーンドクローンセッ
トを検出する．更に，検出したチェーンドクローンセットを含むクラスから
なる集合の継承関係から，適用可能なリファクタリングパターン（“Extract

Method”や，“Pull Up Method”，“Extract Superclass”）を提示する．適用実
験では，オープンソースソフトウェアのソースコードに含まれているチェー
ンドクローンセットの規模を調査した．その後，検出したそれらチェーンド
クローンセットに対して，提案手法が提示するリファクタリングパターンを
適用した．

2. 識別子の類似性に基づく類似コード片検索手法

本手法は，クエリとしてコード片を与えると，識別子の類似性に基づいて対
象ソースコードから類似関数（クエリとして与えられたコード片の類似コー
ド片を含む関数）を検索する．具体的には，まず自然言語処理の分野で提案
されている類義語特定法を用いて，語（識別子を分割・正規化した後の文字
列）の類義語を特定する．次に，クエリとして与えられたコード片に含まれ
る全ての語について，同一もしくは類義語である語を含む関数を検出し，類
似関数として提示する．適用実験では，本手法を用いて類似した欠陥を含む
コード片の検索を行い，類似した欠陥の多くを提示できるかを確認した．ま
た，本手法と既存ツール（grepやコードクローン検出ツールCCFinder）との
比較実験を行った．

17

第2章 コードクローン間の依存関係
に基づくリファクタリング
支援

2.1 導入
ソフトウェア保守性を改善する技術の 1つとして，リファクタリング [23, 54]があ
る．Fowlerは，リファクタリングを検討すべき箇所にあらわれる特徴をBad Smell

と呼び，その代表例として類似コード片（Duplicated Code）を挙げている [23]．ま
た，類似コード片を単一のモジュールに集約する手法として，“Pull Up Method”

や “Extract Method”，“Extract SuperClass”などのリファクタリングパターンを
紹介している．
これまでに，著者が所属する研究グループでは，類似コード片の中でもコードク
ローンに着目し，コードクローン検出ツール CCFinder[39]およびリファクタリン
グ支援環境 Aries[29]を開発している．CCFinderは，ソースコードに字句解析と正
規化処理を行うことで得られたトークン列の同値性に基づいてコードクローン検
出を行う．CCFinderの特徴は，表現上の差異があるコードクローンを検出できる
こと，および百万行単位のソースコードであっても実用時間で解析できることで
ある．Ariesは，CCFinderの出力情報を基に，リファクタリングに適した単位（e.g.

クラス，メソッド単位）でクローンセット（互いに一致または類似したコード片の
集合）を検出し，更にメトリクスで特徴付けすることでリファクタリングパター
ンの提示を行う．
これまでに，Ariesを用いて様々なソースコードを解析した結果，異なるクロー
ンセットに含まれるコード片間に依存関係が存在する場合が確認されている．例
えば，クローンセット Saに 2つのメソッドma1，ma2が含まれ, 同様にクローン
セット Sbに 2つのコード片mb1，mb2が含まれるときに，メソッドma1がメソッ
ドmb1を呼び出し，メソッドma2がメソッドmb2を呼び出しているという場合で
ある．

Ariesは，上述した呼び出し関係の解析は行っていないため，ユーザは自らクロー
ンセット Saと Sb間の呼び出し関係を把握する必要がある．もし，ユーザが Saに
対してma1とmb1，ma2とmb2の呼び出し関係を考慮せずに集約を試みると，呼
び出し関係が保存されない可能性がある．有効なリファクタリング支援を行うた

19

めには，クローンセット Saと Sbは，まとめてユーザに提示するべきであると考
えられる．
本章では，クローンセット間の依存関係を利用したリファクタリング支援手法
を提案する．まず，異なるクローンセットに含まれるコード片間の依存関係に着
目し，そのような依存関係を持つコード片の集合をチェーンドクローンセットと
定義する．そして，チェーンドクローンセットの特徴に応じて，適用可能なリファ
クタリングパターンを提示するためのメトリクスを定義する．最後に，提案手法
をリファクタリング支援ツールとして実装し，2つのオープンソースソフトウェア
に適用することで有効性の評価を行う．

2.2 リファクタリング支援環境 Aries

リファクタリング支援環境Ariesは，CCFinderの出力情報を基に，リファクタリ
ングに適した単位（e.g. クラス，メソッド単位）でクローンセットを検出し，更
にメトリクスで特徴付けすることでリファクタリングパターンの提示を行う．
リファクタリングに適した単位とは，ソースコード上の構造的なまとまりのこ
とである．クローンセットに含まれるコード片が構造的なまとまりを持っている
なら，容易に集約することが出来る．現在，Aries は Java 言語を対象として実装
されているため，用いる構造的なまとまりは以下の 12種類である．

宣言 : class { }, interface { }
メソッド : メソッド本体, コンストラクタ,

スタティックイニシャライザ
文 : if, for, while, do, switch,

try, synchronized

クローンセットの特徴付けに用いるメトリクスの 1つとして，分散度メトリク
スDCH(S)[29]について説明する．クローンセット Sはコード片 f1, f2, · · · , fn

を含んでいるとする．クラスCiはコード片 fiを含んでいるクラスとする．もしク
ラス C1, C2, · · · , Cnが共通の親クラスを持つ場合は，その共通の親クラスの中
で，クラス階層的に最も下位（最も深い階層）に位置するクラスをCpで表すとす
る．またD(Ck, Ch)はクラス Ckと Ch のクラス階層における距離を表すとする．
この時，

DCH(S) = max {D(C1, Cp), · · · , D(Cn, Cp)}

と表される．直観的には，DCH(S)メトリクスはクローンセット Sに含まれる各
コード片間のクラス階層内における最大の距離を示す．図 2.1(a)～(c)は，それぞ
れクローンセットに含まれる 2つのコード片に対して，DCH(S)メトリクスを算
出した例である．DCH(S)の値は，全てのコード片が 1つのクラス内に存在する
場合は 0 (図 2.1(a))，あるクラスとその直接の子クラス内に存在する場合は 1とな

20

クラスAコード片a1 コード片a2

クラスAコード片a1 コード片a2

(a) DCH(S1) = 0

クラスBコード片b

クラスCコード片c

クラスP

クラスBコード片b

クラスCコード片c

クラスP

(b) DCH(S2) = 1

クラスDメソッドd

クラスEメソッドe

共通の親クラスが存在しないクラスDメソッドd

クラスEメソッドe

共通の親クラスが存在しない
(c) DCH(S3) = ∞

図 2.1: DCHメトリクスの算出例

る (図 2.1(b))．例外的に，コードクローンが存在するクラスが共通の親クラスを
持たない場合は∞ とする (図 2.1(c))．このメトリクスは，クラスライブラリ等の
修正不可能なクラスを除外したクラスを対象として計算される．

DCH(S)メトリクスにより，クローンセットSのコード片を集約したモジュール
を置くことが出来るクラス（集約先）を特定することが出来る．例えば，DCH(S)

メトリクスの値が 1の場合は，そのクローンセットが存在するクラスの親クラス
に集約できることがわかる．また，DCH(S)メトリクスの値が∞の場合は，分析
対象内に集約先位置になるクラスが存在しないため，クラスの作成，もしくは継
承関係のないクラスへの集約を検討するべきであることがわかる．

2.3 提案手法

2.3.1 本研究の動機

同一クローンセットに属するコード片の集合を集約する際に，それらと呼び出
し関係を持つメソッドを含むコード片が属するクローンセット，もしくはそれら
と変数を共有するコード片が属するクローンセットについても集約する必要が生
じることがある．しかし，このようなクローンセット間の依存関係（あるクロー
ンセットを集約するためには，他のクローンセットの集約が必要という関係）を，
コードクローン検出ツールは検出しない．

21

クラスA
メソッドa1メソッドa2

クラスB
メソッドb1メソッドb2call call

フィールド変数va フィールド変数vb

メソッドb3callメソッドa3call
クローンセット
クローンセットクローンセット

referrefer referreferクラスA
メソッドa1メソッドa2

クラスB
メソッドb1メソッドb2call call

フィールド変数va フィールド変数vb

メソッドb3callメソッドa3call
クローンセット
クローンセットクローンセット

referrefer referrefer

(a) リファクタリング前

クラスAメソッドa2 クラスBメソッドb2メソッドb3callメソッドa3callクローンセットクローンセット

クラスSメソッドs1フィールド変数vsuncallableuncallableuncallableuncallable
referrefer referrefer
クラスAメソッドa2 クラスBメソッドb2メソッドb3callメソッドa3callクローンセットクローンセット

クラスSメソッドs1フィールド変数vsuncallableuncallableuncallableuncallable
referrefer referrefer

(b) リファクタリング後（1つのみ）

クラスA クラスB

クラスSフィールド変数vsメソッドs1メソッドs2call
メソッドs3call

referrefer

クラスA クラスB

クラスSフィールド変数vsメソッドs1メソッドs2call
メソッドs3call

referrefer

(c) リファクタリング後（3 つ同
時）

図 2.2: クローンセット間に存在する依存関係

図 2.2(a)は，クローンセット間に存在する依存関係を表している．図 2.2(a)中
のクラスA，Bにまたがる 3つのクローンセットの間には，メソッド呼び出し関係
やフィールドの利用関係が存在する．これらクローンセットのうち，メソッド a1

とメソッド b1が属するクローンセットのみに対して集約を試みると，親クラスに
新たに作成したメソッド s1から子クラスのメソッド a2と b2を呼び出すことが出来
なくなる（図 2.2(b)）．ここで，メソッド a2とメソッド b2が属するクローンセッ
ト，加えて，それらメソッドがそれぞれ呼び出しているメソッド a3とメソッド b3

が属するクローンセットについても同様に集約を行えば，メソッド a1とメソッド
b1が属するクローンセットについても容易に集約することができる（図 2.2(c)）．
図 2.2(a)のように，あるクローンセットを集約するためには，他のクローンセッ

22

メソッド a

メソッド b

メソッド c

call

call

メソッド a

メソッド b

メソッド c

call

call

(a) 呼び出し関係

call

call

a

b

c

call

call

a

b

c

(b) 呼び出し関係を表
すグラフ

図 2.3: 呼び出し関係と呼び出し関係を表すグラフ

トについても集約を行う必要が生じることがある．しかし，既存のコードクロー
ン検出ツールは，クローンセット間に存在するメソッド呼び出し関係やフィール
ドの利用関係を検出しないため，開発者はクローンセット間の依存関係を知るこ
とが困難である．
本稿では，図 2.2(a)のようなクローンセットの組み合わせを “チェーンドクロー
ンセット”と呼び，“チェーンドクローンセット”に対するリファクタリング支援
手法を提案する．

2.3.2 チェーンドクローン

チェーンドクローンを定義するための準備として，メソッドチェーンを定義す
る．メソッドの集合が与えられたとき，それらメソッド間の依存関係を表す有向
グラフが連結グラフになるなら，そのメソッドの集合をメソッドチェーンと定義
する．
ここで扱う依存関係は，以下の 2種類である．

(1) メソッドの呼び出し関係

(2) 同一フィールド変数の共有（参照または代入）

図 2.3(a)は呼び出し関係を含むメソッドチェーンの例である．この例では，メ
ソッド aが bを，メソッド bが cを呼び出している．また，図 2.3(b)は，図 2.3(a)

のメソッドチェーンの依存関係をラベル付き有向グラフで表したものである．有
向辺に付属しているラベル “call”は，依存関係の種類がメソッドの呼び出し関係
であることを表している．例えば，メソッド aが bを呼び出しているとき，有向辺
(a, b)を引き，ラベル “call”を付ける．なお，1つのメソッドが同一のメソッドを 2

回呼び出している場合は，それらメソッド間に呼び出し関係を表す有向辺を 2 本
追加する．

23

メソッド a

メソッド b

メソッド c

フィールド変数 y

refer (1)

フィールド変数 x
assign (2)

refer (3)

assign (4)

メソッド a

メソッド b

メソッド c

フィールド変数 y

refer (1)

フィールド変数 x
assign (2)

refer (3)

assign (4)

(a) フィールド変数の使用

Ay (4)Ry (3)

AX (2)RX(1)

a

b

c Ay (4)Ry (3)

AX (2)RX(1)

a

b

c

(b) フィールド変数の共有関係を表すグラフ

図 2.4: フィールド変数の使用と共有関係を表すグラフ（括弧内の数字は対応する
関係を表す）

図2.4(a)はフィールド変数を使用しているメソッドチェーンの例である．図2.4(a)

の有向辺に付属しているラベル “refer”はフィールド変数の参照を表しており，“as-

sign”はフィールド変数への代入を表している．図2.4(a)のメソッドaと bは，フィー
ルド変数xを共有しており，メソッドa，cはフィールド変数yを共有している．また，
図 2.4(b)は，図 2.4(a)のメソッドチェーンに含まれるメソッド間の共有関係をラベ
ル付き有向グラフで表したものである．有向辺に付属しているラベル “Rx(refer)”

はフィールド変数 xへの参照による共有関係，ラベル “Ay(assign)”は，フィール
ド変数 yへの代入による共有関係を表している．例えば，メソッド aが変数 xを
参照し，かつメソッド bが変数 xを使用（参照または代入）しているとき，有向辺
(a, b)を引き，ラベル “Rx”を付ける．また，メソッド cが変数 yに代入し，かつ
メソッド aが変数 yを使用しているとき，有向辺 (c, a)を引き，ラベル “Ay”を付
ける．
次に，メソッドチェーンを用いてチェーンドクローンを定義する．2つのメソッ
ドチェーンが互いにチェーンドクローンとなるのは，各メソッドチェーンが持つ
依存関係のグラフが同形であり，対応する頂点（メソッド）が同一クローンセット
に含まれ，対応する辺（依存関係）のラベルは等しいときである．また，互いに

24

クラス A

メソッド a11

メソッド a21

チェーンドクローン メソッド a12

メソッド a22

クラス A

メソッド a1

メソッド a2

クローンセット
クローンセット

クラス A

メソッド a11

メソッド a21

チェーンドクローン メソッド a12

メソッド a22

クラス A

メソッド a1

メソッド a2

クローンセット
クローンセット

図 2.5: ケース 1

チェーンドクローンであるメソッドチェーンの同値類を，チェーンドクローンセッ
トと呼ぶ．

2.3.3 チェーンドクローンセットに対するリファクタリング

ここでは，チェーンドクローンセットに対して考えられるリファクタリングに
ついて説明するため，適用可能なリファクタリングパターンが異なる 4つのケー
スを紹介する．
ケース 1は，チェーンドクローンセットが 1つのクラスに包含されている場合で
ある．ケース 1では，その 1つのクラス内にクローンセットを集約可能である．図
2.5は，ケース 1のチェーンドクローンセットに対するリファクタリングの例であ
る．互いにクローンであるメソッド a11とメソッド a12を集約しメソッド a1とし，
同様に互いにクローンであるメソッド a21とメソッド a22を集約しメソッド a2と
している．
ケース 2は，チェーンドクローンセットが以下の 2つの条件を満たす場合である．

• チェーンドクローンセットに含まれるメソッドは，全て兄弟クラスに属する．

• 各メソッドチェーンは，それぞれ 1つのクラスに包含されている．

ケース 2は，“Pull Up Method”パターンを適用することで，リファクタリングで
きる．つまり，兄弟クラスにまたがって存在するクローンセットを，親クラスに集
約することでリファクタリングできる．図 2.6(a)は，ケース 2に対するリファク
タリングの例である．この例では，兄弟クラスであるクラスA，Bにまたがって
存在する 2つのクローンセットを，親クラス Sに作成したメソッドに集約してい
る．具体的には，クラスAのメソッド a1とクラスBのメソッド b1を集約し，親
クラス Sのメソッド ab1とし，同様にクラスAのメソッド a2とクラスBのメソッ
ド b2を集約し，親クラス Sのメソッド ab2としている．
ケース 3は，チェーンドクローンセットが以下の 2つの条件を満たす場合である．

25

クラス Sメソッド ab1

メソッド ab2

(a) ケース 2

クラス A クラス B

クラス S

メソッド a1

メソッド b2メソッド a2

メソッド b1

チェーンドクローンセット

クラス A クラス B

メソッド a1

メソッド b2メソッド a2

メソッド b1

チェーンドクローンセット

(b) ケース 3

クローンセット
クローンセット

クローンセット
クローンセット

クラス Bクラス A

クラス Sメソッド ab1

メソッド ab2

(a) ケース 2

クラス A クラス B

クラス S

メソッド a1

メソッド b2メソッド a2

メソッド b1

チェーンドクローンセット

クラス A クラス B

メソッド a1

メソッド b2メソッド a2

メソッド b1

チェーンドクローンセット

(b) ケース 3

クローンセット
クローンセット

クローンセット
クローンセット

クラス Bクラス A

図 2.6: ケース 2とケース 3

• チェーンドクローンセットに含まれるメソッドを持つクラスは，いずれも共
通の親クラスを持たない．

• 各メソッドチェーンは，それぞれ 1つのクラスに包含されている．

ケース 3は，“Extract SuperClass”パターンを適用することで，リファクタリング
できる．つまり，チェーンドクローンセットに含まれるメソッドを持つクラスに対
して，共通の親クラスを作成し，クラス間をまたがって存在するクローンセット
を，新たに作成した親クラスに集約することでリファクタリングできる．図 2.6(b)

は，ケース 3に対するリファクタリングの例である．この例では，まず共通の親
クラスを持たない 2つのクラスA, Bに，共通の親クラス Sを作成している．その
後，ケース 2と同様に兄弟クラスとなったクラスA，Bにまたがって存在する 2つ
のクローンセットを，親クラス Sに作成したメソッドに集約している．
ケース 4は，チェーンドクローンセットが以下の条件を満たす場合である．

• 各メソッドチェーンは，複数のクラスにまたがって存在する．つまり依存関
係が複数のクラス間にまたがっている．

26

クラス A

メソッド a

クラス B

メソッド b

クラス C

メソッド dメソッド c

クラス D

クラス S2

メソッド ab メソッド cd

クラス S1 クラス S2

クローンセット クローンセットチェーンドクローンセット
クラス S1

クラス A クラス B クラス C クラス D

クラス A

メソッド a

クラス B

メソッド b

クラス C

メソッド dメソッド c

クラス D

クラス S2

メソッド ab メソッド cd

クラス S1 クラス S2

クローンセット クローンセットチェーンドクローンセット
クラス S1

クラス A クラス B クラス C クラス D

図 2.7: ケース 4

ケース 4は，チェーンドクローンセット単位でリファクタリングできない場合で
ある．だが，チェーンドクローンセットを複数のクローンセットとして扱い，そ
れぞれの親クラスに集約することでリファクタリングできるため，クローンセッ
ト単位でのリファクタリングを検討すべきである．図 2.7は，ケース 4にクローン
セット単位でのリファクタリングを適用した例である．この例では，兄弟クラス
であるクラス A，Bにまたがって存在する 2つのクローンセットを，それぞれの
親クラスに作成したメソッドに集約している．具体的には，クラスAのメソッド
aとクラスBのメソッド bを集約し，親クラス S1のメソッド abとし，同様にクラ
ス Cのメソッド cとクラスDのメソッド dを集約し，親クラス S2のメソッド cd

としている．

2.3.4 チェーンドクローンセットの分類

前節の 4つのケースのように，チェーンドクローンセットを分類する．前節の 4

つのケースには，それぞれ適合するための条件があった．それらは，次の 2つで
ある．

C1 チェーンドクローンセットに含まれるメソッドが所属するクラス間の関係に
ついての条件

C2 メソッドチェーンに含まれるメソッドが所属するクラス間の関係についての
条件

27

ここでのクラス間の関係とは，クラス階層上の関係のことである．クラス間の
関係は，次に 3つに分類できる．

R1 全ての同一クラス

R2 共通の祖先クラスを持つ

R3 共通の祖先クラスを持たないクラス

条件の種類とクラス間の関係を組み合わせることにより，チェーンドクローン
セットを表 2.1のように分類できる．
次の 4つの分類については，以下に示すリファクタリングを行うことできると
考えられる．

分類 1 前節のケース 1である．図 2.5の例のように，チェーンドクローンセット
を包含しているクラスに，全てのクローンセットを集約することができる．

分類 2 前節のケース 2である．図 2.6(a)の例のように，“Pull Up Method”パター
ンを適用できる．

分類 3 前節のケース 3である．図 2.6(b)の例のように，“Extract SuperClass”パ
ターンを適用できる．

分類 4 前節のケース 4である．図 2.7からわかるように，チェーンドクローンセッ
ト単位でのリファクタリングを行うことが出来ないが，クローンセット単位
でのリファクタリングを検討すべきである．

2.3.5 チェーンドクローンセットの分類を目的としたメトリクス

ここでは，チェーンドクローンセットの分類を行うためのメトリクスを 2つ提
案する．1つは C1を評価するメトリクス，もう 1つは C2を評価するメトリクス
である．これらメトリクスは，メソッド間のクラス階層上における関係を表す．こ

表 2.1: チェーンドクローンセットの分類

HHHHHHHC1

C2
R1 R2 R3

R1 分類 1

R2 分類 2 分類 4

R3 分類 3

28

の関係は，2.2節で述べたDCH(S)メトリクス（クローンセット Sに含まれる各
コード片間のクラス階層内における最大の距離）によって表すことができる．
まず，DCH(S)メトリクスを用いて，C1を表すDCHS(T)メトリクスを定義
する．チェーンドクローンセット T を n個のクローンセット S1, S2, · · · , Snに分
割する (すなわち，S1 ∪ S2 ∪ · · · ∪ Sn = T, Si ∩ Sj = ∅, 1 ≤ i ≤ n, 1 ≤ j ≤ n,

i 6= j)．更に，クローンセット Siには，複数のメソッドが含まれるとする．この
とき，DCHS(T)メトリクスの定義は以下のようになる．

DCHS(T) = max{DCH(S1), · · · , DCH(Sn)}

同様にDCH(S)メトリクスを用いて，C2を表すDCHD(T)メトリクスを定義す
る．チェーンドクローンセット T中には，n個のメソッドチェーンM1,M2, · · · ,Mn

が含まれるとする．更に，メソッドチェーン Miには，複数のメソッドが含まれる
とする．このとき，DCHD(T)メトリクスの定義は以下のようになる．

DCHD(T) = max{DCH(M1), · · · , DCH(Mn)}

図 2.8は，提案する 2つのメトリクスの算出例である．ここでは，分類 2のチェー
ンドクローンセットを例として用いる．このチェーンドクローンセットには，クラ
スA，B，Cにまたがって 2つのクローンセット S1，S2が存在する．各クローン
セットについてそれぞれDCH(S1)，DCH(S2)を求めると，クラスA，B，Cは
共通の直接の親クラス Sを持っているため両者とも 1になる．DCHS(T)の値は，
これらの最大値の 1である．また，このチェーンドクローンセットには，3つのメ
ソッドチェーンM1, M2,M3が含まれている．各メソッドチェーンについてはそれ
ぞれDCH(M1)，DCH(M2)，DCH(M3)を求めると，各メソッドチェーンはそれ
ぞれ 1つのクラスに包含されているため全て 0になる．よって，DCHD(T)の値
は，これらの最大値の 0である．

2.3.6 実装

提案手法をAriesのコンポーネントの 1つとして実装した．具体的には，Ariesに
対して，以下の 3つの機能を追加した．

(F1) チェーンドクローンセットの検出機能

(F2) 提案したメトリクスの算出機能

(F3) チェーンドクローンセットおよびメトリクス値の表示機能

(F1)は，まず CCFinderおよび Ariesを用いて各クローンセットが含むコード片
を検出する．次に，それらコード片を対象に，メソッド呼び出し関係と変数の共

29

クラス A

クラス S

クローンセット S1 = { a1, b1, c1 }, S2 = { a2, b2, c2 }メソッドチェーン M1 = { a1, a2 }, M2 = { b1, b2 }, M3 = { c1, c2 }
DCHS(T) = max { DCH(S1), DCH(S2) } = 1DCHD(T) = max { DCH(M1), DCH(M2), DCH(M3) } = 0

クラス B クラス C

メソッド a1メソッド a2

メソッド b1

メソッド b2

メソッド c1

メソッド c2

S1

S2

M1 M2 M3

チェーンドクローンセットT

クラス A

クラス S

クローンセット S1 = { a1, b1, c1 }, S2 = { a2, b2, c2 }メソッドチェーン M1 = { a1, a2 }, M2 = { b1, b2 }, M3 = { c1, c2 }
DCHS(T) = max { DCH(S1), DCH(S2) } = 1DCHD(T) = max { DCH(M1), DCH(M2), DCH(M3) } = 0

クラス B クラス C

メソッド a1メソッド a2

メソッド b1

メソッド b2

メソッド c1

メソッド c2

S1

S2

M1 M2 M3

チェーンドクローンセットT

図 2.8: 提案するメトリクスの算出例

有関係を表すグラフを構築する．その後，構築したプログラム依存グラフに含ま
れる部分グラフから同形グラフを検出することにより，チェーンドクローンセッ
トを検出する．(F2)は，AriesのDCH(S)メトリクスを計算する機能を拡張した．
(F3)を実現するために，以下の 3つのビューを 3つ追加した．

Chained Clone Set Selection View

図 2.9は，Chained Clone Set Listのスナップショットである．
この画面には，検出されたチェーンドクローンセットの一覧が表示される．各
チェーンドクローンセットは，分類毎に表示される．また，各チェーンドクローンセッ
トに対して，2.3.5節で提案したDCHS(T), DCHD(T)メトリクスや，CCFinder

が検出する LEN(S), POP (S), DFL(S)メトリクス [39]の値がそれぞれ表示され
ている．
ユーザはこの画面で，各分類に所属しているチェーンドクローンセットの数や
規模を知ることができる．また，関心のあるチェーンドクローンセットを選択す
ると，Chained Clone Set Viewが開き，そのチェーンドクローンセットの詳細を
確認することができる．

30

Chained Clone Set List

(Category32, 33)

Chained Clone Set List

(Category31)

Chained Clone Set List

(Category11)

Chained Clone Set List

(Category21)

Chained Clone Set List

(Category12, 13, 22, 23)

Clone Set ID DCHS(CCS) DCHD(CCS)

Chained Clone Set List

(Category32, 33)

Chained Clone Set List

(Category31)

Chained Clone Set List

(Category11)

Chained Clone Set List

(Category21)

Chained Clone Set List

(Category12, 13, 22, 23)

Clone Set ID DCHS(CCS) DCHD(CCS)

図 2.9: Chained Clone Set Selection View

Chained Clone Set View

図 2.10は，Chained Clone Set Viewのスナップショットである．
この画面には，Chained Clone Set Listで選択したチェーンドクローンセットの
詳細が表示される．この画面は，チェーンドクローンセットに含まれているクロー
ンセットのリストであるClone Set List，各コード片とチェーンドクローンセット
内に存在する依存関係を表示するDepedence Relation Viewの二つから構成される．
ユーザはこの画面で，選択したチェーンドクローンセットにどのクローンセッ
トが含まれているか，またどのような依存関係が含まれているかを確認すること
ができる．また，関心のあるクローンセットを選択すると，Source Code Viewが
開き，含まれるコード片を閲覧することができる．

Source Code View

図2.11は，Source Code Viewのスナップショットである．Chained Clone Set View

において選択されたコードクローンのソースコードが表示されている．Variable List

は，選択されたメソッド中で使用している変数のリストである．

31

Code Clone List

Dependency Relation View

Code Clone List

Dependency Relation View

図 2.10: Chained Clone Set View

2.4 適用実験

2.4.1 概要

提案手法の有効性を確かめるため，ケーススタディを行った．具体的には，以
下の 2つを確認した．

• クローンセット単位の検出と比較して，検出できたチェーンドクローンセッ
トの規模が大きいか

• クローンセット単位でのリファクタリングと比較して，容易にリファクタリ
ングできているか

なお，この章におけるチェーンドクローンセットは，極大チェーンドクローン
セット1を指す．
適用対象は，次の 2つのオープンソースソフトウェアである．

• ANTLR 2.7.4[3](4.7万行，285クラス）
1与えられたチェーンドクローンセットを真に包含する如何なるチェーンドクローンセットも存

在しないとき，そのチェーンドクローンセットを極大チェーンドクローンセットと呼ぶ．

32

Source Code VIew

Variable List

Code Fragment List

Source Code VIew

Variable List

Code Fragment List

図 2.11: Source Code View

• JBoss 3.2.6[36](64万行， 3364クラス）

ANTLRは，3つのプログラミング言語（Java，C#，C++）に対応したコンパ
イラ・コンパイラである．JBossは，J2EEアプリケーションサーバである．

2.4.2 チェーンドクローンセットの検出

前述の 2つのソフトウェアに対し，提案手法に基づくチェーンドクローンセッ
トの検出，および従来手法に基づくクローンセットの検出を行った．提案手法で
はメソッド単位のコードクローンのみを扱うため，従来手法に基づく検出でもメ
ソッド単位のクローンセットのみを対象とした．また，CCFinder が検出するコー
ドクローンの最小トークン数は 30 に設定した．
検出結果の比較を行うために，2つの評価基準として，メソッド数と，メソッド
行数を用いる．ここで，メソッド数は，検出単位毎（クローンセット毎やチェー
ンドクローンセット毎）に含まれるメソッド数を求め，総クローンセット数や各
分類に属する全てのチェーンドクローンセット数で除算した値とした．メソッド

33

行数は，検出単位毎に最長メソッドの行数を求め，総クローンセット数や各分類
に属する全てのチェーンドクローンセット数で除算した値とした．
設定した評価基準に基づいて，クローンセットの検出結果（表 2.2）と分類 1，2，

3 に属したチェーンドクローンセットの検出結果（表 2.3(a)）を比較する．
まず，ANTLRでは分類 2 に属したチェーンドクローンセットのメソッド数や
メソッド行数が極めて大きかった．分類 2 のメソッド数はクローンセットの 8.3

(19/2.3) 倍，メソッド行数は 5.0 (54.0/10.8) 倍であった．一方，分類 1，3 に属し
たチェーンドクローンセットのメソッド数は両者ともクローンセットの1.7 (4.0/2.3)

倍，メソッド行数はそれぞれ 2.6 (27.7/10.8) 倍，3.2 (35.0/10.8) 倍であった．分
類 2 に属するチェーンドクローンセットの多くは，図 2.12 のような，Java，C#，
C++に対応した出力を行う箇所から検出された．これら言語に対応した出力処理
は類似しており，大量のコードクローンを含んでいた．
次に，JBoss の結果を見てみると，分類 1，2，3 に属したチェーンドクローン
セットのメソッド数はそれぞれクローンセットの 1.8 倍～2.8 倍，メソッド行数が
それぞれ 2.4 倍～3.2 倍であった．これらの結果から，チェーンドクローンセット
の規模がクローンセットに比べて大きいことがわかる．続いて，分類 1，2，3 に属
したチェーンドクローンセットの検出結果（表 2.3(a)）と，分類 4 に属したチェー
ンドクローンセットの検出結果（表 2.3(b)）を比較する．2.3.4 節で述べたように，
表 2.3(a)で示した分類 1，2，3は，チェーンドクローンセット単位でのリファクタ
リング可能であるが，表 2.3(b)で示した分類 4 はチェーンドクローンセット単位
でのリファクタリングが出来ない．分類 1，2，3と比較して分類 4に属するチェー
ンドクローンセットは少ないことがわかる．特に，ANTLR からは検出されなかっ
た．一方，JBossでは 4種類のチェーンドクローンセットが検出された．これらの
メソッド数, メソッド行数は，分類 1～3に比べて数倍の大きさになっている．

2.4.3 チェーンドクローンセットに対するリファクタリングの例

ANTLRから検出された全てのチェーンドクローンセットと JBossから検出され
た 8つのチェーンドクローンセットを対象として，提案手法に基づくリファクタ
リングを行った．ここでは，それらの中から 2つの例を紹介する．
まず，図 2.12 ，図 2.14で示すチェーンドクローンセットに対し，提案手法によ
り提示されたリファクタリングパターンを適用できることを確認した．図 2.12は
分類 2であるから，“Pull Up Method”パターンを適用した．その結果，図 2.13の
ようになった．ANTLRパッケージ中の examplesディレクトリ以下にある全ての
テストケース（計 86ファイル，文法ファイル）を用いて回帰テストを行い，外部
的振る舞い（出力結果）が変化していないことを確認した．また，図 2.14は分類 3

であるから，“Extract SuperClass”パターンを適用した．その結果，図 2.15のよ
うになった．JBossパッケージの testsuiteディレクトリ以下にある全テストケー

34

JavaCodeGeneratorgetLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)

call
callgetRangeExpression(int, int[])

CppCodeGenerator CSharpCodeGenerator
CodeGenerator

getLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)

call
callgetRangeExpression(int, int[])

getLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)
getRangeExpression(int, int[])

call
call

クローンセット３

クローンセット１
クローンセット２

JavaCodeGeneratorgetLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)

call
callgetRangeExpression(int, int[])

CppCodeGenerator CSharpCodeGenerator
CodeGenerator

getLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)

call
callgetRangeExpression(int, int[])

getLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)
getRangeExpression(int, int[])

call
call

クローンセット３

クローンセット１
クローンセット２

図 2.12: ANTLRから検出されたチェーンドクローンセットの例

ス（計 65ファイル，JUnitフレームワーク [38]を使用）を用いて回帰テストを行
い，外部的振る舞いが変化していないことを確認した．
更に，従来手法に基づいて，チェーンドクローンセットを構成するクローンセッ
トに対し集約を試みると，工夫が必要となる場合があることを確認した．具体的
には，図 2.12，図 2.14からそれぞれクローンセットを 1つ選び，従来手法により
提示されたリファクタリングパターンの適用をした．まず，図 2.12のクローンセッ
ト 1に対し集約を試みると，提示されたリファクタリングパターンの適用に加え
て，クローンセット 2のメソッドに対応する抽象メソッドをCodeGeneratorクラ
スに追加する必要があった．なお，クローンセット 2に対して集約を試みた場合
も同様であることが確認できた．また，図 2.14のクローンセット 2を新たに作成
した親クラスに集約を試みると，提示されたリファクタリングパターンの適用に
加えて，クローンセット 2のメソッドに対応する抽象メソッドを親クラスに追加
する必要があった．

35

JavaCodeGenerator CppCodeGenerator CSharpCodeGenerator

CodeGeneratorgetLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)
getRangeExpression(int, int[])

call
call

JavaCodeGenerator CppCodeGenerator CSharpCodeGenerator

CodeGeneratorgetLookaheadTestExpression(Lookahead[], int)
getLookaheadTestTerm(int, BitSet)
getRangeExpression(int, int[])

call
call

図 2.13: 図 2.12のチェーンドクローンセットをリファクタリングした例

commit (Object)
prepare (Object, List, boolean)
put (List)

refer DelegatingCacheLoader

call

transaction
commit (Object)
prepare (Object, List, boolean)
put (List)

FileCacheLoader

call

transactionクローンセット1

refer
クローンセット2

クローンセット3

commit (Object)
prepare (Object, List, boolean)
put (List)

refer DelegatingCacheLoader

call

transaction
commit (Object)
prepare (Object, List, boolean)
put (List)

FileCacheLoader

call

transactionクローンセット1

refer
クローンセット2

クローンセット3

図 2.14: JBossから検出されたチェーンドクローンセットの例

2.4.4 考察

ここでは，今回のケーススタディに基づいて，提案手法の妥当性・制限等につ
いて考察を行う．

(1)対象ソフトウェア ケーススタディでは，Java言語で開発された 2つのオープ
ンソースソフトウェアを対象として有効性の確認を行った．オブジェクト指
向型言語であれば，Java言語以外で開発されたソフトウェアであっても適用
可能であると考えられる．なぜなら，Java言語以外のオブジェクト指向型言
語で開発されたソフトウェアであっても，リファクタリングや依存関係解析
を適用可能だからである．今後，Java言語以外で開発されたソフトウェアや

36

commit (Object)prepare (Object, List, boolean)
put (List)

DelegatingCacheLoader FileCacheLoader

refer GeneralCacheLoader
call

transactionrefer commit (Object)prepare (Object, List, boolean)
put (List)

DelegatingCacheLoader FileCacheLoader

refer GeneralCacheLoader
call

transactionrefer

図 2.15: 図 2.14のチェーンドクローンセットをリファクタリングした例

分類 2 LoaderRepository
UnifiedLoaderRepository3loaderToPackageMappackageMaplogupdatePackageMap(UnifiedClassLoader)updatePackageMap(UnifiedClassLoader, URL)

UnifiedLoaderRepository4loaderToPackageMapPackageMaplogupdateClassNamesMap(UnifiedClassLoader)updateClassNamesMap(UnifiedClassLoader, URL)

分類 4

ClassLoaderUtilsupdatePackageMap(UnifiedClassLoader, HashMap, URL, String[]) updateClassNamesMap(UnifiedClassLoader, HashMap, URL, String[])

refer

call call

refer
クローンセットクローンセット

referrefer referrefer

クローンセット

分類 2 LoaderRepository
UnifiedLoaderRepository3loaderToPackageMappackageMaplogupdatePackageMap(UnifiedClassLoader)updatePackageMap(UnifiedClassLoader, URL)

UnifiedLoaderRepository4loaderToPackageMapPackageMaplogupdateClassNamesMap(UnifiedClassLoader)updateClassNamesMap(UnifiedClassLoader, URL)

分類 4

ClassLoaderUtilsupdatePackageMap(UnifiedClassLoader, HashMap, URL, String[]) updateClassNamesMap(UnifiedClassLoader, HashMap, URL, String[])

refer

call call

refer
クローンセットクローンセット

referrefer referrefer

クローンセット
図 2.16: 分類 4のチェーンドクローンセットの例

37

商用ソフトウェアなど，様々な種類のソフトウェアを対象に有効性の評価を
行う必要がある．

(2)被支援者の知識，経験 今回のケーススタディにおけるリファクタリング作業
は，全て著者が行った．そのため，手法の詳細を知らない人やリファクタリ
ング経験が少ない人に対しても，有効な支援が行えるかどうか評価する必要
がある．例えば，一般の開発者に本稿のツールを使用してもらい，リファク
タリングにかかった時間を計測することで効率を評価するということが考え
られる．

(3)対象とするコード片や依存関係の種類 提案手法は，メソッドより小さい単位
のコード片からなるクローンセットは対象としていない．また，メソッドの
呼び出し関係および変数の共用による依存関係のみを扱っているため，その
他のデータ依存関係や制御依存関係を対象としていない．今後，対象とする
コード片や依存関係を増やすことで検出可能なチェーンドクローンセットの
規模を大きくし，有効性の評価を行う必要がある．

(4)分類 4のチェーンドクローンセットへの支援 JBossから分類 2のチェーンド
クローンセットを内包する分類 4のチェーンドクローンセットが検出された
（図 2.16）．提案手法は，これに対しクローンセット単位でのリファクタリン
グを提示するが，内包された分類 2のチェーンドクローンセットに “Pull Up

Method”リファクタリングパターンを適用可能である．このような場合は，
内包されたチェーンドクローンセットに対してリファクタリングパターンの
提示を行うべきであると考えられる．

2.5 関連研究
CCFinderや Balazinska[10] らの手法を用いることにより，クローンセットの検
出を行うことはできる．本稿の手法では，チェーンドクローンセット単位でのリ
ファクタリングを提示することにより，大規模なリファクタリングを実現するこ
とが出来た．また，CCFinderが検出するクローンセットには容易にリファクタリ
ングできないものが含まれており，Balazinskaらの手法も同様と考えられる．本
稿では，それら容易にリファクタリングできないクローンセットを組み合わせる
ことで容易にリファクタリングできる場合があることを示し，それらクローンセッ
トに対するリファクタリング手法を提案した．

Komondoor[42]らの手法は，プログラムスライシング技術を用いて，ソースコー
ドからプログラム依存グラフを構築し，そのグラフ上で同形である箇所をコード
クローンとして検出している．よって，本稿で用いている CCFinderが検出できな
いコードクローン（一部の文の出現順序が異なっている reodered clone等）を検出
することができる．しかし，プログラム依存グラフの構築にかかる計算コストは

38

非常に大きいため，大規模ソフトウェアへの適用は現実的でない．本稿の手法は，
CCFinderが検出したコードクローンに対して，メソッド呼び出し関係と変数の利
用関係のみを解析しているため，ケーススタディで示した規模のソフトウェアに
適用可能である．実際に，ANTLRを対象としたチェーンドクローンセットの検出
を約 1分 4秒で行うことができた2．

2.6 結論
本稿では，クローンセットに含まれるメソッド間の依存関係に着目し，チェー
ンドクローンセットを定義した．そして，チェーンドクローンセットに対しリファ
クタリングパターンを提示するためのメトリクスを提案した．最後に，提案手法
をリファクタリング支援ツールとして実装し，2つのオープンソースソフトウェア
に適用することで，有効性の評価を行った．有効性の評価として，チェーンドク
ローンセットの規模がクローンセットと比べて大きいこと，およびチェーンドク
ローンセットのリファクタリングがクローンセット単位のリファクタリングと比
べて容易であることを確認した．
今後の課題としては，様々なソフトウェアを対象とした有効性の評価，チェー
ンドクローンセットの中に異なる分類のチェーンドクローンセットが包含されて
いる場合への対処，対象とする依存関係やコード片の拡大が挙げられる．

2実行環境: CPU Xeon 2.80GHz，メモリ 2.5GB，OS FreeBSD 6.1-RELEASE

39

表 2.2: クローンセットの検出結果

検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

152 377 2.3 2.4 10.8 6.63

表 2.3: チェーンドクローンセットの検出結果

(a) 分類 1，2，3

分類 検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

1 3 16 4.0 5.8 27.7 16.2

2 6 17 19 4.5 54.0 17.1

3 1 13 4.0 6.8 35.0 21.5

(b) 分類 4

検出数 メソッド数 メソッド行数
ANTLR JBoss ANTLR JBoss ANTLR JBoss

0 4 - 19 - 54.5

40

第3章 類義語の特定に基づく類似
コード片検索法

3.1 導入
ソフトウェア保守を困難にする要因の 1つとして類似コード片が指摘されてい
る [7, 13, 37, 39, 42, 46, 47, 66]. 類似コード片とは，ソースコード中のコード片
（ソースコードの一部分）のうち，一致もしくは類似した要素（識別子や構文など）
を含むコード片を持つものを指す．類似コード片は，既に開発されたコード片の
コピーとペーストによる再利用や定型処理の実装などが理由で作成される [13, 41]．
特に，Linuxや JDK (Java Development Kit) などの大規模ソースコードは大量の
類似コード片を含むことが報告されている [39][47]．
ソフトウェアの保守を行う際に，あるコード片を修正するとその全ての類似コー
ド片を見つけ出し修正を行う必要が生じることがある．特に，ソースコード中に
欠陥が見つかった場合には，その欠陥を含むコード片の類似コード片を探し，検
査する必要がある [46][47][66]．しかし，ソフトウェア中の類似コード片を人手で
探すためには大きな労力が必要となる．特に，大規模ソフトウェアが対象の場合，
全ての類似コード片を人手で探すことはより困難となる．
類似コード片の検索に用いることができる方法として，キーワード検索やコー
ドクローン検出法が挙げられるが，両者とも効果的な検索を行うことができるク
エリ（検索質問）を与えることは難しい．キーワード検索を用いる場合，修正を
要するコード片から抽出したキーワードを grep[26]などのツールに与えることで，
キーワードを含むコード片を列挙する．しかし，対象ソフトウェアを十分に理解
した開発者でなければ，適切なキーワードを抽出することが困難である（問題点
1）．その要因の 1つとして，grep等のツールは文字列が完全に一致するコード片
のみを出力するため，わずかに異なる文字列を含むコード片であっても検索結果
に含めることはできないことが挙げられる．一方，コードクローン検出法を用い
る場合，コードクローン検出ツールを用いて修正を要するコード片とトークン列
が等価なコード片を列挙する [30]．しかし，トークン列に些細な差異（例外処理の
有無など）があるコード片を列挙することはできない（問題点 2）．
本研究では，容易にクエリを与えることができ，かつクエリと些細な差異があ
る部分であっても提示できる手法を提案する．提案する手法は，コード片をクエリ
として与えると，識別子の類似性に基づいて対象ソースコードから類似関数（ク

41

エリとして与えられたコード片の類似コード片を 1つ以上含む関数）を検索する．
具体的には，まず自然言語処理の分野で提案されているDaganらの手法 [19]を用
いて，語（識別子を分割・正規化した後の文字列）の類義語を特定する（3.3.2節
参照）．次に，入力コード片（クエリとして与えられたコード片）に含まれる全て
の語と一致する，もしくは類義語である語を含む関数を検出し，類似関数として
提示する．
提案手法は，以下の 3つの特徴を持っている．

• 修正を要するコード片を入力コード片として与えるのみで検索を行うことが
できる．問題点 1で述べたように，grepを用いる場合，適切なキーワードを
コード片から抽出する必要がある．

• 入力コード片と類似した処理を表す関数の一部に異なる識別子が含まれてい
たとしても，類義語を特定することで類似関数として提示できる可能性があ
る．問題点 1の要因の 1つとして挙げたように，grepを用いると完全に一致
する文字列を含む部分のみが出力される．

• コード片が含む識別子の類似性を判定するため，トークン列に些細な差異
（例外処理の有無など）がある関数であっても類似関数として提示できる可
能性がある．問題点 2で述べたように，コードクローン検出法はこのような
関数を検出できない．

提案手法を用いて，開発者が類似関数を検索し，確認する手順を以下に示す．

1. 対象ソースコード中から入力コード片を抽出する．

2. 類義語の特定に用いる閾値を提案手法に入力する．提案手法は，入力された
閾値より距離が小さい語同士を類義語とする（詳しくは，3.3.2節参照）．

3. 提案手法に入力コード片を与えることで，類似関数を検索する．

4. 検索結果に含まれた関数が多すぎる，もしくは少なすぎる場合は (2)に戻り，
閾値を再入力する．関数が多すぎる場合には閾値を小さくし，少なすぎる場
合には閾値を大きくする．

5. 検索結果に含まれた関数を一つ一つ確認する．

適用実験では，類似した欠陥を含む関数の検索に対する提案手法の有効性を確
認した．具体的には，類似した欠陥（バッファオーバーフローエラーや型キャスト
の欠如）を複数含むソースコードを対象として，欠陥を含むコード片のうちの１
つを入力コード片として提案手法に与えたときに，類似した他の欠陥が提示され
るかどうか確認した．その結果，提案手法は欠陥を含むコード片を 1つ入力コー
ドとして与えるだけで，類似した欠陥のうちの多くを提示できることが確認でき

42

一致または類似した要素を含むソースファイルA ソースファイルBコード片CF1 コード片CF2コード片CF3

修正の検討が必要修正 一致または類似した要素を含むソースファイルA ソースファイルBコード片CF1 コード片CF2コード片CF3

修正の検討が必要修正

図 3.1: 類似コード片

た．また，grepやコードクローン検出ツール CCFinder[39]を用いて同様の実験を
行い提案手法の実験結果と比較することで，それぞれの検索結果が持つ特徴を確
認した．
以降，3.2節では提案手法を説明するための準備として，類似コード片検索につ
いて述べ，3.3節では提案手法である識別子の類似性に基づく類似コード片検索法
について述べる．3.4節では類似した欠陥を含むコード片の検索に提案手法を適用
した結果について述べ，3.5節では 3.4節で述べた結果を踏まえ考察を行う．3.6節
では関連する手法を提案している研究について議論し，最後に 3.7節でまとめと今
後の課題について述べる．

3.2 類似コード片検索
本稿では，類似コード片検索を “ソースコード中から，クエリ（検索質問）とし
て与えられたコード片と一致もしくは類似した要素（識別子や構文など）を含む
コード片を提示すること”と定義する．コード片は 5項組 (ソースファイルを一意
に識別できる番号, 開始行, 開始桁, 終了行, 終了桁)で表現する．なお，“コード
片 CF と一致もしくは類似した要素を含むコード片”を単にコード片 CF の類似
コード片と呼ぶ．また，“コード片CF の類似コード片を 1つ以上含む関数”を単
にコード片CF の類似関数と呼ぶ．
図 3.1は，修正を要するコード片CF1と，同様の修正を要する類似コード片CF2，

CF3を表している．コード片CF1に含まれる情報を基にクエリを作成し，類似コー
ド片検索を実現したシステムに与えると，その類似コード片CF2，CF3を提示する．
図 3.2の 2つのコード片は，日本語入力システム “かんな”[71]バージョン 3.6の
ソースコードに含まれていた類似コード片である．これらコード片は，共にバッ
ファオーバーフローエラーを含んでいる．具体的には，各コード片の 3～5行目が
バッファからの読み込み処理を表しており，これら処理中にバッファオーバーフ
ローエラーを引き起こす可能性がある1．そのため，一方のコード片を基にクエリ

1“かんな”バージョン 3.6p1では，これら欠陥は修正されていた．図 3.3は，図 3.2(a)の欠陥修

43

ir_debug(Dmsg(10, "ProcWideReq7 start!!¥n"));

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.yomilen =(short)S2TOS(buf);

バッファからの読み込み処理
(a) 欠陥を含むコード片

ir_debug(Dmsg(10, "ProcWideReq14 start!!¥n"));

buf += HEADER_SIZE; Request.type14.mode = L4TOL(buf);
buf += SIZEOFINT; Request.type14.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type14.yomi = (Ushort *)buf;

バッファからの読み込み処理
ir_debug(Dmsg(10, "ProcWideReq14 start!!¥n"));

buf += HEADER_SIZE; Request.type14.mode = L4TOL(buf);
buf += SIZEOFINT; Request.type14.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type14.yomi = (Ushort *)buf;

バッファからの読み込み処理
(b) 同様の欠陥を含むコード片

図 3.2: 類似コード片間の差異

ir_debug(Dmsg(10, "ProcWideReq7 start!!¥n"));

if (Request.type7.datalen != SIZEOFSHORT * 3)
return(-1);

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.yomilen = (short)S2TOS(buf);

バッファからの読み込み処理バッファオーバーフローを検知ir_debug(Dmsg(10, "ProcWideReq7 start!!¥n"));

if (Request.type7.datalen != SIZEOFSHORT * 3)
return(-1);

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);
buf += SIZEOFSHORT; Request.type7.yomilen = (short)S2TOS(buf);

バッファからの読み込み処理バッファオーバーフローを検知
図 3.3: 図 3.2(a)のコード片に対する修正

を作成し類似コード片検索を行ったなら，もう一方のコード片が検索結果に含ま
れることが望ましい．

3.2.1 grepを用いた類似コード片検索

一般の開発者は，grep[26]を用いて類似コード片検索を行うと考えられる．開発
者が grepを用いて修正を要するコード片の類似コード片を検索する手順を以下に
示す．

1. 修正に関連すると思われるキーワード（行，式，識別子など）を抽出する．

2. そのキーワードを引数として grepを実行する（図 3.4）．

3. grepの出力結果を基に，キーワードを含むコード片を特定する．

grepを用いた方法の問題点は，(1)で適切なキーワードを抽出し検索を行わなけ
れば，効果的な検索を行うことができないことである．例えば，文全体，もしく

正した後のコード片である．3，4行目がバッファオーバーフローを検出する部分である．

44

grep -nr S2TOS *

wconvert.c:2227: req->datalen = requiredsize = S2TOS(p);
wconvert.c:2319: buf += HEADER_SIZE; Request.type2.context = S2TOS(buf);
wconvert.c:2331: buf += HEADER_SIZE; Request.type3.context = S2TOS(buf);・・・

図 3.4: grepを用いた類似コード片検索

は単一の識別子をキーワードとして抽出し検索を行った場合，それぞれ以下の結
果になると考えられる．

文全体をキーワードに指定した場合 文字列が完全に一致するコード片のみが出力
され，識別子や構文に些細な表現上の差異があったコード片を検索結果に含
めることはできない．

単一の識別子をキーワードに指定した場合 大量のコード片が提示されることが多
く，検索結果の確認に大きな労力が必要となる可能性が高い．

図3.2を用いて説明すると，文全体（例えば，図3.2(a)に含まれるRequest.type7.yomilen

= (short)S2TOS(buf)）をキーワードに指定し検索を行ったとしても，図 3.2(b)の
いずれの部分も提示されない．また，コード片間に差異があることを考慮し単一
の識別子（例えば buf）を指定すると，欠陥を含まないコード片が大量に提示され
やすい．

grepは，キーワード検索に加えて正規表現を用いたパターン検索を行うことが
できる．しかし，grepの正規表現と対象ソフトウェアの両方を十分に理解した開
発者でなければ，正規表現を用いたパターンを適切に指定することは難しい．

3.2.2 CCFinderを用いた類似コード片検索

CCFinder[39]等のコードクローン検出ツールを利用して，修正を要するコード片
とトークン列が等価なコード片を列挙する方法 [30]も考えられる．しかし，この
方法では，構文がわずかに異なるなど些細な差異があるコード片を列挙すること
はできない．
例えば，図 3.2(a)の最終行の右辺は (short)S2TOS(buf)であるが，図 3.2(b)の最
終行の右辺は (Ushort *)bufであり，字句解析によって得られるトークン列上に差
異が存在する．そのため，CCFinderを用いて，一方のコード片とトークン列が等価
なコード片を検出したとしても，もう一方のコード片を検出することはできない．

45

入力コード片（クエリ） 提案手法
wt1[0] wt1[nt1]wt1[1]

wt2[0] wt2[nt2]wt2[1]

wt2[0] wt2[nt2]wt2[1]

wi[ni]wi[0] wi[1] 照合 類似モジュールの集合各モジュールに含まれる語の列Li

Lt1

Lt2

Ltn

語の抽出
語の抽出

対象ソースコード
入力コード片に含まれる語の列

類義語の特定 類義語情報
入力コード片（クエリ） 提案手法

wt1[0] wt1[nt1]wt1[1]wt1[0] wt1[nt1]wt1[1]

wt2[0] wt2[nt2]wt2[1]wt2[0] wt2[nt2]wt2[1]

wt2[0] wt2[nt2]wt2[1]wt2[0] wt2[nt2]wt2[1]

wi[ni]wi[0] wi[1]wi[0] wi[1] 照合 類似モジュールの集合各モジュールに含まれる語の列Li

Lt1

Lt2

Ltn

語の抽出
語の抽出

対象ソースコード
入力コード片に含まれる語の列

類義語の特定 類義語情報
図 3.5: 提案手法の概要

3.3 提案手法
本稿では，入力コード片を与えると，識別子の類似性に基づいて対象ソースコー
ドから類似関数を検索する手法を提案する．この手法を用いる開発者は，入力コー
ド片を与えるのみで類似関数を検索できるため，キーワードを指定する必要がない．
提案手法の概要を図 3.5に示す．提案手法は，以下に示す手順からなる．

手順 1（語の抽出）対象ソースコードの各関数が含む語（識別子を分割・正規化し
た後の文字列）を抽出

手順 2（類義語の特定）対象ソースコードが含む語の共起関係に基づいて類義語
を特定

手順 3（入力コード片との照合）入力コード片が含む全ての語と一致する，もしく
は類義語である語を含む関数を類似関数として提示

以降，手順 1，2，3について，それぞれ詳述する．

3.3.1 手順1（語の抽出）

対象ソースコード中の各関数が含む識別子を抽出し，分割・正規化2を行う．本
稿では，分割・正規化後の文字列を語と呼ぶ．その後，各関数が含む語の出現回
数を表す行列を作成する．
図 3.6は，語の出現回数を表す行列の例である．この行列は，関数m0，m1，m2

における語wa, wb, wc, wd, weの出現回数を表している．以降，この例を用いて説
明する．

2行った分割・正規化は，アンダースコアの位置での分割（例えば，add hostを addと hostに
分割）や接尾数字の削除（例えば，type7の 7を削除），キャメルケースに従った識別子を大文字
から始まる語に分割（例えば，addHostを addと Hostに分割）の全 3種類である．これらの分割・
正規化を行う理由は，分割後の語や接尾数字の削除が行われた語を含む関数を類似関数として提示
することで，検索性能を向上させるためである．

46


wa wb wc wd we

m0 0 2 1 0 1

m1 1 0 2 3 0

m2 0 0 2 0 2


図 3.6: 語の出現回数を表す行列の例

3.3.2 手順2（類義語の特定）

ソースコード中に含まれる語を要素とする集合をクラスタリング（部分集合に
分割）し，その結果 1つのクラスタ（部分集合）に含まれた語を類義語とする3．本
稿では，ソースコードから類義語を特定するとは，上述のようにソースコード中
に含まれる語を要素とする集合をクラスタリングすることを言う．また，2つの語
が類義語として特定されるとは，クラスタリングした結果それら語が同一のクラ
スタに含まれることを言う．
自然文書中に含まれる単語を対象にクラスタリングを行う基準 [73]を応用し，
ソースコード中に含まれる語を対象にするクラスタリングとして以下の 2つが考
えられる．

(1)語の共起性 語wxと語wyが頻繁に共起（同一関数など近い位置で出現）して
いるかどうかを基準とする．もし，頻繁に共起しているなら，同一クラスタ
に含める4．

(2)共起している語の類似性 語wxと共起している語の集合が，語wyと共起して
いる語の集合と類似しているかどうかを基準とする．もし，それら集合の類
似性が高いなら，語wxと語wyを同一クラスタに含める5．

提案手法では，基準 (2)“共起している語の類似性”の計測モデルの１つであるDagan

らのモデル [19]に基づくクラスタリングを行う．基準 (1)ではなく基準 (2)の特定
法を採用した理由は，自然文書を対象とした実験 [19]において，言い換えを行っ
ている単語などの類似した働きをする単語を特定しており，ソースコード中にお
いても類似した概念名（例：入力データサイズと出力データサイズ）の全体また
は一部を表す語が存在するため，これらを類義語として特定できると考えたから

3語集合 S は独立した部分集合 S0, S1, . . . , Sn(S =
n∪

i=0

Si かつ任意の Si, Sj(0 ≤ i ≤ n, 0 ≤ j ≤

n, i 6= j) について Si ∩ Sj = φ)に分割される．
4自然文書に含まれる類義語を特定する場合，この基準でクラスタリングを行うとクラスタ全体

として 1つの概念を表すことが多い．例えば，“doctor”，“nurse”，“hospital”が 1つのクラスタ
になる [60].

5自然文書に含まれる類義語を特定する場合，この基準でクラスタリングを行うと，類似した働
きをする単語（例えば，言い換えを行っている単語）が同一のクラスタに含まれることが多い．例
えば，“guy”と “kid”は共起している単語の類似性が高いと判定されている [19]．

47



wa wb wc wd we

wa − 0 1 1 0

wb 0 − 1 0 1

wc 1 1 − 1 2

wd 1 0 1 − 0

we 0 1 2 0 −


(a) 図 3.6 を基に作成した共起回数を
表す行列

(wa wb wc wd we

wa − 0 1 1 0

wb 0 − 1 0 1

)
(b) 語 wa と wb の行（図 3.7(a)から
抽出）

図 3.7: 類義語の特定に用いる行列

である．また，ソースコードにおいて，ある語と共起している語の集合と，その
類義語（その語と類似した概念名を表す語）と共起する語の集合は，同一の関数
名や同名の変数名を表す語を多く含み，類似しているのではないかと考えた．前
述の通り，2つの語の間で，共起する語の集合が類似していれば，基準 (2)の特定
法でそれらを類義語と特定することができる．
なお，本稿では，2つの語が共起しているとは，それら語が同一関数内で出現し
ていることを言う．また，2つの語がn回共起しているとは，それら語が n個の関
数内で共起していることを言う．

Daganらのモデルに基づいてクラスタリングを行う手順は，以下の (A)から (C)

である．

(A) 語の共起回数を表す行列を作成 3.3.1節の手順 1で作成した語の出現回数を
表す行列（図 3.6）を基に，語の共起回数を表す共起回数を表す行列を作成
する．共起回数を表す行列は，語の数をN とすると，N × N の対称行列で
表される．共起回数を表す行列の要素 (wx, wy)は，語wxと語wyの共起（両
者が 1回以上出現）する関数の数を表す．なお，対角成分は用いないため，
記号 “−”を置く．図 3.7(a)は，図 3.6を基に作成した 5 × 5の共起回数を表
す行列である．この共起回数を表す行列では，語wcと語weは 2回共起して
いることを表している．

(B) 語の距離を算出 2つの語の距離を，それらと共起している語の類似性に基づ
いて算出する．図 3.7(b)は，図 3.7(a)から語waとwbの行を抽出した行列で
ある．太字で表す要素が，語 waおよび語 wbの他の語（wc，wd，we）との
共起回数を表している．語waと語wc，wd，weの共起回数の分布 [1, 1, 0]と，

48

語wbと語wc，wd，weの共起回数の分布 [1, 0, 1]の距離を算出し，語waと語
wbの距離とする．2つの分布の距離は，確率分布間の差異を表す尺度である
Kullback-Leibler divergence[44]や Jensen-Shannon divergence[49]を用いて算出
することができる．提案手法では，対称性を持つ Jensen-Shannon divergence

を用いる．対称性のある Jensen-Shannon divergenceを用いる理由は，単語間
の距離に対称性を持たせることで，自然言語と同様に類義語であるという関
係に対称性を持たせるためである6．また，提案手法を用いる開発者が，検
索結果を理解するためには語間の関係に対称性がある方が容易に理解できる
と考えられる．例えば，語間の関係に対称性があるなら，単語Aが単語Bの
類義語であることを提示するだけで，開発者は単語 Bが単語 Aの類義語で
あることがわかるが，対称性がない場合，開発者は単語 Bが単語 Aの類義
語であることを確認する必要がある．

(C) クラスタリング (B)で求めた距離に基づいて，語のクラスタリングを行う．
クラスタリングには様々な方法があるが，提案手法では，全ての語が独立し
たクラスタという状態から始めて，最も類似度の高いクラスタから順次結合
していく方式を採用する．この方式では，クラスタ数が 1になるか，もしく
は任意のクラスタ間の距離が閾値以上になるまで結合を繰り返す．クラスタ
間の類似度は群平均法（平均距離法）[68][70]を用いて求める．群平均法は，
2つのクラスタに属する要素間の距離の平均を求め，それらクラスタ間の類
似度とする方法である．

3.3.3 手順3（入力コード片との照合）

入力されたコード片と対象ソースコード中の各関数を照合することで，類似関
数を提示する．本節では，提案手法が検出する語の対応関係および類似関数につ
いて述べる．

語の対応関係 2つの語Wx,Wyが与えられたとき，語Wyが語Wxと一致する，も
しくは語Wyが語Wxの類義語であるなら，語Wxは語Wyと対応関係を持
つとする．

類似関数 入力されたコード片CFiが含む n個の語からなる列
Li =

[
Wi0,Wi1, . . . , Win−1,Win

]
と比較対象の関数Mtが含むm個の語から

なる列Lt =
[
It0, It1, . . . , Itm−1, Itm

]
が与えられたとき，列Liが含む n個の

語Wi0,Wi1, . . . , Win−1,Winのそれぞれと対応関係を持つ語がすべて列 Lt

中に存在するなら，関数Mtをコード片CFiの類似関数とする．

6自然言語において，上位語，下位語のような詳細な単語間の関係には対称性はないが，類義語
であるかどうかという関係は一般的に対称性が存在する．

49

対象モジュールに含まれる語の列 nodenode alloc add

入力コード片に含まれる語の列 host alloc add host

ただし，対応関係（矢印）は，hostとnodeが類義語の場合を表している対象モジュールに含まれる語の列 nodenode alloc add

入力コード片に含まれる語の列 host alloc add host

ただし，対応関係（矢印）は，hostとnodeが類義語の場合を表している
図 3.8: 入力コード片と対象関数の照合

図 3.8は，入力コード片の語の列
[
host, alloc, add, host

]
と対象関数の語の列[

node, . . . , alloc, add, . . . , node
]
の照合を表している．図中の矢印は，語の対応関

係を表している．語 hostと語 nodeが類義語として特定されている場合，入力コー
ド片中の全ての語が対象関数中のいずれかの語と対応関係を持つ．よって，対象
関数は類似関数として検出される．

3.4 適用実験
提案手法の有効性を確認するため，提案手法を実装し適用実験を行った．適用実
験の目的は，保守対象のソースコード中に欠陥が見つかった際に，同種の欠陥を
含む関数を探す作業に対して有効な支援ができているか確認することである．こ
のために，提案手法に欠陥コード片（欠陥を含むコード片）を入力コード片とし
て与え，同種の欠陥を含む関数を検索する実験を行った．加えて，grep[26]やコー
ドクローン検出ツール CCFinder[39]についても同様の実験を行った．
適用対象には，オープンソースソフトウェア “かんな”[71]のバージョン 3.6と
我々の研究グループで開発している SPARS-J[74]を選んだ．適用対象のソフトウェ
アの構成を表 3.1に示す．なお，これらソフトウェアのソースコードは，C言語で
開発されている．かんなは，クライアント・サーバ型の日本語入力システムであ
る．かんなのバージョン 3.6において，サーバ機能を実装した serverディレクトリ
以下に 19個のバッファーオーバーフローエラー（図 3.2，図 3.11）が含まれてい
た．それら 19個の欠陥は，18関数に含まれていた．適用実験では，サーバ機能に
含まれるこれら欠陥を探す作業を支援できるか確認するため，serverディレクトリ
以下の*.cファイルを対象とした．SPARS-Jは，ソフトウェア部品検索システムで
ある．SPARS-Jのあるバージョンにおいて，計 75個の型キャスト忘れ7がシステム
全体に渡って存在した．それら 75個の欠陥は，50関数（関数）に含まれていた．
適用実験では，SPARS-J全体に含まれるこれら欠陥を探す作業を支援できるか確

7ソフトウェア部品を登録するデータベースのデータ表現に合わせるための型キャストが欠如し
ていた．

50

認するため，全ての*.cファイルを対象とした．

3.4.1 提案手法の適用実験

本節で述べる実験の目的は，以下の 2つである．

目的 1 語のクラスタリング（3.3.2節参照）で用いる閾値を変化させることで，類
義語として扱う語を増やしたときの検索結果の変化を確認する

目的 2 入力コード片を変化させたときの検索結果の変化を確認する

目的 1に用いる閾値 thrは，0以上 1以下の値をとる rが与えられたときに，以
下に手順で求めることができる．

1. 対象ソフトウェアに含まれる任意の語の距離を求め，その最大値を dmaxと
する．

2. 最大値と rの積を thrとする．

なお，実験では，6つの閾値 th0.0，th0.1, . . . , th0.5を設定した．
目的 2のために，対象ソースコード中の各欠陥を含むクエリを作成し検索を行っ
た．かんなの場合 19個，SPARS-Jの場合 75個の入力コード片を作成し，各入力
コード片を1つずつ与え検索を行った．かんなに与えた各入力コード片は，バッファ
からの読み込み処理（図 3.2参照）を行っている連続する行から構成され，SPARS-J

の場合は，型キャスト忘れを含む 1行もしくは連続する行から構成される．
検索結果を評価するために，検索システムの性能評価に用いられる適合率，再
現率，F値を計測した [69]．本稿で用いる適合率 Precision，再現率Recall，F値
F は，Dを欠陥関数の集合，Rを検索された関数の集合とすると，以下のように
表される．

Precision =
|D ∩ R|
|R|

(3.1)

Recall =
|D ∩ R|
|D|

(3.2)

F =
2 · Precision · Recall

Precision + Recall
(3.3)

表 3.1: 適用対象のソフトウェア

名前 総行数 関数の数
欠陥

欠陥数
関数の数

かんな 7,613 203 18 19

SPARS-J 35,744 859 50 75

51

適合率は検索結果の正確性（検索ノイズの少なさ）を表しており，再現率は検
索結果の完全性（検索漏れの少なさ）を表す．欠陥関数を探す作業を支援する手
法には，検索漏れの少なさを表す再現率が高いことに加え，適合率が高いことが
求められる．その理由は，ソフトウェア保守の現場では，全関数を網羅的に検査
するための資源を獲得できるとは限らないため，再現率が高いだけでなく適合率
が高いことも求められるからである．F値は，適合率と再現率の調和平均である．
F値は，検索性能を 1つのスカラ値として表現でき，また適合率あるいは再現率の
一方だけが高い極端な場合も正当に評価することができる [72]．
図 3.9，図 3.10は，閾値を th0.0から th0.5まで変化させたときの適合率・再現率
の変化を表すグラフである．それぞれのグラフにおいて，閾値ごとに 1入力コー
ド片あたりの平均値と，全クエリ中の最大値・最小値をプロットしている．図 3.9，
図 3.10から，閾値 thrを増加させると，適合率は低下し，再現率は上昇する傾向
にあることがわかる．
閾値が th0.0の場合は検出漏れが多かった．また，かんなの場合は閾値を th0.4や

th0.5に設定すると，対象ソースコードに含まれる全てもしくはほとんどの関数を
検出し，SPARS-Jの場合は th0.3や th0.4，th0.5に設定すると同様に全てもしくはほ
とんどの関数を検出した．このような検索結果を提示しても欠陥関数の検査作業
を支援することはできない．よって，かんなや SPARS-Jが対象の場合に有効な支
援をできる可能性がある閾値は th0.1および th0.2であると言える．
表 3.3は，Cannaを対象として，閾値を th0.1もしくは th0.2に設定したときのク
ラスタリング結果を表している．クラスタ数が多く，また膨大な数の単語を含む
クラスタが多く存在したため，一部クラスタに含まれた一部の単語のみを抜粋し
ている．閾値を th0.1から th0.2に変化させると，クラスタ 1-Aと 1-Fが結合されク
ラスタ 2-Aになり，クラスタ 1-B，1-C，1-D，1-Eが結合されクラスタ 2-Bになっ
た．クラスタ 1-Gについてはいずれのクラスタとも結合しなかった（表 3.3(b)の
クラスタ 2-C）．
語のクラスタリング結果が検索結果にどのように影響したかを考察するため，入
力コード片を 3つ選び，閾値を th0.1，th0.2に設定したときの検索結果を示す．な
お，これら閾値を選んだ理由は，提案手法が有効に機能する入力コード片と機能
しない低い入力コード片の両者が存在するため，提案手法の有効性が高い場合と
低い場合を比較・議論しやすいからである（他の閾値を選ぶと，提案手法が有効
に機能する入力コード片が非常に少ない）．検索結果に関して，以下に示す特徴が
ある 3つのコード片CFA，CFB，CFC（図 3.11）を選んだ．

コード片CFA 閾値を th0.1から th0.2に変化させると，適合率が大きく低下し，か
つ再現率が上昇したコード片

コード片CFB 閾値を th0.1から th0.2に変化させると，適合率はほとんど変化しな
かったが，再現率が上昇したコード片

52

00 .10 .20 .30 .40 .50 .60 .70 .80 .91

t h 0 .0 t h 0 .1 t h 0 .2 t h 0 .3 t h 0 .4 t h 0 .5閾 値平 均 値 最 大 値 最 小 値
(a) かんなの適合率

00 .10 .20 .30 .40 .50 .60 .70 .80 .91

t h 0 .0 t h 0 .1 t h 0 .2 t h 0 .3 t h 0 .4 t h 0 .5閾 値平 均 値 最 大 値 最 小 値
(b) かんなの再現率

図 3.9: かんなの実験結果

53

00 .10 .20 .30 .40 .50 .60 .70 .80 .91

t h 0 .0 t h 0 .1 t h 0 .2 t h 0 .3 t h 0 .4 t h 0 .5閾 値平 均 値 最 大 値 最 小 値
(a) SPARS-Jの適合率

00 .10 .20 .30 .40 .50 .60 .70 .80 .91

t h 0 .0 t h 0 .1 t h 0 .2 t h 0 .3 t h 0 .4 t h 0 . 5閾 値平 均 値 最 大 値 最 小 値
(b) SPARS-Jの再現率

図 3.10: SPARS-Jの実験結果

54

buf += HEADER_SIZE; Request.type7.context = S2TOS(buf);

buf += SIZEOFSHORT; Request.type7.number = S2TOS(buf);

buf += SIZEOFSHORT; Request.type7.yomilen = (short)S2TOS(buf);

(a) コード片 CFA

buf += SIZEOFINT; Request.type10.kouho = (short *)buf; /* short? */

for (i = 0; i < Request.type10.number; i++) {

Request.type10.kouho[i] = S2TOS(buf); buf += SIZEOFSHORT;

ir_debug(Dmsg(10, "req->kouho =%d\n", Request.type10.kouho[i]));

}
(b) コード片 CFB

buf += HEADER_SIZE; Request.type13.context = S2TOS(buf);

len = SIZEOFSHORT ;

buf += len;

Request.type13.dicname = (char *)buf;

len = strlen((char *)buf) + 1;

buf += len;

Request.type13.yomi = (Ushort *)buf;

len = ((int)Request.type13.datalen - len - SIZEOFSHORT * 4)

/ SIZEOFSHORT;

for(data = Request.type13.yomi, i = 0; i < len; i++, data++)

*data = ntohs(*data);

buf += (ushortstrlen((Ushort *)buf) + 1) * SIZEOFSHORT;

Request.type13.yomilen = S2TOS(buf);

buf += SIZEOFSHORT; Request.type13.kouhosize = S2TOS(buf);

buf += SIZEOFSHORT; Request.type13.hinshisize = S2TOS(buf);

(c) コード片 CFC

図 3.11: コード片CFA，CFB，CFC

コード片CFC 閾値を th0.1から th0.2に変化させると，適合率は低下したが，再現
率は変化しなかったコード片

表 3.2(a)に，クラスタリングの閾値を th0.1もしくは th0.2に設定した提案手法に
対して，コード片CFA，CFB，CFCを入力したときの適合率・再現率・F値を示
す．最も F値が良かった場合は，th0.1に設定したときのコード片 CFAであった．
次に良かった場合は，th0.2に設定したときのコード片CFAとCFBであり，同じ
値（0.31）であった（なお，これらは，全く同じ検索結果であった）．以降，th0.1

に設定したときのコード片 CFB，th0.1に設定したときのコード片 CFC，th0.2に

55

表 3.2: 各コード片の検索結果
(a) 提案手法

提案手法 (thr = 0.1) 提案手法 (thr = 0.2)

適合率 再現率 F値 適合率 再現率 F値

CFA 0.50 0.72 0.59 0.18 1.00 0.31

CFB 0.20 0.33 0.25 0.18 1.00 0.31

CFC 1.00 0.06 0.11 0.33 0.06 0.10

(b) grep，CCFinder

grep (キーワード: buf) CCFinder

適合率 再現率 F値 適合率 再現率 F値
CFA 0.19 1.00 0.32 1.00 0.06 0.11

CFB 0.19 1.00 0.32 1.00 0.06 0.11

CFC 0.19 1.00 0.32 1.00 0.06 0.11

設定したときのコード片CFC の順であった．
表 3.4に，各コード片に含まれる語が属したクラスタを示す．まず，閾値が th0.1

の場合について述べる．コード片 CFAと CFBの検索結果は表 3.2(a)で示したと
おり大きく異なっていたが，対応するクラスタは一部のみ（CFAにはクラスタ 1-C

が対応していたが，CFBにはクラスタ 1-Eが対応）が異なっていた．また，検索
結果が悪かったコード片CFCには，他のコード片と比べて多くのクラスタが対応
した．
閾値を th0.2に設定すると，コード片CFAとCFBには同じクラスタ群（クラス
タ 2-Aおよび 2-B）が対応したため，全く同じ検索結果が得られた．閾値が th0.1

の場合に異なるクラスタであったクラスタ 1-Cと 1-Eは，クラスタ 2-Bに包含さ
れていた．コード片CFCについては，クラスタ 2-Aおよび 2-Bに加えて，クラス
タ 1-Gと同一の語からなるクラスタ 2-Cも対応した．その結果，閾値を th0.1に設
定したときと同様に，コード片CFC を含む関数のみが検索結果に含まれた．

3.4.2 grepやCCFinderとの比較実験

提案手法と grep，CCFinderの有効性を比較するために実験を行った．grepを用い
た実験では，コード片CFA，CFB，CFCから抽出したキーワードを grepに与える
ことで，キーワードを含む関数を検出し，類似関数の検索を行った．また，CCFinder

を用いた実験では，各コード片とコードクローンになっているコード片を含む関
数を検出することで，類似関数の検索を行った．
表 3.2(b)は，コード片CFA，CFB，CFC を入力して，grepや CCFinderを用い

56

表 3.3: 各クラスタに属していた語（抜粋）
(a) thr = 0.1

語数 コード片CFA，CFB，CFC のいずれかに含まれた語

クラスタ 1-A 7
buf, HEADER, S2TOS, SIZE, SIZEOFINT

SIZEOFSHORT (6語)

クラスタ 1-B 43
context, data, debug, dicname, ir, kouho, number,

type, Request (9語)

クラスタ 1-C 5 i, len (2語)

クラスタ 1-D 2 strlen (1語)

クラスタ 1-E 12 datalen, ushortstrlen, yomi, yomilen (4語)

クラスタ 1-F 1 ntohs (1語)

クラスタ 1-G 4 hinshisize, kouhosize (2語)

(b) thr = 0.2

語数 コード片CFA，CFB，CFC のいずれかに含まれた語

クラスタ 2-A 77
buf, ntohs, HEADER, S2TOS, SIZE, SIZEOFINT,

SIZEOFSHORT (7語)

クラスタ 2-B 126

context, data, datalen, debug, dicname, i, ir, kouho,

len, number, strlen, type, ushortstrlen, yomi, yomilen,

Dmsg, Request, Ushort (18語)

クラスタ 2-C 4 hinshisize, kouhosize (2語)

表 3.4: コード片に含まれる語に属するクラスタ
(a) thr = 0.1

対応するクラスタ
コード片CFA クラスタ 1-A，クラスタ 1-B，クラスタ 1-E

コード片CFB クラスタ 1-A，クラスタ 1-B，クラスタ 1-C

コード片CFC

クラスタ 1-A，クラスタ 1-B，クラスタ 1-C，クラスタ 1-D，
クラスタ 1-E，クラスタ 1-F，クラスタ 1-G

(b) thr = 0.2

対応するクラスタ
コード片CFA クラスタ 2-A，クラスタ 2-B

コード片CFB クラスタ 2-A，クラスタ 2-B

コード片CFC クラスタ 2-A，クラスタ 2-B，クラスタ 2-C

57

た実験を行った結果である．grepの結果については，識別子 bufをキーワードとし
て指定した場合を代表例として掲載している．識別子 bufを代表例として選んだ
理由は，対象とする欠陥である bufが指すバッファのオーバーフローに最も関係が
深いため，一般の開発者が grepのキーワードに指定する可能性が最も高いと考え
られるからである（他のキーワードを指定した場合については，表 3.5に掲載）．
識別子 bufをキーワードとして指定した場合の grepは，再現率は 1.00であり非常
に高かったが，適合率は 0.19であり低かった．CCFinderについては，各コード片
を含む関数しか検索結果に含まれなかった．F値を基準に各検索結果の比較を行
うと，提案手法の閾値を th0.1に設定したときのコード片 CFAが最高値 (0.59)で
あった．次いで，grepと閾値を th0.2に設定したときのコード片CFA，CFBがほぼ
同じ値 (0.31～0.32)で並び，その次は閾値を th0.1に設定したときのコード片CFB

であった．その他の場合は，各コード片を含む関数しか検索結果に含まれず，F値
も低い値 (0.10～0.11)であった．
表 3.5は，bufおよびそれ以外のキーワードをコード片 CFA，CFB，CFC から
抽出し，grepに与えたときの検索結果を表している．いずれのコード片から抽出
したキーワードにおいても，キーワードにより結果が大きくばらついた．

3.5 考察

3.5.1 語のクラスタリングに用いる閾値について

閾値の増加に伴い再現率が増加していた．このことから，類義語の範囲を広げ
ることで，より多くのコード片を類似関数として検索結果に含めることができた
と考えられる．
語のクラスタリングに用いる閾値が th0.0の場合は検出漏れが多かった．また，
かんなの場合は閾値を th0.4や th0.5に設定すると，対象ソースコードに含まれる
全てもしくはほとんどの関数を検出し，SPARS-Jの場合は th0.3や th0.4，th0.5に
設定すると同様に全てもしくはほとんどの関数を検出した．このような検索結果
を提示しても欠陥関数の検査作業を支援することはできない．よって，かんなや
SPARS-Jが対象の場合に有効な支援をできる可能性がある閾値は th0.1および th0.2

であると言える．
以上のことから，かんなや SPARS-Jを対象とした場合，再現率を重視するなら
ば閾値を th0.2に設定し，逆に適合率を重視するならば閾値を th0.1に設定すると良
いと考えられる．3.4.1節で述べたように，ソフトウェア保守の現場では全ての関
数を網羅的に検査するための資源を獲得できるとは限らないため，適合率を重視
し，閾値を th0.1に設定する状況は十分に考えられる．
対象ソフトウェアによって有効な閾値が変化する可能性があるため，他のソフ
トウェアを対象とした実験を通して，多くのソフトウェアに有効な閾値の決定方
法を考案する必要がある．現状では，対象ソースコードに依存しない一般に有効

58

表 3.5: grepによる検索の結果
(a) コード片 CFA，CFB，CFC の全てに含まれる部分をキーワードとして
与えた場合

キーワード 検出行数 適合率 再現率 F値
buf 557 0.19 1.00 0.31

HEADER SIZE 46 0.67 1.00 0.80

Request 323 0.17 1.00 0.30

context 211 0.17 0.94 0.29

S2TOS 40 0.94 0.94 0.94

SIZEOFSHORT 87 0.53 0.89 0.67

buf += HEADER SIZE 18 1.00 1.00 1.00

buf += SIZEOFSHORT 30 1.00 0.89 0.94

(b) コード片 CFAにのみ含まれる部分をキーワードして与え
た場合

キーワード 検出行数 適合率 再現率 F値
type7 11 0.33 0.06 0.10

(c) コード片 CFB にのみ含まれる部分をキーワードして与え
た場合

キーワード 検出行数 適合率 再現率 F値
type10 17 0.25 0.06 0.10

kouho 48 0.25 0.06 0.09

ir debug 260 0.18 1.00 0.31

Dmsg 266 0.18 1.00 0.30

(d) コード片 CFC にのみ含まれる部分をキーワードして与え
た場合

キーワード 検出行数 適合率 再現率 F値
type13 21 0.50 0.06 0.10

len 398 0.10 0.56 0.17

dicname 148 0.09 0.22 0.13

strlen 70 0.07 0.17 0.10

yomi 129 0.19 0.28 0.23

59

な閾値の決定法を実現できていない．よって，有効な閾値を求めるために，何度
か検索を繰り返さなければならない場合が多いと考えられる．
多くの閾値において，最大値・平均値・最小値の大きな差があった．提案手法
の有効性を高めるためには，これら値の差を縮める必要があると考えられる．

3.5.2 語のクラスタリングについて

クラスタ 1-Aには，識別子 bufが表すバッファへのポインタに加算する定数の名
前（例：HEADER SIZE）や，bufの特定ビット列を取得するためのマクロ名が含
まれていた．bufと他の語が同一関数中で共起することが多かったため，これらの
語の共起回数の分布が類似し，同一クラスタに含まれていたと考えられる．
クラスタ 1-B，1-Eには，構造体の要素を指定する語が含まれていた．構造体の
各要素を指定するためには，これらの語を同時に使用する必要があるため，共起
回数の分布が類似し，クラスタ 1-Bもしくはクラスタ 1-Eに含まれたと考えられ
る．なお，閾値を th0.2に設定すると，クラスタ 1-Bとクラスタ 1-Eは結合され，1

つのクラスタになった．
クラスタ 1-Cは，C言語を用いた開発において良く用いられる語を含んでいた．
これらの語は，比較的多くの関数に共通して用いられたため，共起回数の分布が
類似し，同一クラスタに含まれた．しかし，特定のプログラミング言語を用いた
開発において，良く用いられる語（例えば，iと len）が，類似した役割を担ってい
る場合は少ないと考えられる．よって，このような語をフィルタリングする方法
を検討する必要があると考えられる．
クラスタの中には，含まれる語の数が少ないものがあった（クラスタ 1-C，1-D，

1-F，1-G，2-C）．よって，全てのクラスタを含むコード片だけでなく，1つ以上
のクラスタを含むコード片を提示できる方法に改善する必要があると考えられる．
この方法を採用すると，提示する関数の数が多くなりすぎる可能性があるため，対
応関係の数に基づく順位付けを提示する関数に対して行い，上位の関数から順に
提示する必要があると考えられる．

3.5.3 grepとの比較について

F値を基準すると，閾値を th0.1に設定した提案手法にコード片CFAを与えた場
合が最も高い値であり，bufをキーワードとして grepに与えた場合よりも高い値で
あった．次いで，閾値を th0.1に設定した提案手法にコード片CFAもしくはCFB

を与えた場合の検索結果が高い F値であり，bufをキーワードとして grepに与え
た場合とほぼ同じ値であった．その他の場合は，grepの方が高い値であった．
提案手法が提示した検索結果の F値が，bufをキーワードとして grepに与えた
ときよりも低い値になった場合があった要因として，以下が考えられる．

60

(1) 多くの関数に出現する語からなるクラスタ コード片CFBは語 iを，コード片
CFC は語 i，lenを含んでおり，これらコード片は，いずれの閾値の場合も
コード片CFAよりF値が低かった．また，閾値を th0.1に設定したとき，語
i，lenは両者ともクラスタ 1-Cに属した．3.5.2節で述べたように，クラスタ
1-Cに含まれるような，C言語を用いた開発において良く用いられる語が類
似した役割を担っていることは少ないと考えられる．

(2) 語数の少ないクラスタ 再現率が低かったコード片 CFC に属する語は，他の
コード片に属する語に比べて，語数の少ないクラスタ（クラスタ 1-C，1-D，
1-F，1-G，2-C）に含まれていることが多かった．入力コード片が語数が少
ないクラスタをいくつか含むと，提案手法が提示する関数の数が大きく減り，
再現率が下がると考えられる．

これら要因の影響を受けなかったと考えられる閾値を th0.1に設定したコード片
CFA，および閾値を th0.2に設定したコード片 CFA，CFB については，提案手法
の結果は grepより高い F値であるか，もしくはほぼ同じ F値であった．これら要
因を受けない場合，提案手法は grepよりも高い，もしくは同等の有効性を持つ可
能性があると考えられる．これら要因の影響を低減させるためには，3.5.2節で述
べたように，多くの関数に出現する語のフィルタリングする手法や，全てのクラ
スタを含むコード片だけでなく 1つ以上のクラスタを含むコード片を提示できる
手法に改善する必要があると考えられる．
コード片CFBについては，閾値を th0.1に設定した場合は grepと比べて再現率・

F値が低かったが，閾値を th0.2に変化させると，再現率・F値が上昇し，grepと
同等の検索性能であった．これは，閾値を th0.1に設定したときに存在した少数の
語からなるクラスタ 1-C（5語）が，閾値を th0.2に変化させると他の複数のクラ
スタと結合し，多数の語からなるクラスタ 2-B（126語）が構成され，多くの関数
を提示するようになったためと考えられる．一方，コード片CFAについては，閾
値を th0.1に設定した場合に，既に grepと比べて適合率・F値が高かった．そのた
め，閾値を th0.2に変化させると，クラスタ 1-Eがクラスタ 1-Cなど他のクラスタ
結合し語数の多いクラスタ 2-Bを構成し，適合率が下がったと考えられる．これ
らのことから，以下のことが言える．

• 閾値を上昇させると，コード片間の検索結果の差異が小さくなる．

• 語数の少ないクラスタが原因で再現率が低い場合に閾値を上昇させると，そ
のクラスタと他のクラスタが結合し，適合率は下がるが再現率が大幅に上昇
する可能性がある．

• 既に検索結果が良い場合に閾値を上昇させると，入力コード片に対応するク
ラスタが他のクラスタと結合し，再現率は上昇するものの適合率が大幅に下
がる可能性がある．

61

grepの実験については，主に bufをキーワードとして与えた場合を取り上げた
が，表 3.5に示すとおり，キーワードにより結果が大きくばらついている．キー
ワードを適切に指定できる開発者であれば grepの有効性は高いと言えるが，逆に
キーワードを適切に指定できない開発者あれば，提案手法の方が有効性が高い場
合があると考えられる．

3.5.2節で述べたように，提案手法は対象ソースコードに依存しない一般に有効
な閾値の決定法を実現できていないため，有効な閾値を決めるための作業量が必
要となる．grepは，コード片からキーワードを抽出する必要がある代わりに，閾
値を設定する必要がないため，全体的な作業量では grepの方が少ない場合もあり
得ると考えられる．これらのことから，提案手法と grep等の各ツールについて全
体の作業量の比較実験を行う必要があると考えられる．
行単位で検出を行う grepの方がより詳細に欠陥を含むコード片の位置を提示で
きると考えられるが，grepを用いて検出した各行を確認することで検査を行うこ
とが難しい場合もある．具体的には，複数行からなるコード片や小規模の関数全
体が 1つの欠陥を表している場合に grepを用いると，これらコード片中や関数中
に含まれる数行を提示することが多く，提示された各行を確認しただけでは欠陥
の有無を確認することは難しい．

3.5.4 CCFinderとの比較について

本稿の適用実験では，トークン列から連続して一致する部分列を検出するCCFinder

を用いて，入力コード片のトークン列と連続して一致するトークン列を含む関数
を検出した．しかし，（入力コード片を含む関数を除く）全ての欠陥関数は連続し
て一致するトークン列を持たなかったため，検出されなかった．よって，コード
片CFA，CFB，CFCを入力コード片として与える場合は，トークン列でなく識別
子の類似性に基づいて類似関数を提示する提案手法の方が有効であると言える．
本来 CCFinderは，コードクローン検出ツールとして開発されているため，類似
コード片検索を行う多くの場合において有効性は低いと考えられる．しかし，対
象とする類似コード片によっては，CCFinderのように等価なトークン列を検索し
た方が有効な場合もあると考えられるため，提案手法と CCFinderを使い分ける必
要があると考えられる．提案手法と CCFinderの比較実験を更に行うことで，それ
ぞれが有効な類似コード片の性質を明らかにする必要がある．

3.6 関連研究
これまでに様々なコードクローン検出法が提案されており，その中にはCCFinder

等のトークン列の等価性に基づく検出法だけでなく，抽象構文木やプログラム依
存グラフの等価性に基づく検出法も提案されている [13, 37, 42, 24]．抽象構文木

62

の等価性に基づく検出法の中には，抽象構文木が完全一致しなくても，主要な構
文要素が一致していれば，コードクローンとして検出する手法も提案されている
[37]．また，プログラム依存グラフの等価性に基づく手法 [42]は，構文が等価でな
くてもプログラム依存グラフが等価であれば，コードクローンとして検出する．提
案手法は，識別子の類似性に基づいて類似コード片を検索するため，構文上やプ
ログラム依存グラフが異なるコード片であっても検索結果に含めることができる．
対象とする類似コード片によっては，上述のコードクローン検出法を用いて類似
コードを検索した方が有効な場合もあると考えられる．よって，提案手法とこれ
らコードクローン検出法の比較実験を行うことで，各手法が有効な類似コード片
の特徴を明らかにする必要がある．

Splint[21]等の lint系のツールや FindBugs[31]のように，ソースコード中から検
査すべき部分を検出するツールが数多く開発されている．これらツールの多くに
は，初期化されていない変数への参照や一度も参照されない変数を検出するアル
ゴリズムが実装されている．しかし，ドメインやアプリケーションに特化した欠
陥を検出する機能を追加するためには，ツールを拡張する必要がある．提案手法
は入力コード片を必要とする代わりに，対象ソースコードやそのドメインに特化
した欠陥であっても，欠陥を含むコード片を抽出し入力コード片として与えるだ
けで類似コード片を検索することができるため，ドメインやアプリケーションに
特化した欠陥を検出できる可能性がある．

Liらが提案する PR-Minerは，Frequent Itemset Miningアルゴリズムを用いて，
変数名や関数名の出現パターンを特定し，パターンに違反する変数名や関数名の
出現を欠陥候補として提示する [48]．PR-Minerによって，欠陥を含むコード片を
検出し，類義語の特定を行う提案手法を用いてそのコード片の類似コード片を検
索すると，新たな欠陥を検出できる可能性がある．また，Liらは，コピーアンド
ペーストにより作り込まれたコード片に対して一貫した識別子の修正が行われて
いるか判定し，一貫した修正が行われていないコード片を欠陥候補として検出す
る手法を提案している [47]．この手法についても，PR-Minerと同様に，欠陥を含
むコード片を検出し提案手法に入力すると新たな欠陥を検出できる可能性がある．
適用実験において，提案手法を用いて欠陥があるコード片の類似関数を検索す
ることで，欠陥関数を検出した．しかし，提案手法が行うことは飽くまで類似コー
ド片検索であるため，欠陥を含む検出が目的の場合は上述の欠陥検出ツールの出
力結果と照合し，絞り込みや順位付け（例えば，複数のツールが欠陥を検出した
コード片を上位に順位付け）を行う必要があると考えられる．

3.7 結論
本稿では，入力として与えたコード片に類似したコード片を検索する手法を提
案した．提案手法は，完全に一致する識別子を含むコード片を検出するだけでな
く，類義語を含むコード片を類似コード片として検出することができる．提案手法

63

を実装し，複数の類似した欠陥を持つソースコードに対して適用したところ，有
効な検索を行うためには類義語の特定に用いる閾値を適切に決める必要があるこ
とがわかった．更に，提案手法と grep，コードクローン検出ツール CCFinderにそ
れぞれ同じ入力コード片を与え類似コード片検索を行うことで，結果の比較を行っ
た．提案手法と grepを比較すると，提案手法が有効に働く入力コード片と grepが
有効に働く入力コード片がそれぞれ存在した．一方，CCFinderは（入力コード片
を含む関数を除く）欠陥関数を検出することはできなかったため，提案手法の方
が有効な検索を行えたと言える．
今後，検索性能を向上するために，入力コード片と対象コード片の照合方法を
改善（3.5.2節参照）したいと考えている．更に，現状の提案手法は構文情報を用
いていないため，構文情報を用いた検索を実現したいと考えている．具体的には，
特定した類義語を含む部分の構文が一致しているコード片のみを提示する手法に
改善する．有用性の調査として，他のソフトウェアに含まれる欠陥の検出や，同
時に機能拡張する必要のある関数の検出といった他の用途に提案手法を適用する
予定である．

64

第4章 むすび

4.1 まとめ
本論文では，リファクタリングや類似コード検索を行う上での，既存のコード
クローン検出ツールの問題点に着目し，その解決を試みた．
まず，コードクローン間の依存関係に基づくリファクタリング支援手法では，既
存のコードクローン検出ツールがクローンセット間の依存関係を検出しないため
に，クローンセットの集約が困難になる場合があるという問題点に取り組んだ．提
案手法は，クローンセット中に存在するメソッド呼び出し関係，およびメソッドと
変数の利用関係を解析することで，ソースコード中からチェーンドクローンセット
（同時に集約を検討すべきクローンセットの集合）を検出することで，クローンセッ
トの集約作業を支援する．更に，検出したチェーンドクローンセットを含むクラ
スからなる集合の継承関係から，適用可能なリファクタリングパターン（“Extract

Method”や，“Pull Up Method”，“Extract Superclass”）を提示する．適用実験で
は，オープンソースソフトウェアのソースコードに含まれているチェーンドクロー
ンセットの規模を調査した．その後，検出したそれらチェーンドクローンセット
に対して，提案手法が提示するリファクタリングパターンを適用した．その結果，
チェーンドクローンセットの規模がクローンセットと比べて大きいこと，および
チェーンドクローンセットのリファクタリングがクローンセット単位のリファク
タリングと比べて容易であることを確認できた．
次に，類義語の特定に基づく類似コード検索法では，既存のコードクローン検
出ツールがトークン列や構文上差異がある類似コード片を検出できないことが多
いという問題点に取り組んだ．本手法は，クエリとしてコード片を与えると，識
別子の類似性に基づいて対象ソースコードから類似関数（クエリとして与えられ
たコード片の類似コード片を含む関数）を検索する．具体的には，まず自然言語
処理の分野で提案されている類義語特定法を用いて，語（識別子を分割・正規化
した後の文字列）の類義語を特定する．次に，クエリとして与えられたコード片
に含まれる全ての語について，同一もしくは類義語である語を含む関数を検出し，
類似関数として提示する．提案手法を実装し，複数の類似した欠陥を持つソース
コードに対して適用したところ，有効な検索を行うためには類義語の特定に用い
る閾値を適切に決める必要があることが確認できた．更に，提案手法と grep，コー
ドクローン検出ツール CCFinderにそれぞれ同じ入力コード片を与え類似コード片
検索を行うことで，結果の比較を行った．提案手法と grepを比較すると，提案手

65

法が有効に働く入力コード片と grepが有効に働く入力コード片がそれぞれ存在す
ることが確認できた．一方，CCFinderは（入力コード片を含む関数を除く）欠陥
関数を検出することはできなかったため，提案手法の方が有効な検索を行えるこ
とが確認できた．

4.2 今後の研究方針
今後，本論文で述べた研究成果を応用し，ソフトウェア保守作業をより容易な
ものにしていきたいと考えている．
本論文で扱ったリファクタリング支援を目的とした研究分野において，リファ
クタリング間の依存関係が問題として指摘されている [18, 52]．リファクタリング
間の依存関係とは，あるリファクタリングを行うためには，その前に他のリファ
クタリングを行う必要があるという関係のことを指す．開発者に対して，リファ
クタリングを行う前にリファクタリング間の依存関係を正確に提示することがで
きれば，効果的なリファクタリング支援を行うことができると考えられる．本論
文で提案したコードクローン間の依存関係に基づくリファクタリング支援手法は，
コードクローンのリファクタリングのみを対象にリファクタリング間に依存関係
を提示していると考えることができる．提案手法が行うメソッド呼び出し関係や
フィールドの共有関係の検出を応用し，コードクローンを対象としたリファクタ
リング以外のリファクタリング間の依存関係を解析する手法を提案したいと考え
ている．
また，本論文で類義語の特定に基づく類似コード片検索手法を提案し，適用実
験において欠陥を含む関数の検索に応用した．しかし，類似した機能が実装され
たコード片の検索への適用や，欠陥報告をクエリとして同様の欠陥を含むコード
片を検索することに適用するなど，提案手法には様々な適用分野が考えられる．今
後，他のソフトウェアに含まれる欠陥への適用のみならず，様々な用途に提案手
法を適用していきたいと考えている．

66

参考文献

[1] M. I. Abouelhoda, E. Ohlebusch, and S. Kurtz. Optimal exact strring match-

ing based on suffix arrays. In Proc. of SPIRE 2002, pp. 31–43, 2002.

[2] A. Aiken. A system for detecting software plagiarism (moss homepage). http:

//www.cs.berkeley.edu/∼aiken/moss.html.

[3] ANTLR. http://www.antlr.org.

[4] B. S. Baker. A program for identifying duplicated code. In Proc. of Computing

Science and Statistics, Vol. 6, pp. 49–57, 1992.

[5] B. S. Baker. On finding duplication and near-duplication in large software

systems. In Proc. of WCRE ’95, pp. 86–95, 1995.

[6] B. S. Baker. Parameterized duplication in strings: Algorithms and an applica-

tion to software maintenance. SIAM Journal on Computing, 26(5):1343–1362,

1997.

[7] B. S. Baker. Finding clones with Dup: Analysis of an experiment. IEEE

Trans. Softw. Eng., 33(9):608–621, 2007.

[8] M. Balazinska, E. Merlo, M. Dagenais, B. Laguë, and K. Kontogiannis. Mea-

suring clone based reengineering opportunities. In Proc. of METRICS ’99,

pp. 292–303, 1999.

[9] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and K. Kontogiannis. Partial

redesign of java software systems based on clone analysis. In Proc. of WCRE

’99, pp. 326–336, 1999.

[10] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Ad-

vanced clone-analysis to support object-oriented system refactoring. In Proc.

of WCRE 2000, pp. 98–107, 2000.

[11] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented

design metrics as quality indicators. IEEE Trans. Softw. Eng., 22(10):751–

761, 1996.

67

[12] H. A. Basit and S. Jarzabek. Detecting higher-level similarity patterns in

programs. In Proc. of ESEC/FSE 2005, pp. 156–165, 2005.

[13] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and L. Bier. Clone detection

using abstract syntax trees. In Proc. of ICSM ’98, pp. 368–377, 1998.

[14] K. H. Bennet. Software maintenance: A tutorial. In M. Dorfman and R. H.

Thayer eds., Software Engineering. IEEE Computer Society Press, 1997.

[15] T. J. Biggerstaff. Design recovery for maintenance and reuse. Computer,

22(7):36–49, 1989.

[16] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented

design. IEEE Trans. Sofw. Eng., 20(6):476–493, 1994.

[17] E. J. Chikofsky and J. H. Cross. Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1):13–17, 1990.

[18] S. Counsell, R. M. Hierons, R. Najjar, G. Loizou, and Y. Hassoun. The

effectiveness of refactoring, based on a compatibility testing taxonomy and a

dependency graph. In Proc. of TAIC-PART 2006, pp. 181–192, 2006.

[19] I. Dagan, L. Lee, and F. C. N. Pereira. Similarity-based models of word

cooccurrence probabilities. Machine Learning, 34(1-3):43–69, 1999.

[20] S. Ducasse, M. Rieger, and S. Demeyer. A language independent approach

for detecting duplicated code. In Proc. of ICSM ’99, pp. 109–118, 1999.

[21] D. Evans and D. Larochelle. Improving security using extensible lightweight

static analysis. IEEE Software, 19(1):42–51, 2002.

[22] G. Fischer and J. W. v. Gudenberg. Simplifying source code analysis by an

xml representation. Softwaretechnik Trends, 23(2):49–50, 2003.

[23] M. Fowler. Refactoring: improving the design of existing code. Addison Wes-

ley, 1999.

[24] M. Gabel, L. Jiang, and Z. Su. Scalable detection of semantic clones. In Proc.

of ICSE 2008, pp. 321–330, 2008.

[25] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:

Elements of Reusable Object-Oriented Software. Addison Wesley, 1995.

[26] GNU grep. http://www.gnu.org/software/grep/.

68

[27] G. Grahne and J. Zhu. Efficiently using prefix-trees in mining frequent item-

sets. In Proc. of IEEE ICDM Workshop on Frequent Itemset, 2003.

[28] D. Gusfield. Algorithms on Strings, Trees, And Sequences. Cambridge Uni-

versity Press, 1997.

[29] Y. Higo, S. Kusumoto, and K. Inoue. A metric-based approach to identify-

ing refactoring opportunities for merging code clones in a java software sys-

tem. Journal of Software Maintenance and Evolution: Research and Practice,

20(6):435–461, 2008.

[30] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue. Simultaneous modification

support based on code clone analysis. In Proc. of APSEC 2007, pp. 262–269,

2007.

[31] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notice,

39(12):92–106, 2004.

[32] IBM. Rational software modeler. http://www-01.ibm.com/software/

awdtools/modeler/swmodeler/.

[33] IEEE Std 1219: Standard for software maintenance, 1998.

[34] Imagix Corporation. Imagix 4D. http://www.imagix.com/products/

products.html.

[35] ISO/IEC 14764:2006 - software engineering – software life cycle processes –

maintenance, 2006.

[36] JBoss. http://www.jboss.org.

[37] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard: Scalable and accurate

tree-based detection of code clones. In Proc. of ICSE 2007, pp. 96–105, 2007.

[38] JUnit. http://www.junit.org.

[39] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A multilinguistic token-

based code clone detection system for large scale source code. IEEE Trans.

Softw. Eng., 28(7):654–670, 2002.

[40] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation

of maintainability enhancement by refactoring. In Proc. of ICSM 2002, pp.

576–585, 2002.

69

[41] M. Kim, L. Bergman, T. Lau, and D. Notkin. An ethnographic study of copy

and paste programming practices in oopl. In Proc. of ISESE 2004, pp. 83–92,

2004.

[42] R. Komondoor and S. Horwitz. Using slicing to identify duplication in source

code. In Proc. of SAS 2001, pp. 40–56, 2001.

[43] J. Krinke. Identifying similar code with program dependence graphs. In Proc.

of WCRE 2001, pp. 301–309, 2001.

[44] S. Kullback. Information Theory and Statistics. John Wiley and Sons, 1959.

[45] G. M. L. Prechelt and M. Philippsen. Finding plagiarisms among a set of

programs with jplag. Journal of Universal Computer Science, 8(11):1016–

1038, 2002.

[46] B. Laguë, D. Proulx, J. Mayrand, E. M. Merlo, and J. Hudepohl. Assessing the

benefits of incorporating function clone detection in a development process.

In Proc. of ICSM ’97, pp. 314–321, 1997.

[47] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: Finding copy-paste and

related bugs in large-scale software code. IEEE Trans. Softw. Eng., 32(3):176–

192, 2006.

[48] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit program-

ming rules and detecting violations in large software code. In Proc. of

ESEC/FSE 2005, pp. 306–315, 2005.

[49] J. Lin. Divergence measures based on the shannon entropy. IEEE Trans. Inf.

Theory, 37(1):145–151, 1991.

[50] J. I. Maletic, M. L. Collard, and A. Marcus. Source code files as structured

documents. In Proc. of IWPC 2002, pp. 289–292, 2002.

[51] J. Mayland, C. Leblanc, and E. M. Merlo. Experiment on the automatic

detection of function clones in a software system using metrics. In Proc. of

ICSM ’96, pp. 244–253, 1996.

[52] T. Mens, G. Taentzer, and O. Runge. Analysing refactoring dependencies

using graph transformation. Software and Systems Modeling, 6(3):269–285,

2007.

[53] T. M. Meyers and D. Binkley. An empirical study of slice-based cohesion and

coupling metrics. ACM Trans. Softw. Eng. Methodol., 17(1):1–27, 2007.

70

[54] W. F. Opdyke. Refactoring object-oriented frameworks. PhD thesis, Univer-

sity of Illinois at Urbana-Champaign, 1992.

[55] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. Tichy. Two con-

trolled experiments assessing the usefulness of design pattern documentation

in program maintenance. IEEE Trans. Sofw. Eng., 28(6):595–606, 2002.

[56] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for

change impact analysis of java programs. In Proc. of OOPSLA 2004, pp.

432–448, 2004.

[57] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection

technique. ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[58] D. Seipel, M. Hopfner, and B. Heumesser. Analyzing and visualizing PRO-

LOG programs based on XML representations. In Proc. of WLPE 2003, pp.

31–45, 2003.

[59] N. Shi and R. A. Olsson. Reverse engineering of design patterns from Java

source code. In Proc. of ASE 2006, pp. 123–134, 2006.

[60] K. Tanaka-Ishii and H. Iwasaki. Clustering co-occurrence graph based on

transitivity. In Proc. of WVLC ’97, pp. 91–100, 1997.

[61] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis. De-

sign pattern detection using similarity scoring. IEEE Trans. Sofw. Eng.,

32(11):896–909, 2006.

[62] V. Wahler, D. Seipel, J. W. v. Gudenberg, and G. Fischer. Clone detection

in source code by frequent itemset techniques. In Proc. of SCAM 2004, pp.

128–135, 2004.

[63] M. Weiser. Program slicing. In Proc. of ICSE ’81, pp. 439–449, 1981.

[64] E. J. Weyuker. Evaluating software complexity measures. IEEE Trans. Softw.

Eng., 14(9):1357–1365, 1988.

[65] S. W. L. Yip and T. Lam. A software maintenance survey. In Proc. of APSEC

’94, pp. 70–79, 1994.

[66] A. Zeller. Why Programs Fail. Morgan Kaufmann Pub., 2005.

[67] 井上,神谷,楠本. コードクローン検出法. コンピュータソフトウェア, 18(5):47–

54, 2001.

71

[68] 上田. クラスター分析. 朝倉書店, 2003.

[69] 北, 津田, 獅々堀. 情報検索アルゴリズム. 共立出版, 2002.

[70] 齋藤, 宿久. 関連性データの解析法–多次元尺度構成法とクラスター分析法–.

共立出版, 2006.

[71] 日本語入力システム “かんな”. http://canna.sourceforge.jp.

[72] 廣田, 佐々木. 用語解説 “f値”. 日本ファジィ学会誌, 12(3):36, 2000.

[73] 松尾, 石塚. 語の共起の統計情報に基づく文書からのキーワード抽出アルゴリ
ズム. 人工知能学会論文誌, 17(3):217–223, 2002.

[74] 横森, 梅森, 西, 山本, 松下, 楠本, 井上. Javaソフトウェア部品検索システム
SPARS-J. 電子情報通信学会論文誌D-I, J87-D-I(12):1060–1068, 2004.

72

	cover
	paper

